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ABSTRACT The flow of internally deposited radioisotope particles inside the body of people
exposed to inhalation, ingestion, injection or other ways is usually evaluated using
compartmental models (see Sánchez & López-Fidalgo, (2003, and López-Fidalgo & Sánchez,
2005). The International Commission on Radiological Protection (ICRP, 1994) describes the
model of the human respiratory tract, represented by two main regions. One of these, the
thoracic region (lungs) is divided into different compartments. The retention in the lungs is given
by a large combination of ratios of exponential sums depending on time. The aim of this work is
to provide optimal times for making bioassays when there has been an accidental radioactivity
intake and there is interest in estimating it. In this paper, a large two–parameter model is
studied and a simplified model is proposed in order to obtain optimal designs in a more suitable
way. Local c-optimal designs for the main parameters are obtained using the results of López-
Fidalgo & Rodrı́guez-Dı́az, 2004). Efficiencies for all the computed designs are provided and
compared.

KEY WORDS: Bioassays, biokinetic models, design efficiencies, initial deposition factors,
radioactivity retention

Introduction

Compartmental models are used to analyse a system by dividing it into a finite number of

components, which are called compartments. The compartments interact with each other,

exchanging different products, e.g. chemical substances, hormones, people from a popu-

lation, etc. A compartmental model is a network where the nodes are compartments con-

nected by arrows designing the flow of some substance from one to another. In particular,

the flow and retention of some kind of “substance” will be considered in this paper. There

are initial compartments where the intake (input) of the substance takes place and there are

also final compartments from where the substance is eliminated (output). A general

introduction to this theory can be found, for example, in Anderson (1983).

Let us consider a general compartmental model with compartments denoted by

numbers, i ¼ 1, 2, 3, . . . , nþ 1. This model will include the flow corresponding to the
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disintegrating rate of each compartment. Let ki,j be the rate of transfer from compartment i

to compartment j. For simplicity ki will be used instead of ki,j when there is not possible

confusion. qi(t) be the retention in compartment i at time t and bi (t) the input coming from

the environment to compartment i at time t. The content at compartment i can be rep-

resented by the equations:

@qi(t)

@t
¼
X
r

kr,iqr(t) �
X
j

ki,jqi(t) þ bi(t) ¼
X
r

kr,iqr(t) � kiqi(t)

þ bi(t), i ¼ 1, . . . , n,

@qnþ1(t)

@t
¼
X
r

kr,nþ1qr(t):

If possible, a system will be decomposed in catenary unidirectional chains. A catenary

unidirectional system is a sequence of compartments in such a way that each one receives

flow from the previous one, with rate ki21, and gives flow to the next one, with rate ki. The

first one receives flow from the environment, b1 (t), and the last one only gives flow to the

environment with rate kn. There can also be flow from each compartment i to the

environment given by rates ki0, i ¼ 1, 2, . . . , n. Figure 1 shows this situation. If the sub-

stance is a radioactive isotope the disintegrating rate will be taken into account given

by a common rate, lR, for all compartments. The disintegration can be considered as a

flow to the environment. Then, where it has been said flow to the environment it would

be said flow to the environment or other compartments outside the catenary chain.

If the rates of transfer, Ki ¼ ki þ ki0 þ lR, in a unidirectional catenary system are all

different, then an explicit solution for the retention is derived straightforwardly for the

case of an impulse (acute) input b1 at time t ¼ 0 (Skrable, 1974),

qi(t) ¼ b1

Yi�1

p¼1

kp

 !Xi
j¼0

e�KjtQi
p¼0,p=j (Kp � Kj)

 !
e�lRt, i ¼ 1, 2, . . . , n, (1)

where lR is the radioactive decay constant of the isotope. If there is no radioactive isotope

then lR ¼ 0.

Thus, it would be very convenient to decompose a system in catenary unidirectional

chains, if possible.

Compartmental systems are usually described by using flow diagrams, and are widely

used in medicine, chemistry pharmacokinetics, etc. In fact, the human body is usually seen

and studied as an example of a compartmental model, divided into several regions. We are

interested in one of them, the respiratory tract.

Figure 1. Catenary unidirectional system with n compartments
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ICRP 66 (1994) describes the compartmental model of the human respiratory tract

applied to the intake of radioactive aerosols by inhalation. In this paper, the case of an

intake of a radioactive substance in the human body will be considered. In particular,

we will refer to the retention in the thoracic region (lungs) as a function of the time

after an acute intake at t ¼ 0. The lung retention can be mathematically represented by

a function h(t, I, p), ½t1, t2�, where I is the input to the system at t ¼ 0 and p an index

of the particle’s size.

Solving the Respiratory Tract Model

The previous ideas have been applied to solve the respiratory tract model (ICRP 66, 1994)

for the intake of radioactive aerosols by inhalation. For modelling purposes, the respirat-

ory tract is represented by different regions (Figure 2): (i) The extrathoracic comprising

the anterior nose (ET1) and the posterior nasal passage, larynx, pharynx and mouth

(ET2), and (ii) the thoracic region that represents the lungs and it is divided into bronchial

(BB), bronchiolar (bb) and alveolar-interstitial (AI ).

In the ICRP 66 (1994) model the material from environment is deposited in the respir-

atory tract in compartments labelled as Particles in Initial State (PIS), except in compart-

ment ET1 and the lymphatic nodes, represented by compartment 10 and 13 in Figure 3.

From each PIS compartment the material is transferred into the body fluids, at an

Figure 2. Anatomical regions of the respiratory tract

Optimal Designs for Compartmental Models with Correlated Observations 1077



Figure 3. ICRP 66 (1994) Respiratory Tract Model. The dashed arrow from subsystem PIS to

subsystem PTS means that the flow goes from each compartment in PIS to the compartment with

the same number in PTS. The hollow arrow ()) means a flow from each compartment in

subsystem PIS or PTS to the “Body fluid”. A simple arrow means flow from a single

compartment to another
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absorption rate sp. It is also simultaneously transferred from PIS (at a rate spt) to a corre-

sponding compartment labelled as Particles in Transformed State (PTS). The flow goes

from 1 in PIS to 1 in PTS, from 2 in PIS to 2 in PTS, and so on. We can consider that

each compartment in PIS has a “mirror” compartment in PTS. In each compartment in

PTS the isotope is dissolved at a constant rate sp into the body fluids (usually the

blood). For instance, the total transfer rate for AI2 in PIS will be KAI2 ¼ k2,4 þ spt þ sp,

and for AI2 in PTS will be K 0
AI2

¼ k2,4 þ st. This general model for the respiratory tract

is common to any element. Standard clearance rates kij are shown in Table 1. The absorp-

tion rates spt, sp, st are related with the chemical form of the element. ICRP 66 (1994)

establishes three types of materials according to its absorption behaviour: Fast (F),

Moderate (M), and Slow (S). Default absorption rates are shown in Table 2.

If a person breaths a quantity I at time t ¼ 0 the fraction of the airborne material that is

deposited in each region is determined by the Activity Median Aerodynamic Diameter

(AMAD), some anatomical and physiological parameters as well as various conditions

of exposure. The AMAD is the median of the distribution of radio-labelled particles

with varying activities and aerodynamic diameters and includes in its definition the

size, shape and density of the particles. This is the parameter p given in the introduction.

We will assume standard anatomical and physiological values for a reference worker

given in ICRP 66 (1994).

The fraction of I from an environment deposited in PIS compartments

{ET1, 1, . . . , 9, 11, 12} – notice that no particles from environment were deposited

directly either in compartments 10 and 13 or in PTS – is a function of p. They are the

so-called Initial Deposition Factors, IDFi(p). The quantity IDFi(p) may be either calcu-

lated following the procedure described in ICRP 66 (1994) or obtained from Annex F

of ICRP 66 (1994). Document ICRP 66 (1994) already gives the procedure to compute

IDFAI , IDFbb(fastþseq), IDFbb(slow), IDFBB(fastþseq) and IDFBB(slow), that involves large

algebraic expressions. However we have found that the IDF parameters, in the range of

interest of AMAD, [0.5 mm, 20 mm], for ordinary workers may be fitted using least

squared estimators as follows:

IDFAI(p) ¼ 0:128187e�0:170111p

IDFbb(fastþseq)(p) ¼ 0:0100737e�0:0878945p

IDFbb(slow)(p) ¼ 0:0212844e�4:35327p þ 0:00920991e�0:147244p

IDFBB(fastþseq)(p) ¼ �0:0171738e�0:566783p þ 0:0171738e�0:0577835p

IDFBB(slow)(p) ¼ �0:0110839e�1:11147p þ 0:0110839e�123578p

Using the expressions given in ICRP 66 (1994) the following functions IDFi(p) should

Table 1. Reference clearance rates for human respiratory tract

Pathway

Rate (d 21)

k1,4

0.02

k2,4

0.001

k3,4

0.0001

k3,10

0.00002

k4,7

2

k5,7

0.03

k6,10

0.01

k7,11

10

k8,11

0.03

k9,10

0.01

k11,15

100

k12,13

0.001

kET1, Enviroment

1
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be used instead of IDFAI , IDFbb(fastþseq), IDFbb(slow), IDFBB(fastþseq) and IDFBB(slow):

IDF1(p) ¼ 0:3IDFAI(p)

IDF2(p) ¼ 0:6IDFAI(p)

IDF3(p) ¼ 0:1IDFAI(p)

IDF4(p) ¼ 0:993IDFbb(fastþsec)(p) � 0:007IDFbb(slow)(p)

IDF5(p) ¼ IDFbb(show)(p)

IDF6(p) ¼ 0:007IDFbb(fastþseq)(p) þ IDFbb(show)(p)

IDF7(p) ¼ 0:993IDFBB(fastþsec)(p) � 0:007IDFBB(slow)(p)

IDF8(p) ¼ IDFBB(slow)(p)

IDF9(p) ¼ 0:007IDFBB(fastþseq)(p) þ IDFBB(slow)(p)

(2)

We are interested in evaluating the retention in the lungs for an acute intake I at time

t ¼ 0 for a worker exposed to aerosol particles of type S. The lungs are represented by

compartments 1 to 10 in PIS jointly with their “mirror” compartments in PTS. For eval-

uating the retention in each compartment this region can be divided in catenary branches

(about 100 of them). Each catenary branch starts in some deposition compartment, (1 to 9)

in PIS, and finishes in “Body fluids” or ET2. Notice that neither “Body fluids” nor ET2 are

part of the lungs. For example, starting at compartment 5 (bb2) the following catenary

branches may be built, where the prime means the corresponding “mirror” compartment:

bb2 ! B

bb2 ! BB1 ! B

bb2 ! BB1 ! ET2

bb2 ! bb02 ! B

bb2 ! bb02 ! BB0
1 ! B

bb2 ! bb02 ! BB0
1 ! ET 0

2

bb2 ! BB1 ! BB0
1 ! B

bb2 ! BB1 ! BB0
1 ! ET 0

2

Now equation (1) may be used to compute the content in all compartments of the thor-

acic region (lungs). The kij values can be obtained from Table 1, and the absorption rate for

type S from Table 2 (spt ¼ 0:1, sp ¼ 100, st ¼ 0:0001). Taking into account that

b1 ¼ I � IDFi(p), where IDFi(p) is given by equation (2), these parameters can be

replaced in the main equation obtaining the retention as a rational function of large

Table 2. Default absorption rates for type F, M and S materials

Absorption rate F (Fast) M (moderate) S (Slow)

sp (d 21) 100 10 0.01

spt (d 21) 0 90 100

st (d 21) – 0.005 0.0001
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sums of exponentials depending on p and t, as follows:

h(I, t, p) ¼ I

P
i gie

aipþbitP
i g

0
ie
a0
i
p

The full equation for the specified values of the parameters is shown in the Appendix.

This equation may be obtained using the software BIOKMOD, provided by the third

author (http://web.usal.es/�guillerm or the online version http://www3.enusa.es/
webMathematica/Public/biokmod.html).

The theoretical lung retention can be compared with experimental data using a lung

counter, y(t) measured along the time. The problem consists on estimating I and p effi-

ciently taking the minimum number of measures y(t). The model is linear in I but not

in p. The bigger the particles are, the more easily they are eliminated. The aim of this

paper is to provide optimal times for making bioassays when there has been an accidental

radioactivity intake and there is interest in estimating this. Usually the values of p vary

between 1 and 10 units. Figure 4 represents the initial model for I ¼ 1000 and p ¼ 5.

Optimal Designs for the Original Model

Let us assume there is only one worker. First, let us consider the case when two obser-

vations yt1 , yt2 are taken from a worker at times t1 and t2 respectively. These are repeated

measurements and need to be considered in the optimal design theory in a particular way

taking into account the possible correlation between the observations. For a recent refer-

ence on these kind of problem see Müller & Stehlı́k (2004). For the case considered here

the following result comes easily.

Figure 4. Lung’s retention for I ¼ 1000, p ¼ 5
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Proposition

Neither the D-optimal design depends on the linear parameter I nor the c-optimal designs

do for c ¼ c1 ¼ (1, 0)T or c ¼ c2 ¼ (0, 1)T .

Proof

The model can be written as

h(t, I, p) ¼ If1(t, p)

Denoting f2(t, p) ¼ @f1(t, p)=@p, then

rh(t,I,p) ¼
@h(t, I, p)

@I
,
@h(t, I, p)

@p

� �T

¼ (f1(t, p),I f2(t, p))T ¼ B(I) (f1(t, p), f2(t, p))T

with

B ¼ B(I) ¼
1 0

0 I

� �

The information matrix is

M ¼ XTS
�1
X ¼ B ~X

T
S
�1 ~XB ¼ B ~MB

where S is the covariance matrix and ~M ¼ ~X
T
S
�1 ~X does not depend on I, where

~X ¼
f1(t1, p) f2(t1, p)

f1(t2, p) f2(t2, p)

� �

The proof finishes taking into account that

det (M) ¼ det (B)2 det ( ~M) and Fc(M) ¼ cTM�1c ¼ FB�1c( ~M)

This completes the proof.

Let us consider

S ¼ s2 1 e�rd

e�rd 1

� �

where the covariance between the two samples at times t1 and t depends on the distance

between them, d ¼ t2 2 t1. For D-optimality we look for two points t1 ¼ 0 and t2 ¼ d

in the design interval maximizing det ~M for different values of r. For ci -optimality

similar designs are found minimizing the variance cTi M
�1ci for c1 ¼ (1, 0)T and

c2 ¼ (0, 1)T .

We will show the optimal designs for different criterion functions and several values for

r. We consider also two different design intervals. The linearized model will be used, so

that taking into account the previous result we can restrict the model to (f1(t, p), f2(t, p))T ,

that does not depend on I. The initial value for p will be set to p ¼ 5.
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First Observation at Zero

Previous and posterior results lead us to fix the first observation at the very first possible

moment in the interval ½0, t�. For this interval the first time point is assumed t ¼ 0. The

upper limit of the interval, t, will be considered as large as necessary in the computations.

Table 3 shows the optimal times to take the second sample depending on the value of r and

the different optimization criteria.

Delayed First Observation

Actually the practitioner needs some time to start taking observations. This period must be

at least 12 hours in our case, which moves the design interval to ½0:5, t�. Again, when

fixing the first observation at the beginning of the interval the second is shown in

Table 4 for different values of r and for several optimality criteria.

Tables 3 and 4 show that the smaller is r, the closer must be the two samples. In other

words, when there is a strong relationship between observations the best design chooses

them very close to each other.

Furthermore, there are big differences in choosing the best day to take the second obser-

vation for the two starting points t ¼ 0 and t ¼ 0.5. The explanation for the different

results is that the model’s curvature is specially concentrated at the very beginning, par-

ticularly in the interval [0, 1]. This fact is especially clear in the geometric computation

of the c -optimal designs using Elfving’s (1952) method (see Figures 5 and 6). In particular

Figure 6 shows one of the Elfving’s set branches, increasing t in 0.5 units each time. It can

be seen that for t . 1 the plot is almost a straight line.

A Simplified Class of Model

If we pay attention to the original model we can see that all the denominators of the frac-

tions do not depend on t. This leads us to the model:

~h(I, t, p) ¼ I
g1e

a1pþb1t þ g2e
a2pþb2t

1 þ g3e
a3p

(3)

for specific values of a ¼ (a1, a2, a2)T , and g ¼ (g1, g2, g3)T .

We will focus on D-optimization. A general two-point design in ½t1, t2� will be

j ¼ {t, t þ d}. Let us take x ¼ et, u ¼ ep, thus j takes the form {x, xd}, with d ¼ ed,

Table 3. Second observation’s time for different values of r

when the first observation is fixed at t ¼ 0. The criteria used

are D-optimality, c1-optimality (fc1
) and c2-optimality (fc2

)

r D fc1
fc2

0.001 0.14741 0.08762 0.05502

0.01 0.20447 0.12837 0.09834

0.1 0.20695 0.14016 0.14242

1 0.23138 0.15572 0.16778

10 2.19645 2.94087 2.81104

100 2.19645 2.94087 2.81103

1000 2.19645 2.94087 2.81103
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and the design interval comes to be ½et1 , et2 �.The linearized model can be reduced to

(f1(x, u), f2(x, u))T , with

f1(x, u) ¼
g1u

a1xb1 þ g2u
a2xb2

1 þ g3u
a3

, f2(x,u) ¼
@f1(x,u)

@u

and for a general covariance matrix

S ¼ w
1 v

v 1

� �

where v ¼ cov(t, t þ d), the determinant can be expressed by

det½M(j)� ¼
f1(xd,u)f2(x,u) � f1(x,u)f2(xd,u)½ �

2

w2(1 � v2)

In the homoscedastic case, with uncorrelated observations, this determinant takes the

form

det(M) ¼ g(s, g, a, u)x2(b1þb2)(db1 � db2 )2 (4)

where g is a function that does not depend on x nor d. First of all let us assume jb1j . jb2j

Table 4. Second observation’s time for different r, first

observation fixed at time t ¼ 0:5. The criteria used are

D-optimality, c1-optimality (fc1
) and c2-optimality (fc2

)

r D fc1
fc2

0.001 1.15473 1.01307 0.96813

0.01 1.15284 1.09390 1.09354

0.1 1.16246 1.13000 1.13699

1 69.0073 88.8826 88.0903

10 69.0198 88.8826 88.0903

100 69.0198 88.8826 88.0903

1000 69.0198 88.8826 88.0903

Table 5. D-optimal two-point designs {t�, t� þ d�} for model (3) and design space

½t1,t2� in the uncorrelated case when the condition jb1j . jb2j is assumed

t
�

d
�

b1 , 0 b2 , 0 t1 min
�In(b2)�In(�b1)

b1�b2
, t2 � t1

n o
b2 . 0 t1 t2 2 t1

b1 . 0 b2 , 0 t1 t2 2 t1

b2 . 0 max t2 �
In(b1)�In(b2)

b1�b2
, t1

n o
min

�In(b1)�In(�b2)
b1�b2

, t2 � t1

n o
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and let us split the interesting part of the determinant in x2(b1þb2) and (db1 � db2 )2, that

from now on will be D11 and D12 respectively. We can distinguish two main situations:

. If b1 , 0 the exponent of x is negative and D11 will be maximized by taking x to be the

less possible value, that is, the initial point of the design interval, et1 . If b2 . 0, D12 will

Figure 5. Elfving’s set for I ¼ 1000, p ¼ 5

Figure 6. Curvature of the linearized model. Elfving’s loci for Dt ¼ 0.5
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get the maximum value for the greatest d we can take, that is et2=x. When b2 is also

negative the optimal point for d maximizing D12 is

d� ¼
b2

b1

� � 1
b1�b2

(5)

. If b1 . 0 then both D11 and D12 are maximized for the highest values of the variables x

and d, thus the upper bound for xd, et2 , is reached. Then, using the equality xd ¼ et2 in

equation (4) we obtain for d� in the case b2 . 0 the inverse expression of the one in

equation (5). That means that

x� ¼ et2
b2

b1

� � 1
b1�b2

corresponds to the x -value that gives the local maximum. When b2 , 0 there is no local

maximum, the determinant increases with d in the design interval and therefore

d� ¼ et2�t1 , and consequently x� ¼ et1 .

Let us consider now the covariance matrix

S ¼ s2etp2 1 e�rt

e�rt 1

� �

that takes into account that the variance increases with t and p. The latter is due to the fact

that the bigger the particles are, the more easily they are eliminated, having smaller values

for the retention and making the measurement instruments not so accurate. Now, using the

mappings we have seen before, the determinant of the information matrix can be written as

det(M) ¼ g(s, a, g, u)x2(b1þb2�1) d
2r(db1 � db2 )2

d2r � 1

a ¼ (a1, a2, a3)T , g ¼ (g1, g2, g3)T , with g that does not depend on x. When d is large,

d2r ¼ e2dr .. 1, and the determinant can be approximated by x2(b1þb2�1)(db1 � db2 )2.

The same study can now be made for this expression, getting quite similar results to the

ones for the uncorrelated case. For instance, we will have

d� ¼
ln ( � b2) � ln( � b1)

b1 � b2

if b1 , 0 and b2 , 0, or

d� ¼
ln (b1 � 1) � ln (b2 � 1)

b1 � b2

when both parameters are greater than 1.

Discussion

The measurement system only has the capability to detect the isotope when the quantity of

this isotope reaches a value usually called the Lower Limit of Detection (LLD). This

means that after a number of days, depending on I, the bioassays make no sense for a

second measurement potentially lower than the LLD. In this paper, no limit was
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assumed on the number of days for the second measurement. From a practical point of

view the results obtained here are feasible. Nevertheless, a theoretical second optimal

time lower than the LLD would mean that the second bioassay must be taken at the

LLD at the most.

To illustrate this, let us assume that a counter measures 140 Bq in the lungs at time

t ¼ 0.5. Using the original model for p ¼ 5, an input of Î ¼ 140=f1(0:5,5) ¼ 2104 may

directly be estimated. For example, for uranium enriched 5% in 235U there is a LLD of

92 Bq, i.e. under this quantity it is not possible to detect the retention. In this example

this happens after t ¼ 50.6 days. The designs given in this paper do not depend on the

input, but in this very real case measurements taken after 50 days do not make sense as

they are demanded for example in the designs of Table 4 for r ¼ 1 or greater. The

optimal design for those cases forces the second measurement to be taken at LLD�1,

being 1 a number defined by the practitioner. Nevertheless there is here an open line of

research to investigate in a better way the situation at the LLD with a suitable

distribution.
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Appendix

The form of the original model is

I

�
0:0128067

e0:170111p
�0:0024983e�0:0878945p�10:0001t þ 0:0124915e�0:0878945p�2:0001t

þ 0:0388835e�0:170111p�0:0201t þ 0:0768815e�0:170111p�0:0011t

þ 0:00699301
0:0212844

e4:35327p
þ

0:00920991

e0:147244p

� �

þ
0:00123877 ð0:0212844=e4:35327pÞ þ ð0:00920991=e0:147244pÞ

� �
e102:1t

þ
0:00100101 ð0:0212844=e4:35327pÞ þ ð0:00920991=e0:147244pÞ

� �
e100:13t

�
0:251008 ð0:0212844=e4:35327pÞ þ ð0:00920991=e0:147244pÞ

� �
e10:0001t

þ
1:24001 ð0:0212844=e4:35327pÞ þ ð0:00920991=e0:147244pÞ

� �
e2:0001t

þ
1:00201 ð0:0212844=e4:35327pÞ þ ð0:00920991=e0:147244pÞ

� �
e0:0301t

þ 0:00699301
�0:0110839

e1:11147p
þ

0:0110839

e0:123578p

� �
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þ
0:992009 ð�0:0110839=e1:11147pÞ þ ð0:0110839=e0:123578pÞ

� �
e10:0001t

þ
0:999002 ð�0:0110839=e1:11147pÞ þ ð0:0110839=e0:123578pÞ

� �
e0:0301t

�
0:0012475 ð0:0212844=e4:35327pÞ þ ð0:00920991=e0:147244pÞ

� �2

e102:1t ð0:0212844=e4:35327pÞ þ ð0:00920991=e0:147244pÞ þ ð0:0100737=e0:0878945pÞð Þ

þ 0:00699301
�0:0171738

e0:566783p
þ

0:0171738

e0:0577835p

� �

þ
0:992009 ð�0:0171738=e0:566783pÞ þ ð0:0171738=e0:0577835pÞ

� �
e10:0001t

þ
0:0171567e0:181361p�0:0171567e0:690361p�0:0171567e1:16925p þ 0:0171567e1:67825p

e10:0001t(1:e0:748144p þ 1:54943e1:29283p�1:e1:73604p�1:54943e1:80183p)

þ
0:0110729e0:871722p�0:0221457e1:85961p þ 0:0110729e2:84751p

e10:0001t(1:e1:98319p þ 1:54943e2:52788p�1:e2:97109p�1:54943e3:03688p)

þ
�0:0125796e0:147244p�0:00544327e4:35327p

e2:0001t(1:e0:235138p þ 0:432707e4:44117p þ 0:473291e4:50051p)

þ
0:00251591e0:147244p þ 0:00108865e4:35327p

e10:0001t(1:e0:235138p þ 0:432707e4:44117p þ 0:473291e4:50051p)

þ
0:00531579e0:382382p þ 0:00460036e4:58841p

e10:0001t(1:e4:73565p þ 0:432707e8:94168p þ 0:473291e9:00103p)

þ
�0:0265789e0:382382p�0:0230018e4:58841p�0:00497652e8:79444p

e2:0001t(1:e4:73565p þ 0:432707e8:94168p þ 0:473291e9:00103p)

�

This is a condensed way to give it. Written as a single fraction will need several pages.
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1088 J. López-fidalgo et al.


