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STATISTICAL CRITERIA TO ESTABLISH BIOASSAY
PROGRAMS
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Abstract—A statistical study of fitting log-normal distributions to
air sampling concentrations and random intakes is reported in
this paper. An improved method on the approximation of a sum
of log-normal distributions to a log-normal distribution is used to
forecast bioassay results and their uncertainties. These methods
can be used in the design and implementation of air control
monitoring and bioassay programs for introducing statistical
criteria to determine when a bioassay is required as well as the
frequency.
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INTRODUCTION

AR sampLERs frequently are used to track exposure and to
calculate intakes for workers exposed to radioactive
aerosols, e.g., in uranium and plutonium processing
plants. A bioassay program also is applied periodically to
the workers monitored using lung counters and urine
samples, and less frequently with fecal samples. The
biokinetic model can be applied to establish a relation-
ship between the individual intake and the bioassay
program frequency. In fact, using the models and criteria
in reports by the International Commission on Radiolog-
ical Protection (ICRP), lung retention and urine and fecal
excretion can be evaluated using the differential equation

q'(=Aq@® +b@), (1

where A = K — A L, and K is the matrix of transfer rates
with elements k;; representing the constant fractional trans-
fer rate from compartment j to i (i # j) and k; representing
the negative of the total removal rate constants, that is the
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rate constants over j plus the radiological rate constant, A.
The vector q(f) = [¢,(D), . . ., ), . . ., q,()]" represents the
function of content in each compartment i of an
n-compartmental system at time ¢ and b(r) = [b(®),...,
b(®, ..., b,(t)]" represents the input function in each
compartment i of the system at time .

The solution of eqn (1) is given by eqn (2), where
qo = [¢,(0), ..., q0), ..., g,(0)]" is the content in
each compartment i at time ¢t = 0,

t
q(t) =eMqy + j A Ib(r)dr. 2)
0
For a single (or acute) intake eqn (2) becomes
q(t) = e*q, . (3)

When the matrix A is diagonalizable (all current [CRP
models, compiled in ICRP Database of Dose Coefficients
2001, have this characteristic), eqn (3) gives ¢;(f) as a sum
of exponentials ¢,(r) = ¢,(0) =i_, ¢ exp(—d™” 7). Thus, the
lung and whole body retention for a single intake >,¢,(0) =
1, as well as the daily urine and fecal excretion, after a time
t, are sums of contents of several compartments. Therefore,
they follow the same pattern,

1
r() = 2 ¢, exp(—d,p),

v=1

“4)

where 7(7) is usually called the intake retention function
(e.g., Skrable et al. 1988) and the value of this function at a
specific time ¢ is known as the Intake Retention Fraction
(IRF) (e.g., Potter 2002). If the intake is continuously
constant the intake retention function has a similar form of
eqn (4). IRF values for single intake are tabulated for many
radioisotopes, e.g., ICRP 78 (1997) and Potter (2002).
Analytic expressions of r(¢) and IRF values for acute
and chronic intakes can be obtained using BIOKMOD*
(Sanchez 2005; Sanchez and Lopez-Fidalgo 2003).
IRF values are often used in bioassay programs.

# BIOKMOD is available at http://www3.enusa.es/webMathematica/
Public/biokmod.html.
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The individual daily intake for an occupational worker
is usually a random variable (r.v.). This means that b(?) in
eqn (1) is a r.v. The solution of eqn (1) in situations where
b(?) is ar.v. has been studied, e.g., by Kercher and Robison
(1993). We are interested in the case when a random intake
can be fitted to a known probability distribution function
(pdf) to provide probability bands around the function (%)
for planning the bioassay program.

METHODS

Let us consider a worker exposed to an environment
of airborne radioactivity. The worker inhales a quantity /;
each day j. Although the intake happens during a few
hours every day, from a practical point of view it can be
assumed that ; is an acute intake. This is a usual
assumption very convenient for our purpose. After a time
t the worker will have been exposed to multiple acute
intakes I, ..., I. Then the lung and the whole body
retention as well as the daily urine and fecal excretion
after a time ¢ will follow the pattern of eqn (5) where the
time is considered as a discrete variable measured in days
and s;(r) = r(t — j + 1)

v(t) =Lr(t) + Lir(t — 1) + -+ - 4+ (1)

! l
=2 Lt —j+ 1) =2 Is(n. (5
Jj=1 Jj=1
We are interested in studying y(#) and its uncertain-
ties when /; is a r.v. as described here. If the pdf of this
r.v. can be fitted to the pdf of a known distribution, then
some theoretical characteristics of the pdf may be appli-
cable. With this purpose we have analyzed the intake
data of a group of workers from Juzbado Fuel Fabrication
Plant who were exposed over a long period of time
(usually a few years) to chronic intake. The Juzbado
factory makes uranium fuel assemblies for light water
reactors. This process requires manipulating the powder
of enriched uranium oxides (<5% of **U). The “Ce-
ramic Zone” is the workshop where airborne radioactive
particles may be released into the environment and there
is a potential radiological hazard of internal contamina-
tion. This zone is divided into a few areas (for pressing,
sintering, grinding, etc.). The exposure conditions inside
each area are considered to be similar. We have found
that the daily intake [; for workers performing their
activities in the same area for a long period of time
(greater than 400 working days) can be modeled using a
log-normal distribution LN(u,0?), where w and o” are
the mean and variance of the corresponding normal
distribution. The pdf of the log-normal distribution is
given by eqn (6):
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The mean and variance of the log-normal distribu-
tion are

py = e gl =2 — 1), (T)

while the mean and variance of the associated normal
distribution (In X) are

o1+ (2] ) e 2]

The following estimators derived from the transfor-
mation to the normal distribution are widely used in
practice:

1 1
l‘Le = Nz ln xi ) Of = Nz (]n xi - Me)z ’ (9)

where N is the total number of observations x; from the
log-normal distribution (i = 1, ..., N).

In our case the daily intake for a specific worker
I; plays the role of x and it has to be taken into account
that for non-working days, Saturdays, and Sundays, /;
is assumed to be zero. Thus, in eqn (5) for each j
corresponding to a working day, s;() /; is the product
of a constant and a r.v. It is well known that a r.v.
proportional to a log-normal distribution also is log-
normal. Therefore, s;(z) I; for working days follows a
log-normal distribution. The sum of log-normal vari-
ables is not a known distribution, but there are some
approximations to log-normal distributions (Fenton
1960; Schwartz and Yeh 1982). One of the simplest is
Fenton-Wilkinson’s approximation (Abu-Dayya and
Beaulieu 1994; Ho 1995). This approximation has
been proven accurate under certain conditions (e.g.,
Cardieri and Rappaport 2001) as is the case here for
independent r.v., means not significantly different, and
similar variances. In particular, Fenton-Wilkinson’s
approximation for y(#) in eqn (5) provides a log-
normal distribution LN[u(t), o’(t)] with first and
second moments about the origin given by

u (1) = E[y(1)] = Z explmy(t) + p + 0?/2], (10)

J



Statistical criteria to establish bioassay programs @ J. LopEz-FIDALGO AND G. SANCHEZ 335

u,(t) = E[y(1)*] = E exp{2[m;(r) + n + o]}

J
+ > Dexplm() + mt) + 2u + 0*], (11)
i#i
where mi(¢) = In[r(z — j + 1)]. Substituting m;(¢) in
eqn (10) and eqn (11) we obtain

zm0=w”“2dﬂ=m24ﬂ, (12)
uy(r) = Ml(f)2 + eZpHro'z(eo'z - I)E rz(j)

= () + 072 r*(j), (13)
j

where w; and of are the mean and variance of the
log-normal distribution of the intake obtained using eqn
(7). Thus, the approximated log-normal distribution for
eqn (5) has the following parameters:

u(t) =2 1n Ml(t)_%ln uy(1),

A =Inu,(t) —2Inur). (14)

An approximation of the cumulative distribution
function (cdf) of y(7) is then

In y, — P«(I)] ’ (15)

(1)

where ® is the normal cdf. Probability bands for y(¢) can
be constructed for a fixed probability y:

Ply(t) = yol = q’[

1+ 1 -
P = up)] = 5, Py =w0] = 5,

(16)

that is, u;(r) =~ exp[u(t) — zo(¢)] and uy(r) =~
exp[u(t) + zo(t)], where z is the 100(y + 1)/2-quantile
of the standard normal distribution, so that the interval
[u,(t), uy(t)] provides probability bands for the mean
y(t). For a number of days the retention is a sum of r.v.,
which means that a good approximation to the normal
distribution with a symmetric interval may be used:

Pluy(t) =b(t) =y(t) =u, (1) + b()] =y, (A7)
that is, b(f) ~ z Vu,(t) — u,(1)>. Some kind of probability
region can be built for the stochastic process y(7):

e
y(1) = u (1) + zus(r) — u(2)*. (18)

We can use these equations to evaluate y(¢) and its
uncertainties for workers exposed to a daily intake that
can be described using a log-normal distribution.

ESTIMATION OF THE INTAKE WITH STATIC
AIR SAMPLERS

The fact that the individual intake could be represented
by a log-normal distribution led us to study the method
applied in the Juzbado Fuel Fabrication Plant to estimate the
intake. This method is similar to that applied in other
uranium facilities. The uranium aerosol concentrations are
periodically monitored with a Static Air Sampler (SAS).
The SAS aspirates the air from the environment using a
pump. The air is led through a paper filter where the
aerosols are collected. Air samplers are fixed in locations P,
strategically located in the workplace (see Fig. 1).

The filter at point P, is collected when the workers
change shift every working day j and the activity A,(j) on
the filter is measured at the end of the sampling period T
(usually an 8-h shift). For special operations where the
maximum level of airborne uranium concentration could
be exceeded, i.e., while cleaning equipment, individual
respirators are used. We will not consider the air con-
centration during these special periods of time. The daily
average concentration C;(j) for day j at point P; is given
by Ci(j) = A(j)/(pT), where p is the flow through the
filter (p = 1.2 m* h™' here). The worker stays every day,
J» in n different points, i, for a period of time At;. The
intake for this worker during day j is then /; ~ v X,
Ci(j)At;, where v is the worker’s breathing rate. We used
“~” and not “=" because the concentration C;(j) is in
fact the average concentration at i for the whole day j
(not only during the period At;). Therefore, the intake for
a worker during the day j at area i will be

V n
4=ﬁEmwmm (19)

i=1

Lognormal

Fig. 1. Worker moving in an area with air samplers fixed at points
P,. The daily concentration C(j) at point i on day j can be fitted to
a log-normal distribution.
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where the worker’s breathing rate will be assumed
constant (v = 1.2 m* h™") for all workers. Denoting Wi =
At/T the fraction of time the worker stays at point P; on
day j and taking v = p then:

L= 2 wiA(j) . (20)

i=1

Eqn (5) gives the intake retention of a worker. After
t days of exposure, the retention in one compartment will
be

t

y(1) = > r(t —Jj+ > wiA(j)

j=1 i=1

n t

=2 2 A(wir(t—j+1). (@21

i=1j=1
Thus, wr(t — j + 1) A(j) follows a log-normal
distribution LN[m;(1) + p;, 1], where

my(t) = In[w;r(t —j + 1)]. (22)

Wilkinson’s approximation for y(¢) provides a log-
normal distribution LN[u(#), o*(¢)] with first and sec-
ond moments about the origin

u (1) = E[y(1)] = E exp[mij(t) + ot 0'1‘2/2],
(23)
up(1) = E[y(1)*]
= E CXP{Z[mij(t) + ot 0'12]}
+ E E explm;(t) + my (1) + i +
@@ )# ")) i)

+ (o + 02)/2]. (24)

Then, substituting m;(7) in eqn (23) and eqn (24) we
obtain:

u(t) = (E Wi€”i+0"2/2)z r(j) = (E WfMl,i)E r(j) .

J

(25)

J

)= S we | (316

i

+ X wie (e = DX ()
i J
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J

. 0.2 0.2 .
w (07 + 2 wie (e — 1) X r2())

u (0)? + X wiar, 2 r*(j), (26)
i J

where u;; and o‘ii are the mean and variance of the
log-normal distribution of the intake in area i. We can
replace eqn (25) and eqn (26) in eqn (18) to evaluate y(7)
and its uncertainties obtaining eqn (27):

y(0) = (2 w,-e“'”'?“)z ()

J

J

*2 JZ wiet (e — )X 1))

= (E WiMI,i)E r(j) = Z\/E Wizo-%,iz Vz(j) >

j
(27)

where z is the (1 + vy)/2-quantile of the standard normal
distribution.

APPLICATIONS

In this section the theoretical results given above are
applied to bioassay programs. All examples are referred to
workers exposed to intakes by inhalation of UO, (class S),
with enrichment 4.4% by weight of U and an activity
median aerodynamic diameter (AMAD) equal to 5 wm.
Table 1 gives some radioactive characteristics for this type
of uranium.

Example 1
A worker has been exposed during the last 2,000 d
to an intake represented by a log-normal distribution with

Table 1. Some radioactive characteristics for uranium enriched
4.4% in *U.

Activity®
— DCF* LLD¢
Isotope % wt* kBg/g U % mSv/Bq Bq
3y 95.56 11.89 10.99 5.70 X 1073
3y 4.40 3.52 3.25 6.10 X 1073 3.0
o) 0.04 92.77 8576  6.80 X 107°

U-total 100.00 108.18 100.00 6.66 X 1073 923

* Experimental values from Fabrica de Juzbado.

® Obtained using (a) and the decay constant values given in ICRP 78
(1997).

“ Dose conversion factor for AMAD = 5 um and class S (ICRP 2001).

4 Typical LLD for the lung counter of the CIEMAT used in routine
measurements of Fabrica de Juzbado workers. This value is very close to
the best measurements reported in the literature (e.g., Kramer et al. 2003).
The LLD for U-total has been obtained assuming that the uranium is
enriched 4.4%.
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mean w;, = 3.3 Bq U and standard deviation o7, = 5.1
Bq U, estimated with the individual working day intakes.
We wish to know whether the lung burden will exceed
the lower limit of detection (LLD), 92 Bq U in this case
(see Table 1). It is assumed that there is no intake during
the weekends, i.e., it will be assumed that I, = 0 when
j=Tkandj=7k—1,k=1,2,...

Here we use the lung intake retention function for
uranium (*U, 2°U, #*U) type S and AMAD = 5 um
(Sanchez and Lopez-Fidalgo 2003):

r(1) = 0.01009¢ "% + 0.007959¢ >
4+ 0.01031e7 29301 1 0,01614¢ 00201
+0.03191e %011 + 0.004430e 00022

+0.001087¢ 001", (28)

Eqgns (12), (13), and (17) provide the mean and the
probability region as follows:

2000 2000
> r(j) =25.795, > 2(j) = 0.607,

Jj=1 Jj=1

2000
1;(2,000) = 3.3 > r(j) =85.1.

j=1

Then for y = 0.95 (one-tail interval) and z,, = 1.645 the
v-quantile of the standard normal distribution

¥(2,000) = 1,(2,000) + z,(2,000) — u,(2,000)

= u,(2,000) + z,0o, [, r*(2,000)
J

= 85.1 +1.645(5.1,00.607) = 91.6 Bq U,
which is practically the lung counter LLD (see Table 1). For
this worker the lung retention and its uncertainties are
plotted in Fig. 2. It can be observed that the worker reaches
the LLD approximately 2,040 d after starting the intake.

Remark. The average committed effective dose
equivalent per year for this worker is 3.3 Bq U/working
day (365 d/y) (5 working d/7 d) (6.66 X 10~° mSv/Bq
U) = 5.7mSv y~'. The LLD indicated in ICRP 78 (Table
A.10.5) for the lung is 200 Bq for **°U or approximately
6,200 Bq U (for a 4.4% enrichment), which is 67.4 times
(6,200 Bq U/92 Bq U) greater than the LLD used in the
example. Consequently, the minimum dose detected after
2,000 d of the intake would be (5.7 mSv y ') (67.4) =
384 mSv y~', which is much greater than the annual
worker dose limit of 20 mSv, established in ICRP 60
(1991). Therefore a whole body counter with an LLD of
6,200 Bq U (corresponding to 200 Bq *°U for a 4.4%
enrichment) is not applicable for routine analysis.

140
120
=)
o 100 |
Q
c
2 ]
‘é Mean
° - = = Confidence limit
o
[~
=
a

1000 2000 3000 4000
Days after intake, t
Fig. 2. Predicted values for a log-normal random intake (u,, = 3.3
Bq and 07, = 5.1 Bq) and the probability bands with y = 0.95 for

the lung burden of a worker exposed to a random intake. The LLD
of 92 Bq U for lung counting also is shown in the graph.

Example 2. The intake for a group of workers in the
same workshop is estimated by using a SAS placed at three
locations. The activity, measured in mBq at these locations,
at the change of shift time can be fitted to LN(5.56, 1.26),
LN(5.01, 1.5), and LN(3.14, 0.86), respectively. It was
assumed that the proportion of time a worker spends at each
location is constant each day: 0.35, 0.45, and 0.20, respec-
tively. We want to establish the frequency with which a
urine sample should be taken. The following criterion
established in the Regulatory Guide 8.9 (U.S. NRC 1993)
will be applied: “In general, spot samples should be col-
lected frequently enough that there is no more than a 30%
increase in the IRF between bioassay measurements.” Here
we use the daily urine excretion function for uranium (**U,
U, P*U) type S and AMAD = 5 um (Sanchez and
Lopez-Fidalgo 2003):

r(f)= —15e ' —17e %"+ 1.1e %
+0.00016 € > +2.7 X 107 e ¥ + 3.5
X100 e "1 + 64X 1077 e " + 1.6
X107 e "+ 32X 1070 " + 2]
X1070e P+ 1.0 X 107 e ¥ + 3.1
X 1070 e 000N + 43 X 1077 e 00020 4 12
X 1077 e 00001,

Here it is worth mentioning that the use of the intake
retention function r(¢) is applicable not only to lung
retention but also to the daily urine and fecal excretion,
see, e.g., Skrable et al. (1988), and in this sense r(¢) is
used in this paper. In fact, the lung and whole body
retention as well as the daily urine and fecal excretion
after a time ¢ are sums of the contents of several
compartments.
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The solution of the equation

wi(t + 1) + 22 ua(t + T) — uy(t + T)>
u(1)

i=1+T o, .
u(t+ 1)+ Z(y+1)/2\/2 Wizo'iizj. 1 r(j)
i /=

u;(1)
=1.30 (29)

at a specific value of ¢ provides the time ¢ + T for the
next measurement. That is, ¢ is the time after the intake
when a measurement (a urine sample in this case) is
taken. The time from this moment to the time when the
next measurement should be made is 7. The solution of
eqn (29) will be applied for each worker. For instance, if
a measurement is made 1,100 d after the intake started,
the next one should be made about 7 = 130 d later. This
situation is illustrated in Fig. 3 considering the time T for
which the retention may increase 30% from the mean
value at time ¢ to the upper probability bound.

CONCLUSION

ICRP Publication 78 (ICRP 1997) requires that the
monitoring of the intake of radioactive material and bioas-
say programs should take into account the intake uncertain-
ties, but it does not establish either precise guidelines on
how these uncertainties should be evaluated or how the
frequency of the bioassays may be set up. We provide a
formula for forecasting the future intake and its uncertain-
ties. This method can be useful to determine when a

0.80 =y BT
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Fig. 3. Probability bands for y = 0.95 for the urine daily excretion
of a worker exposed to a random intake as a function of elapsed
time ¢ after the intake.
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bioassay is required as well as the frequency in its applica-
tion.
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