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Summary

Here it is described the features included in the computer code BIOKMOD related with the ICRP Models. 
BIOKMOD has been applied to analyze several sources of uncertainties in the evaluation of internal 
exposures using the bioassay data: (i) Multiple constant and random intakes in occupational  exposures 
taking into account periods without intake (weekends, holidays, etc.) are evaluated, and they are compared 
with the chronic intakes showing that the chronic approximation is not always good; (ii) An analytical 
method to evaluate the statistical uncertainties associated with the biokinetic model is described; (iii) Non 
linear techniques are applied to estimate the intakes using bioassay data, where not only the quantities 
intaken are assumed unknown but also other non linear parameters (AMAD, f1, etc). The methods described 
are accompanied with examples. Some of the most usual features of BIOKMOD can be run directly, using 
BIOKMODWEB, at the web site: 
 http://www3.enusa.es/webMathematica/Public/biokmod.html

Introduction
Biokinetic  modeling  is  widely  used  in  internal  dosimetry and  to  evaluate  bioassay  data.   All  current  ICRP  models,
compiled in  the ICRP Database of Dose Coefficients  (ICRP 2001),  can be represented by compartmental systems with
constant  coefficients. The conceptual  model  used by ICRP is  represented in  Fig. 1. It  can be summarized as it  follows.
The human body can be divided in three systems: 
a) The human respiratory tract  model (HRTM).   This  model is  applied for modeling the  intake of  radioactive aerosols
by inhalation. The detailed description is given in  ICRP 66 (1994). If a person inhales instantaneously a quantity I, it is
deposited  directly  in  some  compartments  of  the  HRTM.  The  fraction deposited  in  each compartment  is  called Initial
Deposition Fraction or  IDF.  It  is  a function of Activity  Median Aerodynamic Diameter (AMAD), which includes  size,
shape, density, anatomical and physiological parameters as  well as  various conditions of exposure. The IDF values may
be calculated either following the procedure described in  ICRP 66 (1994) or obtaining it from the Annex F of ICRP 66
(1994).  The general  model  of the HRTM is common to any element except the absorption rates {spt, sp, st} which are
related to the chemical form of the element. ICRP gives default values of absorption rates according to  types F, M or S. 
b)  The  gastrointestinal  tract  (GI).-  This  is  applied  for  modeling the  intake  of  particles  in  the  GI tract  following the
model provided in ICRP 30 (ICRP 1979) . Particles  can be introduced in  the GI Tract directly by ingestion, or from the
RT. Deposition is in the stomach (ST). Part or all the flow is transferred, through SI, to  the blood (B). The rate transfer
from SI to B, is given by lB = f1 lSI/(1 – f1) , where f1 is  the fraction of the stable element reaching the blood (or body
fluids). If f1 = 1 all  flows from the stomach it goes to B. The value of f1  is associated to  the element and their chemical
form   The  GI  tract  model will be replaced by the called Human Alimentary Tract  Model  (HATM),  but it is not  pub-
lished yet.
c)  Systemic compartments.- .  They are  specific  to  an  element  or  groups  of  elements  (ICRP  2001).  ICRP  78  (1997)
establishes three generic groups:  (i) hydrogen, cobalt, ruthenium, caesium, and californium,  (ii) strontium, radium, and
uranium and,  (iii) thorium, neptunium, plutonium, americium, and curium. For other elements not included in ICRP78,
the ICRP  30  model  is  applicable  and they have  the  same generalized compartmental  model  as  group (i).  For the ele-
ments of each group the same model is applied although some parameters are specific to the element.  From a mathemati-
cal  point  of view we  can establish  two  groups:  a)  Elements  whose  biokinetic  model  does  not  involve recycling,  this
includes  the group  (i)  and the  elements  where ICRP  30 is  still  applicable,  and b)  elements  whose  biokinetic models
involve recycling, this includes group (ii) and (iii).
A few computer codes have been developed to  estimate intake and calculate internal dose using biassay data. The main
characteristics  of most  of  then are  summarized by Ansoborlo  et al  (2003).    BIOKMOD.  has the  following features  to
our knowledge are not included in any other.
a) It gives analytical and numerical solutions (other codes  only give the  numerical). Even the solutions  can be given as
function of some parameters. The accumulated disintegrations in  a compartment or region can be computed exactly by
analytical  integration,  what  is  more  precise  than the  method of  the mean resident  time  (Loevinger  et  al.  1988) often
applied for other codes.

2 Printed  from the Mathematica Help Browser

©2007 Guillermo Sanchez and ENUSA. All rights reserved.



c) Apart from acute, chronic and multi-inputs, it can practically  be used for any kind of continuous inputs (exponentials,
periodic, etc.), even for random inputs. 
d)   The  intakes  can be estimated fitting bioassay data  where  not  only the intake quantities  but  also  other parameters
(AMAD, f1, etc.) can be assumed unknown. 
e)  Analytical expressions instead of simulation can be used for sensitivity and uncertainty analysis.
f) The user himself can build  compartmental models  in a very easy way generating automatically the system of differen-
tial equations and their solutions [Sanchez 2005].

We  have  applied BIOKMOD to the  evaluation of internal exposures using bioassay data. In particular we will refer to
the  random  intakes  in  occupational  exposures  and  their  implication  in  the  bioassays,  the  application  of  analytical
methods to  evaluate the uncertainties  associated with the biokinetic model  parameters, and the use of non linear regres -
sion techniques to the bioassay data fitting. The methods described are accompanied with examples.

BIOKMOD  is  a  tool  box  developed  using Mathematica  (Wofram  Research,  Inc.  Champaign,  IL)  It  includes  several
Mathematica packages  (or subprograms).  To run BIOKMOD with all capability  it is necessary Mathematica,  however,
some  of  the  most  usual  features  of  BIOKMOD  can  be  run  directly  at:  http://www3.enusa.es/webMathematica/ -
Public/biokmod.html.  It  is  possible  thanks  to  an  interface,  called,  BiokmodWeb,  which  we  have  developed  using
webMathematica (Wofram Research, Inc)  and Java (by Sun Microsystems, Inc.). 

Solving ICRP models

General description

All current ICRP models, compiled in ICRP Database of Dose Coefficients (ICRP 2001), can be represented by compart-
mental  systems  with  constant  coefficients.  The  conceptual  model  used  by  ICRP  is  represented in  figure 1.  It  can be
summarized as it follows. The human body can be divided in three systems: 

a) The human respiratory tract  model  (HRTM).- It is  applied for modeling the intake of radioactive aerosols  by inhala-
tion.  The  detailed description is  given in  ICRP 66. If  a person intakes  by inhalation instantaneously a quantity  I, it  is
deposited  directly  in  some  compartments  of  the  HRTM.  The  fraction deposited  in  each compartment  is  called Initial
Deposition Factor  or IDF.  It  is  a  function of  Activity  Median Aerodynamic  Diameter (AMAD), which includes  size,
shape, density, anatomical and physiological parameters as  well as  various conditions of exposure. The IDF values may
be calculated either following the  procedure  described in  ICRP  66 (1994) or obtaining from the Annex F  of ICRP  66
(1994). AMAD value can be written and then the program computes the IDF. Another option is to directly write the IDF
values  for  AI,  bbfast+seq, bbslow, BBfast+seq , BBslow, ET1,  and ET2.   The  general  model  of  the  RT is  common to  any
element  except  the  absorption rates  {spt, sp, st} that  are  related  with  the  chemical  form  of  the  element.  ICRP  gives
default values of absorption rates according to types F, M or S. In BIOKMOD F, M or S can be chosen and the program
will apply default values for absorption rates. Another option is to directly write the absorption rate parameters. 

b)  The  gastro  intestinal tract  (GI).-  This  is  applied for  modeling the  intake of  particles  in  the  GI  tract  following the
model provided in ICRP 30 (ICRP 1979) . Particles  can be introduced in  the GI Tract directly by ingestion, or from the
RT. Deposition is in the stomach (ST). Part or all the flow is transferred, through SI, to  the blood (B). The rate transfer
from SI to B, is given by  lB = f1 lSI/(1 –  f1) , where f1 is  the fraction of the stable element reaching the blood (or body
fluids). If f1 = 1 all flow from SI goes  to  B. The value of f1 is  associated to  the  element and their chemical form.   In
BIOKMOD f1 must  be  introduced or  a  value by default  (from  ICRP 2001 and ICRP 1997) will  be  applied according
with the element and the absorption rate previously chosen.

c)  Systemic compartments.- .  They are  specific  to  an  element  or  groups  of  elements  (ICRP  2001).  ICRP  78  (1997)
establishes three generic groups:  (i) hydrogen, cobalt, ruthenium, caesium, and californium,  (ii) strontium, radium, and
uranium and,  (iii) thorium, neptunium, plutonium, americium, and curium. For other elements not included in ICRP78,
the ICRP  30  model  is  applicable  and they have  the  same generalized compartmental  model  as  group (i).  For the ele-
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ments of each group the same model is applied although some parameters are specific to the element.  From a mathemati-
cal  point  of view we  can establish  two  groups:  a)  Elements  whose  biokinetic  model  does  not  involve recycling,  this
includes  the group  (i)  and the  elements  where ICRP  30 is  still  applicable,  and b)  elements  whose  biokinetic models
involve recycling, this includes group (ii) and (iii).
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Fig. 1 Conceptual ICRP Model applied for particle intakes by inhalation. The particles are deposited in 
some compartments of the RT. From the RT the flow goes to the ST (Stomach) or to B. “Rest of Body” 
represents the systemic compartments, the detailed flow diagram is specific to each kind of element. The 
dashed arrows mean that the flow can be follow this way or not, depending on the characteristic of the 
element. The particles are eliminated through faecal or urine excretion. The disintegration can be 
considered as elimination from each compartment to away from the system; it is given by the disintegration 
constant of the isotope.

The  format  applied  to  introduce  the  inputs  depends  on  whether  it  is  used  BIOKMOD  directly  or  BiokmodWed,  a
friendly interface to  run BIOKMOD using a web browser. The user can modify the respiratory tract and gastrointestinal
tract  parameters  included by default. The reference  worker parameters  are used by default.  Three kinds of intake  way
(injection,  ingestion  or  inhalation)  can be  chosen.  The  day  (d)  will  be  used as  unit  of  time.  The  radioactive  decay
constant,  in  day-1, of  the isotope  must be introduced  by the  user. More details  can  be found in  the BIOKMOD Help
(more than 300 pages). We summarize below the equations used by BIOKMOD.

If we consider a single intake I at t = 0 then the content qiHtL in each compartment i of a n-compartmental system at time
t, is given by  

(1)qiHtL = I uiHtL
where ui HtL is usually called the unit impulse-response function. It can be represented with the following pattern
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(2)uiHtL = FiHl1, ..., lm , s p, spt , st, f1, l1, ..., ln, h1 ..., hr , lR, tL
where lidenote the rate transfers for RT compartments, li the rate transfers  for GI compartments and h1, …, hr the rate
transfers  for  systemic compartments, and lR is  the  decay constant  of  the isotope;  uiHtL is  a sum of exponentials   [see
e.g.:Sanchez and Lopez-Fidalgo 2003], that is 

(3)uiHtL = ‚
r=1

ar e- kr t

The  predicted  value  for a kind of bioassay m (lung retention, urine excretion,  etc.)  after  an acute input  “1”  at t = 0,
represented by rmHtL, is  obtained by the sum of the content of one or several compartments [Lopez-Fidalgo and Sanchez
2005]. It will also be a sum of exponentials

(4)rmHtL = ‚
v=1

av e- dv t

where cv and dv are the coefficients obtained solving the model for the specific case. 
This pattern  is  applicable for inhalation, ingestion or injection. In  fact  the ingestion can be considered a particular case
of inhalation where the intake I  happens  directly in  the stomach. In  the same way, the injection is  a particular case  of
ingestion where the intake I happens directly in the blood. 
In the case of inhalation eqn(4) can be written as 

(5)rmHtL = ‚
j,v

IDFj HpL c j,v e- dj ,v t

The  mathematical  criteria  applied  to  obtain  qiHtL and  rmHtL are  described  in  Sanchez  and  Lopez-Fidalgo  2003.  To
simplify the notation we will write rHtL instead of rmHtL. We will call rHtL standard retention function when we refer to an
impulsive input “1” at t = 0. In  other cases we will refer it  as  retention function, written RHtL. Below we summarize how
RHtL is computed for different cases. 
The analytical solutions given by the program can not  be  checked directly  with  other programs  because in  our knowl-
edge there are no others with this capability. For this  reason we have compared the numerical solution for acute intakes
given by BIOKMOD for different times with the solutions given in the ICRP 78 obtaining a good match.

Single intake

The retention function RAHtL for a single or acute intake I0 at t = 0 is given by 

(6)RAHtL = I0 rHtL
It can be computed using the BIOKMOD functions:  

LungsRetention@Intake, IFD , FRA, t, λ, optionsD or BioakdataReport[element,
"IntakeWay", "IntakeType", Report, Intake, IFD , FRA, t, l, options] chosing as "IntakeType" ->
Acute. It is also computed when the intake type it is not indicated.
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This example shows the lung retention as a function of initial deposition fraction (IDF) t days after an acute 
intake (I = 1 at t = 0)  of radioactive aerosols type S and AMAD 5 mm.

In[11]:= Collect@LungsRetention@1, 8IDFAI, IDF"bbHfast+seqL",
IDFbbslow, IDF"BBHfast+seqL" , IDFBBslow, ET2, ET1< , S, t, 0D êê Chop,8IDFAI, IDF"bbHfast+seqL", IDFbbslow, IDF"BBHfast+seqL" , IDFBBslow, ET2, ET1<D

Out[11]= H−0.000247754 �−110.1 t + 0.00123877 �−102.1 t + 6.98602× 10−6 �−100.1 t −
0.248002 �−10.0001 t + 1.24001 �−2.0001 t + 0.00699301 �−0.0001 tL IDFbbHfast+seqL +H0.000991017�−110.1 t + 6.98602× 10−6 �−100.1 t + 0.992009 �−10.0001 t + 0.00699301 �−0.0001 tL

IDFBBHfast+seqL + H1.65221× 10−7 �−110.1 t − 4.16099× 10−6 �−102.1 t + 0.000303031 �−100.12 t +
0.000599161 �−100.101 t + 0.0000831729 �−100.1 t + 0.0000166334 �−100.1 t +
0.000165387 �−10.0001 t − 0.00416516�−2.0001 t + 0.303335 �−0.0201 t +
0.599761 �−0.0011 t + 0.0832562 �−0.00022 t + 0.01665 �−0.0001 tL IDFAI +H−1.25651×10−6 �−110.1 t − 8.73253× 10−6 �−102.1 t + 0.00100101 �−100.13 t +
6.98602×10−6 �−100.1 t − 0.00125777 �−10.0001 t −0.00874127 �−2.0001 t +
1.00201 �−0.0301 t + 0.00699301 �−0.0001 tL IDFbbslow +H−6.98602×10−6 �−110.1 t + 0.000998003 �−100.13 t + 6.98602×10−6 �−100.1 t −
0.00699301 �−10.0001 t +0.999002 �−0.0301 t + 0.00699301 �−0.0001 tL IDFBBslow

The below example represents the daily faecal and urine excretion  for an acute intake I = 1 Bq at t = 0 of Iodine.
In[12]:= BiokdataReport@iodine, "Injection",

"Acute", "GraphicReport", 1, 1, 180, Log@2Dê 8.0D

1 2 5 10 20 50 100 200
days

1.× 10−9

1.× 10−7

0.00001

0.001

0.1

Bq Acute intake in t = 0

Out[12]= � Graphics �
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Chronic contant intake

The retention function RCrHtL for a constant intake IHtL = Id (daily rate  intake) for 0 § t § T , at t = T cease the intake,
that is I HtL for t > T, then the retention is given by

(7)RCrHtL = Id ‡
0

t
rHtL „ t for 0 < t § T and RCrHtL = Id ‡

t-T

t
rHtL „ t for t > T

It is computed by the BIOKMOD function 

qConstant@Ib,8r@tD, t<, ti, T D gives the retention the day ti after an intake Ib at t = 0 assuming that it cease the intake 
at t = T .

The below figure shows the lung retention for a worker that has been exposed from t = 0 to t = 2000 day to a chronic intake by 
inhalation of 3 BqU/day of UO2 enriched  aerosols type S and AMAD 5 mm. On the day t = 2000  xceases the intaken.(Note: The 
enriched uranium contains   23 8U, 23 5U and 23 4U, for this isotopes  lRØ 0) 

In[13]:= qLungU5@t_D = LungsRetention@1, AMADAdultW@5D, S, t, 0D;
In[14]:= Plot@qConstant@3, 8qLungU5@tD, t<, t1, 2000D,8t1, 0, 4000<, AxesLabel → 8 "Days", "Bq"<D

1000 2000 3000 4000
Days
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40

60

80

100

Bq

Out[14]= � Graphics �

Continuous variable intake

The retention function RC HtL for a continuous intake IHtL, is given by

(8)RCHtL = ‡0

t
IHtL rHt - tL „ t
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It is computed by the BIOKMOD function 

qContinuous@IHtL,8r@tD<, t, ti D gives the retention the day ti after an intake IHtL starting at at t = 0.

Here it is asumed the lung retention asuming an a continous intake given by  IHtL = 0.3 + 0.3 Cos@tD
In[15]:= Plot@Evaluate@qContinuous@0.3 + 0.3 Cos@tD, 8qLungU5@tD<, t, t1DD,8t1, 0, 200<, AxesLabel→ 8 "Days", "Bq"<D
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Days

0.5
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1.5

2

Bq

Out[15]= � Graphics �

It can be also used:  LungsRetention@Intake, IFD , FRA, t, λ, optionsD or BioakdataReport[element,
"IntakeWay", "IntakeType", Report, Intake, IFD , FRA, t, l, options] chosing as IntakeTypeØ"Continuous".

The example represents a biexponential input (I(t) =  0.6 Exp[-10.2 t]+0.02 Exp[-6.0 t]) of iodo-131 by injection and the correspond-
ing solution.It is been chosen that output gives the retention function for typical bioassays,but other  output reports are available 
such as graphics representation,retention function for each compartment,or number of disintegrations accumulated in each 
compartment.

In[16]:= BiokdataReport@iodine, "Injection", "Continuous", "Automatic",80.6 Exp@−10.2 tD + 0.02 Exp@−6.0 tD , t<, 1, t, Log@2Dê8.0D êê Chop

Out[16]= 8qDailyUrine@tD → 10999.2 �−12.0866 t − 2461.2 �−10.2 t − 1.52023 �−6. t +
1.20303 �−2.85919 t − 0.000106687 �−0.14679 t + 0.0000988393 �−0.0929673 t,

qDailyFaecal@tD → −3.88128×10−6 �−10.2 t −8.52054× 10−8 �−6. t +
5.52234 ×10−6 �−2.85919 t −0.0000124967 �−1.88664 t −8.4189 ×10−7 �−1.88664 t +
0.0000135931 �−1.08664 t − 0.0000408268 �−0.14679 t + 0.0000355496 �−0.0929673 t,

qWholebody@tD → 0.0675817 �−12.0866 t −0.159095 �−10.2 t − 0.00750263 �−6. t +
0.0802064 �−2.85919 t − 2.47477× 10−6 �−1.88664 t − 1.66722× 10−7 �−1.88664 t +
7.91086 ×10−6 �−1.08664 t −0.00237953 �−0.14679 t + 0.0211838 �−0.0929673 t<

Multiple single intakes

For multiple single inputs: {I1, …, Ii, … , In} that happen at times: {t0, t1, …, ti, …tn}, where t – ti is the time since the
input Ii occurred. Then, taken t0 = 0, the retention function, RM HtL is given by .  
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(9)RM HtL = I1 rHtL + I2 rHt - t1L + ... + In rHt - tn-1L = ‚
i=1

n
Ii rHt - ti-1L

If the time is considered to  be a discrete variable measured in days and Ij represents the intake that happened on the day
j, then the previous equation can be written:

(10)RM HtL = I1 rHtL + I2 rHt - 1L + ... + In rH1L = ‚
j=1

t
I j rHt - j + 1L

It is computed by the BIOKMOD function qMultiple.
In[17]:= ?qMultiple

qMultiple@inputsdata,8u@tD,t<, ttD gives the retention the
time tt for multiplesHconstant:8...,8bi,ti,Ti<,...< and singles8...,8bi,ti<,...<Linputs,being u@tD the unit−inpulse response

Example.- A worker started to work in an area exposed to UO2 (AMAD 5 mm and type S) radioactive aerosols starting the  day 
t = 0. The quantities intaken  since then has been 8I , t<:

In[18]:= intakendata1 = 885, 0<, 83, 2<, 82, 3<, 82, 4< , 83, 7< , 88, 9< <;
So, the estimated lung retention since the started the first inkake can be represented as follows:

In[19]:= Plot@Evaluate@qMultiple@intakendata1, 8qLungU5@tD, t<, t1DD,8t1, 0, 20<, AxesLabel → 8 "Days", "Bq"<D
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Out[19]= � Graphics �

It can be also used:  

LungsRetention@Intake, IFD , FRA, τ, λ, optionsD or BioakdataReport[element,
"IntakeWay", "IntakeType", Report, Intake, IFD , FRA, t , l, options ] chosing as IntakeTypeØ
"MultiInputs" give the retention or excretion t days after the last intake {In , tn} happened
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In the same example, the lung retention for t = 5 is 
In[20]:= LungsRetention@intakendata1, AMADAdultW@5D, S, 5, 0, IntakeType→ "MultiInputs"D
Out[20]= 1.34442

It can be compared with the obteinded using  qMultiple (taking into account that t = t - tn)
In[21]:= qMultiple@intakendata1, 8qLungU5@tD, t<, 9 + 5D
Out[21]= 1.34442

Multiple constant intakes

In  many situations the intake I j happens  for a  few hours  every day.  However, from a practical  point  of view it can be
assumed that I j is an acute intake. But if we want to  consider {I0, …, Ii, … , In} as multiple constant intakes that happen
at times: {t0, t1, …, ti , …t n} during a time 8T0, ..., Ti, ..., Tn<, where ti = t – ti is the time since the input Ii occurred. 

We want consider the case where it happens multiple constant inputs  {b0, …, bi , … , In} that start at times: {t0, t1, …,
ti, …t n} during a time {T0,..., Ti , ..., Tn}. 

We call rHtL the unit function for a constant input

rHt, TiL = 90 , t < 0, ‡
0

t
uHtL „ t for 0 < t § T i and ‡

t-Ti

t
uHtL „ t for t > Ti=

Then, the retention function for multiple constant inputs is given by

(11)qMCHtL = b0ÅÅÅÅÅÅÅÅÅT0
rHt - t0L + b1ÅÅÅÅÅÅÅÅÅT1

rHt - t1L + ... + bnÅÅÅÅÅÅÅÅÅTn
rHt - tnL = ‚

i=1

n biÅÅÅÅÅÅÅTi
rHt - tiL

This  equation is  implemented  in  the  BIOKMOD  function qMultiple. This  function can  be  used  also  for  multiple
acute inputs even for combination multiples acute and constant inputs.  

Example.-  A worker works  in an area expose to UO2 (AMAD 5 mm and type S) radioactive aerosols during 
the last 2000 days. He works 5 days per week 8 hours a day, he also has 4 holiday weeks per year (with these 
criteria 2000 days are 1330 working days). It is estimated that in this time he has intaken 13300 BqU. We 
want to calculate the lung retention evolution.  Regular weekends and holidays will be assumed. 

We will need the single-impulse function for lung
In[22]:= qLungU5S@t_D = LungsRetention@1, AMADAdultW@5D, S, t, 0D;

The lung retention for a single intake 1 Bq/day with Ti= T = 8 hÅÅÅ ÅÅ ÅÅ ÅÅÅÅ2 4 h = 1ÅÅÅ Å3 is given by
In[23]:= days = 2000; Ti = 1 ê3;
In[24]:= lungret = 1 êTi qConstant@1, 8qLungU5S@tD, t<, #, TiD & ê@ Range@daysD;

The average intake during this period conisdering all days is
In[25]:= totalintake = 13300; avgintake = totalintake êdays;
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Now we want calculated the number of  working days. 
In[26]:= workingdays = Flatten@

Table@If@Mod@n, 7D � 0 »» Mod@n, 7D � 6»» Mod@n, 365D � 0 »» Mod@n, 365D � 364 »»
Mod@n, 365D � 363 »» Mod@n, 365D � 362 »» Mod@n, 365D � 361 »»
Mod@n, 365D � 360 »» Mod@n, 365D � 359»» Mod@n, 365D � 358 »»
Mod@n, 365D � 357 »» Mod@n, 365D � 356 »» Mod@n, 365D � 355 »»
Mod@n, 365D � 354 »» Mod@n, 365D � 353 »» Mod@n, 365D � 352 »»
Mod@n, 365D � 351 »» Mod@n, 365D � 350 »» Mod@n, 365D � 349 »»
Mod@n, 365D � 348 »» Mod@n, 365D � 347 »» Mod@n, 365D � 346 »»
Mod@n, 365D � 345 »» Mod@n, 365D � 344 »» Mod@n, 365D � 343 »»
Mod@n, 365D � 342 »» Mod@n, 365D � 341 »» Mod@n, 365D � 340 »»
Mod@n, 365D � 339 »» Mod@n, 365D � 338, 0 , 1D, 8n, days<DD;

In[27]:= wdays = Total@workingdaysD
Out[27]= 1330

The average daily intake considering only the working days is

In[28]:= avgintakewd = totalintakeêwdays
Out[28]= 10

The lung retention take in into accound the period where there are not intake is

In[29]:= dailylungret = Transpose@8Range@daysD, ListConvolve@ workingdays, avgintakewd∗ lungret, 8−days, 1<, 0D<D;
The lung retention assuming a chronic intake is

In[30]:= qLungU5SCr@t_D = LungsRetention@1, AMADAdultW@5D, S, t, 0, IntakeType → "Constant"D;
Both solutions are plotted below 

In[31]:= fig2 = Plot@avgintake qLungU5SCr@tD, 8t, 1200, days<, AxesLabel → 8"days", "Bq"<,
Epilog → 8Hue@0D, PointSize@0.012D, Map@Point, dailylungretD<D
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Out[31]= � Graphics �
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It can be observed that the differences between both methods are negligible in the middle of periods between 
two holiday  seasons, and maxima just after the holiday periods, but even in these cases they are not too 
important (lower than 5%)

The estimated lung retention different days after the intaken started it can be made directy using the  BIOKMOD function qMulti�
ple

In[32]:= ?qMultiple 

qMultiple@inputsdata,8u@tD,t<, ttD gives the retention the
time tt for multiplesHconstant:8...,8bi,ti,Ti<,...< and singles8...,8bi,ti<,...<Linputs,being u@tD the unit−inpulse response

In[33]:= dailyinputs = Transpose@8workingdays, Range@2000D, Table@1 ê3, 82000<D<D;
In[34]:= TableForm@Map@8#, avgintakewd qMultiple@dailyinputs, 8qLungU5S@tD, t<, #D< &,8100, 500, 1000, 1500, 2000<D,

TableHeadings → 8None, 8"Time after intake in days", "Lung retention"<<D
Out[34]//TableForm=

Time after intake in days Lung retention
100 32.4497
500 107.734
1000 172.687
1500 206.337
2000 239.481

Random Intakes

In  real situations, such as workers  being exposed to radioactive aerosols  during the working days, the  individual daily
intake I is  usually  a random variable. In  a previous  article we found (Lopez-Fidalgo and Sanchez,  2005)  that  in  some
occasions the daily intake {I1, …, Ii, … , In} can be fitted by a log-normal distribution LN(µ, s2), where m and s2 are
the mean and variance of the corresponding normal distribution. We showed that the retention function RrandHtL and the
corresponding probability bands are given by

(12)RrandHtL = mI ⁄ j=1t rH jL≤ z g+1ÅÅ ÅÅÅÅÅÅÅÅ2
sI "######################⁄ j=1t r2H jL

being m̀I = 1ÅÅÅÅÅÅN ⁄t It, sI2 = 1ÅÅÅÅÅÅÅÅÅÅÅÅN-1 ⁄t HIi -m̀I) and z is the 100 (g + 1) 
�

 2 -quantile of the standard normal distribution.
If in  eqn. (10)  I is  a random variable, then I j rHt - j + 1L  usually will take small values, and considering a large number
(<100) of single inputs Ii then eqn. (10) will be a sum of random and independent variables. In  this case eqn.(13) can be
used without requiring that {I1, …, Ii , … , In} can be fitted  to any distribution. It is  a consequence of the Central Limit
Theorem. We have also checked it by simulation using different  distributions to  generate {I1, …, Ii, … , In}  and testing
that eqn (13) is verified.

Example.-In the previous example we known from historical data that the relative standard deviation of the 
daily intakes for workers of this area is about 20%, that is sI ê mI= 0.2. 

Eqn (13) is applied (with g= 0.95) for computing the upper and lower limit {uL,lL}
In[35]:= rr1 = ListConvolve@ workingdays, lungret, 8−days, 1<, 0D;

rr2 = ListConvolve@ workingdays, lungret, 8−days, 1<, 0D^2;
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In[37]:= 8uL, avg, lL< = ModuleA8z, s, k, d<,
z = 2; s = 0.2 avgintakewd; k = z ∗s ∗è!!!!!!!!!!

rr2 ;

d = Range@daysD; 8Transpose@8d, avgintakewd rr1 + k<D,
Transpose@8d, avgintakewd rr1<D, Transpose@8d, avgintakewd rr1 − k <D<E;

In[38]:= ListPlot@avgD
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Out[38]= � Graphics �

In[39]:= Fig3 = FilledListPlot@lL, uL, AxesLabel → 8"days", "Bq"<D;
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On the day 2000 the average, upper and lower limits are
In[40]:= 8Last@uLD, Last@avgD, Last@lLD<
Out[40]= 882000, 335.62<, 82000, 239.728<, 82000, 143.837<<
That  it  is mI = 10; sI = 0.2 mI = 2;  ⁄ j=1

t rH jL  = 23.97;⁄ j=1
t r2H jL  =574.70;   them  the estimated lung content  is    BqU

(computed with a confidence interval of 95%, z º 2), and hence 143.8 BqU § RALung(2000) §335.6 BqU.  

It can be compared with the value obtaining assuming an chronic constant intake

In[41]:= avgintake ∗LungsRetention@1, AMADAdultW@5D, S, 2000, 0, IntakeType→ "Constant"D
Out[41]= 239.883
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In[42]:= Clear@qLungs5S, days, totalintake, inputdata,

avgintake, avgintakewd, workingdays, rr1, rr2, uL, avg, lLD
The program has  a specific input and output for random intakes. The estimated daily intakes average and their standard
deviation, calculated using historical data, must be introduced. It will also be indicated the number of working days per
week, so if the worker rests at the weekend the program will take Ij = 0 for j = 7 k  and j = 7 k – 1, k = 81, 2, …<. 

 Predicted urine excretion (BqU/day) for a worker where he will work during 5 days per week in an area 
being exposed to uranium aerosols (type S, AMAD 5 mm and lR Ø0). The estimated average daily intake in  
this area is 3.3 BqU with a standard deviation of 5.1 BqU. The worker was previously exposed to a total 
intake of 5100 BqU from 1995-05-13 to 2005-10-13. The effect of the weekends without exposures can be 
observed.

In[43]:= 8urineExc, faecalExc, wholebodyRet< =8qDailyUrine@tD, qDailyFaecal@tD, qWholebody@tD< ê. BiokdataReport@uranium,
"Inhalation", "Acute", "Automatic", 1, AMADAdultW@5D, S, 0.002, t, 0D;

In[44]:= totaltime = Round@HFromDate@82005, 10, 13, 0, 0, 0<D − FromDate@81995, 5, 13, 0, 0, 0<DLêH3600∗ 24LD;
Now it is applied the function qRandom (See in Biokmod Help: Advance function)

In[45]:= sol = qRandom@5100, totaltime, urineExc, 3.3, 5.1, 1.96, 300, 5, tD;
In[46]:= 8days, me, int, ul, ll< = Transpose@solD;

The blue  color represents the confidence interval for the daily  urine excretion, it can be observed the effect of the weekeng where 
there are not intakes.  

In[47]:= FilledListPlot@Transpose@8days, ll<D,
Transpose@8days, ul<D, AxesLabel → 8"days", "Bqêday"<D;
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Disintegrations

The nuclear transformations UiHtL that will happen up to time t in a compartment i as consequence of the isotope content
given by qiHtL are calculated using the eqn. (14) 

(13)UiHtL = fc  Ÿ0
tqi HtL „ t
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where fc  is a conversion factor applied to  give the nuclear transformations in  the desired units. So fc = 8.65×10-4  (in  s
d -1) to give UiHtL in Bq when t is in days and qiHtL is in Bq.
UiHtL is  widely  used  in  internal  dosimetry,  for  example  to  calculate  the  commitment  dose.  In  some  publications
(examples:  apart.  9.4  in  ICRP  66  or  Loevinger  1988)  UiHtL  is  usually computed using the  mean residence  times  cor-
rected with some mathematical tricks. It is already an approximated method. BIOKMOD computes analytically the eqn.
(14) obtaining the exact solution.

Here they are given the evolution of accumulated disintegrations in the different comparments  for iodine 131 (t1 ê2 = 8.0 dL
In[48]:= Disintegrations@"I", "Ingestion", 1, 1, t , Log@2Dê8D êê Chop
Out[48]= 88ST, 3587.05 − 3587.05 �−24.0866 t<, 8SI, 0<, 8B,

30366.2 + 4055.57 �−24.0866 t − 34166.3 �−2.85919 t + 496.248�−0.14679 t − 751.665 �−0.0929673 t<,8ULI, 97.3654− 0.0000264787 �−24.0866 t + 0.389808 �−2.85919 t −
1.3581 �−1.88664 t + 193.414 �−0.14679 t − 289.811 �−0.0929673 t<,8LLI, 161.283+ 2.07224×10−6 �−24.0866 t − 0.395846 �−2.85919 t +3.05573 �−1.88664 t −
9.38874 �−1.08664 t + 370.424 �−0.14679 t − 524.979 �−0.0929673 t<, 8Thyroid,
265014. − 140.606 �−24.0866 t + 10282.2 �−2.85919 t − 8017.6 �−0.14679 t − 267138. �−0.0929673 t<,8UB_Content, 4876.05 − 655.925 �−24.0866 t + 3007.06 �−12.0866 t −
7186.21 �−2.85919 t + 80.6647 �−0.14679 t − 121.634 �−0.0929673 t<, 8Other,
15900.8 + 0.0508832 �−24.0866 t − 32.8161 �−2.85919 t + 29129. �−0.14679 t − 44997.1 �−0.0929673 t<<

Now the accumulated disintegrations for t = {{1.0, 10, 100, 365.35*50} days are obtained 
In[49]:= Disintegrations@"I", "Ingestion", 1, 1,81.0, 10, 100, 365.35∗ 50< , Log@2Dê8, DisintegrationReport → "True"D

Out[49]//TableForm=

Compartment 1. day 10 day 100 day 18267.5 day
ST 3587.05 3587.05 3587.05 3587.05
SI 0. 0. 0. 0.
B 28151.5 30183.9 30366.1 30366.2
ULI 0.107423 27.5461 97.3389 97.3654
LLI 0.0357653 39.4318 161.235 161.283
Thyroid 15258. 157732. 264989. 265014.
UB_Content 4423. 4846.63 4876.04 4876.05

Other 48.7374 4852.82 15896.7 15900.8

Here it is shown the accumulated disintegration in the thyroid of I  131 as function of the time.
In[50]:= disThyIodine131@t_D = q2@tD ê. BiokdataReport@iodine,

"Ingestion", "Acute", "Disintegrations", 1, 1, t, Log@2Dê 8D;
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In[51]:= Plot@disThyIodine131@tD, 8t, 0, 3000<, PlotRange → All,

AxesLabel → 8"days", "Acumuled disintegrations"<D
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Out[51]= � Graphics �

Sensitivity and uncertainty analysis 
The estimation of isotope content  in a compartment or region involves many uncertainties even assuming that the ICRP
metabolic models  are a good representation of the real  behaviour of the particles  intake in  the  human body. This is  so
because most  of  the true values  of  the parameters  at  a  real  situation are unknown. The  parameters  usually  applied are
based on the reference values given in ICRPs. 
Let’s be r(t) expressed as function of certain  parameters  {k1,…, kr} with  their associated uncertainties: {u(k1),…u(kr)},
then 

(14)r(t) = F(k1, …, kn, t) ± uC(t)

being uC(t) the combined standard uncertainty. 

Assuming that {k1,…, kr} are uncorrelated and taking the first-order Taylor series terms of F(k1, …, kn, l, t), then uC(t)
can be evaluated using

(15)uc2 HrHtLL = ‚ i =1
r I ∑ FÅÅÅÅÅÅÅÅÅ∑ ki M2 u2Hki L 

This is the expression used by BIOKMOD.

Of  course,  eqn (16)  can  be  only applied  when we can  obtain  the analytical  solution  of  the  model  as  function  of  the
parameters  {k1 ,…,  kr),  but   it  is  only possible when the model  not  involve recycling and in  some  particular  cases  of
models  with  recycling.    No  recycling models  can be discomposed in  catenary  branches  (Skrable  et  al,  1974),  then,
when {ki ∫ k j), the solution can be expressed as function of the parameters {k1,…, kr). 
The HRTM is  a non recycling model. So, eqn (16) can be use to  study the HRTM uncertainties as it is shown in some of
the examples below. 

Also, it included an example where the eqn (16) is applied in a non recycling model. 
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Example 1 .- Lung retention uncertainties associated with AMAD p and up

Lung retention predicted for a single intake of 1 Bq at t  = 0, type S, decay constant negligible HlR Ø 0L and AMAD p =
5 mm  and up = s p  =  0.5  mm  . The  dashed lines  represent  the  confidence  interval  (95%)  associated  with  the  AMAD
uncertainties.

In[52]:= rLung@p_, t_D = LungsRetention@1, AMADfit@pD, S, t, 0D êê Chop;

The evolution of the content with their associated uncertainties for a coverage factor k = 2 is computed and represented
as follow

In[53]:= yu@t1_D =8"mean", "uL", "lL"< ê. Uin@rLung@p, t1D, 8p< , 8σp< , 2D ê. 8p → 5, σp → 0.5<;
In[54]:= Plot@Evaluate@yu@tDD, 8t, 1, 100<, PlotRange → 80, 0.1<,

AxesLabel → 8"days", "Bq"<, PlotStyle → stylesD
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Out[54]= � Graphics �

It  can  be  observed  that  a  small  difference  in  the  AMAD value  has  an  important  consequence  in  the  lung  retention
predicted. For  this reason, when the value for AMAD is used to  evaluate bioassay data and it  it is not known then the
intake estimated could have important uncertainties. 

Example 2 .- Lung retention uncertainties associated with IDFi and uIDFi

We  want  to  evaluate for  a  reference  worker  the  lung retention after an acute  intake (I = 1 at  t = 0)  of  radioactive
aerosols type S and  lR º 0  assuming a relative standard deviation of 10% of the IDFi   (that is si ê IDFi = 0.1).

In  this  example  we  evaluate  the  lung  uncertainties  associated  with  IDFi :  {IDFAI,
IDFbb Hfast+seqL, IDFbbslow, IDFBBHfast+seqL , IDFBBslow} 

In[55]:= rLung@8idfAI_, idfbbfs_, idfbbslow_, idfBBfs_, idfBBslow_, ET2_, ET1_<, t_D =
Collect@LungsRetention@1,8idfAI, idfbbfs, idfbbslow, idfBBfs, idfBBslow, ET2, ET1< , S, t, 0D êê Chop,8idfAI, idfbbfs, idfbbslow, idfBBfs, idfBBslow<D;

Calling

In[56]:= idf = 8IDFAI, IDFbb Hfast+seqL, IDFbbslow, IDF"BBHfast+seqL" , IDFBBslow, ET2, ET1<;
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In[57]:= idf1 = 8IDFAI, IDFbb Hfast+seqL, IDFbbslow, IDF"BBHfast+seqL" , IDFBBslow<;
Note that FLungHt, pL = ⁄i=1

5 AiHtL IDFi HpL
In[58]:= rLung@idf, tD
Out[58]= H0.000991017 �−110.1 t + 6.98602×10−6 �−100.1 t + 0.992009 �−10.0001 t + 0.00699301 �−0.0001 tL

IDFBBHfast+seqL + H1.65221× 10−7 �−110.1 t − 4.16099× 10−6 �−102.1 t + 0.000303031 �−100.12 t +
0.000599161 �−100.101 t + 0.0000831729 �−100.1 t + 0.0000166334 �−100.1 t +
0.000165387 �−10.0001 t − 0.00416516�−2.0001 t + 0.303335 �−0.0201 t +
0.599761 �−0.0011 t + 0.0832562 �−0.00022 t + 0.01665 �−0.0001 tL IDFAI +H−1.25651×10−6 �−110.1 t − 8.73253× 10−6 �−102.1 t + 0.00100101 �−100.13 t +
6.98602×10−6 �−100.1 t − 0.00125777 �−10.0001 t −0.00874127 �−2.0001 t +
1.00201 �−0.0301 t + 0.00699301 �−0.0001 tL IDFbbslow +H−6.98602×10−6 �−110.1 t + 0.000998003 �−100.13 t + 6.98602×10−6 �−100.1 t −
0.00699301 �−10.0001 t +0.999002 �−0.0301 t + 0.00699301 �−0.0001 tL IDFBBslow +H−0.000247754 �−110.1 t + 0.00123877 �−102.1 t + 6.98602×10−6 �−100.1 t −
0.248002 �−10.0001 t + 1.24001 �−2.0001 t + 0.00699301 �−0.0001 tL IDFbb Hfast+seqL

In[59]:= idfu@t1_D = 8"mean", "uL", "lL"< ê. Uin@rLung@idf, t1D, idf1 , 0.1 idf1 , 2D ê.
Thread@idf → AMADAdultW@5DD;

In[60]:= fig4 = Plot@Evaluate@idfu@tDD, 8t, 1, 100<,
PlotRange → 80.02, 0.08<, AxesLabel → 8"days", "Bq"<, PlotStyle → styles D;
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Example 3 .- Whole body uncertainties of 60Co intake by ingestion associated with f1.

The  uncertainties  of  the  retention  functions  associated  with  the  rate  transfer  factors  is  other  interesting  topic  to  be
investigated using analitycal methods.   Howerver, it is not always posible to  obtain  the analitical  expresion of a model
as function of one o several rate transter factors ki. In fact, it is only posible when the model not involve recicling and in
some  particular  cases  of model  with  recycling.    The  no recycling models  can be descomposed   in  catenary branches
(Skrable el al, 1988).  Then, when it is verified that ki∫ kj ,  the retention function after an acute intake I0 at t = 0 has the
pattern  that follows (Sanchez and Lopez -Fidalgo 1988):

r HI, k1, ...,, kn, λR, tL = I0 ikjjjj‚r=1

q

Ar Hk1, ...,, knL �− ar Hk1, ...,,knL ty{zzzz �−λR  t

being ArHk1, ...,, knL and arHk1, ...,, knL the coefficients obtained solving the model for the specific case. 

In[61]:= K1 = k1 + K1; K2 = k2 + K2; K3 = k2 + K3;
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In[62]:= ff@t_D = Catenary@b, 3, t, K, k, 0D êê Simplify

Out[62]= b k1 k2
ikjj �−t HK1+k1L���� ������ ������ ������ ������ �������� ������ ������� ������ ������ ��������� ������ �������������HK1 − K2 + k1 − k2L HK1 − K3 + k1 − k2L +

�−t HK2+k2L���� ������ ������� ������ ������ �������� ������ ����������� ������ �����������HK2 − K3LH−K1 + K2 − k1 + k2L + �−t HK3+k2L� ������ ������ ������ ������� �������� ������ ������ ������ ������ ��������� �������H−K2 + K3L H−K1 + K3 − k1 + k2L y{zz
We  wish estimated the associated uncertainty  for  60Co  whole  body content  retention,  after an acute intake I0 =  1  by
ingestion, for  fractional absorption f1 = 0.1 with an associated uncertainty of s = 20% f1. 

The first step is obtained the whole body content as function of I0 and f1.  It can be made as follows
In[63]:= CompartNumbers@cobaltD

Out[63]//TableForm=

1 Blood
2 Systemic A
3 Systemic B
4 Systemic C
5 Bladder
6 Urine
7 ULI
8 LLI
9 FEC

The GI compartments much be added 
Bladder Hn−4L to urineHn−3L k@n−4,n−3D−> 12
ULI Hn−2L to LLIHn−1L k@n−2,n−1D−> kULI
LLI Hn−1L to FECHnL k@n−1,nD−> kLLI
SI Hn+1L to ULIHn−2L k@n+1,n−2D−> kSI
ST Hn+2L to SI Hn+1L k@n+2,n+1D−> kST
SI Hn+1L to BH1L k@n+1,1D−> fB kSI

Then the  cobalt compartmental matrix as function of f1 is 
In[64]:= cobaltextended =

Join@ icrp30Model@6ê 7, 1ê7, 86, 60, 800<, 83ê 10, 1 ê10, 1ê10<, 1ê 2D,8811, 10, kST<, 810, 1, fB kSI<, 810, 7, kSI<<D ê. Rationalize@Options@qGIDD
Out[64]= 991, 2,

3 Log@2D�� ������ ������ ���� �����
5

=, 91, 3,
Log@2D����� �������� ������

5
=, 91, 4,

Log@2D������ �������� �����
5

=, 91, 5,
6 Log@2D� ������ ������ ���� ������

7
=,91, 7,

Log@2D�� �������� ���������
7

=, 92, 5,
Log@2D��� �������� ��������

7
=, 93, 5,

Log@2D���� �������� �������
70

=, 94, 5,
3 Log@2D����� ������ ������������
2800

=,92, 7,
Log@2D�� �������� ���������
42

=, 93, 7,
Log@2D��� �������� ��������
420

=, 94, 7,
Log@2D���� �������� �������
5600

=, 85, 6, 12<,97, 8,
9����
5
=, 88, 9, 1<, 811, 10, 24<, 910, 1,

6 f1������ ���������
1 − f1 =, 810, 7, 6<=

The content in each compartment, for I = 1, is given by  
In[65]:= qWB =

MatrixExp@CompartMatrix@11, cobaltextendedD, tD.80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1<;
Finally, the whole body content as function of f1and t is (note  are obtained sum all compartment content except compartment 6 
(urine) and 9 (fecal)

In[66]:= rWBCo@fn1_, tt_D = Total@Drop@Drop@qWB, 86<D, 88<DD ê. 8f1 → fn1, t → tt<;
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Them Uin function is applied to obtain the whole body rentencion  and their associated uncertainty for f1  = 0.1, s = 20% f1 , and 
taking g =95% (then z = 2).  It is been account that the half-life for 6 0 Co is 5.27 year. 

In[67]:= WBCou@t1_D =8"mean", "uL", "lL"< ê. Uin@rWBCo@fn1, t1D Exp@−Log@2DêH5.27∗ 365.24L t1D,8fn1< , 80.2 fn1< , 2D ê. fn1 → 0.1;

In[68]:= LogPlot@Evaluate@WBCou@tDD, 8t, 1, 30<,
AxesLabel → 8"days", "Bq"<, PlotStyle → styles D
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Out[68]= � Graphics �

It can be observed that the uncertainty is almost constant for t>10 days

In[69]:= Plot@HWBCou@tD@@2DD − WBCou@tD@@1DDLê WBCou@tD@@1DD, 8t, 1, 50<D
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Out[69]= � Graphics �

In[70]:= med@t_D = rWBCo@0.1, tD Exp@ −Log@2DêH5.27∗ 365.24L tD ;

Note: The solution has been  tested with the given using BiokdataReport[c obalt, "Ingestion", "Acute", "BioassayTable", 1, 0. 1, 180, Log[2]/(5.27*365.24)] //Chop

In[71]:= Clear@cobaltextended, rWBCo, WBCou D
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Fitting bioassay data

Basic equations

The bioassay measurements can be used to estimate the intake and, then, infer the internal dose. 
Let’s  suppose  a single intake I0  (unkown) in  t = 0 of radioactive particles,  whose characteristics  (AMAD, solubility,
etc) are known, by a worker with a metabolism that responds to  the ideal model for the standard worker. At  time t after
the intake, a bioassay is  made obtaining a measurement  m , with  negligible uncertainties. Then,  taken m = RAHtL   and
using eqn (4),  I0  will be calculated.  However, it  is  an unrealistic situation;  in  the real  world  the evaluation of  internal
exposures using the bioassay data involves a lot of uncertainties. In  fact, in an intercomparation exercise where the same
cases, using the  same  data, have been evaluated by different experts, large  discrepancies  have been obtained (Doerfel
1999). 

The features included in BIOKMOD can be used to evaluate and minimize the uncertainties.
If  all  parameters  (AMAD, absorption parameters,  etc.) of the  model,  except  the quantities  intakes,  are assumed to  be
known, the only  uncertainties will be the ones  of  the  measurements, and then we have a linear  statistical  model.  Eqn
(17) and eqn (18) are  applied to  estimate I and its associated uncertainty. They are based on the method described by
Skrable el al. (2002):

(16)
I = ‚i= 1

N rC , jHtiL miÅ ÅÅÅÅÅÅÅÅÅui2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ„
i=1

N rC , j2Ht i LÅÅÅÅÅÅ ÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅui2
 

(17)uI = 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ„
i =1

N rC, j2Hti LÅÅÅ ÅÅÅÅÅÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅui2
 

where
ti  is the time from the star t of the intake to the measurement i.
mi  a nd ui   are  the measurement and their associated uncertainties (calculated with the same confidence level that uI).
rC, j(t) , with C =  {A (acute)  or  Cr (Chronic )} is the retention function, with I0  =  1 or  Id=  1,  a ssocia te d w ith measurement mi .and j is the  type of  bioassay (note: different
kinds of bioassays can be applied simulta neously)

Eqs (17) and (18) are the apply by MLFit (See BIOKMOD Help)

Example: A worker has been exposed to  an (unknown) acute intake of  uranium aerosols (class S, Type S) by inhalation
in t = 0. With a lung counter have been taken measured after the intake:{1, 10, 30,  60, 90,  obtaining the values  given
by sampleLungUnc:{ti, mi .ui}. 

In[72]:= sampleLungUnc = 881, 39, 5<, 810, 36, 5<, 830, 29, 5<, 860, 26, 5<,890, 23, 5<, 8120, 22, 5<, 8180, 20, 5<, 8270, 18, 5<, 8350, 14, 5<<;
In[73]:= MLFit@sampleLungUnc, LungsRetention@1, AMADAdultW@5D, S, t, 0D, tD
Out[73]= 8Mean → 608.545, s → 38.4612<
Other authors recommend (ICRP Draft 2006) the maximum likelihood method which uses the following eqn 

(18)Log H ÌL = 
„

i =1

N JLogJ mi , jÅÅÅÅÅ ÅÅÅÅÅÅ ÅÅÅÅÅÅÅÅÅÅÅrC , j It i, j M NíHLogHSFi , jL2LNÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ⁄i =1
N H1êLogHSFi, jL2  
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being SFi the scattering factor for mi. If the bioassay data are log normally distributed then SF is  the geometric standard
deviation (SG) of the log-normal distribution.

In[74]:= MLFitLog@sampleLungUnc, LungsRetention@1, AMADAdultW@5D, S, t, 0D, tD
Out[74]= Mean → 603.899

When it is  assumed, that  not  only the intake but also  other parameters {k1,…, kr}  are unknown (AMAD, f1,  etc.) then
we have a problem of nonlinear fitting. BIOKMOD applies eqn (15) for fitting the bioassay data (It is minimized c2):

(19)(Ì, k1, ...,kr ) : Arg Min@I ,k1,...,kr DA‚ i=1
N I I rC , jHti , k1, ..., krL -miÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅui M2E

Restrictions: I > 0, k1 HminL § k1 § k1 HmaxL, ..., krHminL § kr § krHmaxL
If the bioassay data are log normally distributed then the below eqn is used  

(20)(Ì, k1, ...,kr ) : Arg Min@I ,k1,...,kr DA‚ i=1
N I Log@I rC, jHti , k1, ..., krL D-Log@miDÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅSGi

M2E
Restrictions: I > 0, k1 HminL § k1 § k1 HmaxL, ..., krHminL § kr § krHmaxL

Eqn (20) or (21) are the apply by X2FitE (See BIOKMOD Help)

Note: If only a kind of bioassay is  applied and all the uncertainties ui  are the same or they are not available can be used
the specific Mathematica functions for fitting (e.g. FindFit)  

Idenfication problems

In  some occasions, using the  same  bioassay data,  several  solutions, mathematically  equivalents  can be  obtained.  For
instance:  For  substances  of  type  F  (rapid  absorption)  and  f1 = 1 almost all  particles  deposited  in  the  respiratory  tract
(excluded that returned directly  to  the environment) are  transferred quickly into  the blood (B).  This  means that  in  this
case an intake I0  in t = 0 of radioactive aerosols of AMAD p can be approximated by an instantaneous input bB in B in
t = 0 given by 

(21)bB = I0 ⁄i IDFiH pL⁄i IDFiHpL includes all de IDF factor except IDFET1.

If I0 and p are unknown, and therefore IDFi  values will be also unknown, then eqn (20) will be verified for an infinitum
number of values. So if we replace bBHtL at  eqn (6) using eqn (19) it will be found that bioassay data mi can be fitted to
different  values  of I0  and p. However the  accumulated disintegrations,  given by eqn (14),  will  be  the same as  long as
that eqn.(20) be satisfied, and hence the committed effective dose E  will be also the same. For instance: If it is has been
obtained by fitting an intake I1 assuming an AMAD p1  and the true (unknown) value is I2  with AMAD p2, then it will
be  verified  that  I1 ⁄i IDFiHp1 L  =   I2 ⁄i IDFiH p2 L  and  E1 º  E2  being E1  =  I1DCF  (p1)  and  E2  =  I2  DCF(p2)  where
DCF(pi ) is the dose conversion factor corresponding to an AMAD pi.

In  the same way,  an intake  I0  by ingestion with  f1  =  1  is  practically  equivalent  to  an instantaneous  input  bB  =  I0  in
t = 0. Theses conclusions can be extended to not acute inputs as consequence of the convolution theorem. 

Example 1

As a  result  of  Chernobyl  accident  (26  april  1986)  a  male 39 years  old  and  80  kg (member  of the  public)  has  been
exposed to continuous and unknown ingestion  of Cs-137 (This data has been supplied by Ansoborlo)
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The results of the whole body activity retention are given below : {time after the accident (d), activity (Bq)} 
In[75]:= wholeData = 8839, 300<, 858, 671<, 875, 737<, 8130, 1661<, 8156, 1846<,8170, 1882<, 8198, 2247<, 8234, 2493<, 8263, 2926<, 8297, 3224<, 8325, 3608<,8374, 3883<, 8408, 3773<, 8432, 3723<, 8494, 3195<, 8520, 2740<, 8556, 2469<,8592, 2375<, 8625, 1954<, 8682, 1614<, 8744, 1221<, 8800, 1174<, 8880, 739<<;
In[76]:= ListPlot@wholeData, PlotJoined → TrueD
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Out[76]= � Graphics �

Here is evaluated the retention in the whole body for an acute intake "1" of Cs-137 in t=0 [More  details in Help "Isotope"]
In[77]:= qWbCs137@t1_D = qWholebody@compartMatrix@caesiumD, 1, 1, t1, Log@2DêH30 ∗365.24LD
Out[77]= −0.000177381 �−24.0001 t1 + 0.00165462 �−12.0001 t1 − 0.0230333 �−2.77265 t1 +

0.0207699 �−1.80006 t1 − 0.0430482 �−1.00006 t1 + 0.139387 �−0.346063 t1 + 0.904447 �−0.00636326 t1

This function supposes a daily chronic ingestion "inp" during a time t1.  The ingestion of caesium stop in t = T , for t > T,  inp = 0. 
In[78]:= qConstant@1, 8qWbCs137@tD, t<, t, 2000D
Out[78]=

Ø≤≤≤≤∞
±≤≤≤≤
t1 must be non negative

142.499+ 7.39086× 10−6 �−24.0001 t − 0.000137884 �−12.0001 t + 0.00830732 �−2.77265 t − 0.0115384
0. − 7.39086× 10−6 �−24.0001 H−2000+tL + 0.000137884 �−12.0001 H−2000+tL − 0.00830732 �−2.77265 H−2000+

It can be observed that the retention was increasing until T.  We can suppose that the caesium ingestion happened until  T, when it 
ceased.  Now we can fit the experimental data to bearing in mind both periods. 

In[79]:= model2[t1_?NumericQ, p_?NumericQ, tt_?NumericQ] := p 

qConstant[1,{qWbCs137[t],t}, t1, tt]

The funtion estimates the best fit for the intake I,  in Bq/day, and the period T, in days 
In[80]:= 8input, timeIntake< = 8p, tt< ê. FindFit@wholeData, model2@t, p, ttD, 8p, tt<, tD
Out[80]= 824.5952, 533.961<
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Then, the accumulated intake is 
In[81]:= input timeIntake

Out[81]= 13132.9

It can be observed the good mach obtained
In[82]:= Plot@qConstant@input, 8qWbCs137@tD, t<, t1, timeIntakeD,8t1, 1, 1000<, Epilog → 8Hue@0.D, PointSize@0.02D, Map@Point, wholeDataD<D
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Out[82]= � Graphics �

Example 2

A researcher has been exposed to  a single acute intake of 125 I. After the exposure it has been measured the 125 I in the
thyroid  obtaining:  {Days  after  accidental  intake,  Thyroid  activity  measured  (Bq)}  =  {{7,  5143},{14,  4773},{15,
4403},{21, 4070}, {28,3471}, {42, 2546}}. (Bioassay data taken from French C. S. et Al, 2003).
The data in French C. S are  in nCi, they has been converted to Bq

In[83]:= sampleThy = 8#1, 37 #2< & @@@887, 139<, 814, 129<, 815, 119<, 821, 110 <, 828, 93.8<, 842, 68.8<<
Out[83]= 887, 5143<, 814, 4773<, 815, 4403<, 821, 4070<, 828, 3470.6<, 842, 2545.6<<
Sol

The bioassay data have been fitted  to the iodine thyroid retention function assuming an AMAD p1  =  1  mm, p2 = 5  mm,
and p3  =  10 mm. The  solutions  obtained have been (Fig. 5),  respectively,  I1  = 57448.5 Bq,  I2  =  41412.1 Bq and I3  =
46724.6  Bq.  As  d1 = ⁄i IDFiH1 mmL=  0.34665  ;  d2 = ⁄i IDFiH5 mmL =  0.480875,  d3=   ⁄i IDFiH5 mmL =  0.426196,  an
hence I1 d1  = I2 d2 = I3 d3 = 19914 Bq.
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First it is computed the thyroid retention as funtion of t an p (previously we need to know the  number used by Biokmod for thyroid 
compartment)

In[84]:= CompartNumbers@iodineD
Out[84]//TableForm=

1 Blood
2 Thyroid
3 Rest
4 Bladder
5 Urine
6 ULI
7 LLI
8 FEC

In[85]:= qThyAmad@t_, p_D := q2@tD ê. BiokdataReport@iodine, "Inhalation",

"Acute", "CompartmentContent", 1, AMADAdultW@pD, F, 1, t, Log@2Dê60.14D
This function is applied to obtain the retention for p (in mm) = {1, 5 , 10} 

In[86]:= 8qThyAmad1@t_D, qThyAmad5@t_D, qThyAmad10@t_D< = Map@qThyAmad@t, #D &, 81, 5, 10<D;
The bioassay data are fitted using AMAD p(in mm)={1,5,10} to obtain IHpL 

In[87]:= 8f1, f5, f10< = Map@FindFit@sampleThy, intake #, 8intake<, tD &,8qThyAmad1@tD, qThyAmad5@tD, qThyAmad10@tD<D;
 The intake IHpL for p(in mm) = {1,5,10} are shown

In[88]:= 8I1, I5, I10< = 8 intake ê. f1, intake ê. f5, intake ê. f10<
Out[88]= 857448.5, 41412.1, 46724.6<
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Fig.  I-125 thyroid retention function fitted using the experimental data. The continuous line actually is three 
lines superposed corresponding to three combination of intakes and AMADs. It can be observed that they 
are indistinguishable 

In[89]:= fig5 = Plot@8I1 qThyAmad1@tD, I5 qThyAmad5@tD, I10 qThyAmad10@tD<,8t, 0, 50<, AxesLabel → 8"days", "Bq"<,
Epilog � Map@8Orange, PointSize@.02D, Point@##D< &, sampleThyD D
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Out[89]= � Graphics �

Now it is obtained the ⁄i IRFiHpL, being i = 8AI, bbfast+seq, bbslow, BBfast+seq , BBslow,  ET2< (It can be tested with the 
given in ANNEX F, Table F.1, of ICRP 66) for AMAD p (in mm) = {1,5,10} 

In[90]:= 8idf1, idf5, idf10< = Map@Plus @@ Drop@AMADAdultW@#D, −1D &, 81, 5, 10<D
Out[90]= 80.34665, 0.480875, 0.426196<

Finally it is obtained IHpL⁄ i IDFiHpL  with  p  = {1,5,10}.  It can be obserbed that I H1L⁄i IDFiH1L   º  I H5L ⁄i IDFiH5L  º 
I H10L⁄i IDFiH10L.  

In[91]:= 8idf1, idf5, idf10< 8I1, I5, I10<
Out[91]= 819914.5, 19914., 19913.8<
In  the same way, taken into account that DCF for iodine  125 are DCF1(1 mm) = 5.3  10-6  mSv/Bq , DCF2 (5  mm) =7.3
10-6  mSv/Bq,  and DCF3  (10 mm) =6.5 10-6  mSv/Bq. Therefore  E1  = I1  DCF1  = 0.305 mSv; E2  =  I2   DCF2 = 0.303
mSv; E3 = I3  DCF3 = 0.304 mSv; that is E1 º E2  º E3. 

Here are computed  EHpL = I HpL  DCFp  .  It can be observed that  E1 º E2   º E3.  (being E1= E(1); E2= E(5); E3= E(10));
In[92]:= 8dcf1, dcf5, dcf10< = 85.3 10−6, 7.3 10−6, 6.5 10−6<;
In[93]:= 8E1, E2, E3< = 8I1 dcf1, I5 dcf5, I10 dcf10<
Out[93]= 80.304477, 0.302308, 0.30371<
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Example 3

A worker has  been exposed from t = 0  to  t = 2000 day to a chronic intake by inhalation of 3  BqU/day of UO2  aerosols
type S and AMAD 5 mm. On the day t = 2000 he accidentally intakes by inhalation an unknown I quantity of UO2. The
uranium  lung content  has  been  measured  using  a  lung  body  counter  obtaining:  {Days  after  accidental  intake,  Lung
content  (BqU)}  ={{1,186},  {5,181},  {30,161},  {70,149},  {120,143},  {250,113}}.  It  is  supposed  that  the  measured
uncertainties is 30 Bq with a conficence level of 95%. We wish to know the accidental quantity intaken.

Note.- The lung measurements have been simulated using a single intake of 1700 BqU with AMAD 7 mm with a random
noise. The  lung counters usually measure the 235 U but  here it has  been converted to  give the data in BqU. The chronic
and the accidental intakes are assumed to be from approximately the same enrichment (4.4% of 235 U).

Sol

If it is assumed an AMAD of 5  mm (recommended value by ICRP 66 when AMAD is unknown) then eqn (17) and eqn
(18) can be applied. The solution obtained is  that  the accidental intake was 1205 ± 254 BqU. If it  is supposed that  the
AMAD is unknown then the eqn (20) is applied obtaining 1875 BqU and AMAD 7.8  mm. These are nearer to  the “true”
values. 

In[94]:= qLungU5@t_D = LungsRetention@1, AMADAdultW@5D, S, t, 0D;
The "measured" (it has been alredy simulated) data has been:

In[95]:= SeedRandom@101D
In[96]:= sampleLung1 = Map@8#, qConstant @3, 8qLungU5@tD, t<, # + 2000, 2000D+

1700 LungsRetention@1, AMADAdultW@7D, S, #, 0D +
Random@NormalDistribution@0, 5DD< &, 81, 5, 30, 70, 120, 250<D êê Round

Out[96]= 881, 186<, 85, 181<, 830, 161<, 870, 149<, 8120, 143<, 8250, 113<<
Los calculoes estan realizados con los siguientes valores

In[97]:= sampleLung1 = 881, 186<, 85, 181<, 830, 161<, 870, 149<, 8120, 143<, 8250, 113<<;
The first step is subtracted the chronic intake

In[98]:= 8timemeasured, measured< = Transpose@sampleLung1D;
That is the lung retention due to the chronic intake

In[99]:= cronicLung =
Map@8#, qConstant@3, 8 qLungU5@tD, t<, # + 2000, 2000D< &, timemeasuredD êê Round

Out[99]= 881, 108<, 85, 107<, 830, 104<, 870, 99<, 8120, 95<, 8250, 85<<
The total retention minus the chronic retention gives the lung retention due to the accidental intake
In[100]:=

sampleLung2 = Transpose@8timemeasured, Transpose@sampleLung1− cronicLungD@@2DD<D
Out[100]=881, 78<, 85, 74<, 830, 57<, 870, 50<, 8120, 48<, 8250, 28<<
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In[101]:=

Clear@int, pD
In[102]:=

model1@t_, int_, p_D = LungsRetention@int, AMADfit@pD, S, t, 0D;
In[103]:=8inputAcute, pp< =8int, p< ê. FindFit@sampleLung2, model1@t, int, pD, 88int, 500, 1000<, 8p, 3, 10<<, tD
Out[103]=81875.69, 7.83468<

Here is fitted adding the measured uncertainties (30 Bq)  
In[104]:=

sampleLungUnc2 = Map@Append@#, 30D &, sampleLung2D;
In[105]:=

sampleLungUnc2

Out[105]=881, 78, 30<, 85, 74, 30<, 830, 57, 30<, 870, 50, 30<, 8120, 48, 30<, 8250, 28, 30<<
If the AMAD 5mm is assumed  , then

In[106]:=

MLFit@sampleLungUnc2, LungsRetention@1, AMADAdultW@5D, S, t, 0D, tD
Out[106]=8Mean → 1205.28, s → 253.809<

If the the AMAD fitted is assumed, then
In[107]:=

MLFit@sampleLungUnc2, LungsRetention@1, AMADAdultW@ppD, S, t, 0D, tD
Out[107]=8Mean → 1900.98, s → 400.305<

Note that the solution is the same. It happens becouse the uncertainties are the same for all the measurements.
In[108]:=

FindMinimum@X2FitE@8int, p<, sampleLungUnc2, model1@t, int, pD, tD,8int, 1000, 3000<, 8p, 3, 8<D
Out[108]=80.11186, 8int → 1875.69, p → 7.83468<<

Fig6..- Predicted lung retention after an acute intake assuming a previous chronic intake  The dashed line 
represents the underlying contribution from the chronic intake. 

In[109]:=

qLungU7@t_D = LungsRetention@1, AMADAdultW@ppD, S, t, 0D;
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In[110]:=

PlotLung1 = Plot@qConstant@3, 8 qLungU5@tD, t<, t1 + 2000, 2000D+
inputAcute qLungU7@t1D, 8t1, 1, 300<D;
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In[111]:=

sampleLung3 = Map@Append@8#<, ErrorBar@30 DD &, sampleLung1D;
In[112]:=

PlotLung2 = MultipleListPlot@sampleLung3D
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Out[112]=

� Graphics �
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In[113]:=

PlotLung3 = Plot@inputAcute qLungU7@tD, 8t, 1, 300<, PlotRange → 80, 100<,
PlotStyle→ 8AbsoluteThickness@1D, AbsoluteDashing@810, 10<D<D
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Out[113]=

� Graphics �

In[114]:=

fig6 = Show@PlotLung1, PlotLung2,

PlotLung3, PlotRange → 80, 250<, AxesLabel → 8"days", "BqU"<D;
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Example 4 

An operator  has  been exposed to  an simple  accidental  intake  by inhalation of  60Co.  The  cobalt  form  was  metal  and
oxide. A program of in-vivo monitoring was carried out ten days after the event and continued up to  3  years  (Table 2).
Urine samples were also  taken (Table 2). Additional information: It is recommended to assume that the whole body and
urine measurements   be approximated by a log-normal distribution with a geometric standard deviation of 1.07 Bq and
1.8 Bq

(Data  from  ICRP  (Draft  2006):  Draft  guidance  document:  Bioassay  data  interpretation  (Annex  B)
http://www.icrp.org/news_guidance.asp [Accessed 15 june 2006])
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sol 1

This is a case where multiple data sets must be fitted to a nonlinear model. 

The default parameter recommended by ICRP 78 for cobalt  oxide values are: AMAD 5 mm, absorption Type S, f1  value
0.05. If we applied the chi squared test (c2) the goodness  of the data fitted is very bad. For this reason we used the eqn
(21) assuming that  p  (AMAD value in  µm), the absorption rates:{spt , s p, st} and f1  are unknown. This is  a  case where
multiple data sets must be fitted to a nonlinear model. To avoid a too long time of computation some restrictions  about
the parameters fitted  were established. Also the number of step to find the minimum of eqn (21) was limited. The best
fit obtained corresponds to  398.5 kBq with AMAD 5.5  mm, {spt, s p, st} ={10, 90, 0.0007}  and  f1 = 0.1. The committed
effective dose, E(50) calculated using these values is: 4.5 mSv.

The  method  applied  in  ICRP  (Draft  2006)  is  different.  There  is  taken as  AMAD 5 mm, then is  applied the eq.  (19)
several  times:  One  set with with f1=  0.1   testing mixture  of  absorption Types  S and M other  repeating the  procedure
with f1 = 0.05.  In each test  is obtained the Ji2  value. Finally is chosen the solution where the Ji2  is  smallest one. The
computation has been made using IMBA Professional. The solution reported is 404 kBq and 5 mSv 

In[115]:=

sampleWBCo60 =8810, 23900<, 814, 29200<, 817, 20100<, 820, 18200<, 827, 21600<, 840, 19800<,860, 21600<, 880, 17500<, 8190, 11600<, 8370, 8100<, 8747, 4800<, 81010, 2700<<;
Table 1 Whole body activity measurement

In[116]:=

TableForm@sampleWBCo60,
TableHeadings→ 8None, 8"Time of measurement\n after intake in days",

"Whole body\n activity of 60Co HBqL"<<D
Out[116]//TableForm=

Time of measurement
after intake in days

Whole body
activity of 60Co HBqL

10 23900
14 29200
17 20100
20 18200
27 21600
40 19800
60 21600
80 17500
190 11600
370 8100
747 4800
1010 2700

In[117]:=

sampleUriCo60 =8814, 709<, 827, 64<, 840, 71<, 860, 37<, 880, 29<, 8190, 11<, 8370, 1.7<<;
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Table 2.- Urine activity measurement

In[118]:=

TableForm@sampleUriCo60,
TableHeadings→ 8None, 8"Time of measurement\n after intake in days",

"Daily urinary excretion\n rate of 60Co HBqL"<<D
Out[118]//TableForm=

Time of measurement
after intake in days

Daily urinary excretion
rate of 60Co HBqL

14 709
27 64
40 71
60 37
80 29
190 11
370 1.7

In[119]:=

sampleWBCo60L = 8810, Log@23900D, Log@1.2D<, 814, Log@29200D, Log@1.2D<,817, Log@20100D, Log@1.2D<, 820, Log@18200D, Log@1.2D<,827, Log@21600D, Log@1.2D<, 840, Log@19800D, Log@1.2D<,860, Log@21600D, Log@1.2D<, 880, Log@17500D, Log@1.2D<,8190, Log@11600D, Log@1.2D<, 8370, Log@8100D, Log@1.2D<,8747, Log@4800D, Log@1.2D<, 81010, Log@2700D, Log@1.2D<<;
In[120]:=

sampleUriCo60L = 8814, Log@709D, Log@1.8D<, 827, Log@64D, Log@1.8D<,840, Log@71D, Log@1.8D<, 860, Log@37D, Log@1.8D<, 880, Log@29D, Log@1.8D<,8190, Log@11D, Log@1.8D<, 8370, Log@1.7D, Log@1.8D<<;
The parameters to be fitted are Intake, AMAD p,  f1, spt  s p st .

In[121]:=

fitType@p_, f1_, s1_, s2_, s3_, t_D :=
Module@8x1, x2<, 8x1, x2< = 8qWholebody@t1D, qDailyUrine@t1D< ê.

BiokdataReport@cobalt, "Inhalation", "Acute", "Automatic", 1,

AMADAdultW@pD, 8s1, s2, s3<, f1, t1, Log@2DêH5.27∗365.24LD;
FindMinimum@X2FitE@8int<, sampleWBCo60L , Log@int x1D ê. t1 → t,

sampleUriCo60L , Log@int x2D ê. t1 → t, tD, 8int, 10^5, 10^6<DD
In[122]:=

todos =
Table@Flatten@8p, f1, s1, s2, s3, fitType@p, f1, s1, s2, s3, tD<D, 8p, 4.5, 5.5, 0.5<,8f1, 0.06, 0.1, 0.04<, 8s1, 9, 10<, 8s2, 90, 100, 10<, 8s3, 0.0002, 0.002, 0.0005<D;

In[123]:=

todos1 = Flatten@todos, 4D; ji2 = Transpose@todos1D@@6DD; ps = Position@ji2, Min@ji2DD;
The best fit obtained correspond to

In[124]:=8amadp, ff1, s1, s2, s3, min, inp< = Extract@todos1, psD@@1DD
Out[124]=85.5, 0.1, 10, 90, 0.0007, 15.5141, int → 398551.<

{amadp, ff1,s1,s2,s3,min,inp} = {5.5,  0.1, 10, 90, 0.0007, 15.92, intØ 398551};
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Here are compared the "experimental" data with the fitted functions
In[125]:=

I1 = int ê. inp;
In[126]:=8cobaltwb@t_D, cobaltURI@t_D< =8qWholebody@tD, qDailyUrine@tD< ê. BiokdataReport@ cobalt, "Inhalation", "Acute",

"Automatic", 1, AMADAdultW@amadpD , 8s1, s2, s3<, ff1, t, Log@2DêH5.27∗ 365.24LD;
In[127]:=

Plot@I1 cobaltwb@t1D, 8t1, 1, 400<, AxesLabel → 8"days", "Bq"<,
Epilog :> Map@8 Orange, PointSize@.02D, Point@##D< &, sampleWBCo60DD
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Out[127]=

� Graphics �

In[128]:=

Plot@I1 cobaltURI@t1D, 8t1, 1, 400<, AxesLabel → 8"days", "Bqêday"<,
Epilog :> Map@8 Orange, PointSize@.02D, Point@##D< &, sampleUriCo60DD
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Out[128]=

� Graphics �

Then we can computed the equivalent doses using the Doses  package included in the new version of Biokmod. . It can
be used for computing,  over a period t, the acumulated disintegration UsHtL, the committed effective doses  eHtL and the
equivalent doses  HHtL  . The SEE factors, require for computing eHtL  and HHtL, are included for some selected isotopes,
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in the other cases the SEE factors can be introduced as  input data (It  can be obtained using DCAL (SEECAL). It can be
downloaded at http://ordose.ornl.gov/downloads.html ).

In[129]:=8amadp, ff1, s1, s2, s3, inp< = 85.5, 0.1, 10, 90, 0.0007, 398551<;
In[130]:=

CommittedDose@"Co 60", "Inhalation", inp,

AMADAdultW@amadpD, 8s1, s2, s3<, ff1, 50 ∗365.25D
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Accumulted disintegration, in Bq, as function of the time

Compartment 18262.5 day

AI 1.47604 ×106
bb1 1349.24
bb2 10178.3
bbseq 512.246
BB1 390.742
BB2 13944.5
BBseq 847.09
ET2 371.238
ET1 29607.7
ETseq 7546.29
LNth 18869.5
LNet 7118.45
ST 1546.8
SI 5568.19
B 5171.07
ULI 19104.9
LLI 34377.3
Other 663196.
Liver 0.
UB_Content 493.267

Dose accumulated, in Sv, as function of the time

SvêBq 18262.5 day
Testes 0.000647195
Ovarius 0.00124167
Red Marrow 0.00188664
Colon 0.00203449
Lungs 0.0237358
St Wall 0.00193433
Bladder Wall 0.000860611
Mama 0.00290778
Liver 0.00232751
Oesophagus 0.00344612
Thyroid 0.00162156
Skin 0.000975408
Bone Surface 0.00161858
Muscle 0.00160571
Brain 0.000729113
Small intestine 0.00132312
Kidneys 0.0015073
Pancreas 0.00232831
Spleen 0.00233603
Thymus 0.00344612
Uterus 0.00101719
Adrenals 0.00288376
Extrathoracic airways 0.0203698
Effective, eH50L 0.00446216
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The committed effective dose, E(50)  calculated using these values is:  4.46 mSv

Conclusion
There are  some good computer  codes  that  can be applied in  the  interpretation of bioassay data. We  have developed a
new one, BIOKMOD, with  some innovations that  can be  useful mainly  for advanced studies.  The  standard version of
BIOKMOD  is  available for free download at  the author web side: http://web.usal.es/guillermo. Furthermore there  is  a
web  version (available  at  http://www3.enusa.es/webMathematica/Public/biokmod.html ,  sponsored  by ENUSA  Indus-
trias Avanzadas. S.A) and therefore it can be used everywhere where an internet connection exists.

BIOKMOD has been used in  the evaluation of internal exposures using the bioassay data: Multiple constant and random
intakes  in  occupational  exposures  taking  into  account  periods  without  intake  (weekends,  holidays,  etc.)  has  been
described;  an analytical  method to  evaluate the  statistical  uncertainties  associated with the biokinetic  model  has  been
developed; non linear techniques have been applied to estimate the intakes using bioassay data.
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