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1. INTRODUCTION

Macroscopic conductors and devices, where inelastic scattering is dominant, exhibit
levels of noise close to the thermal value. In contrast, mesoscopic structures, with active
lengths L much shorter than the characteristic length of inelastic scattering Zing (L << /ing ),
are known to display shot noise.

Shot noise is caused by the randomness in the flux of carriers crossing the active
region of a given device, and it is associated with the discreteness of the electric charge that
carries the current [1-5]. At low frequency (small compared to the inverse of the transit time

through the active region, f <<1/t+, but sufficiently high to avoid 1/ f contributions), the
power spectral density of shot noise is given by S =vy2gl , where | is the dc current, q the
elementary quantum of charge determining | and y >0 a numerical factor called Fano factor.

In the absence of correlation between current pulses y =1, carriers exhibit Poissonian

statistics, and this case corresponds to full shot noise. Full shot noise was originally described
by Schottky [4] for vacuum diodes under current saturation conditions, when all electrons
emitted by the cathode reach the anode and there is no charge accumulated in front of the

cathode.
1.1. Shot-noise suppression and enhancement

Deviations from the previous ideal case constitute a signature of existing
correlations between different current pulses. Negative correlations between carriers reduce

the shot-noise level leading to suppressed shot noise with y <1 (sub-Poissonian carrier
statistics), while positive correlations increase the noise and give rise to enhanced shot noise
with y >1 (super-Poissonian carrier statistics).

In this way, the Fano factor can provide very valuable information about the carrier

kinetics and existing correlations inside the devices [5]. For this reason, and with the advent



of mesoscopic conductors in recent years, the analysis of shot noise is attracting increasing
attention from both theoretical and experimental points of view [6,7]. In particular, being a
signature of correlations among particles, the phenomena of suppression and enhancement
have emerged as a subject of relevant interest.

The suppression has been predicted theoretically as a consequence of Pauli
exclusion principle under strongly degenerate conditions in very different situations by using
both phase coherent [8,9] and semiclassical models [3]. In the ballistic regime, shot noise is
completely suppressed [10,11] due to the non-fluctuating occupation number of incoming
states. In a point contact, a peak in the noise is predicted in between the conductance plateaus
[11]. In symmetric double-barrier junctions, a 1/2 Fano factor has been theoretically
explained by different authors [12-15]. In the case of elastic diffusive conductors, a 1/3

reduction of the noise has been calculated for noninteracting electrons [16-24], while in the

case of strong electron-electron scattering the value of the Fano factor is /3/4 [25,26].
Finally, when devices become macroscopic and inelastic processes are present, like scattering
with phonons, the noise is expected to reduce to the thermal value [27,28].

Shot-noise enhancement, though less explored, have also been predicted. So far,
apart from Andreev reflections [29-32], the only mechanism found to be responsible for shot-
noise enhancement is the positive feedback between Coulomb interaction and tunneling
probability, as evidenced in structures controlled by tunneling, like double-barrier resonant
tunneling diodes [33,34] and single-barrier structures [35-37].

Remarkably, many of these predictions have been experimentally confirmed
[38-53], thus opening new and interesting perspectives. Within this scenario, the
understanding of the physical mechanisms originating shot noise and its
suppression/enhancement  in mesoscopic  conductors, and more generally in

small-dimensional devices, is a field of key importance.



Most of the theoretical works carried out so far consider degenerate conductors,
where the Pauli exclusion principle plays a major role, and neglect long-range Coulomb
interaction among carriers. The influence of this interaction is known to be relevant to the
noise reduction since the times of vacuum tubes [54,55], and its possible role in the case of
mesoscopic samples [56] was repeatedly claimed by Landauer [57-60]. Only recently some
works include explicitly long-range Coulomb interaction. In the case of degenerate
conductors [61,62], its influence on the high-frequency spectrum of shot noise has been
widely analyzed [63-67]. In the case of nondegenerate conductors, and mainly motivated by
previous results of Monte Carlo (MC) simulations, some theoretical works including
Coulomb correlation as an essential mechanism for shot-noise suppression/enhancement have
also recently appeared [68-77]. However, the inclusion of self-consistency (long-range
Coulomb interaction) in the theoretical approaches is usually a cumbersome and complex
problem, only solvable in very specific cases.

It is here where MC calculations can be extremely useful. By coupling a simulator of
carrier transport with a Poisson solver (PS), the MC technique is especially suitable to
investigate the influence of Coulomb correlations on shot noise in mesoscopic structures. The
scattering mechanisms and interactions, as well as the fluctuations of the self-consistent
potential, are intrinsically accounted for by this approach. It can analyze different voltage-
bias conditions, ranging from thermal equilibrium to high electric fields necessary for shot
noise to appear, without the difficulties that other methods meet. In addition, it has the
advantage that it provides a full temporal (and frequency) description of noise by means of
the direct calculation of correlation functions (and spectral densities by Fourier

transformation) of current fluctuations [78].



1.2. Monte Carlo simulations of noise in mesoscopic structures

In the field of mesoscopic shot noise, the MC technique has been successfully
applied in recent years for the investigation of shot-noise suppression and enhancement due
to the joint action of Coulomb interaction and other mechanisms controlling transport in the
structures under analysis. Typically, semiclassical models are considered, like those used to
analyze heterostructure tunnel-barrier diodes [35,79-82], and (ballistic and diffusive)
degenerate [83-85] and nondegenerate homogenous structures [86-96]. Just very recently, a
first attempt to analyze shot noise with a MC technique using a phase coherent model has
been developed and applied to the case of single tunnel-barrier diodes [97]. Let us briefly
indicate the main achievements accomplished by using semiclassical models.

Liu et al. [83], by using a simple model, analyze the case of completely degenerate
elastic diffusive conductors. They reproduce the 1/3 Fano factor predicted theoretically,
which appears as a result of the redistribution of electrons in energy by random scattering
subject to the Pauli exclusion principle. However, this work ignores Coulomb interaction.

By using self-consistent simulations, Reklaitis and Reggiani have analyzed
suppression and enhancement of shot noise in GaAs/AlGaAs heterostructure tunnel-barrier
diodes [35,79-82]. In this case transport is controlled by tunneling, which, jointly with
Coulomb interaction between carriers, is responsible for the different effects observed in the
shot-noise behavior. As an example of the type of results that this analysis provides, Fig. 1
shows the Fano factor for the case of one- to four-barrier nonresonant heterostructure diodes
with two different contact dopings [82]. A significant shot-noise suppression is found (more
pronounced in the case of the low-doped contact), with the Fano factor found to reduce
systematically by increasing the number of barriers, besides exhibiting a significant voltage
dependence. The presence of inelastic scattering through optical-phonon emission combined

with tunneling is the key element to explain the suppression mechanism. Shot-noise



enhancement can also be found in these type of heterostructure diodes. Reklaitis and
Reggiani propose a mechanism of enhancement for the case a single-barrier heterostructure,
like that shown in Fig. 2, based on the positive feedback between (strong-enough) space
charge and the energy dependence of single electron tunneling probability, which leads to a
super-Poissonian pulse distribution [35]. This is illustrated in Fig. 3, where the Fano factor is
found to increase with the applied voltage, reaching values as high as 7 for appropriate
biasing conditions, for then decreasing at the highest voltages when the barrier becomes
transparent. Remarkably, when Coulomb interaction is frozen (space-charge effects are

neglected) no enhancement is observed and full shot noise is always found.

In this review chapter we will focus on the calculations performed by our group in
the University of Salamanca (Spain) for the case of homogeneous structures in the presence
of space charge under different transport regimes [84-96]. Thus, the case of ballistic
transport, both for nondegenerate and degenerate injection, will be initially analyzed
[84-86,88,90,92]. We will after include the presence of scattering (both elastic and inelastic)
to study the crossover from ballistic to diffusive regime [87,89,91]. The diffusive regime with
several energy dependences of the scattering time will be subsequently investigated
[89,91,93,94]. In all the previous regimes, mainly shot-noise suppression of different
intensity is found. To finish, we will address a regime where an increase of the noise is
predicted, even reaching enhanced shot noise: quasiballistic transport in the presence of
electron traps [96].

We must remark here that the results on shot noise obtained by MC simulations have
motivated the development of several analytical theories trying to explain them
[68-70,72,74,76,77]. In some sense, MC calculations have played the role of numerical
experiments needing a physical analytical interpretation, thus leading to the advance of basic

theory in the field of mesoscopic shot noise.



2. PHYSICAL MODEL

In this section we describe the type of structures where shot noise is analyzed, the
physical model used in the simulations to include all the different mechanisms controlling

transport, and the procedures for the noise calculation.
2.1. Simulated structure

As prototype for our analysis we consider the simple structure shown in Fig. 4,
formed of a lightly-doped semiconductor active region of length L sandwiched between two
heavily-doped contacts (of the same semiconductor) which act as thermal reservoirs by
injecting carriers, with appropriate statistics, into the active region. The structure is assumed
to be sufficiently thick in transversal directions to allow a one-dimensional electrostatic
treatment. The doping of the contacts n, is always taken to be much higher than that of the
active region N,. Hence, when a voltage U is applied to the structure, all the potential drop is
assumed to take place inside the active region between positions x=0 and x=L. The
contacts are considered to remain always at thermal equilibrium. Scattering mechanisms and
trapping-detrapping processes will be considered in the active region following the models

described in next subsections.
2.2. Monte Carlo method

The transport analysis is carried out by simulating the carrier dynamics only in the
active region of the structure. The influence of the contacts is included in the simulation by
means of a stochastic injection rate taking place at positions x=0 and x =L, whose statistics
depends on the degenerate or nondegenerate character of contacts. Under the action of a dc
applied voltage U, the carrier dynamics is simulated by an ensemble MC technique

self-consistently coupled with a PS [98]. The simulation is one-dimensional in real space (the



Poisson equation is solved only in the direction of the applied voltage) and three-dimensional
in momentum space (unless otherwise indicated).

The carriers move inside the active region according to the classical equations of
motion with a constant effective mass. Under the condition of a constant applied voltage
between the contacts, the instantaneous current in a one-dimensional structure is given by
[78]:

N()

I(t) = ‘E v (1)

where N(t) is the number of particles inside the structure and v;(t) the velocity component

of the i-th particle along the field direction. It must be stressed that, although not explicitly
appearing in Eq. (1), the displacement current is implicitly taken into account by constant
voltage conditions [78].

To better analyze the importance of Coulomb correlations we provide the results for
two different simulation schemes. The first one involves a dynamic PS, which means that any
fluctuation of space charge due to the random injection from the contacts causes a
redistribution of the potential, which is self-consistently updated by solving the Poisson
equation at each time step during the simulation to account for the fluctuations associated
with the long-range Coulomb interaction. The second scheme uses a static PS that calculates
only the stationary potential profile; i.e., once the steady state is reached, the PS is switched
off, so that carriers move in a frozen non-fluctuating electric field profile. Both schemes are
checked to give exactly the same steady-state spatial distributions and total current, but the
noise characteristics and the statistical distributions of transmitted carriers are different. Of
course, the PS scheme that is physically correct is the dynamic one. The static case is just
used to evaluate quantitatively the influence of the self-consistent potential fluctuations on

the total noise.



For the calculations we have typically considered a structure where L=200 nm,

T =300 K, m=0.25m, and ¢=11.7 (relative dielectric constant). Several values of contact
doping n. (and therefore several injection rates I'), from 10" to 4x10Y cm? in the

nondegenerate case and higher in the degenerate case (1.37x10%° cm™), will be analyzed,
thus leading to different levels of space-charge effects inside the active region. These effects

will be characterized by the dimensionless parameter A = L/Lpc, with L, the Debye length

associated with the carrier concentration at the contacts [88]. Accordingly, A will vary from

very low values (0.15 for n_=10" cm’®), for which space-charge effects are negligible, to

high values (30.9 for n. =4x10" cm?, and 90.95 for n. =1.37x10* cm™ and L=100 nm),
which imply a significant action of electrostatic screening.

Typically, 100 to 200 cells in real space are used to solve the Poisson equation. The
time step is always lower than 2 fs, its value depending on the time scale of the mechanism
with shortest characteristic time among those involved in the transport properties of the
structures (scattering time, transit time, dielectric relaxation time, etc.). The average number
of simulated particles in the active region depends on the working conditions and statistical
resolution required in the calculations; it may range between 100 and 20000 particles. As test
of numerical reliability, we systematically check that by reducing the time step, or by

increasing the number of meshes and carriers, the results remain the same.
2.3. Contact modeling

The modeling of contacts is crucial in the analysis of shot noise in mesoscopic
devices, especially in the case when the carrier motion in the active region of the structures is
ballistic, and the noise originates from carrier injection. To provide a complete model for the
contact injection taking place in our structures at positions x=0 and x=L (see Fig. 4), and

define the associated sources of randomness in the carrier flux, we have to specify the
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velocity (or momentum) distribution of the injected carriers fi; (v), the injection rate I" and

its statistical properties. These features of the contacts are different depending on their

nondegenerate or degenerate character.
2.3.1. Nondegenerate contacts

Let us consider the process of electron injection from contact 1 into the active region
at x=0 (see Fig. 4). According to the equilibrium and nondegenerate conditions at the
contacts, the injected carriers follow a Maxwellian distribution weighted by the velocity

component v, normal to the surface of the contact
fin (V) = W fus (V) , (2)
where fyg(V) is the Maxwell-Boltzmann distribution at the lattice temperature. The injection
rate I, i.e., the number of carriers that are entering the sample per unit time, is given by
I'=nyv,S, 3)
where Sis the cross-sectional area of the device, and

V. = j: j_“; j_"; i (V) Qvivydv, = ;Bt:n . (4)

This injection rate is considered to be independent of the applied voltage. Due to the very
high value of n. as compared with the sample doping, any possible influence of the applied
voltage (especially for high values) on the contact and, consequently, on the injection rate, is
neglected. Therefore, the maximum current that a contact can provide |s (saturation current)
will then be given by Is=qrl".

In accordance with the nondegenerate character of contacts, the injection rate follows
a Poissonian statistics. Thus, the time between two consecutive electron injections tiy is
generated with a probability per unit time given by

P(tinj) = FeﬁnmJ . (5)

11



We note that the carrier number in the sample N(t) is a stochastic quantity. Electrons
are injected at x=0 and x=L into the active region of the structure following the above
fluctuating rate. When a carrier exits through any of the contacts it is canceled from the
simulation statistics, which accounts only for the carriers that are inside the active region at
the given time t. Thus N(t) fluctuates in time due to the random injection from the contacts
(and also to possible trapping-detrapping processes) and we can evaluate both the time-
averaged value (N) and its fluctuations N(t) = N(t) - (N).

Unless otherwise indicated, calculations in the case of nondegenerate contacts will
make use of the Poissonian-Maxwellian injection model previously described, which is
physically plausible under nondegenerate conditions. However, to analyze the influence of
the contact injecting statistics on the noise behavior, alternative models will also be used. In
particular, for the injected carriers we consider: (i) fixed velocity instead of Maxwellian
distribution and, (ii) uniform-in-time instead of Poissonian injection. In case (i) we take the

same injection rate " as in the basic model, but all carriers are injected with identical
x-velocity Vy =-/nksT/2m, which corresponds to the average velocity of the injected
electrons when they follow a Maxwellian distribution. In case (ii) carriers are injected into
the active region equally spaced in time at intervals of 1/T.

2.3.2. Degenerate contacts

In this case, electron injection must be consistent with Fermi statistics, and thus it is
necessary to consider the specific population of the different energy levels at the contacts

[92]. Due to the Pauli principle, the instantaneous occupancy of an incoming electron state
k = (k. Kk, k,) with energy ¢, = 7°k?® / 2m impinging on the boundary between an ideal
thermal reservoir and the active region fluctuates in time obeying a binomial distribution

[99,100] with a probability of success given by f (e, )= {L+exp[(ex —er)/keT]} " (With €
k
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the Fermi level at the contacts), which corresponds to the average occupancy of such state
according to the Fermi-Dirac distribution. This statistics is implemented in the MC
simulation of the contact injection by means of a discretization of k-space and the use of the
rejection technique [92].

Momentum space is divided into a grid of meshes with volume AkyAk,Ak, around
discrete values of k, with energy &« . For each of these meshes, the number of incoming
electron states per unit time with wave vector Kk is given by

Ex = OV AKAK,AK, = 1/(47%)(Biky / m) Ak AKyAK; (6)
where gk is the density of states in momentum space and vy the velocity component normal
to the boundary contact/active region. These incoming states have a probability of occupancy
f (ex) . In the simulation, at each time interval of duration 1/&x an attempt to introduce an
electron with wave vector k takes place. At this point a random number r uniformly
distributed between 0 and 1 is generated, and the attempt is considered successful only if
r < f(ex). This rejection-technique scheme properly accounts for the injection statistics at
each mesh in k-space [92]. As limiting cases, when e —er <<—kgT, f(ex)=1 and the

injection statistics of the corresponding Kk-state is uniform in time. On the contrary, when

e, —&€¢ >>KgT, f(g,)<<1 and the injection statistics is Poissonian.
For a completely degenerate reservoir, in every mesh of energy up to g an electron
is injected every time interval 1/&x, and there is no need of the rejection technique. This is

the case of the simple contact modeling used in [83]. For a nondegenerate reservoir, since

f(g,) <<1 for all k-states, it is possible (and more convenient from a computational point of

view) to use a global Poissonian statistics as that described previously, even if this general

injection model is also valid and generates exactly the same statistics.
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To show the validity of this injection scheme to describe the injection statistics from
nondegenerate to degenerate conditions, Fig. 5 shows the low-frequency value of the current
spectral density S (see section 2.6 for the details about its calculation) at equilibrium,
normalized to 2qls, as a function of the degeneracy factor e /kgT (with & measured with

respect to the bottom of the conduction band), in the case of a conductor one-dimensional in
momentum space and in the absence of Coulomb interaction. Is = qj: kW T (ex)dk is the

saturation current, i.e., the maximum current the contact can provide. In the classical limit,

corresponding to large negative values of the degeneracy factor, S =4qls. Here all carriers
contribute to the current noise and S is just the sum of the full shot noise related to the two
opposing currents |s injected by the contacts [101]. Under degenerate conditions,
corresponding to positive values of the degeneracy factor, S decreases with respect to 4qls

in accordance with the suppression factor kgT/er related to Fermi correlations at the
reservoirs [9,101]. Here, as known, only carriers around the Fermi level contribute to the
noise. As shown by the figure, the agreement between the results of the MC simulations and
the analytical expectations in the nondegenerate and degenerate limits is excellent, thus
indicating that the carrier injecting statistics achieved with the proposed model is valid in
both regimes. Moreover, this scheme is able to describe correctly degenerate conditions at

T = 0 and the crossover between classical and degenerate statistics.

Finally, we want to remark that in the models previously described we are assuming
that the doping of the contacts is so high as compared with that of active region that all the
built-in effects associated with the diffusion of carriers around the contacts take place
exclusively in the active region. As a consequence, the models are not fully consistent, since
the effects related to the possible fluctuations of the concentration at the contacts are not

taken into account. In any case we are mostly interested in the low-frequency region of the
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noise spectrum, and these effects are expected to appear at very high frequencies, beyond the

cutoff of shot noise.
2.4. Scattering mechanisms

Elastic and inelastic isotropic scattering mechanisms are introduced (separately) in the
simulation by means of a characteristic scattering time t. In the case of inelastic collisions,
the carrier is thermalized after each scattering event. Initially t will be considered as energy
independent, and its value will be appropriately varied (from 10" to 10™° s) to cover both the

ballistic and diffusive transport regimes. The transition between both regimes will be

characterized by the ratio between the carrier mean free path ¢ (estimated as wnt, with

Vin =+/2KsT /tm the carrier thermal velocity) and the sample length L, so that //L >>1 and

¢1L <<1 correspond to the ballistic and diffusive limits, respectively.

In a second step we will include the energy dependence of the scattering time in the
case of elastic collisions. To this end we take a power-law dependence of the type
t(e)=1,e* and perform calculations for values of o ranging between -2 and 3/2.
Appropriate values of t, must be chosen to ensure diffusive transport in the wide range of
electron energies found in the simulations and to make computer times affordable. Formally,
one can analyze any value of o [102], however, only some of the values considered here
correspond to real cases of elastic scattering mechanisms, like short-range impurity scattering
or scattering with acoustic phonons by deformation potential (o = —1/2), neutral impurities

(o =0), and acoustic piezoelectric phonons (o =1/2) [69,70,72,77].
2.5. Trapping-detrapping processes

In section 3.4 we will include the presence of electrons traps in the active region of a
structure that otherwise would be ballistic. We will consider that a single type of electron

traps, initially neutral and empty, at energy E, below the bottom of the conduction band is
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present in the active region. We use the following simplified model [103,104] for the
trapping-detrapping processes in order to detect plainly their influence on the noise. It is
assumed that the traps only interact with electrons in the conduction band. Two time
constants are involved in these processes: the recombination time t, (average free time of an
electron), and the generation time 14 (average captured time of an electron). These times are
respectively given by the expressions [105]: 1/t =wnS(N: — ), where s is the capture cross
section of the traps, N; the density of electron traps, and n; the density of trapped electrons;
and 1/t4 = voexp(—gE,/ksT), where v, is a vibration frequency. As long as n << N, and
N is uniform in the active region (as it is assumed in our model), t. can be considered to be
independent of the electron position. To evidence more clearly the associated effects on the
noise, as first approximation t, is also considered as energy independent [103]. Once a
carrier is captured, it remains trapped (with null velocity) until it is released, with its velocity
components randomly determined according to a Maxwellian distribution at the lattice
temperature. Traps become negatively charged when electrons are captured. The values of t,
and t4 considered in our calculations are t, =20 ps and t4 ranging between 1 and 7.5 ps.

These times, being short enough to bring about affordable computation times [104], are still

within the range of real values [105].
2.6. Noise calculation

In our analysis of shot noise we are mostly interested in calculating the Fano factor.

To this end, from the simulation we firstly evaluate the autocorrelation function of current

fluctuations, I (t) = 1 (t)—(1 ), which under stationary conditions is given by
Ci (t) = (81 (t')31 (t'+t)) . (7)

Fourier transformation of C, (t), provides the spectral density
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s(f)zzj_";c. (t)e'>™ dt . (8)

The Fano factor is then obtained as
Y=o (9)

Once a sufficiently long sequence of current values I(t) is obtained from the
simulation, the time average of the current <I> is determined and the current autocorrelation

function is easily calculated following Eq. (7). To clarify the role of different contributions to
the current noise we decompose the current autocorrelation function and the spectral density
into three main contributions as

CM=CM)+Ct)+Cn (), S(f)=S(f)+S(f)+Sn(f), (10)

respectively given by

Cv (t) = (a/ L)2(N)*(8v(t')v(t'+t)), (11a)
Cn () = (q/L)2(V) (SN (t)SN(t'+t)), (11b)
Cwn (1) = (a7 L)*(V)(N)(SV(t)SN (t'+t) + SN (t')dv(t'+t)) . (11c)

In the above equations C,(t) is associated with fluctuations in the mean carrier
velocity, Cy(t) with fluctuations in the carrier number, and Cy(t) with their cross

correlation [78,98].

To distinguish between the results obtained by using static and dynamic PS schemes,

we will denote the corresponding current spectral densities as S° and S°, respectively.
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3. RESULTS

In this section we present the results corresponding to the shot-noise analysis under

different transport regimes.
3.1. Ballistic regime

Initially we will consider the case when carriers move in the active region without

undergoing any scattering mechanism. In this regime, shot-noise suppression will be found.

3.1.1. Nondegenerate contacts

In this case the injection statistics is Poissonian, as described in section 2.3.1. Several
values of n. (and therefore several injection rates I') are considered. As n. increases, space-
charge effects become more and more relevant, the dimensionless parameter A being the
indicator of their importance. In particular, we have considered the following values of n. (in
cm’®, with the corresponding 2):10", A =0.15; 2x10", A =2.18; 10'°, A =4.88; 2.5x10",

A =7.72: 10", A =15.45; 4x10", A =30.90.
a. Satic characteristics

Figure 6 shows the electron concentration and potential profiles inside the active
region for several values of A under thermodynamic equilibrium conditions. As A increases,
the higher injection rate at the contacts leads to a larger carrier concentration inside the
sample and to a stronger nonuniformity of its spatial distribution, showing maximum values
at the contacts due to the electron injection and decaying toward the middle of the sample.
Accordingly, the potential profile exhibits a minimum in the middle of the active region of

amplitude U, that increases with A, thus evidencing the stronger influence of space charge.
For the highest value of A, U, reaches 4ksT /q. When a positive voltage U is applied to the

anode (contact 2 in Fig. 4), the minimum is displaced toward the cathode (contact 1) while its
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amplitude decreases, as shown in Fig. 7(a) for the case of A =30.9. Physically, this minimum
provides a potential barrier for the electrons moving between the contacts. The injected
electrons not having sufficient energy to pass over the barrier are reflected back to the
contacts. The mechanism of shot-noise suppression is based on the fact that the barrier height
and, as a consequence, the transmission through it, fluctuate with the passage of electrons and
modify the Poissonian statistics of the incoming carriers. Of course, the fluctuations of the
barrier are more important when strong space-charge effects are present (high 1).

The dependence of the current | on the applied voltage U for different values of A is

shown in Fig. 7(b). The current flowing through the diode reflects the evolution of U, with

U shown in Fig. 7(a). It consists of two opposite contributions | =17 —17, | ™ flowing from

the cathode to the anode and |~ in the opposite direction. Since the injected carriers follow a
Maxwellian distribution and move ballistically, the value of both currents depends

exponentially on the amplitude of the potential barrier that the electrons injected at each

contact find when moving towards the opposite one. For | ™ the amplitude is just U, and for
|~ is Un +U . Therefore

| " = Isexp[- qUm/keT], (12a)

1" = lsexp[-qUm+U)/ksT]. (12b)

As a result, while the presence of the minimum U, persists, the current increases practically

linearly with U, up to a certain value of the external bias U for which the barrier vanishes,

so that all the electrons injected at the cathode can reach the anode, the current saturates and

becomes independent of the bias. As A is increased, the barrier induced by the space charge is

more important, the current is lower and the saturation takes place for higher applied

voltages. In the case of A =0.15, when space-charge effects are negligible, the I-U curve
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corresponds exactly to that obtained in [106] within an approach where Coulomb correlations
are disregarded.

Figure 8 shows the profiles of the electron concentration n, carrier average energy
¢ and velocity v along the active region of the structure with A =30.9 for several values of U.
When a voltage is applied to the right contact, the symmetry of the carrier concentration
profile at equilibrium is clearly destroyed in order to ensure current conservation through the
sample. Accordingly, near the anode, where v reaches the highest values, n takes the lowest
ones. The extension of the region near the anode contact where the carrier concentration is
high and both the velocity and energy are low decreases at increasing applied voltages. In this
region, most of the carriers are thermal electrons proceeding from the right contact that are
reflected back to the anode by the opposite electric field. The greater the applied voltage, the
higher the opposite field and the shorter the distance they penetrate before being reflected.
When U is high and the potential barrier is near to disappear or just vanished [see Fig. 7(a),

U =40, 80 kT /q] the energy increases systematically along the sample up to a maximum

value close to qU near the anode contact, as expected from the ballistic transport inside the
sample.
We remark that all the results presented in this section are independent of the PS

scheme used for the calculations.
b. Shot-noise suppression

Once the static characteristics are analyzed, the shot-noise suppression effects can be
more easily understood. The difference between the results of the static and dynamic PS
schemes will evidence the influence of the dynamic fluctuations of the potential on the noise
characteristics of the structures. Firstly we will analyze which are the statistical properties of
the transmitted carriers to check if they are temporally correlated. To address this question we

register at the receiving contact the times of passage of electrons that were injected at the

20



cathode. These are the only electrons contributing to the low-frequency current noise once
quU >> kgT . With this procedure we are able to study how the carrier statistics imposed at
x=0 (in our case Poissonian) has been modified when reaching the anode. From the
different times of arrival registered, we calculate the distribution function R (t), which is the

probability of detecting n electrons during the observation time interval t. For a Poissonian

process all time occurrences are statistically independent, which leads to the simple formula
Pn(t)=(ret|)e‘re‘, n=0,1,2,.., (13)
nl

where T is the rate density of events. Distribution (13) is characteristic of uncorrelated
transport and is tested to correctly describe the carrier statistics at the injecting contact (at
x=0). The distribution of carriers at the receiving contact depends crucially on the PS
scheme (see Fig. 9, corresponding to U =40ksT/q and A =30.9). For the static PS R (t) is
perfectly fitted by the same Poissonian formula (13) as for the injected carriers, but with a
smaller value of the rate density I'. = xI", with k ~ 0.65. This reduction is caused by the part
of injected carriers that is reflected by the potential barrier back to the contact (in fact, the
current for the present applied voltage is | =«ls). In contrast, for the dynamic PS the
distribution function no longer obeys the formula (13), and becomes sub-Poissonian. The
following differences between the dynamic and static PS are observed: (i) for each n>1 the
maximum of the distribution is shifted to longer t; (ii) the probability distribution is
narrowed,; (iii) the higher the index n, the more the dynamic case deviates from the static one,
the distribution profiles becoming more symmetrical and closer to a Gaussian shape. We
remark that the difference at point (ii) can be interpreted as a motional squeezing of electron
number and corresponds to a higher regularization of the carrier passage due to correlations

among electrons.
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Let us investigate how this modification of the carrier passage statistics due to
Coulomb correlations affects the behavior of shot noise in the structures. Fig. 10 shows the
low-frequency value of the spectral density of current fluctuations S normalized to 2qls.
This normalization is performed in order to compare the results for different values of I"
(different nc and A). We provide the results for both the static and dynamic PS schemes. In

the static case, by increasing the applied voltage U we always obtain an excellent coincidence

with the well-known formula used to describe the crossover from thermal to shot noise when

carrier correlations play no role (represented in the figure by dashed lines) [2]:
S°=2q(1"+17)=2ql coth(qU / 2ksT) (14)

where | =1"—1" is the total current flowing through the diode, as previously explained.

This agreement supports the validity of the simulation scheme used for the calculations. For
guU << kgT, I" ~ 17, thermal noise is dominant and S’ ~ 4qlsexp[— qu/kBT]. Therefore,
for the lowest value of A (when space charge is negligible and U, - 0) S° — 4qls, while as
A increases U, becomes significant and S° decreases. When qU >kgT, 1" >>1", the
transition from thermal to shot noise takes place and S’ ~ 2ql *. And finally, for the highest
values of U >Ug, , saturation occurs, U ,, vanishes and S° ~ 2gs.

For the lowest values of A no difference between the dynamic and static cases is
obviously detected. However, for higher A, when space-charge effects become significant, the
picture is drastically different for the dynamic case. Starting from qU ~ k,T, S", instead of

increasing, decreases until the proximity of saturation, where it exhibits a minimum before

jumping to the saturation value. Under saturation, the results for both schemes coincide (no

barrier modulating the current) and full shot noise S'=S°=2qls is recovered. When

compared with the static case the noise suppression is stronger for higher A (more important

space-charge effects).
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This behavior of S is illustrated in Fig. 11, where the Fano factor vy is shown as a
function of U for different A. The sequence thermal noise (qU < ksT ), suppressed shot noise

(keT <qU < qUs ), full shot noise (U >Us ) behavior is clearly evidenced. The curves
corresponding to the different structures only differ in the suppressed shot noise range. For

the lowest values of A, when no suppression takes place, y=coth(qU /2kgT). Shot-noise

reduction becomes more pronounced and covers a wider range of voltages as A increases
(e.g., for A =30.9 it is y=0.045). Thus, the present self-consistent approach predicts values
of the Fano factor much lower than those of previous analytical models [107] where the
dependence of the potential minimum and its position on the applied voltage was not taken
into account. In principle, the value of y has no lower limit. By enlarging A, y can reach
values as low as desired. However, by increasing the device length (or the lattice
temperature) the carrier transport actually goes from ballistic to diffusive regime and the
action of Coulomb interaction on shot noise changes a lot, as we will see in section 3.2.
Moreover, when the carrier concentration at the contacts is increased, so that the electron gas
becomes degenerate, Fermi correlations between carriers act as an additive contribution to
shot-noise suppression, as we will show in the case of degenerate contacts.

To better understand the physical reason of shot-noise suppression in the present
ballistic structures, Fig. 12 reports the decomposition of S into the three additive
contributions S,, Sy and Sn [Egs. (11)] for A=7.72 and different values of U. Both Sy and
S vanish at equilibrium (U — 0), since they are proportional to <v>2 and (v) respectively,
and (v) — 0. Thus, for small biases (qU << kgT ) S ~S,, which means that the current
noise is thermal noise associated with velocity fluctuations and it is governed by the Nyquist

theorem S ~ 4ksTG, with G =(dl /dV),_, the static conductance. In this case the results for

the static [Fig. 12(a)] and dynamic [Fig. 12(b)] schemes evidently coincide. However,
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starting from qU ~ ksT the difference between the two schemes becomes relevant. For the
dynamic case, S is negative, while for the static case it is positive. Furthermore, for the
current fluctuations calculated using the self-consistent potential, S§ and Sj are of opposite

sign and compensate each other, so that S’ approximately follows S} as long as the current
is space-charge controlled. As a consequence, the current noise, which now corresponds to
shot noise, is considerably suppressed below the value 2gl given by the static case. This
result reflects the fact that as the carriers move through the active region, the dynamic
fluctuations of the electric field modulate the transmission through the potential minimum
and smooth out the current fluctuations imposed by the random injection at the contacts.
Therefore, the coupling between number and velocity fluctuations induced by the self-
consistent potential fluctuations is the main responsible, through Si, for the shot-noise
suppression. This velocity-number coupling becomes especially pronounced just before

current saturation (U ~ 7 ksT /q), when the potential minimum is close to vanish completely

(Um — 0) and the fluctuations of the potential barrier modulate the transmission of the most
populated states of injected carriers (the low-velocity states). Under saturation conditions
space-charge effects do not modulate the random injection (no potential minimum is present)
and again both dynamic and static cases provide the same additive contributions and total
noise (2qls).

The MC results shown in this section have motivated the development of analytical
theories able to explain them. Many of the low-frequency results reported here have been
reproduced and extended by general self-consistent theories in the works by Bulashenko et al.

[68,74], also for the case of non-Poissonian injection statistics [75].

c. Freguency dependence of noise
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One of the advantages of the MC technique is the possibility to investigate the time
and frequency (beyond low-frequency) dependence of current fluctuations, that we analyze
here in the case of ballistic transport in the presence of space charge. Figure 13 reports the
autocorrelation function of current fluctuations C, (t) and the corresponding spectral density
S (f) under thermal-equilibrium conditions at increasing values of A, thus evidencing the
influence of space-charge effects. These results are independent of the PS scheme used. For
low values of A, when U, is negligible, C,(t) recovers the typical dependence obtained
analytically for the ballistic case when Coulomb interaction is neglected [108,109]. At
increasing values of A, the shape of C, (t) changes and tends to exhibit a behavior determined
by two processes with different (short and long) characteristic times. The short time is related
to the injected carriers that are not able to pass the potential barrier and return back to the
contacts (returning carriers). Here, the greater the value of A, the higher the amplitude of
Um, and the shorter the characteristic returning time, as it is shown in Fig. 13(a). The long
characteristic time in C,(t) is associated with the passing carriers, whose longitudinal
velocity component is significantly reduced while crossing the barrier region. The difference
between these two times (and the fraction of reflected/transmitted carriers) becomes more
pronounced at high values of Un,. Accordingly, the slopes of C, (t) related to each time are
more easily identified at increasing values of A. The corresponding spectral densities [Fig.
13(b)] reflect the behavior of C,(t) previously described, by exhibiting higher cutoff
frequencies as A increases and characteristic structures in the cutoff region related to the
transit time through the sample.

To illustrate how the noise changes under far-from-equilibrium conditions, Fig. 14

shows C,(t) and S (f) calculated with the dynamic PS for the case of A =7.72 at several

voltages. Starting from the standard shape of equilibrium conditions, C, (t) tends to exhibit a
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triangular shape, more pronounced as the applied voltage increases. This triangular shape is
typical of a constant velocity emitter with all the electrons reaching the opposite contact
[101]. In our case, electrons are injected at the cathode with a velocity which is Maxwellian
distributed, but, due to the acceleration provided by the high electric field in the active region,
the transit time of all the carriers becomes practically the same, decreasing with the increase
of the applied voltage. The carriers injected at the anode immediately come back to the
contact and thus play only an insignificant role at the shortest times. In the spectral density it

can be observed that once saturation is reached (qU >8KkgT , see Fig. 10) S takes the same
value 2qls at low frequency for the different applied voltages, but the spectra after the cutoff

are distinguished by showing smoothed geometrical resonances at different characteristic

frequencies related to the corresponding transit times.

3.1.2. Degenerate contacts

In the case when contacts are degenerate, the injection is no longer Poissonian and
the occupation of the different energy levels at the contacts must be taken into account (see
section 2.3.2). Thus, a further noise reduction related to Fermi statistics is present [110]. To
illustrate this fact we will consider as first example a structure with L=100 nm and
ne =1.37x10% cm™ (e =15ksT ). These values lead to A=90.35, which implies a significant
action of space-charge effects in the structure.

The current-voltage (1 —U ) characteristic normalized to the saturation value 1 is
reported in Fig. 15. At the lowest voltages a linear behavior is found, while for high voltages
near saturation a superlinear behavior close to a U*?-dependence is observed (space-charge
limited conditions). The inset of Fig. 15 shows the potential profile along the structure for
different applied voltages, which exhibits the characteristic minimum decreasing in amplitude

and shifting towards the cathode as U increases. The amplitude of this minimum Uy, is
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reported in the main figure as a function of the applied voltage. For the values used here
Um =19.44ksT /g at equilibrium (U =0) and U, =0 for U > 2500 kgT /q.

When using the static PS, no correlation among carriers takes place in the active
region, and the only source of suppression is the Fermi statistics electrons obey at the

contacts. Once the value of U, is known from the simulation, the Fermi suppression factor
can be calculated analytically as yr = S°/2ql , with the low-frequency static current spectral

density S° and the current | given by

S =], Scle)dect[ | Selen) dex, (15)

| = j:v le(ex) dex — j:’ lc(ex) dex, (16)

(Vm+U)
where ¢, is the longitudinal energy, and lc(ex)dex and S.(ex)dex are, respectively, the

current associated with electrons injected between e, and e« + dex and the low-frequency

spectral density of its fluctuations, which are given by [76,84,110]

le(ex) = j f(ex+e)der (17)

2 2 3
I f (8x+8t)d8t

S.(ex) =2
(©)=2a,, jf(gx+gt)dat

. (18)

= 3j f(ex +&)[L— f (ex+ )] dec = 2q1c(ex)| 1

where ¢, is the transversal electron energy and f (g) = {1+ exp[(e —er)/ksT]}" the Fermi-
Dirac distribution. The suppression effect associated with Fermi correlations, which takes

place through the injecting statistics, is clearly observed in Fig. 16, which shows Ic(ex) and
S.(ex) as a function of &4. Carriers injected with &4 >> & obey Poissonian statistics and
exhibit full shot noise S.(ex)=2qlc(ex). By contrast, carriers injected with &x <<er
exhibit a significantly suppressed shot noise S. (ex) <2qlc(ex). Fig. 17 shows an excellent

agreement between theoretical and simulated values of ye. At low U, when qU <KgT,
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thermal noise is dominant and ye >1. For intermediate values of U, when kgT <qU and
qUm > &g, | is carried by Poissonian carriers with e« > ¢¢ at the tail of Fermi distribution
(low-occupation states) and thus yr =1. At higher U, when qUn < ¢, the contribution to |
of carriers injected with sub-Poissonian statistics (ex < ¢, high-occupation states) becomes
more and more important and, accordingly, yr decreases, until saturating for U >Ugx
(qUm=0) at a value yr = 2ksT /&¢ [76].

When using the dynamic PS, as carriers move through the active region the temporal
fluctuations of the electric field modulate the transmission over the potential minimum and

thus, in addition to Fermi suppression, a further noise reduction due to Coulomb correlations

takes place. Since the two suppression mechanisms are independent, the low-frequency
dynamic spectral density S’ can be expressed as S =y2ql = yeyc2ql , where y =vyeyc is
the total shot-noise suppression factor (or Fano factor) and yc the Coulomb suppression
factor. This factorization is reported in Fig. 17, both as a function of the applied voltage U
and the amplitude of the potential minimum U,,. At the lowest values of U, thermal noise is
dominant, and thus S"=S° and yc~1 (absence of Coulomb suppression). Then, at
increasing U, three different regimes of suppression are identified. The first regime
(keT <qU, qUm >er) is related only to Coulomb correlations (yr =1, yc <1); here | is due
to Poissonian carriers (with &4 >e€gr) which originate fluctuations of U, modulating the
passage of further electrons, thus leading to increasing Coulomb suppression. The second
regime (qUm < g¢ ) is related to both Coulomb and Fermi correlations (yr <1, yc <1). Here,
interestingly, yc tends to saturate while ye keeps decreasing with U. This is due to the fact
that, as U increases, the additional carriers contributing to the current come from the energy
region below &r (ex <er, characterized by sub-Poissonian statistics) and do not lead to

further significant fluctuations of Uy, . Finally, in the third regime (under current saturation)
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the suppression is constant and only due to Fermi correlations (yr = 2ksT /&r,yc =1). We
note the remarkable agreement between the results of the simulation and the analytical
expectations for the dependence of y on U for the intermediate (1.93ksT /gqU ) and highest
(ksT /qU ) values of U [76].

Within our model carriers at the contacts injected at different e4-levels are
uncorrelated. However electrons in the volume of the conductor are expected to be strongly
correlated by Coulomb interaction. To investigate this correlation, responsible for shot-noise
suppression, Fig. 18 reports the low-frequency value of the cross-correlation between current
fluctuations due to carriers injected with different €, at the left contact S (ex,&'x) for
U =1000 ksT /q. At this high value of the applied voltage (qU >> &r ) the average current |
and the low-frequency current spectral density S are given only by the contributions
coming from carriers injected at the left contact with & > qUnm. Thus, the fluctuating current

can be written as
1 (t) = j: L (ex,t)dex, (19)

where I (ex,t)dex is the instantaneous current due to carriers injected with €, at the left

contact. The fluctuations of the current are then given by
81(t)= [ 8l (ex,t)dex = | [l (@at) = T ()] dex (20)

with 1.(e,)de. the time-average value of I_(e.t)de,. The autocorrelation function of

current fluctuations can be calculated as

Ci(t)=81(t)s I (t+t) = jo L‘”& L(ex, 181 L(E'y, t+1) deyde's = j: j:c.L (ex,&',1) dexde's, (21)

with C,, (ex,€'x,t) the cross-correlation function between current fluctuations due to carriers

injected with energies e« and €'« at the left contact (quantity that can be readily calculated
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from the MC simulations), so that the low-frequency current spectral density can be
expressed as
S'=2[ Ci)dt=[ [ Si(exex) dexde’, (22)
with
S, (Ex,€'x) = 2f Ci. (ex, €5, 1) dt . (23)
Therefore, S, (ex,&'x) is the key quantity to evaluate Coulomb correlations between carriers

injected at different energies.

In the case of using the static PS carriers in the active region are uncorrelated and
thus S° (ex,e'x) = S (€'%)d(e'x—ex), with S.(ex) given by Eq. (18). However, with the
dynamic PS one obtains the correlations shown in Fig. 18. Carriers injected with &x > qUnm,
apart from the autocorrelation associated with their injecting statistics S, (&'x)d(e'x—¢x) , are
only (negatively) correlated with those electrons injected with &'y~ qUn,. This anticorrelation
is at the origin of the noise suppression (since it reduces the value of S"), and it is due to the
modulation of carrier transmission at e« ~ U, caused by the barrier fluctuations induced by
electrons passing over the barrier. Remarkably, carriers with € ~ qUn, are confirmed to be

strongly autocorrelated [74,111].
We must point out that the regimes of suppression reported in the previous case are

not always found. The behavior of yr and yc depends on the relative values of L/Lp. and
er I ksT [112]. Fig. 19 shows the different suppression factors as a function of U for a second
structure with L =50 nm, m=0.066m,, n. =5x10"" cm™ (er =5.08ksT/q), £€=12.55¢,
and T =77 K. For this set of parameters, one obtains that at equilibrium qUn~egr (in
contrast with the previous structure where qUn, > € ). As a consequence, Fermi suppression

is significant in the whole range of applied voltages (once qU > kgT ), and there is no regime
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like that of the previous case where yr =1. Here Coulomb suppression is less pronounced,

since the range of applied voltages for which the barrier persists is much shorter than in the
first example.

The noise properties of ballistic structures with degenerate contacts like those
investigated here have been analytically studied in [76] under the limit of “virtual cathode
approximation” (Un, <<U <Ug ), obtaining results similar to those of the MC simulations.
Only very recently a full theory, able to reproduce both the static and noise MC results in the

full range of applied voltages and level of degeneracy, has been developed [112].
3.2. Crossover ballistic-diffusive regime

In this section, elastic and inelastic (thermalizing) isotropic scattering mechanisms
are introduced (separately) in the simulations by means of an energy independent relaxation
time 7z, whose value is appropriately varied (from 10-11 to 10-15 s) to cover the transition from

ballistic to diffusive transport regimes. In this section all the results correspond to the case of
nondegenerate contacts and 1=30.9 (nc = 4x10" cm™).

Fig. 20 shows the low-frequency spectral density of current fluctuations S
normalized to 2qls as a function of ¢/L for an applied voltage U =40kgT /q, calculated
using static and dynamic PS schemes. The evolution of the current in terms of 2gl is also
shown. This evolution exhibits two limiting behaviors: a first one (¢/L >10™") of saturation
typical of ballistic or quasiballistic regime, and a second one (//L <107?) of linear decrease
at decreasing ¢/L typical of diffusive regime. Both in the elastic and inelastic cases S,
calculated with the static PS, coincides exactly with 2ql, thus revealing full shot-noise
conditions when the dynamic fluctuations of the potential are ignored. On the contrary, with
the dynamic PS, S" is systematically lower than 2ql , thus evidencing a suppression effect.

Here, in the ballistic limit elastic and inelastic cases present the same value, the suppression
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corresponding to that induced by the barrier fluctuations already reported in Figs. 10 and 11.
As the diffusive regime is approached, the suppression remains active, more pronounced in
the inelastic case, being related to the joint action of the Coulomb repulsion and the presence
of scattering.

In Fig. 21 the Fano factor y calculated with the dynamic potential is shown as a
function of ¢/L for several values of the applied voltage. The reason for the different
behavior found between the different curves in the ballistic limit is the presence or absence of
the potential barrier related to the space charge. As compared with 40 ksT /q, when the
barrier is still present and the suppression is important (y = 0.045), for the highest voltages
(80 and 100 kgT /q) the barrier has already disappeared, the current is saturated and the Fano
factor takes on the full shot-noise level. In the elastic case, when the diffusive regime is
achieved y remains constant with //L and takes the same value of about 1/3 for all the
applied voltages. On the contrary, in the inelastic case the higher the applied voltage, the
lower the value of y reached in the diffusive regime. Remarkably, when the ballistic regime is
abandoned the value of ¢/L at which vy starts decreasing is the same in the elastic and

inelastic cases for a given applied voltage (//L~ 0.3 and 0.1, for 80 and 100 kgT/q,

respectively). However, when the diffusive regime is approached, for y to become constant a
lower value of //L must be reached in the inelastic case with respect to the elastic one. This
behavior can be explained in terms of the different elastic and inelastic scattering intensity
required by the electron system to achieve a significant energy equipartition into the three
directions of momentum space [91].

To check the influence of the contact injection on the evolution of the Fano factor

with ¢/L, Fig. 22 shows vy as a function of // L for an applied voltage of 40 ksT /q and the

four different contact models resulting from combining Poissonian/uniform injection
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statistics and Maxwellian/fixed-velocity distribution of the injected carriers, as explained in
section 2.3.1. The Poissonian-Maxwellian injection scheme is that typically used, and the
only one physically plausible for nondegenerate contacts. As expected, in the ballistic case,
when carrier transport in the structure is deterministic, the Fano factor crucially depends on
the contact-injection model. For example, in the case of the uniform-fixed velocity contact,
when the injection introduces no noise in the current flux, the Fano factor decreases
drastically with the increase of ¢/ L, since the noise tends to vanish in the absence of
scattering mechanisms. The noise does not vanish completely since, unless ¢//L — oo, there
is always some probability of undergoing a scattering event. In this limit, when the noise is
produced just by a few scattering events, it is clearly observed that elastic interactions lead to
more important current fluctuations than inelastic mechanisms. By approaching the perfect
diffusive regime the Fano factor is found to be independent of the model used. In diffusive
regime, the results obtained with the four contact models are the same. This leads to the
important conclusion that the noise in the diffusive regime (and particularly the 1/3 Fano
factor obtained in the elastic-diffusive case) is independent of the carrier injecting statistics,
and it is only determined by the effect of scattering mechanisms (jointly with Coulomb

interaction).
3.3. Diffusive regime

In this section we consider scattering times short enough to ensure a diffusive

transport regime (¢/L <3x107%). Contacts are nondegenerate and 1=30.9 (unless indicated).

3.3.1. Energy-independent scattering time

Initially we consider that the scattering time does not depend on energy, as in the
previous section. Fig. 23 shows the dependence of the Fano factor y on the applied voltage U

in both the elastic and inelastic cases calculated with the dynamic PS. In the inelastic case,
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due to the strong thermalizing action of scattering, the noise is just thermal Nyquist noise at
any bias and, as a consequence, y decreases systematically as the current increases (higher U).
In the elastic case, at the lowest voltages the thermal behavior is recovered; however, at the
highest voltages, when the velocity distribution exhibits a strong deviation from equilibrium
[91], the level of noise increases, its ratio with the current remaining constant and providing a
value of 1/3 for the Fano factor y. We remark that this result is only obtained with the
dynamic PS. In the absence of Coulomb correlations (static PS), full shot noise is obtained

for qU > kgT , which in the inelastic case confirms that inelastic scattering alone (without the

action of Coulomb interaction) is not enough to suppress shot noise [56].

The 1/3 suppression factor found in the elastic case for qU >> k,T coincides with
the value obtained in degenerate elastic conductors by very different theoretical approaches,
going from the quantum-phase-coherent model of Beenakker and Bittiker [16] to the
semiclassical degenerate models of Nagaev [17] and de Jong and Beenakker [20]. In all these
cases degenerate conditions are assumed, and the noise reduction comes from the regulation
of electron motion by the Pauli exclusion principle. However, in our calculations neither
phase-coherence nor Fermi statistics are n