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1. INTRODUCTION 

Macroscopic conductors and devices, where inelastic scattering is dominant, exhibit 

levels of noise close to the thermal value. In contrast, mesoscopic structures, with active 

lengths L much shorter than the characteristic length of inelastic scattering inell  ( inelL l<< ), 

are known to display shot noise.  

Shot noise is caused by the randomness in the flux of carriers crossing the active 

region of a given device, and it is associated with the discreteness of the electric charge that 

carries the current [1-5]. At low frequency (small compared to the inverse of the transit time 

through the active region, Tf τ<< /1 , but sufficiently high to avoid f/1  contributions), the 

power spectral density of shot noise is given by qISI 2γ= , where I is the dc current, q the 

elementary quantum of charge determining I and 0≥γ  a numerical factor called Fano factor. 

 In the absence of correlation between current pulses 1=γ , carriers exhibit Poissonian 

statistics, and this case corresponds to full shot noise. Full shot noise was originally described 

by Schottky [4] for vacuum diodes under current saturation conditions, when all electrons 

emitted by the cathode reach the anode and there is no charge accumulated in front of the 

cathode. 

1.1. Shot-noise suppression and enhancement 

Deviations from the previous ideal case constitute a signature of existing 

correlations between different current pulses. Negative correlations between carriers reduce 

the shot-noise level leading to suppressed shot noise with 1<γ  (sub-Poissonian carrier 

statistics), while positive correlations increase the noise and give rise to enhanced shot noise 

with 1>γ  (super-Poissonian carrier statistics).  

In this way, the Fano factor can provide very valuable information about the carrier 

kinetics and existing correlations inside the devices [5]. For this reason, and with the advent 
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of mesoscopic conductors in recent years, the analysis of shot noise is attracting increasing 

attention from both theoretical and experimental points of view [6,7]. In particular, being a 

signature of correlations among particles, the phenomena of suppression and enhancement 

have emerged as a subject of relevant interest. 

The suppression has been predicted theoretically as a consequence of Pauli 

exclusion principle under strongly degenerate conditions in very different situations by using 

both phase coherent [8,9] and semiclassical models [3]. In the ballistic regime, shot noise is 

completely suppressed [10,11] due to the non-fluctuating occupation number of incoming 

states. In a point contact, a peak in the noise is predicted in between the conductance plateaus 

[11]. In symmetric double-barrier junctions, a 1/2 Fano factor has been theoretically 

explained by different authors [12-15]. In the case of elastic diffusive conductors, a 1/3 

reduction of the noise has been calculated for noninteracting electrons [16-24], while in the 

case of strong electron-electron scattering the value of the Fano factor is 4/3  [25,26]. 

Finally, when devices become macroscopic and inelastic processes are present, like scattering 

with phonons, the noise is expected to reduce to the thermal value [27,28]. 

Shot-noise enhancement, though less explored, have also been predicted. So far, 

apart from Andreev reflections [29-32], the only mechanism found to be responsible for shot-

noise enhancement is the positive feedback between Coulomb interaction and tunneling 

probability, as evidenced in structures controlled by tunneling, like double-barrier resonant 

tunneling diodes [33,34] and single-barrier structures [35-37]. 

Remarkably, many of these predictions have been experimentally confirmed 

[38-53], thus opening new and interesting perspectives. Within this scenario, the 

understanding of the physical mechanisms originating shot noise and its 

suppression/enhancement in mesoscopic conductors, and more generally in 

small-dimensional devices, is a field of key importance.  
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Most of the theoretical works carried out so far consider degenerate conductors, 

where the Pauli exclusion principle plays a major role, and neglect long-range Coulomb 

interaction among carriers. The influence of this interaction is known to be relevant to the 

noise reduction since the times of vacuum tubes [54,55], and its possible role in the case of 

mesoscopic samples [56] was repeatedly claimed by Landauer [57-60]. Only recently some 

works include explicitly long-range Coulomb interaction. In the case of degenerate 

conductors [61,62], its influence on the high-frequency spectrum of shot noise has been 

widely analyzed [63-67]. In the case of nondegenerate conductors, and mainly motivated by 

previous results of Monte Carlo (MC) simulations, some theoretical works including 

Coulomb correlation as an essential mechanism for shot-noise suppression/enhancement have 

also recently appeared [68-77]. However, the inclusion of self-consistency (long-range 

Coulomb interaction) in the theoretical approaches is usually a cumbersome and complex 

problem, only solvable in very specific cases. 

It is here where MC calculations can be extremely useful. By coupling a simulator of 

carrier transport with a Poisson solver (PS), the MC technique is especially suitable to 

investigate the influence of Coulomb correlations on shot noise in mesoscopic structures. The 

scattering mechanisms and interactions, as well as the fluctuations of the self-consistent 

potential, are intrinsically accounted for by this approach. It can analyze different voltage-

bias conditions, ranging from thermal equilibrium to high electric fields necessary for shot 

noise to appear, without the difficulties that other methods meet. In addition, it has the 

advantage that it provides a full temporal (and frequency) description of noise by means of 

the direct calculation of correlation functions (and spectral densities by Fourier 

transformation) of current fluctuations [78]. 
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1.2. Monte Carlo simulations of noise in mesoscopic structures 

In the field of mesoscopic shot noise, the MC technique has been successfully 

applied in recent years for the investigation of shot-noise suppression and enhancement due 

to the joint action of Coulomb interaction and other mechanisms controlling transport in the 

structures under analysis. Typically, semiclassical models are considered, like those used to 

analyze heterostructure tunnel-barrier diodes [35,79-82], and (ballistic and diffusive) 

degenerate [83-85] and nondegenerate homogenous structures [86-96]. Just very recently, a 

first attempt to analyze shot noise with a MC technique using a phase coherent model has 

been developed and applied to the case of single tunnel-barrier diodes [97]. Let us briefly 

indicate the main achievements accomplished by using semiclassical models. 

Liu et al. [83], by using a simple model, analyze the case of completely degenerate 

elastic diffusive conductors. They reproduce the 1/3 Fano factor predicted theoretically, 

which appears as a result of the redistribution of electrons in energy by random scattering 

subject to the Pauli exclusion principle. However, this work ignores Coulomb interaction. 

By using self-consistent simulations, Reklaitis and Reggiani have analyzed 

suppression and enhancement of shot noise in GaAs/AlGaAs heterostructure tunnel-barrier 

diodes [35,79-82]. In this case transport is controlled by tunneling, which, jointly with 

Coulomb interaction between carriers, is responsible for the different effects observed in the 

shot-noise behavior. As an example of the type of results that this analysis provides, Fig. 1 

shows the Fano factor for the case of one- to four-barrier nonresonant heterostructure diodes 

with two different contact dopings [82]. A significant shot-noise suppression is found (more 

pronounced in the case of the low-doped contact), with the Fano factor found to reduce 

systematically by increasing the number of barriers, besides exhibiting a significant voltage 

dependence. The presence of inelastic scattering through optical-phonon emission combined 

with tunneling is the key element to explain the suppression mechanism. Shot-noise 
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enhancement can also be found in these type of heterostructure diodes. Reklaitis and 

Reggiani propose a mechanism of enhancement for the case a single-barrier heterostructure, 

like that shown in Fig. 2, based on the positive feedback between (strong-enough) space 

charge and the energy dependence of single electron tunneling probability, which leads to a 

super-Poissonian pulse distribution [35]. This is illustrated in Fig. 3, where the Fano factor is 

found to increase with the applied voltage, reaching values as high as 7 for appropriate 

biasing conditions, for then decreasing at the highest voltages when the barrier becomes 

transparent. Remarkably, when Coulomb interaction is frozen (space-charge effects are 

neglected) no enhancement is observed and full shot noise is always found. 

In this review chapter we will focus on the calculations performed by our group in 

the University of Salamanca (Spain) for the case of homogeneous structures in the presence 

of space charge under different transport regimes [84-96]. Thus, the case of ballistic 

transport, both for nondegenerate and degenerate injection, will be initially analyzed 

[84-86,88,90,92]. We will after include the presence of scattering (both elastic and inelastic) 

to study the crossover from ballistic to diffusive regime [87,89,91]. The diffusive regime with 

several energy dependences of the scattering time will be subsequently investigated 

[89,91,93,94]. In all the previous regimes, mainly shot-noise suppression of different 

intensity is found. To finish, we will address a regime where an increase of the noise is 

predicted, even reaching enhanced shot noise: quasiballistic transport in the presence of 

electron traps [96]. 

We must remark here that the results on shot noise obtained by MC simulations have 

motivated the development of several analytical theories trying to explain them 

[68-70,72,74,76,77]. In some sense, MC calculations have played the role of numerical 

experiments needing a physical analytical interpretation, thus leading to the advance of basic 

theory in the field of mesoscopic shot noise.  
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2. PHYSICAL MODEL 

In this section we describe the type of structures where shot noise is analyzed, the 

physical model used in the simulations to include all the different mechanisms controlling 

transport, and the procedures for the noise calculation.  

2.1. Simulated structure 

 As prototype for our analysis we consider the simple structure shown in Fig. 4, 

formed of a lightly-doped semiconductor active region of length L sandwiched between two 

heavily-doped contacts (of the same semiconductor) which act as thermal reservoirs by 

injecting carriers, with appropriate statistics, into the active region. The structure is assumed 

to be sufficiently thick in transversal directions to allow a one-dimensional electrostatic 

treatment. The doping of the contacts nc is always taken to be much higher than that of the 

active region ND. Hence, when a voltage U is applied to the structure, all the potential drop is 

assumed to take place inside the active region between positions x = 0 and x L= . The 

contacts are considered to remain always at thermal equilibrium. Scattering mechanisms and 

trapping-detrapping processes will be considered in the active region following the models 

described in next subsections. 

2.2. Monte Carlo method 

 The transport analysis is carried out by simulating the carrier dynamics only in the 

active region of the structure. The influence of the contacts is included in the simulation by 

means of a stochastic injection rate taking place at positions x = 0 and x L= , whose statistics 

depends on the degenerate or nondegenerate character of contacts. Under the action of a dc 

applied voltage U, the carrier dynamics is simulated by an ensemble MC technique 

self-consistently coupled with a PS [98]. The simulation is one-dimensional in real space (the 
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Poisson equation is solved only in the direction of the applied voltage) and three-dimensional 

in momentum space (unless otherwise indicated).  

The carriers move inside the active region according to the classical equations of 

motion with a constant effective mass. Under the condition of a constant applied voltage 

between the contacts, the instantaneous current in a one-dimensional structure is given by 

[78]: 

 ∑
=

=
)(

1
)()(

tN

i
i tv

L
qtI  (1) 

where )(tN  is the number of particles inside the structure and )(tvi  the velocity component 

of the i-th particle along the field direction. It must be stressed that, although not explicitly 

appearing in Eq. (1), the displacement current is implicitly taken into account by constant 

voltage conditions [78]. 

To better analyze the importance of Coulomb correlations we provide the results for 

two different simulation schemes. The first one involves a dynamic PS, which means that any 

fluctuation of space charge due to the random injection from the contacts causes a 

redistribution of the potential, which is self-consistently updated by solving the Poisson 

equation at each time step during the simulation to account for the fluctuations associated 

with the long-range Coulomb interaction. The second scheme uses a static PS that calculates 

only the stationary potential profile; i.e., once the steady state is reached, the PS is switched 

off, so that carriers move in a frozen non-fluctuating electric field profile. Both schemes are 

checked to give exactly the same steady-state spatial distributions and total current, but the 

noise characteristics and the statistical distributions of transmitted carriers are different. Of 

course, the PS scheme that is physically correct is the dynamic one. The static case is just 

used to evaluate quantitatively the influence of the self-consistent potential fluctuations on 

the total noise. 
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For the calculations we have typically considered a structure where L=200 nm, 

 300=T K, 025.0 mm =  and 11.7=ε  (relative dielectric constant). Several values of contact 

doping cn  (and therefore several injection rates Γ), from 1013  to 17104×  cm-3 in the 

nondegenerate case and higher in the degenerate case ( 201037.1 ×  cm-3), will be analyzed, 

thus leading to different levels of space-charge effects inside the active region. These effects 

will be characterized by the dimensionless parameter DcLL /=λ , with LDc  the Debye length 

associated with the carrier concentration at the contacts [88]. Accordingly, λ will vary from 

very low values (0.15 for nc = 1013 cm-3), for which space-charge effects are negligible, to 

high values (30.9 for 17104×=cn  cm-3, and 90.95 for =cn 201037.1 ×  cm-3 and L=100 nm), 

which imply a significant action of electrostatic screening. 

Typically, 100 to 200 cells in real space are used to solve the Poisson equation. The 

time step is always lower than 2 fs, its value depending on the time scale of the mechanism 

with shortest characteristic time among those involved in the transport properties of the 

structures (scattering time, transit time, dielectric relaxation time, etc.). The average number 

of simulated particles in the active region depends on the working conditions and statistical 

resolution required in the calculations; it may range between 100 and 20000 particles. As test 

of numerical reliability, we systematically check that by reducing the time step, or by 

increasing the number of meshes and carriers, the results remain the same. 

2.3. Contact modeling 

 The modeling of contacts is crucial in the analysis of shot noise in mesoscopic 

devices, especially in the case when the carrier motion in the active region of the structures is 

ballistic, and the noise originates from carrier injection. To provide a complete model for the 

contact injection taking place in our structures at positions x = 0 and x L=  (see Fig. 4), and 

define the associated sources of randomness in the carrier flux, we have to specify the 
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velocity (or momentum) distribution of the injected carriers )(vinjf , the injection rate Γ and 

its statistical properties. These features of the contacts are different depending on their 

nondegenerate or degenerate character. 

2.3.1. Nondegenerate contacts 

 Let us consider the process of electron injection from contact 1 into the active region 

at x = 0 (see Fig. 4). According to the equilibrium and nondegenerate conditions at the 

contacts, the injected carriers follow a Maxwellian distribution weighted by the velocity 

component xv  normal to the surface of the contact 

 )()( vv MBxinj fvf = , (2) 

where )(vMBf  is the Maxwell-Boltzmann distribution at the lattice temperature. The injection 

rate Γ, i.e., the number of carriers that are entering the sample per unit time, is given by 

 Svnc +=Γ , (3) 

where S is the cross-sectional area of the device, and 

 
m
Tkdvdvdvfv B

zyxinj
π

== ∫ ∫ ∫
∞ ∞

∞−

∞

∞−
+

2
)(

0
v . (4) 

This injection rate is considered to be independent of the applied voltage. Due to the very 

high value of cn  as compared with the sample doping, any possible influence of the applied 

voltage (especially for high values) on the contact and, consequently, on the injection rate, is 

neglected. Therefore, the maximum current that a contact can provide SI  (saturation current) 

will then be given by Γ= qIS . 

In accordance with the nondegenerate character of contacts, the injection rate follows 

a Poissonian statistics. Thus, the time between two consecutive electron injections injt  is 

generated with a probability per unit time given by 

 injt
inj etP Γ−Γ=)( . (5) 
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We note that the carrier number in the sample )(tN  is a stochastic quantity. Electrons 

are injected at x = 0 and x L=  into the active region of the structure following the above 

fluctuating rate. When a carrier exits through any of the contacts it is canceled from the 

simulation statistics, which accounts only for the carriers that are inside the active region at 

the given time t. Thus )(tN  fluctuates in time due to the random injection from the contacts 

(and also to possible trapping-detrapping processes) and we can evaluate both the time-

averaged value N  and its fluctuations NtNtN −=δ )()( . 

Unless otherwise indicated, calculations in the case of nondegenerate contacts will 

make use of the Poissonian-Maxwellian injection model previously described, which is 

physically plausible under nondegenerate conditions. However, to analyze the influence of 

the contact injecting statistics on the noise behavior, alternative models will also be used. In 

particular, for the injected carriers we consider: (i) fixed velocity instead of Maxwellian 

distribution and, (ii) uniform-in-time instead of Poissonian injection. In case (i) we take the 

same injection rate Γ as in the basic model, but all carriers are injected with identical 

x-velocity mTkv Bx 2/π= , which corresponds to the average velocity of the injected 

electrons when they follow a Maxwellian distribution. In case (ii) carriers are injected into 

the active region equally spaced in time at intervals of Γ/1 . 

2.3.2. Degenerate contacts 

 In this case, electron injection must be consistent with Fermi statistics, and thus it is 

necessary to consider the specific population of the different energy levels at the contacts 

[92]. Due to the Pauli principle, the instantaneous occupancy of an incoming electron state 

k = ( , , )k k kx y z  with energy εk k= h2 2 2/ m  impinging on the boundary between an ideal 

thermal reservoir and the active region fluctuates in time obeying a binomial distribution 

[99,100] with a probability of success given by f ( )εk = 1]}/)exp[(1{ −ε−ε+ TkBFk  (with Fε  
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the Fermi level at the contacts), which corresponds to the average occupancy of such state 

according to the Fermi-Dirac distribution. This statistics is implemented in the MC 

simulation of the contact injection by means of a discretization of k-space and the use of the 

rejection technique [92].  

Momentum space is divided into a grid of meshes with volume zyx kkk ΔΔΔ  around 

discrete values of k, with energy kε . For each of these meshes, the number of incoming 

electron states per unit time with wave vector k is given by 

  =ξk =ΔΔΔ zyxx kkkvg kk zyxx kkkmk ΔΔΔπ )/)(4/(1 3 h , (6) 

 where kg  is the density of states in momentum space and kxv  the velocity component normal 

to the boundary contact/active region. These incoming states have a probability of occupancy 

)( kεf . In the simulation, at each time interval of duration kξ/1  an attempt to introduce an 

electron with wave vector k takes place. At this point a random number r uniformly 

distributed between 0 and 1 is generated, and the attempt is considered successful only if 

)( kε< fr . This rejection-technique scheme properly accounts for the injection statistics at 

each mesh in k-space [92]. As limiting cases, when TkBF −<<ε−εk , 1)( ≅εkf  and the 

injection statistics of the corresponding k-state is uniform in time. On the contrary, when 

ε εk − >>F Bk T , f ( )εk << 1 and the injection statistics is Poissonian. 

For a completely degenerate reservoir, in every mesh of energy up to Fε  an electron 

is injected every time interval kξ/1 , and there is no need of the rejection technique. This is 

the case of the simple contact modeling used in [83]. For a nondegenerate reservoir, since 

f ( )εk << 1 for all k-states, it is possible (and more convenient from a computational point of 

view) to use a global Poissonian statistics as that described previously, even if this general 

injection model is also valid and generates exactly the same statistics. 
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To show the validity of this injection scheme to describe the injection statistics from 

nondegenerate to degenerate conditions, Fig. 5 shows the low-frequency value of the current 

spectral density IS  (see section 2.6 for the details about its calculation) at equilibrium, 

normalized to SqI2 , as a function of the degeneracy factor TkBF /ε  (with Fε  measured with 

respect to the bottom of the conduction band), in the case of a conductor one-dimensional in 

momentum space and in the absence of Coulomb interaction. ∫
∞

ε=
0

d)( kfvgqI kkkS  is the 

saturation current, i.e., the maximum current the contact can provide. In the classical limit, 

corresponding to large negative values of the degeneracy factor, SI qIS 4= . Here all carriers 

contribute to the current noise and IS  is just the sum of the full shot noise related to the two 

opposing currents SI  injected by the contacts [101]. Under degenerate conditions, 

corresponding to positive values of the degeneracy factor, IS  decreases with respect to SqI4  

in accordance with the suppression factor FBTk ε/  related to Fermi correlations at the 

reservoirs [9,101]. Here, as known, only carriers around the Fermi level contribute to the 

noise. As shown by the figure, the agreement between the results of the MC simulations and 

the analytical expectations in the nondegenerate and degenerate limits is excellent, thus 

indicating that the carrier injecting statistics achieved with the proposed model is valid in 

both regimes. Moreover, this scheme is able to describe correctly degenerate conditions at 

0≠T  and the crossover between classical and degenerate statistics. 

 Finally, we want to remark that in the models previously described we are assuming 

that the doping of the contacts is so high as compared with that of active region that all the 

built-in effects associated with the diffusion of carriers around the contacts take place 

exclusively in the active region. As a consequence, the models are not fully consistent, since 

the effects related to the possible fluctuations of the concentration at the contacts are not 

taken into account. In any case we are mostly interested in the low-frequency region of the 
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noise spectrum, and these effects are expected to appear at very high frequencies, beyond the 

cutoff of shot noise. 

2.4. Scattering mechanisms 

 Elastic and inelastic isotropic scattering mechanisms are introduced (separately) in the 

simulation by means of a characteristic scattering time τ . In the case of inelastic collisions, 

the carrier is thermalized after each scattering event. Initially τ  will be considered as energy 

independent, and its value will be appropriately varied (from 10-11 to 10-15 s) to cover both the 

ballistic and diffusive transport regimes. The transition between both regimes will be 

characterized by the ratio between the carrier mean free path l (estimated as τthv , with 

mTkv Bth π= /2  the carrier thermal velocity) and the sample length L, so that 1/ >>Ll  and  

1/ <<Ll  correspond to the ballistic and diffusive limits, respectively. 

 In a second step we will include the energy dependence of the scattering time in the 

case of elastic collisions. To this end we take a power-law dependence of the type 

τ ε τ εα( ) = 0  and perform calculations for values of α  ranging between –2 and 3/2. 

Appropriate values of τ0  must be chosen to ensure diffusive transport in the wide range of 

electron energies found in the simulations and to make computer times affordable. Formally, 

one can analyze any value of α  [102], however, only some of the values considered here 

correspond to real cases of elastic scattering mechanisms, like short-range impurity scattering 

or scattering with acoustic phonons by deformation potential ( α = −1 2/ ), neutral impurities 

( α = 0 ), and acoustic piezoelectric phonons (α = 1 2/ ) [69,70,72,77]. 

2.5. Trapping-detrapping processes 

 In section 3.4 we will include the presence of electrons traps in the active region of a 

structure that otherwise would be ballistic. We will consider that a single type of electron 

traps, initially neutral and empty, at energy nE  below the bottom of the conduction band is 
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present in the active region. We use the following simplified model [103,104] for the 

trapping-detrapping processes in order to detect plainly their influence on the noise. It is 

assumed that the traps only interact with electrons in the conduction band. Two time 

constants are involved in these processes: the recombination time rτ  (average free time of an 

electron), and the generation time gτ  (average captured time of an electron). These times are 

respectively given by the expressions [105]: )(/1 ttthr nNsv −=τ , where s is the capture cross 

section of the traps, tN  the density of electron traps, and tn  the density of trapped electrons; 

and )/exp(/1 0 TkqE Bng −υ=τ , where 0υ  is a vibration frequency. As long as tt Nn << , and 

tN  is uniform in the active region (as it is assumed in our model), rτ  can be considered to be 

independent of the electron position. To evidence more clearly the associated effects on the 

noise, as first approximation rτ  is also considered as energy independent [103]. Once a 

carrier is captured, it remains trapped (with null velocity) until it is released, with its velocity 

components randomly determined according to a Maxwellian distribution at the lattice 

temperature. Traps become negatively charged when electrons are captured. The values of rτ  

and gτ  considered in our calculations are rτ =20 ps and gτ  ranging between 1 and 7.5 ps. 

These times, being short enough to bring about affordable computation times [104], are still 

within the range of real values [105]. 

2.6. Noise calculation 

 In our analysis of shot noise we are mostly interested in calculating the Fano factor. 

To this end, from the simulation we firstly evaluate the autocorrelation function of current 

fluctuations, ItItI −=δ )()( , which under stationary conditions is given by 

 )'()'()( ttItItCI +δδ= . (7) 

Fourier transformation of )(tCI , provides the spectral density 
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 ∫
∞

∞−

π= dttCfS fti
II

2e)(2)( . (8) 

The Fano factor is then obtained as 

 
qI
SI

2
=γ . (9) 

Once a sufficiently long sequence of current values )(tI  is obtained from the 

simulation, the time average of the current I  is determined and the current autocorrelation 

function is easily calculated following Eq. (7). To clarify the role of different contributions to 

the current noise we decompose the current autocorrelation function and the spectral density 

into three main contributions as  

 )()()()( tCtCtCtC VNNVI ++= ,    )()()()( fSfSfSfS VNNVI ++= , (10) 

respectively given by 

 )'()'()/()( 22 ttvtvNLqtCV +δδ= , (11a) 

 )'()'()/()( 22 ttNtNvLqtCN +δδ= , (11b) 

 )'()'()'()'()/()( 2 ttvtNttNtvNvLqtCVN +δδ++δδ= . (11c) 

In the above equations )(tCV  is associated with fluctuations in the mean carrier 

velocity, )(tCN  with fluctuations in the carrier number, and )(tCVN  with their cross 

correlation [78,98].  

To distinguish between the results obtained by using static and dynamic PS schemes, 

we will denote the corresponding current spectral densities as s
IS  and d

IS , respectively. 
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3. RESULTS 

In this section we present the results corresponding to the shot-noise analysis under 

different transport regimes.  

3.1. Ballistic regime 

Initially we will consider the case when carriers move in the active region without 

undergoing any scattering mechanism. In this regime, shot-noise suppression will be found. 

3.1.1. Nondegenerate contacts 

 In this case the injection statistics is Poissonian, as described in section 2.3.1. Several 

values of cn  (and therefore several injection rates Γ) are considered. As cn  increases, space-

charge effects become more and more relevant, the dimensionless parameter λ being the 

indicator of their importance. In particular, we have considered the following values of cn  (in 

cm-3, with the corresponding λ): 1310 , =λ 0.15; 15102× , =λ 2.18; 1610 , =λ 4.88; 16105.2 × , 

=λ 7.72; 1710 , =λ 15.45; 17104× , =λ 30.90.  

a. Static characteristics  

Figure 6 shows the electron concentration and potential profiles inside the active 

region for several values of λ under thermodynamic equilibrium conditions. As λ increases, 

the higher injection rate at the contacts leads to a larger carrier concentration inside the 

sample and to a stronger nonuniformity of its spatial distribution, showing maximum values 

at the contacts due to the electron injection and decaying toward the middle of the sample. 

Accordingly, the potential profile exhibits a minimum in the middle of the active region of 

amplitude mU  that increases with λ, thus evidencing the stronger influence of space charge. 

For the highest value of λ, mU  reaches 4 qTkB / . When a positive voltage U is applied to the 

anode (contact 2 in Fig. 4), the minimum is displaced toward the cathode (contact 1) while its 
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amplitude decreases, as shown in Fig. 7(a) for the case of =λ 30.9. Physically, this minimum 

provides a potential barrier for the electrons moving between the contacts. The injected 

electrons not having sufficient energy to pass over the barrier are reflected back to the 

contacts. The mechanism of shot-noise suppression is based on the fact that the barrier height 

and, as a consequence, the transmission through it, fluctuate with the passage of electrons and 

modify the Poissonian statistics of the incoming carriers. Of course, the fluctuations of the 

barrier are more important when strong space-charge effects are present (high λ). 

The dependence of the current I on the applied voltage U for different values of λ is 

shown in Fig. 7(b). The current flowing through the diode reflects the evolution of mU  with 

U shown in Fig. 7(a). It consists of two opposite contributions −+ −= III , +I  flowing from 

the cathode to the anode and −I  in the opposite direction. Since the injected carriers follow a 

Maxwellian distribution and move ballistically, the value of both currents depends 

exponentially on the amplitude of the potential barrier that the electrons injected at each 

contact find when moving towards the opposite one. For +I  the amplitude is just mU  and for 

−I  is UUm + . Therefore  

 [ ]TkqUII BmS /exp −=+ , (12a) 

 [ ]TkUUqII BmS /)(exp +−=+ . (12b) 

As a result, while the presence of the minimum mU  persists, the current increases practically 

linearly with U, up to a certain value of the external bias satU  for which the barrier vanishes, 

so that all the electrons injected at the cathode can reach the anode, the current saturates and 

becomes independent of the bias. As λ is increased, the barrier induced by the space charge is 

more important, the current is lower and the saturation takes place for higher applied 

voltages. In the case of =λ 0.15, when space-charge effects are negligible, the I-U curve 
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corresponds exactly to that obtained in [106] within an approach where Coulomb correlations 

are disregarded.  

Figure 8 shows the profiles of the electron concentration n, carrier average energy 

ε and velocity v along the active region of the structure with =λ 30.9 for several values of U. 

When a voltage is applied to the right contact, the symmetry of the carrier concentration 

profile at equilibrium is clearly destroyed in order to ensure current conservation through the 

sample. Accordingly, near the anode, where v reaches the highest values, n takes the lowest 

ones. The extension of the region near the anode contact where the carrier concentration is 

high and both the velocity and energy are low decreases at increasing applied voltages. In this 

region, most of the carriers are thermal electrons proceeding from the right contact that are 

reflected back to the anode by the opposite electric field. The greater the applied voltage, the 

higher the opposite field and the shorter the distance they penetrate before being reflected. 

When U is high and the potential barrier is near to disappear or just vanished [see Fig. 7(a), 

=U 40, 80 qTkB / ] the energy increases systematically along the sample up to a maximum 

value close to qU near the anode contact, as expected from the ballistic transport inside the 

sample.  

We remark that all the results presented in this section are independent of the PS 

scheme used for the calculations. 

b. Shot-noise suppression 

Once the static characteristics are analyzed, the shot-noise suppression effects can be 

more easily understood. The difference between the results of the static and dynamic PS 

schemes will evidence the influence of the dynamic fluctuations of the potential on the noise 

characteristics of the structures. Firstly we will analyze which are the statistical properties of 

the transmitted carriers to check if they are temporally correlated. To address this question we 

register at the receiving contact the times of passage of electrons that were injected at the 
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cathode. These are the only electrons contributing to the low-frequency current noise once 

TkqU B>> . With this procedure we are able to study how the carrier statistics imposed at 

0=x  (in our case Poissonian) has been modified when reaching the anode. From the 

different times of arrival registered, we calculate the distribution function )(tPn , which is the 

probability of detecting n electrons during the observation time interval t. For a Poissonian 

process all time occurrences are statistically independent, which leads to the simple formula 

 , ... 2, 1, 0,   ,e
!
)()( =

Γ
= Γ− n

n
ttP t

n
e

n
e  (13) 

where eΓ  is the rate density of events. Distribution (13) is characteristic of uncorrelated 

transport and is tested to correctly describe the carrier statistics at the injecting contact (at 

0=x ). The distribution of carriers at the receiving contact depends crucially on the PS 

scheme (see Fig. 9, corresponding to qTkU B /40=  and 9.30=λ ). For the static PS )(tPn  is 

perfectly fitted by the same Poissonian formula (13) as for the injected carriers, but with a 

smaller value of the rate density Γκ=Γe , with 65.0≈κ . This reduction is caused by the part 

of injected carriers that is reflected by the potential barrier back to the contact (in fact, the 

current for the present applied voltage is SII κ= ). In contrast, for the dynamic PS the 

distribution function no longer obeys the formula (13), and becomes sub-Poissonian. The 

following differences between the dynamic and static PS are observed: (i) for each 1>n  the 

maximum of the distribution is shifted to longer t; (ii) the probability distribution is 

narrowed; (iii) the higher the index n, the more the dynamic case deviates from the static one, 

the distribution profiles becoming more symmetrical and closer to a Gaussian shape. We 

remark that the difference at point (ii) can be interpreted as a motional squeezing of electron 

number and corresponds to a higher regularization of the carrier passage due to correlations 

among electrons. 
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Let us investigate how this modification of the carrier passage statistics due to 

Coulomb correlations affects the behavior of shot noise in the structures. Fig. 10 shows the 

low-frequency value of the spectral density of current fluctuations IS  normalized to SqI2 . 

This normalization is performed in order to compare the results for different values of Γ  

(different Cn  and λ). We provide the results for both the static and dynamic PS schemes. In 

the static case, by increasing the applied voltage U we always obtain an excellent coincidence 

with the well-known formula used to describe the crossover from thermal to shot noise when 

carrier correlations play no role (represented in the figure by dashed lines) [2]: 

 ( ) ( )TkqUqIIIqS B
s
I 2/coth22 =+= −+  (14) 

where −+ −= III  is the total current flowing through the diode, as previously explained. 

This agreement supports the validity of the simulation scheme used for the calculations. For 

TkqU B<< , I I+ −~ , thermal noise is dominant and [ ]TkqUqIS BmS
s
I /exp4 −≈ . Therefore, 

for the lowest value of λ (when space charge is negligible and 0→mU ) S
s
I qIS 4→ , while as 

λ increases mU  becomes significant and s
IS  decreases. When qU k TB> , I I+ −>> , the 

transition from thermal to shot noise takes place and +≈ qIS s
I 2 . And finally, for the highest 

values of satUU > , saturation occurs, mU  vanishes and S
s
I qIS 2≈ .  

 For the lowest values of λ no difference between the dynamic and static cases is 

obviously detected. However, for higher λ, when space-charge effects become significant, the 

picture is drastically different for the dynamic case. Starting from qU k TB~ , d
IS , instead of 

increasing, decreases until the proximity of saturation, where it exhibits a minimum before 

jumping to the saturation value. Under saturation, the results for both schemes coincide (no 

barrier modulating the current) and full shot noise S
s
I

d
I qISS 2==  is recovered. When 

compared with the static case the noise suppression is stronger for higher λ (more important 

space-charge effects). 
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This behavior of d
IS  is illustrated in Fig. 11, where the Fano factor γ is shown as a 

function of U for different λ. The sequence thermal noise ( TkqU B< ), suppressed shot noise 

( satB qUqUTk << ), full shot noise ( satUU > ) behavior is clearly evidenced. The curves 

corresponding to the different structures only differ in the suppressed shot noise range. For 

the lowest values of λ, when no suppression takes place, )2/coth( TkqU B=γ . Shot-noise 

reduction becomes more pronounced and covers a wider range of voltages as λ increases 

(e.g., for =λ 30.9 it is =γ 0.045). Thus, the present self-consistent approach predicts values 

of the Fano factor much lower than those of previous analytical models [107] where the 

dependence of the potential minimum and its position on the applied voltage was not taken 

into account. In principle, the value of γ has no lower limit. By enlarging λ, γ can reach 

values as low as desired. However, by increasing the device length (or the lattice 

temperature) the carrier transport actually goes from ballistic to diffusive regime and the 

action of Coulomb interaction on shot noise changes a lot, as we will see in section 3.2. 

Moreover, when the carrier concentration at the contacts is increased, so that the electron gas 

becomes degenerate, Fermi correlations between carriers act as an additive contribution to 

shot-noise suppression, as we will show in the case of degenerate contacts. 

To better understand the physical reason of shot-noise suppression in the present 

ballistic structures, Fig. 12 reports the decomposition of IS  into the three additive 

contributions VS , NS  and VNS  [Eqs. (11)] for λ=7.72 and different values of U. Both NS  and 

VNS  vanish at equilibrium ( 0→U ), since they are proportional to v 2  and v  respectively, 

and v → 0. Thus, for small biases ( TkqU B<< ) VI SS ~ , which means that the current 

noise is thermal noise associated with velocity fluctuations and it is governed by the Nyquist 

theorem TGkS BI 4≈ , with ( ) 0/ == VdVdIG  the static conductance. In this case the results for 

the static [Fig. 12(a)] and dynamic [Fig. 12(b)] schemes evidently coincide. However, 
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starting from TkqU B~  the difference between the two schemes becomes relevant. For the 

dynamic case, VNS  is negative, while for the static case it is positive. Furthermore, for the 

current fluctuations calculated using the self-consistent potential, d
NS  and d

VNS  are of opposite 

sign and compensate each other, so that d
IS  approximately follows d

VS  as long as the current 

is space-charge controlled. As a consequence, the current noise, which now corresponds to 

shot noise, is considerably suppressed below the value 2qI  given by the static case. This 

result reflects the fact that as the carriers move through the active region, the dynamic 

fluctuations of the electric field modulate the transmission through the potential minimum 

and smooth out the current fluctuations imposed by the random injection at the contacts. 

Therefore, the coupling between number and velocity fluctuations induced by the self-

consistent potential fluctuations is the main responsible, through d
VNS , for the shot-noise 

suppression. This velocity-number coupling becomes especially pronounced just before 

current saturation ( qTkU B / 7≈ ), when the potential minimum is close to vanish completely 

( 0→mU ) and the fluctuations of the potential barrier modulate the transmission of the most 

populated states of injected carriers (the low-velocity states). Under saturation conditions 

space-charge effects do not modulate the random injection (no potential minimum is present) 

and again both dynamic and static cases provide the same additive contributions and total 

noise ( SqI2 ). 

The MC results shown in this section have motivated the development of analytical 

theories able to explain them. Many of the low-frequency results reported here have been 

reproduced and extended by general self-consistent theories in the works by Bulashenko et al. 

[68,74], also for the case of non-Poissonian injection statistics [75].  

c. Frequency dependence of noise 
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One of the advantages of the MC technique is the possibility to investigate the time 

and frequency (beyond low-frequency) dependence of current fluctuations, that we analyze 

here in the case of ballistic transport in the presence of space charge. Figure 13 reports the 

autocorrelation function of current fluctuations )(tCI  and the corresponding spectral density 

)( fSI  under thermal-equilibrium conditions at increasing values of λ, thus evidencing the 

influence of space-charge effects. These results are independent of the PS scheme used. For 

low values of λ, when mU  is negligible, )(tCI  recovers the typical dependence obtained 

analytically for the ballistic case when Coulomb interaction is neglected [108,109]. At 

increasing values of λ, the shape of )(tCI  changes and tends to exhibit a behavior determined 

by two processes with different (short and long) characteristic times. The short time is related 

to the injected carriers that are not able to pass the potential barrier and return back to the 

contacts (returning carriers). Here, the greater the value of λ, the higher the amplitude of 

mU , and the shorter the characteristic returning time, as it is shown in Fig. 13(a). The long 

characteristic time in )(tCI  is associated with the passing carriers, whose longitudinal 

velocity component is significantly reduced while crossing the barrier region. The difference 

between these two times (and the fraction of reflected/transmitted carriers) becomes more 

pronounced at high values of mU . Accordingly, the slopes of )(tCI  related to each time are 

more easily identified at increasing values of λ. The corresponding spectral densities [Fig. 

13(b)] reflect the behavior of )(tCI  previously described, by exhibiting higher cutoff 

frequencies as λ increases and characteristic structures in the cutoff region related to the 

transit time through the sample. 

To illustrate how the noise changes under far-from-equilibrium conditions, Fig. 14 

shows )(tCI  and )( fSI  calculated with the dynamic PS for the case of =λ 7.72 at several 

voltages. Starting from the standard shape of equilibrium conditions, )(tCI  tends to exhibit a 
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triangular shape, more pronounced as the applied voltage increases. This triangular shape is 

typical of a constant velocity emitter with all the electrons reaching the opposite contact 

[101]. In our case, electrons are injected at the cathode with a velocity which is Maxwellian 

distributed, but, due to the acceleration provided by the high electric field in the active region, 

the transit time of all the carriers becomes practically the same, decreasing with the increase 

of the applied voltage. The carriers injected at the anode immediately come back to the 

contact and thus play only an insignificant role at the shortest times. In the spectral density it 

can be observed that once saturation is reached ( TkqU B8> , see Fig. 10) IS  takes the same 

value SqI2  at low frequency for the different applied voltages, but the spectra after the cutoff 

are distinguished by showing smoothed geometrical resonances at different characteristic 

frequencies related to the corresponding transit times. 

3.1.2. Degenerate contacts 

In the case when contacts are degenerate, the injection is no longer Poissonian and 

the occupation of the different energy levels at the contacts must be taken into account (see 

section 2.3.2). Thus, a further noise reduction related to Fermi statistics is present [110]. To 

illustrate this fact we will consider as first example a structure with L=100 nm and 

201037.1 ×=Cn  cm-3 ( TkBF 15=ε ). These values lead to λ=90.35, which implies a significant 

action of space-charge effects in the structure. 

 The current-voltage ( I U− ) characteristic normalized to the saturation value IS  is 

reported in Fig. 15. At the lowest voltages a linear behavior is found, while for high voltages 

near saturation a superlinear behavior close to a 2/3U -dependence is observed (space-charge 

limited conditions). The inset of Fig. 15 shows the potential profile along the structure for 

different applied voltages, which exhibits the characteristic minimum decreasing in amplitude 

and shifting towards the cathode as U increases. The amplitude of this minimum mU  is 
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reported in the main figure as a function of the applied voltage. For the values used here 

qTkU Bm / 44.19=  at equilibrium ( 0=U ) and 0=mU  for qTkU B / 2500≥ . 

 When using the static PS, no correlation among carriers takes place in the active 

region, and the only source of suppression is the Fermi statistics electrons obey at the 

contacts. Once the value of mU  is known from the simulation, the Fermi suppression factor 

can be calculated analytically as qIS s
IF 2/=γ , with the low-frequency static current spectral 

density s
IS  and the current I given by 
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where xε  is the longitudinal energy, and xxC dI εε )(  and xxI dS C εε )(  are, respectively, the 

current associated with electrons injected between xε  and xx dε+ε  and the low-frequency 

spectral density of its fluctuations, which are given by [76,84,110] 
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where tε  is the transversal electron energy and =ε)(f 1]}/)exp[(1{ −ε−ε+ TkBF  the Fermi-

Dirac distribution. The suppression effect associated with Fermi correlations, which takes 

place through the injecting statistics, is clearly observed in Fig. 16, which shows )( xCI ε  and 

)( xICS ε  as a function of xε . Carriers injected with Fx ε>>ε  obey Poissonian statistics and 

exhibit full shot noise )(2)( xCxI qIS C ε=ε . By contrast, carriers injected with Fx ε<<ε  

exhibit a significantly suppressed shot noise )(2)( xCxI qIS C ε<ε . Fig. 17 shows an excellent 

agreement between theoretical and simulated values of Fγ . At low U, when TkqU B< , 



 28

thermal noise is dominant and 1>γF . For intermediate values of U, when  qUTkB < and 

FmqU ε> , I is carried by Poissonian carriers with Fx ε>ε  at the tail of Fermi distribution 

(low-occupation states) and thus 1=γF . At higher U, when FmqU ε< , the contribution to I 

of carriers injected with sub-Poissonian statistics ( Fx ε<ε , high-occupation states) becomes 

more and more important and, accordingly, Fγ  decreases, until saturating for satUU >  

( 0=mqU ) at a value FBF Tk ε=γ /2  [76]. 

When using the dynamic PS, as carriers move through the active region the temporal 

fluctuations of the electric field modulate the transmission over the potential minimum and 

thus, in addition to Fermi suppression, a further noise reduction due to Coulomb correlations 

takes place. Since the two suppression mechanisms are independent, the low-frequency 

dynamic spectral density d
IS  can be expressed as qIqIS CF

d
I 22 γγ=γ= , where CF γγ=γ  is 

the total shot-noise suppression factor (or Fano factor) and Cγ  the Coulomb suppression 

factor. This factorization is reported in Fig. 17, both as a function of the applied voltage U 

and the amplitude of the potential minimum mU . At the lowest values of U, thermal noise is 

dominant, and thus s
I

d
I SS =  and 1≈γC  (absence of Coulomb suppression). Then, at 

increasing U, three different regimes of suppression are identified. The first regime 

( FmB qUqUTk ε><   , ) is related only to Coulomb correlations ( 1 ,1 <γ=γ CF ); here I is due 

to Poissonian carriers (with Fx ε>ε ) which originate fluctuations of mU  modulating the 

passage of further electrons, thus leading to increasing Coulomb suppression. The second 

regime ( FmqU ε< ) is related to both Coulomb and Fermi correlations ( 1 ,1 <γ<γ CF ). Here, 

interestingly, Cγ  tends to saturate while Fγ  keeps decreasing with U. This is due to the fact 

that, as U increases, the additional carriers contributing to the current come from the energy 

region below Fε  ( Fx ε<ε , characterized by sub-Poissonian statistics) and do not lead to 

further significant fluctuations of mU . Finally, in the third regime (under current saturation) 
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the suppression is constant and only due to Fermi correlations ( 1 ,/2 =γε=γ CFBF Tk ). We 

note the remarkable agreement between the results of the simulation and the analytical 

expectations for the dependence of γ on U for the intermediate ( qUTkB /93.1 ) and highest 

( qUTkB / ) values of U [76]. 

Within our model carriers at the contacts injected at different xε -levels are 

uncorrelated. However electrons in the volume of the conductor are expected to be strongly 

correlated by Coulomb interaction. To investigate this correlation, responsible for shot-noise 

suppression, Fig. 18 reports the low-frequency value of the cross-correlation between current 

fluctuations due to carriers injected with different xε  at the left contact )',( xxI LS εε  for 

qTkU B / 1000= . At this high value of the applied voltage ( FqU ε>> ) the average current I  

and the low-frequency current spectral density d
IS  are given only by the contributions 

coming from carriers injected at the left contact with mx qU>ε . Thus, the fluctuating current 

can be written as 

 xxL dtItI εε= ∫
∞

),()(
0

, (19) 

where xxL dtI εε ),(  is the instantaneous current due to carriers injected with xε  at the left 

contact. The fluctuations of the current are then given by 
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with xxL dI εε )(  the time-average value of xxL dtI εε ),( . The autocorrelation function of 

current fluctuations can be calculated as 

 xxxxIxxxLxLI ddtCddttItIttItItC L ' ),',(' )','()',()'( )'( )(
0 00 0
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with  ),',( tC xxI L εε the cross-correlation function between current fluctuations due to carriers 

injected with energies xε  and x'ε  at the left contact (quantity that can be readily calculated 
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from the MC simulations), so that the low-frequency current spectral density can be 

expressed as 

 ∫ ∫∫
∞ ∞∞
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with  
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εε=εε  ),',(2)',( . (23) 

Therefore,  )',( xxILS εε is the key quantity to evaluate Coulomb correlations between carriers 

injected at different energies.  

In the case of using the static PS carriers in the active region are uncorrelated and 

thus )'()' ()',( xxxIxx
s
I CL SS ε−εδε=εε , with ) ( xICS ε  given by Eq. (18). However, with the 

dynamic PS one obtains the correlations shown in Fig. 18. Carriers injected with mx qU>ε , 

apart from the autocorrelation associated with their injecting statistics )'()' ( xxxICS ε−εδε , are 

only (negatively) correlated with those electrons injected with mx qU≈ε' . This anticorrelation 

is at the origin of the noise suppression (since it reduces the value of d
IS ), and it is due to the 

modulation of carrier transmission at mx qU≈ε  caused by the barrier fluctuations induced by 

electrons passing over the barrier. Remarkably, carriers with mx qU≈ε  are confirmed to be 

strongly autocorrelated [74,111]. 

We must point out that the regimes of suppression reported in the previous case are 

not always found. The behavior of Fγ  and Cγ  depends on the relative values of DcLL /  and 

TkBF /ε [112]. Fig. 19 shows the different suppression factors as a function of U for a second 

structure with =L 50 nm, =m 0.066 0m , =cn 5×1017 cm-3 ( =εF 5.08 )/ qTkB , =ε 12.55 0ε  

and =T 77 K. For this set of parameters, one obtains that at equilibrium FmqU ε≈  (in 

contrast with the previous structure where FmqU ε> ). As a consequence, Fermi suppression 

is significant in the whole range of applied voltages (once TkqU B> ), and there is no regime 
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like that of the previous case where 1=γF . Here Coulomb suppression is less pronounced, 

since the range of applied voltages for which the barrier persists is much shorter than in the 

first example. 

The noise properties of ballistic structures with degenerate contacts like those 

investigated here have been analytically studied in [76] under the limit of “virtual cathode 

approximation” ( satm UUU <<< ), obtaining results similar to those of the MC simulations. 

Only very recently a full theory, able to reproduce both the static and noise MC results in the 

full range of applied voltages and level of degeneracy, has been developed [112]. 

3.2. Crossover ballistic-diffusive regime 

In this section, elastic and inelastic (thermalizing) isotropic scattering mechanisms 

are introduced (separately) in the simulations by means of an energy independent relaxation 

time τ , whose value is appropriately varied (from 10-11 to 10-15 s) to cover the transition from 

ballistic to diffusive transport regimes. In this section all the results correspond to the case of 

nondegenerate contacts and λ=30.9 ( 17104 ×=Cn  cm-3). 

Fig. 20 shows the low-frequency spectral density of current fluctuations IS  

normalized to SqI2  as a function of L/l  for an applied voltage qTkU B / 40= , calculated 

using static and dynamic PS schemes. The evolution of the current in terms of 2qI  is also 

shown. This evolution exhibits two limiting behaviors: a first one ( 110/ −>Ll ) of saturation 

typical of ballistic or quasiballistic regime, and a second one ( 210/ −<Ll ) of linear decrease 

at decreasing L/l  typical of diffusive regime. Both in the elastic and inelastic cases s
IS , 

calculated with the static PS, coincides exactly with qI2 , thus revealing full shot-noise 

conditions when the dynamic fluctuations of the potential are ignored. On the contrary, with 

the dynamic PS, d
IS  is systematically lower than qI2 , thus evidencing a suppression effect. 

Here, in the ballistic limit elastic and inelastic cases present the same value, the suppression 
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corresponding to that induced by the barrier fluctuations already reported in Figs. 10 and 11. 

As the diffusive regime is approached, the suppression remains active, more pronounced in 

the inelastic case, being related to the joint action of the Coulomb repulsion and the presence 

of scattering. 

In Fig. 21 the Fano factor γ calculated with the dynamic potential is shown as a 

function of L/l  for several values of the applied voltage. The reason for the different 

behavior found between the different curves in the ballistic limit is the presence or absence of 

the potential barrier related to the space charge. As compared with 40 qTkB / , when the 

barrier is still present and the suppression is important ( 045.0≅γ ), for the highest voltages 

(80 and 100 qTkB / ) the barrier has already disappeared, the current is saturated and the Fano 

factor takes on the full shot-noise level. In the elastic case, when the diffusive regime is 

achieved γ remains constant with l / L  and takes the same value of about 1/3 for all the 

applied voltages. On the contrary, in the inelastic case the higher the applied voltage, the 

lower the value of γ reached in the diffusive regime. Remarkably, when the ballistic regime is 

abandoned the value of L/l  at which γ starts decreasing is the same in the elastic and 

inelastic cases for a given applied voltage ( ≈L/l  0.3 and 0.1, for 80 and 100 qTkB / , 

respectively). However, when the diffusive regime is approached, for γ to become constant a 

lower value of L/l  must be reached in the inelastic case with respect to the elastic one. This 

behavior can be explained in terms of the different elastic and inelastic scattering intensity 

required by the electron system to achieve a significant energy equipartition into the three 

directions of momentum space [91]. 

To check the influence of the contact injection on the evolution of the Fano factor 

with L/l , Fig. 22 shows γ as a function of l / L  for an applied voltage of 40 qTkB /  and the 

four different contact models resulting from combining Poissonian/uniform injection 
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statistics and Maxwellian/fixed-velocity distribution of the injected carriers, as explained in 

section 2.3.1. The Poissonian-Maxwellian injection scheme is that typically used, and the 

only one physically plausible for nondegenerate contacts. As expected, in the ballistic case, 

when carrier transport in the structure is deterministic, the Fano factor crucially depends on 

the contact-injection model. For example, in the case of the uniform-fixed velocity contact, 

when the injection introduces no noise in the current flux, the Fano factor decreases 

drastically with the increase of l / L , since the noise tends to vanish in the absence of 

scattering mechanisms. The noise does not vanish completely since, unless ∞→L/l , there 

is always some probability of undergoing a scattering event. In this limit, when the noise is 

produced just by a few scattering events, it is clearly observed that elastic interactions lead to 

more important current fluctuations than inelastic mechanisms. By approaching the perfect 

diffusive regime the Fano factor is found to be independent of the model used. In diffusive 

regime, the results obtained with the four contact models are the same. This leads to the 

important conclusion that the noise in the diffusive regime (and particularly the 1/3 Fano 

factor obtained in the elastic-diffusive case) is independent of the carrier injecting statistics, 

and it is only determined by the effect of scattering mechanisms (jointly with Coulomb 

interaction). 

3.3. Diffusive regime 

In this section we consider scattering times short enough to ensure a diffusive 

transport regime ( 3103/ −×≤Ll ). Contacts are nondegenerate and λ=30.9 (unless indicated). 

3.3.1. Energy-independent scattering time 

Initially we consider that the scattering time does not depend on energy, as in the 

previous section. Fig. 23 shows the dependence of the Fano factor γ on the applied voltage U 

in both the elastic and inelastic cases calculated with the dynamic PS. In the inelastic case, 
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due to the strong thermalizing action of scattering, the noise is just thermal Nyquist noise at 

any bias and, as a consequence, γ decreases systematically as the current increases (higher U). 

In the elastic case, at the lowest voltages the thermal behavior is recovered; however, at the 

highest voltages, when the velocity distribution exhibits a strong deviation from equilibrium 

[91], the level of noise increases, its ratio with the current remaining constant and providing a 

value of 1/3 for the Fano factor γ. We remark that this result is only obtained with the 

dynamic PS. In the absence of Coulomb correlations (static PS), full shot noise is obtained 

for TkqU B> , which in the inelastic case confirms that inelastic scattering alone (without the 

action of Coulomb interaction) is not enough to suppress shot noise [56]. 

The 1/3 suppression factor found in the elastic case for qU k TB>>  coincides with 

the value obtained in degenerate elastic conductors by very different theoretical approaches, 

going from the quantum-phase-coherent model of Beenakker and Büttiker [16] to the 

semiclassical degenerate models of Nagaev [17] and de Jong and Beenakker [20]. In all these 

cases degenerate conditions are assumed, and the noise reduction comes from the regulation 

of electron motion by the Pauli exclusion principle. However, in our calculations neither 

phase-coherence nor Fermi statistics are necessary for its appearance. Some controversy has 

emerged about the possibility that there could exist a common origin for the 1/3 factor found 

under these so different conditions [5,60,113,114]. 

In our case, by fully suppressing carrier-number fluctuations, long-range Coulomb 

interaction is found to be determinant in providing the 1/3 value in the low-frequency limit. 

To illustrate the physical origin of this effect, Fig. 24(a) reports a typical spectrum of the 

Fano factor under elastic diffusive conditions. Calculations are performed for static and 

dynamic PS schemes. Here the current spectrum is decomposed into velocity, number and 

cross-correlation contributions =)( fSI )()()( fSfSfS VNNV ++  [see Eqs. (11)]. In the static 

PS scheme the spectrum clearly shows that the three terms contribute to )( fS s
I , and two 
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different time scales can be identified. The longest one is associated with the transit time of 

carriers through the active region 5≈τT ps, and it is evidenced in the terms )( fS s
N  and 

)( fS s
VN . The shortest one is related to the relaxation time of elastic scattering 5=τ fs, and it 

is manifested in )( fS s
V . Remarkably, the velocity contribution yields 1/3 of the full shot-

noise value, while the other two terms provide the remaining 2/3. Thus, in the static PS 

scheme full shot noise is recovered as sum of the three contributions. On the contrary, in the 

dynamic PS scheme )( fS d
N  and )( fS d

VN  are found to compensate each other and, as a result, 

)( fS d
I  coincides with )( fS d

V  in all the frequency range. Moreover, )( fS d
N  takes values 

much smaller than )( fS s
N . The characteristic time scale of )( fS d

N  and )( fS d
VN  differs from 

that found within the static PS scheme, which was related to the transit time Tτ . Now, in the 

dynamic case, it is the dielectric relaxation time corresponding to the carrier concentration at 

the contacts 46.0=τd ps which determines the cutoff of the contributions related to number 

fluctuations. In the frequency range between the transit and collision frequency values it is 

interesting to notice that both static and dynamic PS schemes yield 3/1=γ , thus relating the 

suppression factor to velocity fluctuations only. However, at low frequencies only the 

dynamic scheme takes this value by virtue of Coulomb correlations, which are responsible for 

the reduction of )( fS d
N  and the mutual compensation of )( fS d

N  and )( fS d
VN  contributions. It 

is remarkable that )( fS s
V = )( fS d

V  in all the frequency range, which implies that velocity 

fluctuations are not affected by long-range Coulomb interactions, but just by scattering 

mechanisms. Coulomb repulsion affects only the contributions where carrier-number 

fluctuations are involved. Figure 24(b) reports the spectrum for inelastic scattering. Here, the 

same features of the elastic case are observed, with the important difference that )( fS d
V  is 

much lower than when there is no energy dissipation. 
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So far we have analyzed structures where Coulomb repulsion plays an important role 

(i.e., 1>>λ ). To check to which extent this interaction is determinant for noise suppression, 

Fig. 25 reports the Fano factor γ and the three contributions into which it has been 

decomposed as a function of λ. Here, we present the elastic case calculated under 

far-from-equilibrium conditions ( qTkU B /100= ) within the dynamic PS scheme. For the 

lowest values of λ, when space-charge effects and in turn Coulomb interaction are negligible, 

full shot noise is observed. As λ increases, γ starts decreasing from unity until reaching a 

constant value for 30≥λ . It is remarkable that the contribution of velocity fluctuations to γ 

does not vary significantly with λ. On the contrary, the contributions associated with number 

and velocity-number fluctuations are strongly affected by the increase of λ. Indeed, their 

absolute value decreases systematically and, being opposite in sign, they compensate each 

other at the highest values of λ, so that VI SS ≈ .  

The results reported so far refer to a three-dimensional momentum space. In contrast 

to degenerate diffusive systems where, provided quasi-one dimensional conditions in real 

space are attained, noise suppression is independent of the number d of momentum space 

dimensions, an interesting feature of nondegenerate diffusive systems is that noise 

suppression can depend on d. For the model of inelastic scattering considered here, no 

dependence of γ on d has been found, since there is no influence of the velocity components 

transversal to the electric field direction on the transport and noise properties of the 

structures. On the contrary, in the elastic case the Fano factor is found to depend significantly 

on d, since the transversal velocity components constitute a channel for energy redistribution 

which affects the transport properties of the structure. Therefore, below we focus our analysis 

on the elastic case. Accordingly, when 2=d  the carrier velocity is randomized in the 

simulation into two components after each scattering event, and when 1=d  the isotropic 
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character of scattering is accomplished by inverting the carrier velocity with an average 

(back-scattering) probability 5.0=bP . 

Figure 26(a) reports the Fano factor γ as a function of l / L  for the cases =d 1, 2, 3 

at high voltages (40 qTkB / ) calculated within the dynamic PS scheme. We note that, when 

calculated within the static PS scheme, the results do not exhibit any shot-noise suppression. 

For the highest values of l / L , in all three cases γ approaches the asymptotic value 

corresponding to the ballistic limit ( 045.0=γ ), where the behavior is independent of d. At a 

given value of l / L , a higher deviation from the asymptotic ballistic value is observed for 

lower d. This is due to the fact that, in average, elastic interactions introduce higher 

fluctuations of the carrier x-velocity the lower is the number of available momentum states 

after the scattering mechanism (in particular, just 2 in the case =d 1). For this same reason, 

the increasing presence of scattering as l / L  is reduced leads to higher values of the Fano 

factor the lower is the dimensionality. Remarkably, within numerical uncertainty the limit 

value reached by γ in the perfect diffusive regime is found to be about, respectively, of 1/3, 

1/2, and 0.7 for 1 2, ,3=d . Figure 26(b), by reporting γ in the diffusive regime as a function 

of the applied voltage, provides evidence that these limit values are independent of the bias 

once TkqU B>> . The origin of the suppression is the same in all three cases: the joint action 

of Coulomb correlations and elastic scattering, which leads to the result VI SS =  [as shown in 

Fig. 25 in the case =d 3], where qISV 2/  under perfect diffusive regime is a function of the 

dimensionality of momentum space.  

Motivated by the MC results shown in this section, several authors, like Beenakker 

[69], Schomerus et al. [70] and Gurevich and Muradov [77], have developed analytical 

theories to explain the suppression found in the elastic diffusive regime under space-charge 
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limited conditions, being able to reproduce the MC results and their dependence on 

dimensionality. 

3.3.2. Energy-dependent scattering time 

In the previous section we have found that within our model the 1/3 value of the 

Fano factor obtained in the elastic diffusive regime for =d 3 exhibits several universal 

properties, namely, it is independent of: (i) the scattering strength (once 1/ <<Ll ); (ii) the 

applied voltage (once TkqU B>> ), (iii) the screening length (once 1>>λ ), and (iv) the 

carrier injecting statistics. However, several authors have pointed out that the possible 

universality of this value is broken by the fact that the Fano factor in this regime changes 

with the energy dependence of the scattering time τ. This is, the 1/3 value appears only for 

energy independent τ. By considering a scattering time of the type τ ε τ εα( ) = 0 , the Fano 

factor is predicted to depend on α, the power of energy in this expression. Thus, by using an 

analytical drift model, Schomerus et al. obtain the following dependence of the Fano factor 

on α for 3=d  [70,72] 

 
)813)(178)(52(5

)1573616)(2)(1(6 2

α+α−α−α
−α+α+α−α

=γ . (24) 

Also Nagaev indicates that for 2/3−=α  and 3=d  the Fano factor should be 1, this is, 

Coulomb interaction should play no role on the noise behavior [102]. Gurevich and Muradov 

calculate γ for several values of α (0.4257 and 0.1974 for 2/1−=α  and 2/1 , respectively) 

[77]. And finally Gomila and Reggiani [71], by using the concept of differential conductivity 

in energy space )(' εσ , indicate that 0)(' >εσ  leads to noise suppression, 0)(' =εσ  to a Fano 

factor equal to 1, and, what is the most interesting prediction, that 0)(' <εσ  can originate 

shot-noise enhancement. The differential conductivity depends on α and momentum space 

dimensionality d in this way 12/)2/()(' −+αε+α∝εσ dd . 
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To check these predictions, we have performed MC calculations considering the 

above dependence of the scattering time on energy. We must note that in this case theoretical 

predictions are preceding MC simulations. We have performed calculations for the following 

values of α  (and associated τ0 ): -2 ( 161035.8 −× 2eV s ), -3/2 ( 6 76 10 16. × − s eV3/2 ), -1 

( 388 10 16. × − s eV ), -1/2 ( 4 41 10 16. × − s eV1/2 ), 0 ( 2 00 10 15. × − s , energy-independent case), 1/2 

( 311 10 15. × − s eV-1/2 ), 1 (155 10 14. × − s eV-1 ) and 3/2 ( 141040.2 −× -3/2eV s ). The values of τ0  

are chosen in such a way to ensure diffusive transport in the wide range of electron energies 

found in the simulations and to make computer times affordable. 

Fig. 27 reports the Fano factor γ  as a function of the energy exponent α  for an 

applied voltage of 40 qTkB /  (within the limit qU k TB>> ) in the cases of 3=d  and 2=d . 

The current in the high-voltage range (see inset) exhibits different behavior for each value of 

α , going from a superlinear (and similar) dependence on U for values of 0≥α  to a sublinear 

behavior for 0<α , more pronounced the lower is α  (and for 2=d ). Squares in Fig. 27 refer 

to MC simulations with 3=d  and the continuous curve to the analytical expression reported 

in Eq. (24). MC data compare well with analytical results in the limited range 

− < <3 2 1 2/ /α . Outside this range, the analytical theory predicts completely suppressed 

shot noise (at α = 1), while the MC results take values close to 1/3 (or slightly lower) for the 

range 0≥α . These discrepancies are probably due to the simplifying assumptions inherent to 

the drift model [70]. Within uncertainty, MC data confirm the predictions that 1=γ  (no role 

of Coulomb interaction) for 2/d−=α  (when 0)(' =εσ ), and what is more important, that 

enhanced shot noise ( 1>γ ) should be found for 2/d−<α  (when 0)(' <εσ ), which is 

especially evident for 2=d . Thus, we corroborate that the Fano factor associated with 

Coulomb correlations is in general a sensitive probe of the energy dependence of the 

scattering time. 
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To further investigate the mechanism responsible for shot-noise suppression and 

enhancement we report in Fig. 28 the profiles of the relevant average quantities for an applied 

voltage of 80 qTkB /  and 3=d . For 0≥α , the behavior of the different profiles is 

systematic: the velocity increases more and more near the anode while the carrier 

concentration decreases as α is enlarged. However for 0<α  this behavior is broken, and the 

signature of a key qualitative change in the profiles emerges for 1−≤α  [116]. Here, the 

transition from a quasiballistic region near the cathode contact [71] to a diffusive region 

inside the structure leads to the appearance of a maximum (minimum) in the velocity 

(concentration), more pronounced the lower is α. Simultaneously, simulations evidence the 

onset of a region of dynamic negative differential mobility which covers most of the active 

region of the structure. These qualitative changes are accompanied by a systematic increase 

of the Fano factor, as can be seen in Fig. 27, what indicates the onset of a mechanism 

inducing positive correlation among the fluctuations. We conclude that for 2/3−≤α  the 

structure exhibits the simultaneous presence of two distinct transport regimes, a ballistic one 

near to the contacts and a diffusive one around the center of the active region. The presence 

of these regimes leads to a region of dynamical negative differential mobility, which in turns 

moves the structure towards a state of electrical instability, as well known for the analogous 

case of Gunn diodes [115]. The tendency of the the I-U characteristics to exhibit negative 

differential resistance, more pronounced in the case of =d 2 (see insets of Fig. 27), further 

supports the present interpretation. The increase of the Fano factor stems as a precursor of the 

fact that the system is evolving towards such an electrical instability. The condition under 

which enhanced shot noise is observed coincides with the analytical condition that the 

differential conductivity in energy space becomes negative [116].  
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3.4. Influence of trapping-detrapping processes in quasiballistic regime 

In this section we will show that the presence of generation-recombination (GR) 

phenomena in quasiballistic conductors can lead to an enhancement of shot noise, via 

Coulomb correlations, similar to that found in other systems like resonant tunneling diodes 

[34,50]. To this end, the presence of electron traps in the active region of an otherwise 

ballistic structure is considered. The trapping-detrapping processes are characterized in a 

simple way, described in section 2.5, by means of the times rτ  (recombination time) and gτ  

(generation time), initially assumed as independent of the position and energy of electrons. 

We consider also that the scattering mean free path l  is much longer than the sample length 

L; consequently, electrons move ballistically inside the active region, only interrupted by 

trapping processes. Again, λ=30.9 and nondegenerate contacts will be used in the 

calculations. We will analyze a case with =τr 20 ps. Taking into account that the average 

transit time of electrons through the active region of the structure Tτ  is about 1.05 ps under 

equilibrium conditions, which fulfils rT τ<τ , electrons will cross the sample in a 

quasiballistic way, with very low probability of suffering a trapping process. Anyway, due to 

the continuous flux of carriers, a significant density of negative fixed charge )(xnt  is present 

in the active region. According to the model used for GR processes, )/()()( grgt xnxn τ+ττ=  

with )(xn  the local free carrier concentration [104,105]. This density of fixed charge will 

affect the carrier transport. As concerns fluctuations, since rT τ<τ , number fluctuations 

associated to the trapping-detrapping processes are not expected to be significant. However, 

the fluctuations of the negative fixed charge may have a very important influence on the 

noise via Coulomb interaction. 

Figure 29(a) shows the mean velocity of free electrons in the active region of the 

structure, for an applied voltage of 40 qTkB / , when GR processes are characterized by 
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=τr 20 ps and several values of gτ  are considered. The purely ballistic case is also plotted for 

comparison. The velocity increases continuously along the structure until approaching the 

end of the active region, where it decreases due to the thermal carriers injected by the anode, 

as already observed in Fig. 8. No significant differences are detected between the diverse 

curves. The probability of suffering a recombination mechanism by an electron crossing the 

active region is so low that the transport regime is not substantially altered by the presence of 

the traps and, thus, it remains quasiballistic. For this applied voltage the potential profile 

presents a minimum close to the cathode acting as a potential barrier for the electrons moving 

between the contacts, as already explained in section 3.1.1.a. This potential minimum is 

reported in the inset of Fig. 29(a) for the previous cases. For a fixed value of rτ , as gτ  

increases electrons remain longer trapped, and thus a higher concentration of fixed charge 

)(xnt  is present. This increment of tn  leads to a higher potential barrier and, as consequence, 

to lower values of the current for a given applied voltage, as observed in the current-voltage 

characteristics shown in Fig. 29(b). We remark that the current decreases because there are 

less free electrons injected with sufficient energy to pass over the barrier, and not because of 

a reduction of the mean velocity associated with the GR processes. The saturation of the 

current (due to the disappearance of the barrier) in the presence of GR processes takes place 

for higher applied voltages (increasing with gτ ) than in the ballistic case, in accordance with 

the larger potential barrier originated by the fixed charge concentration. Two processes with 

different characteristic times can lead to fluctuations in the amplitude of this barrier 

controlling the current: the flow of carriers through the structure, characterized by the transit 

time Tτ ; and the trapping-detrapping processes, characterized by the electron lifetime 

)( grgrl τ+τττ=τ  [105]. The former process is responsible for the shot-noise suppression 

found in the ballistic case by introducing negative correlations between transmitted carriers, 
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while the latter, as we will show in the following, leads to positive correlations which 

increase the level of noise with respect to that found in the purely ballistic case. 

Figure 30 shows the Fano factor at low frequency as a function of the applied 

voltage for the same cases of the previous figure. Calculations performed with a static PS, 

thus in the absence of long-range Coulomb interaction, coincide for all cases, and are 

represented by the thick solid line. Without this interaction, full shot noise associated with the 

Poissonian carrier injection at the contacts is always found (for TkqU B> ), what indicates 

that all the differences observed between the reported results are related to Coulomb 

repulsion. With the dynamic PS, the presence of GR processes increases the level of shot 

noise with respect to the ballistic case in the range of applied voltages for which suppression 

was found under ballistic conditions. As gτ  becomes longer, so that the influence of capture 

processes is more important (a higher density of fixed charge is present), increasing values of 

the Fano factor are found, even reaching enhanced shot noise ( 1>γ ) for =τg 5 and 7.5 ps. 

Remarkably, the maximum enhancement of noise in the presence of GR processes occurs at 

the applied voltages for which the most significant suppression takes place in the ballistic 

case (40 qTkB / , see Fig. 11), this is, when Coulomb interaction exerts the strongest 

influence on the noise. For applied voltages for which this interaction is not expected to 

modify the noise, the values of the Fano factor for the different gτ  and in the ballistic case are 

practically the same. This happens for low applied voltages, when the noise is basically 

thermal, and under saturation conditions, when there is no longer a barrier modulating the 

current. The fact that the noise level under saturation does not increase with respect to the 

ballistic case confirms that, as expected since rT τ<τ , number fluctuations related to GR 

processes provide a negligible direct contribution to the current noise; their influence takes 

place only by means of Coulomb interaction. 
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In the following we illustrate the origin of the outstanding result reported in Fig. 30. 

To this end we will focus on the significant case of =τr 20 ps and =τg 5 ps, for which 

enhanced shot noise appears. Figure 31 shows the autocorrelation function of current 

fluctuations )(tCI  for applied voltages of 10 and 40 qTkB / , at which the potential barrier 

modulates the current and enhances the noise. Firstly, a short-time decay related to the transit 

time through the active region (about 0.2-0.4 ps for these values of U) is observed (inset), 

also found when transport is completely ballistic (see Fig. 14). Then, the autocorrelation 

functions present a further exponential decay with a characteristic time of about 4 ps (as 

indicated by the exponential fittings shown in the figure), which corresponds exactly to the 

lifetime lτ  of the trapping-detrapping processes. Thus, this exponential contribution, 

responsible for the noise enhancement, is clearly associated with the GR phenomena; its 

influence being more significant the higher is the applied voltage (and therefore the current). 

Remarkably, the long-time decay is not observed when a static PS is used, or under 

conditions when long-range Coulomb interaction is not expected to affect the noise, like 

saturation (in the absence of a potential barrier). This confirms again that the exponential 

contribution is not caused directly by number fluctuations related to GR phenomena. 

Actually, the shot-noise enhancement found in our results is due to the influence of the 

trapped-charge fluctuations on the current taking place by means of the associated potential 

barrier modulation induced by long-range Coulomb interaction. 

To identify more clearly the origin of the enhanced shot noise related to the 

exponential decay found in )(tCI , Fig. 32 shows the velocity-number component )(tCVN  of 

the autocorrelation function for an applied voltage of 40 qTkB / . It can be observed that the 

previous positive long-time contribution is also present in the cross correlation between 

fluctuations of mean velocity and free-carrier number N. Initially, at the shortest times, 

)(tCVN  is negative, like under ballistic conditions, due to the transit of carriers through the 
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active region. However, )(tCVN  becomes positive at longer times, thus revealing a positive 

correlation between carriers related to the trapping-detrapping processes. When an electron is 

captured, it becomes a negative fixed charge that increases the potential barrier (leading to a 

decrease of N). As a consequence, fewer electrons have sufficient energy to pass over this 

barrier; the electron mean velocity and the current decrease. On the other hand, when a 

trapped electron is released, the potential barrier decreases (allowing an increase of N) and 

more electrons are able to surpass the barrier; the mean velocity and the current increase. 

Thus, a positive correlation is established between carriers contributing to the current with 

energies around the potential barrier, leading to a super-Poissonian distribution of transmitted 

carriers and hence to shot-noise enhancement. Of course, the characteristic time of these 

correlations is the lifetime associated with the GR processes, since this is the time that 

governs the time evolution of captured electrons. We have checked that the described effect 

is more pronounced the closer is the captured electron to the potential barrier [117]. 

The spectral density of current fluctuations )( fSI  for an applied voltage of 

40 qTkB /  is shown in Fig. 33, calculated as the Fourier transform of the corresponding )(tCI  

reported in Fig. 31. )( fSI  in the ballistic case is also plotted for comparison. According to 

the short- and long-time behaviors found in )(tCI , two plateaus are observed in )( fSI . At 

low frequency, a first plateau relative to the enhanced shot noise due to GR processes is 

observed, associated with the long-range decay in the autocorrelation function. At high 

frequency, beyond the cutoff of GR phenomena ( lf πτ>> 2/1 ), a second plateau is detected, 

associated with the short-time decay. The value of )( fSI  in the second plateau practically 

coincides with the low-frequency value of )( fSI  in the ballistic case, related to shot-noise 

suppression. Therefore, our system displays enhanced or suppressed shot noise depending on 

the frequency range of observation. 
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The effect of the trapping-detrapping processes on the noise takes place because of 

the determining control that the potential barrier exerts on the current flow. If such a control 

is diminished, or even washed out, the observed enhanced shot noise is predicted to 

disappear. To check this fact, we will consider now, apart from GR processes, the additional 

presence of elastic and inelastic (thermalizing) scattering mechanisms in the active region of 

the structure, characterized by an energy independent relaxation time τ and assumed to be 

isotropic as described in previous sections. Figure 34 presents the Fano factor at low 

frequency as a function of L/l , for an applied voltage of 40 qTkB / , when τ is decreased 

from 10-11 to 10-15 s, in the presence of GR processes characterized by =τr 20 ps and =τg 5 

ps. Both elastic and inelastic mechanisms are considered (separately). For the highest values 

of L/l , when transport is quasiballistic, the Fano factor exhibits values corresponding to 

enhanced shot noise related to GR processes. For lower values of L/l  in the transition from 

quasiballistic to diffusive regime, γ decreases and enters a range of values corresponding to 

shot-noise suppression ( 1<γ ). Finally, under fully diffusive regime ( 3103/ −×<Ll ), γ 

becomes independent of the scattering rate. Remarkably, in this regime the Fano factor 

exhibits the same values as those found in the absence of GR processes: about 1/3 in the case 

of elastic diffusive transport, and about 0.09 in the inelastic case (see Fig. 21). As explained, 

these levels of shot-noise suppression are due to the joint action of Coulomb repulsion and 

scattering mechanisms under space-charge limited conduction. When a scattering process 

occurs, the velocity is randomized; in particular, the electron energy in the direction of the 

potential barrier is modified. As a consequence, in the diffusive regime the potential barrier 

no longer controls the current flowing through the device, and GR processes lose their 

influence on the noise. Therefore, the presence of GR processes (under the condition rT τ<τ ) 

is determining in the noise behavior under quasiballistic regime, but it has no influence under 

diffusive conditions. 
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Finally, we point out that if more realistic models including energy and space 

(through the local density and occupancy of the traps) dependence of rτ  are considered, the 

predicted effect is reduced, but it is still clearly noticeable [117]. 

 

 

 

4. SUMMARY 

In this chapter, shot-noise suppression and enhancement due to the action of 

long-range Coulomb interaction (jointly with other mechanisms) in a homogenous active 

region connected to ideal reservoirs has been analyzed under different transport regimes. A 

semiclassical model consisting in an ensemble MC simulation self-consistently coupled with 

a one-dimensional PS is used for the calculations. Carrier dynamics is simulated in the active 

region, and contact injection is appropriately modeled by using different statistics according 

to the nondegenerate or degenerate character of contacts. The influence of Coulomb 

interaction on the noise has been identified by using static and dynamic schemes to solve the 

Poisson equation. Predicted effects take place when long-range Coulomb interaction plays a 

major role, i.e., in the presence of significant space charge in the active region. 

In the case of ballistic structures with nondegenerate contacts, the dynamic 

fluctuations of the self-consistent potential (in the presence of a barrier related to the space 

charge), modify the carrier statistics imposed at the contacts, and are found to be responsible 

for a remarkable noise suppression, which becomes stronger as space-charge effects are more 

important. The main contribution to the suppression is found to originate from the velocity-

number correlations induced by the self-consistent field. The time and frequency 

dependences of the fluctuations have also been analyzed. The noise spectra show different 

features related to transit time, returning carriers and geometrical resonances, and are also 
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modified by Coulomb correlations among carriers. When contacts are degenerate, a further 

suppression related to Fermi statistics is found, while the behavior of Coulomb suppression, 

still very important, changes slightly. We have identified and evaluated the negative 

correlations among carriers induced by Coulomb interaction, which take place between the 

carriers injected with sufficient energy to pass over the barrier and those injected around the 

barrier energy. 

The presence of scattering significantly modifies the behavior of shot noise. In the 

crossover from ballistic to diffusive regime, for high voltages ( TkqU B>> ) a value of the 

Fano factor independent of the scattering strength ( L/l ) is not achieved until a significant 

energy redistribution among momentum space directions takes place. For energy independent 

scattering time, in the elastic case an asymptotic value of 1/3 is found for the Fano factor, 

while in the inelastic case the higher is the applied voltage the stronger is the suppression. 

The action of Coulomb repulsion in suppressing shot noise occurs through the reduction of 

the contributions associated with carrier-number fluctuations to the total noise spectral 

density. The 1/3 value found in the elastic diffusive nondegenerate regime shows several 

universal properties, broken by the fact that it changes with momentum space dimensionality 

(the Fano factor being higher the lower is the dimensionality) and with the energy 

dependence of the scattering time. Interestingly, by considering a power-law dependence of 

the scattering time on energy, for specific energy exponents enhanced shot noise is found, 

associated to the presence of negative differential conductivity in energy space. 

In the case when trapping-detrapping processes with a recombination time longer 

than the electron transit time are included in the active region of an otherwise ballistic 

structure (quasiballistic regime), an increase of the noise level at low frequency with respect 

to the values found in the ballistic case is observed. The potential barrier fluctuations induced 

by the fluctuating fixed charge via long-range Coulomb interaction are at the origin of this 
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effect by introducing positive correlations among transmitted carriers. At high frequency, 

beyond the cutoff of GR phenomena, the suppressed shot noise of the ballistic case is 

recovered. When carrier transport becomes diffusive, the potential barrier does not control the 

current, and thus no influence of GR processes is observed. 

 In view of all the above results, we finally emphasize that the knowledge of the 

noise properties of mesoscopic structures (like the value of the Fano factor) provides very 

valuable information about the carrier kinetics inside them, not available from dc or 

conductance measurements. We remark also that, in some sense, the results presented in this 

chapter have played the role of numerical experiments, leading to the development of several 

analytical theories with the aim of providing a detailed physical explanation for them.  
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FIGURE CAPTIONS 

Figure 1. Fano factor vs bias voltage for one-, two-, three-, and four-barrier GaAs/AlGaAs 

nonresonant heterostructure diodes (with transport controlled by tunneling) obtained from 

direct MC calculations for contact concentrations of: (a) 1014 cm-3, and (b) 1017 cm-3. 

Dashed line in (a) corresponds to the case of the four-barrier structure with a contact 

concentration of 1017 cm-3. From [82], A. Reklaitis and L. Reggiani, Phys. Rev. B 60, 

11683 (1999). Copyright 1999 by the American Physical Society. 

Figure 2. Potential profile (solid line) and distribution of electron kinetic energy (points) for a 

voltage of 1.5 V applied to a GaAs/AlGaAs tunneling heterostructure diode at T=300 K, 

formed of three layers: a 50 nm GaAs emitter, a 50 nm AlGaAs barrier and a 10 nm GaAs 

collector. From [35], A. Reklaitis and L. Reggiani, Phys. Rev. B 62, 16773 (2000). 

Copyright 2000 by the American Physical Society. 

Figure 3. Fano factor vs bias voltage for the diode of Fig. 2. Continuous and dashed curves 

refer respectively to dynamic and static PS schemes. From [35], A. Reklaitis and L. 

Reggiani, Phys. Rev. B 62, 16773 (2000). Copyright 2000 by the American Physical 

Society. 

Figure 4. Schematic drawing of the system under investigation, which includes the active 

region of the structure and the ideal contacts. Several regimes of carrier transport will be 

considered in the active region. 

Figure 5. Low-frequency current spectral density at equilibrium normalized to SqI2  as a 

function of the degeneracy factor TkBF /ε , at T=300 K, in a one-dimensional, 

two-terminal ballistic conductor. Symbols correspond to MC calculations and full line and 

dotted curve to predictions for nondegenerate and degenerate conditions, respectively. 
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From [92], T. González et al., Semicond. Sci. Technol. 14, L37 (1999), with permission 

from the Institute of Physics Publishing @ 1999. 

Figure 6. Spatial profiles along the active region of (a) electron concentration and (b) 

normalized potential Tkxq B/)(φ  at equilibrium for different values of λ. From [88], T. 

González et al., Semicond. Sci. Technol. 13, 714 (1998), with permission from the 

Institute of Physics Publishing @ 1998. 

Figure 7. (a) Spatial profiles of the normalized potential Tkxq B/)(φ  for different applied 

voltages U for the case of 9.30=λ . (b) Current flowing through the sample normalized to 

the saturation value as a function of the applied voltage U for different values of λ. From 

[88], T. González et al., Semicond. Sci. Technol. 13, 714 (1998), with permission from the 

Institute of Physics Publishing @ 1998. 

Figure 8. Spatial profiles along the active region of (a) electron concentration, (b) average 

energy and (c) average velocity for the case of 9.30=λ  and several applied voltages. 

From [88], T. González et al., Semicond. Sci. Technol. 13, 714 (1998), with permission 

from the Institute of Physics Publishing @ 1998. 

Figure 9. Distribution function )(tPn  of electron counting statistics at the receiving contact as 

a function of time (in units of Γ/1 ) for the static PS (dotted line, Poissonian statistics) and 

for the dynamic PS (solid line, sub-Poissonian statistics), in a structure with 

qTkU B / 40=  and 9.30=λ . Adapted from [90], O. M. Bulashenko et al., Phys. Rev. B 

57, 1366 (1998). Copyright 1998 by the American Physical Society. 

Figure 10. Current noise spectral density vs applied voltage calculated by using static (open 

symbols) and dynamic (closed symbols, solid line) PS schemes for several contact 

concentrations cn  (in cm-3 with the corresponding λ): (⎡) 1013, 0.15; (⎨) 2×1015, 2.18; (⌡) 
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1016, 4.88; (⌠) 2.5×1016, 7.72; (〈) 1017, 15.45; (�) 4×1017, 30.9. The static case is shown to 

be nicely described by Eq. (14). The dotted lines represent 2qI (marked for each injection 

rate density by the corresponding symbol). Adapted from [86], T. González et al., Phys. 

Rev. B 56, 6424 (1997). Copyright 1997 by the American Physical Society. 

Figure 11. Fano factor vs applied voltage for several values of λ. From [88], T. González et 

al., Semicond. Sci. Technol. 13, 714 (1998), with permission from the Institute of Physics 

Publishing @ 1998. 

Figure 12. Decomposition of the spectral density of current fluctuations IS  into velocity, 

number, and velocity-number contributions vs applied voltage for the case 72.7=λ  

calculated using (a) the static and (b) the dynamic PS schemes. From [88], T. González et 

al., Semicond. Sci. Technol. 13, 714 (1998), with permission from the Institute of Physics 

Publishing @ 1998. 

Figure 13. (a) Autocorrelation function and (b) spectral density of current fluctuations at 

equilibrium for several values of λ. Static and dynamic PS schemes provide the same 

results. From [88], T. González et al., Semicond. Sci. Technol. 13, 714 (1998), with 

permission from the Institute of Physics Publishing @ 1998. 

Figure 14. (a) Autocorrelation function and (b) spectral density of current fluctuations 

calculated using the dynamic PS for the case of 72.7=λ  at several applied voltages. From 

[88], T. González et al., Semicond. Sci. Technol. 13, 714 (1998), with permission from the 

Institute of Physics Publishing @ 1998. 

Figure 15. Current (normalized to the saturation value xxCS dII εε= ∫
∞

0
)( ) and amplitude of 

the potential minimum vs applied voltage. The inset shows the spatial profile of the 

potential Tkxq B/)(φ  for different applied voltages. 
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Figure 16. Current )( xCI ε  (normalized to the saturation value SI ) and noise )( xICS ε  

(normalized to SqI2 ) contributions of the injected electrons as a function of the 

longitudinal energy xε , and ratio between both quantities. From [85], T. González et al., in 

Proc. of the 25th Int. Conf. on the Physics of Semiconductors, N. Miura and T. Ando, Eds., 

Springer Proc. in Physics, Berlin (2001), Vol.87, p. 1343, with permission from Springer-

Verlag @ 2001. 

Figure 17. Total suppression (Fano) factor γ (calculated under static and dynamic PS 

schemes), Coulomb Cγ  and Fermi Fγ  suppression factors as a function of: (a) applied 

voltage, and (b) amplitude of the potential minimum mU . The two limiting behaviors of γ 

for low and high applied voltages are also shown. From [85], T. González et al., in Proc. 

of the 25th Int. Conf. on the Physics of Semiconductors, N. Miura and T. Ando, Eds., 

Springer Proc. in Physics, Berlin (2001), Vol.87, p. 1343, with permission from Springer-

Verlag @ 2001. 

Figure 18. Cross-correlation between current fluctuations due to carriers injected with 

energies xε  and x'ε  at the left contact as a function of xε  for several values of x'ε  and 

1000/ =TkqU B . Vertical lines indicate the position of mqU . From [85], T. González et 

al., in Proc. of the 25th Int. Conf. on the Physics of Semiconductors, N. Miura and T. 

Ando, Eds., Springer Proc. in Physics, Berlin (2001), Vol.87, p. 1343, with permission 

from Springer-Verlag @ 2001. 

Figure 19. Total (squares), Fermi (circles) and Coulomb (diamond) suppression factors as a 

function of the applied voltage in a structure with =L 50 nm, =m 0.066 0m , =cn 5×1017 

cm-3 ( =εF 5.08 )/ qTkB , =ε 12.55 0ε  and =T 77 K. 
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Figure 20. Low-frequency spectral density of current fluctuations normalized to SqI2  vs the 

ballistic parameter L/l  for an applied voltage qTkU B / 40= . Calculations are performed 

by using static and dynamic PS schemes, and considering elastic and inelastic scattering 

mechanisms. qI2  is also plotted for comparison. From [91], T. González et al., Phys. Rev. 

B 60, 2670 (1999). Copyright 1999 by the American Physical Society. 

Figure 21. Fano factor vs the ballistic parameter L/l  for the cases of elastic and inelastic 

scattering at different applied voltages. Calculations are performed by using the dynamic 

PS scheme. From [91], T. González et al., Phys. Rev. B 60, 2670 (1999). Copyright 1999 

by the American Physical Society. 

Figure 22. Fano factor vs the ballistic parameter L/l  for an applied bias qTkU B / 40=  

calculated with different contact models. Calculations refer to the dynamic PS considering 

elastic and inelastic scattering. From [91], T. González et al., Phys. Rev. B 60, 2670 

(1999). Copyright 1999 by the American Physical Society. 

Figure 23. Fano factor vs applied voltage calculated with the dynamic potential under 

diffusive regime for the cases of elastic and inelastic scattering mechanisms. Adapted from 

[89] T. González et al., Phys. Rev. Lett. 80, 2901 (1998). Copyright 1998 by the American 

Physical Society. 

Figure 24. Spectrum of the Fano factor under diffusive regime calculated within static and 

dynamic PS schemes for (a) elastic and (b) inelastic scattering, and an applied voltage 

qTkU B / 100= . The different contributions to the total spectrum are reported in the figure. 

From [91], T. González et al., Phys. Rev. B 60, 2670 (1999). Copyright 1999 by the 

American Physical Society. 
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Figure 25. Fano factor as a function of the characteristic parameter of space charge λ under 

diffusive regime calculated within dynamic PS scheme for qTkU B / 100= . The different 

contributions to the Fano factor are also shown in the figure. Adapted from [91], T. 

González et al., Phys. Rev. B 60, 2670 (1999). Copyright 1999 by the American Physical 

Society. 

Figure 26. Fano factor for the cases of 1, 2 and 3 dimensions of momentum space calculated 

within the dynamic PS scheme for elastic scattering as a function of (a) ballistic parameter 

L/l  with an applied voltage qTkU B / 40=  and (b) applied bias U under diffusive regime 

( 31007.1/ −×=Ll ). Adapted from [91], T. González et al., Phys. Rev. B 60, 2670 (1999). 

Copyright 1999 by the American Physical Society. 

Figure 27. Fano factor γ for qTkU B / 40=  as a function of the energy exponent of the 

relaxation time α. Symbols correspond to MC calculations performed for the cases of 2 

and 3 dimensions of momentum space and solid line to analytical calculations within a 

drift approximation for the case =d 3 [70]. The insets show the UI −  curves for the 

different values of α. 

Figure 28. Spatial profiles of average quantities along the active region of the structure for an 

applied voltage qTkU B / 80=  and several values of the energy exponent of the relaxation 

time α. (a) Concentration, (b) electric field, (c) velocity, and (d) scattering time. 

Figure 29. (a) Spatial profiles along the active region of average velocity and (inset) 

normalized potential barrier Tkxq B/)(φ  at an applied voltage qTkU B / 40= , and (b) 

current flowing through the sample normalized to the saturation value SI  as a function of 

the applied voltage, for =τr 20 ps and different values of gτ . The ballistic case is also 
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plotted for comparison. From [96], B. G. Vasallo et al., Semicond. Sci. Technol., with 

permission from the Institute of Physics Publishing @ 2002. 

Figure 30. Fano factor vs bias voltage for =τr 20 ps and different values of gτ , and in the 

ballistic case. The thick solid line corresponds to the case when long-range Coulomb 

interaction is not considered (for any of the previous conditions). From [96], B. G. Vasallo 

et al., Semicond. Sci. Technol., with permission from the Institute of Physics Publishing 

@ 2002. 

Figure 31. Autocorrelation function of current fluctuations )(tCI  normalized to the zero-time 

value )0(IC  corresponding to two applied voltages for which enhanced shot noise is 

found. The short-time decay is reported in the inset. The GR characteristic times are 

=τr 20 ps and =τg 5 ps. From [96], B. G. Vasallo et al., Semicond. Sci. Technol., with 

permission from the Institute of Physics Publishing @ 2002. 

Figure 32. Velocity-number contribution )(tCVN  to the autocorrelation function )(tCI  for an 

applied voltage qTkU B / 40=  and GR characteristic times =τr 20 ps and =τg 5 ps. The 

inset details the short-time behavior. From [96], B. G. Vasallo et al., Semicond. Sci. 

Technol., with permission from the Institute of Physics Publishing @ 2002. 

Figure 33. Spectral density of current fluctuations )( fSI  as a function of frequency for an 

applied voltage qTkU B / 40=  and GR characteristic times =τr 20 ps and =τg 5 ps. 

)( fSI  in the ballistic case is also plotted. From [96], B. G. Vasallo et al., Semicond. Sci. 

Technol., with permission from the Institute of Physics Publishing @ 2002. 

Figure 34. Fano factor vs L/l  in the transition from quasiballistic to diffusive regime 

considering elastic and inelastic scattering mechanisms (separately) and GR processes 
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characterized by =τr 20 ps and =τg 5 ps. From [96], B. G. Vasallo et al., Semicond. Sci. 

Technol., with permission from the Institute of Physics Publishing @ 2002. 
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