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Convolutional Goppa Codes

J. M. Muñoz Porras, Member, IEEE, J. A. Domínguez Pérez,
J. I. Iglesias Curto, and G. Serrano Sotelo

Abstract—In this correspondence, we define convolutional Goppa codes
over algebraic curves and construct their corresponding dual codes. Ex-
amples over the projective line and over elliptic curves are described, ob-
taining in particular some maximum-distance separable (MDS) convolu-
tional codes.

Index Terms—Algebraic curves, convolutional codes, finite fields, Goppa
codes, maximum-distance separable (MDS) codes.

I. INTRODUCTION

Goppa codes are evaluation codes for linear series over smooth
curves over a finite field q . Using Forney’s algebraic theory of con-
volutional codes [1] (see also [2, Ch. 2] and [3]), in [4], we proposed
a new construction of convolutional codes, which we called convolu-
tional Goppa codes (CGC), in terms of evaluation along sections of a
family of algebraic curves.
The aim of this correspondence is to reformulate the results of [4] in a

straightforward language. In Section II, we define CGC as Goppa codes
for smooth curves defined over the field q(z) of rational functions in
one variable z over the finite field q . These CGC are in fact more
general than the codes defined in [4], since there are smooth curves
over q(z) that do not extend to a family of smooth curves over the
affine line 1 . With this definition, one has another advantage: the
techniques of algebraic geometry required are easier than those used in
[4]: we use exactly the same language as is usual in the literature on
Goppa codes. Section III is devoted to define the dual CGC.
Section IV contains the definition of free distance for a convolutional

code together with some remarks about the geometric interpretation of
the Hamming weight for Goppa codes and the weight for CGC.
The last two sections of the correspondence are devoted to illus-

trating the general construction with some examples. In Section V we
construct several CGC of genus zero; that is, defined in terms of the
projective line 1

k over the field q(z). Some of these examples are
MDS-convolutional codes and are very easy to handle.
In Section VI, we give examples of CGC of genus one; that is, de-

fined in terms of elliptic curves over q(z). These examples are not so
easy to study. In fact, a consequence of this preliminary study of CGC
of genus one is that a deeper understanding of the arithmetic proper-
ties of elliptic fibrations (see, for instance, [5]) and of the translation of
these properties into the language of convolutional codes is necessary.
In the Appendix, we propose a way to obtain a geometric interpre-

tation of the weight for CGC.

II. CONVOLUTIONAL GOPPA CODES

Let q be a finite field and q(z) the (infinite) field of rational func-
tions of one variable. Let (X;OX) be a smooth projective curve over
q(z) of genus g.
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Let us denote by �X the field of rational functions of X and let us
assume that q(z) is algebraically closed in �X (this is equivalent to
assuming that the fibers of the morphism � in ([4], Section 3) are ge-
ometrically irreducible curves). Both Riemann–Roch and the Residue
theorems (see, for instance, [6]) still hold under this hypothesis.

Given a set p1; . . . ; pn of n different q(z)-rational points of X , if
Op denotes the local ring at the point pi, with maximal ideal p , and
ti is a local parameter at pi, one has exact sequences

0! p ! Op ! Op = p ' q(z)! 0

s(ti) 7! s(pi): (1)

Let us consider the divisor D = p1 + � � � + pn, with its associated
invertible sheaf OX(D). Then, one has an exact sequence of sheaves

0! OX(�D)! OX ! Q! 0 (2)

where the quotient Q is a sheaf with support at the points pi.
Let G be a divisor on X of degree r, with support disjoint from

D. Tensoring the exact sequence (2) by the associated invertible sheaf
OX(G), one obtains

0! OX(G�D)! OX(G)! Q! 0: (3)

For every divisor F over X , let us denote their q(z)-vector space
of global sections by

L(F ) � �(X;OX(F )) = fs 2 �X j (s) + F � 0g

where (s) is the divisor defined by s 2 �X . Taking global sections in
(3), one obtains

0! L(G�D)! L(G)
�
! q(z)� ^. . .� q(z)! � � �

s 7! (s(p1); . . . ; s(pn)):

Definition 2.1: The convolutional Goppa code C(D;G) associated
with the pair (D;G) is the image of the q(z)-linear map �:L(G)!
q(z)

n.

Analogously, given a subspace � � L(G), one defines the convolu-
tional Goppa code C(D;�) as the image of �j .

Remark 2.2: The above definition is more general than the one
given in [4] in terms of families of curves X ! 1 . In fact, given
such a family, the fiberX� , over the generic point � 2 1 , is a curve
over q(z). However, not every curve over q(z) extends to a family
over 1 .

By construction, C(D;G) is a convolutional code of length n and
dimension

k � dimL(G)� dimL(G�D):

Proposition 2.3: Let us assume that 2g � 2 < r < n. Then, the
evaluation map �:L(G) ,! q(z)

n is injective, and the dimension of
C(D;G) is

k = r + 1� g:

Proof: If r < n; dimL(G � D) = 0, the map � is injective
and k = dimL(G). If 2g � 2 < r; dimL(G) = 1 � g + r by the
Riemann–Roch Theorem.

III. DUAL CONVOLUTIONAL GOPPA CODES

Let us consider, over the q(z)-vectorial space q(z)
n, the

pairing h ; i

q(z)
n � q(z)

n ! q(z)

(u; v) 7! hu; vi =

n

i=1

uivi

where u = (u1; . . . ; un); v = (v1; . . . ; vn) 2 q(z)
n.

Definition 3.1: The dual convolutional Goppa code of the code
C(D;G) is the q(z)-linear subspace C?(D;G) of q(z)

n given by

C(D;G)? = fu 2 q(z)
n j hu; vi = 0 for every v 2 C(D;G)g:

Let us denote byK the canonical divisor of rational differential forms
over X .

Theorem 3.2: The dual convolutional Goppa code C?(D;G) as-
sociated with the pair (D;G) is the image of the q(z)-linear map
�:L(K +D � G) ! q(z)

n, given by

�(�) = (Resp (�); . . . ;Resp (�)):

Proof: Following the construction of C(D;G), we start by ten-
soring the exact sequence (1) by �

p = HomO ( p ;Op ), and we
obtain

0! Op ! �
p ! Op = p 
O

�
p ' q(z)! 0

t�1i s(ti) 7! s(pi): (4)

Again tensoring (4) by p =
2

p , the tangent space of differentials
at the point pi, one obtains

0! p =
2

p ! �
p 
O p =

2

p ! q(z)! 0

t�1i s(ti)dti 7! s(pi) (5)

where s(pi) = Resp (t�1i s(ti)dti).
This allows us to define a new convolutional Goppa code associated

with the pair of divisors D = p1 + . . . + pn and G; tensoring (2) by
the line sheaf OX(K +D � G), one has

0! OX(K �G)! OX(K +D �G)! Q! 0: (6)

Taking global sections, one has

0! L(K �G)! L(K +D �G)
�
! q(z)� ^. . .� q(z)! . . .

� 7! (Resp (�); . . . ;Resp (�)):

The image of � is a subspace of q(z)
n, whose dimension can be cal-

culated by the Riemann–Roch theorem

dimL(K +D �G)� dimL(K �G)

= dimL(G�D)� (r � n)� 1 + g � (dimL(G)� r � 1 + g)

= n� k:

Moreover, Im� is the subspace C(D;G)? � q(z)
n, since they have

the same dimension, and for every � 2 L(K + D � G) and every
s 2 L(G) one has

h�(�); �(s)i =

n

i=1

s(pi)Resp (�) =

n

i=1

Resp (s�) = 0

by the Residue theorem.
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Under the hypothesis 2g � 2 < r < n, the map � is injective, and
C?(D;G) is a convolutional code of length n and dimension

dimL(K +D �G) = n� (1� g + r):

Remark 3.3: Our pairing h ; i: q(z)
n � q(z)

n ! q(z) is
q(z)-bilinear, whereas the “time reversal” pairing defined by Rosen-

thal in [7, Sec. 7.2], given by

[ ; ]: q((z))
n� q((z))

n ! q

(u; v) 7!

n

i=1

hu(i); v(�i)i

where u =
i
u(i)zi; v =

i
v(i)zi 2 q((z))

n and h ; i is the
standard bilinear form on n

q , is q-bilinear.

The pairing [ ; ] can be expressed in the following way:

[u; v] = Resz=0 hu; vi
dz

z
=

n

i=1

Resz=0 uivi
dz

z
:

Thus, the duality for convolutional Goppa codes in Definition 3.1 is
related to the residues in the points of X , and the duality with respect
to the pairing [ ; ] is related to the residues in the variable of the base
field. Accordingly, a more precise study of the relationship between
both dualities must be done.

IV. MINIMUM DISTANCE AND FREE DISTANCE

Given a vector u = (u1; . . . ; un) 2
n
q , its weight is defined as

wt(u) = #fi jui 6= 0g. The minimum weight (minimum distance)
of a linear block code is one of the most important parameters in the
theory of linear block codes.

For polynomial vectors one has the possibility of defining two kinds
of weights. Let us consider a polynomial vector

u = (u1; . . . ; un) 2 q[z]
n � q((z))

n; where ui 2 q[z]:

We can also represent the vector u as a polynomial with vector coeffi-
cients

u =
i

u(i)zi; where u(i) 2 n
q :

One can define the Hamming weight of u as

hwt(u) = #fi jui 6= 0g:

The minimum Hamming weight of a convolutional code does not re-
flect the performance of convolutional codes over noisy channels in
convolutional coding theory. Of course the minimumHamming weight
of a convolutional Goppa code C(D;G) can be bounded using the Rie-
mann–Roch Theorem, as in the usual Goppa codes.

The natural notion of weight in convolutional coding theory is as
follows

wt(u) =
i

wt(u(i)):

The free distance of a convolutional code C � q[z]
n is defined by

dfree = minfwt(u) j u 2 C; u 6= 0g:

This is one of the most important parameters in convolutional coding
theory.

The geometric interpretation of the Hamming weight for Goppa
codes in terms of the number of zeroes of certain meromorphic
functions allows use of the Riemann–Roch Theorem to make very
precise computations. In the case of convolutional Goppa codes the
interpretation of the notion of weight in geometrical terms is much
more difficult.

In the Appendix, we propose a way to obtain a geometric interpre-
tation of the weight in terms of osculating planes to the algebric curve.
In the next two sections we construct some examples of convolu-

tional Goppa codes. The free distance is computed in terms of the gen-
erator matrix using symbolic calculus software.

V. CONVOLUTIONAL GOPPA CODES OVER THE PROJECTIVE LINE

Let X = 1
(z) = Proj q(z)[x0; x1] be the projective line over

the field q(z), and let us denote by t = x1=x0 the affine coordinate.
Let p0 = (1; 0) be the origin point, p1 = (0; 1) the point at infinity,

and let p1; . . . ; pn be different rational points of 1; pi 6= p0; p1. Let
us define the divisorsD = p1 + � � �+ pn and G = rp1 � sp0, with

0 � s � r < n:

Since g = 0, the evaluation map �:L(G) ! q(z)
n is injective, and

Im� defines a convolutional Goppa code C(D;G) of length n and
dimension k = r � s + 1.
Let us choose the functions ts; ts+1; . . . ; tr as a basis of L(G). If

�i 2 q(z) is the local coordinate of the point pi; i = 1; . . . ; n, the
matrix of the evaluation map � is the following generator matrix for
the code C(D;G):

G =

�s1 �s2 . . . �sn
�s+1
1 �s+1

2 . . . �s+1
n

...
...

. . .
...

�r1 �r2 . . . �rn

: (7)

The dual convolutional Goppa code C?(D;G) also has length n,
and dimension n � k = n � r + s � 1.
To construct C?(D;G), let us choose in L(K +D � G) the basis

of rational differential forms
dt

ts n

i=1(t� �i)
;

t dt

ts n

i=1(t� �i)
; . . . ;

tn�r+s�2dt

ts n

i=1(t� �i)

and let us calculate the residues

Resp
tmdt

ts n

i=1(t� �i)

= Resp
(t� �j + �j)

md(t� �j)

(t� �j)(t� �j + �j)s
n

i 6=j
(t� �j + �j � �i)

=
�mj

�sj
n

i6=j
(�j � �i)

:

If one sets

hj =
1

�sj
n

i6=j
(�j � �i)

then the matrix H of �:L(K +D � G) ! q(z)
n;

H =

h1 h2 � � � hn
h1�1 h2�2 � � � hn�n
...

...
. . .

...
h1�

n�r+s�2
1 h2�

n�r+s�2
2 . . . hn�

n�r+s�2
n

(8)

is a generator matrix for the dual code C?(D;G), and therefore a
parity-check matrix for C(D;G). In fact, one hasH � GT = 0.

Remark 5.1: The matrix in (8) suggests that C?(D;G) is an alter-
nant code over the field q(z), and we can thus apply to C(D;G) some
kind of Berlekamp–Massey decoding algorithm as a linear code over
q(z).

Example 5.2: Let a; b 2 q be two different nonzero elements, and

�i = ai�1z + bi�1; i = 1; . . . ; n; with n < q:
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We present some examples of convolutional Goppa codes with canon-
ical generator matrices [3], whose free distance dfree attains the gen-
eralized Singleton bound, i.e., they are MDS convolutional codes [8],
and we include their encoding equations as linear systems

z�1s = sA��� + uBk��

uG = sC��n + uDk�n

where � denotes the degree of the code (in the sense of [3].)

• Field 3(z); 3 = f0; 1; 2g

G = (z + 1 z + 2)

H =
1

2(z + 1)

1

z + 2

A = (0); B = (1); C = (1 1); D = (1 2)

(n; k; �; dfree) = (2; 1; 1; 4):

• Field 4(z); 4 = f0; 1; �; �2g where �2 + � + 1 = 0

G =
1 1 1

z + 1 �z + �2 �2z + �

H = ( 1
(� z+�)(�z+� )

1
(� z+�)(z+1)

1
(�z+� )(z+1)

)

A = (0); B =
0

1

C = (1 � �
2); D =

1 1 1

1 �2 �

(n; k; �; dfree) = (3; 2; 1; 3):

• Field 4(z)

G = (z + 1 z + � z + �
2)

H =
1

z+1
�

z+�

�

z+�

1 � �2

A = (0); B = (1); C = (1 1 1);

D = (1 � �
2)

(n; k; �; dfree) = (3; 1; 1; 6):

• Field 5(z); 5 = f0; 1; 2; 3; 4g

G = ((z + 1)2 (z + 2)2 (z + 4)2)

H =
2

(z+1)
2

(z+2)
1

(z+4)
2

z+1
2

z+2
1

z+4

A =
0 1

0 0
; B = (1 0 )

C =
2 4 3

1 1 1
; D = (1 4 1)

(n; k; �; dfree) = (3; 1; 2; 9):

• Field 5(z)

G =
z + 1 2z + 3 4z + 4 3z + 2

(z + 1)2 (2z + 3)2 (4z + 4)2 (3z + 2)2

H =
4

a bc

4
bcd

4
a bc

4
bcd

4
abc

3
bcd

1
abc

2
bcd

where a = z + 1; b = z + 2; c = z + 3 and d = z + 4;

A =

0 0 0

0 0 1

0 0 0

; B =
1 0 0

0 1 0

C =

1 2 4 3

2 2 2 2

1 4 1 4

; D =
1 3 4 2

1 4 1 4

(n; k; �; dfree) = (4; 2; 3; 8):

Remark 5.3: In the computation of free distance of these codes we
do not take advantage of the fact that they are convolutional Goppa
codes, as we explained in Section IV.

VI. CGC ASSOCIATED WITH ELLIPTIC CURVES

We can obtain convolutional codes from elliptic curves in the same
way. Let X � 2

(z) be a plane elliptic curve over q(z), and let us
denote by (x; y) the affine coordinates in 2

(z). Let p1 be the infinity
point, and p1; . . . ; pn rational points of X , with pi = (xi(z); yi(z)).
Let us define D = p1 + . . . + pn and G = rp1.
The “canonical” basis of L(G) is f1; x; y; . . . ; xaybg, with 2a +

3b = r (and b = 0; 1 so that there are no linear combinations). Thus,
the evaluation map �:L(G) ! q(z)

n is

�(xiyj) = (xi1(z)y
j
1(z); . . . ; x

i
n(z)y

j
n(z)):

The image of a subspace� � L(G) under the map � provides a Goppa
convolutional code.
We present a couple of examples obtained from elliptic curves that,

although not MDS, have free distance approaching that bound.

Example 6.1: We consider the curve over 2(z)

y
2 + (1 + z)xy + (z + z

2)y = x
3 + (z + z

2)x2

and the points

p1 = (z2 + z; z
3 + z

2)

p2 = (0; z2 + z)

p3 = (z; z2):

L(G) is the subspace generated by f1; xg. Thus, the valuation map �
is defined by the matrix

1 1 1

z2 + z 0 z
:

This code has free distance dfree = 2. The maximum distance for its
parameters is 3.

Example 6.2: Let us now consider the curve over 2(z)

y
2 + (1 + z + z

2)xy + (z2 + z
3)y = x

3 + (z2 + z
3)x2

and the points

p1 = (z3 + z
2
; 0)

p2 = (0; z3 + z
2)

p3 = (z3 + z
2
; z

5 + z
3)

p4 = (z2 + z; z
3 + z)

p5 = (z2 + z; z
4 + z

2):

Again we take L(G) as the subspace generated by f1; xg. Therefore,
the valuation map � is defined by the matrix

1 1 1 1 1

z3 + z2 0 z3 + z2 z2 + z z2 + z
:

This code has free distance dfree = 4. The maximum distance for its
parameters is 5.

Remark 6.3: Every elliptic curve X over q(z) can be considered
as the generic fiber of a fibration X ! U = Spec q[z], with some
fibers singular curves of genus 1. The global structure of this fibra-
tion is related to the singular fibers (see [5]); the translation into the
language of coding theory of the arithmetic and geometric properties
of the fibration is the first step in the program of applying the general
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construction to the effective construction of good convolutional Goppa
codes of genus 1.

APPENDIX

Let us consider a convolutional Goppa code C(D;G) of length n

over a curve X defined over q(z) and let us assume that X can be
extended to a family of curves XU over U = Spec q[z] =

1 (as
in [4]).

LetX0 be the fiber ofXU over the origin ofU . The points p1; . . . ; pn
of the divisorD define sections pi(z): 1 ! XU and the polynomial
words of the code C(D;G) are defined by evaluating the sections s 2
L(G) along the sections pi(z).

Let p be one of the points defined byD; Cp the curve ofXU defined
as the image of the section p(z) and q0 the intersection ofCp withX0,
that is, q0 = p(0). Let us assume that L(G) is a very ample linear
series [6], and assume that XU is immersed in N � 1 using the
linear series L(G). Let us denote by �r(q0) the r-th osculating plane
to the curve Cp at the point q0. One has a sequence of strict inclusions

�0(q0) = q0 � �1(q0) � �2(q0) � . . . � �r(q0) � � � � :

The evaluation of s at p, s(p) can be expressed by

s(p) = s0 + s1z + � � �+ snz
n

where s0 = s(0) and sr , the rth coefficient, can be interpreted as the
rth jet of s(z) at the point q0.

With this interpretation in mind, one has that sr = 0 if and only if

Hs \ �r(q0) 6= ; and Hs \ �r�1(q0) Hs \ �r(q0)

where Hs is the hyperplane defined by the section s.
Hence the problem of computing the number #fr j sr = 0g can be

translated into a problem of enumerative geometry over finite fields.
The main problem here is to develop the classical theory of oscu-

lating planes and all the classical computations in the case of finite
base fields. This is not an easy problem but its solution would allow
one to give a geometric interpretation of the free distance of convolu-
tional Goppa codes.
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A General Framework for Codes Involving
Redundancy Minimization

Michael B. Baer, Member, IEEE

Abstract—A framework with two scalar parameters is introduced for
various problems of finding a prefix code minimizing a coding penalty
function. The framework encompasses problems previously proposed by
Huffman, Campbell, Nath, and Drmota and Szpankowski, shedding light
on the relationships among these problems. In particular, Nath’s range
of problems can be seen as bridging the minimum average redundancy
problem of Huffman with the minimum maximum pointwise redun-
dancy problem of Drmota and Szpankowski. Using this framework, two
linear-time Huffman-like algorithms are devised for the minimum max-
imum pointwise redundancy problem, the only one in the framework not
previously solved with a Huffman-like algorithm. Both algorithms provide
solutions common to this problem and a subrange of Nath’s problems, the
second algorithm being distinguished by its ability to find the minimum
variance solution among all solutions common to the minimum maximum
pointwise redundancy and Nath problems. Simple redundancy bounds are
also presented.

Index Terms—Huffman algorithm, minimax redundancy, optimal prefix
code, Rényi entropy, unification.

I. INTRODUCTION

A source emits symbols drawn from the alphabetX =f1; 2; . . . ; ng.
Symbol i has probability pi, thus defining probability mass function
vector ppp. We assume without loss of generality that pi > 0 for every
i2X , and that pi� pj for every i> j(i; j 2X ). The source symbols
are coded into binary codewords. Each codeword ci corresponding to
symbol i has length li, thus defining length vector lll.
It is well known that Huffman coding [1] yields a prefix code mini-

mizing
i2X

pili given the natural coding constraints: the integer con-
straint, li 2 +, and the Kraft (McMillan) inequality [2]

i2X

2�l � 1:

Hu, Kleitman, and Tamaki [3] and Parker [4] independently exam-
ined other cases in which Huffman-like algorithms were optimal; this
work was later extended [5], [6]. Other modifications of the Huffman
coding problem were considered in analytical papers [7]–[9], although
none of these proposed a Huffman-like algorithmic solution. In each
paper, relationships between the modified problem and the Huffman
coding problem were explored. Parker proposed an algorithmically
motivated two-function parameterization defining various Huffman
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