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J.A. Domı́nguez Pérez, J.M. Muñoz Porras, G. Serrano Sotelo
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Abstract. A new kind of Convolutional Codes generalizing Goppa Codes is
proposed. This provides a systematic method for constructing convolutional
codes with prefixed properties. In particular, examples of Maximum-Distance
Separable (MDS) convolutional codes are obtained.
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1 Introduction

The aim of this paper is to propose a definition of Convolutional Goppa Codes
(CGC). This definition will provide an algebraic method for constructing Con-
volutional Codes with prescribed invariants.

We propose a definition of CGC in terms of families of curves X → A
1

parametrized by the affine line A
1 = Spec Fq[z] over a finite field Fq . In this

setting, the usual definition of a Goppa Code as the code obtained by evalua-
tion of sections at several rational points, is translated as a code obtained by
evaluation (of sections of some invertible sheaf over X) along several sections
of the fibration X → A

1.
The paper is organized as follows.
In §2 we offer a summary on Goppa Codes following [5], [8], and using

the standard notations of Algebraic Geometry [4].
§3 is devoted to giving the general definition of CGC and gives some general

results.
In §4 we study the case of a trivial fibration of projective lines over A

1 and
we conclude giving some explicit examples of MDS convolutional codes.

∗ This research was partially supported by the Spanish DGI through research project BFM2003-
00078 and by the “Junta de Castilla y León” through research projects SA071/04 and SA032/02.
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We freely use the standard notations of abstract Algebraic Geometry as
can be found in [4]. After the works of V. Lomadze [6], J. Rosenthal and R.
Smarandache [10], [11], there is evidence that the use of methods of Algebraic
Geometry can be relevant to the study of Convolutional Codes. This paper is a
step in favor of that evidence.

Other algebraic methods for constructing Convolutional Codes have been
recently proposed [2], [3].

2 Background on Algebraic Geometry and Goppa Codes

In this Section we summarize the basic definitions about Goppa Codes, con-
structed using methods of Algebraic Geometry (see [5], [8]).

Let X be a geometrically irreducible, smooth and projective curve over the
finite field Fq . Let p1, . . . , pn be n different Fq-rational points of X, and D the
divisor D = p1 + · · · + pn. Let G be another effective divisor with support
disjoint from D. The Goppa code C(G, D) defined by (G, D) is the linear code
of length n over Fq defined as the image of the linear map

α : L(G) → F
n
q

f �→ (f (p1), . . . , f (pn)) ,

where L(G) is the complete linear series defined by G. That is, let Fq(X)

be the field of rational functions over the curve X,

L(G) = {
f ∈ Fq(X) such that Div(f ) + G ≥ 0

}
.

The Goppa code has dimension

k = dim C(G, D) = dim L(G) − dim L(G − D) .

Let g be the genus of X; if we assume the inequality 2g − 2 < deg(G) < n,
then one has

k = deg(G) − g + 1 ,

and the minimum distance d of C(G, D) satisfies the inequality

d ≥ n − deg(G) .

Let OX(D) be the invertible sheaf on X defined by the divisor D. One has the
following exact sequence of sheaves

0 → OX(−D) → OX → OD → 0 ,

where OD � Op1/mp1 ×· · ·×Opn
/mpn

� Fq × n). . .×Fq . Tensoring the above
exact sequence by OX(G), one obtains

0 → OX(G − D) → OX(G) → OD → 0 .
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By taking global sections, we obtain an exact sequence of cohomology

0 → H 0(X, OX(G − D)) → H 0(X, OX(G))
α→ OD →

H 1(X, OX(G − D)) →

→ H 1(X, OX(G)) → 0 ,

where L(G) = H 0(X, OX(G)) and α is the evaluation map defined above.
In the case 2g − 2 < deg(G) < n, one has the exact sequence

0 → H 0(X, OX(G))
α→ OD → H 1(X, OX(G − D)) → 0 . (2.1)

Let ωX be the dualizing sheaf of X, which is isomorphic to the sheaf of
regular 1-forms over X; H 0(X, ωX) is the Fq-vector space of global regular
1-forms over X, which is of dimension g = genus of X.

By Serre’s duality ([4]), there exist canonical isomorphisms of Fq-vector
spaces

H 1(X, L)∗ � H 0(X, ωX ⊗ L−1)

for every invertible sheaf L on X. Given a divisor D over X, we shall denote
by �(D) the vector space H 0(X, ωX ⊗ OX(−D)).

The dual Goppa code, C∗(G, D), associated with the Goppa code C(G, D)

is defined as the linear code of length n over Fq given by the image of the linear
map

α∗ : �(G − D) → F
n
q

η �→ (Resp1(η), . . . , Respn
(η)) ,

Let us take duals in the exact sequence (2.1):

0 → H 1(X, OX(G − D))∗
β→ O∗

D

αt→ H 0(X, OX(G))∗ → 0 .

By Serre’s duality, one has isomorphisms

H 1(X, OX(G − D))∗ � �(G − D) ,

H 0(X, OX(G))∗ � H 1(X, ωX ⊗ OX(−G)) ,

and the above sequence is the cohomology sequence induced by the exact
sequence of sheaves

0 → ωX(−G) → ωX(D − G) → ωX(D − G) ⊗OX
OD → 0 ,

where we denote ωX(−G) = ωX ⊗ OX(−G), and β is precisely the map α∗

defining C∗(G, D).
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Given a linear series � ⊆ H 0(X, OX(G)), that is, a vector subspace defin-
ing a family of divisors linearly equivalent to G, we define the Goppa code
C(�, D) associated with � and D as the image of the homomorphism α|� :

H 0(X, OX(G))
α �� OD

⋃ |
�

α|�

���������������

When � � H 0(X, OX(G)), we shall say that C(�, D) is a non-complete Goppa
code.

3 Convolutional Goppa Codes

We shall contruct a kind of convolutional code that generalizes the notion of
Goppa codes. These codes will be associated with families of algebraic curves.

Given an algebraic variety S over the field Fq , a family of projective alge-
braic curves parametrized by S is a morphism of algebraic varieties π : X → S,
such that π is a projective and flat morphism whose fibres Xs = π−1(s) are
smooth and geometrically irreducible curves over Fq(s) (the residue field of
s ∈ S).

Let us consider a family of curvesX
π→ U parametrized byU = Spec Fq[z] =

A
1. Given a closed point u ∈ U with residue field Fq(u), the fibre Xu = π−1(u)

is a curve over the finite field Fq(u).
Let pi , 1 ≤ i ≤ n, be n different sections, pi : U → X, of the projection

π . These sections define a Cartier divisor on X:

D = p1(U) + · · · + pn(U) ,

which is flat of degree n over the base U ([4]).
Note that given a coherent sheaf F on X, the cohomology groups Hi(X, F)

are finite Fq[z]-modules and Hi(X, F) = 0 for i ≥ 2 (see [4] III).
Let L be an invertible sheaf over X. One has an exact sequence of sheaves

on X

0 → L(−D) → L → OD → 0 , (3.1)

(where L ⊗ OD � OD) which induces a long exact cohomology sequence

0 → H 0(X, L(−D)) → H 0(X, L)
α→ H 0(X, OD) → H 1(X, L(−D))

→ H 1(X, L) → 0 . (3.2)

Let r be the degree of L in each fibre of π (which is independent of the
fibre) and let g be the genus of any fibre of π (also independent of the fibres).

Proposition 3.1 Let us assume that 2g−2 < r . Then, one has that H 1(X, L) =
0 and H 0(X, L) is a free Fq[z]-module of rank r − g + 1
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Proof. Under the condition 2g − 2 < r , one has that H 1(Xu, L|Xu
) = 0 for

every point u ∈ U . Note that Hi(X, F )̃ = Riπ∗F for every coherent sheaf F
on X ([4] III), and applying ([4] III Corollary 12.9) one concludes the proof. 
�

Under the hypothesis of Proposition 3.1, there exists an exact sequence of
Fq[z]-modules

0 → H 0(X, L(−D)) → H 0(X, L)
α→ H 0(X, OD) → H 1(X, L(−D)) → 0 .

(3.3)

where H 0(X, OD) is a free Fq[z]-module of rank n.

Remark 3.2 Let η ∈ U be the generic point of U , whose residue field is Fq(z);
the fibre Xη = π−1(η) is a smooth, irreducible curve over Fq(z). Note that
p1(η), . . . , pn(η) are n different Fq(z)-rational points of the curve Xη. One
then has a canonical decomposition of H 0(X, OD)η as a Fq(z)-algebra

H 0(X, OD)η = Fq(z) × n). . . × Fq(z) .

Given a Fq[z]-module M , let us denote by Mη the Fq(z)-vector space

Mη = M ⊗Fq [z] Fq(z) .

The sequence (3.3) induces an exact sequence of Fq(z)-vector spaces

0 → H 0(X, L(−D))η → H 0(X, L)η
αη→ H 0(X, OD)η →

H 1(X, L(−D))η → 0 . (3.4)

Definition 3.3 The complete convolutional Goppa code associated with L and
D is the image of the homomorphism αη

C(L, D) = Im
(
H 0(X, L)η

αη−→ H 0(X, OD)η � Fq(z)
n
)

.

Given a free submodule � ⊆ H 0(X, L), the convolutional Goppa code associ-
ated with � and D is the image of αη|�η

C(�, D) = Im
(
�η

αη−→ Fq(z)
n
)

.

Remark 3.4 We use definition 2.4 of [7] as definition of convolutional codes.
Any matrix defining αη (respectively αη|�η

) is a generator matrix of rational
functions for the code C(L, D) (resp. C(�, D)).

The canonical decomposition H 0(X, OD)η � Fq(z)
n as Fq(z)-algebras

does not extend (in general) to a decomposition H 0(X, OD) � Fq[z]n as rings.
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In fact, one has a canonical isomorphism of rings H 0(X, OD)
φ∼→ Fq[z]n only

when p1(U), . . . , pn(U) are disjoint sections. However, H 0(X, OD) is a free
Fq[z]-module; then, there exist (non-canonical) isomorphisms of Fq[z]-mod-
ules:

H 0(X, OD)
φ∼→ Fq[z] ⊕ n). . . ⊕ Fq[z] ,

which are not (in general) isomorphism of rings.
This allows us to give another definition of convolutional Goppa codes, as

submodules of a polynomial module [9].

Definition 3.5 Given a trivialization φ : H 0(X, OD) ∼→ Fq[z]n as Fq[z]-mod-
ules, one defines the convolutional Goppa code C(L, D, φ) as the image of
φ ◦ α

H 0(X, L)
α→ H 0(X, OD)

φ∼→ Fq[z]n .

Analogously, one defines the convolutional Goppa code C(�, D, φ).

Let us assume (for the rest of the paper) that the invariants (r, n, g) satisfy
the inequality

2g − 2 < r < n .

Proposition 3.6 Under the above conditions on (r, n, g), H 0(X, L(−D)) = 0
and H 1(X, L(−D)) is a free Fq[z]-module. The following exact sequence is
exact

0 → H 0(X, L)
α→ H 0(X, OD) → H 1(X, L(−D)) → 0 . (3.5)

and remains exact when we take fibres over every point u ∈ U .

Proof. If 2g − 2 < r < n, H 0(Xu, L(−D)|Xu
) = 0 for every point u ∈ U ; and

applying ([4] III Corollary 12.9) one concludes. 
�

Corollary 3.7 The convolutional code C(L, D, φ) has dimension k = r−g+1
and length n. Every matrix defining φ ◦ α is a basic generator matrix [7] for
C(L, D, φ).

Proof. This is a direct consequence of the last statement of Proposition 3.6 and
the characterization of basic generator matrices of [7]. 
�

Let us consider the convolutional Goppa code C(�, D, φ) defined by a sub-
module � ⊆ H 0(X, L) and a trivialization φ. With the above restrictions, one
has:

Proposition 3.8 Every matrix defining φ ◦ α|� is a basic generator matrix for
the code C(�, D, φ) if and only if H 0(X, L)/� is a torsion-free Fq[z]-module.
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Proof. The sequence (3.5) induces a diagram

0

��

0
��

0 �� �

��

α|� �� H 0(X, OD) �� H 1(X, �)

��

�� 0

0 �� H 0(X, L)

��

�� H 0(X, OD) �� H 1(X, L(−D))

��

�� 0

H 0(X, L)/� 0

Then, the kernel ofH 1(X, �) → H 1(X, L(−D)) is isomorphic toH 0(X, L)/�

and H 1(X, L(−D)) is free. This implies that the torsion elements of H 1(X, �)

are contained in H 0(X, L)/�, from which one concludes the proof. 
�
The above results allow us to construct basic generator matrices for the

codes C(�, D, φ). If p1(U), . . . , pn(U) are disjoint sections and φ the canoni-
cal trivialization, this gives us a basic generator matrix for C(�, D). However,
in general the codes C(�, D) and C(�, D, φ) are different.

Let us describe a geometric way to obtain a basic generator matrix for
C(L, D) and C(�, D).

Assume that the curvesp1(U), . . . , pn(U)meet transversally at some points,
and let X̄ be the blowing-up [4] of X at these points. One has morphisms

X̄
β ��

π̄=π◦β ���
��

��
��

X

π

��
U

such that the proper transform of D under π is a divisor D̄ ⊂ X̄ satisfying

D̄ = p1(U) � · · · � pn(U)
β→ D ,

and one has a canonical homomorphism of rings

0 → OD → β∗OD̄

which induces
0 → π∗OD

β→ π̄∗OD̄ �
∼

Fq[z]n ,

where π̄∗OD̄ �
∼

Fq[z]n is the canonical isomorphism of sheaves of rings.
β∗L is an invertible sheaf on X̄ and there exists a canonical homomorphism

β∗L → OD̄ → 0 ,

whose kernel is (β∗L)(−D̄). We have also an injective homomorphism

0 → L → β∗β∗L ,
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and taking global sections one obtains

0 → H 0(X, L)
γ→ H 0(X, β∗β∗L)

µ→ Fq[z]n .

The image of µ is precisely a free submodule of Fq[z]n that defines a basic
generator matrix for C(L, D).

Let us consider the sequence of homomorphisms

0 → H 0(X, L)
α→ H 0(X, OD)

β
↪→ H 0(X, OD̄) = Fq[z]n .

β◦α is not in general a basic matrix, since H 0(X, OD̄)/H 0(X, OD) has torsion.
Let us define

H̄ 0(X, L) = {p ∈ Fq[z]n such that λp ∈ H 0(X, L) for some λ ∈ Fq[z]} .

H̄ 0(X, L)/H 0(X, L) is a torsion module and Fq[z]n/H̄ 0(X, L) is torsion-free.
Then, every matrix defining the homomorphism H̄ 0(X, L) ↪→ Fq[z]n is a basic
generator matrix for C(L, D).

This is an algebraic-geometric interpretation of Forney’s construction of the
basic matrices of a convolutional code [1].

4 Convolutional Goppa Codes associated with the projective line

Let P
1 = Proj Fq[x0, x1] be the projective line over Fq , and

X = P
1 × U

π→ U = Spec Fq[z]

the trivial fibration. Let us denote by t = x1/x0 the affine coordinate in P
1, and

by p∞ its infinity point. Let us consider the following n different sections of π

pi : U → P
1 × U

defined in the coordinates (t, z) by

pi(z) = (αiz + βi, z) , αi, βi ∈ Fq .

Let D = p1(U) + · · · + pn(U) and let L be the invertible sheaf on X

L = π∗
1 OP1(rp∞) ⊗Fq

OU , r < n ,

The exact sequence (3.5) is in this case:

0 → H 0(X, L)
α �� H 0(X, OD) �� H 1(X, L(−D)) �� 0 .

|| ||
H 0(P1, OP1(rp∞)) ⊗ Fq[z] α �� Fq[z]n
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Taking the fibres over the generic point η, and the canonical trivialization
(π∗OD)η � Fq(z)

n, the homomorphism αη is the evaluation map at the points
p1(η), . . . , pn(η)

αη : H 0(P1, OP1(rp∞)) ⊗Fq
Fq(z) → Fq(z)

n

αη(t
j ) = (

t j (p1(η)), . . . , t j (pn(η))
) = (

(α1z + β1)
j , . . . , (αnz + βn)

j
)
,

where {1, t, . . . , t r} is the “canonical” basis of H 0(P1, OP1(rp∞)) in the affine
coordinate t . The convolutional code C(L, D) is a kind of generalized Reed-
Solomon (RS) code (for z = 0 we obtain a classical RS-code).

Let� ⊆ H 0(P1, OP1(rp∞))be the linear subspace generated by {t s, . . . , t r}.
The convolutional Goppa code C(�, D) is the image of the homomorphism

αη : �⊗Fq
Fq(z) → Fq(z)

n

tj �−→ αη(t
j ) , for s ≤ j ≤ r.

In this case H 0(X, L)/� � (
H 0(P1, OP1(rp∞))/�

)⊗Fq
Fq[z] is torsion-free.

Then, by Proposition 3.8 every matrix defining

α : � ⊗Fq
Fq[z] → H 0(X, OD)

is a basic generator matrix. To compute a matrix for α explicitly, we need to fix
an isomorphism of Fq[z]-modules

H 0(X, OD)
φ→ Fq[z]n,

and this gives a generator matrix for C(�, D, φ). However, it would be desirable
to compute basic matrices for the codes C(�, D). We shall do this in general in
a forthcoming paper. Here we shall offer some explicit examples.

Example 4.1 Let a, b ∈ Fq be two different non-zero elements, and

pi(z) = (ai−1z + bi−1, z) , i = 1, . . . , n , with n < q.

The evaluation map αη over � is defined by the matrix





(z + 1)s (az + b)s (a2z + b2)s . . . (an−1z + bn−1)s

(z + 1)s+1 (az + b)s+1 (a2z + b2)s+1 . . . (an−1z + bn−1)s+1

...
...

...
. . .

...

(z + 1)r (az + b)r (a2z + b2)r . . . (an−1z + bn−1)r






. (4.1)

This matrix is a generator matrix for the code C(�, D). Using this construction
we can give concrete examples of CGC of dimension k = r − s + 1 that are
Maximum-Distance Separable (MDS) convolutional codes, i.e., whose free dis-
tance d attains the generalized Singleton bound d ≤ (n−k)(�δ/k�+1)+δ+1,
where δ is the degree of the code. ([10] Th. 2.2 and Definition 2.5).
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• If s = r , the convolutional Goppa code C(�, D) has dimension 1, degree r ,
and (4.1) is a canonical (reduced and basic [7]) generator matrix. We can list
a few examples, where k/n, δ and d are respectively the rate, the degree and
the free distance of the code.

field canonical generator matrix k/n δ d

F3 = {0, 1, 2} (
z + 1 z + 2

)
1/2 1 4

F4 = {0, 1, α, α2} (
z + 1 z + α z + α2

)
1/3 1 6

where α2 + α + 1 = 0

F5 = {0, 1, 2, 3, 4} (
(z + 1)2 (z + 2)2 (z + 4)2

)
1/3 2 9

In these examples the sections p1, . . . , pn are disjoint, such that C(�, D) =
C(�, D, φ), where φ : H 0(X, OD) ∼→ Fq[z]n is the corresponding canonical
trivialization.

• If s < r , let us take a ∈ Fq as a primitive element.
Now, the matrix (4.1) is reduced, since the matrix of highest-degree terms

in each row is a Vandermonde matrix of rank k. The sections p1, . . . , pn are
not disjoint, but in some cases the matrix (4.1) is actually basic and we do not
have to find an isomorphism of Fq[z]-modules, φ : H 0(X, OD) ∼→ Fq[z]n, in
order to compute a basic generator matrix for the code C(�, D).
We present two examples of this situation.

field canonical generator matrix k/n δ d

F4

(
1 1 1

z + 1 αz + α2 α2z + α

)
2/3 1 3

F5

(
z + 1 2z + 3 4z + 4 3z + 2

(z + 1)2 (2z + 3)2 (4z + 4)2 (3z + 2)2

)
1/2 3 8
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