
May 16, 2008 13:11 World Scientific Review Volume - 9in x 6in libroAGcodes

Chapter 11

Algebraic Geometry Constructions of Convolutional Codes
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Algebraic-geometric techniques to construct linear codes can be applied
to construct convolutional codes, using algebraic curves over function
fields. In this way we construct convolutional Goppa codes and provide
a systematic way for constructing convolutional codes with prescribed
properties. We study convolutional Goppa codes defined by the projec-
tive line and elliptic curves in detail.
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11.1. Introduction

The notion of convolutional codes was introduced by Peter Elias [1] in

1955, considering the codification as a time-dependent process: the codified

word at some instant depends not only on the information word at that

instant, but also on the previous words; the number of the previous words
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on which the codifications depends is called the memory of the codifier;

in this scheme the codification of a word can be interpreted as a certain

convolution with other words.

The use of convolutional codes was very important after the discovery

by Andrew Viterbi [2] in 1967 of the decodification algorithm known by his

name. The compatibility of this algorithm depends exponentially on the

memory of the codifier.

One of the main applications of convolutional codes is the transmission

of information through the deep-space, where there are strong limitations

of potency, but in general no restrictions to the wide band. The communi-

cation systems used in artificial satellites transmit telemetric information:

orders from earth stations to satellites and tracking. In the telemetric chan-

nel, where the rate of the code is relatively high, convolutional and block

codes are used.

For instance, the space missions Pioneer 10 and 11 to Jupiter and Sat-

urn in 1972-73 used a convolutional code of rate 1/2 and memory 31. After

Viterbi, a planetary standard as a convolutional code of rate 1/2 and mem-

ory 6 was implemented. This code was used for the first time in the Voyager

1 mission (1980-81), concatenated with a Reed-Solomon code, and in the

Galileo (1986) and Voyager 2 missions (1989), concatenated with other

convolutional and block codes.

Convolutional codes are also used in the construction of turbo-codes,

introduced in 1983 by Berrou, Glavieux and Thitimajshima [3]. These are

the codes currently used in wireless communications.

There are different approaches to the study of convolutional codes: they

can be studied as sequential circuits, as discrete linear systems, etc. From

an algebraic point of view, the fundamental reference is the work of G.

David Forney Jr. [4] in 1970. Then came the works of Robert J. McEliece [5]

in 1977 and Philippe Piret in 1988 [6]. More recently, McEliece [7] in 1998

again gave an introduction to the algebraic theory of convolutional codes,

which clarifies the previous approaches.

The recent work of Joachim Rosenthal, Roxana Smarandache [8] and

Heide Gluesing-Luerssen [9] in 1999 and 2001, Vakhtang Lomadze [10] in

2001, and the authors of this chapter [11] in 2004, has shown that the

use of techniques of Algebraic Geometry are very useful in the study of

convolutional codes.

Our contribution continues with five sections. In §2 we give an intro-

duction to the general theory of convolutional codes. Section §3 is devoted

to constructing convolutional Goppa codes in terms of algebraic curves de-
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fined over the field of rational functions in one variable over a finite field

(see [12]).

In §4 we analyze the notion of weight and free distance for convolutional

codes, and their possible geometric interpretation in the case of convolu-

tional Goppa codes.

Finally, §5 and §6 are devoted to studying some explicit examples of

convolutional Goppa codes defined by the projective line and elliptic curves.

11.2. Convolutional Codes

Given a finite field Fq, representing the symbols in which an information

word u ∈ Fk
q is written, a linear block encoder is essentially an injective

linear map

G : Fk
q ↪→ Fn

q

u "→ x = u ·G
,

whose image subspace is the linear code Ck = ImG ⊂ Fn
q .

The map G is a k × n matrix with entries in Fq, which is called a gen-

erator matrix of the code (their rows are a basis of Ck); k is the dimension

of the code, and n is its length. Alternatively, one can define the code Ck
by its implicit equations

Ck = {x ∈ Fn
q / H · x = 0} ,

where H is an (n − k) × n matrix with entries in Fq, called a parity-check

(control) matrix of the code.

In practical applications, the codification process is not limited to a sin-

gle word, but a sequence of information words depending on time u(t) ∈ Fk
q ,

t = 0, 1, 2, . . . , which after the codification are transformed in the sequence

of codified words

x(t) = u(t) ·G ∈ Ck ∈ Fn
q , t = 0, 1, 2, . . .

The codified word x(t) at the instant t depends only on the information

word u(t) at the same instant t.

The basic idea of convolutional codification is to allow x(t) to depend

not only on u(t) but also on u(t− 1), . . . , u(t−m) for some positive integer

m, which is the memory of the code. One can then consider a linear block

code as a convolutional code with zero memory.
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Let us explain this with greater precision. One can write a sequence of

words as a polynomial in one variable z whose coefficients are the sequence,

U(z) =
∑

t

u(t)zt ∈ Fq[z]
k ,

and the product by zi can be considered as a delay operator

ziU(z) =
∑

t

u(t)zt+i =
∑

t

u(t− i)zt ∈ Fq(z)
k .

One can now define a convolutional (polynomial) encoder as an injective

homomorphism of Fq[z]-modules

G(z) : Fq[z]
k ↪→ Fq[z]

n

U(z) "→ X(z) = U(z) ·G(z)
,

where G(z) is a k × n matrix with entries in Fq[z].

If we allow the possibility of performing feedback, this means that we can

reverse the delay, and define convolutional codification more generally over

Fq(z), the field of fractions of Fq[z], i.e., the localization of the ring Fq[z]

with respect to the multiplicative system S = {Q(z) ∈ Fq[z]/Q(z) &= 0}.

Thus, a convolutional encoder is an injective Fq(z)-linear map

G(z) : Fq(z)
k ↪→ Fq(z)

n ,

with the entries of G(z) also in Fq(z).

Definition 11.1. An (n, k) convolutional code Ck over Fq is a linear sub-

space of dimension k over Fq(z) of Fq(z)
n.

The integers (n, k) are called, respectively, the length and dimension of

the convolutional code, and n/k is the ratio of Ck ⊆ Fq(z)
n.

Example 11.1. The subspace of dimension 1 in F2(z)
3 defined by

C1 = 〈1 + z, 1 + z2, z + z3〉 ,

is a (3, 1)-convolutional code over F2, in which the code word x(t) at the

instant t is obtained in terms of the information words u(t), u(t−1), u(t−2)

and u(t− 3) in the following way:

x(t) = (u(t) + u(t− 1), u(t) + u(t− 2), u(t− 1) + u(t− 3)) .
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11.2.1. Convolutional encoders. Linear systems and cir-

cuits.

Definition 11.2. A convolutional encoder, or codifier, for a convolutional

code Ck ⊆ Fq(z)
n is a k × n matrix

G(z) =






G1(z)
...

Gk(z)




 ,

where Gi(z) = (Gi1(z), . . . , Gin(z)) ∈ F (z)n are a basis of Ck.

Equivalently, G(z) is a generator matrix that defines an injective linear

encoding map:

G(z) : F (z)k ↪→ F (z)n

U(z) "→ X(z) = U(z) ·G(z) ,

such that ImG(z) = Ck ⊂ F (z)n.

Given two codifiers G(z) and G′(z) of the same convolutional code Ck,

there exists an element (the base change) B(z) ∈ GL(k, Fq(z)) of the linear

group of dimension k over Fq(z) such that:

G′(z) = B(z) ·G(z) .

Example 11.2. The convolutional code C1 defined in example 11.1 has the

following different encoders

G(z) = ( 1 + z, 1 + z2, z + z3 )

G′(z) = ( z, z + z2, z2 + z3 )

G′′(z) = ( 1, 1 + z, z + z2 )

G′′′(z) = ( 1
1+z

, 1, z )

and the following identities are satisfied

G(z) =
1 + z

z
·G′(z) = (1 + z) ·G′′(z) = (1 + z2) ·G′′′(z) .

Definition 11.3. A polynomial encoder is a convolutional encoder G(z)

whose entries are in Fq[z].

If Gi(z) is the i-th row of a polynomial encoder G(z), the degree of Gi(z),

denoted ei = DegreeGi(z), is the highest of the degrees of its components

ei = max
1≤j≤n

(DegreeGij(z)) .
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The memory of a polynomial encoder G(z), denoted mG, is the maximun

degree of its rows

mG = max
1≤i≤k

ei .

The degree of a polynomial encoder G(z), denoted δG, is the sum of the

degrees of its rows

δG =
k∑

i=1

ei .

Remark 11.1. By reordering the rows of G(z), one can henceforth assume

that

e1 ≤ · · · ≤ ek = mG .

Every convolutional code has polynomial encoders: if G(z) is an arbi-

trary encoder and µ(z) the least common multiple of the denominators of

its coefficients, µ(z)G(z) is a polynomial encoder of the same code. Thus,

for any encoder G(z) one can consider the degree δG as the degree of the

polynomial encoder µ(z)G(z). In particular, linear block codes are convo-

lutional codes for which there are zero degree encoders.

Definition 11.4. A convolutional encoder G(z) is called realizable if the

denominators of its entries are not multiples of z.

The notion of realizable encoder is related to the possibility of describing

the encoder as a linear system and therefore the possibility of constructing

a physical circuit which performs the encoding process. Given a k × n

realizable encoder G(z) of degree δG, it can be decomposed as

G(z) = D + E(z) · C ,

where D = G(0) is a k× n matrix with entries in Fq; C is a δG × n matrix

with entries in Fq, and E(z) is a k × δG matrix defining the morphism of

states with values in the space of state-variables Fq[z]
δG

E(z) : Fq[z]
k → Fq[z]

δG

U(z) "→ S(z) = U(z) · E(z) .

With these notations, the encoding morphism can be expressed in terms of

the state-variables S(z) as:

X(z) =U(z) ·G(z) = S(z) · C + U(z) ·D .

z−1S(z) =U(z) · z−1E(z) .
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Denoting B = (z−1E(z))|z=0 and decomposing z−1E(z) = B + E(z) · A,

where A is a δG × δG matrix with entries in Fq, one obtains the following

identity:

z−1S(z) = U(z) · (E(z) ·A + B) = S(z) ·A + U(z) ·B .

Thus, a convolutional realizable encoder is equivalent to a time-invariant

linear system with a finite number of state variables. The state space de-

scription of the encoder is given by

s(t + 1) =s(t) ·AδG×δG + u(t) ·Bk×δG

x(t) =s(t) · CδG×n + u(t) ·Dk×n

}

. (11.1)

By solving the states in the first equation, one obtains x(t) as a function of

a set u(t), u(t − 1), . . . . If this set is infinite, we say that the encoder has

infinite memory, whereas if it is finite u(t), u(t− 1), . . . , u(t−mG), we call

mG the memory of the realizable encoder G(z).

Example 11.3. The encoder G′′′(z) = ( 1
1+z

, 1, z) of example 11.2 is re-

alizable and its degree is δG′′′ = 2. Applying the above description, one

obtains:

D =G′′′(z)|z=0 = (1, 1, 0)

G′′′(z)−D =

(
z

1 + z
, 0, z

)

=
1

1 + z

(
z, 0, z + z2

)
=

=
1

1 + z

(
z, z2

)

︸ ︷︷ ︸

E(z)

·

(
1 0 1

0 0 1

)

︸ ︷︷ ︸

C

B =(z−1E(z))|z=0 = (1, 0)

z−1E(z)−B =
1

1 + z
(z, z) =

1

1 + z
(z, z2)

︸ ︷︷ ︸

E(z)

·

(
1 1

0 0

)

︸ ︷︷ ︸

A

and finally the state equations are:

(s1(t + 1), s2(t + 1)) =(s1(t), s2(t)) ·

(
1 1

0 0

)

+ u1(t) · (1, 0) ,

(x1(t), x2(t), x3(t)) =(s1(t), s2(t)) ·

(
1 0 1

0 0 1

)

+ u1(t) · (1, 1, 0) .







.
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Remark 11.2. Let us consider the equations of the encoder of the above

example 11.3

(s1(t + 1), s2(t + 1)) =(u1(t) + s1(t), s1(t)) ,

(x1(t), x2(t), x3(t)) =(u1(t) + s1(t), u1(t), s1(t) + s2(t)) .

}

The state s1 depends recurrently on itself; that is, there is feed-back, and

by substituting the first equation in the second one obtains

x1(t) = u1(t) + s1(t) =u1(t) + u1(t− 1) + s1(t− 1) =

=u1(t) + u1(t− 1) + u1(t− 2) + s1(t− 2) =

=u1(t) + u1(t− 1) + u1(t− 2) + u1(t− 3) + . . .

Accordingly, the code word depends indefinitely on the information word,

which means that the encoder has infinite memory, although its degree is

finite.

The generator matrix of an encoder can be recovered from its expression

as a linear system: writing equations (11.1) as

z−1S(z) =S(z) ·A + U(z) ·B

X(z) =S(z) · C + U(z) ·D

}

,

and eliminating the state variables, one concludes:

G(z) = B · (z−1 IdδG −A)−1 · C + D .

Example 11.4. Let us consider the matrices of the linear system defined

in example 11.3:

A =

(
1 1

0 0

)

, B =
(
1 0

)
, C =

(
1 0 1

0 0 1

)

, D =
(
1 1 0

)
.

One has
(
z−1 Id2−A

)−1
= 1

1+z

(
z z2

0 z + z2

)

, and hence:

1

1 + z

(
1 0

)
·

(
z z2

0 z + z2

)

︸ ︷︷ ︸

E(z)

·

(
1 0 1

0 0 1

)

+
(
1 1 0

)
=

(
1

1+z
, 1, z

)

= G′′′(z) .

The description of realizable encoders as linear systems allows us to

express them as physical devices called sequential circuits, composed of

memory boxes for delay operations (as many as the memory of the encoder)

and sum boxes for addition operations.
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Example 11.5. Let us consider the encoder of example 11.3. Its expression

as linear systems is given by the equations:

s1(t + 1) =u1(t) + s1(t)

s2(t + 1) =s1(t)

}

,

x1(t) =u1(t) + s1(t)

x2(t) =u1(t)

x3(t) =s1(t) + s2(t)







,

which correspond to the circuit:

11.2.2. Basic encoders. Degree of a convolutional code

Let Ck ⊆ Fq(z)
n be a (n, k)-convolutional code. Any polynomial encoder

G(z) for Ck induces a morphism of Fq[z]-modules:

φG : Fq[z]
k ↪→ Fq[z]

n ,

whose localization with respect to the multiplicative system S = {Q(z) ∈

Fq[z]/Q(z) &= 0} is the encoding map:

G(z) = (φG)S : Fq(z)
k ↪→ Fq(z)

n .

The existence of a decoding map G−1(z) : Fq(z)
n → Fq(z)

k retract of G(z)

(i.e. G(z) ·G−1(z) = Idk) can be deduced from the exact sequence:

0→ Fq[z]
k φG
−→ Fq[z]

n → Fq[z]
n/ ImφG → 0 .

For each multiplicative system S ⊂ Fq[z], one has the exact sequence:

0→ Fq[z]
k
S

(φG)S
−→ Fq[z]

n
S → (Fq[z]

n/ ImφG)S → 0 .
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The existence of a retract of (φG)S is equivalent to saying that

(Fq[z]
n/ ImφG)S is a free module isomorphic to Fq[z]

n−k
S . Let us consider

the decomposition of Fq[z]
n/ ImφG as:

Fq[z]
n/ ImφG + Fq[z]

n−k ⊕ T ,

where T is the torsion submodule of Fq[z]
n/ ImφG. Then, (φG)S is a retract

if and only if TS = 0. On the other hand,

T + Fq[z]/〈γi(z)〉 ⊕ · · · ⊕ Fq[z]/〈γk(z)〉 ,

where γi(z) ∈ Fq[z] are the invariant factors of φG,

γi(z) = ∆i(z)/∆i−1(z) ,

where ∆i(z) is the highest common divisor of the minors of order i of G(z).

Thus, the vanishing of TS is equivalent to the condition of ∆k(z) being

invertible in Fq[z]S .

Definition 11.5. A polynomial encoder G(z) is non-catastrophic if any of

the following equivalent conditions are satisfied:

(1) G(z) has a right inverse in Fq[z]S , where S = {zl, l ≥ 0}.

(2) ∆k(z) = zl, l ≥ 0.

The word catastrophic is used by Massey and Sain [13] to refer to en-

coders in which a code word X(z) of finite length can be obtained from

an information word U(z) of infinite length, and hence the code word may

contain infinite errors (catastrophic errors).

Example 11.6. Let us consider the encoder G′(z) = (z, z + z2, z2 + z3)

of example 11.2. One has that ∆1(z) = z, and therefore G′(z) is a non-

catastrophic encoder, which has a (non-unique) right inverse, such as for

instance:

(G′)−1(z) =





1
z
+ P (z)(1 + z) + Q(z)(1 + z2)

P (z)

Q(z)



 ,

where P (z), Q(z) are arbitrary polynomials in Fq[z].

Definition 11.6. A polynomial encoder G(z) is basic if any of the following

equivalent conditions are satisfied:

(1) G(z) has a right inverse in Fq[z].

(2) ∆k(z) = 1.
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(3) γ1(z) = · · · = γk(z) = 1.

In particular, any basic encoder is non-catastrophic.

Example 11.7. The encoder G′′(z) = (1, 1 + z, z + z2) of example 11.2

satisfies the condition γ1(z) = 1, and is therefore basic. A right inverse of

G′′(z) is:

G−1(z) =





1 + P (z)(1 + z) + Q(z)(1 + z2)

P (z)

Q(z)



 .

The existence of basic encoders for all convolutional codes was proved

in a constructive way by Forney [4], using the Smith algorithm for the

computation of invariant factors.

Theorem 11.1. All convolutional codes admit basic encoders.

Proof. Let G(z) be a polynomial encoder for an (n, k)-convolutional

code. The Smith algorithm allows us to compute the invariant factors

γ1(z), . . . , γk(z) of φG and two unimodular matrices B(z) ∈ GL(k, Fq[z]),

C(z) ∈ GL(n, Fq[z]) such that:

B(z) ·G(z) · C(z) =
(
Γ(z) | 0k×(n−k)

)
,

where

Γ(z) =






γ1(z)
. . .

γk(z)




 .

From the above identity, one obtains:

Γ(z)−1 ·B(z) ·G(z) = (Idk |0) · C(z)
−1 ,

which has invariant factors equal to 1 and is therefore a basic encoder whose

right inverse is the polynomial matrix determined by the first k columns of

C(z). ¤

Example 11.8. If we apply the above algorithm to the polynomial encoder

G(z) = (1 + z, 1 + z2, z + z3) introduced in example 11.1, we obtain:

Γ(z) = (1 + z) B(z) = (1) , C(z) =





1 1 + z z + z2

0 1 0

0 0 1



 ,
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and the corresponding basic encoder is

Γ(z)−1 ·B(z) ·G(z) =
1

1 + z
· (1) · (1+ z, 1+ z2, z + z3) = (1, 1+ z, z + z2) .

The basic encoders are a maximal class in the set of polynomials en-

coders, in the following sense:

Theorem 11.2. Let G(z) and G′(z) be two polynomial encoders of an (n, k)

convolutional code. One has:

(1) If G(z) is basic and ImφG ⊆ ImφG′ , then ImφG = ImφG′ .

(2) If G(z) and G′(z) are basic, then ImφG = ImφG′ .

Proof. (1) One has a conmutative diagram:

0 // Fq[z]
k

φG∼ // ImφG
Â Ä //

Ä _

f

²²

Fq[z]
n // Fq[z]

n/ ImφG
//

h

²²

0

0 // Fq[z]
k

φ
G′∼ // ImφG′

Â Ä // Fq[z]
n // Fq[z]

n/ ImφG′
// 0

and kerh = Coker f . Since f is injective, one has that Coker f =

ImφG′/ ImφG, and Fq[z]
n/ ImφG is free, since G(z) is basic. Thus, kerh

is torsion-free and hence ImφG′/ ImφG = 0.

(2) The submodule ImφG + ImφG′ generates the convolutional code

and contains ImφG and ImφG′ . Thus, applying (1), one has ImφG =

ImφG + ImφG′ = ImφG′ . ¤

Remark 11.3. This theorem implies that basic encoders are invariant with

respect the action of the unimodular group GL(k, Fq[z]) = AutFq [z] Fq[z]
k.

Given two basic encoders G(z) and G′(z) of an (n, k) convolutional code,

there exists a B(z) ∈ GL(k, Fq[z]) such that:

G′(z) = B(z) ·G(z) .

Corollary 11.1. Let G(z) and G′(z) be two polynomial encoders of an

(n, k) convolutional code, and let us assume that G(z) is basic. If one

denotes

δ̄G = maximum degree of the minors of order k of G(z) ,

then:

δ̄G ≤ δ̄G′ .

In particular, if G′(z) is also basic, then δ̄G = δ̄G′ .
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Proof. G(z) and G′(z) define the same convolutional code, and hence

there exists a B(z) ∈ GL(k, Fq(z)) such that G′(z) = B(z) · G(z). Since

G(z) is basic, from theorem 11.2 ImφG′ ⊆ ImφG,

Fq[z]
k

φG∼ // ImφG

Fq[z]
k

B(z)

OO

φ
G′∼ // ImφG′ ,

Â ?

OO

and one deduces that B(z) ∈ GL(k, Fq[z]).

Because the minors of G′(z) are the minors of G(z) multiplied by the

determinant of B(z), one concludes that δ̄G′ ≥ δ̄G. If G′(z) is also basic,

one deduces the equality. ¤

In the sense of corollary 11.1, the degree of any basic encoder is an

invariant of the convolutional code.

Definition 11.7. The degree δ of a convolutional code Ck ⊆ Fq(z)
n is

δ = δ̄G ,

where G(z) is any basic encoder of Ck.

Sometimes the degree δ̄G of a polynomial encoder is also called internal

degree (see McEliece [7]) to distinguish it from the so-called external degree,

used to refer to the degree δG (see definition 11.3).

11.2.3. Minimal basic encoders. Canonical encoders

In the implementation of convolutional codes as physical devices it is

convenient to find minimal encoders, in the sense that the corresponding

circuit had a minimum quantity of memory boxes. The formalization of

the concept of minimality can be expressed in terms of the degree δ of the

code.

Theorem 11.3. (Forney [4]) For each (n, k)-convolutional code of degree

δ there exists at least one basic encoder G(z) such that

δ = δG ≤ δG′ ,

for all realizable encoders G′(z) of the convolutional code. These basic en-

coders G(z) are called minimal basic encoders.
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Definition 11.8. (McEliece [7]) Given an (n, k)-convolutional code Ck ⊆

Fq(z)
n, a polynomial encoder G(z) is called

• canonical, if δG ≤ δG′ , for every polynomial encoder G′(z) of Ck.

• reduced, if δG = δ̄G.

Theorem 11.4. (McEliece [7])A polynomial encoder is canonical if and

only if it is basic and reduced. Moreover, the set of row degrees is the same

for every canonical encoder,

e1 ≤ · · · ≤ ek = mG .

These invariants of the convolutional code are called the Forney indices.

The maximum degree ek = mG is called the memory of the convolutional

code.

Remark 11.4. A polynomial encoder G(z) = (Gij(z)) is reduced if and

only if the matrix Ḡ = (ḡij), ḡij ∈ Fq, defined by the coefficients of the

terms of highest degree in each row, has rank k (McEliece [7]).

Thus, one has the following method for constructing reduced encoders:

if the matrix Ḡ does not have rank k, there exists a zero linear combination

between its rows
k∑

i=1

λiḡij = 0 , with λi ∈ Fq , 1 ≤ j ≤ n ,

from which one can construct a linear combination between the rows of

G(z) by eliminating the terms of highest degree,

k∑

i=1

λiz
ek−eiGij(z) = 0 ,

and this allows us to replace a row of G(z) by a new one to obtain a new

encoder with the lowest degree in each row. Applying this process several

times, we finally obtain a reduced encoder.

Example 11.9. For the encoders of example 11.2 we have:

G(z) ∆k Basic δG δ̄G Reduced

(1 + z, 1 + z2, z + z3) 1 + z No 3 3 Yes

(z, z + z2, z2 + z3) z No 3 3 Yes

(1, 1 + z, z + z2) 1 Yes 2 2 Yes

In particular, one deduces that C1 ⊂ F2(z)
3 is a convolutional code with

memory equal to its degree, δ = 2.
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11.2.4. Dual code. Parity-check (control) matrix

Let us consider, over the Fq(z)-vectorial space Fq(z)
n, the pairing 〈 , 〉

Fq(z)
n × Fq(z)

n → Fq(z)

(X(z), Y (z)) "→ 〈X(z), Y (z)〉 =
n∑

i=1

Xi(z)Yi(z) ,
(11.2)

where X(z) = (X1(z), . . . , Xn(z)), Y (z) = (X1(z), . . . , Xn(z)) ∈ Fq(z)
n.

Definition 11.9. Given an (n, k)-convolutional code Ck ⊆ Fq(z)
n, the dual

code is the Fq(z)-subspace defined by

C⊥k = {Y (z) ∈ Fq(z)
n / 〈X(z), Y (z)〉 = 0 for every X(z) ∈ C} .

Theorem 11.5. C⊥k is an (n − k, k) convolutional code of degree equal to

the degree of Ck.

Proof. Let G(z) be a basic encoder Ck. Since G(z) is basic, then

Fq[z]
n/ ImφG + Fq[z]

n−k is free, and one has an exact sequence

0→ Fq[z]
k φG
−→ Fq[z]

n πG−→ Fq[z]
n−k → 0 ,

and taking HomFq [z]( , Fq) one obtains the exact sequence of free Fq[z]-

modules

0→ Fq[z]
n−k π∗

−→ Fq[z]
n φ∗G−→ Fq[z]

k → 0 .

By construction,

C⊥k + Imπ∗G ,

from which one concludes that the matrix H(z) defining π∗G is a basic

encoder of C⊥k and δG = δH . Moreover, one has:

H(z) ·G(z)T = 0 , (11.3)

an equality that allows us to compute H(z) from G(z) or viceversa. ¤

Definition 11.10. A parity-check (control) matrix for an (n, k)-

convolutional code Ck is every (n, n− k)-generator matrix H(z) of its dual

code C⊥k .

We can easily compute a parity-check matrix H(z) from equation (11.3)

when we have a generator matrix G(z) in which the first k columns have

rank k, making a base change to turn these columns into the identity matrix

of order k.
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Definition 11.11. An encoder G(z) of an (n, k)-convolutional code Ck ⊆

Fq(z)
n is systematic if it is takes the form

G(z) = (Idk×k | Ḡ(z)k×(n−k)) .

Let G(z) be a systematic encoder and let us decompose the parity-check

matrix H(z) as:

H(z) = (H̄(z)(n−k)×k | H̄ ′(z)(n−k)×(n−k)) .

From equation (11.3), one deduces that H̄(z)+H̄ ′(z)·Ḡ(z)T = 0. Therefore,

H(z) = H̄ ′(z) · (−Ḡ(z)T | Id(n−k)×(n−k)). Thus, we can take simply as a

parity-check matrix for Ck

H(z) = (−Ḡ(z)T | Id) .

Example 11.10. In example 11.2, the encoder G′′(z) = (1, 1 + z, z + z2)

is systematic. A parity check control matrix is:

H(z) =

(
1 + z 1 0

z + z2 0 1

)

.

Remark 11.5. There is another possible notion of dual codes (see [14]),

according to a time reversal Fq-linear pairing

[ , ] : Fq((z))
n × Fq((z))

n → Fq

(X(z), Y (z)) "→
∑

t

〈x(t), y(−t)〉 ,

where X(z) =
∑

t x(t)zt, Y =
∑

i y(t)zt ∈ Fq((z))
n, and 〈 , 〉 is the stan-

dard Fq-bilinear form on Fn
q . The duality with respect to this pairing [ , ] is

therefore a duality over the base field Fq, whereas the duality with respect

to the pairing (11.2) is over the field Fq(z).

11.3. Convolutional Goppa codes

(For an overview of linear Goppa codes, see [15] or [16], and also chapter

? in this book)

Let (X,OX) be a smooth projective curve over Fq(z) of genus g. Let

us denote by ΣX the field of rational functions of X, and let us assume

that Fq(z) is algebraically closed in ΣX . Both the Riemann-Roch and the

Residue theorems (see for instance [17]) still hold under this hypothesis.
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Given a set p1, . . . , pn of n different Fq(z)-rational points of X, if Opi

denotes the local ring at the point pi, with maximal ideal mpi , and ti is a

local parameter at pi, one has the exact sequences:

0→ mpi → Opi → Opi/mpi + Fq(z)→ 0 , .

s(ti) "→ s(pi) .
(11.4)

Let us consider the divisor D = p1 + · · ·+ pn, with its associated invertible

sheaf OX(D). One then has an exact sequence of sheaves

0→ OX(−D)→ OX → Q → 0 , (11.5)

where the quotient Q is a sheaf with support at the points pi.

Let G be a divisor on X of degree r, with support disjoint from D. Ten-

soring the exact sequence (11.5) by the associated invertible sheaf OX(G),

one obtains:

0→ OX(G−D)→ OX(G)→ Q → 0 . (11.6)

For each divisor F over X, let us denote its Fq(z)-vector space of global

sections by

L(F ) ≡ Γ(X,OX(F )) = {s ∈ ΣX | (s) + F ≥ 0} ,

where (s) is the divisor defined by s ∈ ΣX . Taking global sections in (11.6),

one obtains

0→ L(G−D)→ L(G)
α
→ Fq(z)×

n
$. . .× Fq(z)→ . . .

s "→ (s(p1), . . . , s(pn)) .

Definition 11.12. The convolutional Goppa code C(D, G) associated with

the pair (D, G) is the image of the Fq(z)-linear map α : L(G)→ Fq(z)
n.

Analogously, given a subspace Γ ⊆ L(G), one defines the convolutional

Goppa code C(D,Γ) as the image of α|Γ .

Remark 11.6. The above definition is more general than the one given

in [11] in terms of families of curves X → A1
Fq
. In fact, given such a family,

the fibre Xη, over the generic point η ∈ A1
Fq
, is a curve over Fq(z). However,

not every curve over Fq(z) extends to a family over A1
Fq
.

By construction, C(D, G) is a convolutional code of length n and dimen-

sion

k ≡ dimL(G)− dimL(G−D) .
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Prop 11.1. Let us assume that 2g−2 < r < n. Accordingly, the evaluation

map α : L(G) ↪→ Fq(z)
n is injective, and the dimension of C(D, G) is

k = r + 1− g .

Proof. If r < n, dimL(G − D) = 0, the map α is injective and k =

dimL(G). If 2g − 2 < r, dimL(G) = 1 − g + r by the Riemann-Roch

theorem. ¤

11.3.1. Dual convolutional Goppa codes

Given a convolutional Goppa code C(D, G), let C(D, G)⊥ be its dual

convolutional code, in the sense of definition 11.9.

Theorem 11.6. C⊥(D, G) is also a convolutional Goppa code, in the

following sense: If K denotes the canonical divisor of rational differen-

tial forms over X, then C⊥(D, G) is the image of the Fq(z)-linear map

β : L(K + D −G)→ Fq(z)
n, given by

β(η) = (Resp1
(η), . . . ,Respn(η)) .

Proof. Following the construction of C(D, G), we start by tensoring the

exact sequence (11.4) by m
∗
pi
= HomOpi (mpi ,Opi), and we obtain:

0→ Opi → m
∗
pi
→ Opi/mpi ⊗Opi m

∗
pi
+ Fq(z)→ 0

t−1
i s(ti) "→ s(pi) .

(11.7)

Again tensoring (11.7) by mpi/m
2
pi
, the tangent space of differentials at the

point pi, one obtains:

0→ mpi/m
2
pi
→ m

∗
pi
⊗Opi mpi/m

2
pi
→ Fq(z)→ 0

t−1
i s(ti)dti "→ s(pi) ,

(11.8)

where s(pi) = Respi(t
−1
i s(ti)dti).

This allows us to define a new convolutional Goppa code associated with

the pair of divisors D = p1 + · · · + pn and G; tensoring (11.5) by the line

sheaf OX(K + D −G), one has:

0→ OX(K −G)→ OX(K + D −G)→ Q → 0 . (11.9)

Taking global sections, one has

0→ L(K −G)→ L(K + D −G)
β
→ Fq(z)×

n
$. . .× Fq(z)→ . . .

η "→ (Resp1
(η), . . . ,Respn(η)) .
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The image of β is a subspace of Fq(z)
n, whose dimension can be calculated

by the Riemann-Roch theorem:

dimL(K + D −G)− dimL(K −G)

= dimL(G−D)− (r − n)− 1 + g − (dimL(G)− r − 1 + g)

= n− k .

Moreover, Imβ is the subspace C(D, G)⊥ ⊂ Fq(z)
n, because they have the

same dimension, and by the Residue theorem for every η ∈ L(K +D −G)

and every s ∈ L(G) one has

〈β(η), α(s)〉 =
n∑

i=1

s(pi)Respi(η) =
n∑

i=1

Respi(sη) = 0 .

¤

Under the hypothesis 2g − 2 < r < n, the map β is injective, and

C⊥(D, G) is a convolutional code of length n and dimension

dimL(K + D −G) = n− (1− g + r) .

Remark 11.7. In the context of duality in the sense of the pairing [ , ] of

remark 11.5,

[X(z), Y (z)] = Resz=0

(

〈X(z), Y (z)〉
dz

z

)

=
n∑

i=1

Resz=0

(

Xi(z)Yi(z)
dz

z

)

.

Thus, the duality for convolutional Goppa codes in the sense of Definition

11.9 is related to the residues at the points of X, and the duality with

respect to the pairing [ , ] is related to the residues in the variable of the

base field.

11.4. Weights and (free)distance

For vectors x = (x1, . . . , xn) ∈ Fn
q , the (Hamming) weight is defined as

hwt(x) = #{i | xi &= 0} and the (Hamming) distance between x, y ∈ Fn
q can

be defined as the weight hwt(y− x). In the setting of linear coding theory,

the corresponding notion of minimum weight (distance) of the words in the

code is one of the most important parameters of the code.

For convolutional codes, one needs an analogous notion for polynomial

vectors X(z) = (X(z)1, . . . , Xn(z)) ∈ Fq[z]
n. However, it is possible to

define two kinds of weights. First, one can simply define the Hamming

weight of X(z) as

hwt(X(z)) = #{i | Xi(z) &= 0} .
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Thus, the concept of minimum Hamming weight of a convolutional code

does not reflect the performance of convolutional codes over noisy channels

in convolutional coding theory. Of course the minimum Hamming weight

of a convolutional Goppa code C(D, G) can be bounded using the Riemann-

Roch theorem, as in the usual Goppa codes.

However, when one considers X(z) ∈ Fq[z]
n as a polynomial with vector

coefficients

X(z) =
∑

t

x(t)zt , where x(t) = (x1(t), . . . , xn(t) ∈ Fn
q ,

one can define a more natural notion of weight in convolutional coding

theory :

Definition 11.13. The weight of X(z) ∈ Fq[z]
n is

wt(X(z)) =
∑

t

hwt(x(t)) .

Definition 11.14. The (free) distance of a (n, k)-convolutional code Ck ⊆

Fq(z)
n is

d = Min{wt(X(z)) | X(z) ∈ Ck ∩ Fq[z]
n , X(z) &= 0} .

In particular, if the degree of the code is zero, Ck is a linear code and

the (free) distance is the (minimum) distance as linear code.

As in the case of linear codes, the distance d is one of the most important

parameters in convolutional coding theory.

In particular, an interesting problem is to find upper bounds for d. A

possible solution is to link convolutional codes with linear codes, fixing the

degree of the words in Ck:

Theorem 11.7. (McEliece [7]) For an (n, k)-convolutional code Ck ⊆

Fq(z)
n of Forney indices e1 ≤ · · · ≤ ek, let

CL = {X(z) ∈ C / Degree(X(z)) ≤ L} .

Identifying the set of all possible n-dimensional polynomial vectors of degree

≤ L over Fq with Fn(L+1)
q , one can see CL as an Fq-linear code of length

n(L + 1) and a certain dimension kL. Then,

kL =
k∑

i=1

Max(L + 1− ei, 0) ,

and

d ≤ MinL≥0 (Max{distance of possible (n(L + 1), kL) linear codes}) .
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This result can be used to calculate the distance d of a convolutional

code Ck from the distances dL of its linear (sub)codes CL.

Also it is possible for convolutional codes to find a bound of d analogous

to the Singleton bound for linear codes.

Theorem 11.8. (Rosenthal, Smarandache [8]) If Ck ⊆ Fq(z)
n is an (n, k)-

convolutional code of degree δ, its distance is bounded by:

d ≤ (n− k)
(
#
δ

k
$+ 1

)
+ δ + 1 .

If d achieves this bound, then Ck will be called a Maximum Distance Sepa-

rable (MDS) convolutional code.

For linear codes, there is a geometric interpretation of distance, in terms

of balls in the words of the code. Moreover, for linear Goppa codes the dis-

tance can be viewed in terms of the number of zeroes of certain meromorphic

functions, which allows us to use the Riemann-Roch theorem to make very

precise computations.

In the case of convolutional Goppa codes C(D,G) of length n over a

curve X defined over Fq(z), the interpretation of the notion of weight in

geometric terms is much more difficult. Let us assume that X can be

extended to a family of curves XU over U = SpecFq[z] = A1
Fq
(as in [11]).

Let X0 be the fibre of XU over the origin of U . The points p1, . . . , pn of

the divisor D define sections pi(z) : A1
Fq
→ XU and the polynomial words

of the code C(D,G) are defined by evaluating the sections s ∈ L(G) along

the sections pi(z).

Let p be one of the points defined by D, Cp the curve of XU defined as

the image of the section p(z), and q0 the intersection of Cp with X0; that

is, q0 = p(0). Let us assume that L(G) is a very ample linear series [17],

and let us assume that XU is immersed in PN
Fq
× P1

Fq
using the linear series

L(G). Let us denote by πr(q0) the r-th osculating plane to the curve Cp at

the point q0. One has a sequence of strict inclusions:

π0(q0) = q0 ⊂ π1(q0) ⊂ π2(q0) ⊂ · · · ⊂ πr(q0) ⊂ · · · .

The evaluation of s at p, s(p), can be expressed by:

s(p) = s0 + s1z + · · ·+ snz
n ,

where s0 = s(0) and sr, the r-th coefficient, can be interpreted as the r-th

jet of s(z) at the point q0.

With this interpretation in mind, one has that sr = 0 if and only if

Hs ∩ πr(q0) *= ∅ and Hs ∩ πr−1(q0) $ Hs ∩ πr(q0) ,
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where Hs is the hyperplane defined by the section s.

Accordingly, the problem of computing the number #{r | sr = 0} can

be translated into a problem of enumerative geometry over finite fields.

The main problem here is to develop the classical theory of osculating

planes and all the classical computations in the case of finite base fields.

This is not an easy problem, but its solution would allow one to give a

geometric interpretation of the distance of convolutional Goppa codes.

11.5. Convolutional Goppa Codes over the projective line

Let X = P1
Fq(z)

= ProjFq(z)[x0, x1] be the projective line over the field

Fq(z), and let us denote by t = x1/x0 the affine coordinate.

Let p0 = (1, 0) be the origin point, p∞ = (0, 1) the point at infinity, and

let p1, . . . , pn be different rational points of P1, pi *= p0, p∞. Let us define

the divisors D = p1 + · · ·+ pn and G = rp∞ − sp0, with

0 ≤ s ≤ r < n .

Since g = 0, the evaluation map α : L(G) → Fq(z)
n is injective, and Imα

defines a convolutional Goppa code C(D,G) of length n and dimension

k = r − s+ 1.

Let us choose the functions ts, ts+1, . . . , tr as a basis of L(G). If αi ∈

Fq(z) is the local coordinate of the point pi, i = 1, . . . , n, the matrix of the

evaluation map α is the following generator matrix for the code C(D,G):

G =








αs
1 αs

2 . . . αs
n

αs+1
1 αs+1

2 . . . αs+1
n

...
...
. . .

...

αr
1 αr

2 . . . αr
n








. (11.10)

The dual convolutional Goppa code C⊥(D,G) also has length n, and

dimension n− k = n− r + s− 1.

To construct C⊥(D,G), let us choose in L(K + D − G) the basis of

rational differential forms:

〈
dt

ts
∏n

i=1(t− αi)
,

t dt

ts
∏n

i=1(t− αi)
, . . . ,

tn−r+s−2dt

ts
∏n

i=1(t− αi)

〉

,
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and let us calculate the residues:

Respj

(
tmdt

ts
∏n

i=1(t− αi)

)

=

= Respj




(t− αj + αj)

md(t− αj)

(t− αj)(t− αj + αj)s
∏n

i=1

i "=j
(t− αj + αj − αi)





=
αm
j

αs
j

∏n
i=1

i "=j
(αj − αi)

.

If one sets hj =
1

αs
j

Q

n
i=1

i�=j

(αj−αi)
, then the matrix H of

β : L(K +D −G)→ Fq(z)n,

H =








h1 h2 . . . hn
h1α1 h2α2 . . . hnαn
...

...
. . .

...

h1α
n−r+s−2
1 h2α

n−r+s−2
2 . . . hnα

n−r+s−2
n







, (11.11)

is a generator matrix for the dual code C⊥(D,G), and therefore a parity-

check matrix for C(D,G). In fact, one has H ·GT = 0.

Remark 11.8. The matrix in (11.11) suggests that C⊥(D,G) is an alter-

nating code over the field Fq(z), and we can thus apply to C(D,G) some

kind of Berlekamp-Massey decoding algorithm as a linear code over Fq(z).

Example 11.11. Let a, b ∈ Fq be two different non-zero elements, and

αi = ai−1z + bi−1 , i = 1, . . . , n , with n < q .

We present some examples of convolutional Goppa codes with canoni-

cal generator matrices, whose distance d attains the generalized Singleton

bound 11.8 (i.e., they are MDS convolutional codes), and we include their

encoding equations as linear systems.

• Field F3(z), F3 = {0, 1, 2}:

G =
(
z + 1 z + 2

)

H =
(

1
2(z+1)

1
z+2

)

A = ( 0 ) , B = ( 1 ) , C = ( 1 1 ) , D = ( 1 2 )

(n, k, δ, d) = (2, 1, 1, 4) .
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• Field F4(z), F4 = {0, 1, α, α
2} where α2 + α+ 1 = 0:

G =

(
1 1 1

z + 1 αz + α2 α2z + α

)

H =
(

1
(α2z+α)(αz+α2)

1
(α2z+α)(z+1)

1
(αz+α2)(z+1)

)

A = ( 0 ) , B = ( 0
1 ) , C = ( 1 α α2 ) , D =

(
1 1 1
1 α2 α

)

(n, k, δ, d) = (3, 2, 1, 3) .

• Field F4(z):

G =
(
z + 1 z + α z + α2

)

H =

(
1
z+1

α
z+α

α2

z+α2

1 α α2

)

A = ( 0 ) , B = ( 1 ) , C = ( 1 1 1 ) , D = ( 1 α α2 )

(n, k, δ, d) = (3, 1, 1, 6) .

• Field F5(z), F5 = {0, 1, 2, 3, 4}:

G =
(
(z + 1)2 (z + 2)2 (z + 4)2

)

H =

(
2

(z+1)2
2

(z+2)2
1

(z+4)2

2
z+1

2
z+2

1
z+4

)

A = ( 0 1
0 0 ) , B = ( 1 0 ) , C = ( 2 4 3

1 1 1 ) , D = ( 1 4 1 )

(n, k, δ, d) = (3, 1, 2, 9) .

• Field F5(z):

G =

(
z + 1 2z + 3 4z + 4 3z + 2

(z + 1)2 (2z + 3)2 (4z + 4)2 (3z + 2)2

)

H =

(
4

a2bc
4

bcd2
4

a2bc
4

bcd2
4
abc

3
bcd

1
abc

2
bcd

)

where a = z + 1, b = z + 2, c = z + 3 and d = z + 4 ,

A =
(

0 0 0
0 0 1
0 0 0

)

, B = ( 1 0 0
0 1 0 ) , C =

(
1 2 4 3
2 2 2 2
1 4 1 4

)

, D = ( 1 3 4 2
1 4 1 4 )

(n, k, δ, d) = (4, 2, 3, 8) .
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11.6. Convolutional Goppa Codes over elliptic curves

We can obtain convolutional codes from elliptic curves in the same way.

Let X ⊂ P2
Fq(z)

be a plane elliptic curve over Fq(z), and let us denote
by (x, y) the affine coordinates in P2

Fq(z)
. Let p∞ be the infinity point,

and p1, . . . , pn rational points of X, with pi = (xi(z), yi(z)). Let us define

D = p1 + · · ·+ pn and G = rp∞.

The canonical basis of L(G) is {1, x, y, . . . , xayb}, with 2a+3b = r (and

b = 0, 1 so that there are no linear combinations). Thus, the evaluation

map α : L(G)→ Fq(z)n is:

α(xiyj) = (xi1(z)y
j
1(z), . . . , x

i
n(z)y

j
n(z)).

The image of a subspace Γ ⊆ L(G) under the map α provides a Goppa

convolutional code.

We present a couple of examples obtained from elliptic curves that,

although not MDS, have distance approaching that bound.

Example 11.12. We consider the curve over F2(z)

y2 + (1 + z)xy + (z + z2)y = x3 + (z + z2)x2 ,

and the points

p1 = (z
2 + z, z3 + z2)

p2 = (0, z
2 + z)

p3 = (z, z
2) .

L(G) is the subspace generated by {1, x}. Thus, the valuation map α is

defined by the matrix
(

1 1 1

z2 + z 0 z

)

.

This code has distance d = 2. The maximum distance for its parameters is

3.

Example 11.13. Let us now consider the curve over F2(z)

y2 + (1 + z + z2)xy + (z2 + z3)y = x3 + (z2 + z3)x2 ,

and the points

p1 = (z
3 + z2, 0)

p2 = (0, z
3 + z2)

p3 = (z
3 + z2, z5 + z3)

p4 = (z
2 + z, z3 + z)

p5 = (z
2 + z, z4 + z2) .
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Again we take L(G) as the subspace generated by {1, x}. Therefore, the

valuation map α is defined by the matrix
(

1 1 1 1 1

z3 + z2 0 z3 + z2 z2 + z z2 + z

)

.

This code has distance d = 4. The maximum distance for its parameters is

5.

Remark 11.9. Every elliptic curve X over Fq(z) can be considered the
generic fibre of a fibration X → U = SpecFq[z], with some fibres singular
curves of genus 1. The global structure of this fibration is related to the

singular fibres (see [18]); the translation into the language of coding the-

ory of the arithmetic and geometric properties of the fibration is the first

step in the program of applying the general construction to the effective

construction of good convolutional Goppa codes of genus 1.
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