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I. INTRODUCTION1   
 

 

Cancer is a heterogeneous group of malignancies, characterized by an uncontrolled 

cell proliferation and tissue invasiveness. It is the second cause of mortality in developed 

countries, being the first one in Spain for male population. 

 

 Microtubules are the target of several anticancer drugs, due to their significant role 

in many cellular processes of paramount importance, such as mitosis, transport and cell 

motility. Microtubules are cylinders formed by protofilaments composed of α,β-tubulin 

heterodimers and show a dynamic instability (figure 1). Drugs interacting with tubulin 

interfere in microtubules dynamics, thus altering their functionality and producing fatal 

consequences on cells involved in division processes, which are more frequent in cancer 

cells. 

 

 

 

                                                 
1 This english summary does not contain any figure or reference. Figures and references can be found in the 
spanish manuscript, which has the same chapters and sections than this summary. 
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 At least five different sites for ligands are found in tubulin, those for structural GTP 

(exchangeable, E site, and non-exchangeable, N site), and those for antimitotic drugs: 

taxol, vinca alkaloids and colchicine sites. Taxol produces stable non-functional 

microtubules, vinca alkaloids produce aberrant polycyclic structures and colchicine site 

ligands produce depolymerization of microtubules (figure 2). Many types of natural and 

synthetic compounds have been described as colchicine-site ligands. They show, as 

common structural feature, two aromatic systems held together by a 0-4 atoms bridge 

(figure 3). Many of them also have a trimethoxyphenyl ring moiety, as it is the case of 

podophyllotoxin, MTC, combretastatin A-4, phenstatin and colchicine. 

 

 During the last few years, our research group has been working on some of these 

families (mostly phenstatins and combretastatins), having found several compounds 

displaying high potencies in the inhibition of tubulin polymerization (submicromolar 

range) and cytotoxicity against tumoral cell lines (nanomolar range).  
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I.1. SAR OF COMBRETASTATINS. 

 

 

 Combretastatins are a group of natural products first isolated by Pettit et al. from 

bark of Combretum caffrum, a tree from the tropical areas of Africa and India. 

Combretastatin A-4, which shows the highest cytotoxicity, has been taken as structural 

reference to establish structure-activity relationships. As shown in figure 4, a bridge 

between two aromatic rings is required, having some general characteristics: maintain a 

relative proximity between both rings (Cis disposition if the bridge is a double bond), non-

coplanarity between rings and small substituents on the bridge (for example a five 

membered ring as bridge). 

 

 

 I.1.A. Ring A modifications. 

 

 Ring A (2,3,4- or 3,4,5-trimethoxyphenyl ring) seems to be almost essential for 

high cytotoxic and tubulin polymerization inhibitory effects. Their replacement always 

produces less potent compounds. 

 

 

 I.1.B. Ring B modifications. 

 

 Ring B of combretastatin A-4 (guaiacol) accepts many modifications. Although the 

suppression of the methoxy group at position 4 produces a potency decreas, positions 2 and 

3 allow a higher degree of variability. Suppression of 3-OH, replacement by Br or NH2 

groups and other derivatives for increasing water solubility (phosphate,..), have produced 

compounds which maintain the cytotoxicity and TPI effects (figure 5). The phosphate 

(CA-4P) and the amino (AVE-8062) derivatives are now in clinical trials (phase I-II). 

 

 Replacement of ring B by smaller rings entails a potency loss. However, its 

replacement by bicyclic systems such as naphthalene or indole is not (figure 6). 
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 I.1.C. Bridge modifications. 

 

 Distance between both aromatic rings is a determinant factor. Compounds with 

smaller bridge size (1 or 2 atoms) display higher potency than compounds with longer 

bridges (3 or 4 atoms). The presence of a cis-double bond also increases the potency over 

trans isomers, which also decreases when a more flexible hydrogenated bridge is present. 

 

 Two atoms bridges as part of a small cycle also maintain high TPI effect. Many 

examples of highly potent compounds, having pentagonal cycles as bridges, have been 

described. Also, the effect of the stereochemistry of the bridge on the activity has been 

studied for dioxolane derivatives (Figure 7). 
 

 

 I.1.D. Other modifications. 

 

 Other structural modifications directed at maintaining the cisoid-disposition of the 

two rings have been assayed. Recently, our group described macrocyclic derivatives 

(Figure 8), which maintain such a disposition by binding both rings through an additional 

bridge (spacer). These modifications have a detrimental effect on the activity of this class 

of compounds, but allow the study of their effect on the conformations adopted by 

combretastatins.  
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I.2. SAR OF PHENSTATINS. 

 

 

 Phenstatins are benzophenone derivatives, which were synthesized in order to study 

the effect of one carbon bridge on the activity of combretastatins. The study of this family 

was continued because these compounds showed highly potent antimitotic effects and 

higher water solubility, one of the main problems associated to combretastatins (figure 9). 

 

 In general, SAR of phenstatins are similar to those of combretastatins: a 

trimethoxyphenyl ring is required as ring A, both rings should be maintained in a cis-like 

disposition and a higher degree of variability is admitted for ring B. However, there are 

modifications that produce different effects on the activity of both families, such as the 

substitution of ring B by a 3-indolyl moiety. 

 

 The direct correlation between TPI effect and cytotoxicity is different in both 

families, being phenstatins, in general, more potent inhibitors of tubulin polymerization but 

less cytotoxic than their related combretastatins. 
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I.3. PHARMACOPHORE AND X-RAY STRUCTURES OF 

TUBULIN. 

 

 

 Recently, a pharmacophore composed of seven attachment points has been 

proposed from a selection of diverse compounds binding to the colchicine site of tubulin. 

These seven points are: three hydrogen bond acceptors (A1, A2, A3), a hydrogen bond 

donor (D1), two hydrophobic centres (H1, H2) and one flat group (R1) (figures 10a and 

10b). The presence of an additional hydrogen bond acceptor on the bridge of phenstatins 

(the carbonyl group, corresponding to A3 of the pharmacophore) could explain their higher 

TPI potency in comparison to combretastatins (figure 11). 

 

 Although this pharmacophore can help to design new compounds, not all the 

colchicine site ligands fully agree with this model. 

 

 The X-ray structures of the tubulin complexes with podophyllotoxin and DAMA-

colchicine, recently described by the group of Prof. Ravelli, are also of importance for the 

design of new ligands of the colchicine site. Although there is a great structural variability 

among the ligands at the colchicine site, due to the high protein plasticity, this new tool 

allows to analyze the activity results and to rationalize the effects of structural 

modifications on the activity. 
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II. PLANNING AND OBJECTIVES   

 

 

The general objective of this research is the synthesis and evaluation of new antimitotic 

agents combining these structural features: a trimethoxyphenyl ring, a 5-indolyl moiety 

and an olefinic bridge. 

 

II.1. OLEFINIC BRIDGE. 

 

 According to previous SAR on combretastatins and phenstatins, the latter display 

higher tubulin polymerization inhibitory potency when compared with combretastatins 

with similar substitution pattern. An explanation of this fact has been put forward by the 

addition of an extra binding element in the pharmacophore model, represented by a 

hydrogen bond acceptor site (A3), occupied by the carbonyl group of the bridge of 

phenstatins. However, this explanation is at odds with our recent finding that equally 

substituted 1,1,-diarylethenes (isocombretastatins) are better inhibitors of tubulin 

polymerization than phenstatins. 
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 For this reason, we have planned the synthesis and evaluation of a representative 

number of isocombretastatins (1,1,-diarylethenes). 

 

II.2. AR1 RING: TRIMETHOXYPHENYL. 

 

 Although the 3,4,5-trimethoxyphenyl is considered necessary for high potency, we 

have found that a 2,3,4-trimethoxyphenyl system as ring A yields derivatives with 

selectivity against some cancer cell lines. Accordingly, both systems will be used for the 

synthesis of compounds in this work. 

 

 

II.3. AR2 RING: 5-INDOLYL DERIVATIVES.  

 

Because indole systems have proved to be good substitutes of guaiacol as ring B in 

combretastatins and phenstatins, the N-methyl-5-indolyl system has been taken as a 

structural base for further modifications. Following this approach, also new benzimidazole 

and benzoxazole derivatives have been planned. 

 



Planning and objectives 
  

 - 13 -

 

II.4. OBJECTIVES. 

 

After this general planning for this Ph.D. work, the particular objectives to be 

addressed have been: 

 

First objective: synthesis of 1,1-diarylethenes (isocombretastatins) 

combining trimethoxyphenyl moieties with phenyl rings having the best 

substitution patterns of combretastatins and phenstatins. The results from this work 

will show the effect of these variations on the activity of these related families. 

 

Second objective: synthesis of isocombretastatins based on the 5-indolyl 

moiety as ring B, carrying substituents at the C-3 position. These derivatives are of 

interest because of the synthetic accessibility, structural variability 

(carboxaldehydes, hydromethyl, oximes, etc.), the possibility of improving water 

solubility and interaction with the protein. 

 

Third objective: synthesis of combretastatins and phenstatins carrying the 

same indolyl modifications that proved of interest in the isocombretastatins. Among 

the planned modifications, the preparation of the benzimidazole and benzoxazole 

derivatives will also be considered. 

 

Fourth objective: preparation of some macrocyclic derivatives containing 

the indole as ring B in order to also include the indolyl moiety in these analogues of 

combretastatins, recently described by our group.  

 

Fifth objective: perform the inhibition of tubulin polymerization assays of 

all the synthesized derivatives and establish the SAR of combretastatins, phenstatin 

and/or isocombretastatins carrying the indolyl moiety. 
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III. METHODS AND RESULTS   
 

 

III.1. SYNTHESIS OF NON-MACROCYCLIC COMPOUNDS. 

 

 As planned in the previous section, the compounds to be synthesized are: A) 

Isocombretastatins or 1,1-diarylethenes, B) Phenstatins or diarylketones (benzophenones), 

and C) Combretastatins or 1,2-diarylethenes (figure 12). 

 

 III.1.A. Synthesis of isocombretastatins. 

 

 In order to accomplish objectives 1 and 2 the synthesis of isocombretastatins was 

planned as follows (Scheme 1). The 1,1-diarylethenes can be obtained by olefination of the 

bridge of the corresponding benzophenones (phenstatins), which can be produced by 

oxidation of diarylmethanols. The coupling between an aryl organometallic derivative and 

the required aromatic aldehyde was chosen for the preparation of the diaryl methanols due 

to the defined regiochemistry produced during this process. 

 

 III.1.A.1. Starting materials. 
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 Required materials for the synthesis of isocombretastatins are commercially 

available, except O-siloxy derivatives (11 y 12) of isovanillin (3-hydroxy-4-

methoxybenzaldehyde) and N-methyl-5-bromoindole. These compounds were obtained by 

standard silylation (required trialkylsilyl chlorides in presence of triethylamine as a base) 

and N-alkylation of indole (base treatment in presence of phase transfer catalyst and alkyl 

iodide as alkylating agent) procedures (figures 13 and 14). 

 

 The obtained materials do not have acidic hydrogens, which can interfere in 

forthcoming reactions. The N-methyl on the indole nucleus is also of interest because of 

the increased inhibition of tubulin polymerization displayed by previous combretastatins 

and phenstatins carrying this structural element. 

 

 

 III.1.A.2. Synthesis of diarylmethanols. 

 

 Three related methods were used for the synthesis of alcoholic derivatives (figures 

15a, b and c). In the case of 3,4,5-trimethoxyphenyl-aryl-methanols (18, 21 and 28) the 

Grignard reagent from 5-bromo-3,4,5-trimethoxybenzene was reacted with the required 

arylaldehyde to introduce the ring B. In the case of 2,3,4-trimethoxyphenyl-aryl-methanols 

(33, 36 and 40) the organometallic derivative was directly prepared by lithiation of 1,2,3-

trimethoxybenzene, favoured by the coordination of the lithium with the adjacent oxygen 

atom, also followed by the addition of the required arylaldehyde. 

 

 Finally, for the synthesis of N-methyl-5-indolyl derivatives (44 and 57), 5-bromo-

N-methylindole was selected because of the lower prize of the starting material and similar 

yields obtained in the synthesis. Metallation using two equivalents of the metallating agent, 

produced the 2,5-dimetallated-N-methyl-1H-indole, which yielded the expected 2,3,4- or 

3,4,5-trimethoxyphenyl 5-indolyl methanols upon treatment with the corresponding 

trimethoxybenzaldehyde. Formation of the dianion of N-methyl-1H-indole, prevents the 

appearance of indoles bonded through the 2-position after transmetallation processes of the 

mono-metallated derivatives (scheme 2). 
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 These procedures are adequate to obtain diarylmethanols in good yields (usually 

higher than 70% after chromatographic purification) to prepare the planned derivatives. 

The structures of obtained products, yields and the 1H NMR chemical shift of the 

hydroxylated methyne signal are shown in table 1. 

 

 

 III.1.A.3. Synthesis of phenstatins. 

 

 The next step in the synthesis of isocombretastatins is the oxidation of 

diarylmethanols to diarylketones (phenstatins). PDC is the oxidizing agent usually 

employed to this purpose, but during the oxidation of diarylmethanols carrying the 2,3,4-

trimethoxyphenyl moiety cleavage products were obtained, so that magnesium 

permanganate under phase transfer conditions was assayed. Because of the low yields 

produced by this procedure, PDC oxidation at lower temperature was successfully 

employed without cleavage reactions of 2,3,4-trimethoxyphenyl derivatives (19, 22, 29, 

34, 37, 41, 45 and 58). Diarylketones of both families were thus produced (figure 16 and 

table 2) in enough amounts to proceed with the synthesis of isocombretastatins. 

Characteristic 1H NMR signals are shown in figure 17 and table 2. 

 

  

 III.1.A.4. Synthesis of isocombretastatins. 

 

 The final step in the synthesis of isocombretastatins was a Wittig reaction. Wittig 

reaction produces olefins in good yields in the presence of methoxy, trialkylsiloxy and 

nitro groups such as those present in the planned isocombretastatins. Under standard 

conditions (treatment of triphenylmethylphosphonium iodide in THF with nBuLi at low 

temperature followed by addition of the diarylketone and spontaneous raise to room 

temperature) isocombretastins 20, 24, 31, 35, 38, 42, 47 and 59 were produced in 20-84% 

yield (figure 18 and table 3). 

 

The shift difference between the two olefinic protons in 1H NMR is characteristic for 

derivatives with 3,4,5-trimethoxyphenyl (0.05-0.007 ppm) and 2,3,4-trimethoxyphenyl 

(0.3-0.4) moieties. 
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 III.1.A.5. Modifications of aromatic ring Ar2. 

 

 Once the phenstatins and isocombretastatins were obtained, modifications of these 

products were undertaken. The 2,3,4- and 3,4,5-trimethoxyphenyl moieties were 

maintained, because, although not absolutely required, they produce compounds displaying 

higher potency than products lacking them. The modifications studied in this work were 

introduced at positions 3 of the phenyl ring and indolyl moiety. 

 

 

  III.1.A.5.1. Modifications of the phenyl rings. 

 

   Reductions of the nitro groups to amino groups. 

 

 This trivial reduction produced quantitative yields of 25 and 39when carried out 

with Zinc in acetic acid. For the reduction of the nitrophenstatin to the known 

aminophenstatin (23), required for comparison of the assayed activities, Fe in 

methanol/water/acetic acid was used to avoid the simultaneous reduction of the bridge 

group. (Figures 19 and 20). 

 

   Silyl ethers deprotection. 

 

 Required deprotection of silyl ethers 29, 31 and 42 to the corresponding phenols 30, 

32 and 43 was carried out under standard conditions TBAF in THF (figure 21). 

 

 

  III.1.A.5.2. Modifications at the position 3 of indole. 

 

 The indole nucleus appears as highly convenient for the synthesis of antimitotic 

agents, when combined with the 3,4,5-trimethoxyphenyl moiety, as discussed before. 

Furthermore, the indole facilitates the controlled introduction of substituents, specially at 

its 3-position, which is the best localization for the preparation of such derivatives. 3-

Substituted indole phenstatins can be considered as rigidified analogues of 3,4-

disubstituted fenstatins (Figure 22). 



Methods and results 
 

 - 19 -

 Electrophyllic formylation is the choice to easily introduce the small, reactive and 

versatile formyl group. 

 

   Formylations. 

 

 Once the N-methylindole isocombretastatins were obtained, formylations at 3-

position were carried out by the Vilsmeier-Haack procedure, and the obtained compounds 

were used as starting materials for further modifications. 

 

 The formylation reaction using an excess of dimethylformamide in the presence of 

1mmol/mmol of POCl3, yielded mono- 40, 60 and di-formylated 50, 61 derivatives (Figure 

23) after hydrolysis of intermediate products. The extent of diformylation decreases upon 

reduction of the reaction time. 

 

 The NMR data of these compounds fully agree with the proposed structures and 

clearly show the existence of both Z,E-diastereomers of the diformylated derivatives. The 

Z-isomer could be purified by crystallization and identified by nOe techniques. 

 

 The fenstatin 3-formyl derivative 46 was also prepared (Figure 24) to check the 

effect of formylation in both related families. 

 

   Reductions of the aldehydes. 

 

 The first choice to prepare new derivatives from the 3-formyl-indolyl-

isocombretastatins was the reduction to 3-indolylmethanols, by means of metal hydride 

reductions. The NaBH4/MeOH reduction produced the alcohols 51 and 62 as shown in 

figure 25. 

 

   Formation of oximes. 

 

 Oximes were prepared because they have the possibility of further interactions with 

the protein, by establishing additional hydrogen bonds, and their transformation in other 

potentially active derivatives, such as the acetoximes.  
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 Similar transformations were previously carried out at the bridge of phenstatins, 

thus producing highly potent derivatives. 

  

 By standard procedures, the oximes 53 and 64 were prepared (Figure 26) as a 

mixture of Z,E-isomers. Although they could be chromatographycally separated, the 

purified compounds rapidly isomerize in solution to the equilibrium mixture. 

 

   Formation of hydrazones. 

 

 By the same reasoning and due to the structural similarities, the hydrazones 56 and 

68 were prepared to be included in the SAR studies. By standard procedures, the 

hydrazones were obtained as non resolvable mixtures of Z,E-isomers (Figure 27). The 

double bond can also be reduced during the reaction. For compounds with a 2,3,4-

trimethoxyphenyl, these are the only isolated products (68Z and 68E). 

 

   Treatment of oximes with acetic anhydride. 

 

 The acetoximes were prepared by treatment of the oximes with acetic anhydride in 

pyridine, yielding complex mixtures. By chromatographic separation, the 3-carbonitriles 

54 and 65 on the indole and the Z,E-mixtures, 55 and 67, of acetoximes derived from 

isocombretastatins were isolated. In one case, the phenstatin with a 3-indolecarbonitrile 66 

was produced, probably, due to the presence of small amounts of phenstatin in the 

isocombretastatin used as starting material (figure 28). 

 

 III.1.A.6. Bridge modification. 

 

 Bridge modification is detrimental for the activity of these types of antimitotics, 

unless small size substituents are used. In addition, the hydrogenation of combretastatins 

double bond produces a noticeable reduction of the cytotoxicity and inhibition of tubulin 

polymerization. But for isocombretastatins, the hydrogenation only produces a small 

geometry and size change, without modification of the degrees of freedom. The 

hydrogenation of isocombretastatins is, therefore, an easy and revealing modification to 

assay during SAR studies. 
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  Reduction of the bridge olefin. 

 

 In order to check if the sp2 hybridization of the bridge is necessary or it can be 

replaced by the sp3 hybridization, some of the synthesized isocombretastatins were 

reduced. The activity of phenstatins is really reduced in the diarylmethanols. 

 

 By standard catalytic hydrogenations, the expected products 48 and 63 were 

obtained. The reduction also affects other groups present, such as the formyl (52) and the 

nitro groups (26, 27) (figure 29). 
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III.1.B. Synthesis of phenstatin derivatives with heterocycles other than 

indole. 

 

 

 Another planned objective of this work was the replacement of the 5-inolyl system 

by other heterocyclic moieties. Due to their similarity, structurally related benzofused 

pentagonal heterocycles were selected. The synthesis of phenstatins containing the 3,4,5-

trimethoxyphenyl moiety and 1,3-benzoxazole or benzimidazole moieties were planned, 

according to the procedure depicted in scheme 3. 

 

 

 III.1.B.1. Starting materials. 

 

 The following procedures were used for the preparation of commercially 

unavailable starting materials,  

 

  Synthesis of benzimidazoles 14 and 15. 

 

 N-methyl-5 and 6-bromobenzimidazoles (14 and 15) were prepared by treatment of 

5-bromophenylene-1,2- diamine with methyl orthoformate, followed by phase transfer 

alkylation of the nitrogen atom (Figure 30). A mixture of regioisomers was produced, and 

used without separation because they proved to be irresolvable. The mixture, although non 

desirable, is useful to test the activity of any of its components, whose isolation could 

afterwards be undertaken, if considered necessary. 

 

  Synthesis of 5-bromo-1,3-benzoxazole (17). 

 

 The synthesis of this starting material was completed by the same reaction using 4-

bromo-2-nitrophenol and methyl orthoformate, using the required aminophenol (Figure 

31). 
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 III.1.B.2. Synthesis of diarylmethanols. 

 

 The same methodologies used for the preparation of indolefenstatins were used for 

the synthesis of the diarylmethanols carrying the benzimidazole and benzoxazole moieties,  

 

  Synthesis of compounds 69 and 70. 

 

 After the treatment of the mixture of 5and 6-bromo-1-methylbenzimidazoles with 

two mmol of nBuLi /mmol and one mmol per mmol of 3,4,5-trimethoxybenzaldehyde, the 

resulting diarylmethanols were bonded through position 2 of the benzimidazole system. 

The products kept the bromo on the benzimidazole. 

 

 These compounds could be separated by chromatography, and identified (Figure 

32) by comparison with the ketones produced by oxidation, which were characterized by 

means of nOe studies. 

 

  Synthesis of compound 73. 

 

 The benzoxazole derivative 73 was prepared following the same procedure. 

However, the diarylmethanol bonded by position 5 was the only product (figure 33). 

 

 

 III.1.B.3. Synthesis of phenstatins. 

 

The phenstatins 71, 72 and 74 carrying the benzofused heterocycles were prepared 

by PDC or KMnO4 oxidations of the corresponding diarylmethanols, as described in the 

previous sections. A general deshielding of all aromatic protons was observed in their 1H 

NMR spectra (table 4 and figure 34). 
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III.1.C. Synthesis of combretastatin derivatives. 

 

 With the aims of comparing some combretastatins with the phenstatins and 

isocombretastatins synthesized in this work, the preparation of some derivatives with the 

same combination of aromatic rings was undertaken. In this way, the 3,4,5-

trimethoxyphenyl ring was chosen as ring A and the ring B was any of the N-methylindole-

3-carbaldehyde, N-ethylindole-3-carbaldehyde, N-methylindole-3-methanol and N-

methylbenzimidazole systems previously studied (Figure 35). 

 

 The syntheses were completed by the Wittig reaction (Scheme 4) between the ylide 

from (3,4,5-trimethoxybenzyl)triphenylmethylphosphonium bromide and the above cited 

aldehydes. 

 

 

 III.1.C.1. Starting materials. 

 

 The required aldehydes were obtained from commercially available materials by 

means of N-alkylation, formylation and other reactions. 

 

  Synthesis of 1-methyl-1H-indole-5-carbaldehyde (4). 

 

 The direct methylation of 1H-indole-5-carbaldehyde, produced this compound 

(Figure 36). 

 

  Synthesis of 1-ethyl-1H-indole-3,5-dicarbaldehyde (3). 

 

 To avoid the Z,E-isomerization of the combretastatins during the formylation 

reactions, the formyl group was previously introduced in the starting material. Following 

the methodology described in section III.1.A.5.2, the dialdehyde was obtained in low yield, 

due to undesired polymerization reactions. Later, the absence of isomerizations during the 

formylation of combretastatins was stated and the formylation of these products was 

carried out after the Wittig reaction. Consecutive formylation and alkylation reactions 

yielded dialdehyde 3 (Figure 37). 
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  Synthesis of benzimidazole carbaldehydes 7 y 8. 

 

 Their synthesis was started from benzimidazole-5-carboxylic acid. N-alkylation 

reaction on the free carboxylic acid was rejected due to solubility problems (high water 

solubility), as well as on the binzimidazole-5-methanol, where O-methylation was also 

produced. 

 

 In consequence, reduction of the carboxylic acid to alcohol followed by MnO2 

oxidation produced benzimidazole-5-carbaldehyde, which was alkylated by the phase 

transfer catalyst methodology. By this procedure, the mixture of both N-methylation 

regioisomers 7 and 8 was achieved, along with a product of cleavage of the imidazole ring 

(9) (figure 38). 

 

 

 III.1.C.2. Synthesis of combretastatins analogues. 

 

 The combretastatins analogues were obtained by the standard Wittig methodology. 

Reaction products were isolated by means of chromatography and the Z and E isomers 

characterized according to the following differences: 1) chemical shift of olefinic protons 

of the trans (7.0 ppm) larger than the cis (6.7 ppm) isomers, 2) coupling constants of the 

olefinic protons larger for the trans (16 Hz) than for the cis (12 Hz) isomers, and 3) 

shielding of 2,6-protons and 3,5-methoxy groups in the cis isomers, due to the ring current 

effect of the other aryl group, in comparison with the unshielded trans isomers. 

 

  Synthesis of 1H-indole-3-carbaldehyde 75. 

 

 For the synthesis of this compound the order of the addition was reversed to have a 

defect of the ylide in comparison to the dialdehyde, to ensure the reaction of the more 

reactive 5-carbaldehyde and to prevent the double reaction yielding triaryl derivatives 

(Figure 39). 

 

 After purification, the yield was only 5% and the synthesis was changed to use 

formylation of the preformed combretastatin as the last step. 
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  Synthesis of benzimidazole derivatives 79 and 80. 

 

 As expected, the use of the mixture of 1-methyl-1H-benzimidazole-5and 6-

carbaldehydes in the Wittig reaction, produced a mixture of four isomers (Figure 40). 

 

  Synthesis of indole derivatives 76Zand 76E. 

 

 The known indole combretastatins 76 were also synthesized with the purpose of 

preparing the formylated derivatives and comparing formylated and unformylated 

derivatives (Figure 41). 

 

  Synthesis of derivatives 77 and 78. 

 

 According to previously described methodologies for isocombretastatins, the 

formyl derivative 77 and the methanol derivative 78 of the N-methyl-indolecombretastatin 

were prepared (Figure 42). 
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III.2. SYNTHESIS OF MACROCYCLIC COMPOUNDS. 

 

 

 The synthetic part of this work was completed with the preparation of two families 

of macrocyclic compounds related to combretastatins, containing a spacer between both 

aromatic rings in order to maintain the cisoid disposition. 

 

 In previous work from our group, several macrocyclic combretastatins, carrying 

phenyl rings substituted with methoxy or hydroxy groups and bonded through para-para 

or para-meta positions, were synthesized (Figure 43). In general, they show a diminished 

antimitotic activity, being more active those bonded between the two para positions 

through a hexamethylene spacer. 

 

 In this work, we decided to maintain the para-para connection, but introducing a 

greater conformational restriction by the presence of an indole system. Taking into 

consideration that molecular modelling suggest that methylene groups of the spacer can 

occupy the position in tubulina of one methoxy group of colchicine, mono- or di-

methoxyphenyl rings were used (Figure 44). 

 

 The McMurry coupling was selected for the synthesis of these macrocycles, 

because it was useful to obtain previous members of these families, whereasGrubbs 

methatesis failed to produce them. 

 

 The synthetic plan is illustrated in figure 45. Two consecutive alkylation reactions, 

starting from indole-5-carbaldehyde, produce the dialdehydic intermediate to be used in 

the macrocyclization reaction.  
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III.2.A. Monoarylic and diarylic intermediates. 

 

 Using aldehydes depicted in figure 46 and 1,6-dibromohexane as alkylating agent, 

an initial alkylation (figure 47) by the phase transfer catalyst methodology followed by an 

alkylation using carbonate in DMF, produced dialdehydes 82 and 83 in high yields (figure 

48). 

 

 

III.2.B. Macrocyclic compounds. 

 

 McMurry reaction produces macrocyclizations yielding olefins or pinacols 

depending on the temperature. Whereas pinacols are obtained at lower temperature, olefins 

predominate at reflux. 

 

 The reaction was carried out in two consecutive steps, as follows: 20 mmol of TiCl4 

and 10 mmol of Zn (per mmol of dialdehyde) were mixed in THF at 0 ºC, then the 

dialdehyde (82 or 83) was added and the reaction refluxed for 5 h. Following this 

methodology, compounds (84-89) shown in figure 49 and yields in table 5, were produced. 

 

 The cis and trans diols were independently acetylated in order to modify their 

volume, hydrophobic character, solubility and hydrogen bonding capacity, while 

maintained similar spatial disposition; in order to check the effect of the acetates on the 

antimitotic activity. Diacetates 90-93 can also provide information for the spectroscopic 

and spatial disposition assignment of these compounds (figure 50). 

 



Methods and results 
 

 - 29 -

 

 

 

 

 

 

III.3. SPECTROSCOPIC ANALYSIS OF MACROCYCLIC 

COMPOUNDS. 

 

 

 The structural determination of these compounds (84-93) was carried out by 1H and 
13C-NMR studies and X-ray diffraction of compound 87 crystals. 

 

 

III.3.A. Olefins. 

 

 Olefins 84 and 87 show a single set of signals, with a unique signal for pairs o 

groups of chemically equivalent nuclei. The 1H-NMR data are shown in table 6, along with 

the characteristic coupling constant for cis double bonds(J≈10Hz). There is an appreciable 

broadening of the signals of tetrasubstituted phenyl ring. This fact might be attributed to a 

change in the mobility of the macrocycle. 

 

Olefin 87 is crystalline, so that its conformation in the solid state was established by 

X-ray diffraction (figure 51). 

 

 

III.3.B. Diols and acetates. 

 

 In previous work from our group, it was established that the spectroscopic 

characteristics of bridge methynes of diols and acetates, facilitate their stereochemical 

assignment, as summarized in table 7. 

 



Development of new antimitotic agents related to combretastatins and phenstatins 

 - 30 -

 

 Following these rules, the relative stereochemistries of diols and acetates were 

deduced as shown in table 8 for compounds 85-93. 

 

 In short: 

 

• Coupling constants for methyne protons are J > 7.5 Hz for trans and J < 5.0 

Hz for cis stereoisomers. 

 

• Average chemical shifts of methyne protons of the bridge are > 5.2 ppm in 

diols and > 6.2 ppm in diacetates for the cis, and < 4.7 ppm in diols and < 

6.2 ppm in diacetates for the trans stereoisomers. 

 

• Average chemical shifts of oxygenated carbons of the bridge (diols or 

diactates) are < 77.5 ppm for the cis, and > 79.5 ppm for the trans 

stereoisomers. 

 

 

 Other previously observed differences for the cis and trans stereoisomers are the 

chemical shift differences for the methyne protons and methoxy groups on tetrasubstituted 

rings (derived from syringaldehyde), that are summarized in table 9. In the present work, 

such a difference is not observed between cis and trans stereoisomers, a fact that can be 

attributed to the conformational restrictions introduced by the indole nucleus. The 

differences actually observed are shown in table 10. 
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III.4. CONFORMATIONAL ANALYSIS OF MACROCYCLIC 

COMPOUNDS. 

 

 

 As discussed, the macrocyclic derivatives were planned to block the cisoid 

disposition of the two aromatic rings. This macrocyclization produces a restriction of the 

mobility, translated into appreciable differences in the NMR spectra. To analyze these 

differences, these compounds have been grouped according to the bridge structure: olefins, 

trans diols and cis diols. In forthcoming sections, the following aspects will be discussed: 

1) “a priori” analysis of conformations that can be adopted in each case, 2) theoretical 

studies, by means of molecular mechanics and dynamics of the accessible conformations, 

and 3) justification of the appearance of the NMR spectra. 

 

 Up to now, three generations of para-para macrocyclic analogues of 

combretastatins have been obtained. The first generation contained two symmetric (one 

disubstituted and other tetrasubstituted) phenyl rings (compounds 0B, 0C); the second 

generation enclosed by compounds with one symmetric (disubstituted or tetrasubstituted) 

and one asymmetric rings (compounds 0A, 0D, 0E, 0F). The third generation, formed by 

the compounds synthesized in this work, contains an indole system (see figure 51). 
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III.4.A. Olefins. 

 

 

 III.4.A.1. Analysis of conformations. 

 

 Symmetric macrocyclic olefins show NMR spectra with only one set of signals. A 

simple change of the helicity averages magnetic environment of chemically equivalent 

nuclei. Spectra of olefins with one asymmetric ring (0D-0F) also show a single set of 

signals, not explainable by just the helicity change. 

 

 In order to have a deeper understanding of the conformational possibilities, 

different equilibriums were analyzed. For stilbenes, two helical dispositions are possible (+ 

and -. Figure 52 top and bottom), which could be interconverted by either one ring rotation 

(Figure 52, on the left, ring D rotation and ring I flip) or a double flip process (Figure 52, 

on the rigth). A flip occurs when the plane of the ring passes through the perpendicular of 

the double bond (substituents on the ring are maintained at the same side of the double 

bond, for example marked positions of the I ring on the left or both marked positions on 

rings I and D on the right, figure 52). A ring rotation takes place when the plane of the ring 

passes through the plane of the double bond (substituents on the ring change from one side 

of the double bond to the other, for example marked position of the D ring on the left). In 

figure 52 a schematic representation is included, where the double bond correspond to the 

horizontal line and the aromatic rings with the vertical (or oblique) lines. 

  

 Conformational possibilities of macrocyclic combretastatins result from changes in 

the helicity (+ and -), substituent disposition for ring I (left ring) (above and below the 

double bond plane) and substituent disposition for ring D (right ring), thus resulting in 8 

basic conformations as depicted in figures 53-58. They have been named +I to +IV and –I 

to –IV, depending on the helical sign of each one. When symmetric rings are involved, 

several possibilities become identical, although marked positions are situated above and 

below the double bond plane. 
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 The conformational exchange between these eigth posibilities, can happen by any 

of the following processes (Ring I is now called T- from Tri-substituted-ring, and ring D is 

now called D or Q, from Di-substituted or Tetra-substituted rings), as shown in figure 53: 

 

a) T ring rotation (accompanied by ring D flip), occur along the horizontal. 

 

b) D or Q ring rotation (accompanied by ring T flip), take place on vertical 

exchanges. 

 

c) double flip processes, occur obliquely. 

 

 All these processes change the helicity, although only the double flip occurs 

without passing a ring plane through the intrannular space. 

 

 

Conformational equilibrium for macrocyclic olefins with two symmetric 

phenyl rings. 

 

 In order to help in the analysis of the dynamics behaviour of the macrocyclic 

indoles, the situation for the previously synthesized macrocycles 0D-0F will be considered. 

First of all, compound 0F with one disubstituted symmetric ring and one trisubstituted ring 

will be discussed, followed by more constrained situations: 0E (smaller 3-

oxapentamethylene spacer and intra-annular space) and 0D (methoxy substituents on the 

symmetric Q-ring). 

 

 In order to explain spectra with a single set of signals and common signals for the 

chemically equivalent positions, three fast movements a), b) and c) can be considered, or at 

least two of them (see table 12 and figure 53). If only one is fast on the NMR time scale, 

two set of signals (Table 11, left column, fast T-ring rotation) or different signals for the 

chemically equivalent positions (for example dot and empty circle, table 11. Center, fast 

D-ring rotation, and right, fast double flip, columns) would have to be observed. 
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 If any two of three movements were fast, the spectra could also be explained, 

because one set of signals with unique signals for chemically equivalent positions will 

observed, due to a rapid exchange between four conformational possibilities which include 

every possible kind (+I, -II, +III and –IV and –I, +II, -III and +IV) (Table 12 and figure 

53). 

 

Olefinic macrocycles with one symmetric and one asymmetric phenyl ring. 

Conformational equilibria for 0D, 0E and 0F. 

 

 The four conformations in the upper part of figure 54 for compound 0F are 

identical to the four conformations in the lower part (only identical marked positions 

change), and those on the left are mirror images of those on the right. To explain the NMR 

spectra of 0F, at least two movements must be fast in order to interchange endo-MeO and 

exo-MeO dispositions and produce only one signal for chemically equivalent positions. 

These movements have been depicted in figure 54, although those requiring the pass of the 

larger methoxy group through the intra-annular space are not shown. 

 

 When the intra-annular space is reduced from eighteen to seventeen atoms (0E, 

figure 55), the signals of symmetric D ring are broadened. This fact requires that only one 

movement is fast (the other two slow or intermediate in the NMR time scale). 

 

 For the more hindered compound 0D, one single set of signals and single signal for 

chemically equivalent positions are observed. Although four conformations in the upper 

part (figure 56) are identical to those in the lower part, two movements must be fast to 

explain the spectra. That requires the fast rotation of T-ring, in order to exchange 

chemically equivalent positions (for example red –OMe and black –OMe). Also double flip 

must be fast in order to interchange endo-OH and exo-OH conformations (unless one of 

them was more stable). Q-Ring rotation must be forbidden because it requires the pass of 

one bulky MeO- substituent through the intra-annular space. Fast double flip by itself 

would not explain the spectra, as it would not exchange the MeO- groups (or the aromatic 

methynes of the tetrasubstituted ring) from the same to the opposite side of the hydroxyl 

group. 
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 In consequence, the reduction of the intra-annular space from eighteen to seventeen 

atoms is responsible for slowing down the interconversion of conformations involved in 

the equilibrium. 

 

 

Macrocyclic olefins with an indolyl moiety. Conformational analysis of 84 

and 87. 

 

 Compound 87 can be considered analogous to 0D with a more rigid indole ring 

instead of the trisubstituted ring, whereas compound 84 is a less symmetric variant. Eight 

conformational possibilities for each compound are depicted in figures 57 and 58, with the 

equilibriums between them (lightened arrows indicate less probable rotations, because they 

require the pass of a methoxy group through the intra-annular space, in vertical, or an 

unattainable elongation of the spacer, in horizontal). 

 

 

 III.4.A.2. Molecular mechanics and dynamics studies of olefins 84 and 87. 

 

  Molecular mechanics. 

 

 Because of the rigidity introduced by the indole system, several of the 

conformations represented in figures 57 and 58 would have no to be taken into 

consideration. For example, those conformations with the N-spacer bond in the exo 

disposition (±II and ±IV) seem to be less stable. To know the more accessible 

conformations for compounds 84 and 87, conformational searches (Monte Carlo) using 

molecular mechanics (MM3 force field using chloroform as solvent) were carried out. 

 

 For each conformation found, two dihedral angles, DI and DT, were measured. 

Their values were used to assign the conformation groups ±I-±IV (as depicted in figure 59 

c and d). To avoid potential differences arising from losses of ring planarity, observed 

during molecular dynamics, the values of each angle and its complementary were 

accounted for in the calculations. 
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 The helical sign for each aromatic ring disposition was established as depicted in 

figure 60. If the sign of both dihedral angles is coincident, the conformation is assigned 

that sign. If not, the conformation was marked as non coincident with the defined groups. 

Conformations +I to –IV are included in table 13, with the range of dihedral angles values 

(columns 2 and 4) and schematic representations of each conformation (columns 3 and 5). 

 

 Conformations not belonging to classes ±I-±IV are grouped according to table 14. 

Those conformations with an angle in the interval ±10º close to a category change (flip for 

angles close to +90º or -90º, rotation for angles close to ±0º or ±180º) are included. In table 

14 the intervals are in the first column, examples of each type in the second and indicative 

names in the third. 

 

 These rules were applied to conformational searches results for compounds 84 and 

87, allowing us to assign and analyze the conformations. Conformations +I to –IV are 

indicated by horizontal lines (-IV,+III,-II,+I,-I,+II,-III,+IV form above to below) , and 

those not classified (according to table 14) are represented by coloured horizontals (double 

flip –blue-, ring-D rotation –orange-, double flip –blue-, ring-I rotation –green-, double flip 

–blue-, ring-D rotation –orange-, double flip –blue-; from above to below), of increasing 

energy from left to right. 

 

 Results are also presented in table 15. For each compound, the minimum energy 

conformations found after 1000 rounds are included, showing in the upper part the energy 

difference with respect to the global minimum (shadowed cell) and the times found in the 

lower part (into brackets). 

 

 Energy differences between identical conformations inform on the intrinsic error of 

the method, originated by: used force fields or difficulty to find a minimum from strained 

conformations. 
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 The conformations of minimum energy found for compound 84 are of type I and 

III, whereas conformations of types II and IV are less populated. In the case of compound 

87, there are small differences in energy between all conformations, I=II and II=IV, and all 

of them have to be taken into account. The structure of compound 87, obtained by X-ray 

diffraction correspond to –I/-III, as shown in figure 63. 

 

In compounds 84, 87 and 0D-F conformations other than I-IV are observed, whisch are 

classified in the double flip category. 

 

 

  Molecular dynamics. 

 

 In order to study the transicions between conformations for compounds 84 and 87, 

molecular dynamics studies have been carried out. Simulations for 3 ns at different 

temperatures (300, 600, 1200 and 1500 K), were performed using the same conditions 

described for Monte Carlo conformational searches. Analogous simulations were 

conducted with model structures lacking the spacer in order to assist in the analysis of the 

results. 

 

 The results of the molecular dynamics were analyzed in the same way as the 

conformational searches, by clasifying conformations as type ±I to ±IV and those 

corresponding to transitions between them. Each conformation was compared with the 

following one in the simulation to analyze how the transitions take place. For instance, a 

transit from +III to –I is assigned to a indole ring rotation –IRot-. As temperature raises, 

the number of conformations different than type ±I to ±IV increases notably. 

 

 Because processes responsible of the aspect of NMR spectra take place in the micro 

seconds, they are inaccessible to these simulations, but molecular dynamics picture a 

panoramic on the relative ease of these processes. The temperature of simulations was 

increased in order to facilitate the surrounding of energy barriers, thus processes which are 

unattainable at lower temperature can be observed at 1500 K. 
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 Molecular dynamics simulations at 300 K for non-macrocyclic analogues (0H and 

0G, figures 64a,b) of compounds 84 and 87 show that all conformations are accessible, 

with positive and negative helicities. 

 

 Figures 64a and 64b summarize the results of the molecular dynamics simulations 

(MD) for 0G and 0H at 300 K (top) and 1200 K (bottom). Conformations ±I to ±IV and 

intermediate situations (IRot, DRot, TRot, double flips) are indicated on the ordinate axes. 

Centre of figure: Transitions assigned to exchanges observed during the simulation at 300 

K, with transitions (no transition =, double flip DF, ring rotation IRot or RRot, with 

transition states below them) for indole and phenyl ring in purple and blue respectively, 

and overall transition in red (= means no change, RRot means that one ring rotates and the 

other flips, DF means a double flip, points below indicate a transition state for the category 

above and ++ means complex transitions). The same applies for the following MD graphs. 

 

 Structure 0G shows a preference for conformations type III, being I and IV also 

well represented, and conformations type II are less frequent (figure 64a). As shown in 

table 16, there is a preference for the methoxy group to adopt an endo disposition, being 

the disposition of the indole moiety less important. Conformations II, with endo methoxy 

and indole are greatly disfavoured. 

 

 In the case of 0H, type I and III are the same, as well as type II and IV, the former 

two predominating over the later (figure 64b). The indole preference for an exo disposition 

(or the repulsion exerted by a perennial endo methoxy) becomes the dominant factor when 

there is always an endo and exo methoxy group. 

 

 At 1200 K the residence time in each conformation is lower, facilitating the 

occupation of all conformational types. Both compounds have a similar behaviour at this 

temperature. Rotations of all the rings are observed, including indole, tri- and tetra-

substituted ring rotations and double flips. Apparently, 0H has greater difficulty to 

complete rotations of the indole system (changes between lower and upper part of diagram 

A). 
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 Molecular dynamics of compounds 84 and 87 at 300 K and 1500 K (Figure 66 a 

and b), show only conformations type –I and +II, altogether with double flips, which 

represent their intermediate situation. This fact clearly illustrates that the spacer reduces 

the conformational flexibility of these compounds, allowing only the double flip to easily 

take place. 

 

 When analyzed at the same temperature, the results for compound 87 (Figure 66b) 

show higher mobility than compound 84 (figure 66a). This double flip facilitation by the 

presence of two methoxy groups in 87, and can be explained by a destabilization of ground 

state type -I conformations, due to interaction of the endo methoxy with the spacer, (figure 

65 on the left, red colour) with respect to the transition state (figure 65 on the rigth), where 

the two methoxy groups point outwards. In comparison, the ground state for compound 84 

displays lower interactions between the methoxy and the spacer and the energy barrier is 

thus higher (Figure 65, green arrows). 

 

 In order to discriminate between spacer effects and those due to rigidity introduced 

in the system by the indole ring, molecular dynamics for 0D, 0E and 0F were also carried 

out. 

 

 Compounds 0D and 0E, with a longer hexamethylene spacer, show identical 

results. Accordingly, MD results for only one of them (0F) and for 0E, with a shorter 3-

oxapentamethylene spacer, are presented in figures 67 (300 K dynamics, 300 K transitions 

of 0E -67a- and 0F -67c-, and 1200 K dynamics and 1200 K transitions of 0E -67b- and 0F 

-67d-). At 300 K, only major conformation type ±III and minor one type ±IV, along with 

the intermediate double flip between them, are observed. At 1200 K, only these transitions 

become more frequent. Also, a trisubstituted ring rotation occurred for compound 0F, with 

a longer spacer and larger intra-annular space. This rotation gives way to conformations 

type –I and +II. In order to better show the rotation, dihedral values, analogous to DI and 

DT, have been plotted for each conformation along the MD simulation of 0F and 0E in 

figure 68. The upper traces correspond to the dihedral of the disubstituted ring and the 

upper ones to the trisubstituted one. 
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 We have previously shown that the related glycol 0J, with a shorter spacer, does 

not rotate any ring at 1200 K, but 0K, with a longer spacer, rotates the disubstituted ring. It 

The preference of compound 0F for rotating the trisubstitued ring in the presence of a 

disubstituted ring was initially surprising. For 0K rotation of the disubstituted ring is the 

only option, as rotation of the Q-ring requires (passing one methoxy group through the 

intra-annular space.  

 

 As mentioned, for compound 0F, both rings can rotate passing hydrogen atoms 

through the intra-annular space. However, rotation of the trisubstituted ring put further 

away the methoxy group (diminishing the interaction with the spacer, figure 69 right) in 

comparison with starting conformation (on the left), whereas the rotation of the 

disubstituted ring brings the methoxy group closer to the spacer and the rotating 

disubstituted ring (figure 69, centre). 

 

 All these results agree with the MD simulations for 84 and 87, which show no 

rotations of rings due to the increased rigidity. Conformations with the indole ring almost 

coplanar with the double bonds are observed, as well as a lower mobility of the 

trisubstituted compound 84 in comparison with the tetrasubstituted compound 87. An 

explanation for this difference is given in figure 65, where the transition state for the 

double flip is shown on the right and the ground state conformations on the left. The 

methoxy groups of the Q-ring interact with the spacer and destabilize the ground state, thus 

making the transition easier. Indole derivatives, due to the rigidity introduced in the system 

by the indole moiety, are expected to be less mobile than phenyl exclusive macrocycles. 

 

 

 III.4.A.3. Discussion of NMR spectra of olefins 84 and 87. 

 

All the macrocyclic olefins here described show NMR spectra with single sets of 

signals, except 0E and 87, which show broadened signals for exchangeable positions. That 

requires that two fast rotations on the NMR time scale, being one the double flip. 

Molecular dynamics simulations gives an idea of the difficulty for ring rotations, which are 

always slower than double flips. 
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 Fast double flip and slow-intermediate indole ring rotation (passing hydrogen atoms 

H-5 and H-6 through the intra-annular space) could explain both spectra. For compound 87 

intermediate rotation of the indole is responsible of the line broadening, while double flip 

averages ±I/±III with ±II/±IV. The same type of processes in compound 84 would lead to 

two sets of signals, one for the ±I/±II ensemble and the other for ±III/±IV. Either rotation 

of the disubstituted is fast, in disagreement with the MD simulations, or one ensemble is 

not being seen (due to a lower stability). 

 

 These conclusions are summarized in table 17. 
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III.4.B. Diols and diacetates. 

 

 

 III.4.B.1. Analysis of conformations. 

 

  Analysis of conformations of diols with two phenyl moieties. 

 

 Diols show a higher conformational freedom than olefins, due to the possibility of 

bridge rotation. The possibilities depicted in figure 70 can be taken into consideration for 

the conformational analysis: a) A-ring rotation, green arrow, b) B-ring rotation, orange 

arrow, c) bridge rotation, changing between the two synclinal dispositions for the two aryl 

moieties, grey arrow, and d) change of helicity of both rings (signs of dihedral angles 

defined by the planes of the rings and the central bond of the bridge), blue arrow. Bridge 

rotation and helicity changes have no severe limitations, because they do not require the 

pass of substituents through the intra-annular space. 

 

 These four possibilities lead to sixteen reference conformations, shown in figure 71 

(each one has a different combination of bridge disposition –SC (+ or -)-, helicity -(+ or -)-

, T-ring rotation – exo/endo disposition of substituents- and D/Q-ring rotation – exo/endo 

disposition of substituents-). Sixteen conformations are connected in figure 72 by arrows 

showing the conformational change required for passing from one to another. Groups A, B, 

C and D of related conformations are formed by those produced by easier changes, helicity 

and bridge rotation, that can take place independently or simultaneously. 

 

 According to previous work, preferred conformations of trans diols are those 

depicted in the centre of figure 72 (I-VIII), with a gauche disposition of both hydroxyl 

groups. In the case of cis diols, both possibilities for bridge rotation must be similar, 

because they all have gauche dispositions for the hydroxyl groups. A simplified picture of 

these bridge rotation equilibria is depicted in figure 73. 
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 The study of diols and diacetates with two phenyl moieties has been carried out in 

previous work. In short, NMR spectra show one or two sets of signals, all of them having 

different signals for the chemically equivalent nuclei. Two sets of signals indicate two 

conformations in slow equilibrium, while one set indicates the existence of a preferred 

conformation or a fast equilibrium. Broadening of signals can be attributed to intermediate 

exchanges on the NMR time scale. 

 

 

  Analysis of conformations of diols with one indolyl moiety. 

 

 As explained in the previous section, sixteen base conformations I-XVI can be 

considered for diols 86 and 89 and their diacetates 91 and 93. These conformations and the 

conformational changes passing from one to another are shown in figures 74a,b ( 

conformations for 86 and 89), figures 75a,b (conformational changes for 86 and 89), figure 

76 (85 and 88 conformations) and figure 77 (conformational changes for 85 and 88). 

 

 

 III.4.B.2. Molecular mechanics and dynamics of diols and diacetates. 

 

 In order to know the more stable conformations, to take into consideration for 

conformational discussions, conformational searches (Monte Carlo) with molecular 

mechanics (MM3 force field, chloroform as solvent) and molecular dynamics simulations 

at different temperatures (300K and 1200K) were carried out. 

 

 In order to assign each found conformation to conformational groups I-XVI, three 

dihedral angles were measured (Figure 78). They correspond to bridge rotation (grey), 

indole ring rotation (green) and phenyl group rotation (blue). The atoms defining the 

dihedral angles are indicated by orange circles. 
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 The conformations were assigned to the dispositions + and – synclinal by using the 

values of the dihedrals of the central bridge bond (DP), defined as shown in figure 78. This 

definition renders the values independently of the absolute and relative stereochemistry of 

diols. For ring rotations, dihedral angles DI (green) and DT or DQ (blue) were defined as 

shown in figure 78 (bold bonds and orange circles). As for olefins, marked dihedral angles 

and the complementaries of the alternative dihedral completed by the smaller orange circle, 

were measured and averaged. 

 

 Once the dihedral angles were measured, +SC and –SC conformations were 

assigned. The sign of the bridge dihedral angle (DP), allowed us to distinguish between I-

VIII (-SC) and IX-XVI (+SC). Accordingly, they will be depicted in the negative and 

positive parts of ordinates axis in forthcoming figures. Dihedral angles for indole and 

phenyl rings define endo/exo dispositions and the helicity sign, according to 

conformational groups shown in table 18. The endo/exo definition for dispositions of 

substituents was as depicted in figure 79, endo when the substituent is located between 

both rings. In the absence of other changes, the pass from –SC to +SC conformations (and 

vice versa), also changes the exo and endo disposition of substituents. 

 

 The helical sense for each ring was defined by the angle formed between that ring 

plane and the plane defined by carbons of the bridge and the aromatic carbon bonded to 

them (Figure 80). Dihedral angles θ>90º and 0>θ>-90º were assigned negative helical sign 

(-). If the signs for both rings were coincident, that sign was assigned to the helicity. On 

the contrary, if the signs were not coincident, the conformation was marked as no 

corresponding to those initially considered (I-XVI). In graphics showed in figure 84 and 

following, conformations with discordant helicities were indicated by brown positions in 

the horizontal marked with Hel≠ symbol. 
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 In order to get a better picture of the fine disposition of the aromatic rings, their 

relative disposition respect to the substituents on the benzylic carbon were analyzed. The 

circumferences defined by the rotation of the ring plane were divided into three thirds by 

the substituents, and designed C-H, C-OH and H-OH. The situation of the ring is defined 

according to figure 81. When the plane of the ring is close (±10º) to a substituent (being 

the bond of the ring eclipsed on the side closer to the first substituent of the ring), it is 

indicated in red (green if it is the opposite side). When the plane of the ring is close to the 

C-C bond, a ring rotation is produced (indicated in purple). 

 

  Analysis of molecular mechanics results. 

 

 Following the aforementioned criteria, conformations found during the 

conformational search for compounds 85, 86, 88 and 89 have been classified within the I-

XVI categories (figures 82a-d). Table 19 summarizes the relative energies of the 

conformations representing the local minimum for each conformational class with respect 

to the global minimum (indicated by shadowed cells). Compounds with the same relative 

stereochemistry behave quite similarly. cis and trans compounds mainly differ in the 

number of synclinal dispositions they adopt. cis compounds populate both synclinal 

dispositions whereas trans ones mainly adopt the one with gauche hydroxyls. The energy 

difference between conformations is not high, and every conformation has to be taken in 

account. For diols 86 and 89, with symmetrical phenyl ring, conformation I is identical to 

conformation III, V is equal to VII, X to XII and XIV to XVI. The energy differences 

calculated between them are smaller (less than 0.7 kcal/mol) than those found for olefins, 

suggesting a more flexible behaviour.  

 

 In every case, conformations with a plus synclinal disposition +SC (I-XVI) are 

more stable if the phenyl rings adopt a positive helical twist (X, XII, XIV and XVI) and 

negative synclinal dispositions –SC (I-VIII) prefer negative helical twists (I, III, V and 

VII) indicating an energetic coupling of both descriptors. As shown in figure 83, the more 

stable combinations place the phenyl rings so that they leave more room in the intra-

annular space for the spacer (larger ellipsoids in the centre of figure 83). 
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 Detailed analysis of the observed conformations is shown in figure 84a for cis diols 

85 (upper) and 88 (lower) and 84b for trans diols. Trisubstituted phenyls and indole rings 

adopt both endo and exo dispositions. However, in compounds with tetrasubstituted phenyl 

rings (which always place one methoxy group endo) the indole ring is preferently exo, 

suggesting an energy penalty for conformations with both substituents endo, as previously 

suggested for the olefins. In most of the stable conformers, both phenyl rings show the 

same helical sign. The observed dihedrals for the phenyl rings (green lines) show a 

preference for conformations in which the ring planes are close to perpendicular to the 

plane joining them, placing them away from the intra-annular space.  

 

 

  Analysis of molecular dynamics simulations. 

 

 Molecular dynamics simulations have been carried out at 300 K and 1200 K in 

order to explore the transitions between conformational classes, and the results were 

analyzed in the same way as the Monte Carlo searches (Fig 85a shows the conformations 

observed along the trajectories for the cis diols and 85b for the trans ones and Table 20 

summarizes the conformations observed during the Monte Carlos and the molecular 

dynamics simulations). All the simulations started with conformation type X, except for 

89, which started with a conformation of type VII (absolute stereochemistry opposite to 

86). The comparison of two consecutive points along the trajectories allowed us to analyze 

the possible transitions (bridge disposition +SC or –SC, phenyl and indolyl rings rotations 

according to figures 80 and 81) and their relative frequencies.  

 

 At higher temperatures, more conformational classes and transitions were observed, 

as well as more conformations belonging to structural classes different from I-XVI 

(indicated by the zero value in the graphs). The simulations yielded similar results for 

compounds with tri- and tetrasubstituted rings. The most accessed conformations belong to 

structural classes I-XVI. Conformations with opposite signs for the synclinal disposition 

and the helical sense (less stable according to the Monte Carlo) are less populated than 

those with same signs, but they are easily accessed, suggesting a low energy barrier 

between them. These transitions (i.e. going from XII to XV and vice versa, or from VII to 

IV for 89) are the only ones observed at 300 K.  
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 At 1200K, new transitions occur, as shown in figures 86 and 87 (closer look at 

figure 85b): at 1200K, the most observed transitions are bridge rotations usually 

accompanied by helical sense changes (green arrows), and when not (purple arrows) are 

quickly followed by ring helical sense adjustments (red arrows). In fact, all of them are the 

same process, as helical sign changes are fast (they are not seen due to the different energy 

of conformations with matched and unmatched signs for SC and helical sense, as 

evidenced by the different occupation of XII and XV in figure 86). The easiness of these 

two transitions allows us to group the conformational classes in four groups: A (I-VI-X-

XII), B (XVI-XI-VII-IV), C (XII-XV-III-VII) and D (XIV-IX-V-II) that have been 

anticipated in figures 75 and 77. 

 

 1200K simulations for cis diols also display some low frequency transitions: from 

XII to I for 85 (brown arrow in figure 86) and from III to V for 88 (brown arrow in figure 

87). The first one implies a bridge rotation accompanied by a helical change (as usual) and 

by the unusual tri-substituted ring rotation (implying the cross of the phenyl ring plane by 

the plane defined by the bridge carbons and their bond to the considered phenyl ring, see 

figure 81). This transition allows for the exchange of the group of conformations C (XII-

XV-III-VII) to A (I-VI-X-XII) as shown in figure 77. The second one implies the unusual 

rotation of the indole ring, allowing for the exchange between groups C (XII-XV-III-VII) 

and D (XIV-IX-V-II). The symmetrical nature of the tetrasubstituted ring in 88 makes C 

(XII-XV-III-VII) equal to A (I-VI-X-XII) and B (XVI-XI-VII-IV) equal to D (XIV-IX-V-

II), so that all conformations are in fact sampled by the simulation. The low frequency of 

ring rotations does not allow to establish a relative order of feasibility for them, other than 

the difficulty of the tetra-substituted ring rotation, as it requires to pass one methoxy group 

through the constricted intra-annular space. No ring rotations were seen for trans diols. 

 

 The molecular dynamics simulations agree with the initial assumptions on the 

relative ease with which the different rotations occur and with their classification in four 

kinds: a) indole ring rotation, b) rotation of the phenyl ring, c) bridge rotation and d) 

helical sense change. Furthermore, a relative order of feasibility has been advanced: d > c 

> a ~b (tri-R) > b (tetra-R). 
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 III.4.B.3. NMR spectra of diols and acetates. 

 

  III.4.B.3.a. Fast bridge rotation-Interconversion of synclinal conformations. 

 

 As previously indicated in the molecular dynamics section, if the d and c transitions 

between conformations are fast on the NMR time scale, the chemical equilibria accounting 

for the NMR spectra can be analyzed by considering the groups of conformations A, B, C, 

and D (figure 88 and figures 74 and 77). Within each group, cis diols mostly populate two 

conformations (e.g. conformations I and X for group A, as indicated in red), corresponding 

to the + and –SC conformations with matched helical sense sign for the rings, and can thus 

be represented by them. On the other hand, trans diols populate a single conformation 

within each group (corresponding to the one with gauche hydroxyls, and matched helical 

sense and synclinal disposition signs). Furthermore, for compounds with a symmetrical 

tetra-substituted ring (86 and 89), group A is equal to group C and group B equal to group 

D, so that only two groups have to be considered.  

 

 The chemical environment in which groups that behave differently in cis and trans 

diols (MeO-, aromatic ring protons and carbons) are found is indicated in figure 89 for 

compounds with a tri-substituted ring and in figure 90 for compounds with a tetra-

substituted ring. Averaging of the situations within the group allows for a prediction of the 

averaged (or not) state for each substituent and can thus be applied to predict the signature 

of an NMR spectrum of each contributing group of conformations. Matching the expected 

data for each group of conformations to the found spectra will allow us to analyze the 

dynamics of each system. 

 

 According to the previous discussion, trans diol 89 (figure 91) should be the 

simplest system, with one symmetrical tetra-substituted ring (only two groups of 

conformations as A=C and B=D) and only one conformation contributes significantly to 

each group (i. e. I/III for A/C and V/VII for B/D). In any case, the chemically equivalent 

groups on the tetra-substituted phenyl ring are in different chemical environments in each 

group of conformations, so that we would expect different signals for each pair of them. 
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 The NMR spectra for 89 show a single set of signals, with two signals for the 

chemically equivalent nuclei. A fast rotation of either the indole or the tetra-substituted 

(less likely) ring or of both of them, or a preference for one of the two groups of 

conformations (not predicted by the molecular mechanics calculations) must be invoked to 

explain the appearance of the spectra. The NMR spectra for trans diol 86 are very similar 

to those of 89, suggesting a similar behaviour. In this particular case, either only one 

conformational group is preferred or both ring rotations are fast on the NMR time scale.  

 

 As discussed above, cis diols are more complex situations than trans ones, a 

prediction confirmed by their NMR spectra, which show at least two sets of signals and 

significant line broadening. This suggests that more complex conformational equilibria 

must account for the observations. For cis diols, two conformations must be considered 

within each conformational group (e.g. conformations I and X for group A), as shown for 

diol 88 (for which conformation A is equal to C and B equal to D due to the presence of a 

symmetric tetra-substituted ring) with red typeset in figure 92. In order to clarify the 

situation, the chemical shifts for chemically equivalent groups of nuclei which must be in 

different chemical environments according to their different behaviour are summarized in 

table 21. The large chemical shift difference between chemically equivalent methoxy 

groups and aromatic protons stands out. The fast chemical averaging within groups A, B, 

C, and D previously proposed should average them between endo (shielded by the ring 

current effect of the ring in front) and exo (not affected by the ring current effect). This 

observation suggests that bridge rotation is not occurring fast on the NMR time scale.  
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III.4.B.3.b. Slow bridge rotation. Slow interconversion of synclinal 

conformations. 

 

 An alternative explanation is thus proposed, in which rotation of the indole ring is 

fast, averaging conformations in new groups E, F, G and H (see also figure 96 for these 

groups in compound 89), and bridge rotation is slow, as shown in figure 93. This 

explanation can easily be extended to trans diols, where the importance of the change is 

lessened due to the fact that bridge rotation in this case leads to unstable situations, already 

discarded. In order to explain the situation for 88, the symmetrical nature of the tetra-

substituted ring simplifies the analysis (as shown in figure 94). Again, 85 behaves quite 

similarly, and the considerations for the ring rotations would remain the same proposed for 

86 and 89. 

 

 Tis unified explanation, based on a slowred bridge rotation and, in some cases, 

faster T-ring rotation, is resumed in table 22. As shown, the expected situations match with 

the NMR spectra of synthesized macrocyclic diols and their diacetates. 
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III.5. BIOLOGICAL ACTIVITY. 

 

 

III.5.A. Tubulin polymerization inhibitory activity. 

 

 

 III.5.A.1. Tubulin isolation.  

 

 Calf brain microtubule protein (MTP) was purified by two cycles of temperature-

dependent assembly/disassembly, according to the method of Shelanski, modified as 

described in the literature (figure 97). The MTP solution was stored at -80 °C. Protein 

concentrations were determined by the Bradford’s method, using BSA as standard. Six 

different MTP preparations were used in the tubulin assembly assays. 

 

 

 III.5.A.2. Tubulin assembly inhibitory activity of the compounds. 

 

 In vitro tubulin self-assembly was monitored turbidimetrically at 450 nm. The 

ligands were dissolved in DMSO and the final amount of DMSO in the assays was kept at 

4%, which has been reported not to interfere with the assembly process. The increase in 

turbidity was followed simultaneously in a batch of six cuvettes (containing 1.0 mg/mL 

MTP in 0.1 M MES buffer, 1 mM EGTA, 1 mM MgCl2, 1 mM β-ME, 1.5 mM GTP, pH 

6.7, and the measured ligand concentration), with a control (i.e., with no ligand) always 

being included.  

 

 



Development of new antimitotic agents related to combretastatins and phenstatins 
 

 - 52 -

 

 The samples were preincubated for 30 min at 20 °C in order to allow binding of the 

ligand, and were cooled on ice for 10 min. The cuvettes were then placed in the 

spectrophotometer at 4 °C. The assembly process was initiated by a shift in the temperature 

to 37 °C and the percent of inhibition (with respect to a sample with no drug) of tubulin 

polymerization at a single concentration (tipically 20 µM) was determined in at least two 

independent experiments for every compound. Compounds which inhibit tubulin 

polymerization more than 50% at 20 µM (predictable with IC50s lower than 20 µM) were 

selected for the determination of their IC50. The results are shown in table 23 for 

unselected compounds and in table 24 for selected ones.  

 

 

 III.5.A.3. Determination of the IC50 of tubulin assembly inhibitory activity of 

the selected compounds. 

 

 The IC50 was calculated as the concentration of drug causing 50% inhibition of 

polymerization after 20 min of incubation and was determined analytically. At least two 

independent experiments (or more when required) with different MTP preparations were 

carried out for each compound tested. 

 

 

III.5.B. Cytotoxicity assays. 

 

 Cytotoxicity was measured against 4 cancer cell lines (HL-60, A-549, HeLa and 

HT-29) by Dr. Faustino Mollinedo (C.I.C. Centre for Cancer Research. University of 

Salamanca), using the XTT procedure, as published. The data are shown in table 26. 
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III.5.C. Discussion of the results of biological activity. 

 

 

 III.5.C.1. General considerations. 

 

 Macrocyclic analogues display low potency in TPI (tubulin polymerization 

inhibitory) activity and cytotoxicity assays. On the other hand, the rest of the synthesized 

compounds constitute a very potent family of cytotoxic and TPI compounds. A comparison 

of the result obtained in this work with previous works from our lab (figure 98) shows that 

this family constitutes a hotspot in chemical space for TPI activity. Accordingly, the 

combination of a trimethoxyphenyl ring with a N-methyl-5-indolyl moiety seems to be a 

quite favourable one. 

 

 Overall, there is a good correlation between TPI potency and cytotoxicity, as shown 

in figure 99 for average cytotoxicity against the four cell lines (blue diamonds) or either 

the maximal (yellow squares) or minimal (green triangles) cytotoxicity values obtained, 

suggesting that they are probably acting by inhibiting the polymerization of tubulin. The 

higher variability shown by the minimal cytotoxicity values possibly reflects the fact that 

resistance can arise from ways different from target differences, thus decreasing the 

sensitivity to some potent TPI compounds. When the different cell lines are compared (fig. 

101: minus logarithm of cytotoxicity IC50 against each cell line vs the minus logarithm TPI 

IC50 values), HeLa and HL-60 seem to be more sensitive, whereas A-549 and HT-29 are 

more resistant. 

 

 The TPI assay at a single concentration seems to be an effective way of discarding 

candidates for further analysis and to focus on more interesting zones of chemical space. 

The TPI values at different concentrations of drug follow mono-exponential behaviours 

(figure 100), as expected. The IC50 measurements confirm the trends shown in the single 

concentration assays and allow for more precise SAR (structure activity relationships) 

analyses. Some of the IC50s obtained in this work are amongst those of the most potent TPI 

compounds described up to date. 
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 III.5.C.2. General structural considerations.  

 

 In order to compare the effect of different structural elements on the potency of the 

families studied we have compared the potencies of series of compounds having and 

lacking the structural feature under examination. Thus, we have compared series with 

2,3,4- vs 3,4,5-trimethoxyphenyl rings, indoles vs substituted phenyls, and the bridges 

between aromatic rings (combretastatins vs phenstatins vs isocombretastatins) for 

otherwise identical pairs of compounds. 

 

 When a dispersion graph is represented in which the pairs of values are the –log 

(IC50) TPI or cytotoxicities for compounds with a 2,3,4- (x axis) vs 3,4,5-trimethoxyphenyl 

ring (y axis), such as in figure 102, if both structural elements are equivalent the points are 

close to the diagonal. If the 2,3,4-trimethoxyphenyl renders the compounds more potent, 

the points sit mostly above the diagonal and if the opposite is true, the points sit mostly 

below the diagonal (as observed, indicating that the 3,4,5-trimethoxyphenyl is preferred). 

However, some compounds with a 2,3,4-trimethoxyphenyl group show acceptable IC50 

values, an unexpected result if we consider previous results and literature data.  

 

 In order to further explore this observation, we have compared compounds with a 

2,3,4-trimethoxyphenyl ring combined with either a substituted phenyl ring (blue 

diamonds and green bars in figure 103) with those with an indole ring (purple circles). To 

this end, we have plotted the TPI (bar diagram at the upper left) and the average 

cytotoxicity (bar diagram at the lower right) (figure 103). Purple circles aggregate at the 

upper right hand side, whereas the blue diamonds do so at the opposite end. This indicates 

a different behaviour for both types of compounds. 

 

 However, comparing simultaneously compounds with 2,3,4- or 3,4,5-

trimethoxyphenyl rings differenciated by the presence of substituted phenyls or N-methyl-

5-indolyl moieties as the other ring (figure 104), both classes are very similar, in 

agreement with previous reports which suggested that the N-methyl-5-indole moiety is a 

good surrogate for the 3-hydroxy-4-methoxyphenyl ring in combretastatins and 

phenstatins. 



Methods and results 
 

 - 55 -

 

 In figure 105 the average cytotoxicity values are plotted against the TPI values 

(both as –logs) for combretastatins (green triangles), phenstatins (pink diamonds) and 

isocombretastatins (yellow squares) in order to compare them. Phenstatins show lower 

cytotoxicities than the other two groups for a given TPI value, as indicated by their lower 

tendency line. As expected, hydrogenated compounds (blue stars) show low potencies, 

except compound 48, indicated by an arrow on the graph.  

 

 

 III.5.C.3. Effects on the activity of structural elements.  

 

 As shown in figure 106, formil groups are very favourable in combretastatins, less 

so in isocombretastatins and not favourable in phenstatins. Hydroxymethyl derivatives are 

less potent (figure 107) than formilated ones, except in combretastatins. Also, an 

interesting increase in sensitivity of A-549 and HT-29 is observed in some cases. Other 

substitutions assayed (oximes, hydrazones and nitriles) lead to less potent compounds as 

shown in figure 108, where average potencies relative to unsubstituted compound 47 are 

represented, and in figure 109, where individual potencies relative to compound 47 are 

represented. The most favourable substituent is the nitrile, which, unlike others, combines 

well with 2,3,4-trimethoxyphenyl ring. It can also be seen in figure 109 that compounds of 

this class with a 2,3,4-trimethoxyphenyl ring are less potent against HT-29 (an often 

resistant cell line) and, perhaps more surprisingly, against HL-60. The nitrile substituted 

compound does not follow this trend. Oximes are also potent compounds. 

 

 The presence of an adicional formyl group at the bridge of isocombretastatins 

(figure 110) decreases the activity with respect to the monoformylated derivatives at the 

position C-3 of the indole system. 

 

 If we consider a pharmacophore model proposed for colchicine site inhibitors of 

tubulin polymerization, the indole ring can occupy three pharmacophoric sites (figure 

112): a hydrophobic zone (black dots), a hydrogen bond acceptor zone (green dots) and a 

more distant hydrogen bond donor (pink dots). 
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 The most favourable substituents found are thus small ones. When we attempted to 

dock the 3-substituted compounds in tubulin complexes with colchicine, the poses found 

were very different from those of compounds with unsubstituted indoles, suggesting that 

there is not enough room for the substituents in the model of the complex. Consistently, the 

dialdehydes 50 and 61 (structurally related also to ADAMs and CC-5079, see figure 110), 

are less potent than the parent hydrides. The replacement of the 3-CH of indole by a 

heteroatom also leads to low potency. A possible explanation for the good activity profiles 

observed for the 3-substituted indoles, despite of their reluctance to dock in the colchicine 

site might imply a different disposition of lysine 350β of tubulin (see figure 112), whose 

side chain might rotate generating some room for the derivatives, allowing at the same 

time for an interaction between the substituents and the amino group. 

 

 Macrocyclic combretastatins are neither active in TPI nor in cytotoxicity assays. 

Molecular modelling suggested that one of the methylenes of the linker might occupy the 

space that occupies one of the methoxy groups of colchicine when binding to tubulin. 

Accordingly, compounds lacking one of the methoxy groups where synthesized and 

assayed, and showed only slight improvements. Thus, it seems likely that the spacer is 

responsible for losing TPI activity. Docking studies on non-macrocyclic analogues suggest 

that the spacer might collide with the side chains of the residues forming β-sheet spanning 

residues 313Val-316Val and 348Asn-352Ala (figure 111). 

 

 

 As summary of the results obtained in this work it can be highlighted: 

 

• Cytotoxic potency of isocombretastatins is comparable to that of combretastatins 

and both higher than phenstatins when the TPI activity is similar. 

 

• 3,4,5-trimethoxyphenyl moiety leads to more potent compounds than the 2,3,4-

trimethoxyphenyl ring, although for the last one the potency increases when 

combined with the N-methyl-5-indolyl moiety. 
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• The N-methyl-5-indolyl moiety moiety is also a good subrrogate of ring B in 

isocombretastatins, as it had been already observed for combretastatins and 

phenstatins. 

 

• Other benzofused heterocycles, structurally close to indole, produce lack of 

activity. 

 

• The presence of subtituents at position C-3 of N-methyl-5-indolyl moiety has a 

variable effect on the activities, being more potent those compounds with the 

nitrile or the oxime groups. 
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V. CONCLUSIONS   
 

 

 In this work it has been performed the synthesis and evaluation of new antimitotic 

agents related to combretastatins and phenstatins and, from the results, it is possible to 

infer the following conclusions:  

 

1. The used synthetic methodology allows obtaining phenstatins, isocombretatatins 

and a large number of derivatives easily. These compound constitute a nex family 

of antimitotic agents. 

 

2. It has been obtained dozens of compounds that combine a trimethoxyphenyl and an 

indol moiety through different bridges. The biological assay of these compounds 

allowed a direct comparison among combretastatins, phenstatins and 

isocombretastatins, which usually behave as highly potent agents in this assay and 

as cytotoxic agents when they carry group-rings. 
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3. Combretastatins and isocombretastatins show higher cytotoxicity than phenstatins 

when they have similar TPI potency. 

 

4. The de N-methyl-5-indolil scaffold has proven to be a good replacement for the 

guaiacol moiety in isocombretastatins and as in combretastatins and phenstatins. 

On the contrary, other related heterocyclic rings, such as 1,3-benzoxazole and 1H-

benzimidazole produce a decrease in the activity.  

 

5. In general, compounds with a 3,4,5-trimethoxyphenyl ring are more potent than 

those with a 2,3,4-trimethoxyphenyl ring, but an increase in the potency it is 

observed when the 2,3,4- is combined with an indol moiety (in comparison to its 

combination with another phenyl moiety). 

 

6. In isocombretastatins, the 3-substituted indole has no improved the activity respect 

the no-substituted indol. Nevertheless, the introduction of an oxime, a nitrile or a 

formyl group has produced compounds of similar potencies. 

 

7. Following the methodology employed by our research group, two new families of 

macrocyclic combretastatins have been synthesized. Their conformational analysis 

completes the study about the mobility and the disposition of the rings of this 

restricted analogues. 

 

8. It has been confirmed that the presence of an additional bridge (spacer), linking 

para-para positions of combretastatins and analogues, lead to total lack of tubulin 

polymerization inhibitory activity and cytotoxicity in these families of compounds. 
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