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Introduction

Higgs bundles were introduced by Hitchin [31) 32] and are of interest in many areas
of differential and algebraic geometry, topology and mathematical physics, such as the
study of surface group representations, gauge theory, Kahler and hyperkahler geometry

and integrable systems.

A Higgs bundle over a compact Riemann surface X is a pair (V,¢) consisting of a
holomorphic vector bundle V' over X and a holomorphic section ¢ of End(V) ® K, where
K is the canonical line bundle over X. The section ¢ is called the Higgs field. A Higgs
bundle is said to be stable if for each subbundle U C V for which ¢(U) C U ® K, one has

deg(U) _ deg(V)
rk(U) rk(V)

Semistability is defined replacing the strict inequality with a weak inequality.

The notion of Higgs bundle can be extended to the notion of G-Higgs bundle, where
G is a complex reductive Lie group. A G-Higgs bundle is then a pair (E, ) where E
is a principal G-bundle over X and ¢ is a holomorphic section of the vector bundle
E(g) = E xaq g twisted by K. When G = GL(n,C), the standard representation of
GL(n, C) in C" gives a one-to-one correspondence between principal GL(n, C)-bundles and
vector bundles of rank n. Using this correspondence we have that E(gl(n,C)) = End(V),
where V' is the vector bundle associated to the principal GL(n, C)-bundle E. Hence, this
notion is equivalent to the notion of Higgs bundle described above. Simpson [51] 52]
studied Higgs bundles in higher dimension and considered G-Higgs bundles for arbitrary
complex reductive Lie groups G, which were also studied by Hitchin [30] [32] on Riemann

surfaces.

The extension of the theory of G-Higgs bundles to real reductive Lie groups has been
systematically studied by Bradlow, Garcia-Prada, Gothen and Mundet i Riera (see for
example [7, [19]). Let G be a real reductive Lie group, H C G be a maximal compact
subgroup and H® be its complexification. Let ¢ : H® — GL(m®) be the complexified
isotropy representation defined in terms of the Cartan decomposition, g = b + m, of the
Lie algebra of G and using the fact that [h,m] C m. A G-Higgs bundle is a pair (E, @)
where F is a principal H®bundle over X and ¢ is a holomorphic section of the vector
bundle Em®)® K = (Ex,m%)® K. If G is a complex reductive Lie group then, applying
this definition to the underlying real Lie group, we recover the notion of G-Higgs bundle

for a complex Lie group G.

The moduli space of Higgs bundles were constructed by Nitsure [42] using Geome-
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tric Invariant Theory. The moduli space M(G) of G-Higgs bundles was constructed by
Simpson [53], 54] for a complex reductive Lie group G using algebraic methods and in ge-
neral (including real reductive Lie groups) by Schmitt [49] [50] using Geometric Invariant

Theory.

G-Higgs bundles are important in relation to the representations of the fundamental
group of the surface X. Let G be a reductive Lie group, the moduli space of representations
of m1(X) in G is defined as the orbit space

R(G) = Hom™ (m(X), Q) /G,

where Hom™ (7 (X)), G) denotes the subspace of all reductive representations of 7(X) on
G, that is, those that composed with the adjoint representation in the Lie algebra of G
decompose as a sum of irreducible representations, and G acts on Hom™ (7 (X), G) by
conjugation. The space R(G) is Hausdorff with the quotient topology and it is a real
analytic variety (see Goldman [22]).

Moduli spaces of representations have a very rich topology and geometry, reflecting
both properties of X and G. They have been studied from many points of view. When G
is compact they appear, for example, in quantum field theories [3]. If G = U(n), then the
theorem of Narasimhan and Seshadri [41] gives an homeomorphism between R(U(n)) and
the moduli space of semistable holomorphic vector bundles of rank n and degree 0. This
result is generalized by Ramanathan [47] for any compact Lie group G. He proved that,
when G is semisimple, the moduli space of representations R(G), when G is semisimple,
is homeomorphic to the moduli space of semistable principal G®-bundles on X, where G©
is the complexification of G. If G is reductive, there is an analogous result that involves

the representations of the universal central extension of the fundamental group of X on

G.

There is a homeomorphism between R(G) and M(G) for any reductive real Lie group
G that provides a generalization for non-compact groups of the theorem of Narasimhan
and Seshadri and the results of Ramanathan mentioned above. The proof of this result
involves the moduli space of solutions to the Hitchin’s equations. It was proved by Hitchin
[31] and by Simpson [52], 53, [54] for a complex Lie group and by Bradlow, Garcia-Prada,
Gothen and Mundet i Riera [10] 19] in the real case, that M(G) is homeomorphic to the
moduli space of solutions to the Hitchin’s equations, M%(G), which is defined as the

space of pairs (A, ), where A is a connection on a smooth principal H-bundle Ey and
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¢ € QOB (mT)), satisfying

Fa—lp,7(p)] = 0,
dalp) = 0,

modulo gauge equivalence. The other important ingredient involved in the proof of the
homeomorphism R(G) = M(G) is a theorem of Corlette [13], and Donaldson [I5] for
G = SL(2,C), that establishes a homeomorphism between R(G) and the moduli space
MU (G) of solutions of certain harmonic equations, defined as the space of pairs (A, ),
where A is a connection on a smooth principal H-bundle Fy and ¢ € QY(Eg(m)), satis-

fying
Fa+ i) = 0,
— 0

dy(y) = 0,

modulo gauge equivalence. The map (A4, ¢) — (A, = ¢ — 7(¢)) defines a homeomor-
phism between MY%(G) and M7 (G) and gives R(G) = M(G). Using these homeo-
morphisms one can obtain information about the moduli space of representations working

with M(G) or with the moduli space of solutions of Hitchin’s equations.

The geometry and topology of the moduli space of G-Higgs bundles have been studied
for several complex reductive Lie groups like GL(n, C), SL(n,C), SO(n,C) and Sp(2n, C),
and for some of their real forms, like U(p,q), Sp(2n,R), among others. This thesis is
devoted to the study of the moduli space of SO¢(p, ¢)-Higgs bundles, where SOq(p, q) is
the connected component of the identity of the Lie group SO(p, ¢). The special orthogonal
group with signature (p, q), SO(p, q), is the subgroup of SL(n = p+ ¢,R) consisting of all
linear transformations of a n = p + ¢ dimensional real vector space which leave invariant
a non-degenerate symmetric bilinear form of signature (p,¢) and it is a real form of the
reductive group SO(p + ¢,C). It coincides with the compact real form when p or ¢ are
equal to zero and with the split form when p = ¢, if p + ¢ is even, or when ¢ = p + 1, if
p+ ¢ is odd. The Cartan decomposition of the complex Lie algebra so(p + ¢,C) is

s0(p+¢,C) = (so(p,C) x s0(q,C)) ®m,

X
m€ — { ( » 2 ) | Xy complex (p X g)-matrix } .
—Ay

Following the definition given above, an SOq(p, q)-Higgs bundle is a pair (F,p) con-

where

sisting of a holomorphic principal SO(p,C) x SO(q,C)-bundle E and a section ¢ €
H°(E(m%) ® K). Using the standard representations of SO(p,C) and SO(q,C) in CP
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and CY respectively, there is a one-to-one correspondence between SOg(p, ¢)-Higgs bun-
dles and tuples (V, Qv, W, Qw,n), where V and W are two holomorphic vector bundles
of rank p and ¢ respectively and trivial determinant, )y, and QQy are non-degenerate
symmetric quadratic forms in V' and W respectively and € H°(Hom(W,V)® K). To an
SOo(p, ¢)-Higgs bundle (V, Qv, W, Qw,n) we can associate an SO(p + ¢, C)-Higgs bundle
defined by the triple

(E:V@W,Q=(QV >,¢=< . n)).
Qw -1

In this thesis we study the notions of semistability, stability and polystability for
SO(n, C) and SOy (p, q)-Higgs bundles applying the general notions given by Garcia-Prada,
Gothen and Mundet i Riera [19], that generalize the results given by Ramanathan [47] for
principal bundles. We show that the notions of stability and semistability for SO(n, C)
and SOg(p, ¢)-Higgs bundles can be simplified to the following.

Proposition (see Proposition [2.4). An SO(n,C)-Higgs bundle (E,Q, ¢) with n # 2 is
semistable if and only if for any isotropic subbundle E' C E such that ¢(E') C F' @ K
the inequality deg E' < 0 holds, and it is stable if it is semistable and for any non-zero
isotropic subbundle E' C E such that (E') C E' ® K we have deg E' < 0.

Proposition (see Proposition [3.3). An SOq(p, q)-Higgs bundle (V, Qv, W, Qw,n) with
p,q # 2 is semistable if and only if for any pair of isotropic subbundles V! C V., W' Cc W
such that n(W') C V' ® K, the inequality deg V' + deg W' < 0 holds. It is stable if and
only if it is semistable and for any pair of isotropic subbundles V' C V., W' C W, at least
one of them non-zero, such that n(W') C V' ® K, we have deg V' + deg W’ < 0.

The cases n = 2 and p = 2 or ¢ = 2 require an special treatment. Every SO(2, C)-Higgs
bundle is semistable and stable. The simplified notions of semistability and stability for
SOq(p, q¢)-Higgs bundles with p = 2 (resp. ¢ = 2) involves only the isotropic subbundles
of W (resp. V).

Morse-theoretic techniques for studying the topology of moduli spaces of Higgs bundles
were introduced by Hitchin [31] 32]. The problem of counting the connected components
of M(G) using these methods has been carried out for several reductive real Lie groups.
Hitchin solved the problem for the groups SL(n,R) and PSL(n,R) in [32]. His methods
were extended to U(p, ¢) and GL(n,R) with n > 3 by Bradlow, Garcia-Prada and Gothen
in [7, §]. The problem for the symplectic group Sp(4,R) was studied by Gothen in [25]
and by Garcia-Prada and Mundet i Riera in [21], whereas the general case Sp(2n,R) was
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studied by Garcia-Prada, Gothen and Mundet i Riera in [19]. The case of PGL(n,R) has
been studied recently by Oliveira in [43].

In this thesis we give important steps in the program of counting the connected com-
ponents of the moduli space M(G) for G = SOq¢(p,q). The classification of principal
SO(p, C) and SO(g, C)-bundles defines a topological invariant ¢ = (¢, ¢2) € m(SO(p, C)) %
m1(SO(g, C)) in the moduli space of polystable SOq(p, ¢)-Higgs bundles. When p,q > 3,
the invariant (¢, cs) € Zy X Zsy corresponds to the second Stiefel-Whitney classes of the
two orthogonal bundles that we obtain from the reduction of the structure groups of
(V,Qy) and (W, Qw) from SO(p,C) and SO(q, C) to the real groups SO(p) and SO(q).

This gives a first decomposition of the moduli space
M(G) = [[ M(@).

To obtain the number of connected components it is necessary to distinguish which of
these components M.(G) are connected and which decompose as a union of connected
components. The strategy of Hitchin for finding the connected components in M, (G) is

to consider the Hitchin function

f:M(G) — R
[A,¢] = el

where one identifies the moduli space of G-Higgs bundles with the space of solutions to
Hitchin’s equations and we use the L?-norm || - || defined by the metric that solves the
Hitchin’s equations. It is a consequence of the Uhlenbeck’s weak compactness theorem
that this function is proper [3I], and so it must have a minimum on each connected
component of M.(G).

To apply these techniques, the first step is to compute the critical points of f. The
Hitchin function f is the moment map of the circle action [A, ¢] — [A,e?y], when we
restrict to the smooth locus, M3(G). This implies that a smooth point of the moduli space
is a critical point if and only if it is a fixed point of the circle action. If [A, ¢] € M (G), it
is a fixed point of the circle action if and only if there exists a 1-parameter family of gauge
transformations {g(0)}, generated by an infinitesimal gauge transformation ¢, such that
da(¥) =0 and [, ] = ip.

A G-Higgs bundle (E, ¢) associated to the solution (A, ) corresponds to a fixed point

of the circle action if and only if it is a Hodge bundle (also called a complex variation
of Hodge structure, cf. [51]). This means that the vector bundles E(h®) and E(m®)
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decompose in sums of eigenbundles for the action of the infinitesimal transformation
and that [¢, ] = ip.

Once we have characterized the critical points of f, the second step is to identify
which are the minima, that is, to find the smooth Hodge bundles for which the Hessian
is non-negative definite. This can be done using the method given by Hitchin in [32] §8].
Let

. C ad(¢) C
C*(E,p): E(h") —Em"“)® K ,

be the deformation complex (see [19]), whose first hypercohomology group H'(C*(E, ¢))
is the space of infinitesimal deformations of (E, ). When (E,¢) represents a smooth
point, H'(C*(E, ¢)) is canonically isomorphic to the tangent space at this point and, for
all eigenvalues k of 1, the hypercohomology group H'(C(E, ¢)), where

o ad(p)
Ch(E,¢) : E(h°); == B(m®)p © K .
is isomorphic to the eigenspace of the Hessian of f with eigenvalue —k. Then, a smooth
G-Higgs bundle (E, ¢) is a minimum if and only if H'(Cg(E, ¢)) = 0 for k > 0.

If this condition holds, even when the G-Higgs bundle (F, ) is not smooth, we continue
to have a local minimum. Following Hitchin’s method, to rule out non-smooth G-Higgs
bundles as minima it is necessary to find a smooth family of deformations of (E, ¢) such
that the corresponding infinitesimal deformation is a non-zero element of H'(Cy(E, ¢))

for some k£ > 0.

In this thesis we apply these methods to the moduli space of polystable SOq(p, q)-
Higgs bundles. Our main result is Theorem which gives a complete description of
the smooth minima of the Hitchin function in the moduli space of SOg(p, ¢)-Higgs bundles.
We also solve the problem of finding the number of connected components of the moduli

space of polystable SOy (1, n)-Higgs bundles with n odd.

Theorem (see Theorem (7.5)). The moduli space of SOy(1,n)-Higgs bundles with n odd

has 2 connected components.

Among the real forms SOq(p, ¢), the split real forms SOg(n,n) and SOg(n,n + 1) play
and important role. It was proved by Hitchin in [32] that, when G is the split real form of
some complex reductive Lie group, the moduli space M(G) has a connected component
homeomorphic to a Euclidean space of dimension (2g—2) dim G. This component is called
the Hitchin component. When G = PSL(2,R), this component can be identified with
Teichmiiller space. In [32] §5] he gives a general method to construct Hitchin component

which is based on the definition of a section of the Hitchin map. We revisit the general
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method given by Hitchin in [32] to construct Hitchin component and specialize it to the

orthogonal split real forms SOg(n,n) and SOy(n,n + 1).

Using the characterizations of simple and smooth G-Higgs bundle given by Garcia-
Prada, Gothen and Mundet i Riera in [19], and the relation between the stability of an
SOo(p, ¢)-Higgs bundle and the stability of its associated SO(p + ¢, C)-Higgs bundle, we
prove that an SOg(p, ¢)-Higgs bundle is smooth if and only if it is stable and simple.
Hence, stable does not imply simple in the moduli space of SOq(p, q)-Higgs bundles. This
is an specific phenomenon of the complex Lie groups SO(n,C) and Sp(2n,C), and their
real forms, that appears already for principal bundles (see [46], [47]). This means that a
polystable SO (p, q)-Higgs bundle fails to be smooth if it is stable but non-simple, or if it
is strictly polystable.

Even when the SO (p, ¢)-Higgs bundle is not smooth, if H'(Cp) = 0 for all & > 0, it is
a local minimum. Then, after giving a description of the stable but non-simple SOq(p, q)-
Higgs bundles, we see that we can include in a more general theorem about minima the
stable but non-simple elements that satisfy this condition. We conjecture that these are
all the possible stable minima in M(SOq(p, ¢)). To prove this, we should rule out some
non-smooth SOq(p, ¢)-Higgs bundles as minima. This turns out to be technically much
more difficult than the previous studied cases and this is calling for new methods to be

developed.

Another topic treated in this thesis is the isomorphisms for special orthogonal groups
of low rank. Cartan proved in [I2] the existence of a list of isomorphisms between some

classical semisimple Lie algebras of low rank (see [29, Ch. X, §6]):

50(3,C) = sl(2,C) Zsp(2,C), s50(5,C) = sp(4,C),
s0(3) = su(2) = sp(2), s0(5) = sp(d),
s0(2,1) = sl(2,R), s0(2,3) = sp(4,R),

s0(1,4) = sp(2,2).
s0(4,C) = sl(2,C) x s1(2,C),
s0(4) = su(2) x su(2), s50(6,C) = sl(4,C),
50(2,2) = sl(2,R) x sl(2,R), s0(6) = su(4),
s0(1,3) = sl(2,0), 50(3,3) = sl(4,R),
50(2,4) = su(2,2),
50(2,6) = s0%(8), s0(1,5) = su*(4),

Using these isomorphisms and the list of isomorphisms between Spin Lie groups and

other classical semisimple Lie groups described in [28, Theorem 14.1], we study the relation
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between the moduli space of polystable SO(n, C)-Higgs bundles with n = 3,4,5 and 6 and
the moduli space of polystable G-Higgs bundles, where G = SL(2,C), SL(2, C) x SL(2,C),
Sp(4, C) and SL(4, C) respectively. We also described the relations between the real forms
SOo(p, q) with p + ¢ = n, for n = 3,4,5,6, and the corresponding real forms of the Lie
group G, describing explicitly the morphisms between the moduli spaces of Higgs bundles.

Now we give a description of the different chapters of this thesis.

In Chapter 1 we review the definition of G-Higgs bundle, where G is a real Lie group.
This chapter also includes the definition of the stability condition for a G-Higgs bundle
introduced in [10} 19], and sketches the basic ingredients that it involves, such as parabolic
subgroups, Levi subgroups, antidominant characters, reduction of structure group and

filtrations.

In Chapter 2 we apply the general notions to the special orthogonal complex Lie
group SO(n, C). In order to make easier the understanding of the notions of semistability,
stability and polystability, we develop the case n = 6, which is a simple but rich enough

example to illustrate this theory.

We introduce the definition of SO¢(p, ¢)-Higgs bundle in Chapter 3. As in the case
of SO(n,C), we apply the general notions to obtain the notions of semistability, stability
and polystability for SOg(p, ¢)-Higgs bundles and we give a simplified notion of stability
in Proposition [3.3] We illustrate the theory with an example that explains in detail the
stability for SOg(3,3)-Higgs bundles. In Section 3.5 we prove that an SOy(p, ¢)-Higgs
bundle is smooth if and only if it is stable and simple. The chapter concludes with a full
description of the two types of non-smooth objects, stable but non-simple and strictly
polystable SOg(p, ¢)-Higgs bundles, that will be useful in the study of the non-smooth

minima carried out in Chapter 8.

In Chapter 4, we describe the principal objects and results involved in the homeomor-
phism R(G) = M(G), particularizing to the case G = SOq(p, q).

In Chapter 5, we describe the maps that occur between several moduli spaces of Higgs
bundles induced by the isomorphisms between low rank orthogonal Lie algebras and other

reductive Lie algebras given by Cartan in [12].

The main result of this thesis is proved in Chapter 6. We give an explicit description
of the smooth minima of the Hitchin function in M(SOq(p, ¢)) (Theorem [6.10). We also
study in detail the general techniques used to prove the theorem. We define the Hitchin
function and explain the role that it plays in the study of the topology of M(SO(p,q)).

We also describe the critical points and explain the criterion of minima applied in the



smooth case.

In Chapter 7 we explain the general methods given by Hitchin for the study of the
non-smooth minima of the Hitchin function, we conjecture what happens with the non-
smooth minima in M(SOg(p,q)) and we explain the technical problems that appear in

this case. We finally compute the connected components of the moduli space of polystable
SOq(1,n)-Higgs bundles with n odd.

Chapter 8 is devoted to the construction of the Hitchin components of the moduli
spaces M(SOg(n,n)) and M(SOqy(n,n + 1)). We revisit the general method given by

Hitchin in [32] and then specialize it to the special orthogonal split real forms.






1 G-Higgs bundles

Let X be a compact Riemann surface. Let G be a real reductive Lie group, H be a

maximal compact subgroup of G and H® be its complexification. Let
v H® — GL(m%),

be the complexified isotropy representation, defined in terms of the Cartan decomposition

g = b+ m of the Lie algebra of G’ and using the fact that [h, m] C m.

Definition 1.1. A G-Higgs bundle is a pair (E, ) where E is a principal H®-bundle
over X and o is a holomorphic section of the vector bundle E(m®) @ K = (E x, m®)® K,
where K is the canonical line bundle over X. The section @ is called the Higgs field.

Two G-Higgs bundles (E, ) and (E',¢") are isomorphic if there is an isomorphism
E = E' which takes ¢ to @' under the induced isomorphism E(m®) = E'(m%).

When G is a real compact reductive Lie group, the Cartan decomposition of the Lie
algebra is g = b and then the Higgs field is equal to zero. Hence, a G-Higgs bundle is in
fact a principal G®-bundle.

Let G be a complex reductive Lie group and consider the underlying real Lie group
GR. In this case, the complexification H® of a maximal compact subgroup is again the
Lie group G and since

g =bh+ib,
the isotropy representation coincides with the adjoint representation of G on its Lie alge-
bra. Applying Definition [1.1/to G® we recover the notion of G-Higgs bundle for a complex
reductive Lie group G. When G = GL(n,C), the standard representation of GL(n,C)
in C" gives a one-to-one correspondence between principal GL(n, C)-bundles and vector
bundles of rank n. Using this correspondence we have E(gl(n,C)) = End(V'), where V'
is the vector bundle associated to the principal GL(n,C)-bundle E. Hence, this notion

recovers the notion of Higgs bundle.

A good reference for the material explained in the rest of the chapter is [19].

1.1 Parabolic subgroups

A subgroup P C G is said to be parabolic if G/P is a complete variety, that is, G/P is
an algebraic variety such that for any variety Y the projection morphism G/P xY — Y

is a closed map. The most common example of complete variety is a projective variety.
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Let G be a complex semisimple Lie group and consider a Cartan subalgebra ¢ of the

Lie algebra g. Let A be the set of roots of g with respect to this Cartan subalgebra. We

g:c@@gaa

where g, = {H € g | (adC)H = a(C)H, for all C € ¢}. Let A* be the set of positive
roots and Il = {ay, ..., a,, } be the set of simple roots. For any subset A C II we define

have a decomposition

AA:{5€A|5:Zmiozi with m; > 0 for all o; € A},

i=1
and let

pa=ce P o

EA
If P4 C G is the connected subgroup with Lie algebra p 4, then P, is a parabolic subgroup

of G. Similarly we can define

A%:{56A|5:Zmlal WithmiZOforaHOéiEA},

i=1
and let

[A:C@@g&

sen
which is a subalgebra of p4. If L, is the connected subgroup with Lie algebra [4, then

L4 is a Levi subgroup of Pj.

A weight A € ¢* is said to be dominant if 2“ ) > 0 for all a; € II, where (,-)

Q)
)\aL

denotes the Killing form of g, and it is said to be strlctly dominant 1f a > 0 for all

a; € 11.

Every simple root «; € 11, has an associated coroot defined by the formula

o = 2 o
‘ <Oéi,04i> "

Let {A1,...,\n} € ¢* defined by the condition 20, aa’> = 0;5. The \; are dominant weights

(aj,;
and we call them the fundamental dominant weights. Then, a weight A is dominant

if A =>"m;\; with all m; > 0, and strictly dominant if A = > m;\; with all m; > 0.

An antidominant character for the parabolic subgroup P, is an element of the form

X = Z mi;,

OLZ'EA
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with all m; < 0. We say that y is strictly antidominant if m; < 0 for all «; € A.

If G is a reductive group which is not semisimple, all these definitions can be genera-

lized considering the semisimple part g, = [g, g] of g and the decomposition

g=3Dgs,

where 3 is the centre of g (see [19]).

1.2 Stability

Let (E, ) be a G-Higgs bundle such that H® is a semisimple complex Lie group, and
consider a parabolic subgroup P4 C H® and its Levi subgroup Ly C Pa.

To any antidominant character x of P4 we can associate an element s, € ih taking
the dual via the Killing form. Let

P

Sx

ps, = {X €g]|Ad(e")(X) is bounded as t — co}.

= {g € G| exge "x is bounded as t — oo},

We have the inclusions Py, C P4 and p, C pa which are equalities when the antidominant

character is strict. In fact, every parabolic subgroup of H® is of the form P, with s € ib.

A holomorphic section o of E(H®/P,) is equivalent to a reduction of the structure

group of F from HC to Py, that is, there exists a principal P4-bundle E, such that
E~FE, xp, H".

Analogously, if o, is a holomorphic section of E,(Pa/Ly), it gives a reduction of the

structure group of E, from P4 to L4,
Eg = EJL XLa PA.
If x is an antidominant character for Py, let

(m®). = {vem®| e )v remains bounded as t — oo},

X
(m©)? = {vem®|ye"*)v =0 for any t} C (m®),

which are subspaces of m® invariant under the action of P, and L4 respectively. We have

that E(m®) 2 E, xp, m® and E(m%) @ E,, x;, m®, and we can thus identify the vector

bundles E, X p, (m)}

and E,, xp, (m®)} with two holomorphic subbundles

E(m®)) € E(m®); C E(m").

13



If x = >, camidi, where {\;} € ¢* is the set of fundamental weights associated to
the simple roots IT = {«;}, there exists some positive integer n such that for any «; € A,
the morphism of Lie algebras n); : ¢ — C gives a morphism of Lie groups Ky, : P4 — C*.
(See [19], Lemma 2.3). We define the degree of the bundle E with respect to a reduction
o and to an antidominant character x as the real number

deg(B)(0,x) = - 3 des(E, %, €.
a;€A
Definition 1.2. A G-Higgs bundle (E, p) is called semistable if for any parabolic sub-

group P C HE, any antidominant character x for P, and any holomorphic section
o € T(E(H®/P)) such that ¢ € H*(E(m®),, ® K), we have

deg(E) (o, x) > 0.

The pair (E, ) is called stable if it is semistable and furthermore: for any P, x and o
as above, such that ¢ € HY(E(m®)_, ® K) and such that P # H®, we have

deg(E)(o, x) > 0.

Finally, (E, ) is called polystable if it is semistable and for any P, x and o as above,
such that ¢ € HO(E(mC);X ® K), P # H and x is strictly antidominant, and such that

deg(E)(a,x) =0,

there is a holomorphic reduction of the structure group or, € I'(E,(P/L)). Furthermore,
under these hypothesis o is required to belong to H*(E(m®)? = ® K).

OL,X

These notions of semistability, stability and polystability can be generalized to G-
Higgs bundle with H® reductive but not semisimple. In this case, the notions depend on

a parameter « € Z(h®) which is equal to zero when H® is semisimple (see [19]).

Definition 1.3. The moduli space of polystable G-Higgs bundles is defined as the
set of isomorphisms classes of polystable G-Higgs bundles and is denoted by M(G).

1.3 Stability in terms of filtrations

Let (E, ¢) be a G-Higgs bundle such that H is a semisimple classical complex Lie group,
and consider a parabolic subgroup P C H® and its Levi subgroup L C P.

A workable notion of semistability, stability and polystability can be obtained giving
a description of the objects involved in Definition in terms of filtrations of vector
bundles (see [19, Section 2.8]).
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Since H® is a classical group, we have an inclusion H® C GL(n,C) for some n,
and using the standard representation p : H® — GL(n,C), we can associate to F a

holomorphic vector bundle E = E x, C".

If x is an antidominant character for P, dp(s,) diagonalizes as an element in gl(n, C)
with real eigenvalues A\ < - -+ < A and this gives rise to a decomposition E = @?Zl E(\)),
where E();) = ker()\; — dps,). For each i consider the holomorphic subbundle E; =
@D,<; E£(A;) C E. This induces a filtration

E=0CE C---CE,=E).

That is, to have a reduction of the structure group from H to the parabolic is the same
as to have a filtration of this form. The parabolic subgroup P is precisely the subgroup

which preserve this filtration, that is,

P, ={ge€ H"|g(E)) C E; for any i}.

In these terms, the vector bundles E(m®); and E(m®))  can be expressed as

E(m®);, = B(m®) N ((EP");, & @ (B, ),

U!X

E(m(c)g,x = E(m(c) N ((Epl’ql)g)_’X Ph---Ph (E'pr:%‘)o )7

0.7X

where we are using the notation EP? = E¥P @ (E*)®4, and with

(Epvq);xz Z Ei1®"'®Eip®EJJ‘I®"'®E]J‘;CEp7q,
Aig oA, KA et Ay

BP0 — E®  -QFE QELt®---@ E+ c EPY

(EP)gx W ®--QE,®F; ®---@E; C EPY,

Xig iy =Ny A
where B = {e € E* | (e, Ej) = 0} and (,) is the natural pairing between E and E*.
Finally, the degree can be computed as

k—1

deg(E) (0, x) = A deg E+ ) (A — Aiy1) deg E;.

i=1

15






2 SO(n,C)-Higgs bundles

In this section we apply Definition and the notions of stability described in Chapter
1 to the case G = SO(n, C).

Definition 2.1. An SO(n,C)-Higgs bundle is a pair (E,$) where E is a principal
SO(n, C)-bundle and ¢ € H*(E(s0(n,C)) ® K).

If (E,¢) is an SO(n, C)-Higgs bundle, using the standard representations of SO(n, C)
in C™ we can associate to the principal SO(n,C)-bundle E a holomorphic vector bundle

E of rank n,
E = E Xsom,c) C",

with trivial determinant, together with a non-degenerate symmetric quadratic form @ :
E ® E — C, that is, there is a one-to-one correspondence between principal SO(n, C)-
bundles and pairs (E, Q). Of course, if E is a vector bundle of rank n and trivial de-
terminant equipped with a non-degenerate symmetric quadratic form ), then () induces
an isomorphism ) : E — [E* and, taking determinants, an isomorphism det () : detE —
(detE)*. This means that det @ gives an isomorphism (detE)? = O. So, to give a
principal SO(n, C)-bundle it is necessary to give a triple (E, @, q), where E is a holomor-
phic vector bundle of rank n, () is a non-degenerate symmetric quadratic form on E and
q : detE = O is an isomorphism satisfying ¢*> = det Q. We will omit ¢ in this thesis for

simplicity, since it will not play a role in our analysis.

The Higgs field in terms of the vector bundle E is a section ¢ € H°(s0(E) ® K), where

s0(E) = {f € End(E) | Q(f-,-) + Q(, f-) = 0 and Tr(f) = 0}.

Hence, SO(n, C)-Higgs bundles are in one-to-one correspondence with triples (E, Q, ¢).

2.1 Parabolic subgroups of SO(n,C) and filtrations

I
Let n = 2m or n = 2m + 1. Using the orthogonal form @) = ( s ), or () =

in the odd case, to define the Lie algebra so(n,C), we can consider the

Cartan subalgebra,
¢ = {diagonal matrices in so(n,C)} = (C; = E;; — Eptinti, i = 1,...,m),

17



for n = 2m or n = 2m + 1. The sets of roots of so(n,C) with respect to this Cartan

subalgebra are

A = {te;, te; withi# j} C ¢, for n even,
A = {te; te; with i # j} U{zxe;} C ¢*, for n odd,

C1
where e; = ¢;, and the sets of simple roots are
Cn
I = {au=e—-en(l1<i<m-—1),a, =¢€n_1+en}, for n=2m even,
I = {o=¢—-e1(1<i<m-—1),q, =ep}, for n=2m+1 odd.

For any subset A C I we can define a parabolic subgroup P4 C SO(n,C) and a Levi
subgroup L4 C P4 as in Section [1.1

An antidominant character for a parabolic subgroup P, is in this case an element of

X = Z mi)\ia

OLZ'EA

the form

with all m; < 0, where the fundamental weights are:

A= o420+ .+ (i Doy il + .+ ) + St + ),
for i <m —1,
A1 = %(al +2a0+ ...+ (M —2)ay, 2+ %mam,l + %(m —2)ay,),
A = 2o+ 20+ ...+ (M = 2)am_s + 2(m — 2) a1 + tmay,),

for n = 2m even, and

Ai = ar+20+ ...+ (G- D1 +i(a; + ...+ ayy) for i <m,
A = 3(on 4200 + ...+ may,),

for n = 2m + 1 odd.

Let E be a principal SO(n, C)-bundle and consider a reduction of the structure group
of E to a parabolic subgroup P of SO(n,C). Let E be the holomorphic vector bundle
associated to E via the standard representation and let s = iX € iso(n) be the element

associated to an antidominant character for P as in the previous section.

The eigenvalues of a skew-symmetric matrix always come in pairs 44; (except in the

odd-dimensional case where there is an additional unpaired 0 eigenvalue). For a real

18



skew-symmetric matrix the non-zero eigenvalues are all pure imaginary and thus are of
the form £i\;, with A; € R. Any real skew-symmetric matrix can be diagonalized by
a unitary matrix. Since the eigenvalues of a real skew-symmetric matrix are complex
it is not possible to diagonalize by a real matrix, however, it is possible to bring every

skew-symmetric matrix to a block diagonal form

0 A1
-1 0
0 A2
—A2 0
Y
a0
0
0
by an orthogonal transformation. If {vy, v}, ... v, v],v941,...,vm} is the orthogonal ba-
sis in which X has block diagonal form, then {v; + iv},..., v + v}, Vyq1, .., VU, iv; +
V], ...,1v1 + v}, is the basis in which s takes form

-1

7>‘l

Al

A1

Using this diagonal form, if g = (g;;) € SO(n, C), then we have
Ad(e")(g) = e*ge™" = Diag(e™™,...,e 7™, 1,..., 1,e™ ... e™) - (gi)

. tA1 tA —tA —tA1
-Diag(e™t,...,e 1, Le ™M o e ).

If all the eigenvalues of s are different, P is the subgroup of upper triangular matrices in
SO(n,C) and if they are not, we have block upper diagonal matrices. Considering the
sequence of different eigenvalues of s, \j < Ao < ... < A\p_1 < Mg, with \g_;01 + N = 0,

we can construct a filtration
E=0OCE C---CE,=E)

as in Section [I.3] In this case, since A\g_;j+1 + A; = 0, the subbundles in the filtration

satisfy E; = Ee

r—j» that is, £ is a filtration of isotropic subbundles.

In the following example we study the parabolic subgroups of SO(6,C), which is a

simple but rich enough case to illustrate this theory.
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Ezxample 2.2. Parabolic subgroups of SO(6, C).

Every parabolic subgroup of SO(6, C) is in correspondence with an element s € iso0(6),
that is, the parabolic subgroups of SO(6, C) are defined by

P, ={g €S0(6,C) | e"®ge™" is bounded as t — oo},

where s takes all the possible values in is0(6). The corresponding Levi subgroups are
defined by

L, = {g € 50(6.C) | Ad(g)(s) = s}.

Let —A1 < —Xg < —A3 < A3 < Ay < A be the eigenvalues of s. If g = (g;;) € SO(6,C),

then we have that e”®*ge™'* is equal to
g11 et Mlg, elPamMg s et g, emtutA)g o em2h g,
el 1=22) gy 922 etPra=h2) goy et Aa)gy Mgy et ) g
etti=X) gy the=Aa) goy 933 e Mgy, e et g e tatda) g
e!Mtdalgy,  elPetia)g, g 944 etPa=r) g tPa=A)g
eththa) g, ehage,  elhetdalge, etha=Aa)ge, 955 ! A) gog
e?igg  etMith)gg,  tMatda)ge, eliha) gy, thihe) go 966

Studying the behavior of this matrix when t — oo for all possible values of \; we obtain
the list of parabolic subgroups of SO(6, C):

* ok ok x k% * k% ok ox k%
* * * * * * * * * * *
P_SO6C P_ * * * * * * P * * * >k *
- (7 )7 1= * % * ? 2 — ko ok * * * ?
* ok x * ok % ox %
* ok x *
* * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * *
P_ * ok ok k P_ * ok % % x P * ok k%
3 — * * * * Y 4 — * * * Y 5 — * * * Y
* * * * * * *
* * * * *
* ok x ok ok k £k ok x k%
* ok ok % x * ok ok % x
P_ * * * * P_ * * * *
6 — * * * * ? T — * * *
* * * *
* *

Observe that P; are not matrices in SL(6,C) but in SO(6, C), this means that there are
relations between the elements in a position marked by * and some of them are in fact

Zero.
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The corresponding Levi subgroups are

* * * * * *
* % x * % x
L - 80(67 C)’ Ll - * * * ? L2 - * * * * ?
* ok % * ok %
* *
* * *
* * K *
* ok * ok *
L3 - « 9 L4 - v x ) L5 - « )
* * * *
* * %
* *
* *
* *
L6 = « ; L7 - *
* *

* *

Let E be a principal SO(6, C)-bundle E. A reduction of the structure group of F to a
parabolic subgroup P; is equivalent to the existence of a filtration of its associated vector

bundle E. To conclude with this example, we describe the filtration corresponding to each
parabolic subgroup P; of SO(6, C):

P: £=(0CE), A =0,

P: £E=(0cEY CR), “A=-A=-A<A=A=A,
P: E=0cEY cEYCcR), “A<0=0=0=0< A\,
Py: £E=(0c EY c EY CcE), “A=-A<0=0< A=\
p: E=0cEYcEY cEYCE), A< —p=—p<p=p <A\,
Ps: E=(0cE® cEYPcEYCR), A= A< —p < p< A=A
Ps: E=0cEYcE? cEYcEYCE), A< —p<0=0<p <A,
P E=(0cEVCcEP cEY cEY cEY CR), -A<—p<-—v<y<p<Aa

In the filtrations, we have the relation E; = E " and the number (i) denotes the dimen-

sion of each subbundle.

2.2 Stability of SO(n,C)-Higgs bundles

Applying Definition [1.2] to SO(n, C)-Higgs bundles and using the results of Section [1.3| we
obtain the following:

Proposition 2.3. An SO(n,C)-Higgs bundle (E,Q, ¢) with n # 2 is semistable if for
any filtration
E=(0CE C...CE,=E),

1 <k <n, satisfying E; = E% and any element of

k—j3’

AE ==\ <A< ... <) €RF | Nlip1 + A =0 for any i}
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such that ¢ € H'(N(E,\) ® K), where

N(E,N) =so(E)n Y Hom(E;, E),
A<

we have

E

-1
d(g, )\) = (/\] - )\j—i-l) deg Ej > 0.

1

J
The triple (E, Q, ¢) is stable if it is semistable and for any choice of the filtration £
and non-zero X € A(E) such that ¢ € H'(N(E,\) ® K), we have

(€, \) > 0.

Finally, the triple (E, Q, ¢) is polystable if it is semistable and for any filtration £ as
above and A € N(E) satisfying \; < i1 for eachi, $ € H(N(E,N)QK) and d(E,\) =0,

there 1s an isomorphism
E ~ El EBEQ/El @ @Ek/Ekfl
satisfying
Q(Ei/Ei—la E]/E]_l) =0 unless i +] =k + 1.

Furthermore, via the isomorphism,

¢ € H'(EPHom(E;/E;_1, E;/Ei_1) ® K).

There is a simplification of the semistability and stability conditions, which is next
described.

Proposition 2.4. An SO(n,C)-Higgs bundle (E,Q, ¢) with n # 2 issemistable if and
only if for any isotropic subbundle E' C E such that ¢(E') C E' ® K the inequality
deg E' < 0 holds, and it is stable if it is semistable and for any non-zero isotropic
subbundle E' C E such that ¢(E') C E' ® K we have deg E' < 0.

Proof. This proof is analogous to the proof of Theorem 3.9 in [19].

Let (E, @, ¢) be an SO(n, C)-Higgs bundle and assume that for any isotropic subbundle
E' C E such that ¢(E') C E'® K one has deg E’ < 0. We are going to prove that (E, Q, ¢)

is semistable.

Choose any filtration £ = (0 C £y C ... C E; = E) satisfying E; = E,j_Q] for any j.
We have to understand the geometry of the set

AE, @) ={NEANE)|pENE N} CRR
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Let 7 ={j | ¢(E;) C E;@K} = {ji1,...,Jr}. One checks easily that if A\ = (A1,..., \g) €
A(E) then
AeEANE, @)= Ny =N forany j; <a <b<j.

The set of indices J is symmetric:
jeJek—-75€J.

To check this we have to prove that ¢(E;) C E; ® K implies that ¢(Ele) C EJ-LQ ® K.
Suppose that this is not true, then there is a j with ¢(E;) C E; ® K and there exists some
w E E]-LQ such that ¢(w) ¢ EjQ ® K. Then there exists v € E; such that Q(v, ¢(w)) # 0.
However, since ¢ € H°(s0(E) ® K), we must have

Q(v, ¢(w)) = Qv, 9" (w)) = =Q(¢(v), w),

and the latter vanishes because by assumption ¢(v) belongs to E;. So we have reached a

contradiction.

Let J' ={j € J |27 <k} and define for any j € J' the vector

Lj:—Zec+ Z ed,

c<j d>k—j+1

where €1, ..., e is the canonical basis of R¥. We know that the set A(E, @) is the positive

span of the vectors {L, | j € J'}. Consequently, we have
d(E,N) > 0 for any A € A(E,¢) < d(E,L;) >0 for any j

and d(€,L;) = —deg Ey_; — deg E;. Since deg Ej_; = deg E;, d(€, L;) > 0 is equivalent
to deg E; < 0, which holds by assumption. Hence (E, @), ¢) is semistable.

Conversely, if (E, @, ¢) is semistable then for any isotropic subbundle £’ C E such that
¢(FE') C E' ® K we have deg E’ < 0 is immediate by applying the semistability condition
of the filtration 0 C £’ ¢ E'e C E.

Finally, the proof of the second statement on stability is very similar to the case of

semistability, so we omit it. O

The case n = 2 requires a special attention. Observe that a principal SO(2, C)-bundle
1
(E,Q) decomposes as E = L @ L', where L is a line bundle and Q = | . Then,

any principal SO(2,C)-bundle has an isotropic subbundle with degree greater or equal

than zero. However, from the isomorphism SO(2,C) = C* we deduce that there are

23



no proper parabolic subgroups in SO(2,C), and using Definition we have that any
SO(2, C)-Higgs bundle is stable. Then, the simplified notions described in Definition

can not be applied to this case.
We illustrate Proposition [2.3] and Proposition [2.4] with the following example.
Ezample 2.5. Stability of SO(6, C)-Higgs bundles.

Let (E, @, ¢) be an SO(6,C)-Higgs bundle. In this example we apply Theorem to
obtain stability conditions of (E,Q, ¢) for each parabolic subgroup of SO(6,C) and we
arrive at the simplified notions of Theorem [2.4]

Let P C SO(n,C) be a parabolic subgroup and let x be an strictly antidominant
character for P. The fibre of the bundle E(m®)_ of Definition , which is denoted by
N(&, ) in Proposition 2.3] is

(mc); = {v € m® | 1(e"*)v remains bounded as t — oo}.

Since in the case of SO(6, C) the isotropy representation coincides with the adjoint repre-

sentation, the condition ¢ € H*(N(E,\) ® K) is equivalent to

¢ € {v € 50(6,C) | Ad(e"*)v is bounded as t — oo} = p.

If v = (v;;) € s0(6,C), then we have that Ad(e®)v is equal to

v11 et()\Qi/\l)UlQ et()\gf)\l),ulg eft()\1+)\3),vl4 eft()\1+/\2)v15 0
etMi=A2) 4,0, Vo etPs=A2) s et (A2tAs)y 0 —etA1TA2)q,
et()q—)\g)vgl et()\Q—/\g),U32 V33 0 _e—t(>\2+)\3)v24 _e—t()\1+/\3)rul4
etPitAs)y, etA2tAs)y o 0 —v33 —etPs=22) 00 _ptAs=AL)gy 4
et()\1+)\2)v51 0 _et(>\2+)\3),v42 —et(>‘2_>‘3)vgg —V99 _et(A2_>\l)/Ul2

0 _et(/\1+)\2)v51 _et()\1+)\3)v41 _et()\lf)\g),ugl _et()\1f/\2)v21 —v11

The stability conditions for each parabolic subgroup are the following:

e P: A reduction of the structure group of the SO(6,C)-Higgs bundle (E,Q) to
the parabolic subgroup P; is equivalent to a filtration £ = (0 C Eig) C E), the set
of eigenvalues of the corresponding s; € iso0(6) is given by A(E) = {(—=A, A\)} and the
condition ¢ € H(N(E,\) ® K) is equivalent to

fir fiz fis fia fis 0

faq1 fo2 fosz foa 0 —fis

fs31 fs2 faz 0 —fou —fia
0 0 0 —fi3zs —fos —fi3
0 0 0 —fis2 —fo2 —fi2
0 0 0 —f31 —fo1 —fi1
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Then,

and d(£,\) > 0 if and only if
deg Ef’) <0.

e P5: A reduction to P, is equivalent to a filtration £ = (0 C Efl) C E§5) C E), the
set of possible weights is A(€) = {(—\,0,A)} and the condition given by the Higgs field
1s
fin fz fis fia fig 0

0 foz Jfoz  foa 0 —fis
0  fiz2 f33 0 —fou —fia
0 faz 0 —fz3z —faz —fi3
0 0 —fa2 —fa2 —fo2 —fi2
0 0 0 0 0 —fi1

Then,
— (—) — (1) _ (5) _ _ (1)
d(E,N)=(=A—0)deg B}’ + (0 — A)deg By’ = =2 \deg B, >0

if and only if
deg Efl) <0.

e P5: For the parabolic subgroup P we have the filtration £ = (0 C E§2) - Egl) C E),
the set of weights A(€) = {(—\,0,A)} and the condition

fir fiz fiz fia fis 0

1 fo2 foz  fou 0  —fis
0 fiz 0 —fou —fia
0 0 —fz3z3 —fo3 —f13
0
0

fou

0 0 —fa2 —fi2
0 0 —fo1 —fin

o O O O

Then,
d(€,)) = (=X = 0)deg E{” + (0 — ) deg " = —2\deg E?) > 0

if and only if
deg E?) <0.

e P;: For the parabolic Py we have the filtration £ = (0 C Efl) C Eég) C E§5) C E),
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the set of weights A(E) = {(—A\, —u, 1, A) }, the condition

fir fiz s fia fis 0
0 fo2 fo3 faa 0 —fis
0 fs2 fs3 0  —fou —fia
0 0 0 —f33 —fo3 —/f13
0 0 0 —f32 —fo2 —fi2
0 0 0 0 0 —fi1

and the semistability condition implies

dE,N) = (=M +p)deg BV — 25 deg B + (1 — \) deg B
= —2(\—p)deg B — 2udeg B > 0.

e Ps: For this parabolic we have the filtration £ = (0 C Ef) C E§3) C E§4) C E), the
set of weights A(E) = {(—A, —u, 1, A) }, the condition

fir fig fiz fia fi5 0

o1 fo2 fosz feu 0 —fis
b — 0 0 f3z 0 —fou —fr4 ’
0 0 0 —fszg —foz —fi3
o 0 0 0  —fo2 —fi2
o 0 0 0  —fo1 —fia

and the semistability condition implies

AdE,N) = (=A+p)deg B — 2udeg BS + (1 — A) deg BV
= —2(A— p)deg E£2) — 2udeg Eég) > 0.

e Py For this parabolic we have the filtration £ = (0 C Efl) C Eéz) C E§4) C Ef’) C
E), the set of weights A(E) = {(—A, —u, 0, u, \)}, the condition

fir fiz fis fia fis 0
foo fo3  fou 0  —fis
f33 0 —fou —fia
0 —fs3 —fo3 —fi3
0 0  —fa2 —fie
0 0 0 —fi1

O )
0 0
0 0
0 0
0 0

and the semistability condition implies

dE,N) = (=A+p)deg BV — pdeg B — pideg EY + (1 — \) deg B
= —2(A—p)deg Ef) — 2pdeg EéQ) > 0.
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e Pr: For this parabolic we have the filtration £ = (0 C Efl) C E§2) C Eég) C Ef) C
Eé5) C E), the set of weights A(E) = {(—A, —u, —7,7, 1, A) }, the condition

fir fiz s fia fis 0

fo2 f2o3  faua 0 —fi5
0 fzz 0 —fau —f1a
0 0 —fzz —foz —fis
0o 0 0  —fo2 —fi2
0 0 0 0 —fia

0
0
0
0
0

and the semistability condition implies

dE.N) = (A +p)deg BV + (—p+7) deg B + (—y — 7) deg B5V+
+(y — ) deg B + (1 — N) deg B =
= —2(A— p)deg Ef) —2(p — ) deg Eéz) — 2vdeg E?()S) > 0.

Then, (E, @, ¢) is semistable if and only if the semistability condition holds for the
parabolic subgroups Py, P; and P, and in these cases, the condition ¢ € H'(N(E,\) Q@ K)
is equivalent to ¢(E') C E’ ® K, where E’ is the isotropic subbundle which has to verify
deg £’ < 0. The analogous property holds for the stability condition.

In fact, we have an inclusion p3 C pi, and then, if we suppose that the condition holds
for P;, then it automatically holds for P;. Therefore, it suffices to verify the stability
condition for P; and P, which are the maximal parabolic subgroups of SO(6,C). This is

a general phenomenon for SO(n, C) when n is even.
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3 SOy(p, q)-Higgs bundles

The special orthogonal group SO(p, q) is the subgroup of SL(n = p+¢,R) consisting of all
linear transformations of a n = p + ¢ dimensional real vector space which leave invariant

a non-degenerate symmetric bilinear form of signature (p, ¢). This group is a real form of
SO(n=p+¢q,C).

Using the standard non-degenerate symmetric bilinear form of signature (p,q) on R"
€(z,y) = =21y — = TplYp + Tps1Ypr1 + -+ TnYn,

this means that,
e(Az, Ay) = €(z,y)

for all A € SO(p,q) and all z,y € R™. Then

SO(p,q) ={A€SL(n=p+q,R) | AL, , A=1,,},

—I,
where [, , = ; .
q

The Lie group SO(p, ¢) is a real (non-complex) group of dimension n(n — 1)/2 which
is non-compact for p,q # 0, semisimple for p + ¢ > 3 and which has two connected

components. Let SOq(p, q) be the connected component of the identity.

The Lie algebra of SO(p, ¢) and then of its identity component SOq(p, q) is so(p, q),

which has Cartan decomposition

so(p,q) = b +m,

where h = so(p) x s0(q) is the Lie algebra of the maximal compact subgroup of SOq(p, q).

If we use the standard non-degenerate symmetric bilinear form of signature (p, ¢), we have

so(p,q) ={X esln=p+qR)| X', +1,,X =0} =

X X
= { ( b ) | X1, X3 real skew-symmetric of rank p and ¢, X, real (p x q)} ,

Xt X3
X; 0
X1 €s50(p), X3 € 50(q)
(% 1) o oo
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The involution of so(p+ ¢, C) that defines so(p, q) as a real form is o(X) = I, ,X 1, ,, that
is
so(p,q) ={X €so(p+¢,C) | [, , XI,, =X} =

—{Xesllp+¢C) | X+ X' =0,1,,XI,, = X} =

X1 1 Xy .
= | X1, X3 real skew-symmetric of rank p and ¢, X, real (p x q) ¢ .
XL X

Observe that there is an isomorphism

X, X, X, X, —il, 0 X, Xy il, 0
—_ = .
—i X, X3 XY X 0 I —i XY X3 0 I
The Cartan decomposition of the complex Lie algebra is

s0(p +¢,C) = (so(p,C) x s0(q,C)) ®m,

where

0 X
mC = {( . 2 ) | X5 complex matrix (p X ¢)},

and the complexified isotropy representation is

1 : SO(p,C) x SO(q,C) — GL(m®),

a 0 0 X, a 0 0 X, al 0
L = e
0 b -X! 0 0 b -X! 0 0 bt
0 anb_l C
= cm-.
—bXla™! 0

Definition 3.1. An SOq(p, q)-Higgs bundle is a pair (E, @), where E is a holomorphic
principal SO(p, C) x SO(q, C)-bundle over X and p € H'(E(m®) ® K).

Two SOy(p, q)-Higgs bundles (E, @) and (E',¢") are isomorphic if there is an isomor-
phism E = E' which takes ¢ to @' under the induced isomorphism E(m®) 2 E'(m®).

If (E,¢) is an SOy(p, q)-Higgs bundle, the principal SO(p, C) x SO(q, C)-bundle E is
the fibred product
E = Esop,c) X Esoo)

of two principal bundles with structure groups SO(p, C) and SO(q, C) respectively. Using
the standard representations of SO(p, C) and SO(g,C) in CP and C? we can associate to
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Eso@p,cy and Eso(g,c) two holomorphic vector bundles V' and W of rank p and g respec-
tively,

V' = Esop,c) Xsopc) C,
W = Es0(q,c) Xso(q,c) C%,

with det V' = det W = O, together with two non-degenerate symmetric quadratic forms
Qv: VeV —->Cand Qw : W W — C,
which induce two isomorphisms
qv :V—=V* and qw : W —=W*.
The vector bundle E(m®) can be expressed in terms of V and W as follows:
E(m®) = {(n,v) € Hom(W,V) & Hom(V, W) | v = —'},

where ' = q;[/l ontoqy,
.

V——Ww

nt

vV —— W,
that is, E(m%) = Hom(W,V). Then, in terms of vector bundles, the Higgs field is a
section n € H°(Hom(W, V) @ K), that is
n:W-VgK,

and hence SOg(p, q)-Higgs bundles (F, ) are in one-to-one correspondence with tuples
(‘/: QV7 W7 QW7 77)

Finally, an isomorphism between two SOy(p, ¢)-Higgs bundles (V, Qy, W, Qw,n) and
V", Qvi, W' Qw,1') is given by two isomorphisms gy : V — V' and gy : W — W’ such
that (gv X Ix) on =1 o gw, where I is the identity on K.

3.1 Stability of SOy(p, ¢)-Higgs bundles

Every parabolic subgroup P of SO(p,C) x SO(q,C) is of the form P, x P, where P, C
SO(p,C) and P, C SO(gq,C) are parabolic subgroups.

Given a s = (s1, 52) € i(s0(p) x s0(q)), we define the sets
P,, = {g € SO(p,C) | "' ge™*" is bounded as t — oo},
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P,, = {g € SO(q,C) | e"*2ge"** is bounded as t — co}.

These sets are parabolic subgroups of SO(p, C) and SO(q, C) respectively and then Py, X
P,, is a parabolic subgroup of the product. In fact, every parabolic subgroup of SO(p, C) x
SO(q, C) is of this form.

Let (E, ¢) be an SOy(p, ¢)-Higgs bundle and consider a reduction of structure group for
the principal SO(p, C) x SO(q, C)-bundle E to a parabolic subgroup P; x P, of SO(p, C) x
SO(q,C). Let V and W be the pair of holomorphic vector bundles associated to F
and let (s1,s2) be the pair of elements in iso(p) x iso(q) associated to P, and P,. If
M << =A< O0< <o < yand g < < s <0< s <l <y
are the sequences of different eigenvalues for s; and so (we use again r and s), where the
zeros appear only if p or ¢ are odd, let V/(\;) = ker(\; — s1), W();) = ker(u; — s2) and
Vi=D,;.;V(N), Wi= D, W(u;). With these definitions we obtain filtrations

V=0cWVc.---CcV.=V),

W=0cW,C---CcW,=W),

of isotropic subbundles generated by the eigenvectors in which s = (s, s2) is diagonal.
The parabolic subgroups P, and P, are precisely the subgroups which preserve these

filtrations.

Applying Definition[L.2]to SOy (p, ¢)-Higgs bundles and using the language of filtrations

described in Section [1.3| we obtain the following result.

Proposition 3.2. Let (V,W,Qv,Qw,n) be an SOq(p, q)-Higgs bundle with p,q # 2, then

it 1s semastable if for any pair of filtrations
yv=0cWVc---CcV,=V),

W=0cW,cC---CcW,=W),

satisfying V; = V,i?v, W, = Vi?w and any element (X, ) € A(V) x AOW) with

AV)={A= (A, A2, s A) €RT [N < Xijr, Armipn + A = 0 for any i},

=
=
[

{ﬂ = (Hl?ﬂ?a s 7:”5) eR’ ’ Hi < i1y fs—iv1 T [ = 0 fOT’ any 2}7
such that n € H°(N ® K), where

N = N(V7W7 A7:“) - Z Hom(vl/’ﬁ‘/})?

Aj<ui
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we have
AV, ) +dOW, 1) > 0.

The tuple (V, W, Qv, Qw,n) is stable if it is semistable and for any choice of the filtrations
(V, W) and non-zero (A, ) € A(V) x AW), that is, at least one of X and p is non-zero,
such that n € H(N ® K), we have

d(V, ) + dW, 1) > 0.

Finally, the tuple (V,W, Qv, Qw,n) is polystable if it is semistable and for any filtrations
(W, W) as above and non-zero (A, pu) € A(V) x AW) satisfying N\; < Niy1, pi < piv1 for
each i, n € H'(N @ K) and d(V,\) + d(W, 1) = 0, there are splittings of vector bundles

V:%@%/%@@V/%_l W:Wl@Wg/Wl@@W/WS_l

satisfying
QV(‘/;/Vifla V}/Vy—ﬂ =0 unless i —|—j =7+ 17

Qw (Wi /Wiy, W;/W,_1) =0 unless i +j = s+ 1,

with respect to which

n€ H'(EP Hom(W;/Wi 1, V;/V; 1) @ K).

Hi=Aj
The following proposition contains the simplified notions of semistability and stability.

Proposition 3.3. Let (V,Qv, W, Qw,n) be an SO¢(p, q)-Higgs bundle with p,q # 2. It
is semistable if and only if for any pair of isotropic subbundles V! C V., W' C W such
that n(W') C V' ® K, the inequality deg V' + deg W' < 0 holds. It is stable if and only
if it is semistable and for any pair of isotropic subbundles V! C V., W' C W, at least one
of them non-zero, such that n(W') C V' ® K, we have deg V' 4+ deg W' < 0.

Proof. Take an SOq(p, q)-Higgs bundle (V,Qy, W, Qw,n) and assume that for any pair
of isotropic subbundles V' C V, W' C W such that n(W') C V! ® K, we have deg V' +
deg W’ < 0 holds. We want to prove that (V, Qy, W, Qw,n) is semistable.

Choose a pair of filtrations V=(0cCc Vi C...CV,=Vand W=(0CW; C...C

W, = W satistying V; = Vrlf;‘/ and W; = Wi (3-“/ for any 5. We have to understand the

geometry of the convex set
A={(\p) e AV)x AW)|ne N} CR" xR’
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Let
J = {G@5) | n(W)) CVio K, (n(W;) € Vi ® K for 1 <)}
= {(Z.lajl)a CI (Zkvjk)}
One checks easily that if (A, u) € A(V) x A(W), then

Aa =Ny, forany iy <a<b<ipy,

(A,u)eA@{

g = My, for any 5; <a < b < jiq1.

The set of indices J is symmetric,
(,j)e T (r—i,s—j)€J.

To check this we have to prove that ¢(E;) C E; ® K implies that gb(EfQ) C E]-LQ ®
K. Suppose that this is not true, then there is a pair (i,7) with n(W;) C V; ® K (or
equivalently, n"(V;) € W; ® K) and there exists some w € VVjLQW such that n(w) ¢

ViLQV ® K. Then there exists v € V; such that Qv (v, n(w)) # 0. We have

Qv (v,n(w)) = Qw(-n'(v),w) =0,

and the latter vanishes because by assumption —n' (v) belongs to W;. So we have reached

a contradiction.

Let J' ={(i,7) € J | 2i <r,2j < s} and define for any (i,j) € J’ the vectors

Li:—Zec—F Z €d,

c<i d>r—i+1
M; = - E Je+ E Ja;
c<j d>s—j+1

where {ey,...,e.} and {f1,..., fs} are the canonical basis of R" and R®. The set A is the
positive span of the vectors {L;, M, | (i,j) € J'} and we have

dV,\) +dOW, pn) >0 for any (A, p) € A = d(V, L;) +d(W, M;) > 0 for any (1, 7).
We have also that
d(va Ll) = - deg ‘/;’—'i - deg ‘/;a
dW, M;) = —degW,_; — degW;.

Since deg V,_; = degV; and deg W,_; = deg W, then d(V, L;) + d(W, M;) = —2(deg V; +
degW;) > 0 is equivalent to degV; + degW; < 0, which holds by assumption. Hence
(V,Qv, W, Qw,n) is semistable.
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Conversely, if (V, Qv, W, Qw,n) is semistable, for any isotropic subbundle £’ C E such
that ¢(F') C E' ® K we have that the condition deg £’ < 0 is immediate by applying the
semistability condition of the filtrations 0 € V/ € V'*ev € Vand0 c W' € W'tew c W.

Finally, the proof of the second statement on stability is very similar to case of semista-

bility, so we omit it. O

As we have mentioned in Section the Lie group SO(2,C) has no parabolic sub-
groups and the stability condition can not be simplified in terms of isotropic subbundles.
This phenomenon appears also for SOy (p, ¢)-Higgs bundles in the study of the parabolic
subgroups of SO(p,C) x SO(q,C) when p or g are equal to 2. This is the reason why
Proposition does not work when p = 2 or ¢ = 2. The following result deals with this

case.

Proposition 3.4. An SO¢(2, q)-Higgs bundle (V,Qv,W,Qw,n) is semistable if and
only if for any isotropic subbundle W' C W such that n(W') C V ® K, the inequality
deg W’ < 0 holds. It is stable if and only if it is semistable and for non-zero isotropic
subbundle W' C W such that n(W') CV @ K, we have deg W' < 0.

To conclude this section we include several low rank examples to illustrate the notions
of stability for SOq(p, ¢)-Higgs bundles. In Example we deduce the simplified notion
of stability given by Proposition in the particular case of SOg(3,3)-Higgs bundles.
In Example [3.6, using the low rank isomorphisms given in Section 5] we compare the
notion of stability for the special orthogonal group SOg(2,1) with the notion of stability
for Sp(2,R) defined in [19)].

Ezample 3.5. Stability of SOg(3, 3)-Higgs bundles.
Let (E, ) be an SOq(3, 3)-Higgs bundle. The parabolic subgroups of SO(3,C) are T' =

* ok ok
SO(3,C) and Py = x * | € SO(3,C) corresponding to the elements s = 0 and s =
*
-
0 in is0(3). A reduction of the structure group of the principal SO(3,C) x

A
SO(3,C)-bundle E to a parabolic subgroup of SO(3,C) x SO(3,C) is in correspondence

with a pair of filtrations of the associated vector bundles V' and W. This correspondence
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is the following:

(0,0),
T=TxT,
V=0cV),W=(0cWw),
A< 0<A0),
P =Py xT, (1)( (2) )
vV=0cVi' cW’cV), W=(0cW),
(0,=A <0< N,
P =T By, M - @
V=0cCcV), W=0cCcW’' CcW,” CcW),
“A<0< A\, —pu<0<
Py= Py x P, ( , 1),

v=00cvP cv?cv), w=o0cw® cw® cw).

In this example, we use two different methods to write the condition for the parabolic

subgroups given by the Higgs field, we use the definition

N = > Hom(W;,V;),

Aj<pi

and we also compute the set
{X € m® | 1(e")(X) is bounded as t — oo}.

If f=(f;) € Hom(W,V)=m® and « : SO(3,C) x SO(3,C) — GL(m%) is the isotropy

representation, then

e~ fin fiz fis et
we)(f) = 1 Jo1 fop fo3 1
e 31 f32 [f33 e
WV e iy eIV f
= e fia fa2 e " fa3

6t(“Jr)‘)f?,,l 6tAf3,2 et(A_“)fs,:s

)\ —u
Observe that s = (s1, $2) with s = 0 and sy = 0 and that we
A I
are considering m® = Hom(W, V). If f = (fi;) is in Hom(W, V'), the corresponding part
in Hom(V, W) is

f3z Jfa3 fis
fT = f3,2 f2,2 f1,2
fsx fer fia

In the following list we describe, for each parabolic subgroup, the bundle N and the
condition for d(V, A) + d(W, ) that semistability condition requires:
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e 7 : N=Hom(W,V) and d(V,\) = dW, u) = 0.
fin fiz fis
e P, : N = Hom(W, V1) © Hom(W, V3) or equivalently n = | fo; fos fo3 |, that
0 0 0
is, " (V) = 0.
dV,\) = —2xdeg V", dOW, ;) = 0, then d(V,A) + dOW,p) > 0 if and only if
deg Vl(l) <0.
0 fiz fis
o P, : N =Hom(W,V)® Hom(W,V) or equivalently n = | 0 fop foz [, that is,
0 fs2 f33
(W) =0,
AV, A) = 0, dW,pu) = —2udegW . then d(V,A) + dOW,u) > 0 if and only if
deg Wl(l) <0.
o P;, A > pu: N = Hom(Wi, Vi) @ Hom(Ws, Vi) @ Hom (W, V2) @ Hom(W, V) &

fix fiz fis
Hom (W, V) or equivalently n = 0 fao fas |, that is, n(Wl(l)) C Vl(l) ® K and
0 0 0

T (i) =o.

AV, A) + dW, 1) = —2xdeg VY — 2udeg W > —2(deg VY + deg W), then
d(V,\) +dOW, p) > 0 if and only if deg V;) + deg WM < 0.

e P35 A < pu: N = Hom(W,, V1) @ Hom(Wy, Vo) @ Hom(W, V) & Hom(W, V) @

0 fiz fis
Hom(W, V) or equivalently n = [ 0 foo fo3 |, that is, U(Wl(l)) — 0 and UT(Vl(l)) C

0 0 f33
w oK.
AWV, A) + dW, 1) = —2xdeg VY — 2udeg WY > —2u(deg ViV + deg W V), then
d(V,\) +dOW, p) > 0 if and only if deg V;*) + deg WM < 0.
e P, A\ =z N = Hom(Wi,V;) & Hom(Ws, Vi) & Hom(Ws, Vo) @ Hom(W, V) &

fir fi2 fis
Hom(W, V2) @ Hom(W, V') or equivalently n = 0  foo fos |, that is, n(Wl(l)) C
0 0 fis

VvV @ K and T (V) c WV @ K.

AV, A) +d(W, A) = —2X\(deg Vi + deg W), then d(V, A) + d(W, 11) > 0 if and only
if deg V; + deg WY < 0.
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Observe that the SOy (3, 3)-Higgs bundle is semistable if and only if the semistability
condition holds for the parabolic subgroups P; and P, which are the maximal parabolic
subgroups. The same happens for the stability condition (but we do not consider the
parabolic P). For the parabolic subgroups P; and P, the condition given by the Higgs
field is n(W') = 0, where W’ is the isotropic subbundle of W which verify deg W’ < 0
and respectively ' (V') = 0, where V" is the isotropic subbundle of V' which has to verify
deg V' < 0. For a pair of isotropic subbundles V’ and W’ in V and W respectively, the
condition given by the Higgs field is n(W’) C V' @ K (and n" (V') C W' ® K) and the
condition for the degrees is deg V' 4+ deg W’ < 0. Then, we have the result that we expect

(Proposition [3.3)).

Ezxample 3.6. Stability of SOy(2,1) and Sp(2, R)-Higgs bundles.

In Section we describe an isomorphism between the Lie group Spin(2, 1), which is
a double cover of SOy(2, 1), and the groups SL(2,R) = Sp(2, R), that allow us to define an
arrow from the moduli space of SL(2,R)-Higgs bundles to M(SO¢(2,1)). In this example
we check that, if an SOg(2, 1)-Higgs bundle lifts to an SL(2,R)-Higgs bundle, both sta-
bility notions coincide. This is due to the fact that in both cases the complexification of

the maximal compact subgroups is SO(2, C) which has no proper parabolic subgroups.

3.2 Polystable SOq(p, q)-Higgs bundles

The main result in this section is Theorem which give a full description of polystable
SOo(p, q)-Higgs bundles.

For this, we need to describe some special SOq(p, ¢)-Higgs bundles which arise from
certain G-Higgs bundles, where G is a real subgroup of SOq(p, ¢). We have the following

inclusions:

U(n) —  SO(2n,0) or SO((0,2n) = SO(2n)
V! (Vl@V,*7<'7'>7_7_7_>7

!

SO(n) —  SO¢(n,0) or SOL(0,n) = SO(n)
(VlaQ/) = (Vlana_>_7_)7

U(p, q) — SO00(2p,29)
(‘/’/7 W/, 5/’ ,y/) (V/ @ ‘//*7 <.’ _>’ W/ @ WI*, <" _>’ ﬁ/ + ’Y/t>a

1
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where (-, -) denotes the dual pairing in each case.

Theorem 3.7. Let (V,Qv, W, Qw,n) be a polystable SOy(p, q)-Higgs bundle. There is a
decomposition, unique up to reordering, of this Higgs bundle as a sum of stable G;-Higgs

bundles, where G; is one of the following groups: SO (p:, q:), U(ps, q:), SO(n;) or U(n;).

Proof. Let (V,Qv,W,Qw,n) be a polystable SO¢(p, ¢)-Higgs bundle. For the principal
SOo(p, C) and SOy(g, C)-bundles (V, Qv ) and (W, Qw) we fix filtrations V = (0 C V; C
e CV =V, W=(0CW C--CW,=W), with V; = V- W, = W
and strictly antidominant characters \; < ... < A\, p1 < ... < pg with A,_;11 + A = 0,
fs—it1 + pi = 0, such that n € HO( @ Hom(W;,V;) ® K) and d(V, \) +dW, ) = 0.

Aj<w;
Since (V, Qv, W, Qw,n) is polystable, we have

VeVieoWw/Vie---oV/Vi, W Wy @ Wa/Wi & - W/W, s
with
Qv (Vi/Vi1,V;/Vi1) =0 unless i + j = r + 1,
Qw(Wi/Wi_y,W;/W,;_1) =0 unless i + j = s + 1,
and

n € H(@ Hom(W;/Wi 1, V;/ V1) @ K).
Hi=Aj
The conditions

Qv(Vi/Vie1,V;/Vi—1) =0unless i + j =1 + 1,
Qw (Wi /Wiy, W;/W;_1) =0 unless i + j = s + 1,

tell us that the bilinear forms @y and Qy give isomorphisms (V;/V;_1)* & V,_;11/Vi_;
and (W;/W;_1)* = Ws_;11/Ws_;. We have the exact sequence

Vi Vi (Vi Vi)

where p is given by v — Qv (v, -), then
(Vi/Vie ) 2 VL VA2V 0V

The same for (W, Qw ) and its corresponding decomposition.
Suppose that p is odd and that we have a filtration V = (0 Cc V; C ... C V, = V),
On the other hand, rk(VgL) = p — rk(Vz), that

implies rk(Vz) = %, which is not a natural number. Then, if p is odd, all the possible

where r is even, then Vit = VT,% = Vg.
2
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filtrations ¥V = (0 C V; C ... C V, = V), have odd length r, and the value 0 always
appears in the middle of the corresponding strictly antidominant character Ay < ... < A,.
When the rank p is even, we have filtrations for all 1 < r < p. When r is odd, we have
)\%1 = 0 and in the even case, we have --- Az < Arjq---, with Ar = —Ary .y < 0. We

have the analogous result when ¢ odd.

There is a piece of Higgs field non-equal to zero in the following cases:

e When r and s are odd and )\%1 = pts+1 = 0. Then we have

2

n e HO(Hom(W%/W%,V%l/V%l) ® K),
and since
(Vesa /Veer )" 2 Vess [Vers and (W /Wesa )™ 2 Weass /W,

the piece
(Vg /Vier, Qv, Wea /W, Qw, 1)

is in itself an SOy(p/, ¢')-Higgs bundle with p’ < p and ¢’ < q. Observe that @y and

Qw denotes now the restriction to the corresponding subbundles.

e When \; = p; for any 1 < j < r, 1 <14 < s. This implies also \,_j11 = fts—it1.

Then we have
(m,m2) € H(Hom(W; /Wiy, V;/Vj1) @ Hom(Wyir /Wsi, Viojia /Viej)) @ K),
and since
(Vi/ Vi) = Vieja/Viy and (Wi /Wih)" = W_ia /Wy,

the piece
(Vi/ Vi1, Wi/ Wiy, m,m))

is in itself a U(p/, ¢')-Higgs bundle with p’ < p and ¢’ < q. We can also take

(Vi g1/ Vs Weis1 /Weis s 1)

but it is clear that one set of data determines the other by duality.

There is a piece of Higgs field equal to zero in the following cases:
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e If r is odd and s even, we have the zero value only in the part corresponding to V'

and the pair
(Ve /Veet, Qv)

is then an orthogonal bundle with Higgs field equals to zero that appears in the
decomposition of V| that is, an SO(p’)-Higgs bundle. Analogously, if r is even and
s is odd, the pair

is an SO(¢’)-Higgs bundle in the decomposition of W.
e When we have \; # p; for all 1 < i < s, then we have a pair of U(p’)-Higgs bundles
Vi/Vi—i and Vi_j1/Vi—j,
dual one to the other. Analogously, if y; # A for all 1 < 5 <,
Wi/W}A and stHl/sti

are U(q')-Higgs bundle, determined one from the other by the duality given by Q.

Each piece in the decomposition is also polystable, and we can repeat the process and

obtain a decomposition where all the pieces are stable Higgs bundles (using the Jordan-
Holder reduction, [19, Sec. 2.10]). O

Lemma 3.8. If a polystable SOq(p, q)-Higgs bundle (V,Qvy,W,Qw,n) decomposes as a
sum of stable G;-Higgs bundles where G; = SOq(p;, ;) and SO(n;) with n; # 2, then
(V,Qv, W, Qw,n) is stable.

If in the decomposition of a polystable SOy(p, ¢)-Higgs bundle (V, Qv , W, Qw,n) there
is a summand which is an SO(2)-Higgs bundle, that is, a principal SO(2, C)-bundle E =
L@ L~!, the isotropic subbundles L and L™, which have opposite degrees, do not violate
the stability condition for E (since there are no parabolic subgroups in SO(2,C)) but they
violate the stability condition for (V, Qv, W, Qw,n).

Lemma 3.9. If an SOq(p, q)-Higgs bundle (V,Qv, W, Qw,n) is strictly polystable, then
in the decomposition there must be at least a G;-Higgs bundle with G; = U(n;), SO(2) or

U(piv%')'
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3.3 Moduli space of SOy(p, q)-Higgs bundles.

Definition 3.10. The moduli space of polystable SOy(p, q)-Higgs bundles is defined
as the set of isomorphisms classes of polystable SOq(p, q)-Higgs bundles and is denoted by

If (E, ) is an SOg(p, ¢)-Higgs bundle, since F is the fibred product

E = Esop,c) X Esoq,0)

of two orthogonal bundles, we have a topological invariant ¢ = (1, cs) associated to it,

which is given by the following exact sequences
1 = m(SO(p,€)) — SO(p,C) — SO(p,C) — 1,

1 — m(S0(¢,C)) — SO(g,C) — SO(g,C) — 1,
where é()(p, C) and é(v)(q,(C) are the universal covers of SO(p,C) and SO(q, C) respec-
tively, and the associated long cohomology sequences

H(X,S0(p, C)) —= H'(X,S0(p, C)) 2= H2(X,m (SO(p, C))) = m(SO(p, C)),

H'(X,S0(q, C)) —= H'(X,50(¢, C)) —= H*(X,m(SO(q, C))) = m1(SO(¢, C)).
This invariant

¢ = (c1,c2) € m(SO(p,C)) x m(SO(gq, C))

measures the obstruction to lifting Fso(,c) and Eso(q,c) to a flat SO(p,C)) and SO(p, C))-
bundle respectively. Observe that when n > 2, the universal cover of SO(n,C) is
Spin(n, C). We have that

1, n=1,
m(SO(n,C)) =< Z, n=2,
ZQ, n Z 3.

When p,q > 3, the invariants (c;, o) € H*(X, Zy) x H*(X,Zy) = Zy X Zsy correspond to
the second Stiefel-Whitney classes of the two orthogonal bundles that we obtain from the

reduction of the structure groups of Esop,c) and Egog,c) to the real groups SO(p) and
SO(q).

Since det V' = det W = O, using the applications
H'(X,S0(p,C)), H'(X,50(g, €)) == J(X)
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in the Jacobian of X and the identification
HY (X, Zy) = Jo(X) ={L € J(X) | L* = O},

the first Stiefel-Whitney classes of these bundles are zero.

We define the moduli space of polystable SOy(p, ¢)- Higgs bundles with invariant ¢ as

M (SO0 (p, q)) = {(E, ) € M(SO0(p, q)) such that ¢(E) = c}.

3.4 SOg(p,q)- and SO(p + ¢, C)-Higgs bundles stability

The goal of this section is to understand the relation between the stability of an SOq(p, q)-
Higgs bundle and the stability of its associated SO(p+ ¢, C)-Higgs bundle which is defined

as follows.

Let (E,¢) be an SOg(p, ¢)-Higgs bundle. Extending the structure group of E from
SO(p,C) x SO(q,C) to SO(p + ¢,C) and using

Eso(ptq0)(50(p+¢,C)) = Esoprqc) Xaas0(p+¢q,C)
= Eso(p,c)x80(4,C) (so(p,C) x 50(q,C)) @ Es0(p,0)xs0(4,0) (mc)’

which is induced by the Cartan decomposition

s0(p +¢,C) = (so(p, C) x s0(q, C)) & m",
the pair (Esope.c), ), With ¢ € H(Esop,cyxso,c)(m®) @ K) C H(Esopec)(s0(p +
¢,C)) ® K), is an SO(p + ¢, C)-Higgs bundle.

In terms of vector bundles, if E is the vector bundle associated to Ego(ptq,c) Via
the standard representation of SO(p + ¢,C) in CP™? and (V,Qy, W, Qw,n) is the tuple
corresponding to (F, ), then E =V @& W, and the SO(p + ¢, C)-Higgs bundle associated
to (V,Qv, W, Qw,n) is the triple

Qv U]
E p— V I/‘/7 pr— y pr— .
( v “ ( Qw ) i ( —77T >)

Proposition 3.11. Let (V,Qv, W, Qw,n) be an SO¢(p, q)-Higgs bundle and let (E, Q, ¢)
be the corresponding SO(p + q,C)-Higgs bundle. If (V,Qv,W,Qw,n) is stable, then
(E,Q, ¢) is stable as SO(p + ¢, C)-Higgs bundle.

Proof. Let (V,Qv,W,Qw,n) be a semistable SOq(p, q)-Higgs bundle and consider the
associated SO(p + ¢, C)-Higgs bundle (E, @, ¢). We will see that for every isotropic sub-
bundle £’ C E such that ¢(E’) C E" we have deg(E") < 0.
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If E' C E is an isotropic subbundle, we consider the projection p : E — W and the
subbundles W’ = p(E’) and V' = E'N'V. We have the exact sequence

0—-V - F =W =0

and the equality
deg ' = deg V' + deg W"'.

Since ) = (QV 0 ),We have
w

(B = (V'& W)k = (V)b n ()
= [V e WIN[V e (W) = (V) & (W),

and then, the condition £/ C (E')*= implies V' C (V/)1v and W’ C (W')*w | that is,
V" and W' are isotropic subbundles of V' and W respectively. On the other hand, since

¢(E’)§E’®Kand¢—< - n),wehaven(W’)QV’@K.
—n

The semistability condition for (V, Qv, W, Qw,n) gives deg V' 4+ deg W’ < 0 and then
we conclude that semistability of an SOg(p, ¢)-Higgs bundle implies semistability as SO(p+
q, C)-Higgs bundle.

Let now E' C E to be a non-zero isotropic subbundle such that ¢(E') C E' ® K.
Since E' # 0, at least one of V' and W' is non-zero, then the stability condition for
(V,Qv, W, Qw,n) gives deg E' = deg V' + deg W’ < 0 and we conclude. ]

3.5 Smoothness and deformation theory

It is known that a stable vector bundle is simple and that it is a smooth point of the moduli
space of polystable vector bundles. On the other hand, a stable principal SO(n, C)-bundle
with n # 2 represents a smooth point of the moduli space M(SO(n)) if and only if it is
simple (see [46]). Observe that, for n = 2, we have SO(2,C) = C* and then any SO(2)-
Higgs bundle is stable, simple and smooth. Thus, except in the case n = 2, the stability
of a special orthogonal bundle does not imply simplicity. In this section we study the

smoothness conditions in the moduli space M(SOy(p, q)).

Definition 3.12. A G-Higgs bundle (E,p) is said to be simple if Aut(E, ) = ker: N
Z(H®), where H C G is a maximal compact subgroup, Z(H) denotes the centre of its
complexification and v : HC — GL(m%) is the isotropy representation corresponding to the

Cartan decomposition g = b + m of the Lie algebra of G.
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A G-Higgs bundle is simple if the group of automorphisms is as small as possible. To

be in ker ¢ means to be compatible with the Higgs field.

If (E,Q) is an SO(n)-Higgs bundle with n > 2, that is, a principal SO(n, C)-bundle,
it has Higgs field equal to zero and then it is simple if and only if

I,, nodd,

+1I,, n even.

Aut(E, Q) = Z(50(n,C)) = {
The group of automorphisms of an SO(p, ¢)-Higgs bundle is

Aut(V7 QV?WQW?W) = {<f7 g) € AUt(‘/a QV) X AUt(VVa QW) ‘ nog= f 077}7
and hence (V, Qv, W, Qw,n) is simple if
Aut(v7 QV7 VV? QW777) =ker.N Z(SO(p, (C) X SO(Q7C))

The condition f = (fi, f2) € kert is equivalent to f; ono f; ! =7 and

Ip—i—qa D, q Odd’
Lpsq, 1 dd
Z(SO(p, C) X SO(q,C)) — p+a p,as p even, q odd,

Iy, — 1y  podd, qeven,

+tlprq, £1p4, P, qeven.
Thus, an SOy(p, ¢)-Higgs bundle (V, Qv, W, Qw,n) is simple if and only if

j:]p-‘rq? b, g even,

Ipiq,  rest.

Aut(v7 QV7 VI/: QW7 77) = {

Let us consider the deformation complex of an SOy(p, ¢)-Higgs bundle (E, ¢),

ad(p)

C*(E, ) : 0—= E(s0(p,C) x s0(q,C)) 2 Bm®) @ K —0.

We are using again the property [h¢, m®] € m® of the Cartan decomposition. For every
z € X we have p, € m®, F(h%), = h* and

ad(@).(H) = [H,¢,] € m® for all H € h°.
If (V,Qv, W, Qw,n) is the tuple associated to (F, ), we have

C*(V,Qv, W, Qw,n) : so(V) @ s0(W) — Hom(W,V)® K,

(f ) = ng — fn.
g

We adapt the results of Biswas and Ramanan in [5] to give the following result.
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Proposition 3.13. If (E, ¢) is an SOy(p, q)-Higgs bundle, we have the following.

1. The space of endomorphisms of (E, ) is isomorphic to the hypercohomology group
HO(C*(E, ¢)).

2. The space of infinitesimal deformations of (E, ) is isomorphic to the first hyperco-
homology group H'(C*(E, p)).

3. There is a long exact sequence
0 — H(C*(E,¢)) — HY(E(H)) — H'(E(m®) ® K) — H'(C*(E, p)) —
— HY(B(h")) - H'(E(m®) ® K) — H*(C*(E, ¢)) — 0,

where HY(E(H)) — H(E(m®) @ K) is induced by ad(y).

It follows from the above proposition that, for every SOq(p, ¢)-Higgs bundle (E, ¢) re-
presenting a smooth point of M, the tangent space at this point is canonically isomorphic
to H'(C*(E, ¢)).

Proposition 3.14. If an SOq(p, q)-Higgs bundle (E, ) is stable, simple and satisfies
H2(C*(E,¢)) =0,
then it is a smooth point of the moduli space.

We say that (E, ¢) is infinitesimally simple if End(F, ¢) 2 H°(C*(E, ¢)) is isomor-
phic to H(E(kerde M 3)). Stable implies infinitesimally simple.

Let (V,Qv, W, Qw,n) be the tuple corresponding to (F, ¢) and consider the associated
SO(p + ¢, C)-Higgs bundle (E, @, ¢) and the deformation complex

C*(E, Q, ¢) : 50(E) "L s0(E) ® K.

Since SO(p+ ¢, C) is complex, infinitesimally simple in this case means H°(C*(E, Q, ¢)) =
0 (kerde = ker(ad) = 0) and, as in the real case, stable implies infinitesimally simple.

There is an isomorphism
H*(C*(E, @, ¢)) = H'(C*(E, Q, ¢))",
and we have the following relation
H'(C*(E,Q, ¢)) = H(C*(E, ¢)) & H(C*(E, ¢))".
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Then, if (E,Q, ¢) is stable, H(C*(E, Q, ¢)) = 0 and this implies

HO(C.(E7 (P)) = HZ(C.(E7 90)) =0.

Using Proposition [3.11] we obtain the following description.

Corollary 3.15. If an SOq(p, q)-Higgs bundle (E, ) is stable and simple, then it is a

smooth point of the moduli space.

Corollary 3.16. Let (E, ) be a stable SOg(p, q)-Higgs bundle which represents a smooth
point of M, then
H(C*(E, ¢)) = H}(C*(E, ¢)) = 0.

The expected dimension of the moduli space M(SOq(p, q)) (see [19]), is

nn—1)(g—1)
5 :

dimH' (C*(E, p)) = —x(C*(E, p)) =

n(n—1)
2

where n = p 4+ ¢ and dim(SOq(p, q)) =

3.6 Stable but non-simple SO(n) and SOy(p, ¢)-Higgs bundles

In this section we give a description of the stable SO(n) or SO¢(p, ¢)-Higgs bundles that
fail to be simple. These results will be used in the study of strictly polystable SOq(p, q)-
Higgs bundles of Section [7}

Observe that the stability condition for a principal SO(n, C)-bundle can be deduced
from the stability condition for an SO(n,C)-Higgs bundles given by Proposition and
Proposition taking the Higgs field equal to zero. Of course, as in the case of SO(2, C)-
Higgs bundles, a principal SO(2, C)-bundle is always stable.

Lemma 3.17. If an SO(n)-Higgs bundle (E, Q) decomposes as a sum of G;-Higgs bundles
and one of them is an SO(2)-Higgs bundle or an SO(n;)-Higgs bundle with n > 2 which
is not stable, then (E, Q) is not stable.

Proof. 1f there is a summand which is an SO(2)-Higgs bundle E; = L & L™}, the isotropic
subbundles L and L', which have opposite degrees, do not violate the stability condition
for E but they violate the stability condition for (£,Q). If a summand (E;, Q;) is a
non-stable SO(n;)-Higgs bundle, there is a proper isotropic subbundle F; C E; such that
deg F; > 0. Since @; is the restriction of @ to E;, F; is an isotropic subbundle of E that
violates its stability. O
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Theorem 3.18. Let (E, Q) be a stable SO(n)-Higgs bundle with n # 2, that is, a principal
SO(n, C)-bundle, which is not simple, then it decomposes as a sum of stable and simple
SO(n;)-Higgs bundles with n; # 2.

Proof. Since (E, @) is not simple and
I, nodd,

Z(SO(n,C)) =
(501 ) { +1I,, n even,
there is an automorphism f € Aut(E,Q)\{xl,} if n even, or f € Aut(E, p)\{I,} if n is

odd.

Suppose that f = A\, with A € C*. It has to preserve the orthogonal structure of F,
that is,
Q(f(e), f(€) = NQe,¢) = Qe, ),
and this happens if and only if A = +1. On the other hand, the determinant of f has to
be equal to one. Then, the only possibilities are f = +1,, if n is even and f = [, if n is

odd, which are exactly the cases that we are excluding.

The group Aut(E, ) is reductive. This implies that f may be chosen in such a way
that there is a splitting £ = @ E; such that f restricted to E; is A\;I, with \; € C*.

Since
Qe e5) = Q(f(e:), f(e5)) = \iX;Qlei, €5),
then Q(E;, Ej) can only be non-zero when A\;A; = 1. Since () is non-degenerate, the
possible \'s values of lambda come in pairs (A\;, A; ') corresponding to (E;, Ef). If \; = %1,
we have \; = A7 and then E; & Ef and E_; & E*,. Since det f =[], NEEC— 1) we do
not have the value \; = 0.

Suppose that there is a A\; # +1, then F; C FE is an isotropic subbundle of E. If
deg E; > 0, this subbundle violates the stability condition for (E, Q). If deg E; < 0, then
deg Ef > 0 and again (E,(Q) is not stable. Hence \; = +1 and (E,Q) = (E1,Q1) &
(E1,Q-1).

Lemma tell us that these summands are stable SO(n;)-Higgs bundles with n; # 2.

If there is a summand which is a non-simple SO(n;)-Higgs bundle, applying the ar-
gument of this proof inductively we conclude that a stable but non-simple SO(n)-Higgs

bundle can be decomposed as a sum of smooth SO(n;)-Higgs bundles. O

Lemma 3.19. If an SOq(p, q)-Higgs bundle (V, Qv, W, Qw,n) decomposes as a sum of G;-
Higgs bundles and one of them is an SOq(p;, q;)-Higgs bundle (V;, Qv, W;, Qw,n;) which
is not stable, then (V,Qv, W, Qw,n) is not stable.
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Proof. Since (V;, Qv, Wi, Qw,n;) is not stable, there are isotropic subbundles V' C Vj,
W' C W; such that n;(W’) C V'® K and with deg V'+deg W’ > 0. These are also isotropic
subbundles of V' and W and violate the stability condition for (V, Qv, W, Qw,n). O

Lemma 3.20. If an SOq(p, q)-Higgs bundle (V,Qv, W, Qw,n) decomposes as a sum of
Gi-Higgs bundles and one of them is an SO(2)-Higgs bundle or an SO(n;)-Higgs bundle
which is not stable, then (V,Qv, W, Qw,n) is not stable.

Proof. It can be deduced from the proof of Lemma [3.17] and Lemma [3.19 O

Theorem 3.21. Let (V,Qv, W, Qw,n) be a stable SOy(p, q)-Higgs bundle which is not
simple, then it decomposes as a sum of stable and simple SOq(p;,q;) and SO(n;)-Higgs
bundles with n; # 2.

Proof. Suppose that the Higgs field is equal to zero, then the SOq(p, ¢)-Higgs bundle
(V,Qv, W, Qw,n) is a stable principal SO(p, C) x SO(g, C)-bundle, that is, it decomposes
as a sum of a stable SO(p)-Higgs bundle and a stable SO(q)-Higgs bundle. If the sum-
mands are simple we have the result and if they are not, we conclude using Theorem

.18

Suppose now that n # 0. Since (V,Qy, W, Qw,n) is not simple, there is an auto-
morphism f € Aut(V,Qv, W, Qw,n)\{x£l,+,} if p and ¢ are even, or an automorphism
feAut(V,Qv, W, Qw,n)\{Ip+,} in the rest of the cases.

Suppose that f = (f1,f2) = (A, pdy) is a multiple of the identity in V' and W
(A, € C*). The determinant of f; and f; has to be equal to 1 and they have to preserve

the corresponding orthogonal structures, that is,
QV(fl (’U), fl (UI>) = )‘2QV(U7 UI) = QV(U7 Ul)a
Qw (fo(w), f2(w")) = p*Qw (w,w'") = Qw (w, w’).

On the other hand, since we are supposing that the automorphisms are multiples of the
identity, the condition f; on = no f5 is equivalent to f; = fy. Then, the only possibilities
are f = £1,., if p and ¢ are even and f = I,;, in the rest of the cases, which are exactly
the cases that we are excluding. Thus, f is not of this form. Observe that it is possible to
have one of the automorphisms, f; or fs, equal to a multiple of the identity, more exactly,

the identity when the rank (p or ¢) is odd and 41 when the rank is even.

Since the group Aut(V,Qv,W,Qw,n) is reductive, there are splittings V = @V},
W = @ W, such that f; and fo are A\; and g, in V; and W; respectively (\;, u; € C*).
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Since
Qv (vi,v;) = Qv (fi(vi), f1(vy)) = NN Qv (vs,v;)),

then Qv (V;,V;) can only be non-zero when \;A; = 1. Since @y is non-degenerate, the
possible values of lambda come in pairs (\;, )\j_l) corresponding to (V;, V;*). If \; = &1,
we have \; = )\;1 and then Vi = Vi* and V_; = V. Since det f1 = [ )\;kvj =1, we do
not have \; = 0. The same for (W, Qw).

Since f preserve the Higgs field, for each component 7, ; € H°(Hom(W;,V;) ® K), we

have that

Mg (fo(w)) = panij(w)
is equal to

Si(mig(w)) = Ajmi(w),
for all w € W;, and then, p; # A; implies n; ; = 0.

Suppose that there is a A\; # £1. If p1; # A; for all ¢, we have n, ; = 0 for all 7, that is,
n"(V;) = 0. Since

Qv(V;, Vi) = Quf1(V)), 1(V5)) = XQv(V;, Vj),

and )\? # 1, we have Qv (V},V;) = 0 and hence, V; C V is an isotropic subbundle.
If degV; > 0, this subbundle violates the stability condition for (V,Qv, W, Qw,n). If
degVj < 0, then deg V" > 0 and again (V,Qv, W, Qw,n) is not stable and we get a
contradiction. Analogously, if there is a p; # £1 with A; # p,; for all j, we obtain a
contradiction with the stability of (V,Qv, W, Qw,n). Finally, suppose that there is a
Ai # £1 such that \; = p; for some 7. The subbundles V; C V and W; C W are isotropic
and n(W;) C V; ® K. If degV; + degW; > 0, these subbundles violate the stability
condition for (V,Qv, W, Qw,n). If degV; + degW,; < 0, then deg V;* + deg W} > 0 and
again (V, Qv, W, Qw,n) is not stable. Then \;, p; = 1.

Since 1 = det f; = 1™V1. (—1)*™V=1 and analogously for fo, we have rk V_; and rk W_,

even.

Denote n; = 1;;, where i = £1. We have the following decomposition

(V> QV> VVa QW?U) = (‘/17 Wlanl) D (Vfla Wflanfl)'

Since at least one piece of the automorphism, f; or fs, is not a multiple of the identity,
only one of the four subbundles Vi, V_;, W; and W_; can be zero. Since n # 0, at least
one of the Higgs fields n; and 7_; has to be non-zero. Thus, (V,Qy, W, Qw,n) is a sum
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of two SOq(p;, ¢;)-Higgs bundles, (Vi,Wy,m;) and (V_y, W_1,m_1), or it is a sum of an
SOo(ps, ¢;)-Higgs bundle together with one or two SO(n;)-Higgs bundles.

Lemma[3.19/and Lemma tell us that these summands are stable G;-Higgs bundles.

If there is a summand which is a non-simple SO(n;)-Higgs bundle, we have from
Theorem that it decomposes as a sum of stable and simple orthogonal bundles. If
there is a summand which is a non-simple SOq(p;, ¢;)-Higgs bundle, applying the argument
of this proof inductively we conclude that it can be decomposed as a sum of stable and
simple G;-Higgs bundles with G; = SOq(p;, ¢;) and SO(n;). O

Let (V,Qv, W, Qw,n) be a stable but non-simple SOq(p, ¢)-Higgs bundle and consider
the decomposition given by Theorem [3.21] Since all the summands are smooth, they are
simple, and since (V, Qv, W, Qw,n) is not simple, it must have at least one summand of
the following types: a smooth SOg(p;, ¢;)-Higgs bundle with p; and ¢; even, or a smooth
SO(n;)-Higgs bundle with n; even. These conditions allow us to take the automorphism

—1 in this summand and guarantee the non-simplicity.

51






4 SOq(p, q)-Higgs bundles and surface group represen-
tations
Let S be a compact oriented smooth surface of genus g and let m; be its fundamental

group. The group SOy(p, q) acts on the set Hom(7y, SOg(p, q)) of representations of the
fundamental group in SOq(p, ¢) by conjugation:

-1

(g-p)(v) =9p(1)g ",

for g € SOy(p, q), p € Hom(m,SOp(p, q)) and v € ;.

A representation p € Hom(m;, SOg(p, q)) is said to be reductive if the composition

with the adjoint representation in the Lie algebra
71—~ S00(p, q) = GL(s0(p, q))

decomposes as a sum of irreducible representations. We will denote the subspace of all

reductive representations by Hom™ (71, SOg(p, q)).

Definition 4.1. The moduli space of representations of m in SO¢(p,q) is defined

as the orbit space
R(SOu(p, q)) = Hom™ (71, SO00(p, 9))/ SO0(p, q)-

Consider the usual presentation
g
™ = (a1,b1, . ag, b | | Jlas bi] = 1),
i=1

where [a;, b = a;b;a;'b; . Every representation is determined by the images of the

generators ay, b, ..., ag, by. Then, Hom(m, SOg(p, q)) can be embedded in SOy(p, q)% via

p = (p(ar), ..., p(by)) € SOu(p, q)*,

and can be identified with the subset of SOg(p, ¢)%¢ of elements (A;, By, ..., Ay, B,) satis-
fying the algebraic equation [[_,[A;, B;] = 1. Thus, Hom(m, SOg(p, ¢)) have structure of
real analytic variety. The set of reductive representations Hom™ (71, SOg(p, q)) is an open
subset, and then has also structure of real analytic variety. Moreover, the moduli space
R(SOq(p, q)) is also a real analytic variety and it is Hausdorff with the quotient topology.
(See Goldman [22]).
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4.1 Representations and flat connections

There is a correspondence between the representations of the fundamental group on
SOo(p, q), modulo the action of SOy(p, ¢), and the set of equivalence classes of flat prin-
cipal SOg(p, ¢)-bundles. (See [35], Chap. I, §2).

To any representation p : m — SOg(p, q), we can associate a flat principal SOq(p, q)-
bundle
Ep - g Xp SOO(pa q)a

where S is the universal cover of S, which is a flat principal m-bundle. This is the orbit
space for the action of m; on S and the action

a-A=p(a)Ap(a)”

of m on SOy(p, q) via p.
Conversely, let (E, D) be a flat principal SOg(p, ¢)-bundle. If v = v(¢) with 0 <t < a

is a curve in S and ¢ is a section of F defined along ~, the section £ is parallel along ~ if
DEY'(t)) =0for 0 <t <a,

where /(t) is the tangent vector of v at y(t). If & is in the fibre E., ), it extends uniquely
to a parallel section ¢ along ~ called the parallel displacement of &, and this induces a
linear transformation of the fibre E,,, where zy = v(0) = y(a). Since D is flat, the parallel

displacement depends only on the homotopy class of v and then we have a representation

pe,py - T1 — SOu(p, q),

called the holonomy representation of F.

We say that a flat connection D in a principal SOg(p, ¢)-bundle E is reductive if the
representation of w1 in SOg(p, ¢) corresponding to (F, D) is reductive. Then, if we restrict
to reductive elements, the correspondence between representations of the fundamental
group on SOg(p, ¢) modulo the action of SOy (p, q) and the set of equivalence classes of

flat principal SOg(p, ¢)-bundles gives a correspondence
R(SO0(p, q)) = F(SO0(p, q)),
being

F(SOo(p,q)) = { reductive flat connections D on a principal
SOo(p, g)-bundle E }/G(E),
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where G(E) denotes the gauge group of F, that is, the group of SOg(p, ¢)-invariant
automorphisms of F and the action of the gauge group on the space of connections is

given by
g-D=goDog™},

which preserves the condition of flatness.

The maximal compact subgroup of SO(p, q) is S(O(p) x O(q)), while SO(p) x SO(q)
is the maximal compact subgroup of SOq(p,q). The fundamental group of SOy(p,q),

coincides with the fundamental group of its maximal compact subgroup. Using
m(SO(1)) = 1, since SO(1) = {1},

m1(SO(2)) = Z, since SO(2) = S,
m(SO(n)) = Zs, for n > 2,

we obtain
m(S00(p,q)) [p=1 p=2 p=>3
g=1 1 7 Lo
q=2 Y/ 7 X1 7o X1
q>3 Lo 71X Lo Lo X Lo

Let us consider the following exact sequence
1 — m1(S00(p, q)) — SOu(p, q) — SOu(p, q) — 1,

where §()O(p, q) is the universal cover of SO¢(p,q), which coincides with the Lie group
Sping(p, ¢) when p, g > 2. The associated long cohomology sequence is

HY(S,S00(p, q)) — H'(S,500(p, q)) — H*(S,m1(S00(p, ))) = m1(SO0(p, q)),

where we are regarding §(/)0(p, q), SOo(p,q) and 7 (SOg(p,q)) as the sheafs of locally

constant functions.

The sets H'(S, é\(/)o(p, q)) and H'(S,SOq(p,q)) parameterize the set of equivalence
classes of flat principal bundles over S with structure group SA(J)O(p, q) and SOq(p, q) res-

pectively. The characteristic class

o(E,) € H*(S,m1(SO0(p, q))) = m1(SOo(p, q))

measures the obstruction to lifting £, to a flat é?)o(p, q)-bundle or equivalently to lifting

p to a representation of m; in é()o (p,q). This class is an invariant for the classification of
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principal SOg(p, ¢)-bundles on S, and then it is an invariant for the representations of m;
in SOy(p, q). As we have seen, for p + ¢ > 3, this invariant can be an integer, an element
of the group Z,, a pair of integers, a pair in Zs X Zsy or in Zsy X Z, depending on the values
of p and ¢. The number of liftings is measured by H'(S, 71(SO¢(p, q))).
The moduli space of reductive representations of m; in SOg(p, q) with invariant c is
defined as
Rc(SO0(p, q)) = {p € R(SOu(p, q)) such that c(p) = c}.

Since ¢ is constant on each connected component of R(SOq(p, q)), then R.(SOo(p, q)) is
a connected component or a union of connected components. Fixing the invariant ¢ we

have the correspondence
Re(SOo(p. q)) = Fe(SOo(p, q)),

where

F.(SOo(p,q)) = { reductive flat connections D on a principal SOg(p, ¢)-bundle
E with ¢(E) = ¢}/G(E).

4.2 Harmonic reductions and harmonic equations

Let E be a principal SOg(p, ¢)-bundle over S. This bundle admits a reduction of the
structure group from SOg(p,q) to the maximal compact SO(p) x SO(q) if there are a
principal SO(p) x SO(¢)-bundle F' and an injection F' C E such that

L

is commutative. This gives a decomposition
E = F X50()xs0(q) SO0(p, q).

A reduction of structure group is equivalent to giving a section h of the bundle

E504(p.q)/50(n)x50() = E Xs00(p.q) (SO0(p, q)/ SO(p) x SO(q)),

which is obtained by considering the transitive action of SOg(p, ¢) on the symmetric space
SO0 (p,q)/ SO(p) x SO(g). Lifting to the universal cover S of S, we have

A ~

S x (SOo(p, )/ SO(p) x SO(q))

: |

S—">E X500(p.q) (SO0(p, @)/ SO(p) x SO(q)),

U
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and then, the reduction is now a section of S x (SO (p, )/ SO(p) x SO(q)), or equivalently

a map

h: S — SOo(p,q)/ SO(p) x SO(q)

equivariant under the action of ;.

Let X be a compact Riemannian manifold and Y a compact Riemannian manifold

with non-positive sectional curvature.
Definition 4.2. If f : X — Y is a smooth map, we define the energy density of f as

e(f): X — R*
x +— Tr(df;df.),

where dfdf, : T, X — T, X, and the energy of f as the integral

B = [ el

where dvx is the volume element in X.

The Laplace operator applied to f is
Af =div(Vf) = d"df.
Definition 4.3. The map f: X — Y is harmonic if Af =0.

This condition is related to the Euler-Lagrange equation for the energy functional.

The harmonic maps are in fact critical points of the energy functional (see [16]).

Using this definition, the map h is harmonic if
Ah = d*dh = 0.

There is another notion of harmonicity for a reduction of structure group that we will

describe next. We will see that both are equivalent.

Let P be a principal G-bundle and consider the gauge group G(P) of G-invariant

automorphisms of P. The sections of the associated bundle of groups
P(G) =P Xa G,
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where G acts on G by internal automorphisms, are equivalent to maps h : P — G
satisfying
h(pg) = g~ h(p)g,
and forms a group that can be identified with the gauge group G(P). The correspondence
is given by
Q(P(G) < G(P)
h <« hs:P — P h.p) = ph(p).

The map h, is equivariant:

h.(pg) = pgh(pg) = pgg~'h(p)g = h.(p)g.

The Lie algebra of the gauge group G(P) can be described as well as the set of holomorphic

sections of
P(g) = P Xaq 8.
Then, G(P) = Q°(P(G)) and Lie G(P) = Q°(P(g)).

Applying this to our case, we have G(F) = Q°(F(SO(p) x SO(q))) and Lie G(F) =
Q°(F(so(p) x so(q))), that is, if we consider F' as the fibred product of two principal
bundles with structure groups SO(p) and SO(q) respectively,

F = Esop) X Eso(g):

a gauge transformation g € G(F) is a pair (g1, g2) of sections g1 € Q°(Eso()(SO(p))) and
92 € Q' (Eso() (SO(9)))-

A reduction of the structure group from SOq(p, ¢) to the maximal compact SO(p) x
SO(q) gives, for any connection D on the principal SOq(p, ¢)-bundle E, a unique splitting

D=A+y,
where A is a connection on F and v is in Q!'(F(m)), where we use F(m) to denote the
bundle associated to F' via the isotropy representation.

There is an action of the gauge group G(F') on the set
{(A,v) | A connection on F,v € Q'(F(m))}.

A connection A on the principal bundle F' is equivalent to a pair of connections (Aj, As)
on the two principal bundles Eso(,) and Esoq). Let wi and wy be the corresponding

connections 1-forms defined by

(wl)p:TpESO(p) —  so(p) (w2>q:TqESO(q) —  s0(q)
Xy = 1p(Yp) Xy = 1Y),
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where p € Eso(p), ¢ € Eso(q), the vector fields Y, and Y, are the vertical components of
X, and X, according to the decomposition in vertical and horizontal vector fields given
by the connections, and 7, and 7, are the isomorphisms between the vertical subspaces
and the Lie algebras. If £ € so(p),

where v is the curve in Ego(,) defined by

Y(t) = p - exp(t§).

The analogous definition for 7,. A gauge transformation g = (g1, g2) € G(Es0()(SO(p))) x
G(Es0()(SO(q))) acts on the pair (wy,ws) as follows,

T, Esop) — 2" so(p) T, Eso — 22 s0(q)
(1) (‘*’1)91(17) (92)- (“’2)92(!1)
T4, ) Esop) T4, Eso(g)
that is,
(91 'wl)p(Xp) = (Wl)m(p)((gl)*(xp))a
(g2 - w2)q(Xq) = (W2)ga(q) ((92)(74)),
and then

gi - wi = g; (wi).

Let (V,Qv) and (W, Qw) be the vector bundles associated to the principal bundles
Esop) and Eso(q), that is,
V' = Eso) Xsow) R?,

W = Eso(q) *Xso(g) R?,

with detV = detW = R and @y, Qw are two non-degenerate symmetric quadratic
forms on V' and W respectively. A connection A = (A;, As) defines a pair of covariant

derivatives

da, : QP(V) — QPFL(V), da, : QP(W) — QPFLH )
with
dAi(O- ' ()0) - (dAiU> A @ +o- ng,
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for all o € Q°(V) (resp. Q°(W)) and ¢ € QF, preserving the forms Qv and Qy,
d(Qv(gO, ’l/})) = QV(d/h 2 1/1) + QV(@, dAlw)a ®, ¢ S Qp(V)

d(QW(QOa 77Z})) = QW(dAﬁDa ¢) + QW(@» dA2¢)7 ¥, ¢ S QP(W)
An element (g1,¢92) € G(V) x G(W) acts on (da,,da,) by

gi-da, = gioda,; 09, = gida,g; " + da,.

Finally, if g = (g1,92) is an element of Q°(Eso(,)(SO(p))) x Q°(Eso(g)(SO(q))) and
x € S, we have g, = ((g1)z, (92)z) € SO(p) x SO(q) and 1), is locally an element of m,

then g, acts on ¢, through the isotropy representation

¢t :S0O(p) x SO(q) — GL(m),

. Xo
that is, if ¢, = €m,
X3

b =4 _ (91)x X (91)7"
o = g0 ( (gm)(xé )( W)

We can write

g =1ug)(¥) =gy
We can express the moment map for the action of G(F) on the pairs (A, 1)) as
O = dy,

where d% is the adjoint of d4. The reduction of structure group from SOg(p, ¢) to SO(p) x

SO(q) is said to be harmonic if this moment map vanishes, that is

W =0,

This condition of harmonicity for the reduction A is equivalent to the condition for the
map
h: S — SOo(p,q)/ SO(p) x SO(g),

to be harmonic as a map of Riemannian manifolds because the 1-form 1 can be identified
with the differential of the map h and d4 with the pullback of the Levi-Civita connection
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on SOy (p, )/ SO(p) x SO(q) (see [L4]).

Let p be a representation of 7 in SOg(p,q) and let (E, D) be its associated flat
principal bundle. Consider a harmonic reduction F' C E. As we have seen in the previous

section, the connection D admits a splitting
D=A+v,

where A is a connection on F and ¢ € Q'(F(m)). Since D is flat, it satisfies the following

equation

Fo = Fat 2, 6] +da) = 0,

where Fy + [, 9] takes values in b and da(¢)) in m. Then, the pair (A4,1)) satisfies the

equations
Fa+ 3,9 =
dA(¢) =0 (1)
dy(¥) =

where [10,9] = ¥ + i, which are called harmonic equations. First and second

equalities correspond to Fp = 0 and the last equation is the condition of harmonicity for

the reduction to SO(p) x SO(q).

A theorem of Corlette [I3] applied to SOq(p, q) says the following:

Theorem 4.4. If p is a representation of w1 in SOg(p,q) and (E, D) is the associated

flat principal bundle, the representation p is reductive if and only if E admits a harmonic
reduction to SO(p) x SO(q).

We have seen in Section that there is a correspondence
Re(SO0(p, q)) = Fe(SOo(p, q))-
Now, Theorem [4.4] gives a bijection between the space F.(SOq(p, ¢)) and the moduli space

MHT(SO(p,q)) = {(A,v) | A connection on a principal SO(p) x SO(g)-bundle F,
Y € QY (F(m)), satisfying (1) and with ¢(F) = c}/G(F).

Then, we have
Re(SO0(p, q)) = Fo(SO0(p, q)) = MH(SOy(p, q)).
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4.3 Hitchin’s equations and Higgs bundles

We describe now the moduli space M.(SOq(p, ¢)) in terms of Dolbeault operators.

If E is a smooth principal SO(p,C) x SO(g, C)-bundle, a Dolbeault operator is a

C-linear map

Op : °(X,E) — Q" (X,E),

which satisfy
Op(f€) = Opf&+ [OuE,

where f € Q°(X) and ¢ € Q% X, E). This can be extended to a C-linear map
Op : Q"X ,E) - Q" (X E).

Since X is a Riemann surface, we have Q%?(X, E) = 0 and hence all Dolbeault operators in
E satisfy 9% = 0. This means that each Dolbeault operator g on E defines a holomorphic
structure on E (see [55], Appendix). Denote E the corresponding holomorphic principal
SO(p, C) x SO(g, C)-bundle.

We thus have a correspondence between the moduli space of polystable SOq(p, q)-
Higgs bundles and the moduli space of polystable pairs (g, ¢), where dg is a Dolbeault
operator on a principal SO(p,C) x SO(g, C)-bundle E and ¢ € Q'(E(m%)), satisfying
the condition dg(p) = 0, which is equivalent to ¢ € H°(E(m®) ® K), modulo de gauge
group G(E),

M_(SO¢(p,q)) = {Polystable (0, ) | Or on a smooth principal SO(p, C) x SO(q, C)-
bundle E, ¢ € Q"Y(E(m)), dx(p) = 0 and ¢(E) = c}/G(E).

The gauge group G(E) acts on the operators dg by the rule
g-0p = g0pg".
If g = (g1, 92) € G(E) = Q°(Es0(5,0)(SO(p, C))) x Q°(Eso(q,c)(SO(g, C))), where
E = Esop,c) X Eso(,c)s

and x € X, then g, = ((91)z, (g2)z) is in SO(p, C) x SO(¢, C) and ¢, is locally an element

of m®. Then g, acts on ¢, through the complexified isotropy representation

¢ : SO(p,C) x SO(q, C) — GL(m®),

62



X
that is, if ¢, = ( i ? ) € mC,
—Ag

o -, _ [ (91)e Xy (91)z"
Yo o = 1(ga) (¥2) ( (o). ) ( xt ) ( (02)! )

( (91)sX2(g2), " ) .
—(92)2X5(q1);"

We can write

g-0=1ug)(p)=gpg "

Let (V,Qy) and (W, Qw) be the vector bundles associated to E. The Higgs field is of
the form

n:W—-=VeK.

In terms of V' and W, a gauge transformation g is a pair (g;, g2) of automorphisms of V

and W respectively. We have the commutative diagram

W—"sVeK

92l i!hXIdK

w-LLve kK,

and the action of g = (g1, g2) on 7 is given by
grn=gionogy".
If we consider the isotropy representation
1 :SO(V) x SOW) — E(m®) @ K = Hom(W,V) ® K,

we have

>~ gionog, .

g-n=1u(g)(n) = grome gy )

(—QQOUTO%_I

If E is a smooth principal SO(p,C) x SO(gq,C)-bundle, there is a correspondence
between Dolbeault operators on E and connections on the reduction F' of E to SO(p) x
SO(q), which is given by

da — Oa,
d+dy’ — 0,

where d° is determined by the reduction.
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Consider a pair (A, ¢), where A is a connection on the smooth principal SO(p) x SO(q)-
bundle F' and ¢ € QM°(F(m®)). Let 7 denote the conjugation on so(p+ ¢, C) that defines

the compact real form

so(p+q) = {X€so(p+q,C)|X=X}=
= {Xeslp+¢,R) | X+ X" =0},

that is, 7(X) = X. Since 7 and the Cartan involution commute, we have 7(m®) C m®
and then 7 preserves the Cartan decomposition so(p + ¢, C) = so(p, C) x so(q,C) & mC.

This conjugation induces a 7 in £(m®) and then it makes sense to apply 7 to the section
©.

The Hitchin’s equations corresponding to the pair (A, ), where A is a connection
on a smooth principal SO(p) x SO(g)-bundle F' and ¢ € QV0(F(m®)), are

{&—www1=m
5.4(90) = 0.

Since 7(n) = 7, we can compute

()] = (_m-")<_¢-n)+<—M'n)(—ﬂ'n>:

and if the connection is A = (A, As), we get from Fy — [, 7(¢)] = 0 the pair of equations

Fa,+nn'+0n" = Fa +2Re(ni') =0,
Fa,+n'n+n'n = Fa+2Re(n'n) =0.

If we fix the pair (A, ), a solution to the Hitchin’s equations is a reduction from
SO(p, C) x SO(g,C) to SO(p) x SO(q) and the connection A is the unique connection on
F compatible with the holomorphic structure of F, that is, the part (0, 1) of the covariant
derivative d4, 04, is the Dolbeault operator that defines the holomorphic structure of
E. But, if we fix the reduction and F' is a principal SO(p) x SO(g)-bundle, then a
solution of the Hitchin’s equations is a pair (A, ¢), where A is a connection on F' and
¢ € QY(F(mT)), satisfying

5A(90) =
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The moduli space of solutions to the Hitchin’s equations is

MHE(SO(p,q)) = {(A, )| A connection on a smooth principal SO(p) x SO(g)-bundle
F, p € QY(F(m®)) satisfying (2) and with c(F) = c}/G(F).

We have described in Section the action of G(F') on the connection A and the action
of G(F) on ¢ € QYO(F(mT)) is analogous to the action on ¢ € QY(E(m®)) explained in
this section. If g = (g1, 92) € G(F) = Q°(Eso(»)(SO(p))) x Q°(Eso(g)(SO(q))) and z € X,
then g, = ((91), (g2)2) is in SO(p) x SO(g) and ¢, is in m®. Then g, acts on ¢, through

the isotropy representation

1 : SO(p) x SO(q) € SO(p,C) x SO(g,C) — GL(m®).

0 X
that is, if ¢, = ( . 2 ) e m®,

0o 0= 10)(52) = (Ww 0 )( 0 X2><<gl>; 0 )
0 (.92):(: —Xé 0 0 (92);1

_ ( 0 (91)aX2(g2); " )
—(92)2X5(91); " 0 '

g-o=1ug)(p)=gpg "

We can write

Theorems of Bradlow, Garcia-Prada and Mundet i Riera [10] for an arbitrary reductive
real Lie group when the Higgs bundle is stable and Garcia-Prada, Gothen and Mundet i
Riera [19, Theorem 2.19] for the general polystable case, give the following.

Theorem 4.5. An SOq(p, q)-Higgs bundle (E, ) is polystable if and only if the principal
SO(p, C) x SO(q, C)-bundle E admits a reduction to SO(p) x SO(q) such that

Fa—[e,7()] =0,

where A is the connection on the principal SO(p) x SO(q)-bundle F' corresponding to the
operator Og that defines the holomorphic structure of E.

This result gives a correspondence between the moduli space of SOg(p, ¢)-Higgs bundles

and the moduli space of solutions of the Hitchin’s equations,
M.(SOu(p, q)) = M (SOo(p, ))-

65



4.4 The correspondence
The proof of the following result is given by Theorem (.4 and Theorem [£.5]

Theorem 4.6. There is a homeomorphism
Re(SO0(p, q)) = Mc(SO0(p; ).

Theorem [.4] gives a homeomorphism between the moduli space of representations and

the moduli space of solutions to the harmonic equations,
Re(SO0(p, 4)) = M (SOu(p, ),

and Theorem gives a homeomorphism between the moduli space of Higgs bundles and

the moduli space of solutions to Hitchin’s equations,
M (SOo(p, @) = M (SO0(p, 0)).

To prove the result of Theorem 4.6/ we need to establish a bijection between the spaces of
solutions MH(SOq(p, q)) and MH#(SOy(p, q)).

If (A,v) represents a class in M7 (SOy(p,q)) and we extend the structure group
from SO(p) x SO(q) to SO(p,C) x SO(g,C), the extended connection and curvature are
of the form

dy = d’ +dy',
Fa=F"+Fy + Y = F),

since X is a Riemann surface and then F3° = F}* = 0. We denote 94 = d*;'. Analogously,

=90+t = o —1(p),

with ¢ € QYO(F(m®)) and 7 being the conjugation in so(p+¢q, C) that defines the compact
real form so(p + ¢) as we have seen in Section [1.3] Rewriting the harmonic equations in

these terms, we obtain the Hitchin’s equations

Fa—lp,m(0)] = 0,
dalp) = 0,
(FY* =[p.0] = 0).

That is, the map
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defines a homeomorphism
MI(SO0(p, q)) = M (SO0(p, 9)),

and we obtain the result of Theorem [4.61

All the correspondences used in this proof are outlined in the following diagram:

R(SOo(p, q)) M.(SOo(p, q))

| |

Fe(SOo(p, q)) =< MH(SOy(p, q)) <= MH*(SO0(p, )

p (0=04,¢9)

Using this homeomorphism we can obtain information about the topological proper-
ties of R.(SOo(p, ¢)) studying the topological properties of M.(SOq(p, q)). For example,
counting the number of connected components of each R.(SOq(p, ¢)) is the same as count-

ing the number of the connected components of M.(SOq(p, q)).
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5 Low rank isomorphisms

In this chapter, using the isomorphisms between Spin Lie groups and other classical
semisimple Lie groups described in [28, Theorem 14.1], we study the relation between
the moduli space of polystable SO(n,C)-Higgs bundles with n = 3,4,5 and 6 and the
moduli space of polystable G-Higgs bundles, where G = SL(2,C), SL(2,C) x SL(2,C),
Sp(4,C) and SL(4,C) respectively, and the relations between the real forms SOg(p, q),
with p + ¢ = n, and the corresponding real forms of the Lie group G.

Using the classification of semisimple complex Lie algebras given by the Dynkin dia-

grams, we observe the isomorphisms:

s50(3,C) = 5l1(2,C) =sp(2,C),
s0(4,C) = sl(2,C) x sl(2,C),
s50(5,C) = sp(4,0),

50(6,C) = sl(4,C)

Each isomorphism induces isomorphisms between the corresponding real forms. To deal

with the real forms, we use the following result (see [29]).

Theorem 5.1. Suppose that g, and gs are real forms of the same simple complex Lie
algebra g, and let g1 = b1 +my and g2 = ha + my be any Cartan decompositions. If b,

and by are isomorphic, g1 and gs are isomorphic.

Hence, the isomorphisms between the compact real forms:

s0(3) = su(2) = sp(2),
s0(4) = su(2) x su(2),
s0(5) = sp(4),
s50(6) = su(4),

induce isomorphisms between the non-compact real forms:

s0(2,1) = sl(2,R), (3,3) = sl(4,R),

50(3
50(2,4) = su(2,2),
so(1

50(2,2) = sl(2,R) xsl(2,R), (1,5) = su*(4),
s0(1,3) = sl(2,C),

50(2,6) = s0*(8),
s0(2,3) = sp(4,R),
so(1,4) = sp(2,2)
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This gives local isomorphisms between the Lie groups SO¢(p, q) with p+ ¢ = 3,4,5,6
and other semisimple classical Lie groups, and allow us to establish an arrow between
the corresponding moduli spaces. Since the problem of counting the number of connected
components of the moduli space of G-Higgs bundles is solved for several semisimple classi-
cal Lie groups, we will use these local isomorphisms to study the same problem for the

moduli space M(SOg(p, q)) in these small rank cases.

5.1 Isomorphisms of SO(3,C) and its real forms

The Lie group SO(3,C) is locally isomorphic to the special linear group SL(2,C) and
to the symplectic group Sp(2,C), but the Lie group with Lie algebra so(3,C) which is
isomorphic to SL(2,C) and Sp(2, C) is the spin group Spin(3, C) (see [28, Theorem 14.1]).
The same happens in the case of the real forms, we have isomorphisms

Spin(3) = SU(2) = Sp(2) and Sping(2,1) = SL(2, R).

Spin groups are double covers of the special orthogonal groups, and then we have the
short exact sequences

1 — Zy — Spin(3) = SU(2) —  SO03) — 1,

1 — Zy — Spin(3,C)=SL(2,C) — SO(3,C) — 1,

1 — Zs — Spiny(2,1) = SL(2,R) — SOy(2,1) — 1.
Since we are interested in the moduli space of SOq(p, ¢)-Higgs bundles and not in spin
Higgs bundles, we will use these sequences to establish arrows from the moduli space of
SU(2), SL(2,C) and SL(2, R)-Higgs bundles to the moduli space of SO(3), SO(3,C) and
SOq(2, 1)-Higgs bundles respectively.

We start with the compact real form SO(3). A SU(2)-Higgs bundle is a principal
SL(2, C)-bundle, or equivalently, a holomorphic vector bundle E' of rank 2 with trivial de-
terminant. Let F' = S2E. This vector bundle has rank 3 and a non-degenerate symmetric

quadratic form
Qr:S*Ex S?°E - N°’E®ANE=0
defined by
Qrlz@y, 2’ ®y) =(zna) @ yAY)+ @Ay)@ @y A).
Hence, (F = S?FE, Qr) is a principal SO(3, C)-bundle and we have the map
M(SU(2)) — M(SO(3))
E — (F=8S*E Q).
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A principal SO(3, C)-bundle F' lifts to a principal SL(2, C)-bundle if and only if the second
Stiefel-Whitney class wa(F50(3)) of the underlying orthogonal real bundle Fgos) is zero.

Consider now the sequence for the complex groups
1 — Zy — SL(2,C) — SO(3,C) — 1.

An SL(2,C)-Higgs bundle is a pair (E,¢), where E is a holomorphic vector bundle of
rank 2 and trivial determinant, and ¢ € H°(Endy(F) ® K). On the other hand, as we
have seen in Chapter [2, an SO(3, C)-Higgs bundle is a triple (F,Qp, ) consisting of a
principal SO(3, C)-bundle (F,QF) and a holomorphic section ¢ € H(s0(F) @ K).

With the same construction as in the compact case, we obtain the principal SO(3, C)-

bundle (F = S?FE,Qr). Let {e1, ea} be a basis of E, then {e?, eje, €3} is a basis of F. If

a b
O = ( ) in this basis, we obtain the matrix of ¢ in the corresponding basis of F
c —a

computing
plei ® ej) = dle:) @ ej +e; @ (e;),
for ¢, j = 1,2. We can also get the matrix of () in this basis computing Qr(e; ®e;, ex@¢;)

with ¢, 7, k,[ = 1,2. The resulting matrices are

2a b 0 0 0 2
p=1 2¢ 0 2b and Qp =1 0 —1 0
0 ¢ —2a 2 0 0

(Using e; Aes = 1 € A2E = 0). Since ¢'Qr + Qrp = 0, the Higgs field ¢ is skew-

symmetric and we can finally establish the map

M(SL(2,C)) — M(SO(3,C))
; 2a b 0
(E,¢:<“ )) — (F=S82E,Qro=| 200 20 |

c —a
0 ¢ —2a

As in the compact case, an SO(3,C)-Higgs bundle (F,Qr,¢) lifts to an SL(2, C)-Higgs
bundle if and only if the second Stiefel-Whitney class ws(Fso(s)) of the underlying ortho-

gonal real bundle Fgo(s) is zero.

For the split real form SOy (2, 1) we have the following sequence

1 — Zs — SL(2,R) — SO((2,1) — 1.
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01
An SL(2,R)-Higgs bundle is a triple (£ = L ® L™} Q = ( Lo ) ,¢®) where L is a

holomorphic line bundle, Q € H°(S?E*) is the dual pairing and ¢ is a symmetric trace-free

0
endomorphism of E, that is, ¢ = (
c

b
0 > with b e H(L?® K) and c € H'(L* ® K).
If we consider

F=S(6=SLoL H)Y=L*¢O0aL2=VaeWw

and take V = L2 @ L2 and W = O, since Qp restricts to V and W, we obtain two
orthogonal bundles (V,Qy) and (W, Qw) of ranks 2 and 1 respectively. If {I,{7'} is a
basis of F, the Higgs field ¢ of the SOg(2, 1)-Higgs bundle and the orthogonal form Qp
in the basis {I2,172,1} of E =V @& W are of the form

b

p = c andQF:<QV ):
2c 2b Ow

We thus have the map

M(SL(2,R)) — M(S0¢(2,1))
(L@L‘l,cb—(O b)) — (v_LZ@L—2,W_0,n_<b>).

c 0 c

Observe that, to obtain the Higgs field n, all we have to do is to consider the sections
be HY(L*® K) and ¢ € H(L?® K) as homomorphisms from O to L?®@ K and L 2@ K

respectively.

As in the previous cases, if (V=M @& M~ W = O,n) is an SOy(2, 1)-Higgs bundle,
it lifts to an SL(2, R)-Higgs bundle if and only if ws(Fso3)) = 0, where F' =V & W. Since

WQ(Fso(g)) = deg(M) mod 2,

it happens if and only if deg(M) is even.

5.2 Isomorphisms of SO(4,C) and its real forms

Since we have the isomorphism so(4,C) = sl((2,C) x sl(2,C), the orthogonal Lie group
SO(4, C) is locally isomorphic to SL(2,C) x SL(2,C), but as in the previous section, the
Lie group with Lie algebra so(4, C) which is isomorphic to SL(2, C) x SL(2, C) is the spin
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group Spin(4, C). (See [28], Theorem 14.1). We have also local isomorphisms between the

real forms
SO(4) = SU(2) x SU(2),
SOp(2,2) = SL(2,R) x SL(2,R),
SO0(1,3) = SL(2,C),

that we will use to establish the relations between the corresponding moduli spaces of

Higgs bundles.

For the compact real form SO(4) we have the sequence
1 — Zy — Spin(4) = SU(2) x SU(2) — SO(4) — 1.

Consider a pair of holomorphic vector bundles E' and E’ of rank 2 and trivial determinant
and let ' = E ® E’. This vector bundle has rank 4 and a non-degenerate symmetric

quadratic form defined by

Qr  (EQE)x (E®E) — NERANE =0
(zedyey) — (zAy) @@ AY).

We can define the map

M(SU(2) x SU(2)) — M(SO(4))
(B,E') — (F=E®E, Qp)
A principal SO(4, C)-bundle (F, Q) lifts to a principal Spin(4, C)-bundle if and only if
wg(Fso(4)) =0¢€ H2(Z2) = 7.

Consider now the sequence for the complex group
1 — Zs — Spin(4,C) = SL(2,C) x SL(2,C) — SO(4,C) — 1,

and let (F,¢) and (E',¢'), where F and E’ are holomorphic vector bundles of rank 2
and trivial determinant, ¢ € H°(Endy(E) ® K) and ¢ € H°(Endy(E’) ® K), be a pair of
SL(2, C)-Higgs bundles. With the same construction as in the compact case, we obtain
the principal SO(4,C)-bundle (FF = E ® E',Qr).

If {e1,e2} and {e], €5} are basis of E and E’ respectively, then {e; ® €|, e; ® €}, e3 ®

e, ea ® eh} is a basis of F. If

b= G11 P12 and o = 11 Do
P21 —P11 b1 —P14
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in the basis of E and E’ respectively, we obtain the following matrix for the Higgs field ¢
of the SO(4, C)-Higgs bundle in the basis of F,

b11 + P14 12 P12 0
. 51 b11 — P11 0 P12
P21 0 —¢11+ P 12
0 ®2,1 9.1 —p11 — P14
1
-1 ) . .
Analogously, Qr = . . Since ©'Qr + Qrp = 0, ¢ is skew-symmetric
1

and we can finally establish the map
M(SL(2,C) x SL(2,C)) — M(SO(4,C))
(E,9), (E',¢") — (F=E®E,Qr ¢)
For the split real form SOy (2,2) we have the following sequence
1 — Zy — Sping(2,2) = SL(2,R) x SL(2,R) — SOy(2,2) — 1.
A pair of SL(2,R)-Higgs bundles is a pair of triples
(E=Lo L 1Q,9) and (FF=MaeM*'qQ,¢),

where L and M are holomorphic line bundles, () and @)’ are the corresponding dual
pairings and the Higgs fields ¢ and ¢’ are symmetric trace-free endomorphisms of £ and

E’ respectively. In this case we have
F=E@F =LeoMao(LeMHYe (L 'eM) e (L oM.

Taking V = (LQM) S (L '@M Y and W = (LM 1)@ (L' ® M), since Qr restricts
to V and W, we obtain the principal SO(2, C)-bundles (V,Qy) and (W, Qw ).

If {I,i7'} and {m, m™'} are basis of E and E’ respectively and

P12 12
— ) d r— 2
(o ™) ()

in these basis, the Higgs field ¢ of the SOy(2,2)-Higgs bundle and the orthogonal form
Qr in the basis {{l@m, "t @m ™ l@m ™ "' @m} of F =V @& W are of the form

G1o P12 1

P21 P Qv 1
_ 1 72, dOn — _
N T and Qr ( QW> —

P21 Po -1
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Then, the map
M(SL(2,R) x SL(2,R)) — M(SOq(2,2))

is given by
<L@L-17¢=( ¢1’2>,M@M‘1,¢’=< '1’2>>
P21 -
|
V=LeoMa(lL'eoM)W=LoMY)ae (L 'eM)n= ( Pla b1 >)'
ng,l ¢/271

For the real form SOg(1,3) we have the following sequence
1 — Zy — Spiny(1,3) = SL(2,C) — SO((1,3) — 1.

If F is a holomorphic vector bundle of rank 2 and trivial determinant and ¢ is a trace-free

endomorphism of £ and we consider in ' = ' ® E* the quadratic form
Qr: (EQE)x (E®QE") — NERANE =0
@er,yey) — @Ay @ Ay),
we obtain a principal SO(4, C)-bundle.

If {e1,es} and {e;',e5'} are basis of E and E* respectively, then {e; ® ;! + €3 ®

et el ®eyt ey @elt —es®@eyt e ®ep ) is a basis of E® E*. Let
V=(®e'+ea®e;'),
W=(e1®e e1®@e;' —ea®@e;t,ea@er?).
c —a —a

E*, the Higgs field ¢ of the SOq(1,3)-Higgs bundle and the orthogonal form Qp in the
basis of F' =V & W are of the form

b
If ¢ = ( “ > in the basis of F and ¢' = ( Z ¢ > in the corresponding basis of

c 2a b
B ny 2b
—n' 2a
2c

and
2
Q -1
QF - v - ’
Qw -2
—1
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and we can define the map

M(SL(2,C)) — M(SOy(1,3))
(E,¢) — (F=EQFE"Qp,n).

5.3 Isomorphisms of SO(5,C) and its real forms

As in the previous cases, the isomorphisms

Spin(5,C) = Sp(4,C),
Spin(5) = Sp(4),
Sping(2,3) = Sp(4,R),
Sping(1,4) = Sp(2,2),

(see [28, Theorem 14.1]), and the fact that spin groups are double covers of the orthogonal
groups, allow us, in each of the four cases, to define a map from the moduli space of

symplectic Higgs bundles to the moduli space of special orthogonal Higgs bundles.

For the compact real form SO(5) we have the sequence
1 — Zy — Spin(5) = Sp(4) — SO(5) — 1.

an Sp(4)-Higgs bundle is a principal Sp(4, C)-bundle, that is, a holomorphic vector bun-
dle E of rank 4 and trivial determinant together with a non-degenerate antisymmetric

quadratic form Q € H°(A?E*). The representation A*V of Sp(4, C), where V denotes the

standard representation, decomposes as
ANV =W @ C,

where W is the irreducible five-dimensional representation of Sp(4,C) (See [18, §16.2]).

Then, the vector bundle A2E, which has rank 6, decomposes as
NE=FaO0,

where F' is holomorphic vector bundle of rank 5. In A2E we can define a non-degenerate

symmetric quadratic form given by
Q:N’ExANE — ANE=0
(x Ay, 2 ANyY) — xAyAd ANy,
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Then, (A%E, Q) is a principal SO(6, C)-bundle. If QF is the restriction of the orthogonal
form @ to F, (F,QF) is a principal SO(5, C)-bundle (F,Qr) and we can finally define the

map
M(Sp(4)) — M(S0(5))
(E,Q) — (F.Qr).
Consider now the sequence for the complex group
1 — Zy — Spin(5,C) = Sp(4,C) — SO(5,C) — 1.

an Sp(4, C)-Higgs bundle is a triple (E, 2, ¢) consisting of a holomorphic vector bundle F
of rank 4 and trivial determinant, a symplectic form €2 on E and a holomorphic section
¢ € H(sp(F) ® K), where

sp(F) = {f € Endo(E) | Q(f--) +Q(, f) = 0}.

If {e1,e9,e3,64} is a basis of F, then {e; Aeg,e1 Aeg,e1 Aeg,eq Aeg,ea Aeyg, ez Negtisa
basis of A2E = F @& O. The matrix of ) in this basis is

(where we are considering e; A ey A ez A ey = 1 under the isomorphism A*E =2 0). On the
other hand, if

P11 12| P13 P14

P21 P22 | Pr1a P24

b =
P31 P32 | —P11 —P21
P32 Qa2 | —P12 —P22
1
. . : 1 : . .
in the basis of E, (using Q2 = ), we obtain the matrix of the Higgs field

—1

-1
of the SO(6, C)-Higgs bundle (A?E, Q, ¢) in the corresponding basis of A’E computing

QO(GZ' A\ ej) = ¢(61) A Gj + €; A ¢(6j).
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The resulting matrix is

G101+ P2 Pra 2.4 — P13 — 14 0
®3.2 0 — 2.1 d1,2 0 — Q14
G2 P12 P11 — P22 0 b1,2 1,3

SD =
_¢3,1 ¢2,1 0 ¢2,2 - ¢1,1 _¢2,1 _¢2,4
_¢3,2 0 ¢2,1 _¢1,2 0 ¢1,4
0 _¢3,2 ¢3,1 _¢4,2 ¢3,2 _¢1,1 - ¢2,2

Observe that ¢p(e; A es + ex A ey) = 0. Hence, we can set F' = (e; A eg,e1 Aeyq,e1 A ez —

es A ey, €3 N ez, ez A ey). The matrix of the orthogonal form Qp in this basis of F' is

1
1
Qr = 2 5
1
1
and the matrix of the Higgs field of the SO(5, C)-Higgs bundle (F,QF, ¢r) is
P11+ P22 P24 2014 —P13 0
Pa2 11— P22 —2012 0 P13
Yr = ®3.2 —02,1 0 ®1,2 — P14 ;
— @31 0 2021 Q22— P11 — P24
0 P31 —2¢32 —Pa2  —P11— P22

which satisfies p%Qr + Qrpr = 0. We can establish the map
M(Sp(4,C)) — M(SO(5,C))
(E£,9Q,9) — (F.Qr,¢r)
For the split real form SOy (2, 3) we have the following sequence
1 — Zy — Sping(2,3) = Sp(4,R) — SO(2,3) — 1.

an Sp(4, R)-Higgs bundle is a triple (E, 3,7), where E is a holomorphic vector bundle of
rank 2, 8 € HY(S?E ® K) and v € H°(S?E* ® K). In this case, we have

NESE)=NE®(EQE)eNE =Fa0=VaeWaO.

If {e, e} is a basis of E, then {e; Aey,e; Aeyt et AesteaNert eaNeyt el Aeyt)is a

basis of A*(E @ E*) and if

B B Y1 Y2
= d =
’ ( B2 Ds ) - ! ( Yo 3 )
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in the basis of £ and E*, the matrix of the Higgs field ¢ in this basis is

G B3 —f1 =P
Y2 — [
o= 3 B
N — [
—2 B2
Y2 M1 T3 72

Again, since p(e; Aej ' +eaNeyt) =0, weset F = (61 Aeg,er Aey,egAept —eaAey ' ea A
et et Aeyt). Let
V={eiNeg, ey  Aeyt) = A’ E @ A’E,

W={(esNey er Nej' —ea Aeyt ea Aept) C E® E*

We can define the orthogonal forms @ and Qr as in the previous cases because A*(E @
E*) = A’FE ® (A’E)~! = 0. The matrix of QF in this basis is

1
0 1
QF = < v Q ) - 1 )
v 2
1
and the matrix of the Higgs field is
Bs 202 —b
Mo —27 73
n
()| ,
Yo —
N =

which satisfies p%Qr + Qrpr = 0. We can establish the map

M(Sp(4,R)) — M(SOo(2,3))
(E,B3,7) — (V=ANE®ANE"Qy,WCE®E"Qw,n).

For the real form SOy(1,4) we have the following sequence
1 — Zs — Spiny(1,4) = Sp(2,2) — SOy(1,4) — 1.
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Using the Cartan decomposition (see |29, Ch. X, §2]),

sp(2,2) = sp(2) x sp(2) G m,

where
T1,1 T1.2 T3 T1,4
Ti2  T22  T1a Loy with 1 ; and 39
5p(27 2) = _ _ _ _ ) . .
—T13 Ti4a Tig  —T12 purely imaginary
Ti4 —T24a —T12  T22
and
ilE172 ’L.ZL‘1’4
—Z'[f'lyz iZL‘174
m = o — . )
—1T1 4 1T1.2
_ile —i$172

and the imbedding of sp(2) x sp(2) in sp(2,2) given by

T1,1 T1,3

11 T1.3 Ta2 X224 L T2.2 T2.4
_ _ ) _ _ _ _ )
—Z1,3 T1,1 —T24 T22 —T1,3 T1,1

—Xoy o9
(for the dimensions, observe that z;; and z,, are purely imaginary), we can see an
Sp(2,2)-Higgs bundle as a tuple (E,Q, E', QY| ¢), where E and E’ are holomorphic vector

bundles of rank 2 and trivial determinant, 2 and €2 are symplectic forms on E and £’
a b

respectively and the Higgs field is of the form ¢ = . If {e1,e2} and
c

d —a
{e], ey} are basis of E and E’ respectively, the Higgs field ¢ is in the basis {ey, €], €2, €5}.

Now we have
NESFE)=NE®(E®FE)oN'E =08 (EQE)e0=VaW.

In the basis {e1 A eg,e1 A€l e; Aey,ea Al ea Neb,ey Aeby} of A2(E @& E'), the matrix of
the Higgs field is
d —c —a —b

b —b
—a a
()0 g
—c c
—d
—d c a b



Since p(e; ANea+ej Aey) =0, weset F'= (eg Ael,er Aely,er Nea —e Ny ea Nej,ea Neb).
Let
V = <€1/\62—€,1/\6/2> :O,
W ={(eg Nej,e1 Ney,ea Nej,ea Ney) = ER B

Since AYE @ E") = A2E® A’E' = O ® O, we can define the orthogonal forms @ and Qp

as in the previous cases. The matrix of the orthogonal form in this basis is

-2

(fixing e; A ea A€} A ey = 1), and the matrix of the Higgs field is

d —c —a —b

2b
$r = ( T 7 > = —2a )
1 —2c

—2d

which satisfies p%Qr + Qrpr = 0. We can finally define the map

(E,QLE Q. ¢) — (V=0,Qv,W=EQF, Qw,n).

5.4 Isomorphisms of SO(6,C) and its real forms

The Lie group SO(6, C) is locally isomorphic to the special linear group SL(4,C) and the
spin group Spin(6,C) is isomorphic to SL(4,C) (see [28, Theorem 14.1]). Between the

corresponding real forms we have the following isomorphisms:

Spin(6) = SU(4),
S00(3,3) = SL(4,R),
Sping(2,4) = SU(2,2),
Sping(1,5) = SU*(4).

We start with the compact real form SO(6) of SO(6,C). We have the sequence
1 — Zy — Spin(6) = SU(4) — SO(6) — 1.
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If E is a holomorphic vector bundle of rank 4 and trivial determinant, then F' = A%F is a
holomorphic vector bundle of rank 6 on which we can define a non-degenerate symmetric

quadratic form
Qr AN’ExAN’E — ANE=0
(x ANy, 2" ANy) — zAyAz Ay,
obtaining a principal SO(6, C)-bundle (F,Qr). Then, we can define the map

M(SUM4)) —  M(SO(6))
E — (FIAQE,QF>

Consider now the sequence for the complex group
1 — Zs — Spin(6,C) = SL(4,C) — SO(6,C) — 1.

Let (E, ¢), where FE is a holomorphic vector bundle of rank 4 and trivial determinant and
¢ € H°(Endo(F) ® K), be an SL(4, C)-Higgs bundle. With the same construction as in
the compact case, we obtain a principal SO(6, C)-bundle (F = A’E, QF).

If {e1,e9,e3,e4} is a basis of E, then {e; Aeg,e1 Aes,e1 Aeyq, ea Nes,ea Neg,e3Ney} is a
basis of F'. We obtain the matrix of the Higgs field ¢ of the corresponding SO(6, C)-Higgs
bundle in the corresponding basis of F' computing

plei Nej) = olei) Nej+ e A ole).
It is a skew-symmetric endomorphism of F’ and we can finally establish the correspondence
M(SL(4,C)) — M(SO(6,C))
<E7¢) = (FaQFaSO)

For the split real form SOy(3,3) we have an isomorphism
SL(4, R) —> SOy(3, 3).

The correspondence between the moduli spaces of Higgs bundles is the following. We
start with a principal SO(4, C)-bundle (F, Q) and a symmetric trace-free endomorphism

¢ of E. With the same construction as in the compact case, we obtain the principal
SO(6,C)-bundle (F = A*E, Qr).

If {e1, ez, e3,e4} is the basis of E, then {e; A eg,e; Aey + ex Aeg ez Aeyg, e Aes,eq A

eq —ea ANes,ea Aeytis a basis of F. Let
V = <€1 /\62,61 /\64+€2/\63,63/\64>,
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W = (e1 Nes,eqr Neg —ea Nes,eq A ey).

The matrix of the orthogonal form in this basis is

and if
P11 P12 P13 d1a
P21 —¢11 P23 P13
P31 P32 —P11 G2
a1 @31 P21 P
in the basis of F, the matrix of the Higgs field ¢ of the corresponding SOy (3, 3)-Higgs

bundle is

P23 2013 —¢14
P21 2011 ¢
_ ( Ui ) _ —Pa1 2¢31 P32

- —n' N P32 2012 —P14 ’
P31 2¢11 P13
—Pa1 2021 P23

which satisfies ¢'Qr + Qrp = 0. We can establish the correspondence

M(SL(4,R)) — M(SOq(3,3))
<E7Q7¢) = (VvQV7VV7QW>77)'

For the real form SOg(2,4) we have the sequence
1 — Zs — Spin,y(2,4) = SU(2,2) — SO((2,4) — 1.

A SU(2,2)-Higgs bundle is a tuple (E, E’,[3,v) consisting of two holomorphic vector
bundles £ and E’ of rank 2 satisfying A’E ® A’2E’ = O and two homomorphisms
f:F - E®K andvy: E— E' ® K. We consider

NMESOFE)=NED(EQFE)D ANE,
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and let V =A2E P A2E and W = E® FE'.

If {e1,e2} and {€], e} are basis of E' and E’ respectively, consider the basis {e; A
e, €y Nehyer Nejer Aeéhea ANel,ea Aeht of A2(E@® E') =V & W. The matrix of the

orthogonal form in this basis is

[ Qv B —1
(> )T

and if
= B1 e and y= Y1 72
B3 Ba Y3 Ya
in the basis of £ and E’, the matrix of the Higgs filed ¢ of the corresponding SO¢(2,4) is

Bs B =01 —Po
-3 M1 —Y4 V2

o= ( n ) _ Yo P
—n" u o B ’

-7
—v3 s

which satisfies p'Qr + Qrp = 0. We can define the map

M(SU(2,2)) — M(SO(2,4))
(B, E',3,7) — (V,Qv,W,Qw,n).

For the real form SOy(1,5) we have the following sequence
1 — Zy — Spiny(1,5) = SU*(4) — SO(1,5) — 1.
Using the Cartan decomposition (see |29, Ch. X, §2]),

su*(4) = sp(4) ®m,

AR -
5u*(4):{<21 ZQ> |T1er—i-Tr21:0}7
2 1
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14y —12,

. A B
m€ = | TrA=0,B,C € 50(2,C) ¥,
c A

we can see an Sp(2, 2)-Higgs bundle as a triple (E, Q, ¢), where E is a holomorphic vector

m = {( i% iZ% ) | Z1 € su(2), Z, 650(2,@)},

and

bundles of rank 4 and trivial determinant, €2 is a symplectic form on E and

P11 P12 0 P14

P21 —Q11| —P1a O
0 P32 | P11 P21

—¢32 0 P12 —¢11

If {e1,ea,e3,64} is a basis of E, consider the basis {e; A e3 4+ ex A eg,e1 A eg,e1 Aeg,eq A

o=

e3 —ea ANeg,eq Neg ez Aeg} of Fand let
V= {(e1 Nes+ex Aey),
W = {(e1 Neg,eq1 Neg,e1 Aes —eg Aeyg,ea Aes, ez A ey).
The matrix of the orthogonal form in this basis is

—2

1

and the matrix of the Higgs field ¢ of the corresponding SOq(1,5)-Higgs bundles is given

¢3,2 ¢2,1 2(251,1 ¢1,2 _¢1,4

—20¢14

o= < n ) _ 2012

-n' 2011 7
2091
2032
which satisfies p'Qr + Qrp = 0. We can establish the correspondence

M(SU*(4)) — M(SOp(1,5))
(E>Qa¢) = (VaQ\/aWQW777)‘
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5.5 SOq(2,4)-Higgs bundles and SO*(8)-Higgs bundles

The Lie algebra isomorphism s1(4) 2 s0(6) together with Theorem [5.1] gives the following
isomorphism

50" (8) = 50(2,6).
The isomorphism between the Lie groups is
SO*(8) = SO (2,4).

Using this correspondence, we will establish a correspondence between the moduli space
of polystable SO¢(2,6)-Higgs bundles and the moduli space of polystable SO*(8)-Higgs
bundles.

An SO*(8)-Higgs bundle is a triple (£, 3,7), where E is a holomorphic vector bundle
of rank 4, 3 € HY(A’E ® K) and v € H*(A’E* @ K). Let

V =ANE@AFE* and W =AE ® A E*.
Since A%2E has a non-degenerate quadratic form with values in A*E defined by

Q:ANExANE — A\FE
(x Ay, 2 ANY) — xzAyAd Ny,

considering the induced quadratic form in W we obtain an orthogonal bundle (W, Qw ).

To construct the Higgs field we observe that
BeEHNERK)2H (NERNE QMNMEQK)=H' (W AME®K),
ye HHNE* 9 K)2 H(NE* 9 MERNE* @ K)= H(W*® AME*® K).
Since W = W*, we can take

n:W — (ME®ANE)®K,
z = (Bx),y(x)).

and establish the correspondence

M(SO*(8)) — M(SO(2,6))
(E,8,7) = (V=AMEOANE W =ANE®ANE",Qw,n).

86



6 Smooth minima

We have seen in Section 4.4| that there is a homeomorphism between the moduli space of

representations and the moduli space of Higgs bundles:

R:(SO0(p, q)) = M.(SOo(p,q)).

A first step in the study of the number of connected components of the space of repre-
sentations R.(SOo(p, ¢)) is to give a description of the minima of the Hitchin function in
the moduli space M2(SOq(p, q)) of smooth SOy (p, ¢)-Higgs bundles.

6.1 The Hitchin function

To simplify, we denote M = M_.(SOy(p, q)).

Using the homeomorphism
Mght<SOO(p7 Q)) = M7
of Section [4.3] which identify M with the moduli space of solutions to Hitchin’s equations

MHE(SO(p,q)) = {(A, )| A connection on a smooth principal SO(p) x SO(g)-bundle
F, p € QY(F(m")) satisfying (2) and with ¢(F) = ¢}/G(F),

the Hitchin function is defined as the positive function

f:M—=R,
given by
A6l = el = [ oPavol,
be
where |-, -] denotes the equivalence class in the moduli space MH%(SOq(p,q)) and | - | is

the harmonic metric that gives the reduction to SO(p) x SO(q). Equivalently, we can
define the map over the moduli space of Higgs pairs, for a fixed (E, ¢) € M, by using the

L?*norm || - || of the metric that solves the Hitchin’s equations.

Proposition 6.1. The function f([A,¢]) = ||¢||? is a proper map.

The proof is given by Hitchin in [31l Proposition 7.1].

Consider a compact subspace [0, k] C R and the inverse image

F70. K = {[A @] | F([A,0]) = llell* < K}

87



A pair [A, p] € f71[0, k] is a solution of the Hitchin’s equations, that is,

Fa—[p,7(p)] = 0.

Since ||[¢, T()]||* is bounded by a multiple of ||¢]||?, we have an L? bound of the curvature
F4, and using Uhlenbeck’s weak compactness theorem, any infinite sequence in f~1[0, k|

has convergent subsequence, and hence f~'[0, k] is compact.

Even if M is not smooth, as in our case, the fact that f is a proper map gives

information about the connected components of M.

Proposition 6.2. Let M’ C M be a closed subspace and let N C M’ be the subspace of

local minima of f on M'. If N" is connected, then M’ is connected.

This result is in fact more general. The proper function f has a minimum on each
connected component of M’, and then the number of connected components of M’ is
bounded by the number of connected components of N”’. Thus, we are interested in com-

puting the critical points and more precisely the local minima of f.

We introduce now the notion of moment map for a hamiltonian action of a Lie group

on a symplectic manifold to give more properties of the Hitchin function.

Let (M,w) be a symplectic manifold, that is, a smooth manifold M equipped with a
closed non-degenerate 2-form w called the symplectic form. If we have a symplectic action
of a Lie group G on M,

g'w=w for all g € G,

a moment map for this action is a map
peM— g,

such that
A({1.)) = igw, for all € € g,

where ¢ is the vector field on M induced by &, defined by

£y oy MESD(E) ) = ()

t—0 t

for any smooth function h : M — R, and the map (&) : M — R is given by

(1, 6)(m) = (p(m), ) for m € M,
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being (-, -) the pairing between g and its dual. A vector field v on M is called Hamiltonian
if

Tyw = df,
for a smooth function f, : M — R. And the action of G is said to be Hamiltonian if
and only if the following two conditions hold. First, for every £ € g the vector field £ is
Hamiltonian, that is

igw = dfﬁ
for some smooth function fe : M — R. Second, the map

§— Je

is a Lie algebra homomorphism under the Poisson bracket

{fe, fo} = w(&,©).

If the action of G on (M,w) has a moment map p, for each £ € g we can define

fe(m) = (u(m), &) for m € M,

and then the action is Hamiltonian.

Proposition 6.3. The restriction of f([A,]) = ||| to the smooth locus M* € M is a

moment map for the Hamiltonian circle action
[A, o] = [A,e%].

We give a sketch of the proof of this result.

If A denotes the set of all connections on a principal SO(p) x SO(g)-bundle F' and
Q = QM(F(m%)), A x Q is a symplectic manifold (see [31]). The action of the gauge

group G(F) on A x Q is symplectic, and the moment map of this action is

pw:AxQ — (Lie G(F))*
(A, p) — Fa—lpo,7(p)]

The subspace
S={(A,p) € AxQ]dalp) =0}

is invariant under the action of the gauge group and we can consider the restriction
po = S — (Lie G(F))™.
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Using the isomorphism MZ#(SOy(p,q)) = M, we have that M is isomorphic to the

following symplectic quotient
M =5 (0)/G(F),
and then, the smooth moduli space M* has structure of symplectic manifold.

The Lie group U(1), which is isomorphic to the sphere S, is a subgroup of the gauge

group G(F) and then acts on A x 2 and on S. But, since
¢ .= el — o

this action is trivial on 2. Instead of this, from now on, we are going to consider the

following circle action on A x
e’ (A p) = (A,e%),
that can be defined as well on the moduli space of Higgs bundles M?,
e’ [A ¢] = [A, ).
Since the actions of U(1) and G(F') on S commute
(U(1) x G(F)) xS — S,

instead of consider the action of U(1) on M?* and find a moment map for this action, we
are going to consider the action of U(1) on S, to define the moment map for this action

and after that, to translate our results to the moduli space M?*.

The Lie algebra
ul)={ze€C|z+z=0}

is naturally identified with iR and using the isomorphism u(1) = u(1)* given by the Killing

form, the moment map for this circle action on § is
puay S — R
(Ae) = ilel = [ JePavol,
The subspace p; ' (0) C S is invariant under the action of U(1), that is,
Fa—[e%p,m("p)] =0

for all (A, ) € uy*(0). Thus, the moment map for the action of U(1) on pg'(0) is the

restriction

puay = g (0) — iR,
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Finally, since
ool = | loeg™ avol = ol
X

for all g € G(F'), this map is invariant under the action of G(F') and then we can restrict

to the quotient M = u5'(0)/G(F) and finally to the smooth locus
M? — iR.

If we consider u(1) isomorphic to R, the moment map takes values in R.

6.2 Morse Theory

In this section we describe some properties of the Hitchin function which are related to
Morse theory. Observe that these techniques can only be use when the moduli space
M (SOq(p, q)) is smooth, and this only happens in a few cases, for small values of p and
q.

Let f : M — R be a smooth function on a manifold M. A connected submanifold
M’ C M is a critical manifold for f if and only if df = 0 along M’, and we say that
M’ is non-degenerate if the Hessian of f is non-degenerate on the normal bundle to
M. Let M; be the critical manifolds of M and denote the manifold of local minima of
f by N = M.

The function f: M — R is a Bott-Morse function if all the critical manifolds M,

are non-degenerated.

Let v(M;) be the normal bundle of the critical manifold M,. The non-degeneracy of

the Hessian implies, for any critical manifold, the decomposition
v(My) = v (M) @ v (M),

where v (M) and v~ (M,) are the subbundles where the Hessian is positive and negative

defined respectively.
The real dimension of v~ (M,) is called the Morse index of M, denoted by

At = index(M;) = rkv™ (M;).
Define the Poincaré polynomial of M to be
P(M) = t'dim H(M, Q).
For the critical manifolds we have the same definition
P(My) = ' dim H'(M,, Q).
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The coefficient of t* is called the i-th Betti number of M. These numbers are

topological invariants of M.

A Bott-Morse function is called perfect if

P(M) =) tNP(M,).

l

Proposition 6.4. If M = M(SOq(p,q)) is smooth, then the Hitchin function f is a
perfect Bott-Morse function.

6.3 Critical points of the Hitchin function

To study the critical points of the Hitchin function we use the following result.

Proposition 6.5. A smooth point of the moduli space M is a critical point of f if and
only if it is a fized point of the circle action, and the subbundle v—(M,) where the Hessian
of the Hitchin function is negative definite equals the subbundle of v(M,) on which the

circle acts with negative weights.

Proof. The moduli space M* is a Kéhler manifold, that is, it is a complex manifold (M, I),
which also carries a Riemannian metric g and a symplectic form w on the underlying real
manifold in such a way that the three structures (complex, Riemannian, and symplectic)

are all mutually compatible,

The metric g induces the isomorphism
TMS N T*MS
v g,

If f: M* — R is a smooth map, the element of TM?* corresponding to df € T*M? is
grad(f). Applying this to the Hitchin function, we have

df - g<grad(f)7 )

Proposition tells us that f, restricted to the smooth locus, is a moment map for the
circle action. In this case, since u(1) = R, the moment map f is the Hamiltonian function

that generates the circle action and

df = w(“? ) - g<]u7 ')7
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where [ is the complex structure of M?® and w is the vector field generating the circle

action, that is

_ h([A, %)) — h([A,
g = lim ([4,e w])e ([4, #)

for any h : M® — R. Thus,
grad(f) = Iu.

Then, the critical points of f are the smooth points of M where the gradient vanishes

and w is null on the fixed points of the action.

If m = [A, ] is a fixed point of the circle action, the infinitesimal circle action on
T,,M? is given by

U > [0, U

On the other hand, if V is the Levi-Civita connection on M?* and H; denotes the Hessian

of f, we have
Hf(vm) = vvm(gra‘d(-f)) = V'Um(]u) = VIum(U) - [IU/, U]m = [U7 ‘[u]m’
where we have used that u,, = 0. O

Using Proposition [6.5], the critical points of f are of two types:
(1) The Higgs field ¢ = 0.
(2) If ¢ # 0, [A, ¢] is a fixed point of the circle action if and only if

[A, ] = [A, ], for all ¢? € S*.

Then, there is a 1-parameter family of gauge transformations g(0) = (g1(6), 92(0)) € G(F)
such that

(A, €)= g(8) - (A, 0) = (g(8) - A, g(8) - ). (3)

We have that

9(0) - o = 1(9(0))(p) = Ad(g(0)) () = exp(ad () (),

and taking 4 |s_o in the second term of the parenthesis in (3) we obtain

e Dlomo = i,
and ; ;
@(9(9) - )|o=0 = ] exp(ad(0v))(¢)]o=0 = ad(¥)(¢) = [¢, ¢).
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Then
[V, ] = ip.

Let A = (Ay, As). Since g1(6) and go(#) act on A; and A, separately, we can consider
Yy and vy generating the action of {g1(0)} and {¢2(0)}. The equation (3) gives the

following condition for the action on the connections
9i(0) - A; = gi(0) 0 A0 gi() ' = A,
or equivalently
Ao gi(0) = gi(0) o Aj,

that is, the automorphism g¢;(#) is parallel with respect to the connection A;. Then we

have
da,(¥i) = 0.

That is, the family {g(0) = (g1(0),92(0))} is generated by an infinitesimal gauge trans-

formation ¢ = (11, 1) which is covariantly constant, that is,

dAl (1/}1) = dAz (%) =0
and with
[, ] = iep.

Proposition 6.6. An SOq(p, q)-Higgs bundle (V,Qv, W, Qw,n) € M represents a fized
point of the circle action if and only it is a Hodge bundle (complex variation of Hodge

structure), that is, if and only if the vector bundles V' and W have decompositions

V= éBVm andW:éWn,

m=—r n=-—s

with Vi, =2 (V) _p, Wy =2 (WF)_p, and Ynly,, = im and Yslw, = in for an infinitesimal
gauge transformation 1 = (11, 1s), with

M s Wi — Vi ® K.

Proof. It (V,Qv,W,Qw,n) represents a smooth point of the moduli space which is a
critical point of f, as we have seen in the previous section, there is an endomorphism

1 = (11, 19) that gives decompositions

V=V, and W = Hw,,
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where m,n € R, ¥4y, = im and ¥s|w, = in. Moreover, since 11 and 1y are locally in
s0(p) and so(q) respectively, they satisfy 11 = —1)] and 1y = —1)y . If gy : V = V* is the
isomorphism given by the orthogonal form Qy, we have ¥ = ¢;;' 0 ¥t o gy, and for all

v € V,, we have

Yilav(v)) = qv (¥ (v) = —av (11 (v)) = —imav (v),

that is,
veV, e qu(v)e (V) .

Hence, we have an isomorphism V;, = (V*)_,,. The same argument applied to vs, qw

and W gives an isomorphism W,, = (W*)_,.
IfveV,and v €V,
QV(¢1 (U)7 U/) = QV(imva U,) - imQV(”? U/)

and, on the other hand,

QV(wl (U)u U/) = QV(Ua ”%T(UI)) = QV(Uv —?/11 (U/)) = QV(vv _ilvl) = —ilQV(U, U/>7
that is,
i(m+1)Qy(v,v") = 0.
Then, all the V} are orthogonal to V;, (including [ = m) under Qy except [ = —m. Since
Qv is non-degenerate,

Qu(v,v')=0forallv € V=10v=0,

and then, given 0 # v € V,,, there is a v/ € V with Qv (v,v") # 0, that is, a v’ € V_,,.
The same for W, Qw and 1. Then

V= évmandW:éWn.

m=—r n=-—s

We also know that the endomorphisms ), and ), are trace free, then

s T

0="Te(¢n) =i » mrk(Vy) & > mrk(V,,) =0,

m=—r m=—r

0="Tr(¢n) =1 Z nrk(W,) < Z nrk(W,) = 0.

n=-—s n=-—s

The condition [¢, ¢] = i¢ for the solution (A, ¢) is equivalent in this context to
Y1) — iy = ).
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If w € W}, we have

i(n(w)) = n(ea(w)) +in(w) = nikw) + in(w) = i(k + 1)n(w),

that is,
e : Wi — Vi1 @ K,

and we conclude. N

If (V,Qv,W,Qw,n) is a Hodge bundle and

Qv 0 7
E:V L[/, —= s g
( v “ ( Qw) i (‘UT 0>)

is the SO(p + ¢, C)-Higgs bundle associated to it as in Section , the decompositions of

V and W give a decomposition
E=VaoW=E =P o W),
k k

where Ej is the eigenbundle of eigenvalue ik for the action of the endomorphism i =

0
( %1 ’ > € End(E), that is, V;, and W}, are eigenbundles for 1; and 1y respectively
2

with eigenvalue ¢k. The quadratic form () gives isomorphisms E; = [E*; and the remaining

[, are orthogonal to E; under ). Then, the decomposition of E is of the form

! I
E:V@W:@Ek:@(vk@wk),

k=—1 k=—1
where [ = max{r, s}.
The restriction of the Higgs field to each [E; satisfies
0 Tk
Yr = - tEy — Epn ® K,
(=m" )k 0
where
M : Wi — Vi ® K and (—HT)k Ve — Wi @ K.
Moreover, since the orthogonal structures on V and W give the following commutative
diagram
* ,r]t_ - *
V5SS W QK

‘JVJ/ \LQW®1K
T
N_k—1

‘/;C*)Wk-‘rl ®K7
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we have that
(=" e = —nlp .

Analogously, if ¢ : E = E* is the isomorphism given by the orthogonal structure @) of E,

the commutative diagram

t
P_k—1

E*, 7R, @K

ql lq@)lx
o 1

Ey —— Epp1 ® K,

tells us that

s
-
Pk = P_k—1-
The general picture is the following
Y- P—m+1 P—m+2 Pm—3 Pm—2 Pm—1
E_,, *W;E—m—i—l $E—W+QL> . L>Em—2 LEm—l LEm
T 1 N—m+1 T, 3 NMm—3 -nl +1 Nm—1
m— —m m— m— —-m m —
V—m > W—m+1 > V—m+2 T vm—2 > Wm—l - Vm
s> S ©® e >, Y, >,
U] 2 N—m+2 1l Mm—2 —nl
—-m m— —m —m 'm— —m
Wy —Voi1 —W_ o —— - —W,, o ——= V1 ——W,,.

Note that the arrows represents the Higgs field and are twisted by K.

Theorem together with Proposition tell us that if (V,Qv, W,Qw,n) is an
SOq(p, q)-Higgs bundle which represents a smooth point of the moduli space, it is a criti-
cal point of the Hitchin function if and only if it is a Hodge bundle, but observe that not

every Hodge bundle represents a smooth point.

6.4 Criterion for minima

Let (E,¢) be an SOq(p, ¢)-Higgs bundle and let (Esop1q,0), ¢) be the associated SO(p +
q,C)-Higgs bundle. Consider also the tuple (V,Qv, W, Qw,n) corresponding to (E, )
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and the triple (E, @, ¢) corresponding to (Eso(pq,c); ). We have that
Esopiqc)(50(p+¢,C)) = {f €End(E) | f+ T =0} = so(E),
0
E(®Y) = {<f1 )GEHd(E)|f1+f1TIOandf4+f4T=0}

0 fa
=~ 50(V) @ so(W) C End(V) @ End(W),

Em®) = {( —3T {)2 ) € End(E)} = Hom(W, V).

In fact,
Esoprqc)(s0(p + 4, C)) = B(h°) & E(m®),
which is induced by the Cartan decomposition of the Lie algebra so(p + ¢, C).
If (V, Qv, W, Qw,n) is a Hodge bundle, Proposition [6.6] tells us that there is an infinite-

simal gauge transformation ¢ = (11, 19) such that

V= évmandW:éwn,

m=—-r n=-—s

with Vm = (V*)_m, Wn = (W*)_n, ¢1|Vm = im, ¢2|Wn = 4n and
M Wi — Vi1 ® K.

This decompositions of V' and W give decompositions

2r

End(V)e = €D (P Hom(V;, Vi),

k=—2r i—j=k
2s

EndW)e = €D (P Hom(W;, W),

k=—2s i—j=k
r+s

HOIH(W, V)k = @ (@ HOHI(W]',V;)),

k=—r—s i—j=k
r+s

Hom(V,W), = €D (€D Hom(V;, W7)).

k=—r—s i—j=k

If fr; € Hom(Vj,V)) and gy; € Hom(Wj, W), using the isomorphisms ¢y and qu
induced by the orthogonal forms @y and Qw we have that the diagrams

* flﬁ,l * * g’t“l *
Vi——=V{ W Wy
N
V_l k,l V_k, W_l k,l W_k,
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are commutative, and then, the skew-symmetry in E(h®) = s0(V) @ so(W) C End(V) @
End(W) is equivalent to the conditions:

fa—e+ [ =0,
9—1,—k + gl—qr,l = 07

that is, the following sets are related by skew-symmetry

Jei —f;Iz; Ikl —gl;r,la
Hom(Vy,V)) «— Hom(V_;,V_y), Hom(Wy,W,) «— Hom(W_;, W_g).
Observe that when k = [, the endomorphism f,; and gj; are skew-symmetric. Analogously,

in £(m®) we have the relation:

by «— —h;,z,
Hom(Wy,V;) «— Hom(V_;, W_y).

Then, the decompositions of V and W also induce decompositions of E(h*) = so(V)®
s0(W) and F(m®) = Hom(W,V), and this gives a decomposition of the deformation
complex of Section [3.5}

O (B, 0): 0—E0S) L EmC) 0 K ——0,

that is,

C*(E,p) = @CI:(E7 ©),

where Cp(E, ¢) are the subcomplexes

o ad(p)
Cr(E, @) : 0—=E(h%)y —>E()pp ® K —=0,

where the action of ad(y) takes E(hC); into E(m®),,; since

[, [0, 11 = ([, s [T+ [, [, f1] = lisp, ST + [y ik f] = ik + D], f1,

for all f € E(h%);. This induces a decomposition of the infinitesimal deformation space
given by
H'(C*(E, ¢)) = DH(CL(E, ¢)).
k

Proposition 6.7. Let (E,p) be an SOq(p,q)-Higgs bundle which represents a smooth
point of the moduli space M and which is a critical point of f. The hypercohomology
group H(Cp(E, ¢)) is isomorphic to the eigenspace of the Hessian of f with eigenvalue
—k. Then, the point (E, ) corresponds to a local minimum of f if and only if

H' (Cr(E, ) =0 for k > 0.
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If [E, ¢] € M? (s for smooth) is a critical point of f, then [E, ¢] € M, for some critical
manifold M; and we define the Morse index at the point [E, ¢| as the Morse index of M.
The first part of this proposition alow us to calculate the Morse index of [E, ¢|, which is

index = Z dimg H' (Cp(E, ¢)).

k>0

If [E, ¢] € M® is a minimum of f, that is [E, ¢] € N/, then
HY(Cp(E,¢)) = 0 for k > 0,

and the Morse index at [E, ¢| is null.

To give a criterion for deciding when the hypercohomology H(C(E, ¢)) vanishes, we
use the Euler characteristic of the complex Cp(FE, ¢) defined by

X(CHE, ¢)) = dimH(C}(E, ¢)) — dim H'(C}(E, ¢)) + dim H*(C}(E, ¢)).

Proposition 6.8. Let (E, @) be an SOy(p, q)-Higgs bundle which represents a fixed point

under the circle action on M. Then
X(CR(E,¢)) <0,
and equality holds if and only if the map
ad(p) : E(h%) — E(m%)p1 ® K
1S an tsomorphism.

If (E,¢) represents a smooth SOq(p, ¢)-Higgs bundle, using the Corollary [3.16 we
have that
HY(CH(E, ¢)) = HX(CR(E, ¢)) = 0,

and then,
—X(CH(E, p)) = dimH'(C}(E, ¢)),

for all k. Applying Proposition [6.7, we have the following criterion for local minima of f.

Proposition 6.9. Let (E,p) be an SOq(p,q)-Higgs bundle which represents a smooth

point of M and which is a critical point of f. Then it represents a local minimum if and
only if
ad(p) : E(h%)p — E(m®)p @ K

is an isomorphism for all k > 0.
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This criterion can be used only when the SO (p, ¢)-Higgs bundle represents a smooth
point of the moduli space. If (E, ¢) does not represent a smooth point, it is shown in [32]
that if H'(Cp(E, ¢)) = 0 for all k > 0 then (E, ¢) is a local minimum, but we will see in
Proposition [7.3] that to have

H'(C*(E, ¢)) = P H'(CR(E, ¢)) # 0

k>0

is not enough to prove that the point is not a minimum.

6.5 Smooth minima

In this section we describe the minima of the Hitchin function in the smooth locus M?*
using the criterion of Proposition . Since the Hitchin function is proper in M (see
Proposition but not in M?*, to find these minima does not allow us to count the
number of connected components of M? but it is the first step in the study of the

connected components of M.

We will consider in all this section Higgs bundles with non-zero Higgs field.

Theorem 6.10. Let (V,Qv, W, Qw,n) be an SO (p, q)-Higgs bundle, with p < q, which
represents a smooth point of the moduli space and which is a local minimum of the Hitchin
function. If the Higgs field is not equal to zero, the minimum is in one of the following

Cases:

(1) p>2even, g=p+1 and
W, =V ==V Wy—=V ==V, =W,
with all subbundles of rank 1,
Vi oer%K’kforogkgp—l

and
0 < deg(W_,) < p(29 — 2).

(2) p>1lodd, g=p+1 and
W, =V — =Wy = VoW, = =V — W,
with all subbundles of rank 1,
Vi oer§K*kf0rO§k§p—l
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and

0 < deg(W-p) < p(29 — 2).
(3) p>2even, q=p—2+n withn > 2 and
Voprr—=Wopn— = Vy—->Wy—=Vi— - =W, o=V, 4,
with all the subbundles of rank 1 except rk(Wy) =n=q—p+ 2,
deg(Vi or Wy) = —k(2g — 2) for 0 < k <p—2,

and

0 < deg(V_pr) < (p— 1)(2 — 2).
(4) p>2 even, q=p—2+n withn > 2 and
V—p+1_>W—p+2_>"'_)v—l_>W6_)‘/1_)"'_> p—2_>V;J—17 W6/7

with all the subbundles of rank 1 except tk(Wy) = n = q—p+2, where Wy = WjaWy.
The first chain is a smooth SOg(p,p + n')-Higgs bundle with n' = rk(W{) odd, W{
is a smooth SO(n")-Higgs bundle with n" = rk(W{') odd,

deg(Vi, or W) = —k(29 —2) for0 <k <p—2,

and

0 < deg(Vops1) < (p—1)(29 —2).
(5) p>3o0dd, g=p—1+n withn >1 and
V—p+1—>W—p+2—>"'—>W—1—>V0—>W1—>"'—>Wp—2—>‘/;;—1, Wo,

with all the subbundles in the first chain of rank 1. The first chain is a smooth
SO(p, p — 1)-Higgs bundle, Wy is a smooth SO(n)-Higgs bundle with tk(Wy) =n =
qg—p+1odd, Vo = O and

Vi oer%K’kforlgkgp—l.
Note that in the diagrams the arrows represent the Higgs field and are twisted by K.

We will prove Theorem [6.10] in several steps.
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Suppose that (V, Qv, W, Qw,n) € M is a smooth point which is a critical point of the

Hitchin function, then , it is a Hodge bundle and we have decompositions

V = évmandW:éwn,

m=—r n=-—s

with V,,, = (V*)_,, W, &2 (W*)_, and 1, : Wy, — Vi1 ® K. Since the point is in particular

stable, we can say something more about its decomposition.

Proposition 6.11. If a Hodge bundle (V,Qv, W, Qw,n) € M is stable, it has the follow-
g structure
= VoW —-Veg—-W -V — ..

o W=V, —-Wyg -V > Wy — -

with all the bundles and the maps non-zero. There are two chains if Vo and Wy are
non-zero and only one if Vo or Wy is zero. FEach chain ends in a subbundle of V. or W

depending on the parity of the mazimal weight.

Proof. Since Qv (Vi, V) # 0 and Quw (Wi, W;) # 0 if and only if [ = —k, the subbundles
Vi and Wy, are isotropic subbundles of V' and W respectively for k # 0.

Suppose that there is a piece of sequence which is invariant under the Higgs field, for

example:
Wy — Vk+1 - Wk+2 - Vk+3 s Wk+r—3 - Vk+r—2 - Wk+r—1 - Vk—i—ra

and where Vj or W, are not included, then

V= Vi ® Vs @ @ Vigr 2@ Vi CV
W= We®@Wia @ @ Wiyr 3@ Wiyt CW,

are isotropic subbundles satisfying n(WW') C V' ® K and the stability of (V, Qv, W, Qw,n)
implies deg(V") + deg(W') < 0. Now let

V' = Vo @V @ @ Vs @V CV,
W' = W w1 ®@W i@ W s W CW.

These are also isotropic subbundles with n(IWW") C V" @ K and since
deg(V") + deg(W") = — deg(V') — deg(W') > 0,

these subbundles violate the condition of stability of (V, Qv, W, Qw,n). Then, we conclude
that in each piece of sequence with non-zero subbundles and non-zero maps there has to

be a bundle with weight zero.
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The eigenvalues are integers since in each chain we have always the value zero and

consecutive eigenvalues differ by 1 (all maps are non-zero). O]

Observe that this result is only a first approach to the structure of the smooth points
of the moduli and not a full characterization. We will see that stability implies more than

the conditions in Proposition [6.11]

In the next proposition we prove the restrictions that the maximal weights of the chains
in Proposition have to satisfy if the Hodge bundle (V, Qy, W, Qw,n) is a minimum.

Proposition 6.12. Let (V,Qv, W, Qw,n) be an SOqy(p, q)-Higgs bundle which represents
a smooth point of the moduli space and which is a critical point of the Hitchin function.
The point is in particular stable and has the form shown in Proposition[6.11. Let r and s
be the mazximal weights of the first and the second chain respectively. If (V,Qv, W, Qw,n)

falls in one of the following cases, then it does not represent a local minimum of f:

1. The maximal weights coincide.
2. The weights r and s are odd.
3. The weights r and s are even and non-zero.

4. One of the mazximal weights is odd and the other is even or zero.
Proof. 1. Suppose that r = s odd, the chains are of the form
Wy = Vopgs = = Wy = Vo = Wy = oo = Vg — W,
Vo, =W,y —=Vay-Wy—=Vi— .- =W, = V.
Taking the piece of maximal weight of the complex ad(y),
o (B, 0) - AV, @ A*W, — 0,
we deduce rk(V,.) = rk(W,) = 1, and considering the piece with weight 2r — 1 given by
o 1(E, ) : Hom(V_,.,V,_1) @ Hom(W_,, W,_;) — Hom(W_,., V) ® K,

we observe that the isomorphism of the map implies rk(V,_1) + rk(W,_;) = 1 which is

not possible because in the chains all the subbundles are non-zero, and then rk(V,_;),
rk(Wr,l) 2 1.

The argument is exactly the same when r = s is even.
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2. Suppose that s < r and that both weights are odd. The case with r < s and both
odd is the same, interchanging V' and W. We have a Higgs bundle of the form

W, =Vop— oWy Vy—-W - =V =W,

Ve=W1 == Va-=Wy—=Vi—- =Wy = V.
Note that s < r — 2. The piece of maximal weight of the deformation complex,
Cs.(E, ) : N*W, — 0,

tells us that rk(W,.) = 1 and the piece of weight 2r — 2, which is the next non-zero piece

and is given by
Cs. o(E, ) : Hom(W_,, W,_5) @ A*V,_; — Hom(W_,,V,_;) ® K,

implies rk(W,_2) = 1 and rk(V,_;) = 1 or 2. Finally, considering the first piece of the
complex with k odd,

C;+s—1(E7 90) : H0m<th stl) D HOIn(V,TJrl, Vs) - HOIH(W,T, ‘/:9) ® K,

we obtain a contradiction. If rk(V,_;) = 1, this isomorphism means rk(W,_;) = 0 and if
rk(V,_1) = 2, it implies rk(W,_;) 4+ rk(V;) = 0. Both situations are not possible.

3. Suppose that s < r and that both weights are even. The case with r < s and both
even is the same, interchanging V' and W. We have a Higgs bundle of the form

V=W — =WV —-W— - =W =V

W—s_>v—8+1_>"'_)V—1_)WO_>V'1_>"'_> s—1_>Ws-

Note that s < r — 2. The piece of maximal weight
C3. (B, p) : A°V, = 0
tells us that rk(V,) = 1 and the isomorphism
Cs. o(E,p): Hom(V_,,V,_y) © A*W,_; — Hom(W_,1,V,) ® K

implies rk(V,_2) = 1 and rk(W,_;) = 1 or 2. Finally, considering the first piece of the
complex with k odd,

Cr o 1(E,¢): Hom(V_,, V1) @ Hom(W_, 41, W) — Hom(W_,, V) ® K,
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we obtain a contradiction with the ranks, as in the previous case. In this proof we are

using r > s > 2. If s = 0, the bundle V,_; = V_; does not exist, and the first odd complex
C;-l-s—l(E’ 90) = C;—l(Ev 90) : HOHI(W,T+1, WO) - HOIII(WO, V;”) ® K

determines rk(W,_;) = 1, but does not give contradiction.

4. Suppose that r is even and s is odd. The converse case is obtained interchanging
V and W. We have a Higgs bundle of the form

V,=W,n—>Wi->VW-W - =W._1 =V,

Vo W == V= Wy = Voo = Wy = Vi

The first (maximal) odd complex is
C?’+S(E7 90) : HOHI(V*?“) ‘/s) — 0.
This isomorphism implies rk(V;) rk(W;) = 0 which is not possible. O

This proposition tells us that when the subbundles Vy and W, are both non-zero, the
only possibility for the structure of the minima is the one where the Higgs bundle has one
chain with maximal weight even and the other chain with maximal weight equal to zero,

that is, with only one subbundle. The rest of the minima has only one chain.

In Propositions and we will obtain conditions for the ranks of the eigenbundles

in the decomposition of a smooth minimum (V, Qy, W, Qw, ).

Proposition 6.13. Let (V,Qv, W, Qw,n) be an SOqy(p, q)-Higgs bundle which represents
a smooth point of the moduli space and which is a local minimum of the Hitchin function.

If this element has Vi non-zero and Wy = 0, it has to be in one of the following cases:

1. The maximal weight r is even, that is,
Vo, —-W_,hg—=>Wa—=VW—-W - =W =V,
and all the subbundles have rank 1.
2. The mazximal weight r is odd, that is,
W,—-Viog— =WV —-W - = V. =W,
and all the subbundles have rank 1 except Vi that can have any rank.
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3. The mazximal weight r is odd and the minimum is of the form
w_, — —r+1—>"'—>W—1—>V0/—>W1—>"'—>Vr—1—>Wm Vo//

with Vo = Vg @ V' and with all the subbundles of rank 1 except V. The SOy(r — 1+
n',r 4+ 1)-Higgs bundle

W, = Vo= = Wy = V= Wy — o= Vg — W,

is smooth, n' = rk(V{) is odd and V' is a smooth SO(n")-Higgs bundle with n" =
rk(Vy') odd.

If the element has Wy non-zero and Vo = 0, the statement is the same, but interchanging
V and W.

Proof. 1. Let the maximal weight r to be even. We have to determine the rank of r 4 1
subbundles, and there are r complexes C5._,,. (F, ), with 0 < k < r — 1. The piece of

maximal weight of the deformation complex given by
Cs.(E, ) : AV, — 0,
tells us that rk(V,) = 1. The isomorphism for k = 1,
Cs. (B, ) : Hom(V_ 49, V;) @ A*W,_; — Hom(W_, 1, V) ® K,
implies
) = rk(W;_1),

and the solutions for this equation are rk(V,_o) =1 and rk(W,_1) =1 or 2.

If rk(W,_1) = 2, we have

T T
Mr—1 N—r+1 N—r41 Nr—1
Vo, —— W—T+1 - V—r+2 T Vio W, V.

Denote N = kerm,_; and decompose W,y = N & M, then W_,,; = N* & M~*.
We know that C3,_,(E,¢)(f,9) = nr—1 09 — f on_,41 is an isomorphism. Let f €
g1

O ) S AZWT—h Nr—1 = (O,G) € Hom(WT’—IJM‘) & K —
— 91

Hom(v—r+27‘/7")7 g = (
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Hom(N & M,V,) ® K and n_,4; = (b,c) € Hom(W_,+1,V_,15) ® K = Hom(N* &
M*V_..9) ® K. We have

0 o

Mr-10g—fon,=(0,a) (
-1 0

) = f(b,¢) = (—agy — fb, fe).

If ¢ = 0, the map is not surjective, then ¢ # 0, and this implies that Im(n', ;) # ker(n,_1).
Then M =Im(n!,,,) and

T T
Mr—1 N—r+1 N_r+1 Mr—1
V,—M*——V_,1o o Vo M

N* N
with N and N* isotropic. We must have deg(NN) < 0, but then N* violates the stability,
and we conclude that we do not have the case rk(W,_;) = 2.
The piece of the deformation complex for k = 2,

Cs_4(E,¢): Hom(V_,44,V,) ® Hom(W_, 3, W,_1) & A*V,_,

!
(Hom(W_, 43, V,) ® Hom(W_,.11,V, 5)) ® K,

tells us that
rk(V,r+4) —|— rk(W,r+3) - rk(W,r+3) + 1
Then rk(V,_4) = 1.

We conclude the proof of this first part using successively and alternatively the follow-

ing two statements:

e If k£ is even and

rk(W,) = rtk(W,_5) =+ =rk(W,_g542) = 1,
I‘k(‘/r_l) = I'k(‘/;,_{g) == rk(%—k—&—l) =1,
then rk(W,_g) = 1.
e If k£ is odd and
rk(W,) = tk(W,_g) = - - = tk(W,_gp42) = 1,
tk(Vi1) = rk(V,_3) = - - = 1k(Vi_pq2) = 1,

then rk(W, o) = 1 and rk(V,_;) = 1.
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In both cases we use the piece of weight 2r — 2k of the deformation complex, for
1 <k<r—1.1If kis even, we have

Hom(vfrJer:a W) S Hom(WfT+2k717 erl) B D HOm(W77«+k+1, erkJrl)

!
(Hom(W_,496-1,V;) ® Hom(W_, 11, Vi _g42) @ - - - @ Hom(W_, 11, Vii) ® K,

where each part of the map has £ summands. Simplifying the relations that give this

isomorphism for the ranks, we get rk(V,_o) = 1.

If k£ is odd, the piece of weight 2r — 2k is

Hom(V_, 4o, Vi) @ Hom(W_, o1, Wy—1) @ - - - @ Hom(V_y 441, Vieg1) @ AW,y

!
(Hom(W_,496-1,V;) ® Hom(W_, 11, V;_gk42) @ - - - @ Hom(W_, 1, Vijp1) ® K,

In terms of the conditions for the ranks, this reduce to the map
Hom(vfrJera V;‘) D A2erk - Hom(WfrJrka ‘/rkarl)a

which implies
rk ( WT_ k )

rk(‘/r_Qk) + ( 5

> = I'k(Wr_k).

The solutions are rk(V,_ox) = 1 and rk(W,_;) = 1 or 2, and we remove the case of rank

2 as in the 2r — 2 case.
We obtain rk(Vy) = 1, the last subbundle of V, in the step & = £, and rk(W;) = 1,
the small for W, in the last step £ = r — 1 which corresponds to the piece of weight 2 of

the deformation complex.

2. Let the maximal weight r to be odd. We have to determine the rank of r + 1
subbundles, and there is r complexes Cs. . (E, ), with 0 < k < r — 1. The piece of

maximal weight of the deformation complex,
O35 (E ) : AW, — 0,
tells us that rk(W,) = 1 and the isomorphism for k£ = 1,
Cs. (B, ) : Hom(W_,,o,W,) ® A*V,_; — Hom(W_,,V,_ ;) ® K,

implies



The solutions are rk(W,_5) = 1 and rk(V;_1) = 1 or 2. We remove the case of rank 2 as

in the previous part of the proposition.

We conclude the proof using successively and alternatively the following two state-

ments:

e If k£ is even and

tk(V,) = tk(Vi—o) = - = 1k(Vi_opp2) = 1,
rk(W,—1) = rk(W,_3) = -+ - = tk(W, 1) = 1,
then rk(V,_ox) = 1.
e If £ is odd and
tk(V,) = 1k(Vi_2) = -+ = tk(Vi—opy2) = 1,
I'k(WT_l) = l"k(WT_?,) == rk(Wr—k—l-Z) = 17

then rk(V,_ox) = 1 and rk(W,_;) = 1.
In both cases we use the piece of weight 2r — 2k of the deformation complex, for

1 <k<r—1.1If k is even, we have

Hom(W—r+2k7 W’!‘) D Hom(v—r+2k—17 er—l) D---D Hom(v—r—i-k—‘rl» ‘/T‘—k—‘rl)

l
(Hom(W_,, V;—op+1) ® Hom(W_, o2, Vio1) @ - - - @ Hom(W_, g, Vi) ® K,

where each part of the map has k summands. Simplifying the relations that give this

isomorphism for the ranks, we get rk(WW,_o) = 1.

If k£ is odd, the piece of weight 2r — 2k is the complex

H0m<W—'r+2k7 W’r) ¥ H0m<v—r+2k—17 V:r—1> b&---b Hom(W—r+k+17 Wfr—k—l—l) ¥ A2‘/7'—k

!
(Hom(W_,, Vs —op+1) ® Hom(W_, o2, V1) @ -+ - @ Hom(W_, 1, Vii) ® K,

In terms of the conditions for the ranks, this reduce to the map
Hom(W_, op, W;.) ® A*V,_, — Hom(W_, 141, Vi_s),

which implies



The solutions are rk(W,_o;) = 1 and rk(V,_x) = 1 or 2, and we remove the case of rank

2 as in the case of weight 2r — 2.

We obtain rk(W;) = 1, the last subbundle of W, in the step k = %, and rk(V5) =1,
in the penultimate step k& = r — 2 which corresponds to the piece of weight 4 of the
deformation complex. The last piece of the complex does not give new information and

the rank of Vj remains not fixed.
3. Suppose that the maximal weight r of the chain is odd and that we have a splitting
Vo = Vi @ V{ such that the Higgs bundle decomposes as
W7T—>V7T+1—>---—>W71—>VO’—>W1—>---—> 1 — W, VOH'

We do not have this situation in 1. because in this case rk(Vy) = 1. Since (V, Qv, W, Qw,n)
is stable, Lemmas and tells us that

A I /e

is a stable SOg(r — 1 4+ n/,r + 1)-Higgs bundle and V}’ is stable as SO(n”)-Higgs bundle.

On the other hand, the SOg(r — 14+ n’ +n”,r + 1)-Higgs bundle (V, Qy, W, Qw,n) is
also simple. The only way to obtain this is taking a simple SOq(r — 1 4+ n’,r + 1)-Higgs
bundle with »n’ odd and a simple SO(n”)-Higgs bundle with n” odd. Since n’ is odd,
r — 14 n'is odd and the only automorphism of the simple SOg(r — 1 4+ n’/,r + 1)-Higgs
bundle is the identity. Analogously, since n” is odd, the only automorphism of the simple
SO(n”)-Higgs bundle is the identity. ]

Proposition 6.14. Let (V,Qv, W, Qw,n) be an SOq(p, q)-Higgs bundle which represents
a smooth point of the moduli space and which is a local minimum of the Hitchin function.

If Vo and Wy are non-zero, the Higgs bundle has to be of the form
V—r_>W—r+1_>"'_>W—1_)VYO_>W1_>"'_> 7“—1_)‘/;“7 WO7

with r > 0 even and with all the subbundles in the first chain of rank 1. The first chain
is a smooth SOy(r + 1,7)-Higgs bundle and Wy is a smooth SO(ng)-Higgs bundle with
no = rk(Wp) odd.

It is also possible to have a Higgs bundle with the structure obtained interchanging V
and W.

Proof. First of all, using Proposition [6.12] we know that if Vj; and W, are non-zero, the

point has to fit in with the structure
V,—-Wo,hy— =Wy —=V-W - =W, =V, Wa,
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(or the other interchanging V' and W), with r > 0 and even.
The piece of maximal weight of the deformation complex,
O3 (E,¢) : AV, =0,
tells us that rk(V;) = 1. We obtain the result using alternatively the following two steps,
for any 0 < k£ < r — 2 and even:
L. If rk(V,_g) = 1, then rk(W,_4_1) = 1.
It is enough to consider the complex

w1 (B, @) : Hom(Wo, W, 1) — Hom(Wy, Vi) ® K.

2. If rk(V,—x) = 1, then rk(V,_;_2) = 1.

We have the isomorphism
2.r—k—2(E’ 90) : HOIH(V_T, V;"—k—Z) Q- — (Hom(W—r-i-k-i-la VYr) D... ) ® K,

where the dots are replacing homomorphisms between subbundles that we already

know that have rank 1. This implies that the ranks have to satisfy

k+2 k+2
% 4 rk(V ps) = %

and hence rk(V,_j_o) = 1.

Finally, we need rk(W}) odd to guarantee simplicity. We do not have any similar condition
in the SOg(r + 1,r)-Higgs bundle because ¢’ = r is odd.

O

Finally, in Propositions [6.15], [6.16] and [6.17] we will obtain conditions for the degree of

the eigenbundles in the decomposition of a smooth minimum (V, Qv, W, Qw,n).

Proposition 6.15. Let (V,Qv, W, Qw,n) be an SOq(p, q)-Higgs bundle which represents
a smooth point of the moduli space and which is a local minimum of the Hitchin function.
If this Higgs bundle is of the type 1. of Proposition|[6.13, that is, it has maximal weight r

even and is of the form
Vo= W= > Woa=W-oW = =Wy =V
with all the subbundles of rank 1, then
Vi oer’éK_kfor()Sk:gr—l
and

0 < deg(V_,) <r(29 —2).

112



Proof. The existence of the non-zero maps

77j1 1 WITH Nr—1
Vo Wi : |1 Ve
gives the following relations
nly o~ deg(Wh) > —(29 — 2),
m o~ deg(Va) > deg(Wh) — (29 — 2) > —2(29 — 2),
77j3 ~
13 ~
nl o~ deg(Wy) > deg(Vio1) — (29 — 2) > —k(29 — 2),
e~ deg(Vig1) > deg(Wi) — (29 — 2) > —(k +1)(29 — 2),

77Ir+1 ~2 deg(erl) Z deg(‘/rf2> - (29 - 2) 2 _(T - 1)<29 - 2)7
N1~ deg(V;) > deg(W, 1) — (29 — 2) > —7(29 — 2),

because we have a non-zero global section 1, € HO(W} ® Viy1 ® K) if and only if
— deg(Wy,)+deg(Viy1)+29—2 > 0, and the analogous for ;. (Since Vy = V', deg Vy = 0).

Then we have the inequalities

deg(Vi or Wy) > —k(2g —2) for 1 < k <.

The criterion of Proposition , tells us that the r — 1 complexes C3, o (E,¢), 1 <
k <r —1 are isomorphisms. This give us the following system of r — 1 equations for the
degrees of Vi (k even) and Wy, (k odd) for 1 <k <r—1:

1<k<g3:
deg(V,—or) = deg(V,—r or W,_y) + k(29 — 2).
k=3 .
deg(W:) = —5(29 —2).
t<k<r-1

—deg(Vag—,) = deg(V,—g or W,_) + k(29 — 2).

Solving the system we obtain deg(Vj, or W) = —k(2g —2) for 1 <k <r —1.

The bundle Vj is an special orthogonal bundle, and then V; = O. In
Vo—=Wi®K— - =W, 10K 'V, 0K,
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the arrows are all non-zero homomorphisms between line bundles of the same degree, then
they are isomorphisms. The first one, k = 1, give us O & W, ® K, that is, W; & K1,

and successively we obtain Vi, or W, 2 K% for 1 <k <r — 1.
We can not determine the degree of V., but we know that
0> deg(V;) > —r(2g — 2),
where the first inequality is given by stability, or equivalently
0 < deg(V_,) <r(29 —2).
O

Proposition 6.16. Let (V,Qv, W, Qw,n) be an SO (p, q)-Higgs bundle which represents
a smooth point of the moduli space and which is a local minimum of the Hitchin function.
If this Higgs bundle is of the type 2. of Proposition[6.13, that is, it has mazimal weight r
odd and is of the form

W,T.—>V,r+1—>-..—>W71—>%—)Wl—>..._> T*1_>Wr,
with all the subbundles of rank 1 except Vi that can have any rank, then
deg(Vi or Wi) = —k(2g —2) for 0 <k <r—1,

and

0 < deg(W_,) <r(2g — 2).

The same result is verified for a minimum of type 3. of Proposition 6.1

Proof. The existence of the non-zero Higgs fields gives again a sequence

nly o~ deg(Wh) > —(29 — 2),
m o~ deg(Va) > deg(Wy) — (29 — 2) > —2(2g9 — 2),

N0y~ deg(Wy_g) > deg(Vi_3) — (29 — 2) > —(r — 2)(29 — 2),
Nr—2 deg(V;—1) > deg(W,2) — (29 — 2) > —(r — 1)(29 — 2),
nl, ~ deg(W,) > deg(Vi_1) — (29 —2) > —r(2g — 2).

$

and

deg(Vy or Wy) > —k(2g — 2) for 1 <k <.

The criterion of Proposition [6.9} tells us that the r — 1 complexes C3,_,.(E, @), 1 <
k <r —1 are isomorphisms. This give us the following system of » — 1 equations for the
degrees of Wy, (k even) and Vi, (k odd) for 1 <k <r—1:
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deg(W,_ax) = deg(V,_y or W,._x) + k(29 — 2).
T‘;—l <k<r-—1:

—deg(Woy—,) = deg(V,— or W,_i) + k(29 — 2).

Solving the system we obtain deg(Vj or W) = —k(2g —2) for 1 <k <r —1.

We can not conclude Vo = O and Vj, or W), &2 K% for 1 < k < r —1 as in Proposition
because rk(Vp) is arbitrary. It is possible only when rk(V4) = 1.

We can not determine the degree of W,., but we get
0 < deg(W_,) <r(2g — 2).
The proof for the type 3. is the same. O

Proposition 6.17. Let (V,Qv, W, Qw,n) be an SO (p, q)-Higgs bundle which represents
a smooth point of the moduli space and which is a local minimum of the Hitchin function.
If this Higgs bundle is of the form of Proposition[06.1]], that is, it decomposes as

Vfr—>Wfr+1—>"'_>W71_>VE]—>W1_)"'_> 7“71_>V;“7 WO7

with v > 0 even and with all the subbundles in the first chain of rank 1, where the first
chain is a smooth SOy(r + 1,r)-Higgs bundle and Wy is a smooth SO(ng)-Higgs bundle
with ng = rk(Wy) odd, then Vo = O and

Vi oer%’K_kforlgkgr.

Proof. The existence of the non-zero Higgs fields gives the same inequalities as in Propo-

sition [6.15]
deg(Vy or Wy) > —k(2g —2) for 1 <k <r.

Using the even complexes C5 5, (E, ), 1 <k <r —1 we obtain
deg(Vy or Wy) = —k(2g —2) for 0 < k <r —1,
and we determine the degree of V. using the first odd complex
C* (E,¢): Hom(Wy, W,._1) — Hom(Wy, V,) ® K,

which implies
deg(V;) = deg(Wr—1) — (29 — 2) = —r(29 — 2).

We conclude as in Proposition |6.15] O
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Now we are in position to prove the main result.

Proof of Theorem[6.10}: These five types of minima are the minima that we have described

in the previous results.

The minima of type (1) correspond to the minima of Proposition [6.15, We have
interchanged V' and W to obtain p < ¢ and we have changed the notation using p instead

of r.

The minima of type (2) correspond to the minima of Proposition m with n = 1 and
p =r. And in the types (3) and (4) we have the minima of Proposition with n > 2.
We have interchanged V' and W and we have taken p = r + 1.

Finally, minima of type (5) are the minima of Proposition with p=7r+ 1. O
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7 Non-smooth minima

Theorem gives us a decomposition of a polystable SOg(p, ¢)-Higgs bundles as a sum
of stable G;-Higgs bundles, where G; is one of the following groups: SO¢(pi, ¢:), U(ps, @),
SO(n;) or U(n;). The following result tells us that, in fact, any polystable SO¢(p, ¢)-Higgs

bundles can be decomposed as a sum of smooth G;-Higgs bundles.

Proposition 7.1. Let (V,Qv,W,Qw,n) be a polystable SOy(p, q)-Higgs bundle. There
18 a decomposition, unique up to reordering, of this Higgs bundle in a sum of smooth
Gi-Higgs bundles, where G; = SOg(pi, ¢i), U(pi, @), SO(n;) or U(n;).

Proof. The starting point is Theorem [3.7]

A stable U(n)-Higgs bundle and a stable U(p, ¢)-Higgs bundle represent smooth points
in the moduli spaces of U(n)-Higgs bundles and U(p, ¢)-Higgs bundles respectively.

A stable SO(n)-Higgs bundle is smooth if and only if it is stable and simple. On the
other hand, any stable SO(n)-Higgs bundle which is not simple can be expressed, using
Theorem [3.18] as a direct sum of smooth SO(n;)-Higgs bundles.

Finally, as we know from Corollary , a stable SOq(p, ¢)-Higgs bundle represents
a smooth point of the moduli space if and only if it is simple, but if a stable SOq(p, q)-
Higgs bundle is non-simple, Theorem tells us that it decomposes as a sum of smooth
SOo(pi, g;) and SO(n;)-Higgs bundles. O

Since the Hitchin function f is additive with respect to this direct sum, if the polystable
Higgs bundle is a minimum, each Higgs bundle in the decomposition (with smooth sum-
mands) has to be a minimum on the corresponding moduli space M(G;) and a minimum

as SOy (pi, ¢;)-Higgs bundle.

The summands corresponding to U(n;) or SO(n;)-Higgs bundles are minima, because
the Higgs field is zero in both cases.

A U(ps, q;)-Higgs bundle (V;, W;, 8;,7:) is a minimum if and only if ; = 0 or ; = 0.
Then, the corresponding SOy(2p;, 2¢;)-Higgs bundle (V; & V*, (-, ), W; & WF, (-,),m; =
Bi + %) has n; = (3; or n; = ~¢. Suppose that v; = 0, then we have n, = 3, : W, - V; @ K
and the corresponding n! : V;* — W ® K. The analogous if ; = 0.

A smooth SOq(p;, ¢;)-Higgs bundle is a minimum if it is in one of the cases of Theorem
6. 10
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If an SOg(p, ¢)-Higgs bundle (E,¢) is stable but it is not simple or it is strictly
polystable, Corollary tells us that this Higgs bundle does not represent a smooth
point on the moduli space of polystable SOq(p, ¢)-Higgs bundles, and then, we can not
use the criterion of Proposition to determine if (F,¢) is a minimum of the Hitchin
function. But Hitchin proves in [32] that even when the Higgs bundle is not smooth, if
H' (Cy(E,¢)) = 0 for all £ > 0, then (E,¢) is a local minimum. Hence, we can include
in type (4) of Theorem the cases with n” = rk(W[') even that we have removed to
guarantee the simplicity of the total SOg(p, ¢)-Higgs bundle in the case n” > 2 and even,
and also the stability in the case n” = 2. Analogously, we can include in type (5) of
Theorem the cases with rk(IWj) even. We conjecture that these are all the possible
stable minima in M (SOq(p, q)).

Theorem 7.2. Let (V,Qv, W, Qw,n) be a polystable SO (p, q)-Higgs bundle, with p < q,
which is a local minimum of the Hitchin function. If the Higgs field is not equal to zero,

the minimum is in one of the following cases:

(1) p>2even, g=p+1 and
W, =V — = V= Wy—= V= =V — W,
with all subbundles of rank 1,
Vi oergK_kaTOSkSp—l

and
0 < deg(W_,) < p(29 — 2).

(2) p>1odd, g=p+1 and
W=V == Wy = VoW, = =V — W,
with all subbundles of rank 1,
Vi or’Wk%K—kaTOSkgp—l

and
0 < deg(W_,) <p(29 — 2).

(3) p>2even, q=p—2+n withn > 2 and
V—p+1—>W—p+2—>"'—>V—1—>Wo—>V1—>"'—> p—2_>‘/;;i—17
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with all the subbundles of rank 1 except rk(Wy) =n=q—p+ 2,
deg(Vi, or W) = —k(29 —2) for0 <k <p—2,
and
0 < deg(V_pr) < (p — 1)(2 — 2).
(4) p>2 even, q=p—2+n withn > 2 and
Vopri = Woppp = =2 Va2 Wy—=Vi— o = Wy = Vo, Wy,

with all the subbundles of rank 1 except rk(Wy) = n = q—p+2, where Wy = Wi W}
The first chain is a smooth SOy(p, p + n')-Higgs bundle with n' = rk(W]), W[ is a
smooth SO(n")-Higgs bundle with n" = rk(W[),

deg(Vi or Wi) = —k(2g —2) for 0 <k <p—2,
and
0 < deg(Vopy1) < (p—1)(29 —2).
(5) p>3o0dd, g=p—1+n withn >1 and
Viprr = Wepo— o= Wy = Vg Wy — oo = Wy — Vg, Wo,

with all the subbundles in the first chain of rank 1. The first chain is a smooth
SO(p, p — 1)-Higgs bundle, Wy is a smooth SO(n)-Higgs bundle with rk(Wy) =n =
g—p+1, Vo =20 and

Vi oer%K_kforlngp—l.
Note that in the diagrams the arrows represent the Higgs field and are twisted by K.

Since the condition
H'(C2(E,¢)) = DH'(CI(E, 9)) # 0
k>0
does not imply that the point is not a minimum, to rule out a stable but non-simple or

a strictly polystable element as minimum it is necessary the following result (see Hitchin
[32} §8]).

Proposition 7.3. Let (E, ) be a polystable SOq(p, q)-Higgs bundle whose isomorphism
class is fized under the circle action. Suppose that {(E:, ¢¢)}e is a family of polystable
SOo(p, q)-Higgs bundles deforming (E, @) and that the corresponding infinitesimal defor-

mation is a non-zero element of H'(C* (F, ¢)), then (E,¢) is not a local minimum.
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Proof. Let (A, p) € MH%(SOqy(p,q)) be the solution corresponding to the Higgs bundle
(E, ). Remember that A is a connection on Eso()xso(g) and ¢ € Q4 Esom)xsoq (m©)).
If (A,p) is a fixed point of the circle action, there is a l-parameter family of gauge

transformations g(6) = (g1(0), g2(0)) € G(Esop)xso(g)) such that

(A, €“0) =g(0) - (A, 0) = (g(8) - A, g(6) - ).

This family is generated by an infinitesimal gauge transformation ¥ = (11, ) which is
covariantly constant, da, (1) = da,(¢2) = 0, and with [, ¢] = ip. Denote (Ay, py) =
g(0)-(A, @), then (Ag, po) = (A, ), and consider the corresponding infinitesimal variation
(A, ¢) € H(C*(E, ¢)).

We know from [32, §8] that if the circle acts with weights m and n on (A,¢) with
m > 0 orn > 1, the pair (4, ¢) is not a local minimum of f. This is proved by computing
f and showing that for these values of m and n it is negative in certain directions. The

condition m > 0 or n > 1 is equivalent to (A, ¢) € H'(C*(E, ¢)) and we conclude. [

Technical problems arise when we try to prove Theorem applying Proposition
[7.3] which do not enable us to conclude using these methods. However, we give a full
description of the polystable minima of the Hitchin function in M(p, ¢) in some particular

cases and solve the problem of counting the number of connected components.

7.1 Minima in M(SOq(3,3))

From Theorem [6.10] we have that the only smooth minimum of the Hitchin function with
Higgs field non-equal to zero in the moduli space of polystable SOq (3, 3)-Higgs bundles is
the minimum of type (5) with p = 3 and n = rk(Wy) = 1, that is,

Vo= W1 = Vo — W — Vj, W,
with Vo 2 Wy =2 O, V; =2 K~! and W, = K2, From Section [8.4] we also know that this
minimum is the minimum in the Hitchin component.

There is an isomorphism between the moduli space of polystable SO (3, 3)-Higgs bun-
dles and the moduli space of polystable SL(4,R)-Higgs bundles which is described in
Section . The result given by Theorem agrees with the results about SL(4,R)-
Higgs bundles proved by Hitchin in [32]. In this paper he proved that the minima in
M(SL(4,R)) are those with Higgs field equal to zero together with the minimum of the

Hitchin component, which is:

K3/2 _ K1/2 N K71/2 N K73/2.
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Using the isomorphism

M(SL(4,R)) — M(S0y(3,3))
of Section that is, taking A2(K%? @ K2 @ K~'/2@ K~3/?) = V @ W and considering
the corresponding orthogonal form and Higgs field, it is easy to check that the minimum

in the Hitchin component of M(SL(4,R)) goes to the minimum in the Hitchin component
of M(S0y(3,3)).

7.2 Minima in M(SOy(1,n)) with n odd

An SOq(1,n)-Higgs bundle is a tuple (V, Qv, W, Qw,n), where (V,Qy) = O, (W, Qw) is
a principal SO(n,C)-bundle and n: W — O ® K.

In this section we describe the minima of the Hitchin function in the moduli space of
SOq(1,n)-Higgs bundles with n odd.

We first apply Theorem to see which are the smooth minima of the Hitchin
function in M(SOq(1,n)). For n = 2, the only smooth minima with Higgs field non-equal
to zero are the minima of type (2) (with p = 1), that is, those of the form

W—l _>VHW17

with 0 < deg(W_;) < 29 —2. For n = 1 or n > 2 there are no smooth minima with
non-zero Higgs field.

Theorem 7.4. There are no minima of the Hitchin function with non-zero Higgs field in

the moduli space of polystable SOq(1,n)-Higgs bundles with n odd.

Proof. Using Theorem we have already seen that there are no smooth minima with
non-zero Higgs field in M(SOy(1,n)) if n # 2, then it is true for n odd.

L If (V,Qv, W, Qw,n) is a stable but non-simple SO¢(1, n)-Higgs bundle (n odd) with
n # 0 which is a fixed point of the circle action, using Theorem and Proposition [6.6]

we obtain that it decomposes as a sum of a smooth minimum in M (SO(1,2)) of the form
W -V =W, withV =20 and 0 < deg(W_;) <29 — 2,

together with a sum of SO(n;)-Higgs bundles W* with n; = rk(WW*) # 2 where at least one
has rank n; even. The first summand is necessary to guarantee the condition n # 0 and the

condition for the rank n; to be even determines the non-simplicity of (V, Qv, W, Qw,n).

Since n is odd, n — 2 is also odd, and hence, at least one of the SO(n;)-Higgs bundles

W in the decomposition has rank n; odd. If we consider this summand together with the
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one of the form W_; — V — W, we obtain a smooth SO(1, n; + 2)-Higgs bundle which,
by Theorem [6.10, is not a minimum (observe that W? = (W?%)* and then it has weight
zero). This implies that (V, Qy, W, Qw,n) is not a minimum and we conclude.

2. If (V,Qv,W,Qw,n) is a strictly polystable SOq(1,n)-Higgs bundle (n odd) with

n # 0 which is a fixed point of the circle action, it decomposes as a sum of a smooth
minimum in M (SOg(1,2)) of the form

W1 -V — W, with V=20 and 0 < deg(W_;) <29 — 2,

together with a sum of SO(n;)-Higgs bundles and at least one U(n;)-Higgs bundle. The
existence of at least one U(n;)-Higgs bundle in the decomposition is necessary to guarantee

the strict polystability of (V, Qy, W, Qw,n). Since n is odd, n — 2 is also odd, and since
U(n;) < SO(2n;) — SOy(1,n — 2),

with 2n; even, there is at least one SO(n;)-Higgs bundle W* in the decomposition with n;
odd.

As in the stable but non-simple case, if we consider this summand W* together with
the one of the form W_; — V — Wj, we obtain a smooth SO(1,n; + 2)-Higgs bundle

which is not a minimum and we conclude. O

Using the characterization of the minima given by Theorem [7.4] solve the problem of

counting the connected components of the moduli space M(SOy(1,n)) with n odd.

Theorem 7.5. The moduli space of SOg(1,n)-Higgs bundles with n > 1 and odd has 2

connected components.

Proof. The topological invariant associated to an SOg(1,n)-Higgs bundle (O, W, Qw,n)
with n > 3 is the Stiefel-Whitney class wy € m(SO(n,C)) = Zy = {0,1}. Theorem
tells us that there are no minima of the Hitchin function with non-zero Higgs field,
and then M(SOq(1,n)) is the disjoint union of the moduli spaces My(SOg(1,7n)) and
M;(S0¢(1,7n)), which are connected. O
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8 The Hitchin component

The general theory summarized in Section is due to Hitchin [3I]. Defining a section
of the Hitchin map of a complex Lie group G, he gives an isomorphism between certain
vector space of dimension 2(g—1) dim G and a connected component of the moduli space of
polystable GG*-Higgs bundles, where GG* denotes the split real form of G. This component
is called the Hitchin component, and there are 229 connected components in M(G*)

isomorphic to it, which is the number of possible elections of the square K'/2.

In Sections and we apply these results to the orthogonal split real forms
SOg(n,n) and SOg(n,n + 1).

8.1 Hitchin component for SL(2,R)

The simplest case to consider is the complex Lie group SL(2,C) and its split real form
SL(2,R). The Lie algebra s[(2,C) has rank 1 and the algebra of invariant polynomials on

it is generated by an element p, of degree 2 obtained from the characteristic polynomial
det(x — A) = 2 + py(A)
of a trace free matrix A. We are going to define a section of the Hitchin map
p: M — H(K?),
(A, @) = pae),

where M = M(SL(2, C)) denotes the moduli space of polystable SL(2, C)-Higgs bundles.
This section s : H*(K?) — M will give an isomorphism between the vector space H°(K?)
and a connected component of the moduli space M(SL(2,R)) C M of polystable SL(2, R)-

Higgs bundles. To construct the section s, we consider the elements

10 01) . (o0o0) .
<x:<0 _1>,e:<0 0>,e—<1 0>>_5[(2,(C),

[z, €] = 2e, [z,6] = —2¢ and [e, €] = z,

that satisfy

where z is an element of the Cartan subalgebra (a semisimple element) and e, é are

nilpotent. In the vector bundle K/? @& K~/ we can consider the orthogonal structure

01 0 —
Q = (1 O),andifaEHO(Kz), the Higgs field ¢ = é — ae = (1 0a> is
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0 —«
symmetric with respect to @, then the pair (K2 @ K% p =& —ae = < >), is

an SL(2, R)-Higgs bundle. We define the section by

s(a) = (K'"? @ K2 ¢ = ( (1) _Oa ))

0 —«
{(F(l/Q@B_l/QaSO__<1 0 ))}
a€H2(K?2)

forms a connected component of M(SL(2,R)) called the Hitchin component. This

That is, the set

component has dimension 6g — 6 and there are 229 connected components isomorphic to

this one, which is the number of possible elections of the square root K'/2.

8.2 The general construction

Let G be a complex simple Lie group and G* be its split real form. If the Lie algebra
g has rank [ and py,...,p; of degrees m; + 1,...,m; + 1 form a basis of the algebra of

invariant polynomials on the Lie algebra g, we can consider the holomorphic map

!
p:M— @HO(KWH)

defined by
(A, @) = (pi(@), -, (),

where M = M(G) denotes the moduli space of polystable G-Higgs bundles, or equiva-
lently, the space of solutions to Hitchin’s equations. The map p is called the Hitchin
map and the elements my, ..., m;, which are fundamental invariants of the Lie algebra,

are the exponents of g.

We are going to define a section of the Hitchin map that will give an isomorphism
!

between the vector space @ H°(K™™!) and a connected component of the moduli space
i=1
M(G*) € M of polystable G*-Higgs bundles.

A nilpotent element e € g is called regular if its centralizer is [-dimensional. If ¢ is a

Cartan subalgebra of g and A are the corresponding roots, the element

e= Z CaXa,

aeAT
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where X, is a root vector for «, is always nilpotent and it is regular if ¢, # 0 for
a € II. Any nilpotent element can be embedded in a 3-dimensional simple subalgebra

(x,e,€) 2 sl(2,C), where z is semisimple, e and € are nilpotent, and they satisfy
[z, €] = 2e; [z, €] = —2¢; e, €] = x.

The adjoint action
(z,e,¢€) =sl(2,C) — End(g)

of this subalgebra breaks up the Lie algebra g as a direct sum of irreducible representations

with dim(V;) = 2m; + 1. That is, each V; is the irreducible representation S*™C? of
51(2,C), where C? is the standard representation, and the eigenvalues of ad x on V; are
—2my;, —2m; + 2,...,2m; — 2,2m;. The highest weight vector of V;, defined as a vector
e; € V; that is eigenvector for the action of x and is in the kernel of ad(e), has eigenvalue

2m; for adz. We take V] = (z,¢,€) and e = e;.
!
Given (aq,...,q) € GB HO(K™™), we define the Higgs field in the Hitchin compo-
i=1
nent by

gpzél+a161+...+alel.

To know how the bundle in the Hitchin component looks like, we have to understand
the representation
s((2,C) — g.
In the classical cases, we can embed g into the corresponding general linear Lie algebra
gl(m,C). In this cases, the Lie algebra g is equal to End(R), A*(R) or S?(R)...etc. for

some representation R of s[(2,C). On the other hand, we have the decomposition of g as

representation of sl(2,C),
5[(2,C) — End(g) = End(S*™C? ... + S*™(C?).
Then,
SPMC2 4 ...+ S5*™C? = End(R), A*(R) or S*(R)...etc.

and using Clebsch-Gordan formulas (see remark below), we can determine R as a sum
of symmetric powers of the standard representation of s[(2,C). Transforming the vector
bundle K'/2 @ K~/ under this sum we obtain the corresponding vector bundle E in
the Hitchin component of M(G?®). We will see examples in the following subsections to

illustrate this process.
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I
Theorem 8.1. With the previous notations, if (aq,...,qq) € @HO(KWH),
i=1

l
S(Ozl,...,()zl): (E, @zél+2aiei)

i=1

defines a section of the Hitchin map p and an isomorphism from the vector space
!
@ HO(KmH—l)
i=1

to a connected component of the moduli space M(G*).

This connected component is called the Hitchin component and has dimension
2(g — 1) dim G”.
Remark: Clebsch-Gordan formulas.

Let S™ = S"C? be the irreducible representation of dimension n + 1 of the Lie algebra
sl(2,C). We have that S" ® S™ = S?(S™) & A?(S™). On the other hand,

S2(Sn> _ @ S2n74a and A2(Sn) _ SQ(snfl) _ @5@11727404.
a>0 a>0
For a sum of irreducible representations, we know that
N(S" @S = P At @A™
a+b=2

Using this formulas we can determine the representation R (such that g = End(R), A%(R),

S%(R)... etc.) from the decomposition of g in sum of irreducible representations of s[(2, C).

8.3 Hitchin component for SL(n,R)

Consider the special general case SL(n,R) which is the split real form of SL(n,C). The
Lie algebra sl(n,C) has rank n — 1 and a basis for the invariant polynomials on sl(n, C)

is provided by the coefficients of the characteristic polynomial of a trace-free matrix,
det(a: - A) =2" + pl(A)xn_2 Tt +pn71(A)7

where deg(p;) =i+ 1. We can consider the Hitchin map

p: M(SL(n,C)) — @HO(Kiﬂ)

i=1
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defined by
P(A, @) = (p1(9); - -, Pa-1()),
where M(SL(n, C)) is the moduli space of polystable SL(n, C)-Higgs bundles.

We are going to define a section of this map that will give an isomorphism between the
n—1

vector space @ H°(K™) and a connected component of the moduli space M (SL(n, R)) C
i=1
M(SL(n,C)) of polystable SL(n, R)-Higgs bundles.
A nilpotent element e € sl(n, C) is called regular if its centralizer is (n—1)-dimensional.

In sl(n,C) a regular nilpotent element is conjugate to an element

e= Z CaXas

a€ll
where II = {a; = ¢; —e€;41,1 < i < n—1} and X,, = E;;4+1 is a root vector for o;.
Any nilpotent element can be embedded in a 3-dimensional simple subalgebra (z, e, é) =

s[(2,C), where x is semisimple, e and € are nilpotent, and they satisfy
[z, €] = 2¢; [z, €] = —2¢; e, €] = x.

The adjoint action
(x,e,€) = 5l(2,C) — End(sl(n,C))

of this subalgebra breaks up the Lie algebra sl(n,C) as a direct sum of irreducible repre-

sentations )
e

sl(n,C) = @ Vi,
i=1

with dim(V;) = 2i + 1. That is, each V; is the irreducible representation S*C?, where C?
is the standard representation of s[(2, C), and the eigenvalues of ad z on V; are —2i, —2i +
2,...,21—2,21.

The highest weight vector of V;, defined as a vector e; € V; that is eigenvector for the
action of z and is in the kernel of ad(e), has eigenvalue 2i for ad z. We take Vi = (z, ¢, €)

and e = e;.
n—1

Given (aq, ..., 1) € @HO(KiJrl), we define the Higgs field in the Hitchin compo-
i=1
nent by

p =€ t+aer+ ...+ ap16, 1,

and the vector bundle is given by
Sn—l(K—1/2 D KI/Q) — K—(n—l)/2 D K—(n—3)/2 DD K(n—3)/2 D K(n—l)/Q.

127



The field ¢ is given in the following order of the basis, K(*~ V2@ K"=3/2g. . .g K~ (=3)/2q
K~(=1/2 The minimum in the Hitchin component is given by the values a; = --- =

an,_1 = 0, then it is the pair
(K(n—l)/2 DK 3I2g...g K32 g K—(n—l)/27 ¢ = @),

that is
KO-D2 =32 L je—(n=3)/2 _ e—(n-1)/2

Note that in this diagrams the maps are twisted by K and K™ — K™ ! must be inter-
preted as K™ — K" 1@ K = K™,

Ezxample 8.2. Hitchin component of the moduli space of polystable SL(4, R)-Higgs bun-
dles.

The sets of positive and simple roots of s((4,C) are
AT ={e1 — ez, e1 —ez,e1 —eq €3 —€3,0 — eq, €3 — 34},

II ={e; —ea,e3 —e3,e3 — 34}

C12 €13 Ci4

€23 C24

We know that e = , with c¢19,¢23,c34 # 0, is a regular nilpotent

C3,4

hy
ha . . .
element. If z = ) is in the Cartan subalgebra, it satisfies [z, e] = 2e
3
hy
if and OIlly if hl = 3/2, hQ = 1/2, h3 = —1/2, h4 = —3/2 and €13 =C4 = C4q4 = 0. So

finally we can consider

T = and e =
-3
We know that the conditions [z, €] = —2€ and [e, €] = x determine é. If

T11 X1,2 T13 T14
T21 X22 T23 T24
€ sl(4,C),

T31 T32 T3,3 T34

T41 T42 T43 T44
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the adjoint action of the semisimple element x on X is given by

0 21’172 413173 61’174
—2x 0 2z dx
ad(2)(X) = 2,1 2,3 2,4 7
—41‘371 —21‘372 0 2$374
—6.1'4,1 —41‘472 —2.’E4,3 0
o . - 3 . . :
and the conditions imply € = A . Thus, we obtain the 3-dimensional sub-
-3
algebra
3 1
1 1 - 3
x = e = e=1,
—1 1 4
-3 -3

We have a basis of the invariant polynomials {p1, ps, p3} of degrees 2,3 and 3 respec-

tively and the decomposition
sl(4,C) = Vi@ Vo @ Vs = S*°C? @ S*'C? @ S°C?,

of the Lie algebra s[(4,C) as a sum of irreducible representations of s[(2, C).The highest

T1,3
weight vector of V5 is of the form ey = “24 | and it is in the kernel of ad(e) if
1
1
and only if x5 4 — 21 3 = 0, then we can take e; = . Analogously, the highest
T14
vector of V3 is of the form e; = and it is in the kernel of ad(e) for all the
1
possible values of X 4, then we can take ey = . Finally, we define the Higgs
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field in the Hitchin component by

a1 Qo Q3

The vector bundle in the Hitchin component is given by
83(K1/2 D K_1/2) — K3/2 D K1/2 D K—1/2 D K_3/2.

The minimum in the Hitchin component is given by the values a; = --- = «,,_1 = 0, then
it is the pair

(KS/Q D Kl/Q fan K71/2 oy Kl/Z’ © = é),
that is

K32 o KY2 o0 5 KTV K32

8.4 Hitchin component for SOy(n,n)

The Lie group SOg(n,n) is the split real form of SO(2n,C). A basis of the invariant
polynomials on so(2n,C) is provided by the coefficients of the characteristic polynomial

of a skew-symmetric matrix, which is of the form
det(x — A) = 2®" + p1(A)z? 2 + ... + pu(A),

where deg p; = 2i. The polynomial p, = det A of degree 2n is the square of the Pfaffian
polynomial p/ , which has degree n. Then, a basis is given by {p1,...,pn_1,p.,}, (the rank

of s0(2n,C) is n), and the corresponding Hitchin map

n—1
p: M— @ H(K”) & H(K")

i=1
is defined by
P(A, ) = (p1(9), -, Pn-1(), P ()
The nilpotent regular element is now
e = Z CaXo € 50(2n,C) with ¢, # 0 for o € T,
acAt

where

AT ={e;+e; with 1 <i<j<n},
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H={a;=e€—€1(1<i<n—1),a, =en_1+en},

and the corresponding root vectors are
Xeifej = E’L’j - EnJrj,nJri and Xe,~+ej = E’i,nJrj - Ej,nJri-

(We are using the same notations as in Section [2.1)).
The element z, that we can consider in the Cartan subalgebra, is of the form z =

Z hi(E;; — Epnyinti). Imposing [z, e] = 2e we obtain that
i=1

n

T = Z 2(n —1)(Eii — Entingi)

i=1
and
e = Z CoXey-
acll
Then, we can take for example e = ZXQ. Finally, the conditions [z,é] = —2é and
acll

[e, €] = x determine é.

The adjoint action
(z,e,€) = sl(2,C) — End(so(2n,C)),

gives the decomposition

n—1
s0(2n,C) =P Vie v,
i=1

with dimV; = 4i — 1, for 1 <i < n — 1 (the exponents in this case are m; = 2i — 1) and
dimV, =2n—1 (m, =n—1). That is, for 1 <7 <n —1, V; = S¥2C? with eigenvalues

4i—2,4i—4, ..., —4i+4,—4i+2 for the action of ad z and V,, = S?"2C with eigenvalues
2n —2,2n —4,...,—2n+ 4, —2n + 2.
The highest weight vectors in this case are eq,...,e,_1,€e,, Where ¢; has eigenvalue

47— 2 for 1 <i<n-—1, and e, has eigenvalue 2n — 2. We take V; = (z,¢,€) and e = e;.
n—1
Given (aq, ..., 0n-1,05) € @ H°(K?*) @ H°(K™), the Higgs field in the Hitchin com-
i=1
ponent is the sum p = e+ a1e + ... + a,_ 16,1 + auen,.

Consider now the representation
5l(2,C) — s0(2n,C) = A*(R).
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We know that so(2n,C) = S?C? + S°C? + ... + S#76C? + $?"2C? = A?*(R). Then,

R = S?"=2C? 4+ 1, where 1 denotes the trivial representation,
A*(SP2CE 4+ 1) = AY(S* ) @ A1) + A%(S*™ ) @ A°(1) + A%(S*" 3 @ A%(1) =
= S22 L A2(S7?),
Hence, the vector bundle in the Hitchin component is

E = (S 24+ 1)(K2eoK'/?) =
KoK ?2¢.. o KoOoK ..o K"K "0, =VaW,

where the subindex 1 is only to distinguish one trivial bundle from the other, in which we

can consider the orthogonal structure given by

Since we are considering the algebra so(2n,C) defined by the orthogonal structure

0 I,
Q = Ioo ) the Higgs field ¢ = ¢+ aye + ... + ap_1€,-1 + aye, is defined in the

following order of the subbundles:

KoK ?2g.. 0 KO K "™ oK "2g.. o K190,

!
KoK ?2¢.. o KoO, oK "o K"2¢g.. oK' 0,

(or the other way around, changing O < O,).

The minimum in the Hitchin component is given by the values ay = ... = «a,, = 0,

that is, the minimum is the pair
(K"'o K" ?®.. 0 KO K "™ oK "™a.. oK 'o0,p=2¢),
which is of the form

O

Knl_)Kn2_>_)K< >K1_)..._>Kn+2_)Kn+1.
Oy
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Note that in these diagrams the maps are twisted by K and K™ — K™ ! must be
interpreted as K™ — K™ '@ K = K™,

To conclude we have to distinguish which powers K are in V' and which in W. Observe
that the Higgs field alternates V' and W.

Take v and v; generating O and O; respectively. When n is odd, we have ¢(v—v;) = 0.
Hence, part of O + Oy is in V' and other in W, that is

Vo = (v +v1) and Wy = (v —vy).

Then, the minimum in the Hitchin component is

K1 K O+ 0, K-t K-t O+0;
M= =v =0 e U
Voni Wy Vo Wi Vi1 Wo

Observe that the situation obtained by interchanging V and W is also possible. This
Higgs bundle is a minimum of the type (5) of Theorem with n =1k(Wp) =1, p=n
and V_,,1 & K" that is, deg(V_,41) = (n — 1)(29 — 2).

When n is even, the sum O+ O; is entirely contained in V' or in W, and the minimum

in the Hitchin component is

Kn—l Kn—2 K O + Ol K—l K—n+2 K—n+1
=10 == 1 =1 =1 == 1 = |

V—n+1 W—n+2 V—l WO ‘/1 Wn—2 Vn—l

or of the one obtained by interchanging V' and W. This Higgs bundle is a minimum of
the type (3) of Theorem with n = rk(Wp) = 2, p=n and V_,,; & K" ! that is,
deg(Vo_ps1) = (n —1)(29 — 2).

Ezxample 8.3. Hitchin component of the moduli space of polystable SOy(3, 3)-Higgs bun-
dles.

The sets of positive and simple roots of s0(6,C) are
AT ={e1 — ez, €2 —e3,e1 — 3,61 + e, 00+ €361 + €5},

H = {61 — €9,€9 — €3, €9 + 63}.
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Cei—ea  Cer—es Ceitez  Ceites
Ceg—e3 | ~Certen Cez+e3
—Cei4e3 Cegte: .
We know that e = - , With Cep—ey, Cey—ess
_661762
_Cel—eg _062—83
ha
ho
. . h3 :
Cestes 7 0, is a regular nilpotent element. If x = is

—hy
—hy

in the Cartan subalgebra, it satisfies [x,e] = 2e if and only if hy = 4, hy = 2 and

hg = Cey—es = Ceytey = Ceytes = 0. So finally we can consider

4 1
2 1 1
1
r= — and e =
—2 —1
—1
We know that the conditions [z, é] = —2¢ and [e, €] = x determine é. If
Tl T2 T13 0 T15  T16
T2l  T22  T23 | —T1p 0 T2,6
r31  T32 T33 | —T1e —T26 0
X = € 50(6,C),
0 T4 T4z | —T11 —T21 —T31
—X42 0 T53 | —T12 —T22 —I32
—r43 —253 0 | —713 —®23 —T33

the adjoint action of the semisimple element x on X is given by

0 2712 413 0 6z15 4x16
—2x91 0 2293 | —6x15 0 2796
ad(z)(X) = —4x31 —2w32 0 —4x16 —2x96 0O ’
0 —6x42 —4x43 0 2201 431
6242 0 —2x53 | —2w12 0 2132
443 2753 0 —4x13 —2w93 0

4
3

and the conditions imply e = . Thus, we obtain the 3-dimensional

-3
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subalgebra

1

-1 3

We have a basis of invariant polynomials {py, ps, p3} of degrees 2,4 and 3 respectively

and the decomposition
50(6,C) =V @ Vo @ Vs = S?°C? @ S°C? @ S*C?,

of the Lie algebra s0(6,C) as a sum of irreducible representations of s[(2, C). The highest

T1,3 T1,6

—X
weight vector of V3 is of the form e3 = Lo and it is in the kernel of

—I1,3

1 -1
ad(e) if and only if 21 ¢ = —x; 3, then we can take e5 = : . Analogously,
.
T1p
—Z15

the highest weight vector of V4 is of the form e; = and it is in the

kernel of ad(e) for all the possible values of z; 5, then we can take e; =

Finally, we define the Higgs field in the Hitchin component by

a1 (O3 (65) —Q3
4 a1 | —Q9 aq
3 a3 —o
. —4
-3 | - -3
3 —Q3 —O
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To obtain the vector bundle in the Hitchin component we need to understand the
representation

s[(2,C) — 50(6,C) = A*(R).
We know that s0(6,C) = S?C? + S*C? + SC? = A*(R). Then, R = S*C? + 1. Hence,

the vector bundle is
E=S*+1)(KVoK V) =K0KoO0oK'aK?00,=VaoW,
and the Higgs field is defined using the following order of the subbundles,

KPoKopOoK?2oK'9o0, — KoKoO, K oK '19O.

The minimum in the Hitchin component is given by the values ay = ay = a3 = 0.

Taking a basis K2 KO0 K 2® K '® 0O, = (ey,e1,v,6_9,¢_1,v1), we have

plea) = dey,
pler) = 3(v+u),
o(v) = —3e_q,
p(e—2) 0,

ple—1) = —dey,
p(v1) = —3e_,

that is,

3 -3 —4
€ —=€1 —>v+v] —=€6-1 ——>€_2,

and (v —vy) = 0. If we denote Vy = (v + v1) and Wy = (v — vy), the minimum in the

Hitchin component is

K? K O+ 0 K1 K2 O+ O
=10 = v =1 =1, U
V_2 W_1 % Wl ‘/2 WO

which is a minimum of the type (5) of Theorem with n = rk(Wy) = 1 and p = ¢ = 3.

Ezxample 8.4. Hitchin component of the moduli space of polystable SO¢(4,4)-Higgs bun-
dles.

The sets of positive and simple roots of s0(8,C) are
+
AT = {e1—eq, e1—€3,e1—€4, €2—€3, €3—€4, €3—€y, €1t g, €1H€3, €1F€4, €2F€3, €ateq, e3F€4, },
IT={e; —eg,e2 — €3,e3 — €y, €3 + €4},
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Using the same process as in the previous example, we obtain the 3-dimensional subalgebra

2 1 1
_ _ —1
T = —6 76 - I
—4 —1

6
10
~ 6 ~
€= — = 5l(2,C).
—10
—6 —6
6
Ti1  Ti2 T1,3  T14 0 T16  T17 T8
To1 T2z  T23 T4 | —Xig6 0 To7  Ta2g
3,1 r32 X33 X34 | —T17 —Tar 0 38
T41 T4  T43  T44 | —T18 —T28 —T38 0
If X = 650(8,(:),
0 Ts2  T53 Ts4 | —T11 —T21 —T31 —T41
—T52 0 63 Te4 | —T12 —T22 —T32 —IT42
—T53 —63 0 Tr4 | —%1,3 —T23 —IT33 —T43
—r54 —T64 —T7a 0 | —T14 —T24 —T34 —T4y
the adjoint action of the semisimple element x on X is given by
0 2712 4713 6214 0 10x16 8x17 6x1g
—21‘2’1 0 2.7}2,3 4:E2,4 _10371,6 0 6.%2,7 4:E2,8
—41’371 —21’3,2 0 2%374 —8(13177 —61’2,7 0 2373,8
—6174 1 —41’4 2 —21’4 3 0 —6171 8 —41’2 8 —2$3 8 0
ad(l‘) (X) — b ) ) ) ) )
0 —10:L‘5’2 —81’573 —61’574 0 2:1)2’1 41’3,1 61’471
10%572 0 —61’673 _4-%'6,4 —21‘172 0 21’372 437472
8$573 6.1?6,3 0 —2$774 —41’173 —2332,3 0 2‘%‘473
6.1‘5,4 4376,4 2.7}774 0 —61’1’4 —4.%2,4 —2%’374 0

We take a basis of the algebra of invariant polynomials {p1, pe, ps, p4} of degrees 2,4, 6

and 4 respectively. We also have a decomposition

508,C)=Vie V@ Vs Vy = S*C*a S°C? @ S'°C? ¢ S°C?,

of the Lie algebra so(8, C) as a sum of irreducible representations of s[(2, C). The highest
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weight vector of V3 is of the form ez = and it is in the kernel

of ad(e) for all the possible values of x; ¢, then we can take e3 =

An eigenvector with eigenvalue 6 has to be of the form:

21,4 1,8
€27
—I27

—T18

—T14
and it is in the kernel of ad(e) if and only if 214 + 18 + 227 = 0. Then we can take, for

example,

€y = and e4 =

-1 -1

We define the Higgs field in the Hitchin component by

aq Qo + Qg a3 —Q9
6 o —Qs3 —Qy

10 aq Oy a1
6 D) —q

. —6

—Q1 —10

—6 —Q1 —6
6 —Qg — Oy —ay
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To obtain the vector bundle in the Hitchin component we have to understand the

representation

s[(2,C) — 50(8,C) = A*(R).

We know that s0(8,C) = S*C? @ S°C? & S1°C? @ S°C? = A%(R). Then, R = S°C? + 1.

Hence, the vector bundle is
E=(S°+1) (KoK Y)=K}¢oK’0KoO0oK 'oK?0K 300, =VaWw,
and the Higgs field is defined using the following order of the subbundles,

KoK KaoOoK?*pK?2aoK ' 0,

l
K3eK’eaKae0,6 K32 K?aK 0.

The minimum is given by the values a; = as = a3 = a4 = 0. Taking a basis
KoK KPOPK 3K 20K '® O = (e3,e9,€1,0,6_3,6_9,6_1,01), we have

ples) = 6ey,

p(es) = 10ey,

pler) = 6(v+uvy),
o(v) = —6e_q,

ple—s) = 0,

p(e—z) = —be_s,

ple_1) = —10e_g,
p(v1) = —Gey,

that is,
€306y 10 e Oy Oy e, TCe .

Then, we take V5 = 0 and Wy = (v,v1) = O + O, and the minimum in the Hitchin

component is

K3 K? K O+ O, K-t K2 K3
=0 -1 = 1 =1 =1 —=1:
| W_s Voq Wo Vi Wo V3
which is a minimum of the type (3) of Theorem with n = rk(Wy) =2 and p = ¢ = 4.
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8.5 Hitchin component for SOy(n,n + 1)

The Lie group SOg(n,n + 1) is the split real form of SO(2n + 1,C). A basis of the
invariant polynomials on so(2n + 1, C) is provided by the coefficients {p1,...,pn_1,pn} of

the characteristic polynomial
det(z — A) = z(2® + p1(A)2?" > + ...+ pu(A)),

where deg p; = 2i (the rank of s0(2n + 1,C) is n). The corresponding Hitchin map
p:M— @HO(K%)
i=1
is defined by
p(A,9) = (p1(9), -, Pul))-
The nilpotent regular element is now
e = Z CaXo € 50(2n 4 1,C) with ¢, # 0 for a € 11,

aEAT

where
AT ={e;+e; with1<i<j<n}U{e with 1 <i<n},

H=Aa;=€e;—e,11(1<i<n-—1),a, =e€,},

and the corresponding root vectors are
Xei—e]- = EZ - En—f—j,n—f—ia Xeq;+ej = Ei,n-‘rj - Ej,n+i7
Xei = Ei,?n—i—l - E2n+1,n+ia X—ei = En—i—i,?n-l—l - E2n+1,i-
The element x, that we can consider in the Cartan subalgebra, is of the form = =

Z hi(E;; — Entinti). Imposing [z, e] = 2e we obtain that
i=1

i=1

and

e= Z CoXey-

a€ll
We take e = Z X,. Finally, the conditions [z, €] = —2¢ and [e, €] = = determine é.
acll
The adjoint action

(x,e,é) = sl(2,C) — End(so(2n + 1,C)),
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gives the decomposition

0(2n+1,C) = @m,

with dimV; = 4i — 1, for 1 < i < n (the exponents in this case are m; = 2i — 1). That
is, V; = S¥72C2, 1 < i < n, with eigenvalues 4i — 2,47 — 4, ..., —4i + 4, —4i + 2 for the
action of ad x.

The highest weight vectors in this case are eq,...,e,_1,e,, where ¢; has eigenvalue

4i—2for 1 <i<mn. Wetake V| = (z,¢,€) and e = e;.

Given (ovq,...,a,) € éHO(K%}, the Higgs field in the Hitchin component is the
sumgpzé+ale+...+04i:eln.
Consider now the representation
5(2,C) — s0(2n +1,C) = A*(R).
We know that so(2n +1,C) = S2C*+ S°C?* + ...+ S*2C? = A?(R). Then, R = S*"C.
Hence, the vector bundle is

E=S"K"oK ') =K'@®..0KeOoK'a..0K"=VaoW,

and the field ¢ is defined in the following order of the subbundles: K" @ K" 1 @ ... @
KoeK"egK"™ag..eK'a0.

The minimum in the Hitchin component corresponds with the values a; = a, =

0 and then it is the pair
(K" K" '9o.. o KoK "o K" o.. oK 'a20,p=2¢),
which is of the form

Kn anl K O Kfl Kfn+1 K—n
e e e et B

an vfnJrl V,1 WO ‘/1 anl Wn
when n is even and of the form

K" K" K o K K K
[ i I It A

an anJrl Wfl % Wl anl Wn

bl

when n is odd. These Higgs bundles are minima of the type (1) and (2) of Theorem [6.10]
respectively with p =n and W_,, = K™, that is, deg(W_,) = n(2g — 2).
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Ezxample 8.5. Hitchin component of the moduli space of polystable SO¢(3,4)-Higgs bun-
dles.

The sets of positive and simple roots of s0(7,C) are
+_
A — {61 — €2,€61 —€3,€63 —€3,€1 + €2, €1 + €3, €2 + €3, €1, €2, 63}7

II = {61 — €9,€E9 — 63,63}.

Using the same process as in the previous examples, we obtain the 3-dimensional sub-

algebra
6
4 1
2
xr = —6 5 e = 9
—4 —1
—2 —1
—1
6
10
é —= —6 .
—10
—12
12

Tl Ti2  T13 0 Ti5  T1e | T1,7

To1  T22  T23 | —X15 0 To6 | To7

r31 132  T33 | —Tie —T26 0 |x37

If X = 0 Tao  Tag | —w11 —w21 —wx31 | 247 | € 50(7,C),

—T42 0 T53 | —T12 —T22 —T32 | Ts57

—T43 —T53 0 —r13 —T23 —I33 |67

—r47 —Ts57 —Tery|—Ti7 —To7 —x37| O

the adjoint action of the semisimple element x on X is given by

0 2712 413 0 10z15 8r16 6x1,7
—2x91 0 2r03 | —1071 5 0 6126 4o 7
—4xr31  —2w39 0 —8x16 —6T26 0 2x3.7
ad(z)(X) = 0 —10x42 —8z43 0 291 dxg1 | —6x47
10242 0 —6x53 | —2712 0 2x32 | —4x57
8743 6253 0 —4x13  —2703 0 —2x6 7
6247 dxs 7 267 | —6x17 —4xo7 —2x37 0

We take a basis of the algebra of invariant polynomials {pi, ps, p3} with degrees 2,4, 6

respectively. We also have a decomposition
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of the Lie algebra s0(7,C) as a sum of irreducible representations of s[(2, C). The highest

weight vector of V5 is of the form ey =

Lo

—T26

I17

—x1,7

kernel of ad(e) if and only if 296 + 217 = 0. We can take e; =

Analogously, the highest weight vector of V3 is of the form e; =

and it is in the

r15

—T15

and it is in the kernel of ad(e) for all the possible values of x5, then we can take

€3 =

—1

1

. Finally, we define the Higgs field in the Hitchin component

q Qs Q9
6 a1 | —as —0ry
10 Qo Qq
—6
-y —10
—Qq —12
12| —a —Q

To obtain the vector bundle in the Hitchin component we have to understand the

representation

s[(2,C) — 50(7,C) = A*(R).

We know that so(7,C) = S?C? + S°C? 4+ S'°C? = A%*(R). Then, R = S°C?. Hence, the
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vector bundle is
E=SYKV?oK ') =K*¢K’0KoOoK'oaK?aK3=VaWw,
and the Higgs field ¢ is defined in the following order of the subbundles: K3 ® K2® K @

K32oK?2pK 0.

The minimum in the Hitchin component corresponds with the values oy = aps = a3 =
0. Taking the basis K@ K2 KKK ?>® K '®0O = (e3,e3,e1,6_3,6_9,6_1,0),

we have

ples) = Ge,

ples) = 10ey,

pler) = 120,

ple-3) = 0,

pe—z) = —Ge_s,
ple_1) = —10e_,
o(v) = —12e_y4,

that is,
3Oy 10 o 12, S12 210 o 6,

Thus, the minimum in the Hitchin component is

K? K? K o K' K? K3
=0 =0 =0 —=1 =1 ="

W_s Voo W Vo Wi Va W

which is a minimum of the type (2) of Theorem with p = 3.
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