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Roćıo de Andrés ·
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1 Introduction

A classical group decision making problem is established in a context where a group of

voters or experts have to make a decision on a set of alternatives or candidates. The

experts’ opinions about alternatives are usually characterized by their ideas, principles,

knowledge, etc. and this fact causes difficulties when it comes to making a collective

decision or select one alternative or candidate. In this paper we focus on measuring

the degree of agreement between the voters and the final decision reached via voting

systems.

Suppose the case of a (finite) committee that intends to offer vacancies to a (finite)

list of candidates. Each member is assumed to produce a complete preorder on the

candidates, that is, ties are allowed. For various plausible reasons the committee wants

to agree on a complete preorder of the candidates, for example because the candidates

may reject the offer, or because the number of candidates to be appointed is externally

and independently decided. It is intuitively clear that some orderings convey “higher

consensus” than others, whatever the formal meaning that we attach to that term.

We here propose a model that considers both aspects of the process, namely, the

social preference on the alternatives and the consensus that arises from it. Generally

speaking, the question we pose ourselves is: How should the design be for the committee

to reach a consistent decision (in the form of a complete preorder on the candidates)

with regard to favouring consensus? This issue is linked to different branches of the

social choice literature. Firstly, voting rules come to mind as a well-established tool to

reach a decision. Secondly, the measurement of consensus must be introduced in the

analysis.

Regarding the latter problem we separate from the main trend in the literature,

that consists of proposing and axiomatizing particular formulations for an absolute

measure of consensus or coherence (v., e.g., Bosch [4] or Alcalde and Vorsatz [2]). We

here provide an alternative methodology for approaching the measurement of consen-

sus, which we call referenced consensus measures. In agreement with the discussion

above, it can be specialized via two ways: the “voting rule” that is selected, and the

measure of agreement between profiles and orderings. We prove that this model permits

to unify all the approaches to measure consensus in the sense of the aforementioned

literature. Then we perform a descriptive analysis of its formal properties with a special

emphasis on a subclass of it –that we call normal referenced consensus measures– and

particularly on two relevant cases whose explicit constructions are detailed. Adopting

this latter position has several advantages. It gives a single and practical solution to a

problem, which permits to compare proposals on the basis of the consensus that they

yield and therefore favours descriptive analyses. Also, in view of the behavior of the

general classes that we study one can conclude that the performance of this solution is

sufficiently good to value it as a decision aiding tool.

The paper is organized as follows. Section 2 is devoted to introduce basic notation

and definitions, as well as our proposal of measurement of consensus, the referenced con-

sensus measure. We prove that it incorporates the usual model by consensus measures.

Then we propose the particular subclass of normal referenced consensus measures as a

suitable framework where a better normative behavior can be guaranteed. In Section

3 operational characterizations of some focal voting rules are provided, which helps us

to deal with the two explicit proposals for measurement of consensus that we present.

Also we perform a short analysis of the dichotomous case. In Section 4 we explore a

list of appealing properties of normal referenced consensus measures, and particularly
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of our explicit proposals. Finally, in Section 5 we give some concluding remarks and

pose questions for further research.

2 Notation and Definitions

We fix X = {x1, ..., xk}, a finite set of k options, alternatives or candidates. Abusing

notation, on occasions we refer to option xs as option s for convenience. A population

of agents or voters is a finite subset N = {1, 2, ..., N} of natural numbers. We also

denote K = {{i, j} ⊆ N : i, j ∈ {1, 2, ..., k}, i 6= j}.
Let W (X) be the set of weak orders or complete preorders on X, that is, the set

of complete and transitive binary relations on X. If R ∈ W (X) is a weak order on X

that reflects the preferences of a voter, then by xkRxj we mean “R-voter thinks that

alternative xk is at last as good as xj”. L(X) denotes the set of linear orders on X.

A profile R = (R1, . . . , RN ) ∈ W (X)× N.... ×W (X) is a vector of weak orders,

where Ri ∈ W (X) represents the preferences of the individual i on the k alternatives

or candidates for each i = 1, . . . , N . The reversal of the profile R, denoted by R−1,

is the profile (R−11 , ..., R−1N ) where xsR
−1
i xt ⇔ xtRi xs for each possible voter i ∈

{1, . . . , N} and candidates or alternatives xs, xt ∈ {1, . . . , k}. We say that the profile

R is constant to R if R = (R, N......, R).

Any permutation σ of the voters {1, 2, ..., N} determines a permutation of R by

Rσ = (Rσ(1), ......, Rσ(N)). Similarly, any permutation π of the candidates {1, 2, ..., k}
determines a permutation of every complete preorder R ∈ W (X) via xs

πRi xt ⇔
xπ−1(s)Ri xπ−1(t) for all s, t ∈ {1, . . . , k} and i ∈ {1, . . . , N}. Then with R and π we

can associate πR = (πR1, ......,
π RN ).

Finally, given any profile of weak orders R = (R1, . . . , RN ) ∈ W (X)N and any

weak order R′ on X, we denote R ] R′ the profile (R1, . . . , RN , R
′) of N + 1 weak

orders. We denote by P(X) the set of all profiles, that is, P(X) =
⋃
N>2W (X)N .

2.1 Basic Definitions

A Consensus measure with reference to a consensus function (henceforth, referenced

consensus measure, RCM for simplicity, when the consensus function is common knowl-

edge) is a pair M = (C, ∂) where:

1) C is a consensus function (cf., McMorris and Powers, 2009), that is, a mapping

C : P(X)→W (X),

that associates a complete preorder C(R) with each profile of complete preorders

R. We speak of the consensus preorder C(R) associated with R, and assume that

1.a) C(R) = R for each profile R that is constant to the complete preorder R.

1.b) C(Rσ) = C(R) for each profile of complete preorders and σ permutation of the

voters.

1.c) C(πR) =π C(R) for each profile of complete preorders and π permutation of

the candidates or alternatives.

Abusing notation, this can be replaced with a voting rule with suitable properties:

for example, 1.b) and 1.c) just mean the usual anonymity and neutrality conditions,

respectively.
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Example 1 A tie-breaking Borda rule as given by Suzumura [9, pp. 107-108] at-

taches a complete preorder to each profile of complete preorders. It ranks the can-

didates according to their respective Borda score defined as follows:

β(xs) =

N∑
i=1

(#{xt ∈ X : xsRi xt } −#{xt ∈ X : xtRi xs})

Because 1.a), 1.b) and 1.c) are immediate, we denote by CB such consensus function.

If in fact we have a profile of linear orders the same ranking is obtained through

the alternative Borda score given by:

β′(xs) =

N∑
i=1

(#{xt ∈ X : xsRi xt })

Example 2 The Copeland method is described in e.g., Saari and Merlin [8] or Suzu-

mura [9, p. 108]. It ranks the candidates according to their respective Copeland

score defined as follows:

κ(xs) = #{xt ∈ X : xs beats xt by s.s.m.} −#{xt ∈ X : xt beats xs by s.s.m.}

where s.s.m. stands for “strict simple majority”. This rule is widely used in tour-

nament situations, and versions of it are adopted by sports leagues. Again, 1.a),

1.b) and 1.c) are immediate. We denote by CC its associated consensus function.

2) ∂ is a referenced measure function (RMF), that is, a mapping

∂ : P(X)×W (X)→ [0, 1],

that assigns a real number, ∂(R, R) ∈ [0, 1], to each pair of a profile of complete

preorder R, and a complete preorder R, with the following properties:

2.a) ∂(R, R) = 1 if and only if R is constant to R.

2.b) ∂(Rσ, R) = ∂(R, R) for each possible permutation σ of the voters.

2.c) ∂(πR,π R) = ∂(R, R) for each possible permutation π of the candidates.

With regard to M = (C, ∂) each profile of complete preorders R on X has a consensus

∇M(R) = ∂(R, C(R)).

It is important to observe that each conventional consensus measure can be in-

trepreted as a referenced consensus measure, in the following sense. Recall first that a

consensus measure (cf., Bosch [4]) is a mapping:

M : P → [0, 1]

that assigns a real number M(R) to each profile of complete preorder R with the

following properties:

– M(R) = 1 if and only if R is a constant profile.

– M(Rσ) =M(R) for each permutation σ of the voters.

– M(πR) =M(R) for each permutation π of the candidates.
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Then, given a consensus measure M we define its associated RMF as

∂M(R, R) =

{
M(R]R) if R is constant,

M(R) otherwise.

Now it is straightforward to check:

– ∂M satisfies 2.a), 2.b) and 2.c)

– For any C consensus function ∂M(R, C(R)) =M(R).

In conclusion, for every consensus measureM, any RCM (C, ∂M) associated with it is

equivalent to M irrespective of C, in the sense that both M and (C, ∂M) produce the

same number as a measure of the consensus in the society. Note that contrary to the

spirit of our proposal, the role of C(R) is irrelevant in the previous construction. In

order to enhance the influence of C(R) in the consensus measure we now demand an

additional property to referenced measure functions and introduce the corresponding

new subclass of consensus measures:

Definition 1 (Normal Referenced Consensus Measure) A referenced consensus

measure M = (C, ∂) is called normal if its referenced measure function ∂ verifies

2.d) ∂(R, R) > 0 if R ∈ R.

If we adopt the position that overall satisfaction is an aggregate of individual satis-

faction then property 2.d) can be regarded as natural. We emphasize that the subclass

of normal referenced consensus measures does not include all the conventional ones.

For example, the trivial measure defined as

T (R) =

{
1 if R is a constant profile,

0 otherwise,

is not a normal RCM. Note that we can assume that there exists a non-constant profile

R such that C(R) ∈ R (this forcefully holds e.g., when the number of voters is higher

than the cardinality of W (X)). Since T (R) = 0 and ∂(R, C(R)) > 0 for any normal

RCM we conclude the assertion.

We now propose a construction of RMFs based on conventional consensus measures,

which verifies property 2.d). LetM be a consensus measure. Given a profile of complete

preorders R and a complete preorder R we define the µp(M)-RFM as the p-generalized

mean of the RN vector that has the i-th component equal to M(Ri ]R), that is

∂pM(R, R) =

(
N∑
i=1

1

N
M(Ri ]R)p

)1/p

(1)

It is trivial to check that properties 2.a), 2.b), 2.c) and 2.d) hold true. We conclude this

part with an example.

Example 3 Let us first recall the definition of Kemeny’s measure. For every profile of

complete preorders R = (R1, . . . , RN ), its Kemeny’s measure K(R) is the probability

that the binary ordering between a pair of randomly selected alternatives is the same for

all voters. Given p = 1 and M = K –the Kemeny’s measure– the above construction

produces the following RMF. Attending to (1), we have to compute the Kemeny’s

measure of a profile composed by two elements: Ri that represents the preferences of
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individual i and R the referenced complete preorder. Observe that there is a total of
k(k−1)

2 possible random choices. Thus the proportion of pairwise comparisons where

Ri and R coincide is

K(Ri ]R) =
2

k(k − 1)

∑
(s,t)∈K

Ks,t(Ri ]R)

with

Ks,t(Ri ]R) =


1 if Ri and R coincide on the binary comparison

between xs and xt;

0 otherwise.

We then conclude that the µ1(K)-RMF is given by:

∂1K(R, R) =
K(R1 ]R) + . . .+K(RN ]R)

N
.

Convention 1 In what follows we omit superscripts when they are 1, in particular we

denote the µ1(K)-RMF as ∂K.

Along the rest of the paper we restrict our attention to normal referenced consensus

measure with referenced measure function based on generalized means.

3 Some proposals for normal referenced consensus measures

In this section we detail the construction of two relevant normal RCM proposals. These

models reach the consensus decision with Borda and Copeland methods, respectively,

and both of them measure the consensus with the µ1(K)-RMF. We first provide an op-

erational characterizations of Borda and Copeland rules. We then analyse our proposals

and finally, we shortly discuss the dichotomous case.

3.1 Some Operational Characterizations

Let us fix a profile R = (R1, ..., RN ) of complete preorders on X. Its Borda and

Copeland scores can be reinterpreted in terms of simple matrix operations. We denote

by At the transpose of the matrix A. Besides, for any m × n real-valued matrix A =

(ai,j)m×n the notation sig(A) refers to the m×n matrix whose (i, j) cell is 1 if ai,j > 0,

−1 if ai,j < 0, and 0 otherwise. Ik denotes the identity matrix of size k × k.

For each complete preorder Rs, the asymmetric part of which is denoted by Ps, its

preference matrix Ps is defined as the k × k binary matrix whose (i, j) cell is 1 when

xi Ps xj , and 0 otherwise. Observe that Rs is linear if and only if Ps + (Ps)
t + Ik =

(1)k×k, the constant to 1 matrix of size k× k. Besides, the sum of the cells in the i-th

row of Ps − (Ps)
t is #{xj ∈ X : xi Ps xj} −#{xj ∈ X : xj Ps xi}. We say that R

has an aggregate preference matrix A(R) = P1+ ...+PN . Its (i, j) cell has the number

of agents for which alternative xi is strictly better than xj . The sum of the cells in its

i-th row is the usual Borda score β′(xi) when R is a profile of linear orders.

Define A(R) = A(R)− (A(R))t, then the sum of the cells in its i-th file is β(xi),

the Borda score of alternative xi (v. Example 1).
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Observe that the fact that the (i, j) cell of A(R) is greater than 0 is equivalent

to the fact that alternative xi beats xj by strict simple majority under the profile R.

Thus if we define Ã(R) = sig(A(R)) then the sum of the cells in its i-th file is κ(xi),

the Copeland score of alternative xi (v. Example 2).

Example 4 Suppose X = {x, y, z, w} thus k = 4. Let R = (R1, R2, R3) be the profile

of linear orders given by: wP1 y P1 xP1 z, z P2 wP2 y P2 x, xP3 z P3 y P3 w.

Then

P1 =


0 0 1 0

1 0 1 0

0 0 0 0

1 1 1 0

 P2 =


0 0 0 0

1 0 0 0

1 1 0 1

1 1 0 0

 P3 =


0 1 1 1

0 0 0 1

0 1 0 1

0 0 0 0


Some simple computations yield

A(R) =


0 1 2 1

2 0 1 1

1 2 0 2

2 2 1 0

 A(R) = Ã(R) =


0 −1 1 −1

1 0 −1 −1

−1 1 0 1

1 1 −1 0


Thus for this setting the Borda and Copeland scores coincide throughout. Their values

are −1 por options x and y, and 1 for options z and w. Therefore the social preference

R that is derived from both choice rules is w I z P x I y (cf., Suzumura [9, p. 108]).

Calculating ∂K(R, R) for R = (R1, ..., RN ) profile of complete preorders and R

complete preorder is trivial from the numbers Ks,t(Ri ] R). These amounts can be

computed with the assistance of basic matrix manipulations too. Denote by P the

preference matrix of R defined as above. Let us observe two facts.

1. Cell (s, t) of both Pi + (Pi)
t and P + Pt has a 0 if and only if both Ri and R are

indifferent between xs and xt. This can not happen when s 6= t if either Ri or R is

linear.

2. Cell (s, t) of both Pi and P has a 1 if and only if xs Pi xt and xs P xt .

This means that: the number of pairs of different options for which both Ri and

R are indifferent is the number of cells strictly above the diagonal with a 0 for both

Pi + (Pi)
t and P + Pt (and it is 0 if either Ri or R is linear); and the number of

pairs of options for which Ri and R have equal strict preference is the number of cells

(outside the diagonal) with a 1 for both Pi and P.1 The sum of these two amounts is
k(k−1)

2 K(Ri, R) =
∑
{s,t}∈KK

s,t(Ri], R).

Example 5 In the situation of Example 4 one has

P1 + Pt1 = P2 + Pt2 = P3 + Pt3 =


0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0


1 This number is obtained with a computer assistant very easily: do the cell-by-cell multi-

plication and sum up all the cells in the result.
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because all P1, P2 and P3 are linear orders. The preference matrix of the complete

preorder R that is prescribed by both the Borda and Copeland rule is

P =


0 0 0 0

0 0 0 0

1 1 0 0

1 1 0 0


Some simple computations yield ∂K(R, R) = 1

3 ( 2+4+1
6 ) = 7

18 since

– No pair of different options is indifferent under any of the Pi’s.

– Only cells (4, 1) and (4, 2) have a 1 in both P1 and P.

– Only cells (3, 1), (3, 2), (4, 1) and (4, 2) have a 1 in both P2 and P.

– Only cell (3, 2) has a 1 in both P3 and P.

3.2 The RCM-B proposal

In this Subsection we analyse the referenced consensus measure given by the tie-

breaking Borda rule that was detailed in Example 1 and ∂K introduced in Example 3.

We refer to this model as RCM-B, that is, MB = (CB, ∂K).

Let us first show how this proposal produces its output with a simple Example.

Example 6 In the situation of Example 4 we checked that CB(R) is the complete pre-

order RB determined by w IB z PB x IB y. According to Example 5

∇MB
(R) = ∂K(R, CB(R)) =

7

18

This means that 7 out of 18 =
3·4·(4−1)

2 possible pairwise comparisons made by a

member of the society {1, 2, 3} coincide with the binary ordering given by the consensus

function in the model.

3.3 The RCM-C proposal

In this Subsection we analyse the referenced consensus measure given by the Copeland

method (cf. Example 2) and ∂K. We refer to this model as RCM-C, that is, MC =

(CC , ∂K).

Let us first show how this proposal produces its output with a simple Example.

Example 7 In the situation of Example 4 (v. Example 6) we found CC(R) = RB thus

∇MC
(R) = ∂K(R, CC(R)) =

7

18

Again, 7 out of 18 possible pairwise comparisons made by a member of the society

{1, 2, 3} coincide with the binary ordering given by the consensus function in the model.
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3.4 The case of a dichotomous choice

Suppose k = 2, i.e., the dichotomous case. To simplify notation let X = {x, y}. We also

denote n1 = |{i ∈ N : xPi y}| and n2 = |{i ∈ N : y Pi x}|, thus N − n1 − n2 = |{i ∈
N : x Ii y}|. Due to properties 1.b) and 2.b) we can reorder the voters as convenient,

and we assume that voters 1, ..., n1 prefer x strictly over y, that voters n1+1, ..., n1+n2
prefer y strictly over x, and that the last N − n1 − n2 voters are indifferent between

x and y. Let nx,y(R) denote the majority margin of x over y under R, that is, the

number of voters that prefer x strictly over y minus the number of voters that prefer

y strictly over x, or nx,y(R) = n1 − n2. Now the Borda and Copeland voting rule

coincide with strict simple majority: the preference matrix of the complete preorder

R0 that is prescribed by them is

P0 =

(
0 1

0 0

)
if nx,y(R) > 0 (or n1 > n2)

P0 =

(
0 0

0 0

)
if nx,y(R) = 0 (or n1 = n2)

P0 =

(
0 0

1 0

)
if nx,y(R) < 0 (or n1 < n2)

Because k = 2 we obtain:

if n1 > n2, then K(Ri ]R0) =

{
1 for i = 1, ..., n1
0 otherwise

if n2 > n1, then K(Ri ]R0) =

{
1 for i = n1 + 1, ..., n1 + n2
0 otherwise

if n1 = n2, then K(Ri ]R0) =

{
1 for i = n1 + n2 + 1, ..., N

0 otherwise

Therefore

∂K(R, R0) =


n1
N if n1 > n2
n2
N if n2 > n1
N−n1−n2

N = 1− 2n1
N if n1 = n2

This means that under either RCM-B or RCM-C, total lack of consensus only happens

under a precise fifty-fifty division among all the voters (half prefer x strictly over y, half

the other way around), which is commonly agreed upon (see e.g., Alcalde and Vorsatz

[1, pp. 2-3]). Obviously when k = 2 and n1 +n2 = N (i.e., the dichotomous and binary

case) one has

∂K(R, R0) =


n1
N if n1 > n2
n2
N if n2 > n1
0 if n1 = n2

and an odd number of voters can not produce zero consensus under these models.
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4 Normal referenced consensus measures: a critical analysis of their

properties

Along this Section, M = (C, ∂pM) denotes a normal referenced consensus measure with

a µp(M)-RMF. In other words, ∂pM is based on a conventional consensus measure M
and computed as a p-generalized mean according to (1). We proceed to check that

such model agrees with certain axioms that are common use in the literature. At this

point we remark that Axioms 1 to 3 below hold true in the larger class of referenced

consensus measures. Finally, a critical analysis of other ad-hoc properties is performed

along this study.

4.1 Some properties of referenced consensus measures

The following axiom is trivial from the definition of a referenced consensus measure.

It means that maximum consensus is reached under commonly held preferences across

agents.

Axiom 1 M is unanimous if for each constant profile R it is true that ∇M(R) = 1.

Similarly, Proposition 1 below proves that the following property obtains:

Axiom 2 M is anonymous if for each permutation of the voters σ and each profile R,

it is true that ∇M(R) = ∇M(Rσ).

As is apparent, anonymity of a normal referenced consensus measure means that

the consensus measure does not change if we rename the voters.

Proposition 1 Any M is anonymous.

Proof This holds because M has properties 1.b) and 2.b). Specifically,

∇M(R) = ∂(R, C(R))
2.b)
= ∂(Rσ, C(R))

1.b)
= ∂(Rσ, C(Rσ)) = ∇M(Rσ)

ut

In particular, both RCM-B and RCM-C satisfy Axiom 2. We now argue that normal

referenced consensus measures verify the following property too:

Axiom 3 M is neutral if the consensus measure does not change when we rename the

candidates.

Proposition 2 Any M is neutral.

Proof From the fact that the consensus function associated with M satisfies 1.c) it is

tedious but straightforward to check that M verifies Axiom 3. ut

In order to introduce a further property of normal referenced consensus measures,

we first give some notation. For each profile R = (R1, ..., RN ) and m ∈ N we denote

mR = (R1,m..., R1, R2,m..., R2, ..., RN ,
m..., RN )

that we call an m-replication of the profile R. Then we say that the consensus function

C verifies replication if C(R) = C(mR) throughout. This means that for each fixed

society, the same consensus ordering is proposed if we repeatedly clone it. Likewise we

define:
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Axiom 4 M verifies the replication axiom if for each profile R and m ∈ N it is true

that ∇M(R) = ∇M(mR).

Coupled with Axiom 2, this property is the analogous of the replication axiom in

Alcalde and Vorsatz [1].2 They interpret it as an invariance property asking that exact

replications of a society are attached the same level of coherence as the original. The

following result checks the model under inspection against Axiom 4:

Proposition 3 Given M = (C, ∂pM), if C verifies replication then M satisfies the

replication axiom.

Proof Let us fix a profile R = (R1, ..., RN ) and m ∈ N. By definition of mR, it is clear

that for any complete peorder R one has

∂pM(mR, R) =

(∑N
i=1M(Ri ]R)p+ m... +

∑N
i=1M(Ri ]R)p

m ·N

)p

=

(∑N
i=1M(Ri ]R)p

N

)p
= ∂pM(R, R).

Thus because C satisfies replication we finally obtain

∇M(mR) = ∂pM(R, C(mR)) = ∂pM(R, C(R)) = ∇M(R).

ut

Corollary 1 Both RCM-B and RCM-C verify the replication axiom.

Proof By Proposition 3 it suffices to prove that both Borda and Copeland rankings

satisfy replication. Let us fix a profile R = (R1, ..., RN ) and m ∈ N. We observe that

because A(mR) = m ·A(R) and A(mR) = m ·A(R) the Borda ranking is preserved by

m-replication of the profile. Further, the fact that Ã(R) = sig(A(R)) = sig(A(mR)) =

Ã(mR) implies that the Copeland ranking is preserved by m-replication of the profile.

ut

The next Axiom captures the intuitively appealing property that the consensus

measure should not change if all the agents simultaneously reverse their orderings of

the alternatives:

Axiom 5 M verifies reversal invariance if the reversal of any profile R, namely R−1,

produces the same consensus, i.e.,

∇M(R) = ∇M(R−1) for each possible profile R

To discuss this property, we have to introduce some additional notations. A consensus

function C satifies the reversal property if C(R−1) = C(R)−1 for any complete peorder

R. This means that when all voters in a profile reverse their rankings of the candidates

then the outcome is reversed. A consensus measure M verifies the reversal property

if M(R−1) = M(R) for any profile of complete preorders. That is, the consensus

measure is unchanged when the profile is reversed. Let us analyse this property in

detail.

2 These authors acknowledge inspiration by the scale invariance axiom in Allison’s [3] char-
acterization of the Gini index.
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Proposition 4 Given M = (C, ∂pM), if C and M verify the reversal property, then M

satisfies the reversal invariance axiom.

Proof Since (Ri ] C(R))−1 = R−1i ] C(R)−1, by hypotesis we infer for all i = 1 . . . N

that

M(Ri ] C(R)) =M((Ri ] C(R))−1) =M(R−1i ] C(R)−1) =M(R−1i ] C(R
−1)),

and thus from definition of µp(M)-RMF we conclude as follow

∇M(R) = ∂pM(R, C(R)) = ∂pM(R−1, C(R−1)) = ∇M(R−1).

ut

Our particular proposals in Section 3 verify this property too.

Corollary 2 Both RCM-B and RCM-C verify the reversal invariance axiom.

Proof Because the Borda and the Copeland rules satisfy the reversal property (cf., Saari

and Merlin [8, Section 1]) we only have to prove that the Kemeny’s measure verifies the

reversal property. This is straightfoward since Ks,t(Ri ] C(R)) = Ks,t(R−1i ] C(R
−1))

for each possible voter i and candidates s and t. ut

We now investigate if normal referenced consensus measures verify the following

reinforcement property:

Axiom 6 M verifies reinforcement if adding C(R) to the profile R does not reduce the

consensus, i.e.,

∇M(R] C(R)) > ∇M(R) for each possible profile R

We proceed to state a criterion for satisfaction of this property that depends upon the

behavior of C, and then we check that both RCM-B and RCM-C meet such criterion.

We say that a consensus function C verifies decision invariance if C(R]C(R)) = C(R)

for each profile R. This means that the consensus ordering does not change if we add

to the society a new agent whose preferences coincide with the previous consensus

preorder. Under this restriction we obtain:

Proposition 5 Given M = (C, ∂pM), if C verifies decision invariance then M verifies

reinforcement.

Proof Since C(R] C(R)) = C(R), and using M(C(R) ] C(R)) = 1, one has

∇M(R] C(R)) = ∂pM(R] C(R), C(R))

=

(∑N
i=1M(Ri, C(R))p +M(C(R), C(R))p

N + 1

)1/p

=

(
N

N + 1

[
∂pM(R, C(R))

]p
+

1

N + 1

)1/p

> ∂pM(R, C(R)) = ∇M(R),

where the last inequality derives from the fact ∇M(R) 6 1. Such inequality becomes

strict provided ∇M(R) < 1. ut

An appeal to Proposition 5 permits us to prove that both RCM-B and RCM-C

verify reinforcement:
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Proposition 6 RCM-B and RCM-C verify reinforcement.

Proof We just need to prove that their respective consensus functions verify the decision

invariance property which in conjunction with Proposition 5, proves the assertion.

Firstly we analyse RCM-B. Let us take the profile R and denote RB = CB(R) with

preference matrix PB . Recall that for A(R) = A(R)−(A(R))t, the sum of the cells in

its i-th file is β(xi), the Borda score of alternative xi. We claim CB(R]CB(R)) = CB(R).

These orders arise from the respective Borda scores, namely βB and β, obtained from

A(R ] CB(R)) and A(R) by summing up the cells in their rows. Observe A(R ]
CB(R)) = A(R) + PB − (PB)t. By construction β(xi) > β(xj) if and only if xiRB xj .

Because the sum of the cells in the i-th row of PB − (PB)t is #{xl ∈ X : xi PB xl}−
#{xl ∈ X : xl PB xi}, one has that xiRB xj if and only if the sum of the cells in the

i-th row of PB − (PB)t is greater or equal than the sum of the cells in the j-th row

of PB − (PB)t. This proves our claim βB(xi) > βB(xj) if and only if β(xi) > β(xj)

throughout.

We now analyse RCM-C. Let us take the profile R and denote RC = CC(R) with

preference matrix PC . Recall that for Ã(R) = sig(A(R)), the sum of the cells in its i-

th file is κ(xi), the Copeland score of alternative xi. We claim CC(R]CC(R)) = CC(R).

These orders arise from the respective Copeland scores, namely κc and κ, obtained from

Ã(R] CC(R)) and Ã(R) by summing up the cells in their rows. Thus our claim boils

down to κc(xi) > κc(xj) if and only if κ(xi) > κ(xj) throughout. This holds if we

prove sig(A(R]CC(R))) = sig(A(R)). Observe A(R]CC(R)) = A(R)+PC−(PC)t.

By construction κ(xi) > κ(xj) if and only if xiRC xj . Because cell (i, j) in A(R) is

positive (resp., negative) if and only if xi beats xj by s.s.m. (resp., xj beats xi by

s.s.m.) if and only if cell (i, j) in PC − (PC)t is positive (resp., negative), the claim

sig(A(R] CC(R))) = sig(A(R)) easily follows from a cell-by-cell inspection. ut

In order to prove another interesting property of a suitable subclass of normal refer-

enced consensus measures we need some previous elaboration. The consensus function

C verifies responsiveness if for every R′ ∈ W (X) and R ∈ W (X)N , the following

equality holds eventually (i.e., for all sufficiently large m):

C(R]R′ ] m... ]R′) = R′ (2)

We proceed to prove that the Borda rule and the Copeland rule verify a restricted

version of this property, namely restricted responsiveness: for every R′ ∈ L(X) and

R ∈W (X)N , Equation (2) holds eventually.

Lemma 1 The Borda rule and the Copeland rule verify restricted responsiveness.

Proof We fix X = {x1, ..., xk}, R′ ∈ L(X), and R ∈W (X)N .

Firstly we analyse the Borda rule. Given xs 6= xt we can assume xsP
′xt without

loss of generality. Now irrespective of the Borda score thatR attaches to them –namely,

βR(xs) and βR(xt)– it must be the case that for sufficiently large m the Borda score

with respect to Rm = R ] R′ ] m... ]R′ –which we denote by βRm– is strictly higher

for xs, since

βRm(xs)− βRm(xt) > m+ βR(xs)− βR(xt)

If m0 is such that m > m0 implies m+βR(xs)−βR(xt) > 0 then m > m0 implies that

the ordering between xs and xt according to Rm = R]R′ ] m... ]R′ coincides with its

ordering according to R′. Because there are finitely many pairs in K, this conclusion

can be simultaneously reached for every pair xs 6= xt of elements in X.
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We now analyse the Copeland rule. Given xs 6= xt we can assume xsP
′xt without

loss of generality. It is clear that for sufficiently large m the alternative xs beats xt
by strict simple majority according to Rm = R ] R′ ] m... ]R′. Formally: denote by

κ′ the Copeland score of the profile with the linear order R′ only, and by κm the

Copeland score of the profile Rm, then κ′(xs) > κ′(xt) and it is eventually true that

κm(xs) = κ′(xs) > κ′(xt) = κm(xt). Now the argument goes through as above. ut

Responsiveness can not be guaranteed in Lemma 1: even in the simplest non-trivial

instance where there are two candidates both the Borda rule and the Copeland rule

fail to be responsive as the next Example shows.

Example 8 Suppose X = {x, y} thus k = 2. Let R = (R1) be the profile of one linear

order given by xP1 y . We also let R′ be the complete preorder with x I ′ y , which is

not a linear order. Then CB(R ] R′ ] m... ]R′) = CC(R ] R′ ] m... ]R′) = R1 for

each m, that is, both the Borda and Copeland methods suggest the consensus ordering

R1 6= R′. The reason is that irrespective of m, the Borda score of x is a unit higher

than the Borda score of y, and the Copeland score of x is 1 but the Copeland score of

y is 0.

We are now ready to define:

Axiom 7 M verifies convergence to unanimity if for every R′ ∈W (X),

lim
m−→∞

∇M(R]R′ ] m... ]R′) = 1

Axiom 8 M verifies restricted convergence to unanimity if for every R′ ∈ L(X) and

R ∈W (X)N , limm−→∞∇M(R]R′ ] m... ]R′) = 1.

We proceed to ellucidate to which extent normal referenced consensus measures

verify convergence to unanimity, with an especial attention to the RCM-B and RCM-

C cases.

Proposition 7 Given M = (C, ∂pM), if C is responsive (resp., restrictedly responsive)

then M verifies Axiom 7 (resp., Axiom 8). In particular, RCM-B and RCM-C verify

restricted convergence to unanimity.

Proof Suppose C is responsive, that is, for every R′ ∈ W (X) and R ∈ W (X)N the

equality C(R]R′ ] m... ]R′) = R′ is eventually true. Then one has

lim
m−→∞

∇M(R]R′ ] m... ]R′) = lim
m−→∞

∂pM(R]R′ ] m... ]R′, C(R]R′ ] m... ]R′))

= lim
m−→∞

∂pM(R]R′ ] m... ]R′, R′)

= lim
m−→∞

(∑N
i=1M(Ri ]R′)p +m

N +m

)1/p

= lim
m−→∞

(
N

N +m
[∂pM(R, R′)]p +

m

N +m

)1/p

= 1

where we are using that M(R′ ]R′) = 1 and ∂pM(R, R′) 6 1.

The case of a restrictedly responsive consensus function is proved analogously.

In particular, from Lemma 1 RCM-B and RCM-C verify restricted convergence to

unanimity. ut
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4.2 Other properties of referenced consensus measures

The literature on measurement of consensus has dealt with other desirable properties

that we briefly analyse in this Subsection. Axiom 9 below requests that null and full

consensus are possible.

Axiom 9 M verifies full range if there are two profiles R and R′ such that ∇M(R) =

0, ∇M(R′) = 1.

Neither RCM-B nor RCM-C verify this property in the sense that zero consensus

is impossible for particular values of N as seen in Subsection 3.4.

Similarly, we proceed to analyze the property of Monotonicity, whose formal def-

inition is given in Alcalde and Vorsatz [1]. Intuitively it say as follows. Suppose that

you measure the consensus in a society. Now one agent reverses her/his opinion about

the ordering of one particular pair of alternatives only. 3 If the alternative that the

agent favours after the change beats the other alternative in a pairwise comparison for

the rest of the society then the consensus should increase. And if both alternatives tie

in a pairwise comparison for the rest of the society then the consensus should not vary

after the change.

Examples 9 and 10 below show that RCM-B does not verify any of the two state-

ments that jointly define Monotonicity. The same goes for Examples 11 and 12 regard-

ing RCM-C.

Example 9 Suppose X = {x, y, z} thus k = 3. Let R = (R1, R2, R3) be the profile of

linear orders given by: y P1 xP1 z, xP2 y P2 z, y P3 z P3 x. Then CB(R) is P1, that is,

the Borda method produces P1. Some simple computations yield ∇MB
(R) = 7

9 .

Consider the profile R′ = (R′1, R2, R3) where R′1 is the linear order y P ′1 z P
′
1 x.

Under monotonicity this profile would have consensus 7
9 . However ∇MB

(R′) = 5
9

because CB(R′) is the complete preorder R′ for which y P ′ x I ′ z .

Example 10 Suppose X = {x, y, z} thus k = 3. Let R = (R1, R2, R3) be the profile of

linear orders given by: y P1 xP1 z, z P2 xP2 y, y P3 z P3 x. Then CB(R) is P3, that is,

the Borda method produces P3. Some simple computations yield ∇MB
(R) = 2

3 .

Consider the profile R′ = (R′1, R2, R3) where R′1 is the linear order y P ′1 z P
′
1 x.

Under monotonicity this profile would yield a higher consensus. However∇MB
(R′) = 5

9
because CB(R′) is the complete preorder R′ for which y I ′ z P ′ x .

Example 11 Suppose X = {x, y, z} thus k = 3. Let R = (R1, R2, R3) be the profile of

linear orders given by: xP1 y P1 z, y P2 xP2 z, z P3 y P3 x. Then CC(R) is P2, that is,

the Copeland method produces P2. Some simple computations yield ∇MC
(R) = 2

3 .

Consider the profile R′ = (R′1, R2, R3) where R′1 is the linear order xP ′1 z P
′
1 y. Un-

der monotonicity this profile would have consensus 2
3 . However ∇MC

(R′) = 0 because

CC(R′) is the complete preorder R′ for which x I ′ y I ′ z .

3 Observe that this excludes from the analysis the case of a reversal of the order between x
and y e.g., in y I1 z P1 x or in y P1 z P1 x. These reversals modify the ordering between other
pairs of alternatives too.
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Example 12 Suppose X = {x, y, z} thus k = 3. Let R = (R1, R2, R3, R4) be the profile

of linear orders given by: xP1 y P1 z, xP2 y P2 z, z P3 xP3 y, z P4 xP4 y. Then CC(R)

is the linear order xP z P y (that is, the Copeland method produces P1). Some simple

computations yield ∇MC
(R) = 2

3 .

Consider the profile R′ = (R′1, R2, R3, R4) where R′1 is the linear order whose

asymmetric part is P above (that is, xP ′1 z P
′
1 y). Under monotonicity this profile would

yield a higher consensus. However ∇MC
(R′) = 7

12 because CC(R′) is the complete

preorder R′ for which x I ′ z P ′ y .

5 Concluding remarks and future research

Alongside with normative approaches like the foundational Bosch [4] or Alcalde and

Vorsatz [2], in this paper we analyse the measurement of consensus from a descriptive

point of view. We have presented a general framework whose performance has been

explored. Also we have given two particular specifications that link this proposal to

voting theory. Some particular properties of theirs were presented too.

Our formulation permits to compare a finite list of proposals on a common ground

so that the society can decide which one conveys a higher consensus. Nonetheless its

primary objective is to assess the coherence within a society with reference to a given

voting rule. As is apparent, this may serve to discriminate among the voting rule that

should be selected if we aim at producing indisputable results.

Several questions remain open. Clearly, the performance of other measures with

reference to alternative voting rules is a direct variation of our analysis. Also, different

subclasses besides normal referenced consensus measures can yield a good normative

performance. The computational aspects of the notion can be explored too. Analogously

to the inspiring Saari [7] or Pritchard and Wilson [6], a more thorough inspection of

small sets of candidates (e.g., the three-alternative case) can shed light on the study.

This is a natural continuation of our Subsection 3.4. An ambitious project is the identi-

fication of the consensus function that yields the highest consensus as a function of the

consensus distance (or at least, for focal examples like ∂K) 4. Obviously when such pro-

cedure is used to make social decisions, the researcher can elaborate on manipulability

issues too.
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4 This has slight resemblances to the approach by Meskanen and Nurmi [5].
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