Show simple item record

dc.contributor.authorGadella, M.
dc.contributor.authorMateos Guilarte, Juan
dc.contributor.authorMuñoz Castañeda, José María
dc.contributor.authorNieto, L. M.
dc.date.accessioned2017-05-19T07:12:30Z
dc.date.available2017-05-19T07:12:30Z
dc.date.issued2015-09-25
dc.identifier.urihttp://hdl.handle.net/10366/133149
dc.description.abstract[EN]In this contribution to the study of one dimensional point potentials, we prove that if we take the limit $q\to 0$ on a potential of the type $v_0\delta({y})+{2}v_1\delta'({y})+w_0\delta({y}-q)+ {2} w_1\delta'({y}-q)$, we obtain a new point potential of the type ${u_0} \delta({y})+{2 u_1} \delta'({y})$, when $ u_0$ and $ u_1$ are related to $v_0$, $v_1$, $w_0$ and $w_1$ by a law having the structure of a group. This is the Borel subgroup of $SL_2({\mathbb R})$. We also obtain the non-abelian addition law from the scattering data. The spectra of the Hamiltonian in the exceptional cases emerging in the study are also described in full detail. It is shown that for the $v_1=\pm 1$, $w_1=\pm 1$ values of the $\delta^\prime$ couplings the singular Kurasov matrices become equivalent to Dirichlet at one side of the point interaction and Robin boundary conditions at the other side.es_ES
dc.format.extent20 p.
dc.format.mimetypeapplication/pdf
dc.language.isoenges_ES
dc.publisherIOPsciencees_ES
dc.rightsAttribution-NonCommercial-NoDerivs 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectMathematical physicses_ES
dc.subjectMathematical Physicses_ES
dc.subjectHigh Energy Physicses_ES
dc.subjectTheoryes_ES
dc.subjectQuantum Physicses_ES
dc.titleTwo-point one-dimensional δ-δ’ interactions: non-abelian addition law and decoupling limites_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publishversionhttp://es.arxiv.org/abs/1505.04359
dc.identifier.doihttps://dx.doi.org/10.1088/1751-8113/49/1/015204
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 4.0 International
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 4.0 International