• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
  • Contact Us
  • Send Feedback
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    GESTIÓN DEL REPOSITORIO DOCUMENTAL DE LA UNIVERSIDAD DE SALAMANCA

    Browse

    All of GredosCommunities and CollectionsBy Issue DateAuthorsSubjectsTitlesThis CollectionBy Issue DateAuthorsSubjectsTitles

    My Account

    LoginRegister

    Statistics

    View Usage Statistics

    ENLACES Y ACCESOS

    Derechos de autorPolíticasGuía de autoarchivoFAQAdhesión USAL a la Declaración de Berlín

    COMPARTIR

    View Item 
    •   Gredos Home
    • Scientific Repository
    • Grupos de Investigación
    • Untitled
    • BISITE. Capítulos de libros
    • View Item
    •   Gredos Home
    • Scientific Repository
    • Grupos de Investigación
    • Untitled
    • BISITE. Capítulos de libros
    • View Item

    Compartir

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Academic Search
    Título
    Neuro-symbolic Reasoning System for Modeling Complex Behaviours.
    Autor(es)
    Corchado Rodríguez, Juan ManuelUSAL authority
    Aiken, Jim
    Rees, Nigel
    Palabras clave
    Computer Science
    Fecha de publicación
    2003
    Editor
    Advanced Knowledge International, Australia
    Citación
    Innovation in knowledge Engineering.
    Abstract
    A neuro-symbolic reasoning strategy for modelling a complex system is presented in which the aim is to forecast, in real time, the physical parameter values of a dynamic environment: the ocean. In situations in which the rules that determine a system are unknown the prediction of the parameter values that determine the characteristic behaviour of the system can be a problematic task. In such a situation it has been found that a case-based reasoning system, in combination with an artifical neural network, can provide a more effective means of performing such predictions than other connectionist or symbolic techniques. The case-based reasoning system incorporates a radial basis function artificial neural network for the case adaptation. The results obtained from experiments, in which the system operated in real time in the oceanographic environment, are presented.
    URI
    http://hdl.handle.net/10366/134504
    ISBN
    0-9751004-0-8
    Collections
    • BISITE. Capítulos de libros [82]
    Show full item record
    Files in this item
    Nombre:
    c2.pdf
    Tamaño:
    324.5Kb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen