Compartir
Título
A WeVoS-CBR Approach to Oil Spill Problem
Autor(es)
Palabras clave
Computer Science
Fecha de publicación
2008
Editor
Springer Science + Business Media
Citación
Hybrid Artificial Intelligence Systems Lecture Notes in Computer Science. Lecture Notes in Computer Science. Volumen 5271, pp. 378-384.
Abstract
The hybrid intelligent system presented here, forecasts the presence or not of oil slicks in a certain area of the open sea after an oil spill using Case-Based Reasoning methodology. The proposed CBR includes a novel network for data classification and data retrieval. Such network works as a summarization algorithm for the results of an ensemble of Visualization Induced Self-Organizing Maps. This algorithm, called Weighted Voting Superposition (WeVoS), is mainly aimed to achieve the lowest topographic error in the map. The system uses information obtained from various satellites such as salinity, temperature, pressure, number and area of the slicks. WeVoS-CBR system has been able to accurately predict the presence of oil slicks in the north west of the Galician coast, using historical data.
URI
ISBN
978-3-540-87655-7 (Print) / 978-3-540-87656-4 (Online)
ISSN
0302-9743 (Print) / 1611-3349 (Online)
Collections
- BISITE. Congresos [424]