dc.contributor.author | Koetsier, Jos | |
dc.contributor.author | Corchado Rodríguez, Emilio Santiago | |
dc.contributor.author | MacDonald, Donald | |
dc.contributor.author | Corchado Rodríguez, Juan Manuel | |
dc.contributor.author | Fyfe, Colin | |
dc.date.accessioned | 2017-09-06T09:16:28Z | |
dc.date.available | 2017-09-06T09:16:28Z | |
dc.date.issued | 2004 | |
dc.identifier.citation | Lecture Notes in Computer Science Computational Science - ICCS 2004. Lecture Notes in Computer Science. Volumen 3037, pp. 650-653. | |
dc.identifier.isbn | 978-3-540-22115-9 (Print) / 978-3-540-24687-9 (Online) | |
dc.identifier.issn | 0302-9743 (Print) / 1611-3349 (Online) | |
dc.identifier.uri | http://hdl.handle.net/10366/135093 | |
dc.description.abstract | We present a novel method based on a recently proposed extension to a negative feedback network which uses simple Hebbian learning to self-organise called Maximum Likelihood Hebbian learning [2]. We use the kernel version of the ML algorithm on data from a spectroscopic analysis of a stained glass rose window in a Spanish cathedral. It is hoped that in classifying the origin and date of each segment it will help in the restoration of this and other historical stain glass windows. | |
dc.format.mimetype | application/pdf | |
dc.language.iso | en | |
dc.publisher | Springer Science + Business Media | |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 Unported | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/3.0/ | |
dc.subject | Computer Science | |
dc.title | Kernel Maximum Likelihood Hebbian Learning | |
dc.type | info:eu-repo/semantics/article | |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | |