Mostrar el registro sencillo del ítem

dc.contributor.authorPfeiffer, Alexander
dc.contributor.authorReeve, Robert M.
dc.contributor.authorVoto, Michele
dc.contributor.authorSavero-Torres, Williams
dc.contributor.authorRichter, Nils
dc.contributor.authorVila, Laurent
dc.contributor.authorAttané, Jean-Philippe
dc.contributor.authorLópez Díaz, Luis 
dc.contributor.authorKläui, Mathias
dc.date.accessioned2018-09-05T11:48:03Z
dc.date.available2018-09-05T11:48:03Z
dc.date.issued2017-03-01
dc.identifier.citationJ. Phys.: Condens. Matter 29 085802 (2017)es_ES
dc.identifier.issn0953-8984
dc.identifier.urihttp://hdl.handle.net/10366/138226
dc.description.abstract[EN] We investigate the pure spin-current assisted depinning of magnetic domain walls in half ring based Py/Al lateral spin valve structures. Our optimized geometry incorporating a patterned notch in the detector electrode, directly below the Al spin conduit, provides a tailored pinning potential for a transverse domain wall and allows for a precise control over the magnetization configuration and as a result the domain wall pinning. Due to the patterned notch, we are able to study the depinning field as a function of the applied external field for certain applied current densities and observe a clear asymmetry for the two opposite field directions. Micromagnetic simulations show that this can be explained by the asymmetry of the pinning potential. By direct comparison of the calculated efficiencies for different external field and spin current directions, we are able to disentangle the different contributions from the spin transfer torque, Joule heating and the Oersted field. The observed high efficiency of the pure spin current induced spin transfer torque allows for a complete depinning of the domain wall at zero external field for a charge current density of 6 1011 A m−2, which is attributed to the optimal control of the position of the domain wall.es_ES
dc.description.sponsorshipComisión Europea (P7-PEOPLE-2013-ITN 608031, FP7-ICT-2009-5) Gobierno de España (MAT2014-52477-C5-4-P) Junta de Castilla y Leon (SA090U16) German Ministry for Education and Science (BMBF) German Research Foundation (DFG) via the DFG collaborative research centre SFB/TRR 173 SPIN+X Graduate School Material Science in Mainz (DFG/GSC 266) European Research Council - MultiRev (665672) Research Center of Innovative and Emerging Materials at Johannes Gutenberg University (CINEMA) German Academic Exchange Service (DAAD) via the SpinNet Program 56268455 French RENATECH networkes_ES
dc.format.mimetypeapplication/pdf
dc.language.isoenges_ES
dc.publisherIOP Publishing Ltd.es_ES
dc.rightsAttribution 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectMagnetismes_ES
dc.subjectDomain wall motiones_ES
dc.subjectPure spin currentes_ES
dc.subjectComputational physicses_ES
dc.subjectGeometrical constrictions in nanostructureses_ES
dc.titleGeometrical control of pure spin current induced domain wall depinninges_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.projectIDP7-PEOPLE-2013-ITN 608031es_ES
dc.relation.projectIDMAT2014-52477-C5-4-Pes_ES
dc.relation.projectIDSA090U16es_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution 4.0 International
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution 4.0 International