Mostrar el registro sencillo del ítem

dc.contributor.authorSala, Giacomo
dc.contributor.authorLambert, Charles-Henri
dc.contributor.authorFinizio, Simone
dc.contributor.authorRaposo Funcia, Víctor Javier 
dc.contributor.authorKrizakova, Viola
dc.contributor.authorKrishnaswamy, Gunasheel
dc.contributor.authorWeigand, Markus
dc.contributor.authorRaabe, Jorg
dc.contributor.authorRossell, Marta D.
dc.contributor.authorMartínez Vecino, Eduardo 
dc.contributor.authorGambardella, Pietro
dc.date.accessioned2023-10-03T11:55:46Z
dc.date.available2023-10-03T11:55:46Z
dc.date.issued2022
dc.identifier.issn1476-1122
dc.identifier.urihttp://hdl.handle.net/10366/153137
dc.description.abstractFerrimagnetic alloys are model systems for understanding the ultrafast magnetization switching in materials with antiferromagnetically-coupled sublattices. Here we investigate the dynamics of the rare-earth and transition-metal sublattices in ferrimagnetic GdFeCo and TbCo dots excited by spin-orbit torques with combined temporal, spatial, and elemental resolution. We observe distinct switching regimes in which the magnetizations of the two sublattices either remain syn-6 chronized throughout the reversal process or switch following different trajectories in time and space. In the latter case, we observe a transient ferromagnetic state that lasts up to 2 ns. The asynchronous switching of the two magnetizations is ascribed to the master-agent dynamics induced by the spin-orbit torques in combination with the weak antiferromagnetic coupling, which depends sensitively on the microstructure of ferrimagnets. A larger antiferromagnetic exchange between the two sublattices leads to faster switching and shorter recovery of the magnetization after a current pulse.es_ES
dc.description.sponsorshipWe thank M. Baumgartner and C. Murer for fruitful discussions and help with the STXM measurements, and F. Binda for the assistance with the measurements at the vibrating sample magnetometer. We thank R. Erni for collaborating in the analysis of the diffraction measurements. We thank C. Vockenhuber for performing Rutherford backscattering measurements on GdFeCo and TbCo. This research was supported by the Swiss National Science Foundation (grant nos 200020_200465 and PZ00P2-179944) and the Swiss Government Excellence Scholarship (ESKAS no. 2018.0056). The PolLux end station was financed by the German Ministerium für Bildung und Forschung (BMBF) through contracts 05K16WED and 05K19WE2. The work by E.M. and V.R. was supported by the Ministerio de Economía y Competitividad of the Spanish Government (project no. MAT2017-87072-C4-1-P) and by the Consejería de Educación of the Junta de Castilla y Leon (project nos SA299P18 and SA0114P20). We acknowledge the Paul Scherrer Institut, Villigen, Switzerland for provision of synchrotron radiation beamtime at beamline X07DA-PolLux of the Swiss Light Source. We also thank the Helmholtz-Zentrum Berlin for the allocation of synchrotron radiation beamtime at the UE-46 Maxymus beamline.es_ES
dc.format.mimetypeapplication/pdf
dc.language.isoenges_ES
dc.subjectMagnetismes_ES
dc.subjectComputational physicses_ES
dc.titleAsynchronous current-induced switching of rare-earth and transition-metal sublattices in ferrimagnetic alloyses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publishversionhttps://doi.org/10.1038/s41563-022-01248-8es_ES
dc.identifier.doi10.1038/s41563-022-01248-8
dc.relation.projectIDMAT2017-87072-C4-1-Pes_ES
dc.relation.projectIDSA299P18es_ES
dc.relation.projectIDSA0114P20es_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.identifier.essn1476-4660
dc.journal.titleNature Materialses_ES
dc.volume.number21es_ES
dc.issue.number6es_ES
dc.page.initial640es_ES
dc.page.final646es_ES
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem