Mostrar el registro sencillo del ítem

dc.contributor.authorAbadía-Heredia, R.
dc.contributor.authorLopez-Martin, Manuel
dc.contributor.authorCarro, Belen
dc.contributor.authorArribas, Juan Ignacio
dc.contributor.authorPérez Pérez, José Miguel
dc.contributor.authorLe Clainche, S.
dc.date.accessioned2024-01-25T09:25:49Z
dc.date.available2024-01-25T09:25:49Z
dc.date.issued2022-01
dc.identifier.issn0957-4174
dc.identifier.urihttp://hdl.handle.net/10366/154671
dc.description.abstractSolving computational fluid dynamics problems requires using large computational resources. The computational time and memory requirements to solve realistic problems vary from a few hours to several weeks with several processors working in parallel. Motivated by the need of reducing such large amount of resources (improving the industrial applications in which fluid dynamics plays a key role), this article introduces a new predictive Reduced Order Model (ROM) applied to solve fluid dynamics problems. The model is based on physical principles and combines modal decompositions with deep learning architectures. The hybrid ROM, reduces the dimensionality of a database via proper orthogonal decomposition (POD), extracting the dominant features leading the flow dynamics of the problem studied. The number of degrees of freedom are reduced from hundred thousands spatial points describing the database to a few () POD modes. Firstly, POD divides the spatio-temporal data into spatial modes and temporal coefficients (or temporal modes). Next, the temporal coefficients are integrated in time using convolutional or recurrent neural networks. The temporal evolution of the flow is approximated after combining the spatial modes with the new temporal coefficients computed. The model is tested in two complex problems of fluid dynamics, the three-dimensional wake of a circular cylinder and a synthetic jet. The hybrid ROM uses data from the initial transient stage of numerical simulations to predict the temporally converged solution of the flow with high accuracy. The speed-up factor comparing the time necessary to obtain the predicted solution using the hybrid ROM and the numerical solver is in the synthetic jet and in the three dimensional cylinder wake. The robustness shown in the results presented and the data-driven nature of this ROM, make it possible to extend its application to other fields (i.e. video and language processing, robotics, finances).es_ES
dc.language.isoenges_ES
dc.subjectReduced order modelses_ES
dc.subjectDeep learning architectureses_ES
dc.subjectPODes_ES
dc.subjectModal decompositionses_ES
dc.subjectNeural networkses_ES
dc.subjectFluid dynamicses_ES
dc.titleA predictive hybrid reduced order model based on proper orthogonal decomposition combined with deep learning architectureses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.relation.publishversionhttps://doi.org/10.1016/j.eswa.2021.115910
dc.subject.unesco3325 Tecnología de las Telecomunicaciones
dc.subject.unesco3301 Ingeniería y Tecnología Aeronáuticas
dc.identifier.doi10.1016/j.eswa.2021.115910
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.journal.titleExpert Systems with Applicationses_ES
dc.volume.number187es_ES
dc.page.initial115910es_ES
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones_ES


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem