N = 2 Supersymmetric Kinks and real algebraic curves

Y. A. Alonso Izquierdo, Y. M. A. González Leon and Z. J. Matesos Guí arte
Departmento de Matemática Aplicada, Departamento de Física
Universidad de Salamanca, Spain

Abstract

The kinks of the (1+1)-dimensional Wess-Zumino model with polynomial superpotential are investigated and shown to be related to real algebraic curves.

PACS: 11.27.+d, 11.30.Pb, 12.60.Jv.

Keywords: (1+1)-dimensional Wess-Zumino model, N = 2 Supersymmetry, BPS Kinks.

1

The dimensional reduction of the (3+1)-dimensional Wess-Zumino model, produces an interesting (1+1)-dimensional Bose-Fermi system; this eld theory enjoys N = 2 extended supersymmetry provided that the interactions are introduced via a real harmonic superpotential, see [1]. In a recent paper [2], Gibbons and Townsend have shown the existence of domain-wall intersections in the (3+1)D WZ model, the authors relying on the supersymmetry algebra of the (2+1)D dimensional reduction of the system. Although the domain-wall junctions are two-dimensional structures, their properties are reminiscent of the one-dimensional kinks from which they are made. In this letter we shall thus describe the kinks of the underlying (1+1)-dimensional system.

The basic fields of the theory are:

Two real bosonic elds, \(\phi_a(x) \), \(a = 1; 2 \) that can be assembled in the complex eld: \(\chi(x) = \phi^0(x) + i \phi^1(x) \). \(M \) maps \((R^2; C)\), \(x = (x^0; x^1) \) are local coordinates in the \(R^{1; 2} \) Minkowski space, where we choose the metric \(g^{00} = 1; g^{11} = 1; g^{12} = g^{21} = 0 \).

Two Majorana spinor elds \(\psi^a(x) \), \(a = 1; 2 \). We work in a Majorana representation of the Clifford algebra \(\gamma_a \); \(g = 2 \gamma \).

where \(1 \), \(2 \), \(3 \) are the Pauli matrices, such that \(\gamma^a = \gamma^a \). We also denote the adjoint spinors as \(\psi^a(x) = \psi^b(x) 0 \) and consider Majorana-Weyl spinors: \(\psi^a(x) = \frac{1}{\sqrt{2}} \psi^a(x) \), \(\psi^a(x) \psi^a(x) \) with only one non-zero component.

Interactions are introduced through the holomorphic superpotential: \(\mathcal{W}(\phi, \chi) = \frac{1}{2} W^1(\phi, \chi) + i W^2(\phi, \chi) \).

One could in principle start from the supercharges:

\[
Q^{BC} = \int dx^1 X^{BC} \psi^a (\theta_a \gamma^b \theta_b) \psi^a \psi^a (\theta_a \gamma^b \theta_b) \psi^a \# \]

where \(W^B, B = 1; 2 \), are respectively the real part if \(B = 1 \) and the imaginary part if \(B = 2 \), \(W(\phi, \chi) \) and \(\psi^a \) is either the identity or the complex structure endomorphism in \(R^2 \).

where

\[
\begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix}
\]

and

\[
\begin{bmatrix}
0 & 1 \\
1 & 0
\end{bmatrix}
\]
Nevertheless, the Cauchy-Riemann equations:

$$\frac{\partial W^1}{\partial 1} = \frac{\partial W^2}{\partial z} \quad \frac{\partial W^1}{\partial z} = \frac{\partial W^2}{\partial 1};$$

tell us that the theory is fully described by choosing either W^1 or W^2. We thus set $W^C = W^1$ and find the basic SUSY charges to be $Q^B = Q^B$:

$$Q^B = \int \frac{dx}{x} f^B_{ab} (\theta_0^a \theta_1^a) \frac{\partial W^1}{\partial b} a^b \frac{\partial W^1}{\partial a^b}$$

(2)

From the canonical quantization rules

$$[a(x_1), b(y_1)] = i^{ab} (x_1, y_1) = f^a(x_1); i^b(y_1) g$$

one checks that the $N = 2$ extended supersymmetric algebra

$$fQ^B; Q^C g = 2 \frac{b d^c}{P} \quad fQ^B; Q^C g = (1) (1) \frac{b d^c}{2} + \frac{b d^c}{2}$$

is closed by the four generators Q^B, described in [3]. Here

$$P = \frac{1}{2} \int dx^1 X (\theta_0^a \theta_1^a)(\theta_0^a \theta_1^a) Z a^a_1 + a^a_2 + \frac{1}{2} \int dx^1 X (\theta_0^a \theta_1^a)(\theta_0^a \theta_1^a) Z a^a_1 +$$

are the light-cone momenta and

$$T = \int dx^1 \frac{\partial W^1}{\partial \theta_1^1} + \frac{\partial W^1}{\partial \theta_2^1} \frac{\partial W^1}{\partial x^1} = \frac{\partial W^1}{\partial \theta_1^1} \frac{\partial W^1}{\partial \theta_2^1} \frac{\partial W^1}{\partial x^1}$$

the central extensions.

2

From the SUSY algebra one deduces,

$$2P_0 = 2 \frac{a}{\partial j^+} (Q^B, (1)^B Q^B) j^3 = 2 \frac{a}{\partial j^+} (Q^B, (1)^B Q^C) j^3;$$

see [4]. We thus define the charge operators on zero momentum states:

$$Q^1 = Q^1, \quad Q^1 = \int dx^1 \frac{\partial W^1}{\partial \theta_1^a + \theta_2^a \frac{\partial W^1}{\partial x^1}}$$

$$Q^2 = \frac{\partial W^1}{\partial \theta_1^a + \theta_2^a \frac{\partial W^1}{\partial x^1}}$$

Spatially extended coherent states built from the solutions of any of the two systems of first order equations, [4]:

$$\frac{d^1}{dx} = \frac{\partial W^1}{\partial 1} \quad \frac{d^2}{dx} = \frac{\partial W^1}{\partial 2} \quad \frac{d^3}{dx} = \frac{\partial W^1}{\partial 3} \quad \frac{d^4}{dx} = \frac{\partial W^1}{\partial 4}$$

5
have minimum energy because they are respectively annihilated by Q^1 (system [3]) and Q^2 (system [4]).

The ow in $R^2 \setminus \mathbb{C}$ of the solutions of [3] is given by:

$$\frac{d^2}{dz} = \frac{\partial W}{\partial z} \frac{\partial W}{\partial z}^1 \frac{\partial W}{\partial z}^2 \frac{\partial W}{\partial z}^2 \frac{\partial W}{\partial z}^2 = dW^2 = 0$$

If $W(\cdot)$ is polynomic, the solutions of [3] live on the real algebraic curves determined by the equation:

$$W^2(1; 2) = \gamma$$

where γ is a real constant. Similarly, the solutions of $\{3\}$ in \mathbb{C}

$$\frac{d^2}{dz} = \frac{\partial W}{\partial z} \frac{\partial W}{\partial z}^1 \frac{\partial W}{\partial z}^2 \frac{\partial W}{\partial z}^2 \frac{\partial W}{\partial z}^2 = dW^2 = 0$$

run on the real algebraic curves:

$$W^2(1; 2) = \gamma$$

where γ is another real constant. There are two observations: (I) Solutions of system [3] live on curves for which $W^2 = \text{constant}$ and solutions of [3] have support on curves for which $W^1 = \text{constant}$. (II) The curves that support the solutions of [3] are orthogonal to the curves related to the solutions of [3].

A sume that $W(\cdot)$ has a discrete set of extremes, including the vacuum orbit of the system: $\frac{\partial W}{\partial z}^i = 0, i = 1; 2; \ldots; m$. Kinks are solutions of [3] and/or [3] such that they tend to $v_{i}^{(i)}$ when x_i reaches $1\cdot v_{i}^{(i)}$ and $v_{i}^{(i)}$ thus exit either to curves [3] or [3], and this xes the values of γ for which the real algebraic curves support kinks. In Reference [3], a general proof based in singularity theory of the existence of these solutions, that counts its number, is achieved. The energies of the states grown from kinks are $P_0 = \int \mathcal{J}_i = W^2(v_{i}^{(i)}) W^2(v_{i}^{(i)})$ for solutions of [3] and $P_0 = \int \mathcal{J}_i = W^2(v_{i}^{(i)}) W^2(v_{i}^{(i)})$ for solutions of [3]. The kink form factor is obtained from a quadrature: one replaces either [3] or [3] in the rst equation of [3] or [3] and integrates.

Therefore, the fermionic charges Q^1 and Q^2 are annihilated on coherent states K^1 and K^2 that correspond to the tensor product of the quantum antikink/kink, living respectively on curves $W^2 = \text{constant}$ and $W^1 = \text{constant}$, with its supersymmetric partners (the translational in time as a constant spinor). We end

$$Q^1 K^1 = \int_a^X dx_1 \frac{a_{K^2}}{4} \frac{a_{K^1}}{\theta} \frac{\partial W}{\partial z}^1 \frac{\partial W}{\partial z}^2 \frac{\theta}{\theta_{1}^a} \frac{1}{\theta_{1}^b} K^1 = 0$$

$$Q^2 K^2 = \int_a^X dx_1 \frac{a_{K^2}}{4} \frac{a_{K^1}}{\theta} \frac{\partial W}{\partial z}^1 \frac{\partial W}{\partial z}^2 \frac{\theta}{\theta_{1}^a} \frac{1}{\theta_{1}^b} K^2 = 0$$

$$Q^2 K^2 = \int_a^X dx_1 \frac{a_{K^2}}{4} \frac{a_{K^1}}{\theta} \frac{\partial W}{\partial z}^1 \frac{\partial W}{\partial z}^2 \frac{\theta}{\theta_{1}^a} \frac{1}{\theta_{1}^b} K^2 = 0$$

on solutions of (7) and/or (8); the SUSY kinks are thus $\frac{1}{2}$-BPS states. The energy of these states does not receive quantum corrections [3], because $N = 2$ supersymmetry forbids any anomaly in the central charges.

3

We focus on the case in which the potential is:

$$U(\gamma) = \frac{1}{2} \sum_{a} \frac{\partial W}{\partial z} \frac{\partial W}{\partial z}^1 \frac{\partial W}{\partial z} \frac{\partial W}{\partial z}^2 \frac{\theta}{\theta_{1}^a} \frac{1}{\theta_{1}^b} + 2(\frac{\gamma}{\gamma} + \frac{\gamma}{\gamma}) \cos (n \cdot \gamma) \arctan \frac{\gamma}{\gamma} \gamma + (\frac{\gamma}{\gamma} + \frac{\gamma}{\gamma})^2 \gamma$$

see [3] and [4]. In polar variables in the R^2 internal space,
\[
(x_1) = +\frac{p}{1} \left[\frac{1}{2}(x_1)^2 + \frac{1}{2}(x_2)^2 \right];
(x_2) = \arctan \frac{2(x_2)}{1(x_1)}
\]

the potential reads:
\[
U(\mathbf{r}) = \frac{1}{2} n^2 \cos(n - 1) + 2(n - 1)
\]

There is symmetry under the \(D_{(n - 1)} Z_{2} Z_{n - 1}\) dihedral group:
\[
\begin{align*}
\phi &= 0, \quad \phi = \frac{2\pi}{n}; j = 0; 1; 2; \ldots; n - 2.
\end{align*}
\]

In Cartesian coordinates, these transformations form the \(D_{(n - 1)} Z_{2}\) sub-group of \(O(2)\) given by:
\[
\begin{align*}
(1) \quad \phi &= \frac{2\pi}{n}; j = 0; 1; 2.
\end{align*}
\]

The vacuum orbit is the set of \(n - 1\)-roots of unity:
\[
M = \frac{n}{\phi} = e^{i\frac{2\pi}{n}} = \frac{D_{(n - 1)} Z_{2}}{Z_{n - 1}} = Z_{n - 1};
\]

When the \(\phi^{(k)}\) vacuum is chosen to quantize the theory, the symmetry under the \(D_{(n - 1)} Z_{2}\) group is spontaneously broken to the \(Z_{2}\) sub-group generated by \(\phi = \frac{2\pi}{n}; 2\pi\); this transformation leaves a fixed point, \(\phi^{(k)}\), if \(n\) is even and two fixed points, \(\phi^{(k)}\) and \(\phi^{(k + \frac{1}{2})}\), if \(n\) is odd.

The \(Z_{n - 1}\) symmetry allows for the existence of \(n - 1\) harmonic superpotentials that are equivalent:
\[
W^{(j)}(\phi) = \frac{1}{n} \prod_{a=1}^{n-1} (\phi - \phi_{a})^{(1)}\phi_{1}^{(1)}; (j)^{0} = e^{i\frac{\phi}{n}}; \quad (j)^{1} = e^{i\frac{\phi}{n}}
\]

where \(\phi = \frac{2\pi}{n}\). There is room for closing the \(N = 2\) supersymmetry algebra \(\{\}\) in \(n - 1\) equivalent forms: denote the \(n - 1\) equivalent sets of SUSY charges:
\[
Q^{(j)^{0}} = \frac{1}{n^2} \prod_{a=1}^{n-1} f_{a}^{(1)} \phi_{a}^{(1)} = \frac{1}{n} \prod_{a=1}^{n-1} f_{a}^{(1)} \phi_{a}^{(1)}
\]

also in terms of the "rotated" fermionic fields \(\phi^{(j)^{0}}\), and the corresponding central charges \(T^{(j)^{0}}\) and \(T^{(j)^{1}}\).

Observe that the \(N = 2\) supersymmetry is unbroken, while the choice of vacuum that spontaneously breaks the \(Z_{n - 1}\) symmetry does not affect the physics, which is the same for different values of \(j\).

The \(j\) pairs of first-order systems of equations:
\[
\begin{align*}
\frac{d}{dx_{1}} = \sin (j)^{0}; n - 1 \sin n (j); 2 \frac{d}{dx_{1}} = \cos (j) n \cos n (j); (j)^{0} = \cos (j) n \cos n (j) \\
\frac{d}{dx_{1}} = \cos (j) n - 1 \cos n (j); 2 \frac{d}{dx_{1}} = \sin (j) + n \sin n (j); (j)^{1} = \sin (j) + n \sin n (j)
\end{align*}
\]

correspond to \(\{\}\) and \(\{\}\) for this particular case. The solutions lie respectively on the algebraic curves
\[
\frac{n}{n} \sin (j) = \sin (j)^{0}; n = \sin (j)^{1}; n = \cos (j) n \cos n (j)
\]

which form two families of orthogonal lines in \(R^{2}\). In the family of curves \(\{\}\) there are kinks joining the vacua \(\phi^{(k)}\) and \(\phi^{(k + \frac{1}{2})}\) if and only if:
\[
\begin{align*}
\sin \frac{2}{n} (k + \frac{1}{2}) n = \sin \frac{2}{n} (k + \frac{1}{2}) n; \quad \frac{1}{n} \sin \frac{2}{n} (k + \frac{1}{2}) n = \frac{1}{n} \sin \frac{2}{n} (k + \frac{1}{2}) n
\end{align*}
\]

\[
\frac{k}{n} = \frac{1}{n}
\]

\[
\begin{align*}
\frac{2}{n} (k + \frac{1}{2}) n = \frac{2}{n} (k + \frac{1}{2}) n; \quad \frac{1}{n} \sin \frac{2}{n} (k + \frac{1}{2}) n
\end{align*}
\]
This fixes the value of \(\gamma = \frac{K}{\beta} \) for which the algebraic curve supports a topological kink. Similarly, \(\cos \frac{2}{n} (k + j) \) is the value of the constant if the kink belong to the orthogonal family (14). Solutions of (15) and/or (16) exist, respectively, if and only if
\[
2(k + k_0 + 2j) = n \pmod{2(n + 1)}
\]
and/or
\[
k + k_0 + 2j = 0 \pmod{n + 1}
\]
Given the kink curves, the kink form factors are obtained in the following way: One solves for in (12) or (11),
\[
+ \frac{2}{n} j = h(\frac{K}{\beta};) \quad ; \quad + \frac{2}{n} j = h_\gamma(\frac{K}{\beta};)
\]
and plugs these expressions into the first equation of (12) or (11),
\[
\frac{d}{dx_1} = \sin h(\frac{K}{\beta};) \quad ; \quad \frac{d}{dx_1} = \cos h_\gamma(\frac{K}{\beta};)
\]
which are immediately integrated by quadratures: if \(a \) is an integration constant
\[
Z \quad \frac{d}{\sin h(\frac{K}{\beta};) \quad \sin h(\frac{K}{\beta};)} = (x_1 + a)
\]
\[
Z \quad \frac{d}{\cos h_\gamma(\frac{K}{\beta};) \quad \sin h_\gamma(\frac{K}{\beta};)} = (x_1 + a)
\]

4

We first consider the lower odd cases, only for \(W (j = 0) \). The other kinks are obtained by application of a \(Z_{n+1} \) rotation.

\(n = 3 \):

\{Superpotential: \(W (\gamma) = \frac{1}{2} \)

\(W^1 = \frac{3}{3} + 1 \frac{2}{2} \) \quad \(W^2 = 2 \frac{2}{2} \frac{2}{2} + \frac{3}{3} \)

\{Potential: \(U (1; 2) = \frac{1}{2}[(1)2 + 4 \frac{2}{2}] \)
\{Vacuum orbit: \(M = \frac{a_1}{a_2} = f(y^0 = 1; y^1 = 1g) \)
\{Real algebraic curves:

\(1 \frac{3}{3} + 1 \frac{2}{2} = \) \quad \(2 \frac{2}{2} + \frac{3}{3} = \)

\{Kink curve: \(\gamma = 0 \) (\(W^2 = 0 \)), tantam out to \(2 = 0 \).
\{Kink form factor:

\(a) \) Solutions of \(K^1 = 0 \) \((x_1) = \tanh(x_1 + a) \)
\{Kink energy: \(P_0 [K^1] = \gamma_j = W^1(y^0) \quad W^1(y^1) = 4 \)
\{Conserved SU SY charge: \(\xi^1 K^1 = 0 \)

5
n = 5:

\{ Superpotential: \(W(\cdot) = \frac{1}{2} \frac{1}{3} \)

\[W^1 = 1 \ 1 \ \frac{4}{5} + 2 \frac{2}{1} \frac{2}{2} \frac{4}{2} \quad W^2 = 2 \ 1 \ \frac{4}{1} + 2 \frac{2}{1} \frac{2}{2} \frac{4}{2} \]

\{ Potential: \(U(\cdot; \cdot) = \frac{1}{2} (1 + 1)^2 (1 + 1)^2 (1 + 1)^2 \)

\{ Vacuum orbit: \(M = \frac{\partial}{\partial x^k} \) \(f_{\nu^0} = 1; \nu^1 = i; \nu^2 = 1; \nu^3 = i \g \)

\{ Real algebraic curves: \(\frac{1}{2} + 2 \frac{2}{1} \frac{2}{2} \frac{4}{2} \quad 2 \ 1 \ \frac{4}{1} + 2 \frac{2}{1} \frac{2}{2} \frac{4}{2} \quad \gamma \)

\{ Kink curves: a) \(\gamma = 0 \quad 2 = 0, b) \quad 0 \quad 1 = 0 \).

\{ Kink form factor: \n
a) Solutions of \(\frac{d}{dx^2} = 1 \quad \frac{4}{2} \) on \(2 = 0: \) \(\arctan \frac{K^1}{1} + \arctanh \frac{K^1}{1} = 2(x_1 + a) \)

b) Solutions of \(\frac{d}{dx^2} = 1 \quad \frac{3}{2} \) on \(1 = 0: \) \(\arctan \frac{K^2}{2} + \arctanh \frac{K^2}{2} = 2(x_1 + a) \)

\{ Kink energies: \(a) P_0[\cdot] = \mathcal{F} j = W^1(v^2) \quad W^1(v^2) = \frac{8}{9} \)

\(b) P_0[\cdot] = \mathcal{F} j = W^2(v^1) \quad W^2(v^1) = \frac{8}{9} \)

\{ Conserved SUSY charges: \(a) Q^1 K^1 = 0; b) Q^2 K^2 = 0 \)

n = 7:

\{ Superpotential: \(W(\cdot) = \frac{1}{2} \frac{7}{7} \)

\[W^1 = 1 \ \frac{7}{7} + 3 \frac{5}{1} \frac{2}{2} 5 \frac{3}{1} \frac{4}{2} + 1 \frac{6}{2} \quad W^2 = 2 \ \frac{6}{1} + 5 \frac{4}{1} \frac{3}{2} 3 \frac{2}{1} \frac{5}{2} + \frac{7}{7} \]

\{ Potential: \(U(\cdot; \cdot) = \frac{1}{2} (1 \ 1)^6 2(\frac{7}{1} \frac{2}{2}) (1 \ 2)^2 16 \frac{2}{1} \frac{2}{2} + 1 \)

\{ Vacuum orbit: \(M = \frac{\partial}{\partial x^k} \) \(V^0 = 1; \nu^1 = \frac{1}{2} + \frac{P^P}{2}; V^2 = \frac{1}{2} + \frac{P^P}{2}; V^3 = 1; \nu^4 = \frac{1}{2} + \frac{P^P}{2}; V^5 = \frac{1}{2} + \frac{P^P}{2} \)

\{ Real algebraic curves: \(\frac{7}{7} + 3 \frac{5}{1} \frac{2}{2} 5 \frac{3}{1} \frac{4}{2} + 1 \frac{6}{2} \quad 2 \ \frac{6}{1} + 5 \frac{4}{1} \frac{3}{2} 3 \frac{2}{1} \frac{5}{2} + \frac{7}{7} \quad \gamma \)

\{ Kink curves: there are two choices of \(\gamma \) and three choices of \(P \) for which one ends kink curves. The other kinks associated with the other superpotentials can be obtained by \(Z_6 \) rotations.

a) \(\gamma = \frac{3P^P}{7} \): kink curve joining \(v^1 \) with \(v^2 \)

\(\gamma = \frac{P^P}{7} \): kink curve joining \(v^4 \) with \(v^5 \)

b) \(= \frac{1}{7} \): kink curve joining \(v^1 \) with \(v^3 \)

\(= \frac{1}{7} \): kink curve joining \(v^2 \) with \(v^4 \)

c) \(= 0 \): kink curve joining \(v^3 \) with \(v^5 \)

\{ Kink energies: \(a) P_0[\cdot] = \mathcal{F} j = W^1(v^k) \quad W^1(v^k+1)j = \frac{6}{7} \)

\(b) P_0[\cdot] = \mathcal{F} j = W^2(v^k+2)j = \frac{6}{7} \)

\(c) P_0[\cdot] = \mathcal{F} j = W^1(v^k+3)j = \frac{6}{7} \)

\{ Conserved SUSY charges: \(a) Q^1 K^1 = 0, b) \) and \(c) Q^2 K^2 = 0 \)
We now study two even cases.

The first and most interesting model occurs for \(n = 4 \). Here, we find that the kink curves are straight lines in \(W \)-space (true for any \(n \)) and curved in \(-W\)-space, in agreement with Reference [3]:

* Superpotential: \(W \) $\begin{array}{c}
\begin{array}{c}
W^1 = 1 \frac{6}{6} + \frac{5}{2} \frac{4}{2} + \frac{5}{2} \frac{4}{2} + \frac{5}{2} \frac{4}{2} = \frac{6}{6} \\
W^2 = 2 \frac{6}{6} + \frac{10}{1} \frac{3}{2} \frac{1}{2} + \frac{10}{1} \frac{3}{2} \frac{1}{2} = ?
\end{array}
\end{array}$

* Potential: \(U(1;2) = \frac{1}{2} \left(\frac{5}{2} \right)^2 2 \left(\frac{5}{2} \frac{4}{2} \frac{5}{2} \frac{4}{2} \frac{5}{2} \frac{4}{2} \right) + 1

* Vacuum orbit: \(M = \frac{d}{dz} f v^0 = 1; v^1 = \frac{1}{2} + \frac{1}{2} \frac{P}{P} ; v^2 = \frac{1}{2} + \frac{1}{2} \frac{P}{P}

* Real algebraic curves:

* Kink curve: $\frac{3}{1} + \frac{3}{1} + \frac{3}{1} + \frac{3}{1} = ?$

* Kink form factor: on the kink curve we nd $\frac{k}{1} = f^{-1} (x+2) \text{where}

\[
f(1) = \frac{2}{1 + 4 \frac{1}{1} + 8 \frac{1}{1} + 3 \frac{2}{1} + 2 \frac{1}{1} + 4 \frac{1}{1} + 8 \frac{1}{1}}
\]

* Kink energy: $P_0[K^2] = \frac{f}{f} j = W^2(v^k) W^2(v^{k+1}) j = \frac{P}{P}$

* Conserved \(SU(2) \) charge: $Q^2 K^2 = 0$

\(n = 6: \)

* Superpotential: \(W \) $\begin{array}{c}
\begin{array}{c}
W^1 = 1 \frac{6}{6} + \frac{5}{2} \frac{4}{2} + \frac{5}{2} \frac{4}{2} + \frac{5}{2} \frac{4}{2} + \frac{5}{2} \frac{4}{2} = \frac{6}{6} \\
W^2 = 2 \frac{6}{6} + \frac{10}{1} \frac{3}{2} \frac{1}{2} + \frac{10}{1} \frac{3}{2} \frac{1}{2} = ?
\end{array}
\end{array}$

* Potential: \(U(1;2) = \frac{1}{2} \left(\frac{5}{2} \right)^2 2 \left(\frac{5}{2} \frac{4}{2} + \frac{10}{1} \frac{3}{2} \frac{1}{2} \right) + 1

* Vacuum orbit: \(M = \frac{d}{dz} f v^0 = 1; v^1 = \frac{1}{2} + \frac{1}{2} \frac{P}{P} ; v^2 = \frac{1}{2} + \frac{1}{2} \frac{P}{P} ; v^3 = \frac{1}{2} + \frac{1}{2} \frac{P}{P}

* Real algebraic curves:

* Kink curves: there are two values of \(\frac{q}{24} (1 + \frac{P}{P}) \): kink curve joining \(v^2 \) with \(v^3 \), b) \(\frac{q}{24} (1 + \frac{P}{P}) \): kink curve joining \(v^4 \) with \(v^5 \). The other kink curves are obtained through \(Z_5 \) rotations.

* Kink energies: a) \(P_0[K^2] = \frac{f}{f} j = W^2(v^k) W^2(v^{k+1}) j = \frac{q}{24} \frac{q}{24} \frac{q}{24} \frac{q}{24}

b) \(P_0[K^2] = \frac{f}{f} j = W^2(v^k) W^2(v^{k+2}) j = \frac{q}{24} \frac{q}{24} \frac{q}{24} \frac{q}{24}

* Conserved \(SU(2) \) charges: (a) and (b) $Q^2 K^2 = 0$
References

Figure 1: Kink curves in the $n = 4$, $n = 5$, $n = 6$ and $n = 7$ models