The combination of the aliphatic diamine AA0029 in ADAD vaccination system with a recombinant fatty acid binding protein could be a good alternative for the animal schistosomiasis control

Belén Vicente, Julio López-Abán, Jose Rojas-Caraballo, Esther del Olmo, Pedro Fernández-Soto, Vicente Ramajo-Martín, Antonio Muro

Parasite and Molecular Immunology Laboratory, Tropical Disease Research Centre, Universidad de Salamanca (IBSAL-CIETUS), Avda. Licenciado Méndez Nieto s/n, 37007 Salamanca, Spain

Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Salamanca (IBSAL-CIETUS), Salamanca, Spain

Parasitology Laboratory, IRNASA (CSIC), Salamanca, Spain

HIGHLIGHTS

- rFh15 induces protection against the challenge by *S. bovis* in BALB/c mice and *Mesocricetus auratus* models.
- Immunomodulation with synthetic compounds is useful to induce immunoprotection against *S. bovis* infection.
- ADAD system using AA0029 as immunomodulator offers a new vaccination strategy.
- rFh15 formulated in ADAD system with AA0029 induces high level of TNF-α, IL-2, IL-6 and IL-4.

GRAPHICAL ABSTRACT

ABSTRACT

Fatty acid binding proteins (FABP) from *Fasciola hepatica* have demonstrated immune cross-protection against schistosomes. The present study was conducted to develop a new formulation of the recombinant FABP rFh15 with the synthetic immunomodulator AA0029 in the adjuvant adaptation (ADAD) vaccination system and to evaluate its ability to induce immune response and protection against the challenge with *Schistosoma bovis* cercariae. Immunization of BALB/c mice showed high levels of TNF-α, IFN-γ, interleukin (IL)-2, IL-6 and IL-4 in splenocyte supernatant culture and also high levels of serum specific anti-rFh15 IgG, IgG1, IgG2a and IgM antibodies suggesting a mixed Th1/Th2 immune response. Using this approach, high levels of protection against experimental challenge with *S. bovis* cercariae were observed in the mouse and hamster models. A marked reduction up to 64% in worm burden, as well as in the number of eggs retained in liver (66%) and intestine (77%) and hepatic lesions (42%), was achieved in vaccinated BALB/c mice. Golden hamsters vaccinated and challenged in similar conditions had reductions in recovered worms (83%), liver eggs (90%), intestine eggs (96%), liver lesions (56%) and worm fecundity (48–80%). These data suggest that formulation of rFh15 in the ADAD vaccination system using the AA0029
immunomodulator could be a good option to drive an effective immunological response against schistosomiasis.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The blood fluke Schistosoma bovis is an important cause of disease in domestic ruminants in Africa, Southwest Asia and the Mediterranean Europe. S. bovis belongs to the S. haematobium group which has species affecting humans (S. haematobium, S. intercalatum, S. guineensis) and domestic animals (S. mattheei, S. magrebowiei, S. leiperi and S. curassoni) (Webster et al., 2013). The infective stage, cercariae, spin around in freshwater seeking the skin of a suitable final host, they penetrate the dermis and transform into schistosomula. Then, they enter into the blood vessels and migrate to lungs, heart, liver and finally the portal–mesenteric system in which they mature into adult males and females, and live for years despite the intense immune response displayed by the host. Embryonated eggs are either eliminated in feces or trapped in tissues developing severe intestinal and liver chronic disease. Most S. bovis infections in grazing ruminants in endemic areas occur at a subclinical level causing significant losses due to long-term effects on ruminants as well as to an increased susceptibility to other pathogens (de Bont and Vercruysse, 1998; Vercruysse and Gabriel, 2005). Natural infections elicit a concomitant immunity acting through a reduction of female fecundity observed with reductions in fecal and tissue eggs without effects in worm burden that seems produced by serum factors (Vercruysse and Gabriel, 2005). Also, high levels of IL-4 were observed in mice with primary infections by S. bovis (Uribe et al., 2007). For many years, animal and human schistosomiasis control strategies have been based on control of intermediate freshwater snail and mass continuous treatment of final hosts, in particular with praziquantel. These measures have not represented a definitive solution due the high rate of post-treatment reinfections and its limited evolution due the high rate of post-treatment reinfections and its limited effect on morbidity and mortality reductions (Doenhoff et al., 2009; Pérez del Villar et al., 2012). A vaccine appears as a very valuable additional complement to mass chemotherapy in long-term disease control strategy. Vaccination is based on the partial resistance developed against the natural infection, the protection induced by irradiated cercariae and the cross-resistance stimulated by other flukes as Fasciola hepatica (Hewitson et al., 2005; Rodríguez-Osorio et al., 1993; Vercruysse and Gabriel, 2005).

Glutathione-S transferase (GST), 14-3-3ζ from S. bovis and cross-reacting fatty acid binding proteins (FABP) from F. hepatica have been proposed as potential vaccine candidates. GST and FABP have been used with Freund’s adjuvant in several experimental infection models showing reductions in fluke burden, liver damage or egg hatchability (Abán et al., 1999; Abán et al., 2000; Boulanger et al., 1999; Bushara et al., 1993; da Costa et al., 1999). However Freund’s adjuvant cannot be used in a hypothetical commercial vaccine due to its side effects. Maximum protection in experimental vaccines depends on both humoral and cellular mechanisms; therefore new adjuvants systems should be introduced. An alternative approach to the classical Freund’s adjuvant is the adjuvant adaptation (ADAD) vaccination system, that combines the vaccine antigen together with non-hemolytic saponins from Quillaja saponaria and an immuno-modulator, forming an emulsion with the non-mineral oil Montanide ISA 763AVG for vaccination against F. hepatica with FABP (Martínez-Fernández et al., 2004). Trials with the 14-3-3ζ protein from S. bovis and FABP from F. hepatica formulated in ADAD system have been previously done (Uribe et al., 2007; Vicente et al., 2014). In this work we include the synthetic diamine AA0029, that has demonstrated immunomodulatory properties such as inhibition of lymphoproliferation, modulation of delayed type hypersensitivity, modified ratios of CD8+, CD4+, and MHC-Class II cells, and increased nitric oxide production in LPS pre-stimulated rat alveolar macrophages (del Olmo et al., 2006). Furthermore, vaccination with FABP from F. hepatica formulated in ADAD with AA0029 showed less hepatic damage after the challenge with the liver fluke and resistance to lethal infection (López-Abán et al., 2012). Mouse is the most common model in vaccine development against schistosomiasis and golden hamster is a suitable host to maintain life cycle of S. bovis and preclinical studies before to test in sheep (Oleaga and Ramajo, 2004).

The objective of this article is to characterize both humoral and cellular immune responses induced by FABP recombinant protein from F. hepatica formulated in ADAD vaccination system using the new synthetic immunomodulator AA0029 in BALB/c mice. Moreover immunoprotection levels will be studied using two S. bovis experimental infection models, BALB/c mice and Mescocricetus auratus.

2. Materials and methods

2.1. Animals and parasites

Fifty-four 7-week-old female BALB/c mice (Charles River, Lyon, France) weighing 18–20 g were used in the study. Animals were maintained in a temperature and humidity controlled environment with a 12 h light/dark cycle with free access to water and food at the University of Salamanca’s Animal Experimentation facilities. Eighteen 7-week-old female golden hamsters (Mesocricetus auratus, Charles River) weighing 100–120 g were housed at the Animal Experimentation Unit of IRNACSIC. Animal procedures used in this study complied with the Spanish (L32/2007, L6/2013 and RD53/2013) and the European Union (Di 2010/63/CE) regulations on animal experimentation. The University of Salamanca’s Ethics Committee approved procedures used in the present study (protocol 48531). A strain of S. bovis from Salamanca (Spain) was maintained in the Department of Animal Pathology of IRNAC-CSIC in Planorbarius metidjensis as intermediate host and sheep as definitive host (Oleaga and Ramajo, 2004). The number of cercariae and their viability were determined using a stereoscopic microscope.

2.2. Antigens

Soluble adult worm antigens from S. bovis (SoShAWA) used for ELISA were prepared as previously described (Abán et al., 1999). Twenty adult worms were suspended in 1 mL of sterile phosphate-buffered saline (PBS) containing 1 mM phenyl-methyl-sulphonyl fluoride (PMSF; Sigma, St. Louis, MO), homogenized, frozen and thawed thrice and then sonicated thrice (70 kHz) for 1 min each. The suspension was centrifuged at 20,000 g for 30 min at 4 °C. A recombinant FABP from F. hepatica (rFh15) was used for immunizations and ELISA, and it was prepared in accordance with López-Abán et al. (2012). Briefly, total RNA from one F. hepatica adult worm was isolated and used for cDNA synthesis. The rFh15 gene (accession number M95291.1) was amplified using the following primer sequences: forward 5′-GGATCCTATGCTGACTTTGTGGG-3′ and reverse 5′-CTCGAGCGCTTTGAGCAGAGTG-3′ and restriction sites for BamHI and XhoI were added. PCR products were then purified and cloned into pGEX-4T2 vector with a S. japonicum GST sequence for further detection and purification. The resulting recombinant DNA plasmid was purified and then sequenced to verify integrity of the cloned insert. Transformed Escherichia coli BL21 cells were grown in Luria–Bertani medium with ampicillin until reaching an optical density of 0.6 and then induced by the addition of isopropyl...
β-tigliactopyranoside (IPTG). The cell pellet was recovered by centrifugation of the culture at 18,000 g for 30 min, suspended in PBS with 1 mM PMSF and 1% Triton X-100 sonicated and centrifuged. Solubilized protein was purified by affinity chromatography with a glutathione Sepharose 4B resin. Non-retained proteins were eluted with PBS and the rFh15 protein was eluted adding PBS plus thrombin. Protein purity was assessed by SDS–PAGE and quantified by bicinchoninic acid (BCA) method.

2.3. ADAD vaccination system

The rFh15 protein was formulated in a micelle composed by non-hemolytic saponins from Q. saponaria (Qs; Sigma, St. Louis, Missouri) and the synthetic aliphatic diamine AA0029. Then, this micelle was emulsified in a non mineral oil (Montanide ISA763A, SEPPIC, Paris, France) as an oil/water 70/30 and subcutaneously injected. The ADAD vaccination system consists of a set of two subcutaneous injections. The first injection, called “Adaptation”, contains AA0029 and Qs emulsified in the non-mineral oil. The second injection, administered 5 days after the adaptation, contains the rFh15 antigen with AA0029 and Qs in the emulsion oil. In control adjuvant group (AA0029 + Qs) two injections of AA0029 and Qs were administered. Individual doses per injection in mice included in each immunization, 100 μg of AA0029, 20 μg of Qs and 10 μg of rFh15 in a final volume of a 200 μL injection of emulsion with the non-mineral oil. In hamsters each dose contained 100 μg of AA0029, 20 μg of Qs and 20 μg of rFh15 in a final volume of a 200 μL used (Martínez-Fernández et al., 2004; Uribe et al., 2007). The lipidic diamine AA0029 was obtained from the corresponding 2-amino-hexadecanoic acid (which was also properly obtained from diethyl acetamidomalonate and 1-bromotetradecane); the amino group was protected as a tert-butyl carbamate (Boc) and the acid group reduced to an alcohol (the acid was transformed into a mixed hydride and then reduced with sodium borohydride). Afterwards, the hydroxyl group was first mesylated, then transformed into the corresponding azide and further reduced to a diamine, resulting in the diamine AA0029 [tert-butyl (1-aminoheptadecan-2-yl)carbamate] (del Olmo et al., 2006).

2.4. Immunological assessment of rFh15 using AA0029 in ADAD vaccination system in BALB/c mice

Three groups of six female BALB/c each were used for characterization of immunological response: Untreated, Injected with AA0029 + Qs as adjuvant control, and Immunized with rFh15 formulated in ADAD system (AA0029 + Qs + rFh15). Firstly, mice were immunized on week 0 and identical booster doses were administered 2 and 4 weeks after. Two weeks after the immunization schedule the mice were anesthetized with isoflurane and euthanized by cervical dislocation. Spleens were then aseptically removed and perfused by intra-cardiac injection of PBS plus heparin, and the number of recovered S. bovis adult worms from the portal and adult worms from the liver and intestine was counted after

2.5. Cytokine measurement

Splenocytes obtained from individual mice were cultured in a 6-well plate at 1 × 10^6 cells per well concentration in complete RPMI 1640 medium containing 10% heat-inactivated fetal calf serum L-glutamine, 5 mM and antibiotics: 100 units/mL penicillin and 100 μg/mL streptomycin (López-Abán et al., 2007). Splenocytes from immunization and control mice were stimulated in vitro with rFh15 at a final concentration of 10 μg/mL for 72 hours at 37 °C in a humidified atmosphere with 5% CO₂. Control wells were also prepared containing splenocytes from untreated mice. Culture supernatants were recovered for cytokine determination. A flow cytometry-based technique was used for interferon γ (IFNγ), and tumor necrosis factor α (TNFα), interleukin (IL)-1α, IL-2, IL-4, IL-6, IL-10 and IL-17 cytokine quantitation was carried out in each of the groups of mice used in this study. A FlowCytomix Mouse Th1/Th2 10plex kit (Bender MedSystems GmbH, Vienna, Austria) was used, according to the manufacturer’s instructions. Briefly, different sized fluorescent beads, coated with capture antibodies specific for the aforementioned cytokines, were incubated with mouse splenocyte samples and with biotin-conjugated secondary antibodies for 2 h at room temperature. The specific antibodies bind to the cytokines captured by the first antibodies. After washing the tubes with PBS plus 2% fetal calf serum, streptavidin–phycoerythrine (S–PE) solution was added and incubated at room temperature for 1 h. S–PE binds to the biotin conjugate and emits fluorescent signals. Flow cytometry data were collected using a FACScalibur flow cytometer (BD Biosciences) at the University of Salamanca’s Flow Cytometry Central Service; 8000 events were collected (gated by forward and side scatter) and data were analyzed using FlowCytomix Pro 3.0 software (Bender MedSystems, Vienna, Austria). Each cytokine concentration was determined from standard curves using known mouse recombinant cytokine concentrations. Results were expressed as mean and standard error of the mean (SEM).
digestion with 25 mL of 5% KOH (16 h at 37 °C with gentle shaking) using a McMaster camera. The relationship between eggs and the number of females was evaluated as a measurement of a possible anti-fecundity effect. Macroscopic lesions of liver were quantified considering changes in size, consistency, color, blood vessels, and presence of schistosomal pigment and scored as follows: (0) no lesions, (1) mild, (2) moderate, and (3) intense. Protection rates were calculated with the following formula: (mean infected control group recovered worms – mean experimental group recovered worms) × 100/mean infected control group recovered worms. Blood samples were collected from each animal before immunization, infection and necropsy for humoral immune response studies.

A second experiment was performed using golden hamsters. Animals were randomly divided into three groups of 6 each as follows: S. bovis infected, Injected with ADAD with AA0029 + Qs and infected, Vaccinated with ADAD with AA0029 + Qs + rFh15 and infected. Two weeks after the first immunization animals were boosted with the same doses. Two weeks after the immunization schedule, each animal was challenged with 200 S. bovis cercariae for 45 min as above. All animals were euthanized using an intraperitoneal injection of sodium pentobarbital (60 mg/kg) and perfused 8 weeks after the infection as above. Adult worm burden, number of parasite eggs in liver and intestine, fecundity rates were recorded and percentages of reduction were calculated. Macroscopic lesions of liver were quantified as earlier criteria. Serum samples were collected during experiment for humoral immune response study.

2.8. Anti-rFh15 and SoSbAWA specific antibody production

Specific anti-soluble S. bovis adult worm antigens (SoSbAWA) or anti-rFh15 antibodies profiles were measured using an indirect ELISA as described by Abán et al. (1999). Briefly, 96-well polystyrene plates (Costar) were coated with 2.5 μg of SoSbAWA or 2.0 μg of rFh15 antigen for 12 h in carbonate buffer (pH 9.0) and then blocked with 2% bovine serum albumin in PBS. Sera were then added at 1:100 dilutions and incubated for 1 h at 37 °C, followed by the addition

Fig. 1. Serum anti-rFh15 specific IgG, subtypes IgG1 and IgG2a, IgE and IgM antibody levels (mean ± SEM) during the immunization experiment by ELISA. BALB/c mice were immunized with AA0029 + Qs + rFh15 using the adjuvant adaptation (ADAD) vaccination system. Untreated and AA0029 + Qs treated controls were used. OD optical density *p < 0.05 compared to untreated control. *Immunization.
of goat peroxidase-labeled anti-mouse, IgG1, IgG2a, IgM or IgE antibodies at 1:1000 dilution (Sigma) or anti-hamster IgG antibodies at 1:1000 dilution (Sigma). The reaction was developed with H2O2 and ortophenilenediamine (Sigma) in citrate buffer (pH 5.0) and the absorbance was measured at 492 nm with an Ear400FT ELISA reader (Lab Instruments). Results were expressed as mean and standard error of mean (SEM).

2.9. Statistical analysis

Normal distribution of data was studied by Kolmogorov–Smirnov test. Significant differences among groups were found using one-way ANOVA test and post hoc Tukey’s honest significance test (HSD) or Kruskal–Wallis test when appropriate. All statistical analyses were considered significant at the $p < 0.05$. SPSS 21 software (IBM) was used for data analysis.

3. Results

3.1. Immune response induced by immunization with rFh15 in ADAD system using AA0029 as immunomodulator

Innate pro-inflammatory (TNFα, IL-6), Th1 (IFNγ, IL-1α, IL-2), Th2 (IL-4), regulatory (IL-10) and Th17 (IL-17) cytokine levels was measured in cultured splenocyte supernatants. It was observed that the AA0029 + Qs + rFh15 combination stimulated significant increase of TNFα ($p = 0.049$), IL-6 ($p = 0.001$), IL-2 ($p = 0.036$) and IL-4 ($p = 0.001$) compared to untreated control group. However no differences were

Fig. 2. Boxplots with number of total recovered worm (A), females (B), males (C), hepatic damage (D), eggs per gram of liver (E) and egg per gram of intestine (F), and representative photographs of the hepatic damage in the groups (G) in BALB/c mice vaccinated with AA0029 + Qs + rFh15 using the adjuvant adaptation (ADAD) vaccination system, challenged with 150 cercariae of Schistosoma bovis and perfused 8 weeks post-challenge. Data are represented in boxplots with mean (solid symbol), median, Q1 and Q3 (box), percentiles 10 and 90 (error bars).
detected regarding Th17 and Treg cytokine levels (Table 1). Mice treated only with AA0029 + Qs showed similar cytokine levels to the untreated controls (Table 1). With regard to the percentage of splenocyte populations in AA0029 + Qs + rfh15 immunized mice, a slight reduction was observed in B220, even though the differences between groups were not statistically significant. No differences in T and B splenocyte populations were observed in mice treated only with AA0029 + Qs (Table 1). Specific antibodies (IgG, IgG1, IgG2a, IgM and IgE), which increased against rfh15 antigen, were evaluated by ELISA in sera of mice along the immunization experiment (Fig. 1). A significant IgG and IgM enhancement was observed at the endpoint of the experiment (p < 0.05) in comparison with untreated controls and treated with AA0029 + Qs.

3.2. Evaluation of vaccination in BALB/c mice

It was observed that the AA0029 + Qs + rfh15 combination elicited a significant reduction in parasitological magnitudes. The adult worm burden became reduced by 64% (4.4 ± 1.4 cf 12.4 ± 1.0 p = 0.001), in females by 62% (2.0 ± 0.7 cf 5.3 ± 0.6; p = 0.016), in males by 66% (2.4 ± 0.7 cf 7.1 ± 0.6; p = 0.001), eggs in liver by 66% (377 ± 141 EPG cf 1107 ± 275 EPG; p = 0.005), eggs in intestine by 77% (163 ± 35 EPG cf 709 ± 238 EPG; p = 0.048), eggs per female in liver 10% (189 ± 71 EPG/female cf 209 ± 52 EPG/female; n.s., not significant), eggs per female in intestine 39% (82 ± 18 EPG/female cf 134 ± 45 EPG/female; n.s.) and liver injuries by 42% (Score 1.60 ± 0.51 cf 2.75 ± 0.49; p = 0.048) compared to infected controls (Fig. 2). Recovered worms were all mature adults and the male/female ratio was not altered. A significant reduction of fecundity rate was not observed in vaccinated group. Moreover, mice injected only with AA0029 + Qs showed slight not-significant reduction rates regarding adult worm recovery (23% in total worms, 9.6 ± 1.4 cf 12.4 ± 1.0; 17% in females 4.4 ± 0.7 cf 5.3 ± 0.6, 27% in males 5.2 ± 0.7 cf 7.1 ± 0.6), liver damage (6% in score 2.59 ± 0.28 cf 2.75 ± 0.49), egg in tissues (43% in liver, 630 ± 98 EPG cf 1107 ± 275 EPG; 42% in intestine 415 ± 78 EPG cf 709 ± 238 EPG), and tissue eggs per female (31% in liver 143 ± 22 EPG/female cf 209 ± 52 EPG/female; 29% in intestine 94 ± 18 EPG/female cf 134 ± 45 EPG/female) compared to infected controls (Fig. 2). Antibody response along the experiment was monitored by ELISA using rfh15 and SoShbAWA antigens. A strong IgG response against rfh15 was detected in vaccinated mice compared to either control or AA0029 + Qs treated groups, after the immunization schedule and during the experiment (week 8 p.i. OD 1.556 ± 0.235 cf 0.145 ± 0.050; p < 0.05) (Fig. 3A). Increases in specific IgG and IgG1 against SoShbAWA were found only 8 weeks p.i. in all infected mice, but only AA0029 + Qs + rfh15 vaccinated mice showed a significant increase of IgG2a compared to other groups (Fig. 3B).

3.3. Evaluation of vaccination in Mesocricetus auratus

Vaccination with AA0029 + Qs + rfh15 in golden hamsters showed reductions of 83% in adult worm burden (9.3 ± 1.7 cf 56.3 ± 1.13; p = 0.004), 81% in females (4.5 ± 0.7 cf 23.2 ± 5.0; p = 0.001), 85% in males (4.8 ± 0.7 cf 33.2 ± 8.6; p = 0.002), 90% in liver eggs (EGP 950 ± 391 cf 9333 ± 2881; p = 0.021), 96% in intestine eggs (EGP 581 ± 397 cf 15,125 ± 2308; p = 0.002), 48% in liver eggs per female (EGP/female 211 ± 54 cf 404 ± 179; p = 0.049), 80% in intestine eggs per female (EGP/female 129 ± 136 cf 651 ± 166; p = 0.027) and 56% hepatic injuries (score 1.25 ± 0.25 cf 2.87 ± 0.40 p < 0.001) when compared with infected controls (Fig. 4). Additionally, hamsters treated only with AA0029 + Qs showed significant reduction in total adult worms (78% ± 12.76 cf 63.3 ± 1.13; p = 0.012), females (73%, 6.2 ± 2.8 cf 23.2 ± 5.0; p = 0.032), males (80%, 6.5 ± 27.3 cf 33.2 ± 8.6; p = 0.030), eggs in liver (EGP 78%, 2044 ± 598 cf 9333 ± 2881; p = 0.039) and eggs in intestine (EGP 54%, 6894 ± 3844 cf 15,125 ± 2308; p = 0.041). However, no-significant reduction was found in worm fecundity or liver lesion (Fig. 4). However, no reduction was observed in eggs per female in intestine (1112 ± 197 cf 651 ± 166) and no-significant reduction was found in eggs per female in liver (18%, 330 ± 73 cf 402 ± 179) or liver lesion score (30%, 2.00 ± 0.41 cf 2.87 ± 0.40) (Fig. 4). Using rfh15 as antigen in ELISA we observed significant increased IgG at the time of the infection and after 8 weeks p.i. in AA0029 + Qs + rfh15 vaccinated animals compared to non-vaccinated indicating that all animals were correctly vaccinated (Fig. 5). High levels of specific IgG antibodies anti-SoShbAWA were observed in all infected animals at week 8 p.i. (Fig. 5).
4. Discussion

Fatty acid binding proteins (FABP) have demonstrated to be reliable vaccine candidates in schistosome and *F. hepatica* vaccine development (Hillyer, 2005; McManus and Loukas, 2008). In the progress of an effective vaccine against schistosomes the use of immunogenic antigens together with appropriate adjuvant systems, which are able to induce an adequate immunological response represents an important goal. The ADAD vaccination system is a new adjuvant system proposed as alternative to Freund’s in vaccination against *F. hepatica* and schistosomes including immunomodulators as the hydroalcoholic extract from the rhizome of *Phlebodium pseudoaureum* (PAL) or chemically synthesized aliphatic diamines and amino-alcohols (AA0029, AA2829, OA0012) with promising results in vaccines against these trematodes (Martínez-Fernández et al., 2004; Uribe et al., 2007; Vicente et al., 2014). In this work we studied the effects of the synthetic immunomodulator AA0029 in the immunological response induced by the recombinant FABP rFh15 formulated in ADAD vaccination system prior to use it in a vaccination trial against the infection by *S. bovis* in BALB/c mice. Immunization with ADAD plus AA0029 + Qs + rFh15 elicited increased levels of TNFα and IL-6 innate pro-inflammatory cytokines, IL-2, representative of Th1 response and IL-4 of the Th2 response compared to mice from the adjuvant control group (AA0029 + Qs) or untreated controls. No significant changes in Treg or Th17 cytokines and in percentages of splenocyte populations were found. There is a broad consensus that associates protection against *Schistosoma* spp. in the mouse model with high levels of IFNγ, TNFα (Wilson and Coulson, 2009) frequently associated with the presence of other cytokines as IL-12 (Cardoso et al., 2008), IL-10 (Rezende et al., 2011), IL-6, and IL-17 (Torben et al., 2011). Beside pro-inflammatory and Th1 cytokines, we observed significant levels of IL-4 as it was observed using as adjuvants, the combination of ODN and R848 (Wang et al., 2013), alum and ODN (Teixeira de Melo et al., 2013), alum (Zhang et al., 2011), peptidoglycan or thymic stromal lymphopoietin (El-Ridi and Tallima, 2012) as adjuvants. These data indicate that AA0029 formulated in ADAD with Qs and rFh15 promotes an intense mixed Th1/Th2 response. An early, intense and balanced cytokine immune response before the challenge seems determinant in the success of the rFh15 formulation with AA0029 in ADAD in concordance with experimental immunoprotection against *Fasciola hepatica* observed using synthetic peptides with ADAD (Rojas-Caraballo et al., 2014). In addition, we observed an intense specific response of IgG, IgG1, IgG2a, IgM and IgE against the rFh15 antigen in immunized
Adult worms were maturated in ADAD with PAL or AA0029 (Uribe et al., 2007). Recovered compared to infected controls. Immunization.

The cercariae of Schistosoma bovis percutaneously using the adjuvant adaptation (ADAD) vaccination system and challenged with 200 andantibodies ha

High ascom Phlebodium pseudoaureum bett ered a desirable feature of a schistosomiasis vaccine candidate

In infected controls, and it was comparable to the protection against S. mansoni infection (Oliveira et al., 2012).

This work demonstrates that the use of the synthetic immunomodulator AA0029 with rFh15 in ADAD vaccination system promotes an early potent mixed Th1/Th2 type of immune response with significant production of TNF-α, IL-6, IL-12, IL-4, and antibodies, and corroborates the immunoprophylactic properties of rFh15 against S. bovis with reduction in parasite burden and morbidity in two models.

A defined molecule as AA0029 with immunomodulatory properties could contribute to drive immune response representing an innovative approach for the designing and implementation of trematode vaccines.

Aknowledgements

We would like to thank GV Hillyer for providing the rFh15 (University of Puerto Rico). This research was supported by the Universidad de Salamanca (University of Salamanca) Ref. 13-17008, Real Federal Española de Fútbol-SEMTSI 2013 (Royal Spanish Football Federation) and Junta de Castilla y León (Regional Gov-ernment of Castile and León) Ref SA342U13 Spain, RICET VI PN de 1- D + I 12008–2011, ISCII FEDER (project RD12/0018/0002). JRC was supported by Banco de Santander (Santander Banking Group). We are grateful to SEPPIC (Barcelona, Spain) for providing Montanide ISA 763AGV.

References

Fig. 5. Serum antibody level detection (mean ± SEM) of IgG against rFh15 and SoSbAWA antigen in ELISA of Mesocricetus auratus vaccinated with AA0029 + Qs + rFh15 using the adjuvant adaptation (ADAD) vaccination system and challenged with 200 cercariae of Schistosoma bovis percutaneously. OD optical density *p < 0.05 compared to infected controls. Immunization.

