Ecología

Hacía tiempo que el DDT era mal visto por los ecologistas. Ello se debía a su presencia detectada en la leche materna, en el aceite de ciertos peces, de las ballenas, así como en la mantequilla y los huevos. Sin embargo, los partidarios del progreso químico aducían a su favor un argumento contundente: el DDT ha liberado a la Humanidad de los mosquitos, la malaria y muchas otras calamidades debidas a los insectos. Los inconvenientes del DDT eran superados con creces por sus ventajas.

El único método inteligente sería el de combatir a las especies nocivas, una minoría, salvando a las demás insectos.

LOS INSECTOS CONTRAATACAN

MICHEL BOSQUET

eliminan la sarna de los árboles, pero también a sus enemigos naturales, las avispas; matan al pulgón, pero también a la cocina, que tiene en jale al primero; acaban con los mosquitos, pero también con los peces, los lagartos, los sapos, que devoran a las larvas, etcétera.

La "estupidez" de los insecticidas actuales se refleja en las dos cifras siguientes: existen un millón setecientos mil especies de insectos; de éstas, sólo tres mil son nocivas. El único método inteligente consistiría en combatir a las especies nocivas salvando a las demás. Y esto es ya posible gracias a tres procedimientos que se perfeccionan continuamente y rápidamente en los Estados Unidos.

Consiste el primero de estos procedimientos en multiplicar los enemigos naturales de los insectos que se trata de combatir. La primera vez que se experimentó este método fue en 1889. Contra un pulgón, accidentalmente importado de Australia, que hacía estragos en los naranjos californianos. Alfred Koebel hizo entonces llegar de Australia una especie de cucaracha devoradora de esos mismos pulgones. El éxito fue completo. Actualmente, el departamento de Agricultura norteamericano ha emprendido la tarea de combatir a unos mosquitos con otros. Para acabar con la especie "edes aegypti", que prolifera en la región de Nueva Orleans y que, portadora de diversas enfermedades, ataca sobre todo al hombre, los norteamericanos han recurrido a la especie "toxodine lista rutilus rutilus", cuyas larvas devoran las de otros mosquitos.

Un segundo método de lucha consiste en sintetizar en laboratorio la feromon, sustancia odorífera producida por la hembra en la época del acoplamiento para atraer al macho. Cada especie posee su feromona específica. En algunos casos, en particular, el olfato de los machos está tan desarrollado que una sola hembra puede atraer mil millones de machos dentro de un radio de hasta 10 kilómetros. Pues bien, los científicos han elaborado ciertas feromonas sintéticas "reforzadas", más atractivas para los machos que el olor natural de la hembra, y la Zocon Corporation de Pelo Alto (California) se ha embarcado en la producción de "trampas químicas a base de feromonas". Los machos se van atrayendo irresistiblemente hacia esas trampas, instaladas dentro de un radio de varios kilómetros, y la especie acaba extinguiéndose a falta de reproductores.

Un tercer método de lucha se está también experimentando en California, donde, hace unos años, ciertos mosquitos resistentes a los insecticidas comenzaron a proliferar hasta tal punto que sus enjambres parecían pequeños tornados. Se llevaron a contar hasta cinco mil millones de mosquitos por hectárea en el delta de San Joaquín. Por fin se ha logrado acabar con la plaga gracias a una hormona que impide la eclosión del individuo adulto a partir de su larva.

Se han sintetizado centenares de hormonas que impiden la proliferación de otras tantas especies de mosquitos, afilidos y moscas. Una aplicación particularmente elegante de este método consiste en incorporar a la alimentación del ganado de las aves de corral pequeñísimas dosis de esa hormona que inhibe el desarrollo de las larvas de mosca. Inasímeible por esos animales, la hormona aparece, sin embargo, en sus excrementos e impide la eclosión de los huevos que ponen en ellos las moscas. De esa forma se puede prevenir de los insecticidas clásicos. El conjunto de estos procedimientos es incontestablemente menos costoso que el empleo de insecticidas clásicos. Las instalaciones necesarias son mucho más modestas. Y menores las cantidades de productos que es preciso transportar y manipular. Pero lo que es bueno para la fauna, la flora, el medio ambiente y la salud de los hombres no lo es necesariamente para la economía de mercado ni para la industria química multinacional. Los insecticidas contaminantes representan actualmente para dicha industria una cifra de negocios de doscientos mil millones de pesetas anuales. (9) "Le Nouvel Observateur".