Please use this identifier to cite or link to this item: http://hdl.handle.net/10366/134977
A new clustegin algorithm applying a hierarchical method neural network: Profile on PlumX
Full metadata record
DC FieldValueLanguage
dc.contributor.authorde Paz Santana, Juan F.
dc.contributor.authorRodríguez González, Sara
dc.contributor.authorBajo Pérez, Javier
dc.contributor.authorCorchado Rodríguez, Juan M.
dc.date.accessioned2017-09-06T09:15:23Z-
dc.date.available2017-09-06T09:15:23Z-
dc.date.issued2009
dc.identifier.citation9th Computational and Mathematical Methods in Science and Engineering. Volumen 4.
dc.identifier.urihttp://hdl.handle.net/10366/134977-
dc.description.abstractClustering is a branch of multivariate analysis that is used to create groups of data. While there are currently a variety of techniques that are used for creating clusters, many require defining additional information, including the actual number of clusters, before they can be carried out. The case study of this research presents a novel neural network that is capable of creating groups by using a combination of hierarchical clustering and self-organizing maps, without requiring the number of existing clusters to be specified beforehand.
dc.format.mimetypeapplication/pdf
dc.language.isoen
dc.publisherJ. Vigo Aguilar, P. Alonso, S. Oharu, E. Venturino and B. Wade.
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectComputer Science
dc.titleA new clustegin algorithm applying a hierarchical method neural network
dc.typeinfo:eu-repo/semantics/article
Appears in Collections:BISITE. Congresos

Files in This Item:
File Description SizeFormat 
cmmse.pdf666,69 kBAdobe PDFThumbnail
View/Open


This item is is subject to a Creative Commons License