Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10366/135033
Assessing Classification Accuracy in the Revision Stage of a CBR Spam Filtering System: Profile on PlumX
Título : Assessing Classification Accuracy in the Revision Stage of a CBR Spam Filtering System
Autor(es) : Méndez, Jose R.
González, Carlos
González Peña, Daniel
Fernández Riverola, Florentino
Díaz Gómez, Fernando
Corchado Rodríguez, Juan M.
Palabras clave : Computer Science
Fecha de publicación : 2007
Editor : Springer Science + Business Media
Citación : Case-Based Reasoning Research and Development Lecture Notes in Computer Science. Lecture Notes in Computer Science. Volumen 4626, pp. 374-388.
Resumen : In this paper we introduce a quality metric for characterizing the solutions generated by a successful CBR spam filtering system called SpamHunting. The proposal is denoted as relevant information amount rate and it is based on combining estimations about relevance and amount of information recovered during the retrieve stage of a CBR system. The results obtained from experimentation show how this measure can successfully be used as a suitable complement for the classifications computed by our SpamHunting system. In order to evaluate the performance of the quality estimation index, we have designed a formal benchmark procedure that can be used to evaluate any accuracy metric. Finally, following the designed test procedure, we show the behaviour of the proposed measure using two well-known publicly available corpus.
URI : http://hdl.handle.net/10366/135033
ISBN : 978-3-540-74138-1 (Print) / 978-3-540-74141-1 (Online)
ISSN : 0302-9743 (Print) / 1611-3349 (Online)
Aparece en las colecciones: BISITE. Congresos

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
assessing_classification_accuracy_in_the_revision_stage_of_a_cbr_spam_filtering_system.pdf85,03 kBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está sujeto a una licencia Licencia Creative Commons