Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10366/135825
Multi-Sensor Information Fusion for Optimizing Electric Bicycle Routes Using a Swarm Intelligence Algorithm: Profile on PlumX
Título : Multi-Sensor Information Fusion for Optimizing Electric Bicycle Routes Using a Swarm Intelligence Algorithm
Autor(es) : Hernández de la Iglesia, Daniel
Villarrubia González, Gabriel
Paz Santana, Juan Francisco de
Bajo Pérez, Javier
Palabras clave : Intelligent transport systems
Information fusion
Vehicular sensor network
Energy efficiency
Clasificación UNESCO: Materias::Investigación::1203 Ciencia de los ordenadores
Fecha de publicación : 2017
Editor : MDPI Publishing (Basilea, Suiza)
Citación : Iglesia, D.H. de la., Villarrubia, G., Paz, J. de., Bajo, J. (2017). Multi-Sensor Information Fusion for Optimizing Electric Bicycle Routes Using a Swarm Intelligence Algorithm. Sensors, 17 (11)
Resumen : [EN]The use of electric bikes (e-bikes) has grown in popularity, especially in large cities where overcrowding and traffic congestion are common. This paper proposes an intelligent engine management system for e-bikes which uses the information collected from sensors to optimize battery energy and time. The intelligent engine management system consists of a built-in network of sensors in the e-bike, which is used for multi-sensor data fusion; the collected data is analysed and fused and on the basis of this information the system can provide the user with optimal and personalized assistance. The user is given recommendations related to battery consumption, sensors, and other parameters associated with the route travelled, such as duration, speed, or variation in altitude. To provide a user with these recommendations, artificial neural networks are used to estimate speed and consumption for each of the segments of a route. These estimates are incorporated into evolutionary algorithms in order to make the optimizations. A comparative analysis of the results obtained has been conducted for when routes were travelled with and without the optimization system. From the experiments, it is evident that the use of an engine management system results in significant energy and time savings. Moreover, user satisfaction increases as the level of assistance adapts to user behavior and the characteristics of the route.
URI : http://hdl.handle.net/10366/135825
ISSN : 1424-8220
Versión del editor: http://dx.doi.org/10.3390/s17112501
Aparece en las colecciones: DIA. Artículos del Departamento de Informática y Automática

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
SCOPUS_DIA_Multisensor-information-fusion.pdf10,18 MBAdobe PDFVista previa
Visualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons