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ABSTRACT

This thesis consists of two distinct parts. Chapters 3, 4, 5, 6 are devoted to study the
geometry of null hypersurfaces by means of the so-called formalism of hypersur-
face data. In Chapters 7, 8, 9 we address the problem of matching two completely
general spacetimes across a null hypersurface.

The formalism of hypersurface data allows one to study hypersurfaces of any
causal character without considering them as embedded on any ambient space.
In Chapter 3, we present some new notions and results that are to be used else-
where in the thesis. Chapter 4 is devoted to the so-called constraint tensor R. This
tensor can be defined at the abstract level so that, when the hypersurface hap-
pens to be embedded on an ambient space, it codifies a certain combination of
components of the ambient Riemann tensor. At null points, R coincides with the
pull-back of the ambient Ricci tensor to the hypersurface. Chapters 5 and 6 concen-
trate on the implications at the abstract level due to the existence of a vector field
in a neighbourhood of a hypersurface. Some core results in this context are the
new abstract notions of Killing horizons of order zero and one and the so-called
generalized master equation. From the latter we can recover, as particular cases, the
well-known near horizon equation of isolated horizons (see e.g. [1]) as well as the
so-called master equation of multiple Killing horizons (see e.g. [2]).

The problem of matching two general spacetimes with null boundaries is firstly ad-
dressed in Chapter 7. In this chapter we assume that the boundaries have product
topology S x R (S being a spacelike cross-section). We prove that all the informa-
tion about the matching can be encoded in a scalar function H and a diffeomorph-
ism W between the sets of null generators of both sides. We find explicit expres-
sions for the matter-energy content of any null thin shell. In Chapter 8 we apply
the matching formalism to the case when the boundaries are abstract Killing hori-
zons of order zero. Finally, in Chapter 9 we provide a fully abstract formulation of
the matching problem for boundaries of any causality and any topology. The null
case is analyzed in detail, proving that all information about the matching is codi-
fied by a diffeomorphism (whose components are precisely {H, ¥}) and obtaining
explicit expressions for the gravitational/matter-energy content of the shell. Our
results are connected with those from the so-called cut-and-paste matching pro-
cedure (see e.g. [3], [4], [5], [6], [7])-
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INTRODUCTION

1.1 context and motivation

On November 25th 1915, the scientific journal Sitzungsberichte der Koniglich PreufSis-
chen Akademie der Wissenschaften (Proceedings of the Royal Prussian Academy of Sci-

ences) published a paper [8] entitled "Die Feldgleichungen der Gravitation"!

(see Fig-
ure 1.1). In this work, Albert Einstein provides the first geometric formulation of
the (latter known as Einstein) equations of the gravitational field. The original ver-
sion of these equations, derived in a 4-dimensional framework, reads as
( ) 1
Ricc=x T - _ZgT , (1.1)

where ¢ is the metric, Ricg is the Ricci tensor of g, T is the energy-momentum
tensor and T its g-trace. With the publication of these equations, Newton’s theory
of gravitation faded into the background in favour of a new geometric theory of
gravity, space and time: the theory of General Relativity.

The theory of General Relativity, presented fully in [9] for the first time, has proven
to be the most accurate fundamental theory to describe gravitational effects at large
scales. From its early predictions (the precession of the perihelion of Mercury [10],
the deflection of light rays [11], the gravitational redshift [12], [13] and the emis-
sion of gravitational waves [14], [15]) to the more recent ones (e.g. the existence
of black holes [16], [17], the expansion of the Universe [18] and the Big Bang [19],
[17]), General Relativity seems to anticipate with extreme accuracy many of the nat-
ural phenomena supported afterwards by empirical observations. Already from its
birth, General Relativity has proven to be unswerving and fully consistent with the
experimental observations, no matter the increasing level of precision of the obser-
vational results. The robustness of General Relativity makes it the most accepted

theory of gravity nowadays.

The field equations of gravitation
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S44 Sitzung der physikalisch-mathematischen Klasse vom 25. November 1915

Die Feldgleichungen der Gravitation.

Von \. Eixstelx.

ln zwei vor kurzem erschienenen Mitteilungen' habe ieh gezeigt, wie
man zu Feldgleichungen der Gravitation gelangen kann, die dem Postu-
lat allgemeiner Relativitiit entsprechen, d. h. die in ihrer allgemeinen
FFassung heliebigen Substitutionen der Raumzeitvariabeln gegeniiber ko-
variant sind.

Figure 1.1: Fragment of the first page of the paper "Die Feldgleichungen der Gravitation"
by Albert Einstein, published in 1915 in the scientific journal Sitzungsberichte
der Koniglich Preuflischen Akademie der Wissenschaften.

The first remarkable achievement of General Relativity is the already mentioned
prediction of the precession of Mercury’s orbit around the Sun. The problem of
the discrepancy between the observational and the (Newtonian) theoretical values
for the precession of Mercury was addressed by Einstein in 1905, shortly after
publishing the theory of Special Relativity [20]. After a burdensome research, he
was able to apply General Relativity to study the orbit of Mercury [10], obtaining
the exact value of precession supported by the observations. This event translated
into Einstein’s revolutionary theory achieving support from the vast majority of
the scientific community. The results by Arthur S. Eddington and Frank W. Dyson
[11], which constituted an experimental proof of the effect of deflection of light
rays because of gravity, also contributed significantly to the quick acceptance of
the theory. In the words of the mathematician David Hilbert in 1920 [21],

"Die Aufstellung der allgemeinen Relativititstheorie ist m.E. eine
der grofiten Leistungen in der Geschichte der Wissenschaften. Den
von Pythagoras begonnenen, von Newton ausgestalteten, Bau hat
Einstein zum Abschluf$ gebracht."

("The establishment of the General Theory of Relativity is, in my
opinion, one of the greatest achievements in the scientific history.
What was begun by Pythagoras and designed by Newton has been
completed by Einstein.”)

Not all predictions of the theory were demonstrated observationally within Ein-
stein’s lifetime. For instance, the emission of gravitational waves (already con-
sidered by Einstein [14], [15], see also the later works [22], [23], [24]) took much
longer to be endorsed by empirical experience. It was not until 2015 (coincident-
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ally a hundred years after the publication of [8]) that the Laser Interferometer
Gravitational-Wave Observatory (LIGO) detected gravitational waves from the
merger of two black holes. The corresponding publication [25] was released in
2016.

Beyond Einstein’s imagination, the most astonishing prediction of General Relativ-
ity is the existence of black holes. Although the first black hole solution was found
by Karl Schwarzschild [26] soon after the publication of the field equations (1.1) in
[8], the discussion on whether black holes were of actual physical nature or rather
a pathological aspect of the theory kept the scientific community divided for a
long time. It was in 1965, ten years after the demise of Einstein, that the work [16]
by Roger Penrose provided the first significant improvement in this regard. In [16]
(and later in [17] in collaboration with Stephen W. Hawking), Penrose proved that
the absence of spherical symmetry still allowed for the formation of singularities?,
contrary to what was believed at the time. Almost contemporaneously, some ex-
perimental results suggested the existence of black holes (see e.g. [29]). Over the
years many observational facts on the real existence of black holes have accumu-
lated. This effort has culminated with the striking first direct observation of the
black hole shadow by the Event Horizon Telescope [30], [31], [32], [33], [34], [35]
(see also [36]). All these observational facts have turned black holes into widely
accepted physical objects within the scientific community.

So far the theory of General Relativity has not been refuted by any of its tests,
but this does not mean that it is a complete theory of gravity. There are various
reasons supporting this last claim, among which we stress that General Relativity
predicts the existence of singularities and, perhaps more important, that the three
main fundamental theories in current physics, namely Quantum Mechanics [37] (a
theoretical framework to understand dynamics at atomic and subatomic scales),
the Standard Model of Particle Physics [38] (which describes all matter that can be ob-
served directly as well as its non-gravitational interactions) and General Relativity,
cannot be matched. Thus far these three theories continue providing (sometimes
astonishingly) accurate predictions, despite they seem to be incompatible.

Of course, there has been various attempts to unify these three theories and con-
struct one single theory of quantum gravity. The most important ones are Loop
Quantum Gravity [39] (which provides a quantum description of gravity, space
and time) and String Theory [40] (where point-like particles are substituted by
one-dimensional objects called strings which interact with each other). Other al-

2The existence of naked singularities contradicts the Cosmic Censorship Conjecture [27], [28].
Thus, if General Relativity allows for the formation of singularities and (assuming that the Cosmic
Censorship Conjecture is true) they must be "clothed" by an event horizon, then General Relativity
predicts the existence of black holes.

3
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ternative theories are the so-called Modified Theories of Gravity [41], which propose
different extensions of General Relativity that generically lead to different field
equations, and with which scientists have tried to endow many cosmological phe-
nomena with an appropriate explanation. It seems however clear that, within its
range of applicability (i.e. far enough from quantum scales), General Relativity is
a suitable theory.

Depending on the approach and on the sort of problems that are addressed, Gen-
eral Relativity is divided in several branches. We find Numerical General Relativity
[42], based on numerical methods and programming codes; Relativistic Astrophysics
[43] and Cosmology [44], concentrated on providing theoretical and computational
models as well as on experimental aspects of the theory; and Mathematical Gen-
eral Relativity [45], which addresses fundamental questions of gravitational physics

within a rigorous mathematical framework. It is precisely the area of Mathematical
General Relativity in which this thesis is framed.

Despite its long lifetime, Mathematical General Relativity is far from being com-
pletely unravelled. To mention some of its most important open problems, we
stress the (strong and weak versions of the) Cosmic Censorship (see e.g. [27], [28],
[46], [47]) and the final state conjecture [48] (and related problems such as unique-
ness of black holes, or stability of Kerr-Newman black holes). This makes the field
of Mathematical General Relativity a highly active research ground.

The scientific discipline in which Mathematical General Relativity relies on is Geo-
metry, whose fundamental objects are manifolds and tensors. In particular, one of
the milestones of Geometry is the study of hypersurfaces (i.e. codimension one
submanifolds embedded in an ambient space). Depending on the causal character
of the hypersurface, they are called null, timelike, spacelike or mixed.

For spacelike hypersurfaces, the first and second fundamental forms (which we
shall denote by y and K) codify the intrinsic and the extrinsic geometry respect-
ively. In this case, there is no need to introduce additional tensor fields. This also
happens with timelike hypersurfaces or, more precisely, with any hypersurface em-
bedded in a semi-Riemannian manifold of any signature, provided that the first
fundamental form is everywhere non-degenerate on the hypersurface. When the
ambient manifold is strictly Riemannian the property that y and K encode all the
geometric information holds for any embedded hypersurface. However, for any
other ambient signature (in particular in the Lorentzian case), there exist many
types of hypersurfaces which does not fulfil this condition.

Null hypersurfaces constitute the main object of study in this thesis. They are pre-
cisely defined to be such that the first fundamental form y is everywhere degen-
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erate. Therefore, the first fundamental form does not encode the whole intrinsic
geometry of the hypersurface. As we shall see later in the thesis, in order to charac-
terize the intrinsic part of the hypersurface one needs, in addition, a scalar function
and a one-form field along the hypersurface.

The prime example of null hypersurface is the light-cone (either future or past) at
any point within a spacetime, which defines a smooth null hypersurface after re-
moving the origin of the cone as well as caustics that may form. There are however
countless scenarios where null hypersurfaces are involved. For instance, they play
a core role in causality, in the context of emission of gravitational waves, in the ana-
lysis of the geometry of the null infinity, in the characteristic problem, in the study
of any sort of horizon such as Cauchy horizons, event horizons of black holes, non-
expanding or (weakly) isolated horizons, (multiple) Killing horizons, cosmological
horizons... Understanding the geometry of null hypersurfaces is therefore key for
the comprehension of the physical and mathematical aspects of General Relativity.
In fact null hypersurfaces are essential in General Relativity because they describe
(at least locally) the trajectories of light rays that are emitted perpendicularly to a
spacelike surface of codimension two.

Given a point p of a null hypersurface N-, we call it null whenever the first funda-
mental form y at p is degenerate, otherwise p is referred to as non-null. It turns out
that, besides hypersurfaces that are fully null, there also exists cases of physically
relevant hypesurfaces containing both non-null and null points. As an example,
we can mention the ergosphere of the Kerr spacetime, which is a spacelike hyper-
surface off the axis of symmetry and null where the ergosphere cuts the axis. In
this thesis, we shall mainly focus on null hypersurfaces, but some of the results

will hold for hypesurfaces of any causality.

In most of the literature, the geometry of hypersurfaces is studied by considering
them as embedded in an ambient manifold. However, in many circumstances this
approach is definitely not the most convenient. An illustrative example of this
is the standard Cauchy problem [49], [50], [51], [52], or its null version, i.e. the
characteristic initial value problem [53], [54] [55], [56], [57]. In these two situations,
one needs to prescribe some data on a spacelike or null hypersurface, and then
study the existence and uniqueness of the would-be spacetime where the data
is to be embedded. Throughout this thesis we shall see many more examples of
scenarios where the study of hypersurfaces in a detached way from the space
where they may be embedded turns out to be a great advantage. Indeed, most
of the results in this thesis will be based on a formalism that allows one to do

precisely this: the so-called hypersurface data formalism.
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Figure 1.2: Null hypersurface N’ with a rigging vector field {.

The formalism of hypersurface data [58] [59] allows one to study hypersurfaces
of any causal character from a completely abstract viewpoint, namely without
them being embedded. We shall see some interesting applications of this formalism
throughout the thesis. However, just to mention another recent achievement of the
formalism, we stress the works [60], [61] on the characteristic problem in General
Relativity.

The main difficulty that one must solve in order to codify the geometry of a hyper-
surface abstractly is that at null points the directions normal to the hypersurface
are tangent as well. Thus, there does not exists a proper notion of tangent part
and normal part of a vector field. The other important obstacle is that the first
fundamental form y at a null point is degenerate, so y does not define a metric on
the hypersurface. This means, in particular, that one cannot construct a canonical
covariant derivative induced from the ambient geometry.

The seminal idea to deal with hypersurfaces containing null points was originally
presented by Jan A. Schouten [62], and it consists of introducing an additional
structure based on a vector field { which is everywhere transverse along the hy-
persurface. The vector field ¢ is known as rigging, and it was used later e.g. to
study the problem of matching two spacetimes across boundaries of any causality
(see [63], [64], [65]). It is worth mentioning that the rigging vector field is highly
non-unique. This lack of uniqueness translates, in the language of the formalism
of hypersurface data, into an inherent gauge freedom.



1.1 context and motivation

The formalism of hypersurface data is based on the two notions of metric hyper-
surface data and hypersurface data. The first one is given by an abstract manifold
N, a symmetric 2-covariant tensor field y, a one-form € and a scalar function £ ),
The tuple {N, y, €, £ @} codifies the intrinsic geometry of the hypesurface so that
when it is embedded on an ambient space, y coincides with the first fundamental
form, € is the pull-back of a rigging one-form (i.e. a one-form metrically related to
arigging) and £ @ is the norm of such rigging. In this way, a metric hypersurface
data set codifies the full ambient metric at any point of the hypersurface. A hyper-
surface data is equipped, in addition, with another symmetric 2-covariant tensor
Y, which encodes the extrinsic geometry of the hypersurface. In the embedded
picture, the tensor Y is related to transverse first derivatives of the metric at points
on the hypersurface. These two data sets are endowed with an inherent gauge
freedom, justified at the embedded level by the fact that rigging vector fields are

highly non-unique, as we mentioned before.

It turns out that one can define two natural torsion-free covariant derivatives
within the formalism of hypersurface data. The first one, denoted by v, is con-

structed from the metric part of the data. Thus, it only depends on the intrinsic

geometry. One can show that V coincides with the Levi-Civita covariant derivat-
ive whenever the hypersurface is everywhere non-null (and one makes a suitable
choice of gauge, or of rigging at the embedded level). The second torsion-free con-
nection is denoted by V and is built from a hypersurface data set. It therefore
depends not only on the intrinsic but also on the extrinsic geometric properties
of the hypersurface. In particular, the connection V coincides with the covariant
derivative projected from the ambient space along the rigging whenever the hy-
persurface happens to be embedded (see [64] for details on the so-called rigged
connection). We emphasize, however, that these two connections can be constructed

at a purely abstract level, i.e. without requiring the existence of an ambient space.

The first part of this thesis will be devoted to develop the formalism of hypersur-
face data. Our main interest is to understand the implications at the abstract level
due to the existence of a privileged vector field along the hypersurface. This scen-
ario is addressed both at the abstract and at the embedded levels, where we let
the vector field extend off the hypersurface in any manner. Our aim is to codify
as much information as possible in terms of the deformation tensor associated to
such special vector field.

The idea of studying the geometry of hypersurfaces equipped with an additional
vector field arises when addressing the problem of matching two spacetimes across
Killing horizons. As we shall see later, in these circumstances the matching free-

dom is huge, which makes the situation specially interesting. It is natural to ask
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whether the two spacetimes can be matched so that the Killing vectors are iden-
tified in the process of matching, as this would give rise to a resulting spacetime
with a global symmetry. In this context (and in many others), the understanding

of the geometry of hypersurfaces admitting a privileged vector becomes essential.

The framework in this thesis is however much more general. We shall mostly focus
on abstract null hypersurfaces and on the case when the vector field is null and
tangent. The reason why our work is of interest is that we keep as much generality
as possible, e.g. by not making any global topological assumptions, or by refraining
ourselves from restricting the set of zeroes of the vector field. As a consequence,
our results can be particularized to a variety of situations, for instance to non-
expanding, (weakly) isolated and Killing horizons.

The second part of this thesis, addressed in Chapters 7, 8 and 9, is devoted to
the problem of matching two spacetimes across a hypersurface, which we briefly
introduce next.

The question of under which conditions two general spacetimes can be matched
across a hypersurface and give rise to a new spacetime is a fundamental prob-
lem in any metric theory of gravity. The properties of the resulting spacetime (in
particular on the matching hypersurface) are certainly worth analyzing.

One prime example of this appears when studying the gravitational field gener-
ated by a self-gravitating object, e.g. a neutron star. In this context, the matter
content in the interior region of the star is non-zero, hence the gravitational field
must verify the Einstein equations (or the field equations of any other theory of
gravity) with a non-vanishing source term. On the other hand, in the exterior re-
gion there is no matter and therefore the gravitational field must be a solution of
the vacuum field equations. This argument does not change even if one considers
magnetic fields, any flux of matter or the existence of an interstellar medium, as
the matter content differs from the inner and the outer part in any case. The Ein-
stein equations are not the same in the inside and in the outside so the solutions
are necessarily distinct. However, the spacetime is not separated in two regions,
which makes it essential to match the exterior and the interior solutions in one
only solution.

In many physically interesting situations, the transition zone between the exterior
and the interior regions is thin enough (compared with the dimensions of the
problem) for one to address the problem by considering that a hypersurface (e.g.
the surface of a star) separates the outer and the inner regions. Then, the core
problem is to identify the conditions that must satisfy the two spacetime regions
for the matching to be possible.



1.1 context and motivation

Another framework where a matching theory is required occurs in any physical
situation where a substantial amount of matter-energy is located in a region of the
spacetime which is thin enough with respect to the dimensions of the problem.
Sometimes, the matter-content can be modelled as concentrated on a hypersurface
(this is analogous to considering a surface distribution of charge in a theory of
electromagnetism). This thin layer of matter-energy possesses its own gravity and
therefore affects the spacetime geometry, and the key problem lies now upon find-
ing the specific relationship between the matter-energy content of the layer and the
properties of the spacetime containing it. Here one also finds two distinct space-
time regions (one at each side of the layer) that must be matched according to the

corresponding theory.

Over the last hundred years, many authors have contributed to the problem of
matching in General Relativity. The standard approach consists of considering two
(a priori different) spacetimes and then constructing the matched spacetime by
fulfilling two tasks. First, one must construct a differentiable manifold from the
two initial spacetimes. For this purpose, one must cut each original spacetime so
that one obtains two differentiable manifolds with boundary, and then provide
an identification between the boundary points (which in particular requires that
both boundaries are diffeomorphic). This process results in a new differentiable
manifold without boundary, and allows one to construct a C1 atlas. However, it is
well-known that any differentiable boundary admits a C* subatlas (see e.g. [66]),
and hence the resulting spacetime can be treated (with full generality) as a smooth
manifold.

The second task is to endow the resulting spacetime with a Lorentzian metric. Since
the metric must exist everywhere on the manifold (in particular on the matching
hypersurface), one needs to identify not only the points of the boundaries but also
their tangent spaces. The directions tangent to the boundaries are automatically
identified as a consequence of the mapping between the points. Therefore, it suf-
fices to provide an identification between two transverse directions, one on each
spacetime. The full construction requires, in addition, that one of these transverse
directions points from the boundary inwards while the other points outwards. Of
course, in general any two transverse directions cannot be identified in such a way
that the metric of the resulting spacetime is well-defined and continuous. The two
spacetimes to be matched must verify certain conditions which we briefly describe

next.

Let us consider two (n 4+ 1)-dimensional spacetimes (M*, ¢*) with respective
boundaries N *. As already mentioned, both boundaries must be diffeomorphic

for the matching to be possible. The standard way of imposing this is by requiring
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the existence of a diffeomorphism @ : N~ —---N'*. One then defines the resulting

manifold M as the union of M™ and M~ where any two points p* € N* are
identified if and only if ®(p”) = p*. The manifold M must also admit an every-
where continuous metric g which coincides with the metrics ¢* on the spacetime
regions that have been matched. The necessary and sufficient conditions for such
metric g to exist where firstly studied by Christopher J. S. Clarke and Tevian Dray

[67] for boundaries with any constant causal character. They obtained that the two
first fundamental forms must coincide. Later on Marc Mars and José M. M. Senov-
illa [64] proved that the reasoning by Clarke and Dray extends to boundaries with
arbitrary causal character. These conditions, while necessary in all cases, are not
quite sufficient when there are null points. This was noticed by Mars, Senovilla
and Raiil Vera in [65], where it was shown that one must add a condition on the

relative orientation of the riggings.

Combining the results from [67], [64], and [65], one concludes that the necessary
and sufficient conditions for the matching of two completely general spacetimes
are (i) that the first fundamental forms from both boundaries coincide, (i7) that
there exists a pair of riggings {* along the boundaries N * with the same norm
and such that their metrically-related one forms ¢g*({%, -) are the same and (i)
that * are such that one points inwards and the other outwards, as we pointed

out before.

When the boundaries do not contain null points, the coincidence of the first fun-
damental forms of each boundary automatically guarantees the matching. This is
because one can always select the riggings to be unit and normal to the boundaries
and fix their orientations so that one points inwards and the other outwards. This
works differently when there exist null points on the boundaries. Then, the exist-
ence of the riggings verifying (i)-(iii) does not follow from the equality of the first
fundamental forms [65]. This makes it necessary to include the third requirement
(iii). One can indeed fix one orientation but then the other is automatically fixed,
and it can well happen that (i) does not hold.

Once we have identified the conditions that allow for the existence of a space-
time (M, g) resulting from the matching and with a continuous metric g, the next
step is to analyze the physical properties of the matched spacetime. In particu-
lar, it is interesting to study whether M contains matter or energy located on
the matching hypersurface. This problem was addressed in the spacelike case by
George Darmois [68], Stephen O’Brien and John L. Synge [69] and André Lichner-
owicz [70]. These three works rely on distinct approaches, but the relation between
them is well-known [71], [72]. The Darmois matching conditions are coordinate-

independent and require the first and second fundamental forms of the boundar-
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ies to coincide. In these circumstances, there exists a subatlas of M in which the
resulting metric gis of C! type [73], [71]. The Riemann tensor can be discontinu-
ous at the matching hypersurface (this is because second transverse derivatives
of the metric do not need to coincide at the boundaries) but it must be regular
everywhere. Hence, in this case one concludes that there is no concentration of
matter or energy on the matching hypersurface. On the other hand, if (still in the
spacelike case) we relax the condition on the second fundamental forms and allow
for a jump on them, then the Riemann tensor of g can only be defined everywhere
on M by using distribution theory (among the many contributions to the field of
theory of distributions, we mention [70], [74], [75], [64], [76], [77], [78], [79], [80],
[81]). Applying distributional calculus to compute the Riemann tensor of g yields
a Dirac delta distribution with support on the matching hypersurface. Physically,
this corresponds to a concentration of energy-momentum (and also of gravitational
field) on a thin layer, i.e. along the matching hypersurface. The singular part of the
Einstein tensor of g is given by the discontinuity of the second fundamental form
K through the tensor T, namely

T £ —([K] - [tr,K]yY), (1.2)

where we have defined [Q] £°'

Q" — Q for any tensor pair {Q, Q”} along N
and y# is the contravariant metric of N (i.e. the inverse of the non-degenerate
first fundamental form y). The tensor T must satisfy certain equations that were
originally obtained by Kornel Lanczos [82], [83] and later by Werner Israel [73]
using a more covariant method. These equations are currently known as Israel
equations, thin shell equations or surface distribution equations, and they arise
from the distributional equation V,G* = 0 for the distribution G*" associated to

the Einstein tensor of (M, g). The Israel equations read
(Kt + K)T @ = 2[(Eind(v, )],  vVT? =[], (1.3)

where Ein?_, are the Einstein tensors on each side, v* are the unique normals
satisfying ¢*(%, Vﬁ)|N_t = 1 for a pair of riggings {* satisfying the matching
conditions, VY is the Levi-Civita connection of y and J* are the pull-back to the

boundaries of the components Einé—“i (v, -).

A similar argument can be followed to derive the Israel equations for the timelike
case. The null case, on the other hand, is intrinsically different. However, Claude
Barrabés and Israel [63] derived the shell equations by means of a limiting pro-
cedure in which the null hypersurface is approximated by a series of spacelike

hypersurfaces. Later on [64] the distribution formalism was exploited to study the
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matching across hypersurfaces with arbitrary causal character. One of the core res-
ults in [64] is the explicit expression for the singular part of the Einstein tensor of
the matched spacetime (M, g). For both the Riemann and the Einstein tensors of
(M, g), the singular part is given by a tensor field multiplied by a Dirac delta dis-
tribution with support on the matching hypersurface (which we denote by N ). The
second (distributional) Bianchi identity as well as its contracted version V,GH = 0
can be used to derive the Israel equations for thin shells of arbitrary causal char-
acter by means of the distributional formalism. This program has been carried our
recently by Senovilla [84]. Prior to that, the Israel equations for the case of arbitrary
causal character had been obtained in [58] as one of the first applications of the
formalism of hypersurface data. Later on we will have more to comment on this

result.

We conclude the first part of the introduction by discussing another procedure to
construct spacetimes containing null thin shells, namely the so-called cut-and-paste
method. This different approach was introduced by Penrose [3], [85], [86], [87] in
the sixties.

The cut-and-paste method describes the shell by means of a metric with a Dirac
delta distribution with support on the shell. In these coordinates, the metric is
therefore very singular, and standard tensor distributional calculus is not suffi-
cient to study its geometry. However, by a suitable change of coordinates the met-
ric becomes continuous and the method can be reinterpreted as follows. Given a

spacetime (M, g) containing an embedded null hypersurface N, the cut-and-paste

procedure uses lightlike coordinates adapted to N . Then, N is removed by a cut,
which leaves two separated manifolds (M?, gi) corresponding to both sides of N.
Finally, those regions are reattached by identifying their boundaries so that there
exists a jump on the coordinates when crossing the matching null hypersurface.
This jump is responsible for the appearance of the Dirac delta term in the metric,
which is interpreted as a concentration of matter and energy located on the match-
ing hypersurface. By means of this useful geometrical approach, Penrose was able
to study certain classes of impulsive plane-fronted and spherically-fronted waves
propagating in a Minkowski background. Later works of Jir'i Podolsky et al. e.g. in
[88], [89], [90], [91], [92], [4], [5], [6], [7] (and references therein) apply the cut-and-
paste procedure to generate spacetimes whose metric again contains a Dirac delta
function with support on the null hypersurface. The most general construction
so far describes pp-waves with additional gyratonic terms [5]. The cut-and-paste
method is, by construction, strongly linked to the use of appropriate coordinate
systems adapted both to the spacetime and to the null hypersurface where the cut

is performed.
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1.2 aim of this thesis

The purpose of this thesis is two-fold. As already mentioned, we are firstly inter-
ested in the geometry of null hypersurfaces (see Chapters 3, 4, 5, 6). In this context
the formalism of hypersurface data becomes a powerful mathematical framework.
Our second aim (and actually the starting point of the thesis) is the study of the
problem of matching two completely general spacetimes across a null hypersur-
face, which we address in Chapters 7, 8, 9.

Concerning the part of the thesis where we expand the formalism of hypersurface
data, the motivations described above have lead us to study how to characterize
curvature information at the abstract level (see Chapter 4). Also, they have allowed
us to understand how the data is affected by the existence of a privileged vector
field (Chapter 5). In particular, this has permitted that we construct abstract notions
of Killing horizons of order zero and one which do not require of any ambient
space and which generalize the concepts of non-expanding, (weakly) isolated and
Killing horizons. Finally, we have been able to derive an equation, called generalized
master equation, that governs the geometry of null hypersurfaces with an extra null
tangent vector field (Chapter 6). The analysis of this equation reveals properties
about the surface gravity of such vector and about homothetic Killing horizons
and Killing horizons of order zero and one. Moreover, it allows us to recover, as
particular cases, the well-known near horizon equation of isolated horizons as well

as the so-called master equation of multiple Killing horizons.

The problem of matching two spacetimes across a null hypersurface constitutes
the second part of the thesis. In a spacetime context and by requiring a simple
topology of the boundaries, we have been able to encode the whole matching
information in a function and a diffeomorphism between the set of null generators
of both matching hypersurfaces. We have also derived explicit expressions for the
matter-energy content of the shell. Finally, we have exploited the formalism of
hypersurface data to address the problem of matching in a completely abstract
context and without requiring topological restrictions upon the boundaries. This
approach, as we will see, has many advantages that will be discussed later.

1.3 contents

This thesis is divided in three parts. In the first one, corresponding to Chapter 2, we
discuss the mathematical definitions, tools and results from the literature that are

required later throughout the thesis. We start by establishing our notational con-
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ventions in Section 2.1. In Section 2.2 we introduce the formalism of hypersurface
data as it is presented in [58], [59], including the definitions of (metric) hypersur-

face data, the construction of the covariant derivatives 6, v already mentioned

and several useful results within the formalism. Then, in Sections 2.3 and 2.4, we
revisit some key aspects of the geometry of submanifolds, in particular concerning
the geometry of embedded null hypersurfaces. In Sections 2.5 and 2.6, we review
the definitions and geometric properties of several types of null hypersurfaces that
play an essential role later in the thesis, namely non-expanding, weakly isolated,
isolated and (multiple) Killing horizons. Finally, in Section 2.7 we include some
prior considerations concerning the matching of two given spacetimes across a

hypersurface.

The rest of the thesis presents the new results that have been obtained in this work.
The second part is devoted to the development of the formalism of hypersurface
data. This is done in Chapters 3, 4, 5, 6, whose contents we describe next.

The structure of Chapter 3 is as follows. In Section 3.1, we start by providing several
new results within he framework of the formalism of hypersurface data. In partic-
ular, in Section 3.1.1 we introduce the tensor field "Lie derivative of a connection"
along a privileged vector field Z (denoted by Xz). We define Xz in a completely
general context, derive various identities involving it and then focus our analysis
on the tensor field "Lie derivative of V along a vector field n which can be defined
from any metric hypersurface data set. In Section 3.2 we study null hypersurface
data, i.e. data describing (abstractly) an everywhere null hypersurface. Therein we
include gauge-fixing results, new identities involving v as well as its associated
curvature and Ricci tensors and a detailed discussion on geometric aspects of non-
degenerate smooth submanifolds within the abstract null hypersurface. Finally, in
Section 3.3 we analyze the case when a null hypersurface data set is equipped with
an extra null gauge-invariant vector field.

Chapter 4 is devoted to the so-called constraint tensor R. The constraint tensor is
defined for any abstract hypersurface and, when the data happens to be embedded
in a semi-Riemannian manifold, it captures a certain combination of components
of the Riemann curvature tensor of the ambient space. In Section 4.1, we motivate
its abstract definition and derive some of its properties. In Section 4.2, we particu-
larize our analysis to the null case, finding the contractions of R with a null gen-
erator and providing its pull-back to any non-degenerate submanifold within the
abstract hypersurface. In particular, we compute its relation with the Ricci tensor
of the induced metric on such Riemannian submanifold. The chapter concludes
with Section 4.3, where we introduce several quantities that are either invariant
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under gauge transformations or have a simple gauge behaviour. The results in this

chapter are of use in other parts of the thesis.

Chapter 5 constitutes one of the core parts of this thesis. Its main concern is to
study the case when a hypersurface admits a privileged vector field. The chapter
is divided in four sections. In Section 5.1, we consider completely general hyper-
surface data embedded in a semi-Riemannian manifold equipped with a special
vector field y. Initially, we allow y to be completely arbitrary, in particular not ne-
cessarily tangent to the hypersurface. In this context we derive explicit expressions
for the Lie bracket of y with any extension of a rigging vector field. Then, we focus
on the case when vy is tangent and obtain the Lie derivative of the data tensor Y
along y (recall that Y encodes the extrinsic geometric information of the hypersur-
face, as we mentioned above). All results in Section 5.1 involve the deformation
tensor of y. In Section 5.2 we focus on the case when the hypersurface is null and y
is null and tangent to the hypersurface. In this context, we derive several identities
to be used later in the thesis. Section 5.3 is devoted to the tensor "Lie derivative
along y of the Levi-Civita connection”, namely X,. We compute the explicit form
of £, in terms of the data plus an additional tensor field T1¥ which happens to
play a crucial role in the analysis of the so-called abstract Killing horizons of order
zero and one. These are new abstract notions of horizons which we motivate and
present in Section 5.4, where we also compare them with other definitions of ho-
rizons at the embedded level, including Killing horizons, non-expanding horizons
and isolated horizons.

With Chapter 6 we conclude our development of the formalism of hypersurface
data. This chapter focuses on the derivation and consequences of the so-called gen-
eralized master equation (see (6.61)). The generalized master equation is an identity
that holds for any null hypersurface admitting a privileged null, tangent vector
field y. It involves the proportionality function between y and a null generator of

the hypersurface, the constraint tensor R, the tensor T1Y mentioned above and vari-
ous tensor fields of the data. The generalized master equation, together with its

contractions with a null generator, are included in Section 6.1. In Section 6.2 we
particularize the analysis to the case when the deformation tensor of y is propor-
tional to the metric. In this context, we obtain several interesting results concerning
the fixed points set of y, the regularity of the Ricci tensor of the ambient space and
the constancy of the surface gravity k of y. In Section 6.3, we particularize the pre-
vious results for abstract Killing horizons of order zero and one. This allows us

to identify some consequences of ‘k not being constant. In Section 6.4 we provide
another key result of this thesis, namely the restriction of the generalized master

equation to any non-degenerate submanifold within a null hypersurface. As par-
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ticular case, we recover the so-called master equation of multiple Killing horizons
(see e.g. [2], [93], [94]) as well as the so-called near horizon equation of isolated
horizons (see e.g. [95], [96], [97], [1], [98], [99]). Finally, in Section 6.5 we apply the
prior results to the case of a vacuum degenerate Killing horizon.

The third part of this thesis, corresponding to Chapters 7, 8 and 9, is devoted to the
problem of matching two completely general spacetimes across a null hypersurface.
The summary of the contents of these chapters is as follows.

In Chapter 7 we address the matching problem from a spacetime viewpoint,
namely without considering the boundaries of the spacetimes to be matched in
a detached way. Throughout the chapter, we assume that the boundaries can be
foliated by a family of spacelike cross-sections. In Section 7.1 we provide some
preliminary results and identities for its later use. Section 7.2 offers a brief discus-
sion on the problem of matching in the general case, i.e. when the boundaries of
the spacetimes have any causality. Section 7.3 focuses on the null case and con-
stitutes the main part of the chapter. We start by writing the junction conditions
in terms of a basis of vector fields. This allows us to determine the necessary and
sufficient conditions for the matching to be possible. In Section 7.3.1, we prove that
the whole matching information can be codified in the so-called step function and
a diffeomorphism between the set of null generators of each boundary. We also
analyze a scenario in which an infinite number of matchings are feasible, namely
when the boundaries are totally geodesic. We obtain explicit expressions for the
matter-energy content of the most general null shell resulting from the matching
(Section 7.3.2). We conclude the chapter by applying the results to the case of the
matching of two regions of the spacetime of Minkowski across a null hyperplane
(see Section 7.3.3), connecting our results with those from the cut-and-paste con-
structions in the literature.

In Chapter 8, we study a particular case of the above, namely when the boundaries
of the spacetimes to be matched are embedded abstract Killing horizons of order
zero (this notion has been introduced in Chapter 5). The idea is to analyze the
situation in which the matching procedure identifies the zero order "Killing" vector
fields. In Sections 8.1, 8.2 and 8.3, we address the matching problem for three
different scenarios: both boundaries being non-degenerate, both being degenerate
and one being degenerate and the other being non-degenerate. In Section 8.4, we
particularize the results for the case of Killing horizons with bifurcation surfaces.
We conclude with Section 8.5, where we examine the case of the spacetimes to be
matched being spherical, plane or hyperbolic symmetric.
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Chapter 9 concludes our discussion on the matching problem. This chapter con-
stitutes another core part of the thesis for several reasons. First, because we study
the problem of matching from a purely abstract viewpoint (i.e. without requiring
the matching hypersurfaces to be embedded) and secondly because the results are
completely general (in the sense that we do not enforce any topological restrictions,
nor any other condition whatsoever on the null hypersurfaces and the spacetimes).
In Section 9.1, we first provide a theorem for boundaries of any causality that es-
tablishes the abstract construction of the matching. We then focus on the null case
(see Section 9.1.1), obtaining the necessary and sufficient conditions that allow
for the matching and obtaining explicit expressions for the gravitational/matter-
energy content of the resulting null shell. We also analyze the multiple matchings
scenario (cf. Section 9.1.2). In Section 9.2, we recover the results from Chapter 7
whenever the boundaries have product topology. Finally, we conclude with an ex-
ample of matching across a totally geodesic null hypersurface in the spacetimes of
(anti-)de Sitter, see Section 9.3.

The last chapter of the thesis, namely Chapter 10, is devoted to collect the conclu-
sions of our work as well as some future prospects.

Finally, this thesis includes four appendices. In Appendix A, we prove various
general identities concerning the curvature tensor of a torsion-free connection. Ap-
pendix B is devoted to the derivation of a generalized form of the Gauss identity.
In Appendix C, we offer a consistency check on the gauge behaviour of a tensor
field introduced in Chapter 4. The thesis concludes with Appendix D, where we
present a new geometric construction of coordinates near any null hypersurface.
The essential point of such construction is that it allows one to recover the so-
called Gaussian null coordinates (see e.g. [100]) and Racz-Wald coordinates [101]

in a neighbourhood of a null hypersurface and a bifurcation surface respectively.
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PRELIMINARIES

As we have mentioned in the Introduction, this chapter includes all mathematical
tools and results that have already been obtained in the literature. The contents of
this chapter will be of use later elsewhere in the thesis.

2.1 notation and conventions

All manifolds are smooth, connected and, unless otherwise indicated, without
boundary. Given a manifold M and a point p € M, the tangent and cotan-
gent spaces at p are denoted by T,M, TI;M respectively. As usual, TM refers

to the corresponding tangent bundle and ' (TM) to its sections. Given a differen-
fiable fpap,g, befweep manifolds we use the sjandard notatip of ¢35l g fox

F * (M) c F (M) its subset of no-where zero functions. We use the symbols £,

d to denote Lie derivative and exterior derivative respectively. Both tensorial and
abstract index notation will be henceforth employed at our convenience. To help

distinguishing objects, we will often use boldface to define covariant tensors in
index-free notation. When indices are used, we shall use standard font, not bold-

face, for them. We will use Greek, lower case Latin and capital Latin indices for

(n + 1)-dimensional, n-dimensional and (n - 1)-dimensional manifolds as follows
aB..=012.m ab.=12.1m  AB.=2.n (21

where n= 1 (or n = 2 whenever indices A, B, .. are involved) will always be
assumed. Parenthesis (resp. brackets) will denote symmetrization (resp. antisym-

metrization) of indices, e.g. for a given two-covariant tensor field A we write

1 1
Ay € Z(Aab - Ap), Ay = o (Aa + Aw). (2.2)
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Given two tensors A and B, we let A @B = 21 (A® B+ B® A) and denote the
trace of A with respect to B as trs A. For any semi-Riemannian manifold (M, g),
we use the symbol # for the corresponding contravariant metric, i.e. g#. We let V
denote the Levi-Civita covariant derivative of ¢ and (X, Y) (also (X, Y)g) will be
the scalar product of two vector fields X,Y € I' (TM). For any connection D on

a manifold M, our notation and convention for its associated curvature operator

are

( )
RP(X,W)Z ¥ DxDw-DwDx-Dyy Z  YX,W,ZET(M), (23)

except if D =V, in which case we simply write R for the curvature operator. Our

signature convention for Lorentzian manifolds (M, g) is (-, +, .., +).

2.2 formalism of hypersurface data

In this section we introduce the main formalism exploited throughout this thesis,
called formalism of hypersurface data. Originally presented in [58], [59] (with pre-
cursor [64]), it has proven useful in the study of first order perturbations of a
general hypersurface [102], in the study of the characteristic problem in General
Relativity [60], [61] and in the context of matching spacetimes across null boundar-
ies [103], [104], which constitutes a core part of this thesis (see Chapters 7, 8 and 9).
The key advantages of this formalism are firstly that it allows one to describe hy-
persurfaces of arbitrary causal character at a purely abstract level, namely without
making any reference to an ambient space where they may be embedded; and
secondly that it can be adapted to many different situations of interest by means
of an inherent gauge freedom. We discuss all the details below.

2.2.1 Metric hypersurface data

The formalism of hypersurface data relies upon the two core notions of metric
hypersurface data and hypersurface data, which conceptually involve different levels
of geometric information. Specifically, a metric hypersurface data set encodes all
information concerning the intrinsic geometry of an abstract hypersurface N while
a hypersurface data set codifies, in addition, the extrinsic geometry of N.

It is convenient to start with the intrinsic part. The underlying idea behind the

notion of metric hypersurface data is that, whenever N is embedded in a semi-
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Riemannian manifold, we are able to recover all the information about the ambient
geometry along the hypersurface.

Definition 2.2.1. (Metric hypersurface data) Let N be an n-dimensional manifold en-
dowed with a 2-covariant symmetric tensor y, a covector € and a scalar function € @). The

four-tuple {N , y, €, € @} defines metric hypersurface data provided that the symmetric
2-covariant tensor Alp on TyN x R given by

Al (W, a),(Z, D) = ylp (W,2)+aéllp(Z)+b €y (W) + abl @],
W;ZETPN, a,bER

(2.4)

is non-degenerate at every p € N.

Since A|y is non-degenerate there exists a unique inverse contravariant tensor Aly
on TN xR, Splitting its action as

Aly (a, a), (B, 1)) “ Pl (a,B) + anlp (B) + b nlp (a) + abn@|y,
aBeT'N, abeR

(2.5)

defines a symmetric 2-contravariant tensor P, a vector # and a scalar n® in N . By
definition, they are smooth fields satisfying [58]:

Yan? + n@ 0. = 0, (2.6)
O +n@f@ =1, (2.7)
Pify+ 0@ =0, 2.8)
Piys + i 8 e = O (2.9)

Observe that we have imposed no conditions on the signature of the tensor A.
This will be relevant later when we introduce the concept of embedded (metric)
hypersurface data. It is also worth stressing that there are no restrictions upon
y besides being a symmetric 2-covariant tensor field. In particular, y can be de-
generate. In any case, for arbitrary metric hypersurface data (irrespective of the
signature of A), one can prove that the radical of y at a point p € N (i.e. the set
Rady|y = {X € T,N | y(X, -) = 0} of vectors anhihilated by y) is [59] either zero-
or one-dimensional. Moreover, the latter case occurs if and only if n(2)|p = 0, which
together with (2.6) means that Rady|y = (n|p). Thus, n|y is non-zero (by (2.7)) and
defines the degenerate direction of y|p. This property suggests introducing the
following definitions of null and non-null points.
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Definition  2.2.2. (Null and non-null point) Let {N ,y, € £ @} be
metric hypersurface data. A point p is called null if dim(Rady)|, = 1 and non-null
otherwise.

Thus, at a non-null (resp. null) point p € N, it holds n(2)|p/= 0 (resp. n(2)|p = 0).

Given metric hypersurface data {N, y, €, £ @}, it is useful to define the tensors

F Lt T de, (2.10)
2

s =" F(n,), (2.11)

U £ %Eny + € s dn®, (2.12)

Observe that U is symmetric and F is a 2-form. These tensor fields satisfy the
following identities [59]:

£, = 25— d(n® 8 @), (2.13)

1 1

U(n,+) = -n@s + ~dn@ + = (n@)2d £ @, (2.14)
2 2

It is also worth mentioning that one can construct a volume form on the abstract

manifold N provided it is oriented. The corresponding definition is as follows.

Definition 2.2.3. (Volume form) Consider metric hypersurface data {N,y, €, £ @} and
assume N to be oriented. Then the following local expression in any chart {x"} defines a
volume form on N :

@ d
Wio =€ |detA[E, (2.15)
where e = +1(=1) if the chart is positively (negatively) oriented, E is the Levi-Civita
totally antisymmetric symbol and | - | denotes the absolute value.

In general, N is not a semi-Riemannian manifold because it is not endowed with
a metric tensor. This means that generically (in particular when there exist null
points in N ) we cannot define a Levi-Civita covariant derivative on N . As we shall
see next, in spite of this fact it turns out that there exists a canonical notion of
covariant derivative on N . This fundamental property makes the whole formalism
relevant both mathematically and physically, as the possibility of doing calculus
with tensor fields is key in any differential geometric theory.

This canonical covariant derivative, denoted by V¥, can be defined from its action

on some tensor fields constructed from the metric hypersurface data {N, y, €, £ @}
[59, Prop. 4.3].
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Theorem 2.2.4. For any given metric hypersurface data {N,y, €, £ @}, the conditions

(VxV(Z, W) = -UX, 2)eW) - UX, We(2), (2.16)
(Vx0)(2) + (VzOX) = -2 £ QU(X, 2), VX, Z, W € I(IN) (2.17)

define a unique torsion-free connection V on N.

We call the connection vy metric hypersurface connection, as it is constructed solely

from the metric hypersurface data. The following identities [59] for V-derivatives
of the tensor fields y, €, n and P will be used later:

Va Yoe = = €0Uge — £ Ua, (2.18)
Valp =Fa _ @y, 2.19
Ty ) .
Vo ne=mnc so_ @79 @), + P Un — n@Fy, (2.20)
( .
Vapbe — _ bpef 4 ,opbf Far ntncy, £ @, (2.21)

An interesting particular case occurs when € = 0. Then, A being non-degenerate
requires y to be non-degenerate and £ /= 0 everywhere on N . This means that
(N, y) is a semi-Riemannian manifold to which one can associate a Levi-Civita

connection V), Moreover, (2.8) entails that n = 0, and hence U and F all van-
ish identically. This transforms (2.16)-(2.17) into (v v)(Z, W) = 0, from where
X

we conclude that v = V), Thus, the formalism recovers the usual definition of
metric connection whenever N has no null points and € = 0. We emphasize, how-

ever, that the definition of v works in general and that one can treat not only the
case when N includes null points (or when all of them are null) but also when N

consists of non-null points only but one wants to use €/= 0.

As already mentioned, the purpose of the formalism of hypersurface data is
to study general hypersurfaces independently of any ambient manifold where
they may be embedded. However, at some point it will become necessary to
connect the abstract formalism with the geometry of embedded hypersurfaces.
The relationship between them, which relies upon the notion of embedded
metric hypersurface data, also allows one to understand how the abstract data is
affected by the freedom in the choice of an everywhere transversal vector field
along the hypersurface.

Definition 2.2.5. (Rigging, embedded metric hypersurface data) A metric hypersurface
data {N,vy, €, € @} is said to be embedded in a semi-Riemannian manifold (M, g) of
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dimension n + 1 provided there exists an embedding ¢ : N '= M and a rigging vector

field { (i.e. a vector field along ¢ (N ), everywhere transversal to it) satisfying

¢ @=yv ¢ gN=¢ ¢ g =12 (2.22)

Notation 2.2.6. In the following, whenever it does not lead to misunderstandings we shall
identify scalar functions on N and on ¢(N ) as well as vector fields on N with their

corresponding images through ..

In view of (2.22), in the embedded case the tensors {y, €, £ @} coincide respectively
with the first fundamental form of the hypersurface, the tangent part of the rigging
covector g(¢, -) and the norm of the rigging. Observe that any metric hypersurface

data with € = 0 is related, when one embeds it, to the case when the rigging is
normal to ¢(N ) (which of course requires that ¢(N ) has no null points, as the
normal would not be everywhere transverse otherwise).

It is also worth stressing that from any metric hypersurface data set one can re-
construct the full metric g along @(N ) (this is the reason behind the terminology
"metric hypersurface data"), as it holds that

Al (W, a), (Z,1) = glow)(@-W + al, $-Z + bD. (2.23)

Thus, A completely encodes the metric g at points on ¢ (N ). This justifies referring

to A as ambient metric and provides its geometrical interpretation.

In order to relate the quantities {n, n(z)} with geometric objects in the ambient

space, we now consider the following setup.

Setup 2.2.7. We let {N , y, €, £ @} be metric hypersurface data embedded in a semi-
Riemannian manifold (M, g) with embedding ¢ and rigging vector {. We select any local
basis {¢’} of T(TN ) and define e« = ¢.(¢"s). By transversality of the rigging, {{, ed}
constitutes a (local) basis of T(TM)|e ). The hypersurface (N ) admits a unique nor-
mal covector v satisfying v({) = 1. By construction, this covector belongs to the dual

basis of {(, ea}, which we denote by {v, 6}. We define the vector fields v = g% (v, ),
o= g% ().

In these circumstances, {v, 67} satisfy, by definition of dual basis,

ev, =1, g(v,e) = 0, 26,0 =0, g(6, e) = &, (2.24)
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and can be decomposed in the basis {, e.} as

v = n@f + ne, (2.25)
6 = Pey + n°d. (2.26)

This can be proven by taking (2.25)-(2.26) as an ansatz and checking (2.24):
gv,e) = 120, + yunt 0, 9600 =P8, +u 0@V

eV, Q) = n@ 0@ 4 ; 7y 2@ ep) = Peyp + 1 . (29) 5

= = b

Since in the embedded case the components of A in the basis {(¢%, 0), (0, 1)} are
the same (by (2.22)) as the components of g in the basis {e, {}, it follows directly

from (2.5) that the contravariant metric gj'fF can be expressed in the basis {{, e:} as

N
“V¢(=)n(2)(“(" +n¢ JFe¥ + Vet + PUele,

N o P ugev 1 gy 2.27)

&

where the equivalence is a consequence of (2.25)-(2.26). Observe that this implies

s " Fv v Y @, (2.28)

Thus, in the embedded case n® is just the square norm of the normal v along
#(N ), while ¢.n = v- n(z)f (cf. (2.25)). In particular, at null points v coincides
with ¢.n.

We conclude the section of metric hypersurface data by quoting Lemma 3 in [58].
This result, which will be key later in many situations, establishes under which
conditions it is possible to construct a vector field from a given pair consisting of
a covector and a scalar function.

Lemma 2.2.8. Let {N , y, €, £ @} be metric hypersurface data. Given a covector field @ €
[(T"N ) and a scalar function uo € F(N ), there exists a vector field W € T(IN )
satisfying y(W, -) = @, €W) = uo if and only if @(n) + nPuo = 0. Such W is unique
and reads W = P(g, +) + uon.

2.2.1.1 Gauge structure

As the reader may have noticed, the choice of a rigging vector field along an embed-

ded hypersurface is highly non-unique. This fact is captured within the formalism
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of hypersurface data by means of a built-in gauge freedom, whose main properties

are summarized next [59].

Let{N,y, €, £ @} be metric hypersurface data,z€ F* (N)and V € T (TN). We

define the gauge-transformed metric data

G(z,V)({N Y, 8, Q (2)}) o N, G(z,V) (V) , G(Z,V) (€) , G(z,V) Q @ (229)
as
Gen (v) =, (2.30)
Gew (8) =z(@+y(V,4), (2.31)
Gevy8@ =22 0@ 4+ 28(V) +y(V,V) . (2.32)

The induced transformations of P, n, n?) are

Gen(P) = P+n@V V-2V Qsn, (2.33)
Gev) (n) = z71(n — n@V), (2.34)
Gey 1P = 27%®, (2.35)

while the gauge behaviour of the metric hypersurface data connection ovis given
by the following proposition [59, Prop. 4.6].

Proposition 2.2.9. Let {N,y, € € @} be metric hypersurface data, z € F* (N) and
V €T (TN). Then, the difference tensor(between the connection V and Gevy( V) 1s

: )
G ()--= v £ Y—n@f y+226Q 4@
z,V) \% v 221 zn uVv s
+ 25" R (Fvy + 2€ Qs dz). (2.36)

As proven in [59, Lem. 3.3], the set of all possible transformations {G¢ )} consti-

tutes a group with the following properties.
Proposition 2.2.10. The set of transformations {G¢ v} forms a group

G =F(N)xT(TN)

with composition law G=:yv °*Gzv =G 1, identity element G ges G
[ =

(2 2 (1 1) 1z Vatz,” V.
and inverse element G™1 4ut G 1 (@rz2Verz Vi)

(CAY)] .—zV)
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This justifies the terminology of calling G gauge group, each element G¢v) gauge

transformation (also gauge group element) and the quantities {z, V} gauge parameters.

Observe that the gauge freedom associated to any metric hypersurface data is
an intrinsic property of the data, independently of whether it is embedded in an
ambient space. When the data is embedded, the connection between the freedom
in the choice of a rigging vector field and the gauge structure can be established
as follows [59, Prop. 3.4].

Proposition 2.2.11. Let {N , y, €, £ @} be metric hypersurface data embedded in a
semi-Riemannian manifold (M, g) with embedding ¢ and rigging vector field {. Then
Gev({N , v, € £ @Y) is also embedded in the same space with the same embedding ¢ but
with a different rigging Ge () defined by

Gen(Q) ="z(C + ¢.V). (2.37)

Since the normal vector v is fixed for any choice of rigging according to the condi-
tion ((v) = 1, Proposition 2.2.11 forces

1
Genv) = —v. (2.38)

The highly non-uniqueness of the rigging could seem a priori to be a drawback of
the formalism. However, the possibility of fixing the gauge at will when studying
hypersurfaces at the abstract level actually constitutes a huge advantage in many
situations because one can adjust the gauge freedom to the specific problem one

wants to solve.

As proved in [59, Lemma 3.6], given metric hypersurface data {N, y, € £ @} and
a point p € N, the only elements of the gauge group G leaving {N , y, €, £ @} in-
variant at p are (i) Gaoly if p is null and (1) {Gwolr Ge1-20)|p} if p is non-null
(here the vector £ |y is defined as £ |, = V#(e, -)|», where V#|p is the inverse of the
metric y|p). Since the gauge parameters {z, V} are smooth by definition, it follows
that when N contains a null point, only the identity element of G leaves the whole
metric hypersurface data invariant. On the contrary, when N consists exclusively
of non-null points there exist two gauge elements which do not transform the met-
ric data. In this last case, the rigging G1,-2¢)({) corresponds [59] to the reflection

of ¢ with respect to the tangent plane T;¢(N) at each point ¢ € ¢(N).
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2.2.2  Hypersurface data

We have already introduced the notion of metric hypersurface data, which codifies
all the intrinsic geometric information of a hypersurface. The next natural step is
to encode the extrinsic geometry within the formalism. As mentioned before, this

leads us to the concept of hypersurface data.

Definition 2.2.12. (Hypersurface data) A five-tuple {N , y, €, £ @, Y} defines hypersur-

face data if {N , y, €, € @} is metric hypersurface data and N is equipped with an extra
symmetric 2-covariant tensor Y.

We will frequently use the notation D = {N, y, €, £ @, Y}. As happened before

for the metric hypersurface data, the geometric interpretation of the tensor field Y
comes from the definition of embedded hypersurface data, which we give next.

Definition 2.2.13. (Embedded hypersurface data) A hypersurface data {N , y, €, £ @, Y}
is said to be embedded in a semi-Riemannian manifold (M, Q) with embedding ¢ and
rigging vector field { if its metric part {N , y, €, € @} is embedded in (M, g) with same
embedding and rigging and, in addition,

1
76 g =Y. (2.39)

Definition 2.2.13 directly relates the tensor Y with transverse derivatives of the am-
bient metric g on ¢(N ), which automatically guarantees that Y encodes extrinsic
information of the hypersurface ¢(N ) in the embedded case. The gauge trans-
formation (2.37) of { determines the behaviour of Y (and hence of the whole hy-
persurface data {N , y, €, £ @, Y}) under the action of a gauge group element. This

transformation must be introduced at the abstract level as a definition, namely

def 1 zZ
G(Z,V) (Y) =zY+ € ®s dz +_2 £zVV =zY + (8 + V(V, ')) ®s dz + Z—EVY, (240)

and it is straightforward to prove [59] that (2.40) guarantees that Ge,y,) °
Gy vy ) = Gy ) - @ vn(Y):

One can obtain the tangent covariant derivative of the rigging for given embedded
hypersurface data {N , y, € £ @, Y}. We perform this calculation in a given basis,
namely by assuming Setup 2.2.7 (where the vector fields v and 6" are given by
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(2.25)-(2.26) in terms of the basis {¢, e:}). By defining { = ¢(¢ +) and using (2.10),
(2.22), (2.39) and the fact that d commutes with the pull-back, one gets

1 1

(Veac, eb)g :—2 (Vm(, €b>g + (Veb{, ea)g +‘—2 <VeuC, €b)g - (Veb(, €a>g
= L (e e + L dllene) = Y + (2.41)
1 .

(Veul, Qs = Ve (G, Os = V £, (242)

The combination of (2.41) and (2.42) yields

1-
Ve = vae“ + (Y, +Fa)é. (2.43)

This identity will be of use in Section 5.1.

Given hypersurface data D = {N,y, € £ @,Y}, it is useful to define the objects

de

r <Y, ), Ko 25 = Y(n, n), (2.44)
K< n@Y + U. (2.45)

Observe that K is symmetric by construction. Moreover, under the action of a

gauge group element, it transforms as [59, Lemma 3.5]
1

G(Z,V) K = EK (246)

The simple gauge behaviour (2.46) can be easily understood in the embedded case.
When D is embedded in an ambient space with embedding ¢ and rigging ¢, the
tensor K defined in (2.45) coincides [59] with the second fundamental form of
#(N ) with respect to the unique normal v satisfying v({) = 1, i.e.

K = ¢ (Vv). (2.47)

This, together with the fact that ¢ v = 0, explains the transformation behaviour of

K at the abstract level. Expression (2.46), however, holds independently of whether
the data is embedded or not, and it is a consequence of definition (2.45). Observe
that K|, = Uly for null points p € N . In such case, all extrinsic information drops
from K and therefore we recover the well-known property that the second fun-
damental form only codifies extrinsic geometric information for non-null points.
This also means that at a null point p, U|p is the second fundamental form of
#(N ) with respect to v, which will be relevant later, as many of our results will

depend strongly on this tensor.
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Another remarkable result is that, for given hypersurface data embedded in a
semi-Riemannian manifold (M, g), the relation between the metric hypersurface

connection V and the ambient Levi-Civita connection V of (M, g) is [58]
VxY = VxY - Y(X, V)v - U(X, Y)(, (2.48)

where X,Y € T(IN) and v = n®¢ + ¢.n (recall (2.25)).

The behaviour of the tensor field Y under the action of the gauge elements
G(1,0, G(-1,-2¢) also deserves a brief comment. Of course, for the former we find
Ga,0(Y) = Y (cf. (2.40)) and hence {N, y, € £ @, Y} still remains invariant un-
der the identity element. For the latter, on non-null points one can prove that
Gi-1-20)(Y) = Y- HZ—@K and hence the whole hypersurface data is not invariant
unless K = 0. Observe that, in the case when K = 0, one can determine Y in
terms of the metric hypersurface data (by means of (2.45)). Thus, the invariance of
Y when K = 0 is a direct consequence of {N , y, €, £ @} being invariant itself. Any-
way, in general Y does not remain invariant under the transformation G(-1-2p).
This is consistent with the fact that a reflection of the rigging affects the transverse
Lie derivative of g unless the normal transversal derivative vanishes (and hence so
does K).

2.2.2.1 Hypersurface connection V

The metric hypersurface connection V is not the only useful covariant derivative
that can be constructed from given hypersurface data. In fact, from {N, y, €, 0@ Y}

one can define another torsion free connection V, which is called hypersurface con-
nection or rigging connection. The simplest form of defining it is by providing its

relation with y.

Definition 2.2.14. (Hypersurface connection V) Let {N,y, €, £ @,Y} be hypersurface

data and 7 the corresponding metric hypersurface connection defined in Theorem 2.2.4.

Forany X,Z € T(IN), Vis uniquely defined by
VaZ = vy Z - Y(X, 2)n, (2.49)
Unlike , the rigging connection depends on both the metric hypersurface data

and the extrinsic part Y. Depending on the situation it is advantageous to use V
or V, so it is useful to keep both connections in mind. However, for the purposes

of this thesis yy will definitely be of more use. The only situation in which V is
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independent of Y occurs when 7 vanishes identically. In such case, (2.6) entails
that either n® or € has to be zero. The requirement of A being non-degenerate
excludes the former, which means that € = 0. We have already discussed that
this only happens when (i) y is a metric (which only holds for non-null points)
and (ii) the rigging is normal to N . The importance of the covariant derivative V
relies on the fact that it coincides with the connection induced from the Levi-Civita
covariant derivative of the ambient space in the embedded case. In fact, combining
(2.25), (2.45) and (2.48)-(2.49) yields

VxY = VxY - K(X,Y){, VX, Y € I(TN). (2.50)

In the embedded case, this connection was first introduced by Schouten [62] and
studied in detail in [64].

2.2.2.2  Curvature of the metric hypersurface connection vV

We conclude this section with some results involving the curvature and Ricci
tensors Ri e em, R o ic (or R d.and R 4 in abstract index notation) of the metric hyper-
surface connection V The first proposition is a general identity for R o ic [59, Prop.
5.1], while the second provides all the components of the curvature tensor Ragys
of (M, g) that are computable in terms of the hypersurface data [64] (see also [58,
Prop. 6]).

Proposition 2.2.15. Given metric hypersurface data {N,y, €, € @}, the curvature tensor

R ic verifies

( T
R ic(X,Z)-R ic(Z,X) = ds- lzdn(Z) ANdDL®@ (X,Z), X,ZeTl(IN). (2.51)

Proposition 2.2.16. Let {N,y, €, € @,Y} be hypersurface data embedded in a semi-
Riemannian manifold (M, ) with embedding ¢ and rigging . Let {¢"a} be a (local) basis

def

of T(TN) and e. =** @.(e"). Then, the Riemann tensor R apys 0f § satisfies

°

$(N) :
R %Pee® Lo+ 2. Y +209 U +U  p@
a5 bcd = LR%a Vid Vig o b[cVd] e
€ ( ) a 1
HN) +Yya 2 Fop+ Yoy nf +n® VC] 0@ (2.52)
R eapBeved v R +20 U +2vy U +2U0 Y
aBydapcd — af bad aVig b ble  dla ble dla

+ 20y Y, + 205 F g (2.53)
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2.2.3  Matter-hypersurface data and constraint equations

We have presented the formalism of hypersurface data, firstly by introducing the
metric data and secondly by studying the extrinsic component of the data. How-
ever, the information concerning the matter content of the would-be ambient space
cannot be extracted from neither of these two data sets. For instance, in the stand-
ard Cauchy problem of General Relativity (where one prescribes data on a space-
like hypersurface), the matter data corresponds to the energy density p and the

energy current J. These quantities are defined by
def
PE Ty and J(X) = - T, X)|g

where T is the energy-momentum tensor of the spacetime, N is the spacelike
hypersurface of initial data, v is the observer orthogonal to N at all of its points
and X € T'(TN"). At the abstract level, one should prescribe a function p and a
covector J so that a posteriori (i.e. once the initial value problem has been solved
and a spacetime and a spacelike hypersurface N have been constructed) they get
their corresponding physical meaning. In fact, in order to be able to accommodate
other geometric theories of gravity, it is advantageous to define p and ] not by
means of the energy-momentum tensor but in terms of the ambient Einstein tensor.
Note that even in General Relativity the two definitions are not the same when the
spacetime has a non-zero cosmological constant. We keep using the term “matter”
to refer to these quantities due to its close relationship with the energy-momentum
tensor in General Relativity, but we always work with purely geometric objects

independent of any field equations.

In order for p, J to become the suitable physical/geometrical quantities at the
spacetime level, we need to impose a set of restrictions to them, usually known
as constraint equations. Apart from p, J themselves, the constraint equations involve
the first and second fundamental forms. These equations are well-known in the
spacelike case (see e.g. [105]), and have been generalized for hypersurfaces of ar-
bitrary causal character in [58].

The constraint equations are closely related to the concept of matter-hypersurface
data [58], which we present next. As usual, we first introduce the corresponding
definitions at the abstract level and then we endow them with a physical and
geometrical interpretation through the notion of embedded data.

Definition 2.2.17. (Matter-Hypersurface data) A tuple {N , y, €, £ @, Y, py, J} formed by
hypersurface data {N,y, €, € @,Y}, a scalar pp € F(N) and a one-formJ € T(T"N)
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defines matter-hypersurface data if, under the action of the gauge group element G¢v),
{0¢,]} transform as

Gene) = po +JV), Gen() = 27 (2.54)

and the following identities, called constraint equations, hold:

1 - 1. :
p) = _Rcbcdpbd + , eﬂRabchbdnc +Vy, (Pbdnc _ Pbcnd)YbC

2
1 ( )
+ ,(2) pbd pacy ple Yoo + ) (pbd,c _ prepdy @ @ vy U
2 V p@ )
+ (Upe + n' )ch) Fy @ 4 ZYbC(Fdf - Ydf)nf , (2.55)
Jo= {a i{”bcd nbnd — 2V (n@ptd — ybpd)y b[céf] +2(P¥ - g (Z)nbnd)vo[c Udlb
( 1
°V
- (H(Z)Pbd - nbnd) (Ub[c + Tl(Z)Yb[C) d] I @) + ZYb[CFd]lef
= (PYnf = PPTu)YyqUc s = 2PP0f Uy Fy . (2.56)

The next theorem, which constitutes one of the main results in [58], justifies both
condition (2.54) on the gauge behaviour of {p¢, J} as well as the explicit form of
(2.55) and (2.56).

Theorem 2.2.18.Let {N , v, €, £ @, Y, py, J} be matter-hypersurface data and assume
that the hypersurface data {N , y, &, 2 @, Y} is embedded in a semi-Riemannian manifold
(M, g) with embedding ¢ and rigging {. Then,

-pe = ¢ Ein(v) , (2.57)
-J = ¢ (Eing(:, v)), (2.58)

where Eing is the (2-covariant) Einstein tensor of (M, g) and v the (unique) normal vector
field along (N ) satisfying ¢({,v) = 1.

Definition 2.2.17 generalizes the notion of abstract spacelike initial data by includ-
ing some matter-content information in addition to the hypersurface data. On the
other hand, Theorem 2.2.18 provides the constraint equations for the case of fully
general hypersurfaces in semi-Riemannian spaces. We emphasize that the con-
straint equations have been written in terms of the metric hypersurface connection

V, which means that the dependence on the extrinsic part of the data Y is fully
explicit. This turns out to be highly useful in certain contexts, as we shall see later.
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2.3 geometry of submanifolds

The geometry and properties of embedded null hypersurfaces, which constitute
the main object of this thesis, will be analyzed in detail in the next section. However,
prior to this discussion it is convenient to revisit some fundamental aspects on sub-
manifolds of arbitrary codimension. The underlying reason why this is helpful is
that in sufficiently local domains within any null hypersurface there always exists
a Riemannian submanifold embedded in the hypersurface itself, so the geometry
of submanifolds will therefore play a fundamental role also. General references on
this topic are e.g. [106], [107].

Consider a semi-Riemannian manifold (M, g) and a manifold X of codimension
greater or equal than one. Let 1: X '=---- M be the embedding of X in M ad
define X £ /(X) c M. Itisa general fact (see e.g. [108]) that the Lie bracket of
two vectors tangent to a submanifold is also tangent, namely

X,YET TX == [X,Y]er TX . (2.59)

The first fundamental form of X is the tensor field y defined by

def

y=1rg (2.60)

and X is called degenerate whenever the radical of y has dimension greater or
equal to one, otherwise it is referred to as non-degenerate or Riemannian because
y defines a metric.

A fundamental concept in the context of submanifolds is the notion of normal
vector field. Any vector field N along X is said to be normal to X if it satisfies

dN, )20 vX e (X (2.61)
Observe that the combination of (2.59) and (2.61) entails that
g(N, [X, YD 2o (2.62)

Given a vector field N normal to a submanifold, one can define (see e.g. [106]) the
so-called second fundamental form KN of X with respectto N as

KN £ /' (VN), (2.63)
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a fact that was already used in (2.47). We have defined the second fundamental
form as a tensor intrinsic to X. However, a closely related definition can al\l]so be
made on its image X. We therefore define the second fundamental form K of X
as the tensor field

KV(X,Y) € ¢(VxN,Y) VX, YET(TX), (2.64)

which of course satisfies that KNN= 1" K N, By virtue of (2.61)-(2.62), it is immediate
to prove that KN (and hence K ) is symmetric, since

KV(X,Y) = X g(N,Y) -g(N,VxY) = —¢(N, [X, Y]) - g(N, VvX)
=-go(N,VvX) = =Y ¢(N,X) + g(VyN, X) = KN(Y, X).

Moreover, KV is directly related to the Lie derivative of the metric ¢ along N
according to

Eng(X,Y) = 2KN(X,Y) VX, YET(TX). (2.65)

To prove this fact explicitly we need to extend X, Y off X, although the final result
(2.65) obviously does not depend on the extension. Using that K- N is symmetric,
we find

(Evg)(X, Y) £ £x(g(X, YV)) - g(EnX, Y) - g(X, £8Y)

L o(VxN, Y) + g(X, vN) £ 2kN (X, V).

Observe thatrescaling N in (2.64) by a non-zero function f € F' (X') (i.e. perform-
ing the change N —---- fN) simply multiplies R’ by f. Up to transformations of
this type, one can define as many second fundamental forms as directions normal
to X happen to exist.

For the rest of this section, we make the harmless abuse of notation of identifying
vector fields on I'(TX) with their counterparts along X .

A particular case of the above occurs when X, X are Riemannian. Then, as we
have already mentioned, the first fundamental form y constitutes a metric and
hence one can define its corresponding Levi-Civita connection, which we denote
by V. In these circumstances, it is a general fact that the tangent space T,M at

a point p € X decomposes as

def

T,M =T, X @ (T, X)L, where (T,X)! 2" (XeT,M|g(X,Y) = 0VY€ET,X}
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An immediate consequence of the above is that the covariant derivative VxY with

X,Y € T(TX) can be split in a tangent and an orthogonal part, namely
VxY = DxY - K (X,), (2.66)
where DxY € TI'(TX) and K (X, Y) is a normal vector field, i.e. it satisfies

g K (X,Y),Z) =0 VZEeT(TX). (2.67)

N
Observe that the vector field K (X, Y) verifies ¢(K (X, Y), N) = K (X, Y) because

2K (X,Y),N) = g(DxY - VxY,N) = —g(VxY, N) = g(VxN,Y) ='KN(X, ).
It is well-known that D defines a covariant derivative on X. Even more,

(Dxy)(Y, 2) = X(y(Y, 2)) - y(DxY, Z) - y(Y, DxZ)
= X(g(Y, 2)) - g(VxY, Z) - g(Y,VxZ) = (Vxg)(Y,Z) = 0,

so D actually coincides with the Levi-Civita covariant derivative v of y and

therefore (2.66) can be rewritten as
VxY = VY -K (X, Y) VXY € I'(TX). (2.68)

One of the main results of non-degenerate submanifolds is the so-called Gauss
equation or Gauss identity, which we derive next. We then apply this result to
prove an identity relating the pull-back to X of the Ricci tensor of M with the

Ricci tensor of X. This latter result will be required in Section 2.5.

Lemma 2.3.1. Consider a semi-Riemannian manifold (M, ) and a non-degenerate sub-
manifold X © M. Let R, RW) be the curvature operators of the Levi-Civita covariant
derivatives V, VY of M and X - respectively. Then, for any X,Y,Z,W € T(TX), it
holds

g WRX,VZ =g W,RN(X,V)Z
— ¢ KXW,K(Y,2) +g K(Y,W,K(X,2) . (2.69)

Proof. By direct computation one obtains

R(X,Y)Z = VxVvZ - VyVxZ - VixviZ
=vx VWZ-K(,2) -vy VWZ-K (X, 2)
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=vWvVz-k x,vWz -vx K (v,2) -vVvYVz
+K Y,VYZ +Vy K(X,2) -V Z+K(XY]2)

= RUX,NZ-K X,vVZ +K Y,vVz
+K (X, Y,Z2)-Vx K(Y,Z) +Vy K(X,2) . (2.70)

Computing the scalar product g(W, R(X, Y)Z) then yields (recall (2.67))
gW,RX,Y)Z =g W, RWX,Y)Z +g VxW,K(Y,Z) —-¢g Vy\W,K(X,2) .
from where equation (2.69) follows at once after using (2.67) and (2.68). ]

We can particularize the setup above to the case when (M, ¢) is Lorentzian and

X is Riemannian and has codimension two. In these circumstances, we can always

select two linearly independent vector fields N1, N2 € I'(TM)|y- ﬁgtisfying (2.61)
and define the corresponding second fundamental forms KM, K , one with re-
spect to each normal vector. If in addition N1, N2 both happen to be null, then

u = g(N1, N2)/= 0 and

1 ¢ )
KX Y) = K¥“(X, Y)N1 + K¥M(X, Y)N2 vX, Y € I(T X). (2.71)
u

This transforms (2.69) into
(
1
¢ W RX,Y)Z =g WRWX, Y)Z + = -KM(Y,2)KM(X, W)
u

)
- KM (X, W)KN2 (Y, Z) + KM (X, 2)KM2 (Y, W) + KN (Y, WKN (X, Z) . (2.72)

The next identity is a consequence of the Gauss equation as written in (2.72). It
relates the Ricci tensor of X , the pull-back to X of the Ricci tensor of M and ad-
ditional normal-tangent-normal-tangential components of the ambient curvature

tensor.

Lemma 2.3.2. Consider a Lorentzian manifold (M, g), a non-degenerate submanifold
X © M of codimension two and two linearly independent null vector fields N1,N2 €

['(TM)|y- which are normal to X . Define the scalar y = g(N1, N2)/= 0 and the second
fundamental forms KN, =Nz aecording to (2.64). Let {va} be a basis of T(TX), Ras the
pull-back to X of the Ricci tensor of (M, Q), y the first fundamental form of X and R f%)
the Ricci tensor of X . Then,

( )

1
P NENYR oy 090R + 0B 0g =
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v ( )

RY, = Rap + *— m ~Kj, KH-KZ,VfKNZ +K KBZ-i-KNlKNZ . (2.73)

In particular, if any of the second fundamental forms KN, KN2 is identically zero, it holds

( )
1
U NFNYR yopy %R + vBog = R{Y — Ras. (2.74)

=

Proof. Clearly {N1, N2, va} constitutes a basis of ['(TM)|y, so we can decompose

the contravariant metric g#" as
1

gV = ; NENY + NYN§ + ylorp, (2.75)

where y/ are the components of the contravariant metric yir of X' . Thus,
( ) 1
Rap &' Rap 090 = §"R yavpv% 0§ = ViokpY + u NENY + N{NE R a0 05
( )
1
= V"R yavg0Hv® 0 oPs - 'UNqN‘gR papy VAP + 0P 0% (2.76)

Now, equation (2.72) in index notation reads

( )

1 N N N Ny N N; &N
R 0% 0% = Rify + 1, K I - KK + KUK + Ky K2 (2.77)

Combining (2.76) and (2.77), the result (2.73) follows at once after noticing that
RW) det VI]R(Y) . The second part of the lemma is immediate from (2.73). =
AB

IAJB
The existence of two null normal vector fields also allows us to define, at any point

p € X , the so-called torsion one-form s|p: Ty X —---R by

sX)|, =" _g(VxN1, N2)q VXET,X. (2.78)

¢(N1, N2) 1p

Clearly the torsion one-form depends on the two normal vector fields N1 and No.
However, for notational simplicity we refrain ourselves from explicitly showing
this dependence on the notation. Observe that definition (2.78) is insensitive to
the rescaling of N2 by a non-zero function, while the change N1 —---- fN1 with
fE€F'(X) induces

$(X) —--- s(X) - X(In f). (2.79)

As we shall see next, the notions of second fundamental form and torsion one-

form can be generalized to tensor fields constructed from everywhere transverse
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(instead of normal) vector fields. In any case, they together with the first funda-
mental form codify the essential geometric information about a submanifold.

24 geometry of null hypersurfaces

As anticipated before, we devote this section to study the geometry of null hyper-
surfaces. We provide several definitions and results to be used later on. General
references for the topic are [109], [98], [110].

Our starting point is the notion of embedded null hypersurface.

Definition 2.4.1. (Embedded null hypersurface) Let (M, g) be an (n + 1)-dimensional
semi-Riemannian manifold and N a manifold of dimension n. An embedded null hyper-

surface is a subset N C M satisfying that there exists an embedding ¢ : N '——-- M
such that ¢ (N) = N-and that the first fundamental form y of N, defined by y ="¢" g,

is degenerate.

We let T,N L denote the space of vectors at p € N that are orthogonal to N'. It is
well-known (see e.g. [98], [110]) that there exists only one degenerate direction in
N~ This means that at any point p € N there exist a normal, non-zero vector field
§| p» €Ty N, ie. satisfying

#/=0  (BXkly=0 VX| € T,N. (2.80)

Thus, 047 e T'N n TrN - Since ¢. is of maximal rank, the dimension of T,
is n so the dimension of TN < is 1. It follows that TN 1 < T,N and hence
(8,) = T,N" L and all the vectors in T,N L are null. We let TN * oS (TN )L,
and it is clear that this constitutes a subbundle to TN

A null generator k of N is defined to be a nowhere zero section k€ T TN * . Since
they are by construction non-zero, their integral curves are likewise referred to as

null generators of N.

All null generators are necessarily proportional to each other. Moreover, they are
geodesic (not necessarily affinely parametrized) vector fields (see e.g. equation
(2.21) in [98]). In fact, any vector field n which is null and everywhere tangent to
N is necessarily geodesic, since forany X € I' (T N") it holds

(X, Vo) TV, (g (X, ) - g(Va X, n) T —g(£,X, 1) — g (Vxn, 1))
~g(60X,m) = X (g (0.) T ~g(en X, m) Do,
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where in the last step we particularized (2.59) for Y = n and X = N. Thus,
Von € T TN, hence it is proportional to 7 itself, i.e. geodesic. Denoting the
subset of zeroes of n on N by S, we can define a functionk € F(N \ S) (usually
referred to as the surface gravity of n) as the proportionality function between Vpn
and n, i.e.

Von = kn on N\ S. (2.81)

In particular, for a null generator k of N (which by definition is such that S = @),
we define its surface gravity k« on the whole N as

Vik = Kik. (2.82)

Any two null generators k, k' with respective surface gravities K, K are related by
- -

k = ak where g € F' (N). Therefore, their surface gravities verify

rk' = Vi k' = (k(a) + akok’ == K. = k(a) + ak. (2.83)
K r ’ — —_— -

It is natural to ask whether one can prescribe k- freely, i.e. if it is possible to find
ak witha specific surface gravity ki’ of our choice. Given any smooth function K’
and having fixed k (and hence also &) equation (2.83) is a linear inhomogeneous
ODE for a along each generator. This equation can be solved globally along any
generator. However, the resulting function a need not be smooth on N . One pos-
sible reason is that generators can come very close to themselves (or even be dense
in N7). Then, there is no reason why the value of a integrated along the curve at
the infinitely close point should stay close to the value of a that we started with.
Thus, generically equation (2.83) does not admit a globally well-defined smooth
solution a unless some global hypotheses are made on N . We shall have more to
say on this later on.

An embedded null hypersurface N” is a codimension-one degenerate submanifold
of M to which any n}(ﬂl generator k is normal. Therefore, one can define the second

fundamental form K of N"with respect to k according to (2.64), i.e.

k def

K = g(Vxk,Y) VX, YET(TN). (2.84)

Then, equation (2.65) transforms into

X V) Y2KF (X, Y) VX YET(TN). (2.85)
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Although we have seen that equation (2.85) is satisfied for general submanifolds ad-
mitting a normal vector field, in the context of null hypersurfaces this fact becomes
even more relevant. The underlying reason is that null generators are tangent to
the hypersurface everywhere, which makes (2.85) intrinsic to N°. More concretely,

using the well-known property
¢ £45.2T = £¢°T), (2.86)

valid for any vector field Z € I'(TN ) and any covariant tensor field T along N,
one can compute the pull-back of (2.85) to N and obtain

N k def k def
£y = 2K, where ¢p.n=k and K = ¢ K (2.87)

Remark 2.4.2. In what follows, given an (n + 1)-dimensional semi-Riemannian manifold
(M, g) and a vector field X € T(TM), we shall use the notation X = <(X, ). For
instance, we let k £ gk, -).

Observe that Kk = ¢ (Vk). More details on the second fundamental form K*will
be provided later in Section 2.4.1. However, for the time being it is worth stressing
that (2.87) is a well-known relation (see e.g. [98]) between the rate of change of
the first fundamental form of N along the degenerate direction and the second
fundamental form of N.

One of the main purposes of this thesis is to address the problem of matching two
spacetimes across a null hypesurface. In this context N will be two-sided and M
will be oriented and Lorentzian, so for simplicity we take this assumptions for the
rest of this section. In these circumstances, y is semi-positive definite (which in
particular means that all non-null directions of N are spacelike) and N always ad-
mits (see Lemma 1 in [58]) an everywhere transversal vector field Lo, i.e. satisfying
Lo ¢ T,N"Vp € N-

We now introduce the notions of transverse submanifold, cross-section and foli-
ation of a null hypersurface.

Definition 2.4.3. (Transverse submanifold, cross-section) Let N be an embedded null
hypersurface and k a choice of null generator. A transverse submanifold of N is any sub-
manifold S € N to which k is everywhere transverse. If, in addition, each integral curve

of k crosses S exactly once then S is a cross-section.

Definition 2.4.4. (Foliation of a null hypersurface) Let N° be an embedded null hypersur-
face and k a choice of null generator. Assume further that there exists a function A € F (N'),
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called foliation function, such that each subset Sy, « {p € N | A(p) = Ao € R} defines
a cross-section of N'. Then, the family of cross-sections {Sa} define a foliation of N

Remark 2.4.5. Any null generator is not only transverse to a given a transverse submani-
fold S € N but also normal to it. This means that one can define the corresponding second
fundamental form of S with respect to k according to (2.64). This tensor field is simply a
restriction to S (and to vector fields tangent to S) of (2.84), so in the followipg we denote
the second fundamental forms of N and S with the same symbol, namely K .

Remark 2.4.6. The existence of a cross-section on N is a non-trivial global assumption
on the hypersurface.

Remark 2.4.7. In what follows, we shall use the names cross-section and section indis-
tinctly.

A remarkable property of null hypersurfaces admitting a section is that one can
always find an affine null generator (see e.g. [98]). Indeed, given a choice of null
generator k, one can always construct another null generator kK = ak by solving the
first-order differential equation k(In |a|) = =&« for a € F “(N ) along the integral
curves of k. For that it suffices to provide nowhere vanishing initial data a|s on S.
In this case, there are no obstructions in solving globally this infinite collection of
ODEs. In particular, note that now no generator can come close to itself because of
the presence of a section. Once a and k have been constructed, it follows at once

that K = 0 as a direct consequence of (2.83).

Remark 2.4.8. If N admits a cross-section then any null vector field n which is tangent
toN can be written as

nY ak, (2.88)
def

for an affine null generator k of N and a function & € F (N"). Defining S = {p €
N | a(p) = 0} and particularizing (2.83) for k' = n, k = 0, one obtains

N\ S
k 25 (a), (2.89)
where K is the surface gravity of n. If, in addition, K is constant along the null generators

of N\ S, then the general solution of (2.89) is & = f + kv, where the integration function
f € F(N\S) satisfies k(f) = 0 and v is any scalar function on N \ S wverifying

k(v) = 1. Summarizing, in these circumstances n will be given by

N2 (Frko)k where k() =0, k)=1, Vik =0, k(¥ =0. (2.90)
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Observe that in the case when N\ S is dense in N, both n and k being well defined along
N means that n = (f + Kv) k everywhere on N

Whenever N can be foliated by spacelike sections {S4}, the fact that k is transverse
to any leaf S, implies that k(A)/= 0 everywhere on N". Observe that in general the
global existence of A in Definition 2.4.4 entails a strong topological restriction upon
N". We emphasize, however, that the existence of a foliation function can always be
granted in sufficiently local domains of N.

2.4.1 Quotient space in a null hypersurface

As already mentioned, the fact that the first fundamental form of a null hyper-
surface is degenerate represents a geometric difficulty, as one can define neither a
metric on N nor its inverse tensor. Therefore, there is no natural way of raising and
lowering indices of tensors on N. The standard way of dealing with this difficulty
is to introduce a quotient structure (see e.g. [109]) by defining for any Z, W € T,N

the equivalence relation ~ as

def

Z~W Z-W = ak (2.91)

where a4 € R.

Definition 2.4.9. Let N be an embedded null hypersurface and p € N7 Then the quotient
vector space Ty N [k is defined as

T, N /k¢& Z:Z€T,N , (2.92)

whereZ2 XeT,N :X~Z . The fiber bundle on N is the collection of all quotient
spaces

TN/k £ | T,N /k (2.93)

EN
This quotient structure of T, N allows to construct a metric 9 and a symmetric
k
2-covariant tensor 1 (closely related to the second fundamental form of N) on

the quotient bundle. The metric, denoted by #, is the symmetric 2-covariant tensor

defined by
A AN VAT (2.94)
p

where Z W e TN /k. The tensor is well-defined because the right-hand side is
independent of the representatives Z € Z, W € W. Besides, for any non-zero Y €
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TyN /k (i.e. classes associated to spacelike directions Y), it holds that & Y,Y lp =
(Y, Y)|p > 0. Thus, h is a positive definite metric.

At any transverse hypersurface S € N~ (in particular if S were a cross section), h
is isometric to the induced metric & of S at any point po € S. Indeed, the map

TpyS —-- Ty, N /k defined by X —--- X is an isomorphism1 and for any two vectors
Z,W € Ty S it holds

h ZW w0 = (Z + ak, W + bk)glwo = (Z, Wglpo = 11 (Z, W) |so. (2.95)

Thus, & is also positive definite and we denote by h* its associated contravari-
ant metric. Their components in a basis {vi|po } of Ty,So and its corresponding
dual {@'|p0 } will be denoted by ki and h' respectively. We will use these tensors
to lower and raise capital indices, irrespectively of whether they are tensorial or
identify elements in a basis.

As already mentioned, one can also define the so-called quotient second fundamental

form with respectto k, denoted by I , as the 2-covariant tensoron T, N /k given by

R ZW |, & oV W),  Z W e TN /k (2.96)

As before, this tensor is well-defined in the sense that it is independent of the

choice of representatives. In fact, given 4,b € R it holds

( )
" 7+ ak W+ bk |y = (Vz_ak, W + bk)g|»

= (Vzk, Wg + D(Vzk, k) + a{Vik, W)g + ab(Vik, ke |,
= (Vi W), = Y ZW |,

where we have used that 2(Vzk, k); = Z({k, k);) = 0 and (2.82).

def

It is immediate from definitions (2.84) and (2.96) that K" ZW |» =" KNZ, W))».
k
Besides, it is straightforwarq( to conclude that the quotient tensor K and the

second fundamental form K of S with respect to the normal k (recall the nota-
tional considerations in Remark 2.4.5) obey the relation

R ZW | =K@ W) |y, VZWE TS (2.97)

IBoth spaces have the same dimension and the kernel is obviously {0}.
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Observe that, as a direct consequence of (2.65), when there exists a transverse
hypersurface S of N-, any two vector fields Z, W € I'(TS) which are extended off

S by requiring [k, Z] = [k, W] = 0 satisfy

k(g (Zz W) 22K (Z,W). (2.98)

As exposed in Section 2.3, the fact that S M is a codimension-two transverse
submanifold allows us to select another linearly independent normal direction
and define their corresponding second fundamental form and torsion one-form.
We also mentioned that these two tensors could in fact be generalized for arbitrary
transverse (non-necessarily normal) directions. This is more convenient for the
purposes of this thesis, so we define, for any choice of vector field L everywhere

transverse to N' (which always exists, as we already discussed), the 2-covariant
tensor ©! and the covector 0. at p € S by

de de ;
OL(ZW) |p = (VL W)glp, 0 (D) ]y & - o k)(Vzk, L)s|p. (2.99)

Had we chosen L to be null and orthogonal to S then @ and o: would be the
second fundamental form of S with respect to L and the torsion one-form accord-
ing to (2.64) and (2.78). However, for our purposes on this thesis it is convenient
to allow L to be unrelated to the sections. In the general case oL and O are gen-
eralizations of those tensors and still encode extrinsic information of the sections.
However, we emphasize that @ is not symmetric in general.

2.4.2  Raychaudhuri equation on a null hypersurface

A fundamental result of null hypersurfaces is the so-called Raychaudhuri equation
(see e.g. [98], [111]). In Chapter 4, we shall prove that for abstract hypersurfaces it
is possible to define a tensor field (which we call constraint tensor) which in the null,
embedded case coincides with the pull-back of the ambient Ricci tensor. Among
many other results, we will recover the Raychaudhuri equation at a purely abstract
level. In order to compare such abstract identity with the standard Raychaudhuri
equation, we recall the latter here.

Let (M, ¢) be a semi-Riemannian manifold endowed with a metric g of Lorentzian
signature. Consider an embedded null hypersurface N~ © M. Then, there always
exists a suitable neighbourhood O of N which can be foliated by null hypersur-
faces {N,}. We take a null generator k of N and extend it to O so that it is a

null generator of all leaves {N,}. This vector field k hence verifies Vik = Kk on
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each Nu (cf. (2.82)). It also defines a null congruence on O and, since k“< gk, +)is
normal to all leaves {N,}, it satisfies the irrotationality condition

kiVikq = 0 (2.100)

on 0. Now we let L € T(TO) be a null vector satisfying ¢(L, k) = 1. We define
the projector I1 = g — 2L Qs k to each leaf Nu. Observe that Il is symmetric and
satisfies II(k, -) = 0, TI(L, -) = 0 everywhere on O. In these circumstances, it is a
general fact that the derivative V kv can be decomposed as [111]

V/ka = quv + F/ka + k/_/av, where (2101)
quv == l_!uaHVB Vokp, Fyu & HpaLBVGkB + KLy, ay I (Vgky — Luk@Vgka).
Note that k¥F, = k« and kay = k#LP(Vgk, — Lu,k%Vgka) = O because k is null

everywhere on O. We can decompose the tensor field g, into its symmetric and
antisymmetric parts ¢ and wy, i.e. gy = Guy T Wi Inserting this decomposi-
tion into (2.100) yields kywva + kvWay + kawp = 0, which upon contracting with
L¥ gives wva = 0 as a consequence of 2wl = (gu — qu)L¥ = 0. Thus, gu is
symmetric. This property is just a manifestation of the fact that the second funda-

mental forms of the leaves N« are all symmetric.

The (now symmetric) tensor gquv can also be separated into a trace part and a trace-
less part with respect to 1,V as

0
Gov = S T 1 v (2.102)

where 6 & [1"g y or, more explicitly, 6 = H“'BVakB = Va k9 — kx, where we again

used that g(k,k)|o = 0. Now the Ricci identity for k yields
VaViky = VuVaky = R JSka == W)Wk 2 V,Vik 2 R Ak £ Rgik .©
Contracting with k¥ and using (2.101) twice and "¢,y = 0, one gets

Ropk%H = KMV — KHV V00
= VA((k“ Viuk?) — (VAkH)(VkA) — kHV VAR
) ( 1
A ?]
:VA ka/J kA —(VA kp) S-u +n_1HIJA_I_|_ FpkA+kpaA —k(Q i Kk)
+ I1
= k(@ + ki) - ( (n 64)2 p/\l_[/\“ + Ki - k(6)

g_2

- k(6),

=kKO—-¢ -
U7 T g
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where we have defined ¢2 Lef ¢v¢ v and used that I1911 @ =n-1 C®lgs = 0.

This gives the well-known Raychaudhuri equation

2

e _
k(6) - KO + n-1) + ¢ + Rk k) =0, (2.103)

where 6, ¢uv are the so-called expansion scalar and shear tensor respectively. In
particular, this equation holds on N . It is worth stressing that, although 6 and ¢
have been defined by means of an extension of k off N , these objects are in fact

intrinsic to the null hypersurface.

2.4.3  Totally geodesic null hypersurfaces

For later use in the thesis and specially for the discussion on Killing and non-
expanding horizons that we perform in the next two sections, it is convenient to
revisit briefly some aspects of totally geodesic null hypersurfaces. We first provide
the precise definition.

Definition 2.4.10. (Totally geodesic null hypersurface) Let (M, g) be a semi-Riemannian
manifold. An embedded null hypersurface N € M with vanishing second fundamental
form with respect to a null generator k of N is a totally geodesic null hypersurface.

By Definition 2.4.10, a totally geodesic null hypersurface N~ satisfies (recall (2.84))
k def

K = g(Vxk,Y) =0 VX, YET(TN). (2.104)

Even more, any null (not necessarily everywhere non-zero) vector field n which is
tangent to N' verifies

g(Vxn,Y) = 0 VX, YET(TN) (2.105)

as an immediate consequence of (2.104) and n being proportional to k on N . Thus,
the vector field Vxn|gis null and tangent to N". Denoting again by S the set of
points of N where n vanishes, we can define a one-form @ on N \ S by

vin 2 @(X)n  VXET(TN \S). (2.106)

Observe that @ is only univocally defined when acting on tangential vectors to
N \ S. This means that, as a spacetime one-form defined along N \ S it is not

uniquely defined. One can always add a multiple of the normal one-form, i.e.
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@ = ®+ fn, f € F(N7\ S), which also verifies (2.106). Imposing X = n in
(2.106) yields

S
) Xk (2.107)
so the surface gravity of n is directly related to @.

In particular, S = @ in the case of a null generator k of N, so its corresponding

one-form @ is defined by (2.106) on the whole N, while its surface gravity is given
by (2.107).

The formalism of hypersurface data can be applied, in particular, to the study
of totally geodesic null hypersurfaces. Since clearly the one-form @ constitutes a
fundamental object in such context, it is convenient to provide the connection of
@ with the tensor fields of the hypersurface data. This is done in the next remark.

Remark 2.4.11. Let us define hypersurface data {N,y, €, £ @,Y} embedded in (M, g)

with embedding ¢ and rigging { (see (2.22), (2.39)) so that $(N) = N. Then, the fact
that N is everywhere null meays, that N consists of null points exclusively. Therefore, §.n
is a null generator of N andn = 0 on the whole N (recall (2.6)-(2.9)).

In these circumstances, any null vector field n which is tangent to N can be written as
n = a@.n for a function a € F(N") that vanishes only at the zero set S of n. It turns out

that the pull-back ¢ @ can be expressed in terms of the one-forms s, r (defined by (2.11),
(2.44) respectively) and da. Indeed, combining (2.20), (2.25), (2.48) and (2.106) it follows

(. ) ( )
NSy, wxlan) - arn 2° X(a) + a(s(X) - #X)) ¢.n

A
12

N\ S
o(X)n D Vx n

because N~ (or N ) is totally geodesic, which means that the second fundamental form K,
defined by (2.45), vanishes (and hence so does U). Thus,

= 6%a+s—r=d(lnlal)—l—s—r (2.108)

at those points of N where a/= 0. Observe that, although @ is not univocally defined, its
pull-back to N is unique, as ¢ n = 0.

The reason why the one-form @ cannot defined everywhere on N is because at
points where n vanishes the right part of (2.106) vanishes while the derivative Vxn
does not need to be zero in general. In fact, from (2.108) it follows that @ must

diverge at points where a = 0.

Another remarkable property of the one-form @ associated to a null generator k
of N is that it is related to the tensor field o: defined in (2.99). In fact, given a



2.5 non-expanding, weakly isolated and isolated horizons 49

transverse submanifold S € N and a vector field L along N"which is everywhere
transverse to it, (2.106) entails

S 1 def
o(X) = mg(ka, L) = -ouX) vX € I'(TS). (2.109)

We conclude the section with a fundamental result of totally geodesic null hyper-
surfaces, namely that it is possible to define a covariant derivative operator V on
N by

VxY = VxY, VX, Y € [(TN). (2.110)

The derivative V is the induced connection on N and it is obviously torsion-free
and intrinsic to the horizon. Observe that it is automatically compatible with the
(degenerate) first fundamental form y of N, i.e. Vxy = 0 forall X e T (TN").

Remark 2.4.12. It is consistent to use the same symbol for the derivative V introduced in
(2.110) and for the hypersurface connection (recall (2.49)-(2.50)). Indeed, as we have seen
in Remark 2.4.11, the embedded hypersurface data corresponding to a totally geodesic null
hypersurface is such that the tensors U and K defined in (2.12) and (2.45) are both zero. In
these circumstances, (2.50) becomes (2.110).

One of the most common examples of totally geodesic null hypersurfaces are non-
expanding, (weakly) isolated and Killing horizons. All these sort of horizons will
be studied in detail in the next sections, so that the results above will become
helpful by then.

2.5 non-expanding, weakly isolated and isolated horizons

Among all types of horizons that have been studied in the literature, isolated ho-
rizons have been proven to be of great use in many interesting physical situations.
These horizons are introduced in General Relativity with the idea of being able
to mimic some properties of an event horizon of a black hole but without requir-
ing the existence of a Killing vector field in a neighbourhood of the hypersurface.
Since the concept of isolated horizon is less restrictive than that of Killing hori-
zon, it makes sense to construct the former by successively adding conditions to
a minimally restricted notion of horizon. This process gives rise to non-expanding
horizons and weakly isolated horizons.

In this section, we revisit several properties of all these horizons. We also obtain
the so-called master equation, i.e. an identity involving a second fundamental form,

curvature terms and the torsion one-form of a section. This equation is known
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to hold for isolated horizons and for multiple Killing horizons (we discuss this
in Section 2.6.1). In Chapter 6, we will generalize this equation to any null hy-
persurface admitting an extra null and tangent vector field. For further details on
non-expanding and (weakly) isolated horizons, we refer to [95], [96], [97], [1], [98],
[99] and references therein.

We start with the concept of non-expanding horizon as originally presented in [1].

Definition 2.5.1. (Non-expanding horizon) Let N be a null hypersurface embedded on an
(n + 1)-dimensional spacetime (M, g). Then, N is a non-expanding horizon if

(i) N is diffeomorphic to S*-1 < R, where S*1 is the (n — 1)-sphere and the null

generators of N are along R.
(ii) The expansion of any null generator of N vanishes.

(iii) The Einstein field equations hold on N and —T“Bkﬁ, where Tqp is the energy-
momentum tensor of M, g), is causal and future on N for whatever choice of
future null generator k of N

Observe that Definition 2.5.1 does not depend on the choice of future null gener-

ator k.

We next summarize some implications of Definition 2.5.1. The first three are presen-

ted in separate remarks, for which we also provide proof.

Remark 2.5.2. A non-expanding horizon N is shear-free.

Proof. For any future null generator k, the Raychaudhuri equation (2.103) for a null
congruence without twist (and with no expansion, cf. (i)) reads ¢up¢?® + T(k, k) =
0 after using the Einstein equations (note that the cosmological constant is allowed
to take any value). Now, T(k, k) = 0 necessarily because of (iii), while ¢qg¢? = 0
because the induced metric on the sections is positive-definite. Thus, both terms in
the Raychaudhuri equation must vanish and hence ¢ = 0. ]

Remark 2.5.3. A non-expanding horizon N is totally geodesic.

Proof. The shear ¢, the twist w and the expansion 6 are zero in the present case, so
the tensor field g,v defined by (2.101) is identically zero. This immediately proves
the claim. [

Remark 2.5.4. There exists a function G € F(N') such that Ric(k, -) = Gkon N . In
particular, Ric(k, X)| § = Oforany X €T (TN).
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Proof. By the Einstein equations Ric(k, -) and T(k, -) differ by a vector proportional
to k. Since by hypothesis -T(k, -) is causal future and perpendicular to k (because
T(k, k) = 0, as already shown in the previous remark), the only possibility is that
T(k, -) is proportional to k and the result follows. O

Observe that N being totally geodesic means that all results in Section 2.4.3 apply,
as we anticipated therein. In particular, for each null generator k there exists a one-
form @ along N defined by (2.106) and the surface gravity of k is given by (2.107).

We also have the derivative operatorv introduced in (2.110) at hand. We continue
with the definition of weakly isolated horizon.

Definition 2.5.5. (Weakly isolated horizon) A weakly isolated horizon is a non-expanding
horizon N endowed with a null generator n such that

E@)X) Y0,  VXer(TN), (2.111)
where @ is a one-form field along N satisfying (2.106).

Given a non-expanding horizon N, the fact that n is null and normal along H

allows one to define its associated surface gravity K € F (N") according to (2.81).
We also let/: N '—--- M be the embedding of N into M such that (N) = N.

Condition (i) in Definition 2.5.1 means that any non-expanding horizon admits a
foliation by spacelike cross-sections. Thus, one can always select one such cross-

section S © N and let y, h be the corresponding embedding ¢ : S '=--- N of S
into N and the induced metric on S respectively. For simplicity, we identify S, X €
['(TS) with their counterparts @(S), w.X. We also construct a foliation function
v by fixing v|s and solving the equation n(v)|N = 1. In these circumstances, the
leaves {S.} of the foliation are defined by So; = {p €N | v(p) = vo € R}.

Any given vector field X € T'(TS) can be extended uniquely to N by solving the
evolution equation £, X = 0. Moreover, the extension X € I'(TN") is everywhere
tangent to the foliation (i.e. such that X(v) = 0), since

0 (£, X)) ¥ n(x@) - X(nw@) T n(X@))
== X(v)|g = X(@©)|s = 0.

This allows us to define L € I‘(TM)|N as the unique vector field satisfying

g(L,n =1, ¢(L,L) =0, gL, X) =0,
VX ET(TN) satisfying £,X =0, X(v) = 0.

(2.112)
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Observe that (2.112) immediately entails (recall the notational considerations of
Remark 2.4.2)

e=''L=dv and y'€=0. (2.113)

Given any two vector fields X, Y € I'(TN") tangent to the foliation and commuting
with 1, one can also construct a covariant derivative on each leaf S» by means of
the second fundamental form KX(X,Y) =
normal L (recall (2.64)). Indeed, the derivative D given by

¢(VxL,Y) of S» along the transverse

def

L
DxY ¥ vxy + K (X, V)n (2.114)

defines a torsion-free connection on the leaves {S.}. Moreover, it is immediate to
prove that DxY is tangent to the foliation, as (recall (2.112))

(DxY)(®@) ¥ g(dv, VxY) + KX, Y) T ¢(dv, VxY) - ¢(L, VxY) Yo,

and that D coincides with the Levi-Civita connection V" corresponding to the

induced metric h of each leaf S, because

(Dvh)(W, Z) 2 DW(g(W, Z)) - h(DVW, Z) - (W, DvZ)
Su Sv
= Vu(g(W, 2)) - g(WWW, Z) - ¢(W,VvZ) = 0 VYV, W, Z € I(TS.).

In particular, the considerations above apply for the section S, so we can write
_ L
VxW = VxW = VW - K (X, Win VX, W € I'(TS), (2.115)

where V is the induced connection on N (recall (2.110)).

L
Remark 2.5.6. In index notation, the tensor K reads

Kb = Vﬂ«eb (2116)

because, given any local basis {es} of ['(TN), one gets

L _ _
K (ese0) = g(Vea L, evr) = ea(g(L, er)) — g(Veaer, L) = ea( € b) — g(Veaer, L) = Va £ v.

To derive the master equation for isolated hLorizons, one of the key steps is to know

the explicit form of the Lie derivative of K along ), which we compute next.

Lemma 2.5.7. Consider a spacetime (M, ) and an embedded weakly isolated horizon
N © M with respect to a null generator . Let S € N be a cross-section and y, h be
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the corresponding embedding @ : S '—--- N of S into N and the induced metric on S
respectively. Denote by V", R" the Levi-Civita covariant derivative and the Ricci tensor of
S. Construct a function v € F(N') by solving n(v)|N‘ = 1 with v|s = 0, so that {S.}
with

Suy et {p EN | v(p) = vo €ER}

constitutes a foliation of N by spacelike cross-sections. Then, the Lie derivative of the tensor

field KL defined in (2.116) along n is given by ( )
w *(EqK L)BC s —kK . -V ) Wc —WsWc — ¢ Rsc - R (2.117)
- BC B ) 2 BC

where Rec, @Wa are the pull-back to S of the Ricci tensor of (M, g) and the one-form @
defined by (2.106) respectively.

Proof. Consider a local basis {ea} of ['(TS) and extend its vectors off S by requiring
£hea = 0on N .Then, 0 = (£5e4)(v) = nlea(v)) — ea(n(@)) = nlea(v)), so {ea }
are tangent to the leaves {v = const.}. We let {e1 ='n, e4} be a basis of I'(TN);

and construct a unique vector field L by enforcing (2.112). Observe that £4e. = 0

and g(L, e:) = const. by construction.

In these circumstances, we find

e%eBeYVaV L, = eV (eBe¥V L ) — (Y L )e¥e?V ef — (V L )ePeaVaeY

a a
apc B a & b ﬁvvﬁvﬁCa b'BBYl‘;/a <,

= ea(Kpo) = (VpLyec (Veaer) = (VpLy)e, (Veae) = VK,

which, together with the Ricci identity RepypolP = VqVgLy — VgVaL, for L, entails

na

V.KL - VKL (2.118)

RopyoefelLP

The multiplication of (2.118) with n® gives?

( )
N — —
RopyonefeyLe = n° VaK,. —V,Ke. . (2.119)

Now by (2.106) we know that for any X € I'(TN) it holds_er] = @(X)n on N.

Particularizing this for X = e. allows us to conclude that

vy T @, (2.120)

2As usual, we are making the harmless abuse of notation of calling 1.1 still as 1.
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Moreover, the tensor KL and the one-form @ are related by
Kpn “= -wy (2.121)

because

Ki(n, e) T VoL, e)) TV, (gL, e0) - g(L, Vies) & —g(L, Vien)

—o(L, £nes + Vear)) Y —@(e)g(L, n) ¥ —@(en).

Taking into account (2.120)-(2.121), the derivative £, K}, can be expressed as

£qR, = F)_Ya R, +Tvbl11)K)§C + (Ven YK L,
=y (;g . -~ ViKk )—l-eb(l’]”Kz%c) + (Veno)Kha
— 17 VeKk - ViR - Vowe - oy, (2.122)
Thus, upon inserting (2.122) into (2.119) one gets
1R n9(ePev + ePev)LP g £RE +V @ +w . (2.123)

2 aByp b c cb be ® o b

L
Equation (2.123) already provides the Lie derivative of K along 1 in terms of @

and a curvature term. We are interested in deriving an equation on the section S, so
we need to compute the pull-back of (2.123) to such section. The whole calculation
is based on the two identities (we identify vector fields on N with their images on
N)

Ragyon®(eBev + eBeV)LP S R" - Rac, (2.124)
BC CB =~ BC
a b S 4 b a b S h L

eAeBﬂWb = eAﬁz(eBWb) - WbeAv_aeB = Vaws + KI{AB' (2125)

Equation (2.124) can be obtained by particularizing (2.74) for N1 = n, N2 = L and
RY = R while (2.125) is a direct consequence of (2.115) together with (I’ @)(n) =
k. By (2.124)-(2.125), it is immediate to check that the pull-back of (2.123) to S is
given by (2.117). [

With (2.117) at hand, we can now present the definition of isolated horizon and
obtain its corresponding master equation.
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Definition 2.5.8. (Isolated horizon) An isolated horizon is a non-expanding horizon N —
endowed with a null generator n such that

[£,, V] T 0. (2.126)

L
An important consequence of this definition is that £,K = 0. Indeed,

0K, T £0Va 0, TVUE, 2 TV, VY0 + (Vpn)(V)

nz

Vo NV + Vi(nVeo) - NV Vo Y V.V,(nVeo) 2o,  (2.127)

where we have used (2.126), n(v) = 1 and € = dv. Observe that the combination
of (2.121) and (2.127) automaticallif implies £, = 0, so any isolated horizon is also a

weakly isolated horizon. Setting £, K = 0 into (2.117)(yields )
0 kK
S

+V e + wsc + 1 Rsc — R, (2.128)
L h
BC B ) 2 BC

which is the master equation for isolated horizons. In particular, the so-called ex-
tremal case that takes place whenever k = 0 transforms (2.128) into

= ) 5 ( BO

B 2
05 V" we +wpwec+ ~ Rsc-R' . (2.129)
Equation (2.129), valid for isolated horizons with respect to a generator n with

vanishing surface gravity, is known as the near horizon equation.

2.6 killing horizons

Killing horizons are a special type of null hypersurface and constitute one of the
main objects of this thesis. In particular, in Chapter 5 we introduce the notions of
Killing horizons of order zero and one; in Chapter 6, as we already mentioned, we
obtain a generalized master equation which relates properties of the generator of the
horizon with the intrinsic and extrinsic geometry of such hypersurface; and finally
in Chapter 7 we study the matching of two given spacetimes whose boundaries
are Killing horizons (of order zero). It is therefore convenient to provide several
definitions and fundamental properties of these sort of hypersurfaces. For further
details on the topic see e.g. [112], [113].

We start with the basic notions of Killing horizon, bifurcation surface and bifurcate
Killing horizon.
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Definition 2.6.1. (Killing horizon) Let n be a Killing vector in a spacetime (M, g). An

embedded null hypersurface H where 1 is null, nowhere zero and to which n is tangent
defines a Killing horizon of n.

Definition 2.6.2. (Bifurcation surface, bifurcate Killing horizon) Let n be a non-trivial
Killing vector in a spacetime (M, g). A bifurcation surface is a connected spacelike
codimension-two submanifold S of fixed points, i.e. where n|s = 0. The set of points

along all null geodesics orthogonal to S comprises a bifurcate Killing horizon with respect
ton.

A Killing horizon H may have one or several connected components. It would
therefore be natural to restrict ourselves to one of them. However, it turns out to
be more advantageous to select those connected components that share a common
topological boundary. More precisely, we can always restrict H so that its topo-
logical closure H is a smooth connected (necessarily null) hypersurface without
boundary. When dealing with Killing horizons, this shall be always assumed. We
wigf denote by S the (possibly empty) set of fixed points of n within H, i.e.
S={p € H_| nlr = 0}. The set of fixed points of a Killing vector n is either
the empty set or the union of connected totally geodesic closed submanifolds of
even codimension (this is proven in [114], [106] for the Riemannian and pseudo-
Riemannian cases respectively). Therefore, the Killing vector n cannot vanish on
open subsets of H .

As we did in Section 2.5, we define the surface gravity-k € F (H ) of n according
to (2.81) (this can always be done because 1 is null and normal along H , see the
discussion in Section 2.4). We emphasize that k can only be defined on H, as at
those points of H where n = 0 both sides of (2.81) vanish. For the rest of the
thesis, we use the standard terminology of calling H , H non-degenerate if K is not

identically zero on H, and degenerate otherwise, )
A fundaniental property of Killing horizons is that they are totally geodesic null

hypersurfaces (see Definition 2.4.10). This is a consequence of (2.65), which in the
present case yields g(er], Y) = 0 for any two vector fields X,Y € I'(TH ). This,
as we know from Section 2.4.3, means that there exists a one-form @ along H
defined by (2.106), and that the surface gravity of n is directly related to @ by
(2.107). In the case of Killing horizons, the two-form Vyn, at points in H also

adopts a simple form in terms of @ [112], as we prove next.

Lemma 2.6.3. Consider a spacetime (M, g) admitting a non-trivial Killing vector field

n which defines a Killing horizon H . Let @ be a one-form along H satisfying (2.106).
Then,

H
V/JrIV = Wulv — Wvhu. (2130)
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Proof. We start by taking a basis {L, n, X4} of I(TM)|r, where {Xa} are tangent
vector fields and L is everywhere transverse to H and satisfies g(L, Xa) = 0 and

g(L,n) = 1. Now, we define the two-forms Fuv des $(Vuny — VvNu) = Vun, and
Quy aee pov ™ Wy Ny, the latter only along H . We want to show that both tensors
are the same. We prove this by showing that all their contractions with the basis
vectors are the same. We start with Fp.

Hphpmssidy seafesc SAplocsly X0l £ kel FoiilonTnd

eing antisy metrlc means ,,,VL

'l = wh?n'la =
Finally, for any Y € I'(TH ) it holds that Fy YYLY = wyY* on H . Therefore, the
only non-zero contractions are

Fun’LY 2 wunt, P,JVX: V2 w,JXZ .

It is immediate to prove that the only non-zero contractions of Q with the basis
vectors {L, n, Xa} are

QLY 2w and XLV E w,x*,
A A

so necessarily Qu = Fyv = Vpynv on H, and (2.130) follows. [

Remark 2.6.4. The freedom in the definition of @ is compatible with (2.130) as this com-
bination is insensitive to terms of the form fn.

We now provide a well-known identity involving the Riemann tensor of (M, g),
the Killing vector n and the one-form @ (see e.g. [2]).

Proposition 2.6.5. Let (M, g) be a spacetime admitting a non-trivial Killing vector field
n which defines a Killing horizon H . Consider a vector field X € T(TH ) and let @ be a
one-form along H satisfying (2.106). Then,

Rvoppr]vXUIiI Nu XUVJWp + WpWUXU —No XUVUWp + wyonU . (2131)

Proof. Any Killing vector field satisfies VoVonu = RYgpunv. Combining this with

(2.130) yields (note that X is tangential to H so we are allowed to take the derivat-
ive of (2.130) along this vector)

H H
Rvopljr’\/Xc = XOVngnu = XOVU anu - lI)pI]p

2 Nu X°Volp + WpWeX? —Np X°VoWy + Wu0eX°

after using that X°ne = 0 on H. O
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In particular, setting X = 1 in (2.131) and taking into account (2.107) as well as the

symmetries of the Riemann tensor, one obtains
0E ny n°Vowp + KOp — Np N°VeWwy + K@y , (2.132)

from where it follows that there exists a function G € F(H ) such that

H Gn. (2.133)
Vq(D + K@ =

Equation (2.133) have several consequences. First, for any vector field X € I'(TH )
one finds (recall (2.106))

(£@)(X) = (Vp@)(X) + ®(Vxn) = (V4@)(X) + kX(X) = Gn(X) = 0, (2.134)

which means that the property (2.111) also holds in full Killing horizons. Secondly,
(2.133) implies the well-known property (see e.g. [112]) that K is constant along the

null generators of H . Indeed, its coptraction with ives
8 8T nases it contraction with elves i (2.135)

As we discussed before (see Section 2.4), when H admits a cross-section it is
possible to find an affine null generator k (i.e. with kk = 0) of H~ Combining

(2.90), (2.135) and the fact that ) does not vanish on open subsets of H, it follows
that

n2 (fF+ro)k (2.136)
where f,v € F(H') are functions satisfying k(f) = 0, k(v) = 1. Observe that if
o happens to vanish at some point p along a null generator, the surface gravity K

could in principle be a different constant before and after the fixed point p. This,
however, is impossible because n and k are well defined on H and k vanishes
nowhere, which implies that o is smooth along the curve, and since f is constant
on the generator, kK must be the same constant on each side of the point p.

2.6.1 Multiple Killing horizons

An interesting particular case happens when the same null hypersurface H ad-
mits more than one null, tangent Killing vector field. Such hypersurface is named
multiple Killing horizon (see e.g. [2], [93], [94]) and it is defined as follows.
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Definition 2.6.6. (Multiple Killing horizon) Assume that an (n + 1)-dimensional space-
time (M, g) admits m = 2 non-trivial Killing vector fields {n:} (r = 1, .., m) which
define respective Killing horizons {H:}. A null hypersurface H embedded in (M, g) isa
multiple Killing horizon of order m if

H=Hi=.=Hn (2.137)

A fundamental property of multiple Killing horizons [2, Prop. 4.3] is that the sur-
face gravities {«:} of the Killing vectors {1} are all constant everywhere on their
respective horizons {H:}. This, in particular, allows one to extend each them trivi-

ally to the whole closure H .
def
One can also prove that the set Lz = span{nrr = 1,.., m} of Killing vectors null

and tangent to the multiple Killing horizon is an m-dimensional Lie subalgebra of
the Killing Lie algebra of (M, g) [2, Thm. 2]. Moreover, there always exists [2, Thm.
3] an Abelian subalgebra Lge¢ of Lz with at least dimension m — 1 and composed
only by Killing vectors for which the multiple Killing horizon is degenerate. For
the rest of this section we let {nz, .., nn} be degenerate Killing vector fields (i.e.
with k2 = .. = Kn = 0) and consider 11 as a Killing vector field with arbitrary
surface gravity k1. Observe that in this notation {n1, nz, ..., Nn} is a basis of Lu
such that {nz, ..., Nm} commute with each other. We also let r = 2, ..., m from now
on, e.g. by writing {n1, n-} or {H1, H+}.

A multiple Killing horizon H is called fully degenerate if Ln = L, i.e. when
Lg is Abelian and all Killing vectors are degenerate. Otherwise, H is called non-
fully degenerate and it has a unique non-degenerate Killing vector. The subalgebra
L ¢¢& can be at most n-dimensional [2, Cor. 1], and hence the maximum possible
order of a multiple Killing horizon is m = n (resp. m = n + 1) for fully (resp.
non-fully) degenerate horizons. When dim L, de¢ = m - 1, the remaining non-

degenerate independent Killing vector n: verifies

[nunl = -kn. V0 € L. (2.138)
Since all Killing vectors are null and tangent everywhere along H, they are all
necessarily proportional to each other therein. In particular, there exists a set of
functions {a} € F(H1) defined as the proportionality functions between any
Killing vector field n- and ns, i.e.

nr = amna. (2.139)

59



60

preliminaries

In these circumstances, it holds (see equation (8) in [2])

[

H, i}
ar= @e ¥, (2.140)

where @, v € F(H1) are functions satisfying ni(v) = 1 and ni(e) = 0 and v is
not univocally defined, as any other choice v = v + h with h € F (H1) satisfying
ni(h) = 0 also verifies ni(v) = 1.

For the rest of the section we let H1, be the subset of H where both N1 and n- are
everywhere non-zero, i.e. H1i,="" Hi N Hr.

We have seen before that it is possible to define a one-form @ along any Killing
horizon (recall (2.106)). This applies, in particular, to the case of multiple Killing
horizons. More concretely, there exist m one-forms3 {®, @'}, respectively defined
on the horizons {H1, H;} and satisfying (2.106) for its corresponding Killing vec-
tors {N1, n:}. Observe that on Hi, both @ and @’ exist and are well-defined. This,
together with (2.139), means that for any vector field X € I'(THz1,) it holds

Hy, H Hy, Hy,
@X)am = @ Xy, =V, = aVxm + X@@)m = (a(X) + X(a)) no

Hi,
&=  da,+a @-@ 20, (2.141)

where d should be understood as the exterior derivative on H1r as manifold. In-
serting (2.140) into (2.141) yields

Hi,
din|ea]) + @ - @ - kidv = 0 (2.142)

after using that & vanishes no-where on H 1,.

The identity (2.131), which was obtained for a general Killing horizon, is also true
in this context for all Killing vectors {n1, n:}. Particularizing (2.131) for n1 and n:
gives two equations that hold on H1 and H: respectively. Since on Hi, these two
identities are valid, one can subtract one from the other to find

( )
Hy,
0 =" XY V oy + w oy — Voo, — W,Wg VX,YET(TH 1,). (2.143)

Substituting @’ in terms of @ by means of (2.142) gives
H ( ( )
1,r
0="X°Y?P V,V,Inlal + (Vo In|a])(Vs In|a]) +2(Ve In|a|) @ - k1Ve o

3For shortness, instead of using @! to denote the one-form associated to 11, we simply write
@.
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( )
- K1 VUVpU + ZW(va’)v - KI(VpU)(VO'U) (2144)

after using that k1 is constanton H 1.

Equation (2.144) (already obtained in [2]) is usually called master equation. It con-
stitutes a fully covariant identity for multiple Killing horizons, and it relates deriv-
atives of the functions a and v (cf. (2.140)) with the one-form @ and the surface
gravity ki. Observe that since the terms inside the parenthesis are contracted with
vector fields X, Y which are everywhere tangent to the horizon, (2.144) can be un-

derstood as an identity of abstract nature (i.e. as an equation on Hi1, as a manifold).

By combining (2.106)-(2.107) (recall that here k- = 0) and (2.133), it is straightfor-
ward to prove that the right hand side of (2.143) vanishes whenever X = n1 or
Y = n1. The same occurs in (2.144), so it makes sense to study the case when both
X and Y are tangent to H1, but non-null everywhere. In [2], this is done by assum-
ing that H1, admits a cross-section S and that it can be foliated by diffeomorphic
spacelike surfaces. In these circumstances, one can construct a (unique) foliation
function v € F(H1,) by fixing it at S, i.e. by choosing v|s, and solving ni(v) = 1.
def

Then, the set of spacelike submanifolds S: = {p € H1, | v(p) = vo € R} define a

foliation of Hi,.

As discussed in Section 2.5, we can construct vector fields everywhere tangent
to the leaves {S.} by extending any vector field X € T'(TS) uniquely to Hi, ac-
cording to £7,X = 0. For the rest of this section, we let X, Y € I'(TH1,) be any
two vector fields tangent to the foliation and commuting with ni. We also define
L € T(TM)|m1,- as the unique vector field verifying (2.112) for n = ni. In these
circumstances, if we denote by / the embedding of H1into M, we know by (2.113)

def

that € =
leaf S» by particularizing (2.115) for S = S..

1" L = dv. We can also define the Levi-civita covariant derivative on each

Using that

XUYpVo'VpU = XGVU(YprU) - (XUVUYp)(VpU) = _(XUVUYp)(VpU)
= —((V")Y)P - KL(X, )n))(Vpv) = KX, V), (2.145)

together with all considerations above, one can rewrite (2.144) as

Hiy g h h h L
0 = VaVsin|a| + (Valn|a])(Veln|a|) + 2(Valn |a))wg -k« K 45  (2.146)
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where we have chosen a basis {ea} of vector fields tangent to the leaves of the foli-
ation and commuting with 11 and we have enforced X = es, Y = es. In particular,
(2.146) holds at S, and can be rewritten in terms of derivatives of a as

S h o h h L
0 = VaVsea + 2(Vua)wg) - axiK p. (2.147)

We want to rewrite this equation in a way that does not involve ‘KLAB. The strategy
will be to use (2.117) together with the fact that the components‘KAB are constant

along the null generators. We start by proving this last claim. First, we use the
well-known identities [V, Vo]lLg = Rueprl? and VaVenu = N*Ruapr to obtain

£n, (VaLg) = pVuVaLg + (Van¥)(VuLg) + (Vanf)(VaLy)
= p¢IVy, ValLg + Va(g#VuLg) + (VeRH)(VaLy)
= 0" Ruepa L + Valfy Lp) - Va(LyVey") + (Veg')(VaLy)
= LuVaVpnH + Val(En,Lg) = LuVaVpnH, = V(£ Lp). (2.148)

Next we show that the pull-back of £,,Lg to Hi, vanishes identically. It is clear
that this quantity does not depend on how we extend Lg off H1,, so we extend the
function v arbitrarily and define Lt = Vgo. Then, for any arbitrary vector WP
tangent to Hi,,

= WH8 n*VuVgo + Ve(ni(v)) - ntygVyo = W(ni(v)) = 0. (2.149)

This together with (2.115) (particularized for n = ni) gives

a B a B L B h 8
eaegValfn, Lp) = —es(Vaep)(£n, Lg) = (K (ea, es)ny - (VeAeB) )(£n, Lg) = 0.
(2.150)

The combination of (2.148) and (2.150) (recall that {es, es} commute with n1) yields
L
£n(K 45) = 0, (2.151)

which proves the claim. At this point we note that the proof of (2.117) only requires
that N- can be foliated by spacelike sections and that (£,®)(X) = 0 holds for any

X € T(TN7). Since in the present case this is also true (recall (2.134)), enforcing
(2.151)in (2.117) leads to

S h h L
0 = Rap - Rp+ 2V@uwp) + 2waws + 2 k1 K 43, (2.152)
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where, as before, R4z and R’;B are the pull-back to S of the Ricci tensor of M and
the Ricci tensor of the induced metric & on S respectively. Equation (2.152) can be
inserted into (2.147) to obtain [2, Eq. (60)]

( )
a
0= v\ Ve +2(V"(,0W5 )+ o 2V 00, + 204005 + Ras = Ri . (2.153)

Since L is null and normal to S, we know from (2.78) and (2.109) that the pull-back

o duenty, 1% 1050 e Yethully driatives ot the AISCR0M ac

curvature terms (namely Ras and RhAB) and the torsion one-form of S.

2.6.2  Constancy of the surface gravity

The constancy of the surface gravity is not guaranteed everywhere on a Killing ho-
rizon H . However, it holds in many situations of physical interest, namely when
(i) the Einstein tensor of the spacetime (M, g) satisfies the dominant energy condi-
tion [115], [113]; (i) the Killing vector field n is integrable, i.e. it verifies n A dp = 0
[101]; (iii) for any bifurcate Killing horizon [116], [101], [112]; and, as we have
already mentioned, (iv) for multiple Killing horizons [2], [93], [94]. Nevertheless,
we emphasize that the constancy of the surface gravity restricts the class of ho-
rizons under consideration (see e.g. [117] for a situation where a non-constant
surface gravity implies a rather different behaviour of the properties of the hori-
zon).

When the surface gravity K is everywhere constant (e.g. in any of the situations
above) and H admits a cross-section (which, as we have discussed, allows us to
take an affine null generator k), one can trivially extend_k to the whole closure H
as the same constant (again because 1) = (f +_kov)k everywhere on H and n, k
and fare smooth, see (2.90)). This will be used later in Chapter 7 when studying

matching across Killing horizons of order zero.

2.7 matching of spacetimes

In the Introduction, we have seen that the problem of matching two spacetimes
across a hypersurface plays a fundamental role in any theory of gravity. We have
also mentioned that the standard way of approaching the problem of matching is
to consider two spacetimes with boundary and then construct a resulting differ-
entiable spacetime by establishing an identification between the boundary points
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and between the full tangent spaces at the boundaries (this must be done in such
a way that a rigging vector field pointing inwards (resp. outwards) on one side is
identified with a rigging pointing outwards (resp. inwards) on the other side).

Of course, the matching between two whatever given spacetimes will be impossible
in general. The complete set of necessary and sufficient conditions that allow for
the matching has never been presented in terms of abstract metric hypersurface
data (this notion was introduced later in [58]). However, the results of [67], [64],

[65] can be collected in the following result.

Theorem 2.7.1. Let (M*, ¢*) be two spacetimes with boundaries N*. Assume that
the dimension of (M*, ¢*)is n + 1 = 2. Then, (M*, ¢%) can be matched across N *

and give rise to a resulting spacetime (M, ) with continuous metric g (in a suitable
differentiable atlas) if and only if

(i) There exist metric hypersurface data {N , y, €, £ @D} that can be embedded in both
spacetimes (M*, ¢*) with embeddings ¢* such that (N ) = N™* and riggings
¢

(ii) One rigging vector field must point inwards with respect to their corresponding
boundary while the other must point outwards.

We have also explained before that if the boundaries are everywhere non-null and
(1) is fulfilled, then (i7) can always be satisfied provided that one chooses the rig-
gings to be unit, normal and with suitable orientation (observe that in this case
€ =0, |2 @| =1 and therefore the whole metric data is easily identified). This, as
we know, is not so when the boundaries contain a null point. In such case, finding
embeddings and riggings for which a metric hypersurface data {N, y, €, £ @} is
embedded in (M*, ¢%) is not sufficient to guarantee the matching [65], and con-
dition (i) needs to be included. The underlying reason why one needs the extra
condition (i7) on null points is that the only gauge transformation which leaves a
metric data with null points invariant is the identity, i.e. one cannot adjust the ori-
entations of the two riggings at will. Observe that, in the language of the formalism
of hypersurface data, (i)-(i7) mean that both boundaries must define hypersurface
data{N,y, € £ @,Y*} with the same metric part and (possibly) different extrinsic
part.

Another point that has been stressed in the Introduction is that, when there exists
a jump in the second fundamental forms of each boundary, then it appears a sin-
gular part in the Einstein tensor of the resulting spacetime. This singular part is
interpreted as the energy-momentum tensor of the thin shell (cf. (1.2)), and must
satisfy the Israel equations (which in the non-null case are (1.3)).
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The Israel equations, however, can be obtained more directly for the case with ar-
bitrary causal character as an application of the formalism of hypersurface data.
[t suffices to take the difference between the constraint equations (2.55)-(2.56) at
each side of the matching hypersurface. Since the constraint equations have been
introduced at the abstract level, the argument is valid for any pair of hypersur-
face data (in any gauge), independently of whether they contain null points or not.
This procedure is more convenient for several reasons. First, the derivation of the
Israel equations is conceptually easier as there is no need to make use of the dis-
tributional theory. Secondly, one can obtain the shell equations without using the
subatlas where the metric g is continuous (this choice is essential within the context
of distributional calculus). Even more, the computations are much more general in
the sense that the two hypersurface data {N, y, €, £ @, Y*} corresponding to the
thin shell do not need to be embedded at all. This may seem superfluous but in
fact it is not because while the spacelike initial value problem defines a well-posed
Cauchy problem, in completely general circumstances it is not to be expected that
a hypersurface data gives rise to a spacetime (specially if the data contains a point
where y has Lorentzian signature). Even in situations where one could expect, for
physical or geometric reasons, that the initial value problem is well-posed (e.g.
whenever all points are null or spacelike) it could well happen that the result has

not been proven yet.

Anyway, the set of all possible abstract hypersurface data is, a priori, more general
than the set of spacetimes satisfying the Einstein equations and with matter content
prescribed by the data. It is therefore convenient to find the Israel equations for thin
shells at a fully abstract level. This problem was addressed in [58] as one of the
first applications of the formalism of hypersurface data. The outcome was the first
derivation of the Israel equations for general spacetimes containing thin shells of
arbitrary causal character. We describe these results next.

2.7.1  Thin shells: formalism of hypersurface data

Let us now explore the physics and geometry of thin shells from a completely
abstract viewpoint, i.e. by means of the formalism of hypersurface data. We start

with the abstract notion of thin shell.

Definition 2.7.2. (Thin shell) A thin shell is a pair of matter-hypersurface data with same
metric hypersurface data, i.e. of the form {N,y, €, 0 @,Y% p 0 * J, €}, where €is a sign

with gauge behaviour: 5

Genle) = IZI_E' (2.154)

65
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Given a hypersurface data set {y, €, £ @, Y*}, we write Q to refer to any geomet-
ric quantity constructed from it. We also use the notation [Q] Lo Q" -Q-.

One of the main properties of thin shells is that one can define an energy-
momentum tensor encoding their matter-energy content. In the spacelike case, as
we have seen, the singular part of the Einstein tensor of the matched spacetime
is given by (1.2). In that situation it is therefore to be expected that the energy-
momentum tensor coincides with T . In a completely general case, the energy-

momentum tensor is defined as follows.

Definition 2.7.3. (Energy-momentum tensor of a thin shell) For a thin shell
(N,y, € £@ Y% p ) * J%, € the energy-momentum tensor is the symmetric 2-covariant
tensor T defined by

(
Af e e (P nd + Pnf )b

)
— (W@ PPy pif iy 4 PP P — nnf) Y. (2.155)

Remark 2.7.4. The sign € in Definitions 2.7.2 and 2.7.3 is necessary for the energy-
momentum tensor T to be well-defined. This is so because a change in the orientation

of the one-form € (or of rigging in the embedded picture) introduces a sign in [Y] (recall

(2.40)), and 1 must be invariant under this type of transformations.

Concretely, when embedding a thin shell data {N , vy, &, 2@, Y p 0 *, J*} in two semi-
Riemannian manifolds (M*, ¢*) with embeddings ¢* and riggings {* respectively, the
sign € must be chosen positive if {- points outwards with respect to (M7, ¢7) and neg-

ative otherwise.

When evaluating the difference between the constraint equations (2.55)-(2.56) for

the plus and the minus matter-hypersurface data, all purely metric terms cancel
out (recall that 7 only depends on the metric part of the data). As proven in [58]%,

the result of this operation is

( 1
: 1 o _
o] = v, T/ + T 5n<2>vde<2>+pdfnf - 1Y, (2.156)
( T
o l 2 °
] = v,metrl Py 00 e+ TIU, (2.157)

where we have defined the tensor fields

1
SrwY), sy, T E e, (2.158)
2 c

“Observe that in [58] the sign € has not been considered in the definition of 7. However, intro-
ducing € in Definitions 2.7.2 and 2.7.3 is necessary for the reasons explained above.

Y 2
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Under the action of a gauge group element G, the tensor field [Y] transforms
as Gewv([Y]) = z[Y] [58] and, as a consequence,

T

Gew(r) = 2]

. (2.159)
Moreover, the tensor T coincides with the energy-momentum tensor T of (1.2)
when y is non-degenerate and the hypersurface data is expressed in the normal
gauge, i.e. with € = 0 and £ @ = +1 [58]. Consequently, the tensor field 7, which
has the symmetries of an energy-momentum tensor, coincides with the energy-
momentum tensor of the shell whenever it does not contain null points. Moreover,
for null thin shells, it is straightforward to check that the definition of energy-
momentum tensor provided in [63, Eq. (31)] by Barrabés and Israel yields precisely
1. Given a basis {e.} of ['(TN™) (recall that N is the matching hypersurface of the
resulting spacetime (M, g)), one can also check that the quantity T”beﬂg"bgives the

singular part of the Einstein tensor of (M, g), as it is written in [64, Eq. (71)]. The
gauge behaviour of 7 turns out to be essential in the embedded case, as it ensures
that the singular part of the Einstein tensor of the matched spacetime remains

invariant under rescaling the normal vector v.

All the reasons above justify the Definition 2.7.3 for the energy-momentum tensor
on a thin shell [58], irrespectively of whether data is embedded in any space.

Observe that the dependence on 7 on the surface layer equations (2.156)-(2.157)
is linear. This supports the interpretation of 7 as the energy-momentum tensor of
the shell, and also implies that 7 = 0 is always a solution of the shell equations
with {[ps] = 0, [J] = 0}. It is also worth stressing that at null points (and only
there), 7 = 0 does not necessarily imply [Y] = 0. Indeed, in order to get 7 = 0
when n® = 0, it suffices to require [Y](n, ) = 0 and tre[Y] = 0, which does not
mean that the whole tensor [Y] vanishes identically. It is precisely this property
that allows us to conclude that the solution {[pg] = 0, [J] = 0, T = 0} does not
necessarily correspond to the situation in which both matter-hypersurface data
defining the shell are identical, but to scenarios in which a gravitational field with
no contribution to the energy-momentum tensor and with support on the thin shell
appears. Physically this type of thin shells describe pure impulsive gravitational
waves and they can only exist on null points, as at non-null points we would
require, in addition, that P%f Pbd[Y]ab = 0 for 7 to be zero, and this would entail
that 0 = yrysP" PM[Y], = (& - n£:)(& - n’ 8 )IYl, = [Yli (cf. (2.9)). This
eventually means that non-trivial thin shells with vanishing energy-momentum
tensor can only exist on null points.
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We have already mentioned that the gauge behaviour of 7, [p,] and []J] is remark-
ably simple. This, however, does not occur for the metric hypersurface connection
V. A natural question is whether one can rewrite the shell equations in such a
way that the gauge-dependence is explicit. For that it is convenient to express the
surface layer equations (2.156)-(2.157) in an arbitrary coordinate frame, obtaining
[58]

1 G T
epi] = vﬁaa ( | detA| 7| . - ST YD), (2.160)
J
E[]a] = —s;ldltAl Ob |detA|TbCch - :lzﬁdaaVbd, (2161)
e

where we recall that A is defined in terms of the metric hypersurface data as
in (2.4). Under the action of a gauge group element G¢v), |detA| behaves as
Gev(detA) = z?detA [58]. Using this it is straightforward to show that the shell

equations satisfy the gauge-covariance properties described above.

For later purposes, we conclude this section by providing the definition of null
thin shell.

Definition 2.7.5. (Null thin shell) A null thin shell is a thin shell
{N,y, € £@,Ytp 0 *,J% €} such that N consists of null points exclusively.

2.7.2  Cut-and-paste method

Thin shells have been traditionally constructed a la Darmois, i.e. by using the
previously described distributional formalism defined on a spacetime endowed
with a metric ¢ which is globally continuous and differentiable (away from the
thin shell hypersurface). In this framework, one defines a distribution associated
to the metric and, since the metric is continuous, one can introduce a Riemann

tensor in distributional form.

As we anticipated in the Introduction, Penrose [3], [85], [86], [87] presented an al-
ternative procedure to construct explicit examples of null thin shells. This method
relies on a distributional metric with a Dirac delta with support on a null hypersur-
face. The distributional Einstein field equations formally still make sense because
the coordinates are selected so that the Einstein tensor depends linearly on the

metric coefficients.

This so-called cut-and-paste construction method works for very specific spacetimes.

Given one such special spacetime (M, g) and an embedded null hypersurface N,
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one first chooses appropriate lightlike coordinates adapted to N". Then one "cuts"
the spacetime, obtaining two separated regions that are later "pasted" again after
some reorganization of points on one of the sides. The resulting spacetime contains
a null thin shell (generically with no pressure and no energy flux) located on the
hypersurface where the cut of the initial spacetime has taken place. In the original
coordinates, the resulting spacetime presents a Dirac delta with support on the
thin shell.

In their seminal works, Penrose introduced this idea in the spacetime of
Minkowski, proposing a specific reorganization of points. With his construction, he
could generate impulsive gravitational waves (or shells of null dust, as we shall see
in Section 7.3.3) with plane and spherical topology propagating in the Minkowski
spacetime. More complicated spacetimes have been successfully studied in later
works. Among the many contributions in this regard, we stress [88], [89], [90], [91],
[92], [4], [5], [6], [7] and references therein.

A natural question that arises is what is the relation between the cut-and-paste con-
structions and the matching conditions prescribed by the formalism of matching
introduced before. Before the work that has lead to this thesis, there did not exist
any systematic analysis of the connection between them. This problem, which we
address in Chapters 7, 8, 9, constitutes the starting point of this thesis.

In the language of the formalism of hypersurface data, the matching conditions
rely on the metric hypersurface data from both boundaries being the same. These
metric hypersurface data depend on the spacetime geometry and on the embed-
ding of the hypersurface on such spacetime. In the cut-and-paste construction, the
ambient spacetime and the hypersurface (understood as a set of points) are the
same on both regions. On the other hand, the redistribution of points that takes
place on one of the spacetime regions forces the embeddings from both sides to be
different. The requirement of the new embedding defining the same metric data
restricts the set of all possible redistributions of points. Thus, the cut-and-paste
formalism will be compatible with the matching procedure a la Darmois if and
only if the redistribution of points leaves the metric hypersurface data invariant.
As we shall see in Chapter 7, this is in fact the case in all cut-and-paste construc-
tions. In that chapter, both formalisms will be connected, and later in Chapter 9

the matching a la cut-and-paste will be even described at a fully abstract level.

For its later use, it is convenient that we now examine the cut-and-paste construc-
tion of the plane-fronted wave in the 4-dimensional spacetime of Minkowski. We
start by writing down the metric of any plane-fronted wave (see e.g. [118], [119]):

ds2 = -2(dV + P (U, x,z) dU) dU + dx2 + dz2. (2.162)
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The spacetimes describing purely gravitational waves, i.e. solutions of the vacuum
Einstein field equations, are those for which the function P verifies the condition

( 32 32 )
Z + 5z P =0 (2.163)

In [86], Penrose addresses the impulsive case of (2.162) by setting P (U, x, z) to
zero except on the hypersurface defined by U = 0, i.e. by enforcing

P (U, x,z) = 6(U)H(y,2), (2.164)

where 0 denotes Dirac delta distribution and H (x, z) is any real function. Under

these circumstances, the metric becomes
ds2 = -2(dV + 6(U) H (x,z) dU) dU + dx2? + dz2. (2.165)

The possibility to perform a coordinate change which turns (2.165) into a C°-form
is already mentioned by Penrose in [86], [87]. In fact, by writing (2.165) in the

coordinates
def 1 — def L
u,v,n= \/—2 (x+iz),n = \/—2 (x-i2) (2.166)
which yields
ds2 = -2(dV + 6 (U) H(n,n) dU) dU + 2dndn, (2.167)

Podolsy et al. [88], [5] found the suitable coordinate transformation, namely

U =4, V=V+ @(U)h + U+(U)h,z h,z, n = Z + U+(U)h,z, (2168)

where the comma denotes partial derivative, ®(U) is the Heaviside step function,
def def

+ = UO(U) is the so-called kink functionand h Z,Z" =" H(n,n) | U—o is a real-

valued function. Inserting (2.168) into (2.167), one obtains the following continuous

metric®:
ds? =2 1dZ + U (W) h,y,dZ + h,,,dz 1 - 2dUdv. (2.169)

The transformation (2.168) immediately shows that the lightlike coordinate V is dis-
continuous across the hypersurface U = 0 and that the presence of the d-function
on (2.165) is due to this jump. More precisely, the discontinuous coordinates
{U, V, n,n}, chosen to preserve the Minkowski form of (2.165) on U 2 0, produce
discontinuities on the metric, while with the continuous coordinates {U, V, Z,_Z}

the metric tensor becomes C° but loses the Minkowski form for U > 0. Never-

5As pointed out in [5], to obtain (2.169) one needs to use the distributional identities G, =9,

ﬂg—gl = 0, ©2 = 0, which in general may lead to mathematical inconsistencies.



2.7 matching of spacetimes

theless, the coordinates {U, V, n, 77} are useful to understand this spacetime as the
outcome of the disjoint union of U > 0 and U < 0 with a jump on V when crossing
the hypersurface U = 0.

When applying the cut-and-paste method to the case of a plane-fronted impulsive
wave in Minkowski, Penrose proposes a jump on the lightlike coordinate V of the
form

Vilvt=0 = V- + H (x-, z-) |u-=o, (2.170)

where {V., xs, z+} refer to the coordinates {V, x, z} on the regions U = 0 of (2.165)
respectively. This jump follows directly from the coordinate transformation (2.168).
It is also worth mentioning that the jump (2.170) is not exclusive of this specific cut-
and-paste construction. A jump of this type also gives rise to null thin shells in the
cut-and-paste construction corresponding non-expanding impulsive gravitational
waves propagating in the spacetimes of (anti-)de Sitter (see e.g. [6]).
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NEW RESULTS ON THE FORMALISM OF
HYPERSURFACE DATA

Once we have presented the preliminary results that we shall need throughout
this thesis, we can start with its actual developments. Concretely, in this chapter
we concentrate on developing the formalism of hypersurface data itself.

The chapter is divided in three sections. In Section 3.1, we work with completely
general metric hypersurface data {N, y, €, £ @}. We start by providing the rela-
tion between the signatures of the ambient metric A and y, by proving a result
analogous to Lemma 2.2.8 taylored to the embedded case and by deriving useful
identities concerning the metric hypersurface connection v and the Lie derivative
of the data tensor y. Then, we introduce the tensor "Lie derivative of a connection

D along a vector field Z", and examine its properties in detail. Finally, we conclude

with several results concerning the curvature tensor R% . of v.

In Section 3.2 we restrict ourselves to null hypersurface data. We first introduce the
notion of null (metric) hypersurface data together with the explicit decomposition
of y, P and the energy-momentum tensor 7 defined in (2.7.3) in a given basis. Then,

we include several gauge-fixing results as well as several useful identities concern-

ing the curvature tensors R %,; and R ;. Afterwards, we study the particular case
when the manifold N admits a submanifold S to which 7 is everywhere trans-

UeESG RS LY \‘/§ea‘esr§‘%Hleprtr‘l%{lf%"ﬁy?ﬁea‘%?u?{é%‘é"?:8ﬁ?é*&‘fdE‘X@%E%S‘éltgse%‘é?a?’%%‘s’{&n-

free connection V° on S . This allows us to identify under which circumstances V°

coincides with the Levi-Civita connection of S. We also give a Gauss-type identity
on S and derive explicit expressions for the pull-back to S of covariant and Lie
derivatives of tensor fields. We conclude the section by analyzing what occurs if
N admits a cross-section (i.e. a submanifold S which is intersected for each integ-
ral curve of n exactly once). In this context, the flexibility associated to the gauge
freedom turns out to be a great advantage. We also recall the definition of char-
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acteristic hypersurface data, originally presented in [60], and compare it with the

concept of null (metric) hypersurface data.

The final part of the chapter is devoted to analyzing some consequences of having

a gauge-invariant vector field along the degenerate direction of N.

3.1 general hypersurface data

As anticipated, we start by studying the relation between the signatures of the
tensor fields A (cf. (2.4)) and y. For non-null points, this aspect was discussed
in [59, Lem. 2.7]. Here we give the corresponding result for null points. As in
that reference, we view the signature of a quadratic form g as the (unordered) set
sign(q) ={0, .., 0, -1, .., -1, +1, .., +1} of diagonal entries corresponding to the

canonical form of 4.

Lemma 3.1.1. Let {N, y, €, £ @} be metric hypersurface data and p € N a null point,
i.e. Rad(y)|»/= {0}. Then the signatures of y|p and Alp are related by

sign(A]y) = {-1, 1} U (sign(y]y) \ {0}). (3.1)

where U is the disjoint union. In particular, Alpy has Lorentzian signature if and only if
Y|p is semi-positive definite.

Proof. Assume n =" dim(N ) = 2 (if n = 1 the proof is the same with small changes
of notation). Since Rad(y)|,/= {0}, it must be one-dimensional. Let {e:} be a
canonical basis of y|, with e1 € Rad(y)|y and define "= y|y(es, es), sa = €|p(ea).

Observe that €1 = 0 and €%, = 1. Then, the vectors

def

Eo L' (1), E=" (0), with V= - Y easmes €N (3.2)
B=2

form a basis of TyN x R. From (2.4) we get

A|(Eo, Eo) = y|py (V, V) + 2|, (V) + £@ = C,  A|(Eo, E1) = €]y (1), (3.3)
A|(Eo, Ea) = ylp (V, ea) + €]y (ea), A|,(E1, E1) = 0, (3.4)
A|,(Ea, Es) = y|p (es, eB) = Oasea, A|/(E1, Es) = 0. (3.5)

Since A|y is non-degenerate, €|y (e1)/= 0 and we can introduce the vectors

def 1+C 1-C

def

By =E P b= ho 2(8lp (e1))

- E,  B.ZE (36
2(€p (e1))
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A simple computation yields

A|(E® E8) = -1, Al(E®E® =0,  AJ(E® B9 = o, (3.7)
A|P(§1;E1) =1, A|p(ﬁ1,ﬁA) =0, Alp(EA,EB) = O4BEA. (3.8)

Thus, {#, B} is a canonical basis of A|, and sign(A|,) = {~1, 1, €2, ..., €.}, which
proves (3.1). The last claim is immediate. O

In the previous chapter we have recalled Lemma 2.2.8, which finds a unique vector
field from a covector and a scalar function on N satisfying suitable restrictions.
This result will be of much use in this thesis. In addition we will also require a
related result which applies to the embedded case. This analogous statement and
its proof are as follows.

Lemma 3.1.2. Let {N , y, € £ @} be hypersurface data embedded on a semi-riemannian
manifold (M, g) with embedding ¢ and rigging {. Given a covector B along N and a scalar
function vo € F(N ), only the vector field V = (B(n) + n@vo){ + ¢. (P(B, -) + von) €
[(TM)|gn) solves the equations B = ¢ (g(V,+)) and vo = ¢ (g({, V).

Proof. Consider a local basis {¢".} of ['(TN ) and its image basis {e} of [(T$(N )).
Then {{, e} form a basis of I'(TM)|sn ) so that any V € I'(TM)|sn ) can be
decomposed as V = al + WP for suitable scalar functions a, W* € F(¢(N)).

Thus, by defining V =" ¢(V,+), it follows
@ WV=alv+ yaWe, (V@) =al@+W . (3.9)

Therefore, V is a solution of the equations B = ¢ (V), vo = ¢"(¢({, V)) if and only
if yfuW? = Bv— a € vrand £ .W" = vo - a £ @. By Lemma 2.2.8, there exists a unique
solution W? = PP(Bs — a £ ) + (vo — a £ @)n” if and only if (B — a £ e)n’ + n@(wo - a

£ @) vanishes identically. This is equivalent to
0 = By’ - a1 - n?@ 2 @) + 1@y - 1@ 9 Dg = Bl - a + n@o,

and hence a = Bin® + n'@vo. Using (2.8), it follows W? = P%R, — aP™ £ , + (vo —
a @ Pyt = pg, + von. N

There will be somewhat heavy computations below involving the connection v
defined in Theorem 2.2.4. The derivations will be aided by several identities that
will be used repeatedly. We start by linking the v derivatives of one-forms or
symmetric and antisymmetric tensor fields with Lie derivatives and exterior deriv-

atives.
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Lemma 3.1.3. Let {N,y, €, £ @} be metric hypersurface data and 6., Sw, Aw tensor
fields on N with the symmetries Sw = S and Aw = Afw). Then,

( 1
n’ v 6 —v,0, = L6 —y,00n), (3.10)
1
n" y,0 4 v,6, = £6: +y,(0(n)
( ( o 1 ( )1
-2 0(n) si—-n? y; 6@ + P*Q, Uiw — n@Fu (3.11)
( ° o 1 o o
1 VaSah —VeSap = Vi (Spen®) = £aSpg + SV 1 (3.12)
¢, 1 . .
n Ay = Ve Adb_l = Vg(b ag = AV 1<+ E”C(dA) dch = M VcAy  (313)
(. a : c
0 VaAap —VeAgp = 1dA) 44 + Vpag— AWy 1 (3.14)

where dA g, = 3V, Apq and aa = i A

Proof. Since the connection Vv has no torsion, the Lie derivative of any covariant
tensor Tu,..q, along any direction V is

o p o
b b
(£VT)H1"'lZp e V VbTal...ap + Z Tal...ai_lbaiJrl...apvaiV . (3.15)
i=1
We will use this repeatedly. Equation (3.10) follows from n( o 01 — ° dB) =
\v4 \V4
n’v, 6, + ebvcd n’ — v,(6(n)). Moreover,
( 1

H v, 0+ Va0 = 1,0 + v, (8(n) — O,V 1" = £481 + 7, (8(1) — 20,V 12,

which yields (3.11) after using (2.20). For the symmetric tensor S, (3.15) gives
(. 1

n° WaSw —VeSap = n°VySqp + SpVa 1€ + S 4V 1€ — £4Spy

= Vi (Spcn®) = £aSgp + ScaVp 15,

def

which is (3.12). For the antisymmetric tensor A, we use (dA) 3T A =
) ) ) dcb Vig )
ViApp — VpAcd — Ve Agp and find
C 1 C o o 1
n° VaAg —VeAp =1 VaAp TVeAu Vil — Vo Ay — VeAp — Ve Agp
(. . . .
V i(Apn®) +V p(An®) = AV an® = Aca Vin©

[=

NlHN
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, )
:" nc(dA)dcb —n°vVe Adli 1 )
= a — A - n+ " n(dA) -“nc A,
Vi a cbVd) 5 db o, Ve b

which is (3.13). Moreover, we also find
(- , 1 (. , , , T
n° ViAp —VeAnp =1 VaiAg + Ve Apd + Vi Adc AL Acd
= n(dA)acy + p 1“Aca) = Acg_p15,
A\ A\

which is the alternative form (3.14). [

Next we provide the relation between the Lie derivative of the "metric" tensor y

along a general direction V and Vv covariant derivatives of a covector geometrically

constructed from V.

Lemma 3.1.4. Let {N,y, €, £ @3 be metric hypersurface data, V* any vector field and
wa any covector field. Define Va = yaV? and " =" Pwy,. Then the following identities

hold

1 o

Ly =€ + v, (3.16)
2 Voab ab Vb

Ly = w -4 w(n). (3.17)

o @ a Va b @Vb)

Proof. We first note that Voc Yab — Vna Yoe — an Vac = 22 Us as a direct consequence
of (2.18). Applying (3.15) to T = y we get

EvWap = V¢ Vnc Voo + Vbcva Ve + Vﬂcvbvc
1
= Ve chab_VaVbc_VbVac +ngb+Vb _Ze(WUgb+2V( V

which is (3.16). To prove the second identity we apply (3.16) to V = . Since by
(2.9) we have yaP"w. = w. — w(n) £ 4, identity (3.16) gives

( )
1 . .
Eﬁa Vo = €@ 4 + v, wy —wn) 2,

From (2.8), we find €(@) = - £ @w(n). Inserting above yields

1 o n o
2£€" Vo = =2 Pwn)U, + VW@ = £V wi) —wm) v, £y,

which simplifies to (3.17) after taking into account (2.19). [
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We stress that all the results so far in this section are valid for general metric
hypersurface data. Note also that the extrinsic part Y of the data has played no

role in any of them. This of course is a consequence of the fact that vyyis completely

independent of Y.

3.1.1 The Lie derivative of the connection V along n

As anticipated, we now introduce the tensor field "Lie derivative of a connection".
This tensor carries useful information on the curvature and, as we will see in
Chapters 5 and 6, plays a key role in the study of the geometry of horizons. We
first provide some basic general results and then we derive its explicit form in the

case when the connection is precisely the metric hypersurface connection V. For

general properties of this tensor we refer to [120].

Given any smooth manifold M endowed with an affine connection D and a vector
field Z, the tensor field Lie derivative of D along Z, denoted by Zz, is defined by

22X, W) =" £2DxW - Dx£zW = De xW (3.18)

for any pair of vector fields X, W € T'(TM). This tensor only depends on the

vector field Z and on the connection D, so we will use the notation Xz = £zD in
the following.

When D is torsion-free, this tensor is symmetric. Indeed, using £x, X2 = Dx, X2 -

Dx, X1 a few times, one gets

22X, W) - 2z(W, X) = £26xW - Dx£zW + DwfzX - De,xW + De,w X
= £2£xW + £xtwZ + £wEzX = 0,

the last equality being a consequence of the Jacobi identity.

The tensor field Xz plays an important role whenever the Lie derivative £z of a

covariant derivative of a tensor field needs to be computed. In the case of one-
forms 0, the fact that

£2Dx (6(W)) - Dx£z (8(W)) - De,x (B(W)) = (£2X) (B(W)) + (£xZ) (B(W)) = 0

combined with (3.18) gives

0 = £z (Dx6) (W) + 6 (DxW)) - Dx (8(£zW) + (£26) (W)) - De,x (8(W))
= £2 (Dx8) (W) = Dx (£260) (W) = Dz, x0 (W) + 6(Zz(X, W))
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&= (£2Dx0) (W) = (Dx£20) (W) + D:,x0 (W) - 8(Z«X,W)), (3.19)

or, in abstract index notation,
£z DaBg = Dqg £20p - (Z2)Hap6p. (3.20)
This identity can be extended to any p-covariant tensor field T. Specifically, it holds

EZDC{T,B B - DGEZTB '3 - E’ (Zz)uaﬁ Tﬁ ,3 IJB B . (321)
1 p 1 P 1 1 1 -1 i+1 P
l:

Let us now study several properties of the tensor Xz, first for general manifolds
equipped with a torsion-free connection and then for general hypersurface data

and for the metric hypersurface connection y. These results will be helpful later.

Lemma 3.1.5. [120] Let M be a manifold endowed with a torsion-free connection D. Then,
for any X, W, Z € T(TM), it holds

22X, W) = DxDwZ — Do,wZ + RP(Z, X)W  or, in index notation,
(Z2)Map = DaDpZF + RPHg,q2" (3.22)

Proof. We will use £xY = DxY - DvyX throughout, in particular we expand
each Lie bracket of (3.18). Combining (3.18) with the definition R (Z, X)W =
DzDxW - DxDzW - De,xW for the curvature tensor RP of D yields

>2(X, W) = DzDxW - Dp,wZ — DxDzW + DxDwZ - De,xW
= DxDwZ - Doy,wZ + RP(Z, X)W,

which is (3.22). Now from the fact that
(DxDw2)* = (X°DaWP)(DpZH) + X WP D4DgZF = (Dp,wZ)* + X WP DgDgZ*
the second equation in (3.22) follows at once. ]

Lemma 3.1.6. Let M be a manifold, D a torsion-free conngctigy, Z € T(TM) a vector

j%'zld and Sap a symmetric 2-covariant tensor field. Define Qauv = DafzSpv — £2DaSpv.
en,
( )

1
(2 S Av = 2 Qb + Qﬁva - Q%au . (3.23)
In particular, if Sap verifies DuSap = 0, it holds

1
(ZZ)AapSAv = 2— DQ,EZSIJV + DpEZSva - Dv£ZSap . (324)
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Proof. Since D is torsion free, (Z)H o is symmetric in @, 8. Particularizing (3.21) for

Sap yields
0= Qiw- (2 wSw - EzV S, (3.25)
0= Qlya— (Z2) *wSia = (£2)uaSun, (3.26)
0 = Qay — E2)" vaSay - E2)* vSan. (3.27)

where (3.26)-(3.27) arise from the cyclic permutation of the indices a, , v. Substract-
ing (3.27) to the sum of (3.25)-(3.26) gives (3.23) because (Z2)¥ op» Sap are symmetric
7z def

in a, 8. When Sgg is covariantly constant we have Ququw = Do£zSuv and equation
(3.24) follows at once. [

Corollary 3.1.7. If Sap is non-degenerate everywhere on M, then we can define its inverse
tensor S"; by S“;’S,Jﬁ = 6“Band it follows that

( )
1
2y = Esvgt QT Q4 Q%, (3.28)

In particular, when Sqp verifies DySap = 0 then
1
(ZZ)Aap - Z—S‘« DaEZSpv + D,uf,ZSva - Dv£ZSap . (329)

A metric hypersurface data set gives rise to a privileged vector field n on N . In the
null case, this vector is even more privileged, as the direction (but not the scale) of

n remains unchanged by arbitrary gauge transformations. It therefore makes sense
def

to study the properties of the tensor 5 L EMV which, for completely general data
{N, v, € £ @}, is defined by

S (XW) L £V W= VxEaW = VenxW. (3.30)

Our next aim is to provide the explicit form of il, for which we shall use the fact
that vy is uniquely determined by the properties (2.18)-(2.19). For simplicity, for

calculations at the abstract level we no longer reflect the fact that the tensors X and
Q depend on n.

Lemma 3.1.8. Let {N,vy, €, £ @} be metric hypersurface data and define x4 Env by
(3.30). Then, X is explicitly given by

( T
=g =1t 2y, sy —nPvy, L9 -2y,nP vy, 0@ 102 (3.31)
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( ( T 1
+ Pde VaUp + VU — VeUy + 25— n(Z) Ve Q(Z) Uﬂb + ZFC(avb) n(Z)

Proof. Particularizing (3.21) and (3.23) for D =v° ,T=4¢ 5 =yand Z = n gives

efzfab = Vaﬁneb - Env;gb def Qy’
( ¥

° 1
chzfab = E Q abe + cha - Qcab ’ (3'33)

(3.32)

def
where Qac = V £nYbc — £:V,Yoe. From these we will retrieve the explicit form of
the tensor X. We start by computing Qw and Q. explicitly. For the first we recall
(2.13) and (2.19), namely £,€ = 2s - d(n® £ @) and Va lp = Fap _ 9 @yab, and use

£.F = _1£nde :_1 dﬁne - dS, i.e. £.Fa = nvaSb - VbSa. Then
2 2

: : , ) (
Q= Vatuly —£:Va b = 2Vas, = V.V, nPe® —£, Fop- 2 (Z)Uab

: : o ( )
=VaS +VpSa = VoV n@9@ 4 n( 2 (2))U wt LOLU 4. (3.34)

For the second we recall (2.12) and (2.18), namely £ v, = 2Us — 24 wVo) n@ and

Va Ve :_ebUzzc_ chab,SO

( 1
QﬂbC = Va 2Upc — Zf (bvc) n(Z) + £Vl (ebUac + Q CUub)

=2VaUpe +2 -F o0 + ¢ (Z)Ua(b Vo n®
-24 DEEECE 206 2 Uy, + 22 4f Voo

a n n

where in the second equality we inserted (2.19). Using the expression (2.13) for £.€
(recalled just before (3.34)) yields, after simple cancellations,

Qabc = zvanc(_ ZFa(bvc)n @ ( 1

+204 £a00a— VoVan® +2 2545 -n® V2@ U, (3.35)

Now, any (0, 3)-tensor of the form tac = 2u@pSo. with S. symmetric satisfies
tave + toca — teaw = 2uUcSav. If tave = 2Aa(huc) with Aa antisymmetric then tawc +
toca =ty = —4Ac@ur). Inserting (3.35) into (3.33) and using these properties gives

( o 1
chzfab = Vu?bc + VU= VeUy + & £,Uy — Va0, n®
T :
+ 25 -n@vy, @y, +2F v, n@. (3.36)
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To conclude the proof we use

) ( )

(2.9) : :
=7 Py +n®ly sy =P vy +0"Qy,

Zdab = 6fd X fab
Replacing here (3.36) and (3.34) yields (3.31) after using

T @p @y =, p@yp @0 pg@y g0 T @
vav, ) =10 g, Ve Vi VA

aswellas P 0 . = - § @nA, O

In this thesis we will mostly use the metric hypersurface connection Y rather than

the hypersurface connection V (see Definition 2.2.14). However, in a later section
we will need the tensor & = £,V associated to V, so it is convenient to provide

the corresponding relation between ¥ and Z‘. This is done in the following lemma.

Lemma 3.1.9. Let {N, v, €, £ @,Y} be hypersurface data, Z &t E,,V and Z_ def o ; Then,

o

T=3 -nQ®ELY. (3.37)

Proof. Consider two vector fields X, W € T(TN). Then, the combination of (2.49)
and (3.30) yields

(X, W) =1 £.(VxW) = Vx(£:W) = Ve xW
=£( W-YXWm)- " EW+YXEW)n- " W+Y(E X, Wn
n Vx Vx =n n Ve x n

=3 (X, W) - (£Y)(X, Wn,

which proves (3.37). [

3.1.2  Curvature of the metric hypersurface connection V

We conclude Section 3.1 by analyzing various properties of the curvature tensor of
V. On a smooth manifold M endowed with a connection D, the curvature tensor

is the 3-covariant, 1-contravariant tensor defined by

( )
Riem?(a, Z, X, W)) =" a R2(X,W)Z , (3.38)

where a € T'(T*M) and Z, X, W € T'(TM). The Ricci tensor Ric? is the contraction

of this tensor in the first and third indices. We recall two notational conventions
that we already presented. First, when M is equipped with a metric g, we write
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simply R to refer to the curvature operator of the Levi-Civita connection V of ¢
(see Section 2.1). Secondly, for the metric hypersurface connection , we denote

v
the curvature and Ricci tensors by Ri em, R ic except when using abstract index

notation where we just write Ii”bcd, Ié,lb.

The contractions of]idmb with £ 4 and with n° have already been derived in [59] by
simply applying the Ricci identity to £ « and to n? respectively. Later in this thesis,
it will be of relevance to have an explicit expression for the contraction R”bcdﬂc-
This quantity cannot be computed by means of the Ricci identity. For this reason,
we follow a different path based on the Lie derivative of v that we just computed

in the previous section.

From (3.22), we know that the calculation of li“bcdnc only requires the explicit
expression of the tensors X and n”. The former has already been computed
ab VaVy

in Section 3.1.1 (see (3.31)). In the next lemma we calculate the latter.

Lemma 3.1.10. Let {N, y, €, £ @} be metric hypersurface data. Then

I
V.V nd = nd V,;ISb + $45p — PCfFaf(ch - n(Z)FbC)

° o 1 ° o ° °
R ) P _= 2 (2) _ (2) (2)
S v v 8 ) Ve g, - gy, ¢
a 1 o : |
- 2n@s @) 00 4 2(71(2))2 Va Q(Z)Vb 2@
1 ( o ) ( . 1
4 pic Va U — nPFy  + U 5 + 1y, p @
( 1. 1 : 11
_ = 2) | T .,(2)2
+ Fac —n(z)sb ZVb ARG S 2(71 v/ 0@ (3.39)

Proof. The proofis a direct computation based on the derivatives (2.20) and (2.21).
However, since the expressions are rather involved, it is advantageous to define

ger o _ @ p@ T ar _ ,@F c « —PSF —"n° p@
=5, Vo ’ e = Upe T e G 0 Va
foo2
and write (2.20)-(2.21) as
v, = nity + PeTy, , v, P = 2n9G9,,

Thus,

e f 420G T 4+ pe T

o i .
VaVb n= tha Va b a be Va be
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( 1 ( 1
nt Vaty+ taty + G,Tye + P T oty + VaTye + 1T .G (3.40)

Now, (2.11) and (2.14) imply
1

1- 1 .
Ty = Vi n@ 4 2(n(z’) 2y, 9@, (3.41)
which in turn gives
( ) 1
GC[Z TbC - _PCfFaf - Encva 'e(z) TbC
( 1
1 - . .
= ~P/FuTy — ¥, L0 V@ + (1) g, 0@
Inserting this and (3.41) into (3.40) we can write
coe ( . 1 1 1
V.Vyp nt =n Va by + taty = PF Ty = :}Va 2(Z)Vb n® -~ (n@)?v ol (Z)Vb 2@
: TG o L
P VaTye + Tocy —5 v + )29, 4@ PR o + 51!V, 0@
( 1
. 1- : 1 :
= pnd Vatp+ taty — PTFgp Ty — 5 Va 09y, n@ - E(n(z))zv LOv, 9@
il
def:
( 11

( 1
-+ Pdc ﬁa Tbc + Tactb - zFﬂC Vob n(Z) + (n(Z))Z OVb.e @)

’
d_ef 11

To conclude we just need to elaborate each parenthesis. For the first one we note
ctdtt= s _ 0" " 0. @ 9@
Vv ab Vab | ViV v." v,
+ sasp = 2n@s (v, L@+ )y, 10y, 2@,

from where it follows

I= Va Sp + SaSp — PCfFaf (ch - n(Z)Fbc)
_a@ 0 @l e ol @0 po

V.V y) Va Vi Va \V/2

o l o o
— 21/1(2)5 (avb) e(Z) + Z(n(z))z Va E(Z)Vb e (2)

From the definition of Ty, and t, one gets
. ( ) ( N
II=v, Up - nPFy +Uex s, +n@y, 2@
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( 1 - 1 . 1
+ Fae —n@s), — LV n® 4 ;(n(z))2 v, L@,

and the validity of (3.39) is proved. U

We can now find the components Ri em(-, -, 11, -) of the curvature tensor.

Proposition 3.1.11. Let {N,y, €, € @} be metric hypersurface data. Then the curvature

tensor Ri em satisfies the following identity

I
Rpeat® = 14 W7y Sa — Sasp + 2n@s o) 2@ 4 n(29),
( ) 1 o R 1 . . I.
+ Pchaf Upe — n(z)Fbc - EVb n(Z) Va 0 2) —E (n(Z))va e(z)Va 2 @
I . . .
PR @, 1 @
+ pac eVbUca — Ve Uy + 25U — spUpe + 2F 3V, 1777 + chaVbn )l

+n® -U " po_y | g0y p +F s _ 1@ 40
baVe acVp Vo o ac b E \%2

(3.42)

Proof. The result follows immediately, after inserting Lemmas 3.1.8 and 3.1.10 into
the identity R*  ;c — .d -« 1 (cf. (3.22)).
bea ab ~ VaVp L

Again, observe that the extrinsic part Y of the data has played no role so far in this
chapter.

3.2 null hypersurface data

The foundations of the formalism of hypersurface data were fully established in
[58], [59]. In these two works, most of the results therein apply for completely
general hypersurface data, so the existence of null and/or non-null points in the
hypersurface is always allowed. In general, this actually constitutes a great advant-
age. However, for the purposes of this thesis it becomes necessary to expand the
formalism of hypersurface data in the case when the abstract hypersurface is null.
For this reason, in this section we collect all results of abstract null hypersurfaces
that will be helpful afterwards.

We start with the notions of "null (metric) hypersurface data".

Definition 3.2.1. (Null metric hypersurface data) A metric hypersurface data set
{N, vy, €& £ @} iscalled null if the scalar field n®@ defined by (2.6)-(2.9) is everywhere
zero on N .
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Definition 3.2.2. (Null hypersurface data) A hypersurface dataset {N , y, €, £ @, Y} is
called null if {N, y, €, € @} defines null metric hypersurface data.

The notion of null metric hypersurface data can also be constructed purely in terms

of the data {y, €, £ @}, i.e. without making any reference to the scalar field n?,

Lemma 3.2.3. Let N be a smooth manifold. The collection {y, €, £ @} where y is a sym-

metric (0, 2)-tensor, € a covector and £ @ a scalar field defines null metric hypersurface
data if and only if

(i) The radical Rady|y of y|p is one-dimensional at every point p € N.

(ii) For all p € N and any non-zero vector e1 € Rady|p the contraction €|p(e1)/= 0.

Proof. It is clear that condition (i7) is independent of the element e1 € Rady one

chooses. If {N, y, €, £ @} is null metric hypersurface data, we may take ei|, = ny
and conditions (7) and (ii) are satisfied (recall (2.6)-(2.7)). To prove the converse,

we only need to make sure that the symmetric 2-covariant tensor Alp on T,N @ R

defined in (3.1.1) is non-degenerate (observe that (i) together with (2.6) already im-

2 = 0). The proof of Lemma 3.1.1 only uses that y|p has one-dimensional

ply that n'
radical, that span{ei} = Rady|, and that €|y(e1)/= 0. Thus, under conditions (i)

and (i7) the signature of A|p is given by (3.1), hence A|y is non-degenerate. O

Remark 3.2.4. Note that condition (ii) needs to be added only because the tensors
{y, € £ @} considered in Lemma 3.2.3 are completely general (i.e. they do not define met-
ric hypersurface data a priori). Had we let {N , y, €, £ @} define metric hypersurface data,
then only (i) would be necessary, as the ambient tensor A would be non-degenerate by
definition and hence (ii) would be automatic.

Let us study some direct consequences of n® = o. Firstly, as already mentioned,
Rady = (n) and hence y(n, -) = 0. On the other hand, the tensor U introduced in
(2.12) acquires a particularly prominent role. It is given by U = 1, £.y (see (2.12)),
hence it satisfies U(n, ) = 0 (by (2.14)). Moreover, when {N, y, €, £ @} is embedded
on an ambient space (M, ¢) with embedding ¢ and rigging ¢, it coincides with

the second fundamental form K (cf. (2.45)) with respect to the null normal v €
T(T$(N)) satisfying g(Z, V) |sov) = 1.

For later use, we particularize (2.13) and (2.20) for n® = 0, which gives

1
s="£8 (3.43)
2 n

v, ¢ = nsy + P*Uaw, (3.44)
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and we stress that any vector field n € Rady satisfies

£7€ = 2as + da, (3.45)

where a € F(N ) is defined by 7= an and we have used (3.43). It is also worth
mentioning that the combination of U(n, ©) = 0, s(n) = F(n, n) = 0 and (3.44)
entails

Van =0, (3.46)

which together with (2.44) and v = ¢.n (recall (2.25)) yields

(2.48) : 3.46
Vw = ¢. Vun = Y(n, m)n ( :)Kn¢*n = Ky V. (3.47)

Consequently, k» can be interpreted as the surface gravity of the null normal vector
von ¢(N).

We have already discussed that the vector field 7 is privileged in any null hypersur-
face data. This often makes it convenient to decompose tensors on N in terms of a
basis {n, ea} of (TN ) and its corresponding dual basis. The next lemma provides

such a decomposition for the tensors y and P.

Lemma 3.2.5. Consider null metric hypersurface data {N , y, €, £ @}. Let {n, ea} bea
basis of T(TN ) and {q, 8} be its corresponding dual, i.e.

qn) =1, qles) = 0, 04(n) = 0, 0(es) = &4 (3.48)

Define the functions wa € F(N ) as wa 2" @(en). Then, the tensor fields y and P decom-

pose as

y = has6* Q 65, ( ) (3.49)
P=h%%esa@es—hByus(nQea+ea@n)— L@ —-hByaws nQ@mn, (3.50)

def . . . .
where has =" yl(ea, es) is a metric and h*8 denotes its inverse.

Proof. First, we notice that € decomposes in the basis {q, 6} as € = q + @.6*
because €(n) = 1 (cf. (2.7)) and wa =" €(e4). Equation (3.49) is an immediate con-
sequence of y(n, -) = 0. This, together with the fact that Rady is one-dimensional,
means that h4s defines a metric. On the other hand, since P is symmetric it decom-

poses in the basis {n, ea} as

P = P(64,6%es @ es + P(q,0)(n @ ea +ea @ n) + P(q, q)n Q n. (3.51)
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The fact that P(64, 88) = h4B follows from

OF = O"6Fe" (29)  bf b Ba bf (3.49) P

A ab A= (P Vfa-l-n @a)ebeA =P Vfaegeil - hACP(O ,0), (3.52)
while for P(q, -) one finds

P(q,-) = P‘f - a0, ) & 2<)2> n - waP(64, )
= - 0@ + waP(64, q) n - h"Byaes

( )
and hence P(q, 6°) = -h*°wa and P(q,q) = - £ @ - h'Bywaws . O

The concept of null thin shell follows immediately from Definitions 2.7.2 and 3.2.1.
Athinshell{N ,y, € €@, Y% p, *, J*} issaid tobe null if {N , v, €, € @} defines null
metric hypersurface data. As anticipated, the energy-momentum tensor 7 of a null
thin shell can be decomposed in the basis {q, 84} as well, and it turns out that the
components of 7 take a very simple form, as we see next.

Corollary 3.2.6. In the setup of Lemma 3.2.5, let {N , y, €, £ @, Y% p,* J*} be a null
thin shell. Then, the components of the energy-momentum tensor T in the basis {q, 6}

read
(g, q) = -€h*2[Y](es, es), (3.53)
7(q, 84) = €eh*8[Y](n, es), (3.54)
7(04, @) = —eh“B[Y](n, n). (3.55)

Proof. Inserting the decomposition (3.50) into Definition 2.7.3 yields

( )

rf = —eh48 [Y](ea, es)ninf — [Y](n, ea)(ndef ey ) + [Y](n, n)edAe%

after a simple but somewhat long computation in which many terms cancel out.
Contracting with {q, 84} it is immediate to get (3.53)-(3.55). O

3.2.1 Gauge-fixing results

Later on, we shall introduce several geometric quantities that are invariant under
the gauge transformations with gauge parameters {z = 1, V}. In particular, these
quantities will play a fundamental role in the study of abstract Killing horizons. In
order to motivate their definitions, we first need to know the gauge behaviour of

various tensor fields defined before. We devote this section to this task.
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For arbitrary gauge parameters {z, V} we introduce
de def
=Y, f= &), (3.56)
from where it immediately follows that (recall Lemma 2.2.8)
Vi = fn* + Ptwe. (3.57)
In terms of {w, f}, the gauge transformations (2.31)-(2.32) take the form

Gy (8) =z (€ + w), (3.58)
Gevy £@ =22 0@+ 2f + Pw,w) . (3.59)

In the next lemma, we obtain the gauge behaviour of U, F, s, r and K.

Lemma 3.2.7. Let {N , y, €, € @, Y} be null hypersurface data. Consider arbitrary gauge

parameters {z, V} and define the covector w and the function f according to (3.56). Then,
the following gauge transformations hold:

1
Gewv (U) = —U 1 (3.60)
G,y (F) =z F+ 1dw + dz/\(e+w) (3.61)
()
1 2 n(z) 1
Gz (s) = s + —£nw + (2— (€ +w) - —dz (3.62)
Gewv (r) =r+ —Zdz + nzjz €+ w) + 2£nw -u(, ), (3.63)
(
Gy () = L ke - 22 (3.64)

Proof. For notational simplicity we write a prime to denote a gauge transformed

quantity. The first three expressions are obtained as follows (recall (2.30), (2.31),
(2.34))

U—lE y=l£ 1V:_1£nV:Z_1U.
2 7 n 2z
, 1., z 1 ( 1 1
F=5d€ =5 de+dw)+,dzA€+w) =z F+5dw +5dzA(€+w),

! . ! . ! l . n _1
s =iwF =2z1F =s+ " idw + n(z) (€ + w) -~ dz
2 2z 2z
where i» denotes interior contraction in the first index and in the last equality we
used w(n) = 0. Using Cartan’s formula £.aw = ivdw + divw = idw yields (3.62).
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For the transformation of  we contract the first equality in (2.40) with z™ 11 to get

1 n(z) 1 1 n(z) 1
r = T+—szz+‘z 8—72V fvn, s = 1’+2—Zd2 +Ze+—zzv En(ZV),'
_ 1 n(z) 1 1
=r +72dz +—ZZ € +—22£n (y(zV,+)) s (£ny) 2V, )

where we used the antisymmetry of the Lie bracket and "integrated by parts".
Expression (3.63) follows after using y(V, -) = w. The last transformation follows

at once from the previous one and the definition k. = -r(n). ]

Lemma 3.2.7 admits the following immediate corollary.

Corollary 3.2.8. The covector s — r has the following simple gauge behaviour

1
Gewl(s-r)=s-r+u(v,-) - ;dz.

One of the main results in the context of null metric data {N, y, €, £ @} is that
by means of a gauge transformation one can always adapt the one-form € and
the scalar £ @ to whatever pair {u € F(N ), # € I'(T*N )} as long as &n)/= 0
everywhere on N. We prove this in the following lemma.

Lemma 3.2.9. Let {N , y, € £ @} be null metric hypersurface data. Let u be a function on

N and 8 € T(T"N ) be a covector satisfying Hn)/= 0 everywhere. Then there exists a
unique gauge transformation Gev) satisfying

Gen® =3  Gey(L@) =u (3.65)

Moreover, the gauge group element G v) is given by

c= %), V= —t-pe.s i@, (3.66)
Hn) 2 (3(n))?

Remark 3.2.10. The condition $(n)/= 0 is necessary. Observe that if at any point p it
occurs that (n)|p = 0, then & cannot correspond to € in any gauge, as

1= Gen® Gen®) |y =z (Gen@)m)|p.
Thus, (Gev)(€))(n)/= 0 must hold for all possible gauge parameters.

Proof. We first assume that the gauge transformation exists and restrict its form up
to a function yet to be determined. We then restrict to group elements of such a
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form and show that there exists one and only one them that satisfies (3.65), namely
(3.66). This will prove both the existence and uniqueness claims of the lemma. For
the first part we impose (3.65):

( )
z@+y(v,) =98 22 L0 +28(V)+y(V,V) =u (3.67)

Contracting the first with n gives z = $(n), so

def 1

w WV, )= - 9- '4
Y I(n)

Observe that w(n) = 0. Moreover, the vector V— P(w, ) lies in the kernel of y
because yw V?—Prw. = wa—(6°4nc £ o) we = 0. Therefore, there exists f €
F(N ) such that

( )

1
@ — Pab + b — Pug, + £ 2 + a
V ws + fn () f n

Thus, it suffices to restrict oneself to gauge parameters in the class

1 )
z = 19(71), V=__p@9-)+ gn ,g € F(N) . (3.68)
I(n)

We now start anew and prove that there is precisely one function ¢ such that the
corresponding (z, V) in (3.68) fulfills conditions (3.65). For V as in (3.68) we get

1
HV) = WP(& 9 + q30n),
eV)=-0@ 14,
1 1
y(V,-) = %V(P(ﬂ, D),) = %8— e
_ 1 _ P@.I)
(v, V) = 30 HV) - e(V) = a2 T 0@,

The first condition in (3.67) is satisfied for all g. The second is satisfied if and only
if

( 1
19(71)2 2q+ﬂ§.ﬁ) — 5 = q:u(ﬁ.ﬁ)_
Hn)? 29(n)?
which ends the proof. O

In particular, Lemma 3.2.9 means that two given null metric hypersurface data sets
are related by a gauge transformation if and only if they both have the same data
tensor y. We prove this in the following corollary.
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Corollary3.2.11. LetD =" {N,y, € £@},D =" (N, y, & £ @} be two null metric hy-

persurface data. Then there is a gauge group element Gev) € F "(N ) x T(T"N ) such
that Gev)(D) = D ifand only if y = y. This gauge element is given by

1 -
c—e), V=" D@ )+L2-PE&H

3.69
€(n) 2 (€(n))2 (369

Proof. The necessity is obvious from the fact that y remains unchanged by a gauge
transformation. Sufficiency is a direct application of Lemma 3.2.9 to 4 = € and

u:i(z)_ ]

Lemma 3.2.9 and Corollary 3.2.11 are remarkable because they suggest that in the
null case one can codify all the metric hypersurface data information exclusively
in the tensor y, and that € and £ @ are pure gauge. This fact will become spe-
cially important in Chapter 9 when studying the matching of spacetimes with null
boundaries from an abstract point of view (i.e. in a detached way from the actual
two spacetimes to be matched). As we will see then, apart from a condition upon
the orientation of the rigging vector fields that are identified in the matching pro-
cess, the matching will be possible if the tensors y, y of two given null metric
hypersurface data sets satisfy @'y = y for a diffeomorphism ¢ : N —--- N.

3.2.2  Curvature of the metric hypersurface connection V: null case

In this section we compute several contractions involving the curvature tensor

Rdbca and the Ricci tensor R ;. These identities will be necessary later on.

We start with the contractions with £ 4 and with yrs Both of them will follow from
the general identity obtained in Proposition 3.1.11 for any hypersurface data.

Proposition 3.2.12. Any null metric hypersurface data {N,y, €, £ D} satisfies
0iRY e = vy 50 — sisa + (L DYy, + £ OEUsa + (For - £ @y, )P Ui, (3.70)
Vdedmelf = Vs Ufa — vaba + 257U, — SbUaf + ef (£.U)a - efPCdUbC Uy- (3.71)

Proof. Setting n® =0in (3.42) simplifies the expression to

def

Rdbca Tlc = Tldeu + Pch bea» With Lbcﬂ = vaCa - VC Uba + ZSCUbﬂ - SbUgC

and Hu & Vﬂb Sa — SpSa + n( 2 (2))Uba + P/ Ua Faf- (3.72)
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Hence, from (2.6)-(2.9),
edebcunc = Hy, - £ (Z)ncLbcw Vdedbcanc = Lbfa - efncLbca-

The proof will be complete once we establish that 7¢Lia = —£4Us + P/U raUe.
This expression holds true because, from (3.12) together with U(n, -) = 0 and
s(n) = 0,
( 9 1
nLyy = 1 U — Ve Upg + 25U — s5Upe

= £l + UV 16 = ~£a Uy, + PLULU,
where in the last equality we inserted (3.44). O]

We also need an expression for R 4 1" This was computed for general hypersur-
face data in [59] by using the Ricci identity applied to n”. With the expressions
above the result can be obtained as a simple consequence of the first Bianchi iden-
tity. The method of proof is valid for general data, but we restrict ourselves to the
null case.

Lemma 3.2.13. Let {N,y, €, £ @} be null metric hypersurface data. Then

o - 1 C 1
R = 2n" sy + PYU Fyp + 2P vy —siUyys (3.73)

I—?roof. Since y has no torsion, the first Bianchi identity takes the form R +

Rpa + R = 0. Contracting with 7n* and using the antisymmetry of the
curvature tensor on the last two indices one gets
C. )

Rdacbna =n" R dcab - Rdbac = 2nglI_I[cb] + Pdf(chb - Lbfc)'

which gives (3.73) upon inserting the expressions for Hic and Lcs provided in
(3.72). ]

Finally, we compute some contractions of R ic with n.

Lemma 3.2.14. Let {N,y, €, £ @} be null metric hypersurface data. The following iden-
tities hold:

Rapht® = £rsv = 2PY Usp + PV U, f — v, (e U) + (e s, (3.74)

. 1 .
Ry = ansb - 2P Ugsy + PPy Uys — g, (e U) + (e Ui, (3.75)
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R (ynn® = —PPUsUsi — n(treU). (3.76)

Proof. To prove (3.74) we contract the indices d and c in (3.73). Identity (3.10) (for
@ = s together with s(11) = 0) gives

21V, sp) = £nSp (3.77)
and hence

Iicacbna = £, — pY Ugpst .
¢ 1 (.
_|_pCf VcUbf—ScUbf _PCf VbUcf_SbUCf

The validity of (3.74) follows because P<f ovacf = vob (tr pU) —(%b P<f)U of =

Vbzgter), the last eqgliality being a consequence of (2.21). Im osing (2. 51%
n“’ = 0 it follows X (ab) R, — ° [se. Contracting wi and usmg (3.77)
\V4

and (3.74) gives (3.75). To obtain (3.76), it suffices to notice that n’P V. Ups =
~Upa Py 1’ = ~P® Py Upa 0

3.2.3  Transverse submanifolds

In Sections 2.3 and 2.4, we have discussed several fundamental notions and results
concerning the geometry of submanifolds. In particular, we have defined trans-
verse submanifold of a null hypersurface embedded on a Lorentzian manifold
(see Definition 2.4.3), and we have seen that these submanifolds are of relevance to
understand the geometry of null hypersurfaces. It is therefore natural to introduce
and study this notion in the context of hypersurface data. In this subsection we
analyze the geometric properties of a given null metric hypersurface data set with

a transverse submanifold S.

By definition a transverse submanifold is a codimension one embedded submanifold of

N to which n is everywhere transverse. Existence of such Sis always guaranteed in
sufficiently local domains of any null metric hypersurface data. Note that we are
not assuming that S is a global section of N, i.e. there can be generators of N that

do not cross S. What we actually enforce is that generators intersecting S do it only
once.

We have several purposes in mind. First, we will derive an explicit relation between

the covariant derivative v and its induced covariant derivative V° on S. Secondly,
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we will find an identity between V° and the Levi-Civita covariant derivative on S.

Then, we shall obtain a version of the Gauss identity (see e.g. [106]) by particular-
izing the results from Appendix B (see Theorem B.0.1 and equation (B.7)). Finally,
we conclude with several lemmas to be used later.

In the following, whenever we consider null metric hypersurface data plus a trans-
verse submanifold S, our setup will be the following.

Setup 3.2.15. Welet D = {N , y, € € @, Y} be null hypersurface data and S an (n— 1)-

dimensional smooth submanifold of N, everywhere transversal to n. We denote by g the
corresponding embedding @ : S '=--- N of S in N. We define €, = w’ € (with compon-
ents £4), (”2) = h#(e”, €,) and let q be the only normal covector along W(S) satisfying
a(n) = 1. We take a basis {v"a} of T(TS) and construct the basis {n, va <. (v"a)} of
(TN )l(,U(S)‘

In the present setup, Lemmas 3.2.5 and 3.2.9 admit the following two corollaries
respectively.

Corollary 3.2.16. Assume Setup 3.2.15. Then,

PfUg, = hUzrf](vCI— 2 m)Ug, P Ups = W09 YacUpg, (3.78)
treY = trnYy =2 € Ara + ka( £ @ - %I(Z))’ trrU = trnUj. (3.79)

Proof. Recall that U(n, ) = 0. By adapting Lemma 3.2.5 to the basis {n, va} intro-
duced in Setup 3.2.15, it follows at once that the tensor field P decomposes as

pef — pAByc of — WAB g B(ncvf +nfot) + (2 @ _ p @ypenf (3.80)
A B A A I
because has = has and wa = £ a. Equations (3.78) automatically follow from the

decomposition (3.80). Expressions (3.79) can be computed by inserting (3.80) into
trrY and trrU. For the former we find

trpY = PY.; = (WP o = 8P + nhf ) - (2@ - ¢ (2))ncnd)YCd
C D D D II

= Y- 28 Prp + k(£ @ - 4P,
while the latter is given by trrU = P“Ue = hCDv%v%Ucd = truUj. ]

Corollary 3.2.17. Consider null metric hypersurface data {N , y, €, £ @} and let S be an

embedded hypersurface of N everywhere transversal ton, W : S '=--- N the corresponding
embedding and us € F(S) be arbitrary. Then, there exists a choice of gauge such that

we=o, 205 = us, (3.81)
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Proof. Let & be a normal covector to S. By transversality of S and = it follows
Ho(n)|p/= 0 for all p € w(S). Extend smoothly o to a covector # € T(T"N )

satisfying $(n)/= 0 everywhere. Extend us to a smooth function u € F(N ). The
result follows immediately from Lemma 3.2.9. [

Remark 3.2.18. Note that in this case, the family of gauges satisfying (3.81) is highly
non-unique.

In Setup 3.2.15, the induced metric h 2o @’y is non-degenerate everywhere on S.
Indeed, a vector X € T,S which is h-orthogonal to all T,S satisfies also that . |p(X)
is y-orthogonal to all T,N (here we use that T,N = T,S @ (n|y) and y(n|p, -) = 0).
Thus, @.|p(X) € Rad(y|y) and hence it must be proportional to n|y. This can only
occur if X = 0.

The contravariant metric of 1 will be denoted by 1¥, and we will simplify notation
by identifying S, X € I[(TS), f € F(w(S)) with their respective counterparts @(S),

w.X and g’ f. Moreover, for any general p-covariant tensor T along S, we define
de

Ty =" @' Tand write Ta.a , def T||(UAA1, ..., U'a,) (without the parallel symbol) for
its components.

Given vector fields X, Y € I'(TS), the derivative %XY can be decomposed on S as

vxY = V3Y + QX V)n, (3.82)

with V° Y € I(TS). It is well-known that ovbeing torsion-free entails that the two-
X

S
covariant tensor field Q is symmetric and that V is a torsion-free connection on

S. Specifically, the tensor Q is given by

20X, Y)n= Y-V9Y+ X-V5X
Vx X Vy Y
== 20(X,Y) =q VxY + VyX . (3.83)

de

f * . .
We can elaborate this in terms of Uj w U and derivatives of€”_ To do this, we

first note that

everywhere on S (because both sides agree when acting on the vector n as well as
on a tangential vector X). Taking into account (2.19) we compute
a_ V=8 V-€FVN=XEW-(_ M- FY)
Vx Vx I X Vx X
= X)) - F(X, Y) + L@Ui(X, Y) - €,(V%Y)
= (V%) (V) —E(X, V) + £ @Ui(X, Y). (3.85)
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Inserting this into (3.83) and using that F is antisymmetric yields

( )
1
ax,y =3 (V38 (V) + (V58) (X) + £0U (X, V). (3.86)
We now obtain the explicit relation between the connections o , VS and the Levi-

v
Civita covariant derivative V" on S.

Lemma 3.2.19. In the Setup 3.2.15, let V° and V" be the torsion-free connection given
by (3.82) and the Levi-Civita covariant derivative on S respectively. Then,

v =V -h¥(e,) @ U, (3.87)
VxY = VAY + h¥ (@, YUiX, Y) + QX,Y)n VX, Y € I(TS), (3.88)

where () is given by

( )
QX Y) = 15 Vg M+ Ve (X) + L@~ 2@ U(XY). (3.89)

Proof. It is well-known that any torsion-free connection D on S relates to V" ac-
cording to

DxY = ViY -E(X,Y),  where

1
ESC def EhAI Dshcy + Dchsr — Dihsc . (3.90)

In order to apply this for V° we compute (VS h)(Y, W) as follows:

(VS (Y, W) = V° (h(Y, W)) - h(VS Y, W) - h(vS W, Y)
=v° VO, W) = YW) v Wy

Vx

= g (Vx(, W) = - MU (X, W) - &MU (X, Y), (3.91)

where in the second equality we used y(n,-) = 0 and in the last step we inserted
(2.18). The tensor Z corresponding to D = V° is therefore

et 1
g4 & " hAP VShep + Vihep - Voipe = -hP € pUsc,

which establishes (3.87). Equation (3.89) follows at once by combining (3.86) and
(3.87). Equation (3.88) is an immediate consequence of inserting (3.87) into (3.82).
]
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Equation (3.87) means that V° coincides with V" if either (i) €, =0or (i) Uy =0.
Moreover, (ii) is equivalent to U = 0 because U(n, ) = 0 (cf. (2.14)). Observe that
V" is a gauge independent quantity, but V° is not. In fact, as proven in Corollary
3.2.17, the one-form € can be made zero by an appropriate choice of gauge. The
tensor U is a property of the data and in general it is non-zero (this is a gauge
invariant statement, as in the null case Ge»(U) = z71U, see (3.60)). Therefore,

generically V° will coincide with V" only in case (i).

Our next aim is to relate the tangential components of the curvature tensor of OVto
the curvature tensor of the induced metric h. The key ingredient that allows us to
do this is a generalized Gauss identity that we derive in Appendix B. Recall that on
a semi-Riemannian ambient manifold, the Gauss identity is an equation relating
the curvature tensor of the Levi-Civita connection along tangential directions of
a non-degenerate hypersurface with the curvature tensor of the induced metric
and the second fundamental form. In Appendix B, we have extended this result to
the more general case when the connection of the space and of the hypersurface
are completely general, except for the condition that they are both torsion-free. By
particularizing Theorem B.0.1 (more specifically the abstract index notation form
(B.7)) to the case of null hypersurface data, we get to the following result.

Lemma 3.2.20. Consider null metric hypersurface data {N,y, €, £ @} and assume Setup
3.2.15. Let R" the Riemann tensor of S. Then,

° . (£ AUgpy) + € 4 27 (UppUcr - UpcU
O Var R peat vy, = Riypop +2V [CI( aUpip) + €4 )( pUcr = UpcUpr)
+Uac( (29D - Qll(z))UBD + Vh(BIZ Dy)
~Uap (8%~ 2)Upc+V" B¢ . (3.92)

I B )

Proof. We particularize Theorem B.0.1 for M = N, v =v B=Vv" W=V
C
In such case, ® = h and (3.88)-(3.89) hold, which means that A 45 = ¢ Uas,

Apcap = £ cUap and QB =°vh(A ly) + (€@ — £ @)Uas The only term that needs
further evaluation is v* v" (v )EP f . This 1s straightforward from (2.7) and

p A Vd af BC
(2.18), namely

00U (VaVap)P pc = —vhoy (L, + 8 U )(@hA e + nf Qsc)
= - £ 42 FUprUpc - ¢ DUpaUsC - UpaQsc

=-040 FUDFUBC - UDA(Vh (g o+ 2 (Z)Ugc). (3.93)
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Equation (3.92) follows at once after inserting (3.93) into (B.7) and using y(n,n) =
0. O

We conclude this section by providing the pull-back to S of the V derivative of
any p-covariant tensor field T and of the Lie derivative of a general symmetric
(0, 2)-tensor T satisfying T(n,-) = 0.

Lemma 3.2.21. Consider null metric hypersurface data {N,y, €, & @} and assume Setup
3.2.15. Any p-covariant tensor field T along S verifies

vt L 0 b h J U

p
Ay Ap BvbTul'-'ap = VBTAl"'Ap - Z ) TAl"'Ai—lfAi+1“‘Ap AiB )
i=1
- 2 Ta M v 071 nlliva i+1 ... 0P vh QB) + (2 ) _ 2(2) )UA B (3-94‘)
1 1 p A Aiq Aiy1 Ap (Ai Il i
def *
where T = @'T.

Proof. We prove it for covectors. The case of covariant tensors with more indices is
analogous. From (3.88)-(3.89), we obtain

vt T =0 (T )-
A BVb a B A

T yeov =0 (T)-T V"0 +0U )-T nQ
avBVh A B A B A AB) a AB
= V%TA— Q]T]UAB—TQWLZ V" (z? By T (2 @ _ ql (2))UAB ,

where in the last step we used that Qas = VhA by +(2@- ﬁ @)Uas (cf. (3.89)). O

(

Lemma 3.2.22. Assume Setup 3.2.15 and let T be a symmetric (0, 2)-tensor on N satis-

fying T(n, -) = 0. Consider a smooth function q and a covector field B € T(T"N )|y
satisfying B(n) = 0 and define t* =" qn" + P™By. Then,

(£T) 45 = (9= £ BOs(EnT)ap + BVETap + TacVpB< + TcsV",8S.  (3.95)
Proof. Using the decomposition (3.80) of P and the fact that Bn* = 0 we write
t" = gn® + KB 1,8, - kB 8 gn"oY By = (g - £ ABA)n" + B0,

For any function f we have £/+,T = f£:T because T(n, -) = T(-, n) = 0. On the
other hand, for any vector field W tangent to S (i.e. such that there exists W €
[(TS) such that W|s = @.W) itholds ¢" (£wT) = £ (@' T). Thus,

W' (ET) = @' Egpepo) + £gx (W'T) = (9 - LBsyw’ (E:T) + £= (W'D,
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where ,81*t is the vector field in S with abstract index components 8. Since V" is

torsion-free the last term can be expanded in terms of the covariant derivative and
(3.95) follows. [

3.2.4  Null metric hypersurface data admitting a cross-section

In the same spirit as in the case of embedded null hypersurfaces, it is nat-
ural to define a cross-section S (or simply a section) of a metric hypersurface data

{N,vy, €, £ @} to be a codimension-one embedded hypersurface in N which is intersected

precisely once by each integral curve of n. Although the existence of a cross-section
clearly imposes global topological restrictions on the data, these submanifolds are
present in many situations of physical interest. Thus, it makes sense to pay special
attention to this case.

A cross-section is by definition a transverse submanifold, so all the results from
the previous section apply in this context. As we shall see, one of the most import-
ant consequences of having a section is that one can obtain stronger gauge-fixing
results. Specifically, it is possible to select the one-form s and the scalar £ @ at will.

Proposition 3.2.23. Consider null hypersurface data {N,y, €, £ @,Y} and assume Setup
3.2.15 with the additional condition that S is intersected precisely once by each integral
curve of n. Let u € F(N ) and o € T(T"N ) be arbitrary, with the only restriction that
o verifies o(n) = 0 everywhere. Then, for any choice of gauge parameter z on N , there
exists a gauge parameter V, unique up to the choice of y(V,+) on S, such that

Gl = 0, Gey(2®)=u (3.96)

Proof. For notational simplicity we denote G¢v-transformed quantities with a
prime. Consider any gauge parameters {z, V} and define w"E y(V, -). Then,
V — P(w, *) lies in the kernel of y (this is a consequence of (2.9) together with
w(n) = 0). Thus, there exists a function f € F(N ) such that V = P(w, *) + fn.
This decomposition combined with (2.6)-(2.9) implies y(V, V) = w(V) = P(w, w)
and €(V) = f. In these circumstances, (2.32) and (3.62) give

( 1
f= 21 _12 '@ - 0@ - plw,w) , £aw = 2(s - s) +Zl (dz - n(z)(€ + w)).
Z

Thus, (3.96) holds if and only if
( )

1
V =Pw,-) + E 4 _po- P(w,w) n and (3.97)

72
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Emﬁ=ﬂ0—9+50h—ﬂﬂw+um. (3.98)

Since S is a cross-section, (3.98) gives a unique solution w on N for given initial
data w|s. However, we still need to prove that the solution satisfies w(n) = 0, as
this has been assumed in the derivation of the equation. Contracting (3.98) with n
yields £/(w(n)) = - m?w(n). This is a linear homogeneous ODE and by unique-
ness of the solution it follows that w() = 0 on N if and only of w(n)|s = 0. We
therefore conclude that (3.96) is satisfied if and only if V is of the form (3.97) and
w is any covector along S satisfying w(1)|s = 0 and extended (uniquely) off S by
means of (3.98). Observe that the gauge parameter z can be prescribed freely and
that w is fixed up to its value at S, hence V is unique up to the choice y(V, -)|s. [

We now prove that one can always select z|n and y(V, +)|s in Proposition 3.2.23 so
that Gev(k:) = 0 and G¢v(€)) is any covector of our choice.

Lemma 3.2.24. Assume the hypotheses and setup of Proposition 3.2.23 and let Kx be given
by (2.44). Then, the scalar ODE

£ix —xKn = 0 (399)

admits a unique global solution for x provided initial data x|s. Moreover, if x|s/= 0 then

the solution is everywhere non-zero. In particular, if x|s/= 0 and z = x then
Genkn) = 0 (3.100)

and the remaining freedom in the choice of {z|n, y(V,)|s} reduces to selecting z and
y(V,-) at S.

Proof. Equation (3.99) is a linear homogeneous ODE, hence it admits a global
unique solution for x for given initial data x|s. The fact that x/= 0 whenever

x|s/= 0 can be argued as follows. Suppose that x|s/= 0 and that there exists a
point p € N where x| = 0. Then n(x)|» = 0 and hence x = 0 on the whole integ-
ral curve Cp of n containing p, in particular at C, N S. Since by hypothesis x|s/= 0,

this means that x/= 0 everywhere.

Setting z = x, (3.64) yields G¢,v)(k:) = 0. The remaining freedom in the choice of
{z, V} follows from Proposition 3.2.23 and the fact that z needs to satisfy (3.99), so

it is fixed up to its value at S. [

Lemma 3.2.25. Assume the hypotheses and setup of Proposition 3.2.23 and let @ be any

covector on S. Then,

Govy & e ifand onlyif (3.101)

101



102

new results on the formalism of hypersurface data

1( u ) 1
V <P(w,-) + _2 — - 0@ -Pw,w) n, where w="p+q-¢L
-2 z

Moreover, the freedom in the choice of {z|n, y(V, -)|s} reduces to selecting z|n at will.

Proof. First, recall that q is the unique covector normal to S and such that q() = 1.

1

Under a change of gauge we have n =z u, so q = zq is forced. We now use the

S
decomposition (3.84) and write e =¢"9 Then,

S
Z(e + w - q) = 2(3" + ZU)

I«

eII
Thus, condition ' S @ is satisfied if and only if w = z7l0 + q - € on S. This,

=
together with (3.97)-(3.98), forces V to be given by (3.101) at S. Note that we can

fulfill (3.96) and (3.101) for any choice of gauge parameter function z. [

Remark 3.2.26. We have presented the results in a way that will allow us to apply Pro-
position 3.2.23 either on its own, or in any combination with Lemmas 3.2.24 and 3.2.25.

Remark 3.2.27. As a particular case, the function u and the covectors @, @ can be set to

zero.

Analogously as in the case of null hypersurfaces, whenever there exists a section
S of N one can always build a foliation of N by a family of sections. This follows
directly from the fact that one can always construct a foliation function A by solving
the first-order ODE n(A) = y € F *(N ) for some initial data A € F(S). It is
convenient to introduce a different name when the null metric hypersurface data
is restricted to satisfy such a global topological restriction. The terminology was
introduced in [60] with the aim of studying the characteristic initial value problem.

We adopt the same name and identical definition here.

Definition 3.2.28. [60], [61] (Characteristic hypersurface data) A hypersurface data set

def

D =" {N,y, € £ @, Y}is called characteristic hypersurface data if
(i) {N,y, € £ @} is NMD and y is semi-positive definite.

(ii) There exists a "foliation function”, i.e. a function A € F(N) satisfying n(A)|»/=
0Vp eN.

(iii) The leaves Sx =" {p € N : A(p) = A} are all diffeomorphic.

It is worth discussing the differences between Definitions 3.2.2 and 3.2.28. In the
former imposing #n® = 0 means that Rad(y) = (1), while the notion of charac-

teristic hypersurface data requires, in addition, that (i) y is semi-positive definite
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(which by Lemma 3.1.1 means that A has Lorentzian signature), (i7) that there
exist a so-called foliation function everywhere on N and (iii) the topological re-
striction of all leaves {A = const.} being diffeomorphic. In particular, the absence
of the topological conditions (i7) and (iii) makes the notion of null hypersurface
data far more general. An example of a null hypersurface data which is not char-
acteristic hypersurface data is a null hypersurface with topology S3 embedded in
a spacetime. It is clear that S3 cannot be globally foliated by two-dimensional sur-
faces of identical topology. In more generality, closed (i.e. compact and without
boundary) null metric hypersurface data will typically not be charateristic hyper-
surface data. Such hypersurfaces play a key role e.g. when discussing spacetimes
admitting compact Cauchy horizons (see e.g. [121], [122], [123]).

3.3 gauge-invariant vector along the degenerate direction

As already mentioned, Killing horizons of order zero and one are studied later in
this thesis by means of the formalism of hypersurface data. Much in the same way
as standard Killing horizons, they also involve a privileged vector field which is
null and tangent to the hypersurface. This vector field, in addition, is a property
of the hypersurface (or of the ambient space where it is embedded) and hence it is
gauge-invariant. Therefore, we conclude this chapter by discussing the case when
a completely general null hypersurface data set {N, y, €, £ @, Y} admits an extra

gauge-invariant vector field 7} in the radical of y.

In these circumstances, 1] is proportional to n and hence there exists a function
a € F(N) given by n = an. We denote by S the submanifold of N where n

vanishes, i.e. S = {p € N | a(p) = 0}. In the following lemma we prove that one
can define an associated gauge-invariant scalar function Kk on N for each given

gauge-invariant vector 1 € Rady .

Lemma 3.3.1. Consider null hypersurface data {N , y, €, £ @, Y} equipped with a gauge-
invariant vector field'n € Rady and let a € F(N ) be given by'n = an. Then, the
function kK € F(N ) defined by

def

kK = da(n) - aY (n,n) (3.102)

is gauge-invariant.
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Proof. By hypothesis 7 = Gew(n) for any pair {z € F"(N),V € I'(IN)}. This,
together with (2.34), implies that the proportionality function a transforms as

Gew(a) = za. (3.103)
To check that @Y (n, 1) - da (n) is gauge-invariant we start with the first term:

_, L)
G(Z'V)(GY(n,n)) =z, zY + €®Sdz + §£zv z-n, z7ln

= a¥Y(n, n) + z1a€(n)dz(n) +212‘1a(£zvv)(n, 1)
= aY(n, n) + z-ladz(n), (3.104)

where in the last step we used €(n) = 1 (cf. (2.7)) and (£zvy)(n, n) = £2/(y(n, n)) -
2y(£zvn,n) = 0. Now, the term da(n) transforms as

! Biz(n) + da(n). (3.105)

= —(adz + zda)(n) = —
z z

G(Z,V)(da(n)) =d G(Z,V)G z-
From (3.104) and (3.105), the gauge invariance of K follows at once. O]

In later sections, we shall use that (3.102) can be rewritten as n(a) = K — ak. by
means of (2.44).

Whenever {N, y, €, £ @,Y} happens to be embedded on a semi-Riemannian space

(M, ¢) with embedding ¢ and rigging ¢, we can define a vector field n € T(T¢$(N))
by n =" ¢=n. By (2.25) and (2.28), the vector field 7 is null on ¢(N ). This, as men-
tioned in Section 2.6, allows one to define on ¢(N \ S) the so-called surface gravity
g of n according to (2.81). The pullback of this function to N is precisely the func-

tion K introduced in Lemma 3.3.1, as we show next. The interesting fact is that
expression (3.102) does not require a to be non-zero. By construction K is smooth
and well-defined everyhere on N . It is not obvious a priori that the spacetime
function k, which in general is defined only on an open subset of ¢(N ), extends
smoothly to all the hypersurface. This is an interesting corollary of the following

result.

Proposition 3.3.2. In the setup of Lemma 3.3.1, define n =" ¢.n € T(TY(N)) and let k

be the function defined by (2.81) on ¢(N \ S). Then, K = ¢ = Kk on N \ S.

Proof. As usual we identify scalars on N with their counterparts on ¢(N). The
combination of (2.48), (2.81), (3.46) and and the fact that U(r7,n) = 0 yields

k9.7 =K1 =Yy 0 =¢. Vg - Y@, M1
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« . 1
=a¢. oV nun+ (da(n) —aY(m,n)n = akp. n = k$p.7

== K=K on N\S (3.106)
where we inserted the definition of k. O

This result justifies calling the abstract function K surface gravity also. This function

is always well-defined everywhere on N and in the embedded case it agrees with
the usual definition in the domain where the latter is defined.






THE CONSTRAINT TENSOR

A natural question that arises when exploiting the formalism of hypersurface data
is whether it is possible to capture some curvature information of the ambient
manifold at the abstract level. We have already mentioned (see Proposition 2.2.16)
that for any embedded hypersurface data one can determine some components of
the ambient Riemann tensor purely in terms of the data. One may also wonder
whether it is also possible to codify some components of the ambient Ricci tensor
at the abstract level. If this turns out to be possible, then it will make sense to
introduce new abstract definitions that encode precisely this information, so that

one can work with them without requiring the existence of any ambient space.

It is in this context where the so-called constraint tensor plays a crucial role.
This tensor, that can be defined at the abstract level, captures information about
a certain combination of the pull-back to the hypersurface of the ambient Ricci
tensor and the transverse-tangent-transverse-tangent components of the ambient
Riemann tensor. Moreover, in the null and embedded case, it coincides with the
pull-back to the hypersurface of the ambient Ricci tensor.

In this chapter, we motivate the definition of the constraint tensor for general hy-
persurface data. Then, we focus on the null case, where we study its properties
and derive some important identities. Since the ambient Ricci tensor is gauge-
independent, it is to be expected that the constraint tensor in the null case is
gauge-invariant. This is precisely the case, as proven in [60]. The gauge-invariant
character of the constraint tensor in the null case allows us to construct several
new gauge-invariant quantities. These quantities will play a fundamental role in
the description of horizons and their properties that we shall make in Chapters 5
and 6.
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4.1 definition and first properties

In this section, we will motivate the (purely abstract) definition of the constraint
tensor. First, we show that a certain linear combination of the tangential com-
ponents of the ambient Ricci tensor and of the transverse-tangential-transverse-
tangential components of the ambient Riemann tensor can be computed exclus-
ively in terms of the hypersurface data (whenever it is embedded). This will lead
naturally to the definition, on any hypersurface data, of a symmetric 2-covariant
tensor that encodes at the purely abstract level this combination of the ambient
Riemann tensor. This construction is done for general data, although, as we shall
see next, the most interesting case arises at null points because then this tensor en-
codes precisely the information of the tangential components of the ambient Ricci
tensor.

Consider hypersurface data {N, y, €, £ @, Y} embedded on an ambient space
(M, ¢) with embedding ¢ and rigging vector { and assume Setup 2.2.7. The first
decomposition in (2.27) can be used to compute the ambient Ricci tensor along
tangential direction(s to ¢(N ), i.e. R egeg. From Rgs def %‘”Ruavﬁ, it follows

a B BN) n@gL + nc fHeV + (Ve + Pcelev R 9B
GBebed = c c cd pavB b g
B(N)

R

1@ Ryavpd peg(veg
)

+ ne RuavgGreferer + Ryguagvefierey + PR wavgetede' e’y

By Proposition 2.2.16 we know that the contractions Ryaplte%"e®?  and
: : b c.d
R eFe%"eB can be written in terms of the hypersurface data. However, in gen-
pavB ¢ b d d . .
eral this is not true for the components Ryavglte9(VeP. We thus write the previous
b

identity as (recall (2.28))
d(N)
Ric(es, ea)-g(v, v)Riem(, ev, , ea) :N

2n‘Riem(d, ey, e, eln) + PRieml(e, ev, e, ed), (4.1)

where Ric and Riem are respectively the Ricci and Riemann tensors of (M, g).
Note that at null points (where n® = g¢(v, v) = 0) the left-hand side simplifies
and reduces to the tangential components of the ambient Ricci tensor alone. At
non-null points, it is precisely that combination of tangential Ricci and tangential-
transverse Riemann tensor that can be computed in terms of the hypersurface data.

It therefore makes sense to obtain the explicit expressions in the right-hand side of

(4.1) in terms of {N,y, €, £ @,Y}. To do that there is no need to assume any longer
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that the data is embedded. We work at the abstract level by introducing two tensors

Avcd and Baed on N, which correspond to the hypersurface data counterparts of

R (Fe9eB and R ete%"eP respectively (as given in Proposition 2.2.16). The
pavB  p c d pavB a p ¢ d

right-hand side of (4.1) can then be elaborated at the abstract level by computing

the contractions n(Asd + Adc) and P Baci. As already mentioned, we start with

the definitions of the tensors As« and B as dictated by Proposition 2.2.16.

Definition 4.1.1. (Tensors A and B) Given hypersurface data {N , y, €, £ @, Y}, the
tensors A and B are defined as

Aved as ViR vt 4 Vaver — Veyan
( - 1
+ 2@ Vil =VeUa 45

( 1 o °
+Ybd  Fef + ch nf + En(Z) Ve p @
( .

. . 1
U aVa L@ -U Ve p@

1

I
1 °
— Yo Far+ Yar nf + 13(2) veé® | (4.2)
(

ViR g + & VaUgp = VeUd T Yoo Uy, — YUy + Use Yo — UnaYeut

de

Babed =

+ 1D (YpeYaa = YpaYea) + UpcFan — UpgFea. (4.3)

We proceed with the evaluation of n°(Ani + Ade) and P Baea. Our guiding prin-
ciple for the computation is to let as many derivatives of Y as possible appear in
the form of £.Y, i.e. as evolution terms along the direction n. This will be particu-

larly useful in the null case, where 7 is the degeneration direction of y. The result,
however, holds in full generality.

Proposition4.1.2. Let {N , y, €, £ @, Y} be hypersurface data and r, K» be given by (2.44).
Then, the tensors A and B introduced in Definition 4.1.1 satisfy the following identities:

P*Bgped = R (pa) — v 650 T SpSa — Upgn( £ @)
( 1o o 1 o T,
- _EH(Z)S(” + 5V 10+ (1) Ve 4@ Vg €9

+ P nPFyFs + UpYae + UgaYpe = UpaYae = YpaUse
=+ n(Z)Ybach - n(z)deYac ,) (4.4)

1 (Apeg + Adev) = = 26:Y0d + 2V 58 +ray — 2KeYpa — 2 (1o — sp) (ra — Sa)
( @ L2 @_1 @52 @)
+ 3n@gp — 3n@rg, — Vo1 2(n YV, 0@ vy L
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( ) ( ) (
+ Upg + n(z)de Tl(e (2)) + 2p* Yc(b - Fc(b Ud)a - n(Z)Fd)a

(4.5)
Moreover, it also holds

1 (Apeg + Adgep) + P*Bapeg = R(b(d) - 2£,Ypg )

- 2Kn (+ trrU - 1@ n(€ @) - trrY  Yu

+ Ve 50 ¢ 2ra Zrb)rd - MUZS?) -t (trrY) Usa

+ 2Py 2V + Fye + 1P s =31 wpl @

)
+ Pec (Yab + Fab) (ch + ch) . (46)

Proof. Since the connection V has vanishing torsion, we can write the Ricci identity

for € in the usual form

y - o 219) - ( o ) . ( o )
b Ry =Vave b ~Veva Y = "va Fg— 294 — Ve Fy—- 290, . (4.7)

We now contract this with n° and use (3.14) applied to A —--- F and a —-- s. Using
that dF = 0 (which follows from F = 1d€), we get

Qflifbcdnc . pSd — Fed ° =22 (2)c “ @Uep + Upgn( @ (2)) -nUy ° FY4 @) (4.8)
\Y A\ \V4 \%

By Proposition 2.2.15 the Ricci tensor R ;; can be written as

Iébd = Ii(bd) + Ioi[bd] = i{(bd) + é[bsd] — iv[bn(z) Ved] 2@, (4.9)
Recalling (2.8)-(2.9) we then obtain, from (4.7) and (4.9),
( o 1 n , ,
P iR b + 2 WUy = Roa = 8 iR g = 22 Py, U,
=Ry =" 15 1P ;2P-Upmn(8P) +Fy i +nUy 40P,
() Ve )T,V Vi \4 \4

(4.10)

We elaborate the last two terms by taking into account (2.14) and (2.20). This yields

. . . ( )

chvbnc + nCUCb vd / @ = _ Zn(z)s(bvd) J/ 2) + p% n(z)Fbach = UpFac

+ss 1-,0° p@ 1 @2 j0° 20 (411)
bd+2Vb \Z +2(” ) Vo Va
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We have all the ingredients to compute P“ Bayca. Contracting the right hand side of

(4.3) with P*“and replacing (4.10) and (4.11), expression (4.4) follows after simple
manipulations.

For (4.5) we start by substituting (4.7) in (4.2), which gives
a , , , L ( o
Aped = ViFp —VeFap +VaYsp — Ve Y — o U Yy v, 2@

1( n
+§ Ua + n(Z)de Ve 0@ 4 Y Fcf + Yer nf = Yo Fdf + Yar nf. (4.12)

We now contract with n° and use (3.12) with S --- Y and (3.13) with A --- F to get

n°Aped = Vp sa) — Fe Vayi' = ch VcFa + V(d rp = £nYbd +) Y o Vit
1 . 1
- Enc Uy + n(Z)YCb Vi /) 2) +2_ Uy + n(z)de n( 2 (2))

— KnYbd + 1bSd — TbYd, (4.13)

where we have taken into account the definitions (2.44). Taking the symmetric part
one obtains

. ( ) ( ) .
n (Apeg + Agep) = 2V ¢ Sy T 15 +2 Yo —Fyp  Wpn©

= 2£4Ypa — 2KnYpa + 21@pSq) — 21p74

( ) . ( )
- nCUC(b + n(z)r(b Vd) 2 @) 4 Upg + n(Z)de n( @ (2)). (4.14)

By virtue of (2.20), we finally find

2(Yer - Fcb)V an® = 2P (Yep = Fp) Ugy - n(Z)Fda
) 1
+2@p,-5) -n? yo2¥+5,

which together with (2.14) yields (4.5) when inserted into (4.14). Finally, equation
(4.6) follows at once after simple index manipulations. [

Note that the right hand side of (4.4) is explicitly symmetric in the indices b, d. This
property is consistent with the fact that, in the embedded case, the left-hand side
of (2.53) is symmetric under the interchange of the first and second pair of indices.
This provides a non-trivial consistency check for (4.4).

As explained above, expression (4.6) motivates introducing a symmetric tensor R
on N that we call constraint tensor.
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Definition 4.1.3. (Constraint tensor R) Given hypersurface data {N,y, €, £ @,Y}, the
constraint tensor R tensor is the symmetric 2-covariant tensor

, ( ( )
Rod " Redy = 2E:Yoa = 2Kn + trrU = n@ n( L @) —trrY  Yu

)

+ v S + 2ry - 27’67’01 + 4rgsy) )— SpS4d

- (tI‘pY)Ubd + ZPucUa(b 2Yd)c + Fd)c

(( ) )
2)

+ 1’1( S — 37’(;, °vd) 2 ) + p* (Yab + Fap) (Yoq + ch) . (4.15)

where Kn and 1. are defined by (2.44).
The whole construction has been performed so that the following result holds.

Proposition 4.1.4. Let {N, y, €, £ @,Y} be hypersurface data embedded in (M, g) with
embedding ¢ and riggi?g . Let v be the unique normal covector along ¢(N) S%tfisfying

v({) = 1 and define v = g(v,-). Consider the symmetric 2-covariant tensor R = Ric -
<(v, v)IRiem({, -, ¢, *) along ¢(N ). Then

'R =R (4.16)
In particular at any point p where the hypersurface §(N ) is null, it holds

¢*RiC|p = Rlp (417)

At null points the expression for the constraint tensor simplifies, as one has n® =
0. It is worth stressing that the expression for the tangential components of the
ambient Ricci tensor in the null case has been obtained in a fully covariant way.

In the case n® = 0, the conditions R = 0 can be thought of as the vacuum con-
straint equations (with vanishing cosmological constant) on a null hypersurface.
Such constraints have always appeared in the literature in a decomposed form
adapted to a foliation by spacelike slices. To the best of our knowledge, the only
exception to this is [60, Eq. (50)] (see also [61, Eq. (34)]), where the tensors Aa,

Baci and Rab = n¢ (Avea + Adcwr) + P*Barca were defined (only in the null case) in
terms of the hypersurface connection V introduced in Section 2.2.2.1 before. Recall

that the torsion-free derivative V coincides in the embedded case with the connec-
tion induced from the Levi-Civita covariant derivative of the ambient space. In [60],
the expression of R is not fully explicit in the tensor Y, as the connection V and R
depend on it. Definition (4.15), on the other hand, shows the full dependence on Y

(in the terms involving Y, r and k»), as both V and R depend only on the metric
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part of the data. Moreover, the tensor R on [60] was not expanded in terms of
the data, as we have done here in expression (4.15). Instead, it was decomposed in
terms of a foliation by spacelike hypersurfaces, in analogy with other forms of the
constraint equations that have appeared in the literature. The result above involves
no decomposition with respect to any foliation. In fact, it makes no assumption
on whether such foliation exists. The result is fully covariant on N, even though
this manifold admits no metric. It is by use of the hypersurface data formalism
(in particular thanks to the existence of the connection ov) that such compact and

unified form of the vacuum constraint equations in the null case becomes possible.

Given its interpretation in the embedded case, it is to be expected that the con-
straint tensor is gauge invariant at a null point. This was already proven in [60,
Theorem 4.6] in the case of characteristic hypersurface data which (recall Defini-
tion 3.2.2 in the previous chapter) is null hypersurface data that can be foliated by
diffeomorphic sections with positive definite induced metric. However, the proof
of Theorem 4.6 in [60] does not rely on these global restrictions, so the gauge in-
variance of the constraint tensor R holds for general null hypersurface datal. In
particular, this means that in the null case we can compute R in any gauge, which
gives a lot of flexibility to adjust the gauge to the problem at hand. At non-null
points gauge invariance does not hold since the spacetime tensor R depends on
the rigging vector ¢.

At non-null points, Propositions 2.2.16 and 4.1.4 admit the following immediate
corollary.

Corollary 4.1.5. Let {N , y, €, £ @, Y} be hypersurface data embedded in (M, g) with
embedding ¢ and rigging {. Assume that the tangential components of the Ricci tensor
Ricalong @(N ) are known, then the whole Riemann tensor Riem at any non-null point
p € N can be determined explicitly in terms of the hypersurface data.

4.2 constraint tensor: null case

For the rest of the chapter, we shall focus on the null case, so we assume that
n® =0 everywhere on N . Since the definition (4.15) of the constraint tensor
R simplifies remarkably in this context, it is convenient to write it down as a

definition.

11t should actually be true that gauge invariance holds even at isolated null points. We do not
attempt proving this fact here.
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Definition 4.2.1. Let {N,y, €, £ @,Y} be null hypersurface data. The constraint tensor
R is the symnmetric tensor defined by
n o )
Rop a Rty — 26.Yap — Qkn +treU) Yao + Vo ) + 210

( )
— 2rary + 4rwse) — sasv — (treY)Uaw + 2PUa@  2Yo)e + Frye . (4.18)

In the next section we will evaluate the contraction of R with the null direction
n. After that, in Section 4.2.2 we will obtain contractions of the constraint tensor
along directions tangent to a given transverse submanifold S (non-necessarily a
cross-section) of N .

4.2.1 Constraint tensor along the null direction n

As already mentioned several times before, the degeneration vector n defines a
privileged direction on any null hypersurface data. It therefore makes sense to com-
pute explicitly all the independent contractions of the constraint tensor with this
vector. We emphasize that the result does not require any topological assumption
whatsoever. In particular, the null hypersurface data does not need to be foliated
by sections.

Theorem 4.2.2. Consider null hypersurface dataD = {N , y, €, £ @, Y} and let R be the
constraint tensor. Then,

R n" = - 6}: Ky — £, (rv — sv)
— (trrU) (s — sv) — v, (treU) + POy, Uy — 2PUras,  (4.19)
Ranm? = — n(trrU) + (trrU)kn — PPPUqUpa. (4.20)

Proof. Recall the facts U(n,+) = 0, s(n) =0,Y(n-) =r Ynn = r(n) = —kKy,
F(n,+) = s. Particularizing (3.11) for n® = 0 and 8 = s + 2r we get
: 1
n“v(tZ (sp) +2my)) = zﬁnSb + £ary — Vp Ky + 2Knse — P3Upe (sa + 2712). (4.21)
The contraction of (4.18) with n® gives (4.19) after 1nsert1ng (3.75), (4.21) and £n1’b =
n%4Y,,. Contracting (4.19) with n’ and using that n’ P VC Uy = -Py dec nt =
—P™ pdy,.Uw as well as nP£q(so — 1) = n(ks) yields (4.20). O

Observe that the identity (4.20) corresponds to the Raychaudhuri equation (2.103)
that we derived before in the context of null hypersurfaces. From the comparison
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between (4.20) and (2.103), it is straightforward to conclude that at the abstract
level trrU plays the role of the expansion 6 while P% P*/U,Us stands for the term

(n - 1)162 + ¢2,
4.2.2  Constraint tensor on a transverse submanifold S

Let us now assume Setup 3.2.15 and analyze the case when we have selected a
codimension one submanifold S of N to which n is everywhere transverse. In
particular, all results from Section 3.2.3 will apply here. Our main aim is to de-
rive an explicit expression for the pull-back to S of the constraint tensor, i.e. ¢ 'R,
in terms of the Ricci tensor of the Levi-Civita connecgion V" (see Section 3.2.3).

By (4.18), this task requires relating the pull-back ¢ R ic with the Ricci tensor of
v Now, computing the pull-back ¢ 'R ic amounts to calculating R 4p Lef R0 v°.

This trace can be obtained by means of (2.9) and (3.80) as follows:

)

R ap = 5;Rfucbvi’40b3 = PCdydf +n° Qf léfacbvu b

AUB

= hCDvCé)dl-_ydf +n( @ f- WP g C’Ug) Vdf) IéfacbvaAvbB (4.22)

Thus, we need to evaluate both

hCDU%Vd FR f gcbv‘;‘vccvbB and n‘( L ¢- WP g cv]‘_-i)ydf) RS acbvﬁ‘vbg
The first one is obtained by contracting (3.92) with h“P. For the second one, substi-
tuting (3.78)-(3.79) into (3.70) and (3.71) yields
( ) . . ( )
ne £ — Pl cvhyqyy Rfucbvav% = vy0%V,.Sp—5 § gr n(L@)-2L8Dsp U »p
+(22- 2 O)EU)as
( .
+ 2 Q b S(AUB)D - ’UdDUaA’UZ%BV [aUd]b

( )
~hPUsc Fpp + (L@ - 0Pyupp . (4.23)

1

We elaborate (4.23) by particularizing (3.94) for T =5, T = Uand T = €. Since
s(n) = U(n,-) = 0 they give, respectively,

Ft s =Vs - 8GU | (4.24)

A BVa b A B C AB
ZUI”I)Z)%U%VO[mUd]b = V;%UBD - VIZ)UAB — £ UcpUas + £UacUsp, , (4.25)
vt ) =V 12) == F =0 I =v' 1, (4.26)

4 BVa b A B~ Uz AB A BV 1] [A Bl
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with which (4.23) becomes
)

nt ﬁf—hCDﬁ c%d Vir R f,lcbg” gb = VZ SB — SASB )

+ n(ﬂ(z)) + QCQDUCD - 32CSC Uap
+ (8@~ 0D EU)ap+ 2L S, U + ViU

- VU - HP(LP - 2+ 0CRD UscUpp

- %hCD(Vh £ 5= V%2 p)Uac, (4.27)

The Ricci tensor R 4 follows by substituting (4.27) and (3.92) (contracted with #<P)
into (4.22):

IiAB = RhAB+ Vh;?B -5AS + ((2(2)) + ZQCQDUCD —3QCSC + thgc
+ UL @ - 2@y Ugp + (2@ = 2 D) £, U)ap + (tryUYV" £
[ “Aa )

( ) :
+2E #EUAB—FS(AUB)(E _V?AUB)C _2 hCD(e(Z)_ %( ))

)
CpD CD h l
+ 2587 UucUpp - h UpgV “ Lo + UpaV" Ly . (4.28)

Observe that all terms in (4.28) except from VhASB are symmetric. This implies
that IéAB - R BA = Vz SB — thA, which is in agreement with equation (2.51) and
provides a consistency check to (4.28). The symmetrized tensor is

: (
Rup) = R};\B + V?ASB)—SASB +\ n( @ (2)) +20€9 DUCD -3¢ CSC + VhCQ ¢
+ (UL @ = 2Dy Uyp + (2D = 2 D) £, U a5 + (tr, UV £
I “ )

( |
+ZE ﬁ)(’:UAB_FS(AUB)(E _V?AUB)CB _Z(hCD(Q(Z)_ e”(z))

)
+ 0CpP UacUpp - WP UDBVh “ QC) + UpaV" 3 QC) _ (4.29)

Having obtained (4.29), we can now write down the relation between the pull-back

to S of the constraint tensor and the Ricci tensor of the induced metric h.

Theorem 4.2.3. Consider null hypersurface data {N,y, €, £ @,Y} and assume the Setup
3.2.15. Let RPAB be the Ricci tensor of the Levi-Civita connection V" on S. Then, the

pull-back to S of the constraint tensor R defined by (4.15) is given by
( )

Rag = R+ 2v" sgy +rgy —2(ra—sa)(rp —sp)
A a ( ) ( )
+(2@ - £ V£ U)ap - 2(E,Y)ap - 2Ky + tr,U,  Yap - V" wu lp
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( (
+ Tl( Q (() + 2 Q ¢ Q DUCD 4 e (SC(‘|‘ trhU" Kn )E” trhY” + V e
+20¢ VChUAB—Vh(AUB) - 2 r(A_S(A + B Upu Upyc
)
(2
+2hP 2Ypu -V § 0 - (2P - 2P Upy (4.30)
Proof. We need to multiply (4.18) by v” v, We come across a term v* o o (s +
A B A BVa b
2r)) which we elaborate by using (3.94) for T = sand T = r (recall that s(n) = 0,
r(n) = —kKx), thus obtaining
o ( ) ) ( )
vi‘v%v(a Spy + 2rp) =V " sy + 2rp) + 2K nV “ 2 B)

)
- 0 ](S] + 21’]) - 2kn( £ @ _ QH(Z)) Uag.

Since Feen® = —sp and Fas = Vh[A 2 p) (by (4.26)), inserting (3.78)-(3.79) into (4.18)
yields

( ) ( )
R oap R(AB) = 2(£:Y)ap = 2Kn + €U | Yas + v sgy + 2 ) + 2KnV "
— 2rArB + 4r(4Sp) — SASB — trpY) — Ku( £ @4 2 ) 2]5] Uap

( i 1
+ 2KCPy 2Yp a4+ £ ( -2 )+1(vh 0c-vLy : 431
pa 2Ypot £c spy=2rsy + o Vi £c=Vebhy . (431)

Substituting expression (4.29) for R () and reorganizing terms, one easily arrives
at (4.30). O]

43 gauge invariant quantities on a transverse submanifold S

Equation (4.30) is rather complicated. The main reason behind this is that it has
been written in a completely arbitrary gauge. This is clearly advantageous since
the gauge can be adjusted to the problem at hand. However, the equation involves
several quantities that are gauge invariant, namely the constraint tensor R and the

metric has together with all its derived objects, such as the Levi-Civita covariant

derivative V" and the Ricci tensor R}AB. A natural question arises as to whether
one can find additional objects with simple gauge behaviour so that one can write
down (4.30) fully in terms of gauge invariant quantities. There is an obvious answer
to this, namely that the sum of all terms in the right-hand side of (4.30) except
for the first one must necessarily be a gauge invariant quantity. While this must
be true, it is clearly not very helpful. However, the idea behind it is useful. If

we can find simple gauge invariant quantities that can then be substituted in the
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equation, then the reminder must also be gauge invariant. This procedure can lead
to the determination of gauge invariant objects that would have been very hard to
guess otherwise. Furthermore, showing explicitly that such object is indeed gauge
invariant would provide a highly non-trivial independent test on the validity of
equation (4.30). This is the task we set up to do in the present section.

To study this issue, we will rely on the following previous results. First, we will
require the expressions for the gauge transformations of U, F, s, r and k. that
were derived in Lemma 3.2.7 and Corollary 3.2.8. Secondly, we will use the ad-
ditional structure that comes from the existence of the transverse submanifold S.

In particular, we will exploit the results and notation introduced in Section 3.2.3.
Finally, we will need Lemma 3.2.22, which allows us to compute the pull-back of

Lie derivatives of y and U along arbitrary directions.

In the next lemma we write down two quantities on S with very simple gauge
behaviour. The underlying reason why such objects behave in this way comes from
the notion of normal pair and the associated geometric quantities on S defined and
studied in [61]. However, for the purposes of this thesis we simply put forward the
definitions and find explicitly how they transform under an arbitrary gauge.

Lemma 4.3.1. Assume Setup 3.2.15 and define on S the covector wy and the symmetric
(0, 2)-tensor P by

( )
1 L@ - Qs Y _lg

i 2t

def

w” éef w'(s_r)_U”(giltlﬁ')ﬁ P|| l,U*Y-E h

Under an arbitrary gauge transformation with gauge parameters {z, V} they transform as
1

G:v(w)=w - dz, Gzv(P )=zP
C o (2 C o I

, (4.32)

Adef *
where 2 =" W'z

Proof. From (3.58) and (3.60) we have the transformations (we again use prime to
denote a gauge transformed object)

€, = 2'( + w), U,

= Z™-1Uj. (4.33)

4

Thus £ 4 =2 (4 +w?) and Uass €8 =Uss £B+ wP . The transformation law of

w), follows at once from this and Corollary 3.2.8 (recall that U(n,+) = 0, y(n, -) = 0).
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Concerning P, we use the decomposition V* = fn + P%w, (cf. (3.57)) and apply
Lemma 3.2.22 to the transformation law (2.40) of Y. This gives

( ) 1
Y=Y Y+ERd"+2 fls - Lw Uy + ZEZAwﬁh'

( ) ( )

= g2 QH(Z) +20 e+ wSwe , 8 (2)’|5 =72 (2)|5 +2f|s + wCwe ,  (4.34)

. . ays ef
the first because of definition £ ‘Zﬁ < h#(e”, ¢,) and the second being a consequence
of (3.59) together with (3.80), one finds

(o @) ) @ _ 5@ L e )
(Q" - Q |5)U|| =zA(€” - Q IS)U||+ZZA 2 ZUC—fls U||.

Giventhat (£%) = 70% + 2w® and£ 2 = 2°£ 4+ h + 2€, ®: dz" all terms involving w*
I I Ay 2
and dz” in P;l cancel out and the transformation law P'II — 2*P, follows. ]

The result states in particular that w; and P} are nearly gauge invariant and, in
fact, that they are exactly gauge invariant under the subgroup

G1= {1,V} € G = F"(N) xI'(TN).

The fact that Gi is a subgroup of G is immediate from the composition law of
Proposition 2.2.10.

As already indicated, it makes sense to write the constraint tensor R on the sub-
manifold S in terms of these quantities. We still need to decide which objects are
to be replaced. For P there is only one natural choice, namely @Y. For w;, we
could replace either s or r, but the second choice is preferable because wy is not
at the level of metric hypersurface data since it involves some components of the
tensor Y as well.

The following result is obtained by a simple computation whereby r and Y are
replaced in terms of wy and P} respectively in (4.30).

Proposition 4.3.2. Assume Setup 3.2.15. The pull-back to S of the constraint tensor R
reads

( )

Rap = RXB - ZV?A wp) — 2wWaws — 2Kn + trrlUy Pas

— (trP)Uas + 4P¢4Usc — 2Sas, (4.35)
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where

1
g o EXap - (L@ = 2O)E,Uap - 2V s
S ( 2 I ] “")
1
+ —_Zn(ﬂ (2)) -0¢9 DUCD +290 CSC Uap
( )
+ £¢ ~V!'Uas + 2V), Usc . (4.36)

The definition of the symmetric (0, 2)-tensor $ is not artificial. As mentioned
above, the fact that the tensors 'R and Ric" are gauge invariant, together with
the simple gauge behaviour of wy, P, Uy and ks, imply that §; must also have
a simple gauge behaviour. To conclude this section, we determine the gauge trans-
formation of § as a simple consequence of expression (4.35). However, in Ap-
pendix C we provide a direct and completely independent proof of this property.

This serves as a stringent consistency test for the various expressions above.

We emphasize that while the existence and explicit form of the Gi-gauge invari-
ant quantities wy and P can be justified by the use of normal pairs and their
associated geometric objects [61], the existence of the Gi1-gauge invariant quantity
S, could not be anticipated and comes as an interesting by-product of the con-
straint tensor. The tensor §; contains information on the first order variation of

the extrinsic curvature Y along the null direction n.

This quantity has several interesting features that would deserve further investiga-
tion. Here we shall only mention that this object is not only Gi1-gauge invariant and
it has a simple full G-gauge behaviour (which makes it computable in any gauge)
but it is also intrinsic to the submanifold S. By "intrinsic” we mean that it encodes
geometric information of S as a submanifold of N (or of the ambient space (M, g)
in case the data is embedded), independently of S belonging or not to any foliation
of N . This information is at the level of second derivatives (curvature) unlike w)

or P which involve only first derivatives (extrinsic curvature).

The gauge behaviour of § is obtained next as a consequence of Proposition 4.3.2.

Corollary 4.3.3. Under a gauge transformation with gauge parameters {z, V} the tensor
S, transforms as

Tonghs 2 i ghr, 2 oA Zn
G(Z,V) (S) AB = SAB+2'VAVBZ_ZZV ng + Z,(U(AVB; + Z,PAB,

A

de

wherez’ =" z|sand 2% =" n(z)|s. In particular Sy is invariant under the subgroup Gu.



4.3 gauge invariant quantities on a transverse submanifold S

Proof. We apply a gauge transformation with gauge parameters {z, V} to (4.35) and
subtract the equation itself. Using, as usual, a prime to denote gauge transformed
objects one has

( )

0= —ZV’Z(A Wp) — W) —2W A Wp+ 2Waws -2 K,z —Kn Pas—2S 45+ 2545,

where we used the gauge invariance of @R, h, V" and Ric", as well as the fact

that Uj scales with z™ We hile P scales with 2", so their product is gauge invariant.
Using the definition z™» = n(z)‘s and 1nsert1ng w" = w” - 21dz", as well as (3.64),

the result follows after simple cancellations. n

As we shall see in Section 5.4.2, the quantity § is of particular relevance in the
study of Killing horizons of order one containing a submanifold S. The underlying

reason is that §; is related to the pull-back to S of the tensor field s -n & £1Y,
which vanishes at a horizon in the gauge where the Killing vector coincides with n

(recall that §; is only Gi-invariant). The next lemma provides the corresponding

relation between §; and S -n & £nY.

Lemma 4.3.4. Assume Setup 3.2.15, where q is the unigue normal covector field to y(S)
satisfying q(n) = 1 and N = h#(e *). Then, 8 and the tensor » defined by (3.31)
verify the following zdentzty.

S ety ) 1 2
S, = _2” QT -n®LY) + 2(9(2)— 1% )(£,U),

lzn(e @)+ Uy (07, 87) -2 ,(2) U, (4.37)

In particular, if U = 0 everywhere on N, it follows

s « . )
Si=-y qE -nQLY) . (4.38)

Proof. We first use (3.94) to obtain the contraction v” Pt U
A B cVa be

v 00eV, Upe = VZUBC — £ D5UcpUpa — £ PUspUca . (4.39)

This, in turn, allows us to conclude
( T
P : _ wh h h
va0E0c VaUpe + VU = VeUg + 25U =V Upc + VU o = ViU 4

- 2480 DPUcpUas + 2scUaz  (4.40)
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after using (4.39) thrice. On the other hand, one finds

(. 1 ( 1
n¢ Va ch + VbUca — Ve Uab + 28U = — n°Ve Uab + UbCVa nc+ U Vb n*
= - (EnU)ab,
and hence
( 1
Ufﬁv%nc VaUp + VU = VeUy + 25U, = _(EnU)AB- (4.41)

Now, By (3.80) the tensor P can be decomposed as P¥* = (L hPy d - 0n? +

n<((8 @ = 0 @yyd Z" g Dy ). Thus,
Il D
C o 1
U?‘lv%Pdc Vﬂch + VbUca )_(Vc Uub + 25c Uab )

UZXU%UCC hCDvd - e ne Vanc + VbUca - Ve Uab + 2Sc Uab )

This means that (4.42) can be elaborated by inserting (4.40)-(4.41). Since the tensor
5 in the null case reads (recall (3.31)):
( 1T (. | 1

=1 2ygsy +n(£ @)Uy + P VU + VyUy — Ve Ug + 25Un
(4.43)
it is straightforward to conclude that its contraction with v* o’ is
A B
0 (
ZdabZJAUb =n? 2V KB ¥ 20 SscUap + n( 2 (2))UAB + (2 @ _ ”(2))(£nU)AB
)1
-0€ ZVX Up)c - V%UAB -20 DUCDUAB + 2scUag
€« )
+ o KD ZV%% Upyc - V%UAB -20 DUCDUAB + 2scUagp
1
+ e D(EnU)AB (444)
after using v o’ s =Vts -£2SU (cf (3.94)). Equation (4.37) follows
A BV b) (A B) C AB

from (4.44) after taking into account q(vp) = 0, q(n) = 1, definition (4.36) and the
fact that ¢~ (q(n ® £.Y)) = (£.Y)}. O



EMBEDDED HYPERSURFACE DATA AND
AMBIENT VECTOR FIELDS

In many interesting situations a spacetime has a privileged vector field. One simple
(although important) example occurs when the spacetime admits a Killing vector,
but there are many more indeed. Besides the natural generalization of (M, g) ad-
mitting a less restrictive type of symmetry such as a homothety or a conformal
Killing vector, it can also happen that there is one observer (modelled, as usual, by
a unit future timelike Killing vector) that is physically or geometrically privileged
e.g by being geodesic, or shear-free, or irrotational or any combination thereof.
Privileged null vector fields are also commonplace, e.g. when a spacetime is algeb-
raically special so that the Weyl tensor admits a multiple principle null direction,
or when the spacetime admits a Kerr-Schild decomposition. The examples are end-

less.

In principle, we do not want to restrict ourselves to any particular situation (at least
from the beginning). Thus, we will start by assuming that the spacetime admits a
privileged vector field y in a neighbourhood O of a general hypersurface N . Given
such vector field, we can always define a symmetric 2-covariant tensor field that
encodes the relationship between the metric ¢ and the vector itself. This is the so-
called deformation tensor. Our first aim is to compute the explicit expression for
the Lie bracket [y, (]’rN of y with any extension to O of a rigging ¢ of N'. With this
result at hand, we shall be able to obtain an identity on N for the Lie derivative
of the data tensor Y along y in terms of the deformation tensor, its first transversal
derivative and the metric part of the data. This identity will be essential in Chapter

6 when we derive a fully general form of master equation.

The rest of the chapter is devoted to the case when the hypersurface N is null
and y is null and tangent to it. In such case we use the symbol n (instead of y) to
refer to the privileged vector field. We have several purposes in mind. First, we
derive another identity for the Lie derivative of Y along n, but now in terms of the

proportionality function between n and a null generator of the hypersurface, the
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deformation tensor and the tangent components of its first transversal derivative.
Secondly, we study in depth the tensor field £, < £,V introduced in Section 3.1.1.
This tensor field plays a basic role in the geometry of Killing horizons of order zero
and one, so it becomes necessary to codify it at the abstract level. With this goal in
mind, we derive the pull-back to the abstract hypersurface of the contraction Z,
with a general covector. This leads us to a natural definition of a tensor field, called
" that encodes geometric properties of X, at the abstract level. The analysis of its
gauge behaviour reveals that its contraction with the null generator » of the data is
gauge-invariant, and this allows us to detect another Gi-invariant quantity related
to the second fundamental form U and its Lie derivative £:U. We also obtain a
general expression for the vector field Z,(X, Y), X, Y € I'(TN").

We emphasize that the results of this chapter hold in full generality, as we are
not imposing any a priori condition of the deformation tensor of . We expect
that the results obtained here will have many different uses besides the ones we
concentrate on later in this thesis. To mention just one, conformal infinity is a null
hypersurface in the case of vanishing cosmological constant, and the conformal
compactification introduces a privileged vector field, namely the gradient of the
conformal factor. It is quite certain that the result here will be of relevance in that
context.

We conclude the chapter by motivating and presenting the definitions of Killing
horizons of order zero and one, as well as connecting them with the notions of
non-expanding and (weakly) isolated horizons introduced in Section 2.5.

5.1 lie derivative of Y

As mentioned above, this section is divided in two parts. First, we consider a
general vector field y and compute the Lie bracket [y, {] on a (non-necessarily null)
hypersurface. As a prior step, this requires that we know the transverse covariant
derivative of y at the hypersurface and the pull-back to the hypersurface of the
deformation tensor of y. We then focus on the case when y is tangent to such
hypersurface and compute the Lie derivative of Y along y. We emphasize that all
results here are valid for hypersurfaces of arbitrary causal character.

Consider completely general hypersurface data {N, y, €, £ ®, Y} embedded on
a semi-Riemannian manifold (M, ¢) with embedding ¢ and rigging {. Define
¢ = 8(5 -)|¢v ) and assume the notation introduced in Setup 2.2.7. In these cir-

cumstances, the vector fields v and 6 are given by (2.25)-(2.26) in terms of the



5.1 lie derivative of Y

basis {{, e.}. As elsewhere in this thesis, we make no distinction between scalar
functions on ¢(N ) and their pullbacks to N..

Given a vector field y in a neighbourhood of @(N), one can define the so-called
deformation tensor K¥ of (M, g) by

K &' £ g (5.1)

The next proposition finds identities that relate K¥ along ¢(N ) with the hypersur-
face data and the transversal covariant derivative of y on d(N).

Proposition 5.1.1. Consider hypersurface data {N , y, €, £ @, Y} embedded in a semi-
Riemannian manifold (M, g) with embedding ¢ and rigging { and assume the nota-
tion in Setup 2.2.7. Let y be any vector field in a neighbourhood of $(N ) and define
BEF(N), y€ I (TN) by

y " pg+ ¢. (@) (5.2)

Then, the deformation tensor KY of y satisfies the following identities on ¢(N):

¢*(Ky)ab = ZBYah + ‘euOVbﬁ + Ebéaﬁ +£7Vub, (53)
( o
Vi = ley((, Qv+ KY(Ce)~ LPVaPB

-V 2@ -0y + (Yo + £@U, ' @ (5.4)

Proof. First we observe that

(Ve & y)s = BV e, G Qs + (Ve G ) N i BV L@ + Y ,y) + B ,y) (55)

where we used (2.41)-(2.42). Identity (5.3) is based of the fact that for any embed-

ding ¢ : N '=--—- M, vector field X € I'(TN ) and covariant tensor field T on M,
the Lie derivative satisfies (2.86). Therefore
* * ( ) ( )
¢ (KY) =9 (£Q) =@ £pcg+E£pwg =¢ PBEgTABR I+ IR dB+ £y w8
=2Y+ € Q4B+ dB R € + £y, (5.6)

where in the last equality we applied identity (2.86) and (2.22)-(2.39), and in the
previous identity we used the simple property

£rxS = fEXS+df ® ixS +ixS®df,  ixS=" S(X,-),
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valid for any symmetric 2-covariant tensor S. To show (5.4) we recall that g"¥ =
et6 + {Fv¥ on ¢(N) (see (2.27)) and compute V7 y on ¢(N) as follows (all equal-
ities take place at ¢(N))

VeyB = gBCHV ya
)
= o0 + VP Ve
1
= 67"V ya +5 00 Viya + Vayy

= 08 KUG o) - (G Vey)s + %Ky((, OB, (5.7)

where in the last equality we used Kyaﬁ = Vayp + Vgya twice. We elaborate the

second term using (5.5) and the fact that ({ y)s g B2 @ + €(y) (cf. (5.2)), which
yields

(§ Veay)s = Vea(@'. y) = (Ve y)
“ U O Y BV, L0 - R
= 00y,p+ %Bv} 0D L LY, T = Y+ 00U,
where in the last step we inserted (2.19). Substituting into (5.7) yields (5.4). ]
Proposition 5.1.1 allows us to find a general identity for the commutator [y, {].

Lemma 5.1.2. In the setup of Proposition 5.1.1, let { be any extension of the rigging off
¢(N). Define agc = VO | g X Then,

)
v '™+ e -k v
] = 4'( ) :
v (vl t LVt %Bv} LD _KY(Ce,) O (5.8)

Proof. We compute Vy{ by means of the decomposition (5.2). One obtains

N 1
v (¢(N),BV (+V C¢(N)ﬁ +}/’Ve C¢( ),Ba + YL@+ (Y +F )6
=PV et = P b=, b b
(N) 1 - L 1
z Bag + ST PWHy gl o+ Yoo+ 1@ Un B, (59)

where in the second equality we inserted (2.43) and in the final step we used (2.19).
Combining this with (5.4) yields

[v. ] = Vi - Vgy
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( )
= Pac + | y(£@) - KUG O v
( 2 n L 1
+ P b+ .7+ Py, B+ E'BV” 0@ KV e,) €

which can be written as (5.8) after using (3.15). [

A case of particular interest occurs when the vector field y is tangent to ¢(N),

ie. when B8 = 0 and y = ¢.y. In these circumstances, one can find an explicit
expression for £7Y in terms of the deformation tensor of y.

Proposition 5.1.3. In the setup of Proposition 5.1.1, let { be any extension of the rigging
off (N ). Assume that y is tangent to ¢(N ), i.e. such that B = 0 andy = ¢. () for some
y € T(IN). Define the scalar Ay € F(M) and the vector Xy € T(IN) by

ef

KY(C, n®C - 2v) + 12 nOYL) e Ep) (5.10)
1
2

A |~

=

A
def
X

KY (¢, nC - 26°) + lzn”y‘( 0@) + PUED), ¢ (5.11)

Then the derivative £yY is given by
1 1

. y
£5Y = AY + € Qs dA, + Efxyy + 2—¢ £K . (5.12)

Proof. The identity is based on the commutation property [£x, £w] = £1xw). Ap-
plying this to the ambient metric ¢ and to the vectors y and ¢, one obtains

£i£0g = £uag + LK. (5.13)

Note that this expression requires that the rigging is extended off ¢§(N ), but the

final result is independent of the extension, as one can easily check from (5.12). By
Lemma 5.1.2 with 8 = 0, the commutator [y, {] is (all equalities are on ¢(N))

( )
[y, ) =;( YL -KIGD v+ (58 -KIGe) 0
( )
= @ (@) - KIG O + wlEl - wKIG ) ¢
2 ( ( ) 1

4 ; e y(L@) — KNG O + PUE®) — PRI, o) e

where in the second step we inserted (2.25)-(2.26). Using again (2.25)-(2.26) in the
entries of KY yields

( ( ) 1

ly, {l = El KY ¢ n@C - 2v +§1 n@y( L @) + n(5€). ¢
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( 1
+ Zle (¢ nC - 209 + Zlnry(e @) + PHLO) e

= AL + ¢.(X)), (5.14)

We now take the pullback of (5.13) on N . For the left-hand side we use identity
(2.86) and the definition of Y. For the first term in the right-hand side we apply
identity (5.3) with y replaced by the commutator [y, {], so that 8 and 7 get replaced
by Ay and Xy respectively. Identity (5.12) follows at once. [

52 vector field along the degenerate direction

For the rest of the chapter we consider null hypersurface data {N, y, €, £ @, Y}
embedded on a semi-Riemannian manifold (M, g) with embedding ¢ and rigging
¢ and we let y not only be tangent to ¢(N ) but also null therein. Following our
previous notation, we use 1 (instead of y) to denote such null, tangent to ¢(N )
vector field and 7 for its counterpart on N, i.e. n % ¢.7. In these circumstances, 7}
is not only gauge-invariant! (because 1 is a fixed spacetime vector field) but also
belongs to the radical of y, which in particular means that all results from Section

def

3.3 apply. As we did there, we let a € F(N ) be defined by n =" an.

In the context above, it is helpful to introduce the functions v, P, the covector field

i and the symmetric 2-covariant tensor field T defined by?

vEIPEIEGW,  pETOEKIGO), 1= KNG, (5.15)
1
7=t 12 £:K1 (5.16)
Although these objects depend on n, for simplicity we do not reflect this depend-
ence in the notation.

Definitions (5.15) only involve transverse components of the deformation tensor
K. This is because there is no need to introduce symbols for the tangential com-
ponents, as they are given by (recall (2.86))

¢ KT = £oy. (5.17)

Observe that (5.17) is consistent with (5.3), since here n is tangent to ¢(N ). The
pullback ¢ K can actually be related to the tensor U by (cf. (2.12))

IThe gauge invariance of i is true even if /] was not along the degeneration direction.
2The letters ¥ (/Jin/), P (/kuf/, /kof/), i (/fe sofit/, /fej sofit/) and T (/’dalet/, /’daled/) are
respectively the twenty-first, the nineteenth, the seventeenth and the fourth of the Hebrew alphabet.
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0" K" = Loy = afay = 2aU, (5.18)

where we have used that
£ony = 20U Vo € F(N) (5.19)

because y(n, ) = 0.

From definitions (5.15), it is also immediate to check that i(n) = W (recall (2.25)).
The function ¥, in addition, turns out to be gauge-invariant.

Lemma 5.2.1. For null hypersurface data {N,y, €, £ @,Y}, the function W is gauge-
invariant.

Proof. As usual, we use a prime to denote gauge-transformed quantities. Using
(2.37), (5.18) and the fact that V' = ¢*(n') =z 1¢.(n) = z7v, we get

W KU V) =¢" KN+ ¢.V,V)
=W+ (@' KNV,n) =w+ 2aU(V,n) = v,

as claimed. n

In the following lemma we derive completely general identities that relate the vari-
ation of the tensor Y along the degenerate direction defined by 7 and the deforma-
tion tensor of n. This gives a kind of evolution equation of Y along the generators,
sourced by the ambient properties of n (and the proportionality function a). These
identities have many potential applications. For instance, they will play a key role
later in Chapter 6 when we derive a generalized form of the master equations
(2.144), (2.153)) and (2.128).

Lemma 5.2.2. Consider null hypersurface data {N , y, €, £ @, Y} embedded on a semi-
Riemannian manifold (M, ¢) with embedding ¢ and rigging {. Assume further that N
admits a gauge-invariant vector field n € Rady and let k € F(N ) be its surface gravity
according to Lemma 3.3.1 and a € F(N ) be the function given by n = an. Extend ¢.'n
to a vector field n on a neighbourhood O of (N ) and define its deformation tensor K", v,
P, iand T as in (5.1), (5.15)-(5.16) respectively. Then,

£Y =  a+2a s +2s5( a)+ (na) -w)yY
n vd ViVi Vo a w Va bd

. 1
= Vit N(LO) =D Uu+ Tw (5.20)
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af r = a+2a s +2s (° a-wy — I +T +K . g
n d VoVa Vo a ® Vi i Vo @ b nVd
(5.21)

Proof. The proof relles on two prehmmary expressmns that will be established first.

Define the vectors V = P(£7€,-) and W £ —P(i,") -2 fin N. We want to prove
that the following two expressions hold:

1 ° o °

“(Ey) - -a+t2a s +12s a-1 n(a), (5.22)
2 Vo VoVa Vo a wVa) wVa)

1 C, : 2
2 (£W V)bd = — V(b Id) + 2 (bvd) V- 2 Uba . (523)

To establish (5.22) we particularize (3.17) for w = £,€ and use (3.45) to compute

. (£€ - -a+2a s +25 a and (£ OW) = na). (524
Vo n a = VoVa Vo a ®Va) n

For (5.23), we use (5.19) and find
(EwY)eq = = £ri0Y 4 — PUa (5.25)

Expression (5.23) follows by particularizing (3.17) to w = i and using i(n) = w.

Once we have (5.23) and (5.24), the identity (5.20) and its corollary (5.21) will be a
consequence of Proposition 5.1.3. Therefore we need to compute the function Aj
and the vector Xj;. First, the second expression in (5.24) entails

Ap=nl@)-v == (@@ dAy) = £V, n(a) - v, Y. (5.26)
Secondly, substituting (2.26) into K" (¢, 1%‘{— 26 lead_? to
2
lI(rl ((, Tlug— 29”) e,\u = —Pabj, — L?’lu eAu =W. (527)
2 2

Consequently,

Xp=W + 12;7( 0 +V == %Exny = %Ewar 12;7(2 @)U + %Evy, (5.28)

where the implication is a consequence of (5.19). Inserting (5.26) and (5.28) into
(5.12) gives (5.20) after using (5.22)-(5.23). Finally, (5.21) follows by contracting the
decomposition (recall the definitions (2.44))

EﬁY = da ® r+r ® da + atY (529)
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with n. This yields nbE,Tde = -k nVia+ n(a)r« + af.ra and hence (5.21) after
inserting (5.20) and using Uasn® = 0. L

53 the tensor X, ‘*ze‘g,v

In the context of embedded null hypersurfaces admitting a null and tangent vector
field ) with surface gravity k, the tensor &, = £,V (defined according to (3.18) for
the Levi-Civita connection of the ambient space) plays a fundamental role. As we
shall see, at the ambient level X, is closely related to first derivatives of the de-
formation tensor K7 of n, which automatically endows it with a great geometrical
importance. Its influence at the abstract level is also remarkable for the following
reasons. First, one can compute explicitly the pull-back of X, (contracted with a
general one-form) to the abstract hypersurface, and this reveals a new abstract
tensor field that takes a fundamental part in (z) determining the constancy K on

the whole hypersurface and (b) determining whether k is constant along the null
generators (see Theorem 6.1.1 in Chapter 6). Secondly, the analysis of X, rises, in

addition, another tensor field with significantly simple gauge behaviour. Finally,
the tensor Z, is also of great use in the context of Killing horizons of order one,
and in fact it is precisely its study that will allow us to introduce an abstract notion
of these sort of horizons (see Section 5.4). Consequently, we devote this section to
study the properties of Zj,.

Our first aim is to derive an explicit expression for the pull-back ¢° ¢(W, %) ,
where W is any vector field along ¢(N ) (not necessarily tangential). This will
allow us to define a new tensor on N which encodes information about the de-
formation tensor K7 and its first transversal derivative on ¢(N ). Then, we shall
obtain the gauge transformation of the pull-back ¢ {(Z,) , first for general null
hypersurface data and then for the case when U = 0. This process will reveal a
new Gi-invariant tensor field on N and a full gauge-invariant covector on N in the
case with U = 0. Finally, we compute the explicit form of the vector Z,(¢.Y, ¢.2)
for any pair of vector fields Y, Z € I'(TN).

In the present context, an explicit form of X, in terms of the deformation tensor of
n can be obtained by particularizing Corollary 3.1.7 for D = V (recall that V is the

Levi-Civita derivative of §), Z = n and Sog = gag. This gives

)

,+ VKo — VUK, . (5.30)

aB

1,
(EnYap =58 VK
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The following lemma provides the explicit form of the pull-back ¢° ¢(W, ) in
terms of the corresponding hypersurface data and the various components of K7,
£:K" introduced in (5.15)-(5.16).

Lemma 5.3.1. Consider null hypersurface data {N , y, €, £ @, Y} embedded on a semi-
Riemannian manifold (M, g) with embedding ¢ and rigging {. Let V be the Levi-Civita
connection of g and assume that we have selected a vector field n on a neighbourhood
O © M of ¢(N) with the properties of being null and tangent to ¢(N) everywhere.

Define a € F(N) by nlgn) = a¢.n. Let Kdz dt £,7g be the deformation tensor of n,
{w, P, i, T} be given by (5.15)-(5.16) and Xn = £4V. Take any vector field W defined
along ¢(N) (not-necessarily tangent) and decompose it as

W=p8l+¢.W, (5.31)

where B € T(IN) andVV € I'(TN). Then,
C T,
¢* W(Zr] ) b = B V(a Ib) +WYs + PUw — Tar + We (Va G)ch + (Vb G)Uac

| )
+ Un(ic — Ve a) + a(V, Upe + VU — Ve Uab) ) (5.32)

Proof. We shall use the notation introduced in Setup 2.2.7. From the decomposition
(5.31), we have

¢ (WE)a = BOGER ape® +Wile)s(En) apee”. (5.33)
ab ab

Therefore, to prove the lemma it suffices to compute the contractions (recall (5.30))

)
1
(e A (En) gpelel) = ) efelet! VK g+ VeKja — VuK (g ) (5.34)
1
§ CnYapedef = el VoK gy + VpKia = ViKY - (5.35)

The first only requires the calculation of %"%ﬁqﬁVUK"aﬁ, which is obtained as follows:

Celel VK", = e#Vu(e%efK,) — Ko ele!Vyed — K%l Ve,

e aBCace

= ¢(2aUs) - 2aUas T + Upedyy = 2aU g, T4 + Ut

= 2(Ve@Uaw +2aVe Uy + Uade + Use ia,
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where we have used (2.48), definitions (5.15), (5.18) and the fact that

KT (¢.n, ¢.X) = U(n, X) = 0 for any X € T'(TN ). Replacing this in (5.34) and
cancelling terms gives

) ZY eP=( aUu +( au

cA n aBayp Va be Vi ac

+ Uab(ic - Voc a) + a(Voa Upe + VoUa — Ve Uab)- (5.36)

For (5.35), we first use (2.48) and {VV K"

B = £¢K g — KilpVadt — KJgVpd, which
allows us to rewrite

N

1
g CVK" g, ef ) ~ K OregTach )
- n
+ V5 (e ) ~ Kla§He)V gefl — efepfka,
Inserting now the decomposition (2.48) and using (5.15)-(5.16) gives
1 ( ) .
§ Elpesey = 5 © i) - K’kﬂ(ﬂ(@jef—yabvﬁ — Uy P)

c )
+ o (ia) = Kbe# (Tufl a9 = Yab v — Uab ) — e%eBE &K op

= v(aih) + WYw + pUub — Tab. (537)

Equation (5.32) follows from substituting (5.36) and (5.37) into (5.33). [

We can particularize (5.32) to the case when the vector W is chosen to be the rigging.
In such case = 1 and W = 0, so (5.32) simplifies to (recall that { := ¢({, -))

6 5 o = Viaipy + VYo + PUi — Ta. (5.38)
We therefore find that the combinationvo( 410 + WYa + PUa — Tav appears natur-

ally. One can expect this quantity to be of relevance, so we give it a name for it,
namely?

n def

7 ab V(alb) + WY + pUub - _rub, (539)

so that

NT=¢" {E,) . (5.40)
We now provide the gauge transformations of T17 and its contraction with 7, first

for arbitrary U and then for U = 0. In the latter case, we prove that 117 is G-
invariant and hence that 117(n, -) is fully gauge-invariant.

3The letter 1 | (/he/, /hej/) is the fifth of the Hebrew alphabet.

133



134 embedded hypersurface data and ambient vector fields

Lemma 5.3.2. Under the action of a gauge group element Gev), the tensor fields T\ and

(n, -) transform as

G I—IgJ = zl_lag + zVC(( ova a)U ;. + (vﬂl7 a)U .
+ Uaic = Ve @) + a(VaUpe + VU — Ve Uab)), (5.41)
Gevy T e =11 no + Vf(n(a)ch + a (£U)ee — 2P"UacUsa ). (5.42)
In particular, if U = 0 then
Gew 11T =211, Gevy NN, = 1w, ). (5.43)

def

Proof. The proof relies on (2.37), which implies G, 1, ({) = z({ + g(¢-V,-)). Since
the tensor field X, is gauge-invariant (because it depends only on ) and the Levi-
Civita connection of g), it holds

( ) ( ) ( )
Gew ¢° L(Ep) =@ Gew(QEn) = z¢" JEn) + g(¢:V, Zp) .

Particularizing (5.32) for B = z and W = zV and using (5.39), equation (5.41)
g)llow(s ,at once. In order to obtain (5.42), it suffices to contract @5.«41& with

n%) = z " (cf. (2.34)). Using U(1,-) = 0, the fact that n
=V) , , Va  be
(£.0)bc = (Vpn®)Uae — (Von")Ua and (3.44), one gets
( i )
G(Z,V) I_la,; nt* = I_]LIZ n* + Ve Tl(a)U be + a(TZ”VgUbC - UcaVb n* + Uava Tl”)
( ) )
= er n* + Ve Tl(a)ch +a (£nU)bC - Z(Vb n“)ch
( )

= a’] n* + Ve n(a)ch +a (EHU)hC — 2P»UacUva B
which is (5.42). Expressions (5.43) are immediate from (5.41)-(5.42). [

The gauge transformation (5.42) introduces in a natural way a symmetric 2-
covariant tensor. It is worth exploring its gauge behaviour.

Lemma 5.3.3. The tensor field ¥, defined by

Wic Lot n(G)ch +a (,‘EnU)bc — 2P Upa B (544)
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transforms under the action of a gauge group element Gev) according to
1
Gy (W) = E‘P. (5.45)

Proof. The gauge transformations (2.33)-(2.34) and (3.60) entail (recall that
U(n, -) = 0)

( )

1 1
Govy PUacUpy = = PUsUpy and Gy (£U) = — £,U - @)y
z2 72 -3
while from Gev(a) = za (see (3.103)) it follows
an(z)
Gewn(n(a) = n(a) + -
Thus,
1 an(z) ( 1 (2) 2 1
Geoyy (W) = ~ (@)U + TEUe + za = (B0 = = Use = = PUU
’ z ZZ ZZ 23 Zz
which yields (5.45) after simple cancellations. o

The following lemma finds the remarkable result that 1" can be written solely in

terms of P and hypersurface data quantities. In particular, all dependence on the
transverse derivatives of the deformation tensor drop off. This result is one of the

several interesting applications of the identities in Lemma 5.2.2.

Lemma 5.3.4. Assume the definitions and hypotheses in Lemma 5.3.1 and let n =" an.
The tensor T1" defined in (5.39) admits the alternative expression

T = Voavob a+al fi:fab — alEnY)a + 2(s g = 1(5) QVb)CY + n(@)Ya
- Sn(L @)U - a £ DL U, + lzpuab. (5.46)
Proof. We first particularize (3.34) for n'® = 0. This gives
2005 = L=l = n(£ DUy - 095, Uy, (5.47)

Inserting (5.47) and the identity (5.20) into the definition (5.39), the alternative
expression (5.46) follows easily after using (E7-Y)a = a(£: Y) a0 + 2r(,Vp,a. O
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To conclude the section, we obtain a completely general expression for Z,(¢.

Y,¢.7), Y, Z € T(TN ) under the only condition that the ambient vector field n
is null and tangent to the hypersurface.

Lemma 5.3.5. Under the same hypotheses as in Lemma 5.3.1, consider any two vector
fields Y,Z € T(TN). Then Zy(¢.Y, ¢.Z) is given by

5.(9.Y, $.2) = ((w - w(@)U(Y, 2) - al&U)Y, Z))(
+¢. az (V,2) + (Héss(a) —aEY + n(Q)Y + 2(s - 1) ®s da)(Y, Z)n
+ (P(i ~da-2as,) + 15 p-an(0®) n)U(Y, 2)
+ P(U(Z, ), )Y(a) + P(U(Y, -), )Z(a) . (5.48)

where He ss is the Hessian ofvo In particular, if U = 0 then

5.(6.Y,0.7) = 6. (ai Y, 2) + (Héss(a) _atY
+ n(@)Y + 2(s - 1) ®:s da)(Y, 7) n1 (5.49)
or, equivalently,
(9.Y,¢.2) = (Y, 2)v (5.50)

Remark 5.3.6. The expressions in Lemma 5.3.5 look rather complicated, mainly for the
notation that we have used. In index notation and assuming Setup 2.2.7, (5.48) can be

written in a somewhat simpler form

( ) C, )
Zq(&z, eb) = (VJ - n(a))Uub — af£qUmw C + G¢ D (e’\u, e’\h)
( 1

o ° ° 1
+ w.v, a—af Y, +n(@y , +2(s —71) <1aVb) a4+ 2‘(.7 —an(L @)U, v

( :
+ P (i - Vea-2as)Un +2U v, $-e (5.51)

Proof. We will identify vector fields on N with their push-forwards through ¢.
and let the context determine the meaning. The proof relies on Lemma 3.1.2 and
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equations (5.32) and (5.46) Let us define the function vo € F(N ) and the covector
Mon N as

w0 ¢ g% (Y,2), pX) =" ¢ g(X,2y(Y, 2)) (5.52)

for any X, Y, Z € T(TN ). Obviously vo and g depend on Y, Z but for simplicity
we do not reflect this dependence. Particularizing (5.32) first for W = { and then
for W = ecleads to

vo=T1" Y2, (5.53)

be = Y72 (V40U + (9o @Uis + Un G — Ve 0) + (Vo Upe + V3 Usq — Ve Uab))
_ Y“Zb(( Vo Ui + (7 Q)Uee + Un (ic — Ve q)

+ alyer sl - £ Ealla - 2chub)). (5.54)

where in the last equality we inserted (3.36). Since Z,(Y, Z) is a vector field along
#(N), by Lemma 3.1.2 and (5.52) it must hold

(Y, Z) = p(n) + ¢. (P, *) + von) . (5.55)

Thus, to complete the proof it suffices to compute the scalar p(n) and the vector
P(u, ) + von. To obtain u(n) we contract (5.54) with n¢ and use €(n) = 1, y(n, -) =
0,U(n,+) =0,s(n) = 0andi(n) = v to get

p(n) = W - n(@)U(Y, Z) - a(&U)Y, 2). (5.56)

For the vector P(u,-) + von, we first contract (5.54) with P and use P 4. =
- £ @yt and P9y = &- n? @ s, so that

PCdIJC = Y‘ZZb PCd (Va a)Uhc + (Vb G)ch + Uab (lc - VDCC)Y)

+ax y-an® 0 55y + a8 Pnle, Uy, - 2P U, . (5.57)

Combining (5.46), (5.53) and (5.57) it is now straightforward to conclude that
- u 1
PCdIJC + UOnd = Y“Zb PCd (Va G)ch + (Vb a)ch + Uaw (lc —-V:a- ZaSc)
( ) (.

+a =4 -ni£,Y),, + 1t v, a+ 2(s @~ T@Vya+n@y g
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¥
1 (2) )
+ 5 (P - an(¢ DUs . (5.58)

Equation (5.48) is obtained by inserting (5.56) and (5.58) into (5.55). The particular-
ization (5.49) to the case U = 0 is immediate. To prove that this can be written in the

equivalent form (5.50), we note that when U = 0 the tensor Z is proportional to n

(by (3.31) with n® = 0,U = 0), so it satisfies the relation > (Y, 2) = 8(22 (Y, 2)n.

From this and identity (5.46) particularized to U = 0, the equivalence between
(5.49) and (5.50) follows. [l

Remark 5.3.7. An interesting consequence of this lemma is that whenever U = 0, the
vector field Zn(p.Y, §. Z) Y,Z € T(TN) can be codified entirely by the function a and

the abstract objects n, s, v, s and Y, as expression (5.49) immediately shows. This means
in particular that the vector field n(¢.Y, ¢.Z) is completely independent of how n behaves

off $(N).
54 abstract killing horizons of order zero and one

As mentioned in Section 2.6, Killing horizons have played a fundamental role in
General Relativity, mainly because its close relation with black holes in equilibrium
through Hawking’s rigidity theorem (see e.g. [124]). They are characterized, as we
already know, by a Killing vector field n which becomes null and tangent at the
hypersurface (a typical situation is when the Killing changes its causal character
from timelike to spacelike across the hypersurface, but this is by no means the
only possibility). The deformation tensor K7 of n is identically zero everywhere,
so in particular it vanishes together with all its derivatives on the hypersurface.
However, it turns out that some of the most relevant properties of Killing horizons
can be fully recovered by only requiring that a few derivatives of K" vanish on the
horizon. It is in these circumstances that the notions of Killing horizons of order
zero/one arise naturally.

By definition, a Killing horizon of order m (embedded on a semi-Riemannian mani-
fold) corresponds to a null hypersurface together with a vector field n, defined in a
neighbourhood thereof, that has the properties of (i) being null and tangent to the
hypersurface and (i) the transverse derivatives up to order m of the deformation
tensor K7vanish on the hypersurface. The purpose of this section is to provide
abstract definitions of Killing horizons of order zero and one. The idea is to be
able to describe these sort of null hypersurfaces in a detached way from any space
where they may be embedded.
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It is to be expected that the abstract notions of Killing horizons of order zero and
one rely on hypersurface data {N, y, €, £ @, Y} satisfying certain extra conditions.
However, this already raises the question of how much geometric information
from the embedded picture can be codified only in terms of {y, €, £ @, Y}. For the
order zero, ideally one would like the definition to enforce K7 = 0 everywhere
on the hypersurface. However, as we already know, only the pull-back of K7 can
be expressed solely in terms of the data, namely by means of U (see (5.17)). The
remaining components of K7 are given by i, p (cf. (5.15)) and cannot be encoded
in the tensor fields {y, €, £ @, Y}.

For this reason, we split the definition in two different levels. We start with a
weaker definition which only restricts the metric hypersurface data and which is
truly at the abstract level, in the sense that no embedding into an ambient space
is required. In a second stage we assume the data to be embedded and add extra
restrictions so as to enforce also that the remaining components of the deformation

tensor vanish on the hypersurface.

Obviously, to define abstractly the notion of Killing horizon of order zero we need
a privileged vector field 77 on the data {N,y, € £ ©@,Y}. This field can and will
be restricted to be along the degeneration direction of y. Since in general Killing
vectors can have zeroes, we want to allow for the possibility that7 vanishes some-
where on the abstract hypersurface. However, we are definitely not interested in
the case when 7] vanishes on open subsets of N, so we need to make sure that
this situation is excluded. In these circumstances, the following definition arises

naturally.

Definition 5.4.1. (Abstract Killing horizon of order zero, AKHo) Consider null hyper-

surface data D =" {N,y, €, £ @,Y} admitting a gauge-invariant vector field 7] € Rady.
def

DefineS = {p € N | n|y = 0}. Then D is an abstract Killing horizon of order zero if

(i) S is a finite union of smooth connected closed submanifolds of dimension n -1,

(ii) £qy = 0.

Condition (i) in Definition 5.4.1 certainly ensures that N \ S is dense in N (hence
that 77 does not vanish on open subsets of N ). Moreover, it mimics the possible
behaviour of the zeros of a Killing vector, so the definition is indeed justified.
Combining this with the fact that 7 is proportional to 5, it follows that (i) is
equivalent to U = 0 everywhere on N, as (cf. (2.12))

n=an == 0 = £y = atwy = 2aU = U=0.
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For a better understanding of Definition 5.4.1, it is convenient to consider the em-
bedded picture, so we embed D on a semi-Riemannian manifold (M, g) with em-
bedding ¢ and rigging {. As we already know, in these circumstances the tensor U
coincides with the second fundamental form with respect to the null normal vector
field ¢.n. Thus, condition (i7) means that ¢(N ) is totally geodesic. In other words,
embedding an abstract Killing horizon of order zero D yields a totally geodesic
null hypersurface equipped with an extra vector field 7| S(N) def ¢.n with a restric-
tion on its set of zeroes. For the rest of the thesis, we call the vector fields 1, n|gm)

and the submanifolds S, ¢(S) symmetry generators and fixed points sets respectively.

As already discussed, neither the abstract nor the embedded levels of Definition
5.4.1 restrict the components i and P of the deformation tensor. In this sense, D
does not correspond to a full Killing horizon of order zero. To capture the full
notion we are forced to restrict ourselves to the embedded case. The corresponding

concept is naturally called Killing horizon of order zero.

Definition 5.4.2. (Killing horizon of order zero, KHo) Consider an abstract Killing horizon
oforder zeroD =" {N , y, € £ @, Y} with symmetry generator n € Rady and assume that
D is embedded in a semi-Riemannian manifold (M, g) with embedding ¢ and rigging C.
Then, Ho =" ¢(N ) is a Killing horizon of order zero if there exists at least one extension
n of ¢.N to a neighbourhood O c M of ¢(N) such that

1
¢ (g(En, Q) = _Zfﬁe @, ¢ (g(Ezn, ) = —£7€ on N. (5.59)

Remark 5.4.3. The Lie derivative £; n|¢n ) is given by £z Nfen ) = Ven — Vnllen ).
Since there are no transverse derivatives of the rigging (because n|gw ) is tangent to (N )),
there is no need to extend the rigging vector field { off $(N) in Definition 5.4.2.

Let us prove that Definition 5.4.2 indeed guarantees that K7 = 0 on ¢(N).
Proposition 5.4.4. The deformation tensor K is everywhere zero on any KHo.

Proof. Firstly, since an AKHo satisfies that £,y = 0 and by (5.17) we know that ¢°

K7 = £ny,~the tangent-tangent components of K7are automatically zero. Con-
cerning K7(¢, ), we find

KN Q) = 29(Ven, Q) = 2g(£cn + Vnd, ) = 2g8(£¢n, ) + n(g(g, Q). (5.60)

Using now Definition 5.4.2, we obtain ¢ (K7({, 0)) = -£,4 @ + (£ @) = 0 and
hence K7(,{) = 0. Now let X be a vector field tangent to ¢(N ). Combining U = 0
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and Fo = Vn,l Iy (cf. (2.19)) with (5.9) (here 8 = 0 and v is normal to ¢(N)), one
obtains
¢ (Vo0 = F(X,) + Y(X,),  where ¢ g(C). (5.61)

Then, from the fact that K7({, X) = ¢(V¢n, X) + g(Vxn, {) it follows

¢ K'(E X)) = ¢ glEen, X) + (Vpd)(X) + X(a) - (Vx(n)
= ¢ g£n, X) + a(s(X) + r(X)) + X(a) - a(F(X, n) + r(X))
=¢° g(£n X) + 2as(X) + X(a)
= ¢ glEen, ) (X)+ (£:€)(X) =0,

where in the first line we noticed that g({, N)lew ) = ag({, V)lg;v ) = a, in the

second line we have inserted (5.61) and in the third and fourth lines we used (3.43),
(3.45), the fact that F is antisymmetric and Definition 5.4.2. O

Definitions 5.4.1 and 5.4.2 establish both the abstract and the embedded levels of
a Killing horizon of order zero. Concerning the characterization of the first order,
there is one object that is particularly useful, namely the tensor Z; o V. Its rel-

evance comes from the fact that it encodes both extrinsic and intrinsic properties
of the hypersurface. Specifically, on (5.48) we have proven that for any two vector

fields X, W € T(TN), Z,(¢. X, ¢. W) can be entirely constructed (on the hypersur-

face) from the data tensors {y, €, £ ,Y} (recall that 3 can be fully built from the

metric part of the data), the quantities i, P (note that i(n) = w), the function a and
the rigging ¢. Even more, when it comes to defining an abstract Killing horizon
of first order, one would want that all conditions from the order zero (in partic-

ular that U = 0) are fulfilled, and this means that (5.48) simplifies to (5.49), so

2n(¢.X, . W) can be written in terms of {y, €, £ @,Y} and a exclusively. On the

other hand, by (5.40)-(5.39) we know that the pull-back ¢ ({(Z,)) contains inform-
ation about the zeroth and the first order derivatives (because of the presence of

the tensor T) of K7. These two ingredients can be combined to set up a sensible
definition of abstract Killing horizon of order one.

There is yet another reason that justifies the importance of the tensor X, in charac-
terizing Killing horizons of first order, namely the identity (3.22). A Killing vector
on a semi-Riemannian manifold (M, g) equipped with the Levi-Civita connection
V satisfies the well-known property 0 = VaVgn# + R¥g,n". This, together with

(3.22), suggest that the first order can be codified by requiring that some compon-
ents of X, vanish on the hypersurface. All the above considerations, combined
with Lemma 5.3.5, naturally leads us to the following definition for an abstract
Killing horizon of order one.
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Definition 5.4.5. (Abstract Killing horizon of order one, AKH1) Consider null hypersur-
facedataD =" {N,y, &, £ @, Y} admitting a gauge-invariant vector fieldn € Rady. Let

a € F(N) be given by n' = an and r, S be defined by (2.44), (3.30) respectively. Then, D
defines an abstract Killing horizon of order one if it is an abstract Killing horizon of order
zero and for any two vector fields X, W € T(TN) it holds

C, ) o
0=a X XW)-ENXWn + XW(@) - (vx W)

)
+ Y(X, Win(a) + W(a)(s(X) - r(X)) + X(a)(s(W) - H(W)) n. (5.62)

Remark 5.4.6. An abstract Killing horizon of order one embedded on a semi-Riemannian
manifold (M, g) with embedding ¢ and rigging { does not need to satisfy (5.59), so in
general it does not define a Killing horizon of order zero according to Definition 5.4.2.
This may be confusing at first sight, but the key to understand the terminology is the
word "abstract”. Whenever it appears, the related notion must be fully insensitive to the
data being embedded and hence to any kind of extension of n. Since a Killing horizon of
order zero is embedded and requires an extension of n it makes sense that abstract Killing
horizons of order one need not be Killing horizons of order zero.

Definition 5.4.5 establishes two restrictions on the hypersurface data (namely
U = 0 and (5.62)), so at this point the reader may wonder how these two con-
ditions are related to the first transverse derivative of the deformation tensor K7,
which in the end is what it is expected to vanish on a Killing horizon of order
one. The answer to this question of course requires assuming embeddedness of
the data, and should be addressed in various separate stages. First, we need to
prove that when an AKH1 D is embedded on a semi-Riemannian manifold (M, g)
with embedding ¢ and rigging ¢, the vector field Z,(¢.X, ¢.W), X, We I'(TN )
vanishes everywhere on ¢(N ). With this result at hand and using (5.50) (which
holds in this context because U = 0), we will be able to find an identity involving
the objects {i, W, T} defined in (5.15)-(5.16). The tensor T encodes precisely the
pull-back to N of the first transverse derivative of K7, which is therefore restricted
by such identity. Finally, we will see that enforcing i = 0 implies T = 0. This extra
restriction of i being zero will be connected with the notion of KHo introduced
above and will allow us to introduce the new notion of Killing horizon of order ¥2 to
refer to a KHo which also satisfies (5.62).

In the following lemma we address the first two stages of the procedure above.

Lemma 5.4.7. Consider a Killing horizon of order oneD = {N , y, €, 0 @, Y} embedded
on a semi-Riemannian manifold (M, §) with embedding ¢ and rigging {. Let n be an



5.4 abstract killing horizons of order zero and one

extension of ¢. T off (N ) and 2, def £,V be given by (3.18). Define {i, ¥, T} according
to (5.15)-(5.16). Then,

(p.X, 9. W) =0, VX, W € I(IN). (5.63)
and
A Zb = Vu( aib) + WYa — Tav = 0. (564)

Proof. Imposing U = 0 and (5.62) in (5.48) immediately proves (5.63), while (5.64)
follows from combining (5.50) (which gives n’ = 0) and (5.39). [

Remark 5.4.8. It is precisely the fact that U = 0 that allows for an abstract notion of
Killing horizon of order one because, in such case, the vector field X¢.Y, ¢.2),Y, Z €
[(TN ) can be entirely codified abstractly, as we have discussed in Remark 5.3.7. If in
the right hand side of (5.49) appeared any combination of the tensor fields {i, ¥, p, T}
depending on the behaviour of n off (N ), then it would be impossible to establish a
condition on the data {N,y, €, £ ,Y} so that in the embedded picture £(¢.Y, ¢.Z) = 0.

Equation (5.64) relates the abstract Definitions 5.4.1 and 5.4.5 with (the pull-back
to N of) the first transverse Lie derivative of the deformation tensor. It is now
immediate to see that whenever i = 0 everywhere on N (and hence ¥ = i(n) = 0),
then T = 0. We capture this fact in the following corollary.

Corollary 5.4.9. Under the hypotheses of Lemma 5.4.7, whenever i = 0 it holds

¢"(£cKT) = 0. (5.65)

In particular, if an embedded AKH1 D happens to be in addition a Killing hori-
zon of order zero (i.e. it satisfies (5.59) for at least one extension 1 of ¢.7), then
K7|4w ) = 0 (by Proposition 5.4.4), hence i = 0 and the pull-back ¢ (£;K") van-
ishes everywhere on N . Note that, as in the case of order zero (where only ¢ K"
was restricted), here the transverse components of £; K" are totally unfixed. This
fact suggests that we introduce the notion of Killing horizon of order %2 as follows.

Definition 5.4.10. (Killing horizon of order 2, KHz.) Consider an abstract Killing horizon
of order one D Lef {N,vy & 2@, Y} with symmetry generator ) € Rady and assume that
D is embedded in a semi-Riemannian manifold (M, g) with embedding ¢ and rigging C.
Then, Hx =" ¢(N ) is a Killing horizon of order V: if, in addition, it is Killing horizon of
order zero.
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Summarizing, in this section we have introduced the two fully abstract notions
of Killing horizons of order zero and one (Definitions 5.4.1 and 5.4.5) as well as
the concepts of Killing horizons of order zero and % (Definitions 5.4.2 and 5.4.10),
which apply at the embedded level. The whole construction has been performed
so that

(@) ¢"K7 = 0 for an embedded AKHo (which does not necessarily define a KHo),
(b) K7|¢n) = 0 for a KHo,
() K7 ¢w) = 0and ¢ (£.KT)|¢n) = 0 for a KHu.

5.4.1 Some aspects of abstract Killing horizons of order zero

In this section, we consider an abstract Killing horizon of order zero and obtain a
result concerning the causal nature of the set of fixed points S of the symmetry
generator ) whenever its surface gravity K is constant along the null generators.
This is done in the following lemma.

Lemma 5.4.11. Let {N , y, € £ @, Y} be an abstract Killing horizon of order zero with

symmetry generator n and fixed points set S. Assume further that N admits a cross-
section and that the surface gravity K of n is constant along the null generators of N .
Then, there exists a choice of gauge for which

1= (f + kA, (5.66)

where f,A € F(N) are functions satisfying k(A) = 1, k(f) = 0. Also in that gauge,
(i) ifk/= 0and S/= @, then S is defined by the implicit equation A = —k-1f and it
is a non-degenerate submanifold.

(i) if Kk = 0, S is either empty or is the union of smooth connected codimension-two
degenerate submanifolds of N given by the zeros of f.

Proof. Since N admits a cross-section, we know by Lemma 3.2.24 that one can
always select the gauge so that k. = 0, which we enforce for the rest of the proof.
This, together with (2.44) and (3.102) means that

n(a) = k. (5.67)

Since K is constant along the null generators of N, the general solution of (5.67)
for ais a = f + kA, where A, f are functions satisfying n(A) = 1, n(f) = 0. This
proves (5.66).
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Now let {A, u'} be coordinates on N . Then n = ), f(u') and k(u'). By definition
of AKHo, a cannot vanish on open subsets of N . Moreover, from (5.66) it follows
that the symmetry generator vanishes at points where kKA = - f. When k/= 0
this implies (i) at once. When kK = 0, ) = fn and either f vanishes no-where
on N (hence S = @) or there exist several smooth connected codimension-two
subsets {F»} € N (i = 1, 2, ...) where f vanishes (hence S EU i F@). The fact
that each connected component F() is a degenerate submanifold is a consequence
of f depending only on {u'} and not on A. O

Lemma 5.4.11 will play an important role later in Chapter 7 when we study the
matching of spacetimes across Killing horizons of order zero. In that context we
shall assume constancy of the surface gravity everywhere in the horizon, and this
result will allow us to obtain all possible matchings explicitly in a simple way.

5.4.2 Some aspects of abstract Killing horizons of order one

In this section, we discuss briefly some aspects of abstract Killing horizons of order
one for which the symmetry generator 7] is everywhere non-zero. For that purpose,
we consider null hypersurface data {N , y, € £ @, Y} defining an AKH1 according
to Definition 5.4.5. Since 7] is no-where zero on N, it is convenient to fix the gauge
so that the null generator n of the data coincides with™R, so we enforce nn = n. In
these circumstances, N cannot contain fixed points and the proportionality func-
tion a is equal to one. By Definition 5.4.5 and because in the present case a = 1, it
follows

S -n@®£Y =0, (5.68)
which after inserting (3.31) takes the form
EnYab - ZV(Q Sp) = 0. (569)

Observe that while condition U = 0 is fully-gauge invariant (U simply rescales
under the action of a gauge group element, see (3.60)), condition (5.69) is not.

Actually, the tensor £: Y, — 2V, Sp) itself turns out to be gauge invariant under
the action of the subgroup G.

Lemma 5.4.12. For any null hypersurface data {N,y, €, £ @,Y} with U = 0, the quant-

ity X -n Q@ £« Y or, what is the same £1 Yy — 2V, Sp), is invariant under the action of the
subgroup Gu.
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Proof. Let us denote Gi-transformed quantities with a prime symbol. Particulariz-
ing expressions (2.34), (2.40), (3.62) as well as Proposition 2.2.9 for z = 1, n? =0

and U = Oyields

1 1 °
n=n, Y=Y+"£y s=s+"yYE V>, - =1Qcy.

2 \% 2 n V V 2 1%4

Firstly, the gauge behaviour of n and Y entails
: : 1 1
(En'Y)ab = (£,Y )ub = (£nY ab N £n£VV)ab = (EnY ab £ nV V)“b
)+ ( +,01
2 1 2
= (£.Y)ab +% v Va1, VI + Y acVp [, Ve (5.70)

after using that VOC Yo = 0 (cf. (2.18)) and the well-known property £;xw;T =

£x£wT — £wExT. Secondly, the gauge transformations of s and V imply

. L0 )
Va$ — VasSy = Va Sp T zybc[n' Vle - VaSy
1

EY 1 -
= - 2(£VV)ab nse + 5,V (yee [n, V]9

1- 1
= qVa (Vpe [, V1) (;]g)(fv V)ab ncyea [, V]2
== (v V)" Ty - (In VD), (5.71)
ZVa be = 2 chu
from where it follows
n o « , 1
Zv(a Sb) = 2v(a Sp) + E Y 5cVa [n' V]C + VY acVp [n; V]C . (5.72)

The combination of (5.70) and (5.72) ensures that (£, Y)a — 2V, Sp) is Gi-invariant,
and hence so it is E -n @ £.Y (recall (3.31)). [

Remark 5.4.13. Any AKH1 {N , vy, € £ @, Y} admits a submanifold S to which n is every-
where transverse. If, in addition, N is everywhere non-zero and one selects the gauge so
that T = n, the combination of Lemma 5.4.12 with (5.68) ensures that the gauge-invariant

quantity 8§, defined by (4.36), is identically zero on S (because of (4.38)).

5.4.3 Connection with non-expanding and isolated horizons

From the considerations above, it is immediate to check that a full Killing horizon
is by definition a KHs. A natural question that arises now is how the previous
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definitions are connected to the notions of non-expanding horizons, weakly isol-
ated horizons and isolated horizons introduced in Section 2.5 (see Definitions 2.5.1,
2.5.5 and 2.5.8). We devote this section to address this matter.

We start by stressing two important differences between Killing horizons of order
zero/one and non-expanding and (weakly) isolated horizons. Firstly, Definitions
5.4.1 and 5.4.5 are purely abstract, and do not assume any spacetime nor any
embedding. Secondly, and perhaps more important, these definitions do not make
any global assumptions on N, while the non-expanding and (weakly) isolated

horizons require (at least in most cases) that N has a product topology N = S xR,
where R is along the null generators.

Having pointed out this fact, we now connect the notion of non-expanding horizon
with Definitions 5.4.1 and 5.4.5. As discussed in Remark 2.5.3, a non-expanding ho-
rizon N is a totally geodesic null hypersurface. This means that N constitutes an
embedded Killing horizon of order zero, since condition (i) in Definition 5.4.1 is
always verified by null generators of N. A weakly isolated horizon is then an em-
bedded Killing horizon of order zero with symmetry generator n, satisfying the ad-
ditional restriction (2.111) for the one-form @ defined by (2.106). Finally, condition
(2.111) can be written in the language of the present section as Z,(¢.Y, ¢.Z) = 0,
Y, Z € T(TN ) (recall (3.21)). Thus, an isolated horizon constitutes an embedded
Killing horizon of order .
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GENERALIZED MASTER EQUATION

In Chapter 2, we have presented the so-called master equation and near horizon
equation in the contexts of multiple Killing horizons ((2.144) and (2.153)) and isol-
ated horizons ((2.128) and (2.129)) respectively. These identities relate second de-
rivatives of the proportionality function between the generator n of the horizon
and one of its null generators, the one-form @ associated to n (cf. (2.106)) and

curvature terms.

These master equations, however, hold under very specific conditions. For multiple
Killing horizons, one needs that two Killing vectors share the same Killing horizon
and that the horizon can be foliated by spacelike cross-sections, and even in these
circumstances the master equation is only valid at points when both Killing vectors
are non-zero. Isolated horizons, on the other hand, are totally geodesic null hyper-
surfaces with product topology S*-1 x R (see Definition 2.5.1), without expansion
and satisfying an energy condition as well as Einstein field equations. Moreover,
both the one-form @ and the second fundamental form of the horizon with respect
to a null, transverse vector field L must be constant along the null generators, and

again the master equation applies wherever 1 is non-zero.

A natural question that arises is whether these equations can be generalized. For
instance, one may be interested in horizons with much more general topologies,
in null hypersurfaces containing points where the generator n vanishes, or even in

less restrictive notions of horizons.

In this chapter, we exploit the formalism of hypersurface data and prove that the
master equation can indeed be generalized for any null hypersurface N equipped
with an extra vector field n which is everywhere null and tangent on N . We will
obtain a new, fully covariant equation (called generalized master equation) which
is valid on the whole N and that generalizes (2.144). The contractions of such
equation with the data vector field n will provide useful information concerning

the constancy of the surface gravity of n, as we shall see.
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We will also particularize these results to the case when the deformation tensor K"
of n is proportional to the metric. In these circumstances, if in addition K7/= 0 on
N, we shall be able to provide several identities relating the surface gravity of n,
the deformation tensor and the constraint tensor (see Chapter 4).

The generalized master equation will also be analyzed for abstract Killing horizons
of order zero and one, for which we will prove that if the surface gravity is non-
constant at some point of N, then N cannot be geodesically complete.

The last part of the chapter is devoted to computing the generalized master equa-
tion on a transverse submanifold S of N and to recover the master equations (2.153)

and (2.128) from the generalized master equation.

We conclude with an application in the case of vacuum degenerate Killing horizons

of order one.

6.1 covariant master equation on a general null hypersurface

We start by deriving a generalized form of the master equation (2.144), valid for a
completely general null hypersurface endowed with an extra null, tangent, gauge-
invariant vector field 7. We do this in the following theorem, in which we also
provide the contractions of such generalized master equation with the vector field

n.

Theorem 6.1.1. Consider null hypersurface data {N , y, €, £ @, Y} embedded on a semi-
Riemannian manifold (M, g) with embedding ¢ and rigging {. Assume further that N
admits a gauge-invariant vector field n € Rady and let k € F(N ) be its surface gravity
(cf. Lemma 3.3.1) and a € F(N) be the function given by n = an. Extend ¢ .1 to a vector
field n on a neighbourhood O of $(N) and define its deformation tensor K7, p and T as
in (5.1), (5.15) and (5.40) respectively. Using the notation w =" s—r it holds

( 1
o o ° a o o
0= VoVl + 200y 4 0+, 2yWa + 20wWa + Rpg = Rpay  + K¥pa
a ¢ 1 2
+ E V(bSd) ~ SbSa T _zr_l( 0 (2))Ubd - aWy, - ﬂ';d + 5 Ubd, (6.1)
( 1

0= VaiK — th'eb (aUdf) +a —(trp U) wa + Vi (trPU) + nRud - nzdnb, (62)

0 = £uk = T} ntnd, (6.3)
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where Wy, is defined by

( )
1 1
Wiy o E(tl"PU)de - _Z(trPY)Ubd + P*Ua ¢ 2Ya y + Fay . (6.4)

Remark 6.1.2. Observe that the notation for the covector w defined above is consistent

with the one introduced in Lemma 4.3.1 because clearly " w = wy whenever Setup 3.2.15
holds.

Proof. Expression (4.18) in Definition 4.2.1 can be rewritten in terms of W;,; as

EHde = V(b Tay — K”de - (Vb - Sb) (Td - Sd)
° 1- 1

+ ;RW) - ;Rbd + ; Vsa + 2_ s15d + Wi (6.5)
Inserting (6.5) into (5.29) yields
L a( L
£,7de = Zr(bvd) a+ 2_ ZV(b rd) - ZKand -2 (rb - Sb) (Td - Sd)
1
+ Rpg) — Rpg + V Sa) + SpSa + AL (6.6)

By comparison with (5.20) one easily obtains (6.1) after reorganizing some of
the terms and using (5.39), (6.4) and n(a) = K — ak.. To demonstrate (6.2)-(6.3),

we firstly note that (2.20)-(2.21) give y.n° = trrU, VePS = —pfbs, — nfn( @),

Moreover, by (2.44) and (3.11), we write —leV(de) as
1 1

-n’ VoTa = —;Enm + ) Ky — KnSa + PfUar 1. (6.7)

Multiplying (6.7) by a and inserting (5.21) gives (recall that U(n, -) = 0)
( 1

o l ° o o o 12
-an? vl = ~ 5 nt Zav(bsd) + ZS(b(Vd)a) + ViV qa+ n(a)de - ﬂgd + ) Ubd
Ky ° 1 a-
- Z_Vd a-+ ZTl(C()T’d + ZVdKn — AKnSa + aPtf Uagre. (6.8)

Now, contracting (6.1) with n” and inserting (6.8) yields

(

° ° ° a
0=mnt VivVa a-— an(r ®w~ S(b)vd) a-— ant V(b rd) + E ZKYZSd

° 3a °
Jlr n’Rpg — an(bd) + n(a)ra + ?Zb V(sd) ~ an’Wyy — nbnbg
=" . kK, - a+1lsn(@+~ Kk +aPfU r
5 VoVaa + 5 Vi 5 d ,Vd df b
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( ) 1

° a °
n"Ryg - leR(bd) + E”bv(bsd) - an®Wyy - anﬂ”bd. (6.9)

a
L 9
2

Finally, using the identities (recall (2.20), (6.4), n(a) = kK — ak» and s(n) = 0)
nbobodaznbo . .

d
vV .V V

ba= 4’ pa) - () ovba
= " (@) - n(@)sg - P Uss pa
v \V4

= v,(k — aks) — (K — aK.)sa — beUdfvﬂba

=y K~ Ay, K — KuVad — (K — aKn)sa — beUdeOb Q, (6.10)
o ( o
n'V Sa) = zlnb Vs + Vagy O %Ensd = PfUgysp, (6.11)
1 1
"Wy = - _Z(ter)rd + PfUarre + _ZPCf Uarse, (6.12)

equation (6.9) becomes (6.2). Contracting (6.2) with n? immediately yields (6.3)
after using (4.20) and ntpef VcUir = —Uar pef VGC nt = —PcfpdbUdecb. [

Equation (6.1) is a new, fully covariant identity that involves hypesurface data,
derivatives of the function a, curvature terms (i.e. R and R ), the surface gravity K
of 7 and the ambient objects {p, T1"}. Although in fact the appearance of {p, 11"} in
(6.1) makes the whole identity non-purely abstract, it is however remarkable that
its whole non-abstract part can be entirely codified only by the tensor MN7and a
term in pU. Observe that precisely the tensor fields U and N are those vanishing
for abstract Killing horizons of order zero and one (see Section 5.4).

As claimed before, (6.1) generalizes in several directions the already known forms
of near horizon and master equations (see (2.128), (2.144) and (2.153)) that have
been previously obtained in the literature. First, (6.1) holds everywhere on the
hypersurface and not only on a specific section (in fact, here such a section does

not even need to exist).

Secondly, (6.1) does not require any topological assumption on the hypersurface
apart from the existence of an everywhere non-zero, smooth vector field n. This
also makes a significant difference with respect to the works on isolated and mul-
tiple Killing horizons cited in Sections 2.6.1 and 2.5 before. In all those works, the
topology of the hypersurface is assumed to be a product of the form S x R, where
S is a cross-section and the null generators are along R. The result (6.1), however,

is fully general in this sense and applies for any topology of ¢(N ).

Regarding the vector field 7 we have also kept maximum generality. We have
allowed 7 to vanish anywhere on N and we have enforced neither any specific

extension of 7} off ¢(N ) nor any specific form of the deformation tensor of K (or
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of its pull-back to N, given by U). We have neither restricted the one-form w or the
tensor Y fo satisfy any restriction (observe that in Section 2.5 the Lie derivatives of
@ and K along n had to vanish).

Finally, note that (6.1) has been obtained for a general ambient semi-Riemannian
manifold (M, g), so the constrain tensor R (and hence the pull-back to N of the
ambient Ricci tensor) is fully arbitrary. We have imposed neither energy conditions
nor field equations. Moreover, equation (6.1) is valid in any gauge. Later on we will
particularize (6.1) for the case of abstract Killing horizons of order zero and one
and we will have more to say concerning the comparison of (6.1) with the master
equations from Sections 2.6.1 and 2.5.

Equations (6.2)-(6.3) also reinforce the geometric relevance of (6.1), as we shall
see next. Specifically, (6.3) allows us to know under which conditions the surface
gravity K remains constant along the null generators of N . This is the content of
the following corollary.

Corollary 6.1.3. Assume the hypotheses of Theorem 6.1.1 and let £y = £,V and W and
T be defined according to (5.15) and (5.16) respectively. Then, the surface gravity K is
constant along the integral curves of n if and only if any of the three equivalent conditions
hold true:

So(¢p.n,¢d.n) =0, (6.13)
N7(n,n) =0, (6.14)
£aW — KW — T(n,n) = 0. (6.15)

Proof. In view of (6.3), it is obvious that K is constant along the null generators of

N if and only if I_ln(n, n) = 0, so it suffices to check whether the three conditions
(6.13)-(6.15) are indeed equivalent. We first prove this for the last two. Combining

(3.11) with the fact that i(n) = v, it follows

. 1 1 -
nbv(b id) = 2£nid + ZVd W - Wsi — PtfUaris, (6.16)

which together with (5.39) allows us to write

1. A
N'nw="£i -pyu i +° w-ww-T n* and (6.17)
bd g n d df b 5 Vd d bd

I—L'Zz nnd = £, + WKy — Teanne, (6.18)
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after using U(n, -) = 0. Finally, for any vector field W along ¢(N ) decomposed as
in (5.31) we can define, as usual, a covector W <°f <(W, ). Then, the combination
of (5.32) and (5.39) gives

WEy(@.n,¢.1) = ¢~ WEy) (n,n) = BN, n),

since the terms in W¢ vanish because U(#, -) = 0 and (3.46). Since W is a completely

general vector field, N7 (n,n) = 0 is equivalent to n(¢.n, ¢.n) = 0, as claimed. [

The behaviour of the surface gravity k along the null generators is therefore gov-
erned by the tensor X,. In particular, for an abstract Killing horizon of order one
according to Definition 5.4.5, £:k is automatically zero. Observe also that, when
the source term T(n, ) is known, (6.15) constitutes a first-order ODE for ¥ along
the integral curves of n. Concretely, if N admits a cross-section S then there exists
a (unique) solution W of (6.15) provided initial data W|s. Later on we shall obtain
the explicit form of this equation in the specific case when the deformation tensor
of n is proportional to the metric.

So far we have considered only constancy of the surface gravity along the gener-
ators. It is natural to enquire about its constancy everywhere on the manifold. In
that context, the geometric relevance of (6.2) is clear. It allows one to determine
precisely under which conditions the surface gravity « is not only constant along
the null generators but everywhere on the hypersurface. In Section 6.3 we will
study this identity in detail for the case of abstract Killing horizons of order zero
and one. However, for the moment we just include the following general result.

Corollary 6.1.4. Under the hypotheses of Theorem 6.1.1, the surface gravity K is constant
everywhere on N if and only if any of the two equivalent equations are satisfied:

( 1
0 = Py, (aUer) + a (trr U wi — vy, (trrU) — Rea 1 + I_lgdnb, (6.19)
1., 1
0="£a + VaVW -V — Tpant
2t 1 1

+ pbf vp(aUar) = Uarj, + g (tre U)wi — vy, (trrU) =R n* . (6.20)

Proof. Equation (6.19) follows at once from (6.2), while (6.20) is a consequence of
combining (6.17) and (6.19). [

Equations (6.1)-(6.2) can be rewritten in such a way that Lie derivatives of the
tensors Y and r =" Y(n, ) appear explicitly. We include the corresponding result

below, together with a comment on its usefulness.
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Lemma 6.1.5. Equations (6.1)-(6.2) are respectively equivalent to the following two iden-

tities:
. ( ) .
0= VisVa a+?2 S(b — T(b Vd) a-— aﬁand + (K— CTKn)de
o L C )
t2yasay + 5 NL@)+p Uu-T1G, (6.21)
0= Vak + 0 £xlsa— 1) — Vaky - P¥Ua w0+ 2as - TV, (6.22)

Proof. Combining (6.1)-(6.2) with (4.18)-(4.19) and (6.4), one gets (6.21)-(6.22) after
using that w =" s —r. O

In the regions of N where a/= 0, equations (6.21)-(6.22) are evolution equations
for all components of the tensor Y except Y(n, n). At first one could think that this
term also appears in (6.21) (or in (6.22)). However, this is not the case. Contracting
(6.22) with n yields

0 = nk) - 1", n) (6.23)

after using U(n, -) = 0, s(n) = 0, r(n) = —Kk«. Equation (6.23) is just (6.1) and does
not involve the component Y(n, ), which therefore cannot be determined.

Equations (6.21)-(6.22) are useful in many situations. The problem of matching
two spacetimes across null hypersurfaces offers a clear example of this. As we
have discussed in Chapter 2, when the matching between two given spacetimes
across their null boundaries is possible, the matter content of the null shell of
the resulting spacetime happens to be given by the jump of the tensor fields Y
from each side, so it becomes helpful to be able to compute these tensors. Even
more, as we shall discuss later, sometimes more than one matching is allowed (e.g.
when the boundaries are totally geodesic) and in that case (6.21)-(6.22) allow one
to determine all possible matchings (i.e. all possible matter-contents) at once.

6.2 deformation tensor K7 proportional to the metric

We now particularize to the case when the deformation tensor K7 of 1 is propor-
tional to the ambient metric. In the setup of Theorem 6.1.1, this means that in a

neighbourhood O of the null hypersurface ¢(N ) it holds

K" = 2xg, where  2x € F(0). (6.24)
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In these circumstances, nis a conformal Killing vector on O (in particular a ho-
mothetic vector field or a Killing vector field if ¥ = const./= 0 and ¥ = 0 respect-

ively). The function x necessarily takes the form

n
trgK

= m (6.25)

X

which follows immediately from taking the trace in (6.24). When evaluating (6.24)
on ¢(N ) one obtains (cf. (5.15), (5.18))

w = 2xg({v) = 2%, (6.26)
p=2400, (6.27)
i = 2x8, (6.28)
aU = xy. (6.29)

Some important aspects of (6.26)-(6.29) are worth mentioning. First, observe that
(6.26) is consistent with the fact that ¥ is a gauge-invariant function (recall Lemma
5.2.1). Secondly, P, i are proportional to £ @ and € respectively, which means that
the choice of gauge plays a fundamental role in the study of the geometry of these
sort of hypersurfaces. In particular, we know by Lemma 3.2.9 that in the null case
{2 @, £ @} can be chosen freely (one can for instance enforce £ @ = 0). Finally, the
combination of (6.29) with the fact that both yand U are well-defined and regular

tensor fields on N bring us to the following proposition.

Proposition 6.2.1. Under the hypotheses of Theorem 6.1.1, assume further that K1
def

satisfies (6.24) for a function x € F(O) and define S = {p € N |alp) = 0},
Ly :def{p € N | x(p) = 0}. Then, the following two compatibility conditions must hold:

(i) S CcZ, and (ii) X has a zero of at least order a on the whole S~ (6.30)
In particular, if x € R — {0} then S = @ is forced.

Proof. The manifold N and the data tensor fields {y, €, £ @, Y} are assumed to be
everywhere smooth, so the tensor field U, which is constructed from the data, is
necessarily smooth as well. The proof relies on the fact that (6.29) can be rewritten

as

u=%y (6.31)

a

(again because both y and U are regular). Equation (6.31) implies that U becomes
non-smooth at any point p € N where a(p) = 0 and x(p)/= 0 (i.e. where (i) does
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not hold) or where %) = 0 (hence where (i7) is not satisfied). When y is constant

and non-zero everywhere on N then Zy = @, from where the second part of the
lemma follows at once. [

Remark 6.2.2. Proposition 6.2.1 entails that the function xa-1 must be smooth every-

where on N. Thus, we define

et X (6.32)

X a

Remark 6.2.3. In the null, embedded case, we know that the constraint tensor R coincides
with the pull-back to N of the ambient Ricci tensor (recall (4.17)). On the other hand, in
the abstract definition of the constraint tensor R for the null case (namely (4.18)), the
tensor U appears on the terms

( )
(trrU)Ya, (trrY) U, Udia 2Yvp)e + Foye . (6.33)

Consequently, if the data tensors Y and F are non-zero on N and any of the compatibility
conditions from Proposition 6.2.1 is not satisfied, then R would become non-smooth at
some point on N, and hence there would exist a singularity in the ambient manifold itself.

Remark 6.2.4. From Proposition 6.2.1 means, it follows that a (smooth) homothetic Killing

horizon cannot admit fixed points (i.e. points where the homothetic Killing vector vanishes).

Our next aim is to particularize the expressions of Theorem 6.1.1 for the present
case. For that purpose, we first compute the explicit form of some basic quantities.
We start by deriving T explicitly, for which we extend the rigging ¢ arbitrarily to
O and compute the derivative £;K|o as

1
ngK” = J(x)g + X£¢ 8. (6.34)

Note that the pull back of this quantity to N is independent of the extension of

def

¢ off ¢(N ). Defining! X =°" ¢ ({(x)) and computing the pull-back to N of (6.34)
yields

T =Ny + 2xY, == T(n, <) = 2xr == T(n, n) = -2xK.. (6.35)

after using (2.39) and (5.16). Now, the combination of (6.29) and (2.8)-(2.9) yields
a(trrU) = x(trry) = x(n - 1). This, in turn, implies

atrrU = x(n - 1) == avud (trrU) = (n - 1)651)( - (trrU)y, 0.  (6.36)

IThe letter N (/al&f/) is the first of the Hebrew alphabet.
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The following lemma provides three more expressions valid in this context.

Lemma 6.2.5. In the setup above, the following identities are satisfied:

an(trrU) = (n —(1)n()() - K(trrU) + kux(n - 1), ) (6.37)
aWyg = _XZ (n = 5)Yo + (trrY)yoa + 2 £ wl y 4 / oWd ) (6.38)
~Ptf g, (@Uis) = - wx + £a(nlx) + xtrrU). (6.39)

Proof. Equation (6.37) follows automatically from (6.36) when using that n(a) =
K — ak». To obtain (6.38), we start from (6.4) and insert (6.29) and (6.36). This yields

L ( )
aWyy = —2 (n = 1)Ya + (trrY)yoa — 2Pxy, ¢ ZYd)Z + Fd)c )
_ X (n=1)Yea + (treY)yoa — 2(6°, —nc £ ) 2Yayc + Fac
2 ® ( ) ) )

_ X (n = 5)Yu + (treY)yoa + 4 £ ¢y 20 (b54y
2 )

=% (1= 5)Yu + () + 28 o0 548wy (6.40)

where we used (2.9) and w 2" s —rinthe second and fourth steps respectlvely To
demonstrate (6.39), we first note that be p(@Uar) = =PPf(yur VbX + X vbvdf)
because of (6.29). Now we use (2.8)-(2.9), (2.18) and the fact that U(n,-) = 0 and
find
° C |
—P"F w(aUqf) = -P"F yar w0+ x(= £ qUpp = £ £Upg)

= —vux +n() s+ xtrr U) L4, (6.41)
which is (6.39). [

With the identities above at hand, it is straightforward to particularize (6.1)-(6.3)
for the present case.

Lemma 6.2.6. Under the hypotheses of Theorem 6.1.1, assume further that, on the neigh-
bourhood O of ¢(N ), it holds KT = 2xg with x € F(0). Then, equations (6.1)-(6.3)
read
( 1
o o o a ° o
0= vivia+20py4a+t, ZV(bwde + 2wpwy + Rpg — Reb)
1 ( 11
(n-5)x

1
+ oK+ Yor + N+ x 2n(2<§>+ ter)+Xe<z> Vi

T (¢ )
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( 1
0=vy dK—X(n—l)wd+(n—3)Vd)(+aX x2i-v aa (n-1)+ anRes, (6.43)

0=n(k-2x). (6.44)

Proof. By (2.19) we know that e(b 2 ;) = - £ DU, which together with (6.28) gives

. (. )
Voo =2 (vex) €y-x2 DUy . (6.45)

Taking into account (6.26), (6.27), (6.31) and (6.35), the combination of (6.45) and
(5.39) yields

n7 =2 a X)) £ 4 — Ny, Nt =n(y) €4+ ) X N7 nnd = 2n(x). (6.46)
bd V¢ ) bd \% bd

Thus, (6.42) follows from inserting (6.38), (6.46) into (6.1) and using again (6.27),
(6.31); equation (6.43) is obtained after substituting (6.36), (6.39) and (6.46) into
(6.2); and (6.44) is immediate from (6.3) and (6.46). [l

Observe that in the present case £:.k = 0 if and only if (cf. (6.44))
N
n(x) = 0, (6.47)
i.e. on a conformal Killing horizon the surface gravity kK remains constant along

the null generators if and only if x is also constant along the generators.

Another remarkable consequence of (6.43)-(6.44) is the following algebraic equa-
tion for the surface gravity k.

Proposition 6.2.7. Assume the hypotheses of Theorem 6.1.1 and suppose further that on
a syta)b(g_f?%ourhood 0 of ¢(N) it holds K" = 2xq for a function x € F(0). Define
X a

XK = n(x) + xx + . 1R(n, 1). (6.48)

In particular, if R(n, n) = 0 and n(x) = 0, then K = x at any point p € N where-x(p)
takes a non-zero value, and hence K is everywhere constant on N \ Zy if and only if x is
also constant therein.

Proof. Contracting (6.43) with n and using n(a) = Kk — ak» and (6.44) gives
0 =@m-1nlx) + (n-1)xx(x - K) + aRean’n

which upon dividing by (1n — 1) becomes (6.48). The second part of the proposition
is immediate. ]
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Observe that if ¥ = 0 everywhere on N then (6.48) gives R(n, ) = 0. Since in this
case U = 0 (by (6.31)), we simply recover the Raychaudhuri equation (4.20).

An interesting case occurs when x vanishes no-where on N. Then, by Proposition

6.2.1 we know that a/= 0 everywhere, which allows us to rewrite (6.48) as

an(x) a2R(n, n) ¥210%) R(n, A)
K= +X+t —-— == K= + X+ . (6.49)
X (n-1)x X (n-1)x

Note how the gauge behaviour of the surface gravity k, the constraint tensor and
the function ¥ (which in this case coincides with , cf. (6.26)) is consistent in (6.49).
Actually, every term in (6.49) is gauge-invariant separately (recall that™n is gauge-

invariant by hypothesis).

It is also worth stressing that (6.49) entails that the surface gravity K of a homothetic
vector field 7] is everywhere constant on the horizon if and only if R(f], 7)) is also constant

therein.

For a better understanding of Proposition 6.2.7 and (6.49), next we include an

example of a situation where they apply.

Example 6.2.8. Consider the four dimensional spacetime of Minkowski (M, ng),
with metric ¢ = -dt? + dx? + dy? + dz* (and hence vanishing Ricci tensor Ric). In
this flat coordinates, the null cone of the origin {t = 0, x = 0,y = 0, z = 0} is the

null hypersurface N defined by

2 2 2
NE{O=—t2+x +y +z}I\{t=0,x=0,y =0,z =0}

It is straightforward to prove that the vector field n = to: + x0x + ydy + z0- satisfies
£ng = 2g everywhere on M (in particular at N') and that 1 is non-zero, null and
tangent to N at any of its points. The constant x takes the value ¥ = 1 so we know
(without doing any computation) that the surface gravity is kK = 1. Indeed, it is
straightforward to check that in the present case V,n = n holds everywhere on
M:(i{l. particular on ¢(N)). Thus, n is a null generator of N~ with surface gravi%
K
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6.3 abstract killing horizons of order zero and one

A particular case, yet of physical and mathematical interest, happens when N
defines an abstract Killing horizon of order zero or one according to Definitions
5.4.1 and 5.4.5. An AKHo satisfies that U = 0, which simplifies (6.1)-(6.2) to

( 1

a ° o
= Zv(bwd) + 2wpw, + Ry — Rwpay ~+ KYpd — I—lb’;

0= vbvda+2w(bvéa+2
L

(.

P D G s (6:50)

0 = (dKk)a + aReant — T1" 72t (6.51)

Observe that (6.51) gives an alternative proof for the property proved Lemma 5.3.2
that T17 (1, -) is gauge-invariant whenever U = 0 because kand R are gauge invari-
ant and a, n change according to ' = zaq, n =zn (see (2.34) and (3.103)). The
simple form of (6.51) is remarkable and leads us to the following result.

Proposition 6.3.1. Under the hypotheses of Theorem 6.1.1, assume that N defines an

def

abstract Killing horizon of order zero (cf. Definition 5.4.1) and let S = {p € N | n|y =
0}. Then, the surface gravity K of 1}, given by (3.102), is everywhere constant on N if and
only if

02 aR(n, -) - N7, ). (6.52)
If, in addition, N is an abstract Killing horizon of order one (cf. Definition 5.4.5), then K
is everywhere constant on N if and only if

0 =R(m,:) on N\S. (6.53)

Proof. The first part of the lemma is immediate from (6.51). For the second, it

suffices to notice that T1” vanishes on an abstract Killing horizon of order one, as
we proved in Lemma 5.4.7. O

Observe that although (6.53) constitutes a strong restriction, it holds in several
situations of physical interest, e.g. in vacuum or for non-expanding horizons (see
Remark 2.5.4). Our statement on constancy of the surface gravity whenever (6.53)
holds extends to the much more general case of Killing horizons of order zero a

well-known property of (full) Killing horizons (see e.g. equation (12.5.30) in [113]).

In the next lemma we prove that whenever N admits a cross-section, if dk/= 0 at

some point of N then N cannot be geodesically complete.
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Proposition 6.3.2. Under the hypotheses of Theorem 6.1.1, assume that {N , y, €, £ @, Y}

defines an abstract Killing horizon of order one according to Definition 5.4.5 and that N
admits a cross-section S € N , i.e. a codimension-one embedded hypersurface intersected
precisely once by each integral curve of n. Then, if dk|p/= 0 at some point p € N , the

horizon N cannot be geodesically complete.

Proof. Recall that the constraint tensor R(n, -) is smooth everywhere on N (cf.
(4.18)). For an abstract Killing horizon of order one, (6.51) becomes (recall that

N’ =0)
0 = dk + aR(n, -). (6.54)

On the other hand, since N admits a cross-section, we know by Proposition 3.2.23
and Lemma 3.2.24 that there always exists a gauge where k» = 0. We therefore

make this choice of gauge and prove the statement by contradiction.

Assume that N is geodesically complete and that there exists a point p € N where
dk|p/= 0. We call Cy the null generator (i.e. the integral curve of n) containing p.

Since n(k) = 0 (by (6.3)), the value of k at a null generator is given by its value
at one of its points. This, in turn, entails that £.(dk) = d(£.k) = 0, so dK is also
constant along the null generators. Now k» = 0 together with (2.44) and (3.102)

yield n(a) = k, which is an ODE for a along the null generators of N . The general
solution to this equation is

a=kA+a, where A a0 € F(N) satisfy n(Ad) =1, n(ao) = 0.

We split the analysis in two cases, namely K|p/= 0 and k|, = 0. If k|p,/= 0, because
N is geodesically complete there exists a point 4 € Cy where a|; = 0 (namely
the point g where Alg = -k-1a0|q). This means that dk|s/= 0 and a|; = 0, which
contradicts (6.54). If, on the contrary, K|, = 0 while dk|p/= 0, then there exists a

point p’ € N (sufficiently close to p) where k|y/= 0 while dk|y/= 0, so we can
apply the reasoning above and arrive at the same contradiction. [

Several aspects of Proposition 6.3.2 are worth mentioning. First, although the ex-
istence of a cross-section constitutes a global topological restriction (as discussed
in Section 2.4), it still allows for physically interesting situations. Secondly, the
hypesurface N does not need to be a "full" Killing horizon but only an abstract
Killing horizon of order one, and the symmetry generator n is allowed to vanish
anywhere on N . These are in fact two relevant advantages of Proposition 6.3.2,
compared with similar results in the literature. For instance, in [101] it was proven
that, given a spacetime with a Killing vector n which defines a Killing horizon H,
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if H contains a null geodesic C € H where k{¢/= 0 and dk|c/= 0 then necessarily
C terminates in a curvature singularity. However, the proof requires that H has

topology S x R and that n is no-where zero on H. These two requirements are
dropped in Proposition 6.3.2.

6.4 generalized master equation on a transverse submanifold S

One of the main results of this chapter is a generalized form of the master equation
on a codimension one smooth submanifold S € N to which n is everywhere
transverse. We devote this section to derive this equation and to compare it with
the master equations described in Chapter 2 (see (2.153) and (2.128)).

Our starting point is Setup 3.2.15 (where S does not need to be a cross-section)
and we use the notation and results of Section 3.2.3. In particular, we identify S,

X € T(TS) with their respective images @(S), w.X and denote by T the pull-back
to S of any general p-covariant tensor T along S and by Ta,.a, its components.
As before, we let 1 be a metric on S, V" be its corresponding Levi-Civita covariant
derivative and R” its Riemann tensor.

The process of deriving the generalized master equation is divided in two parts.
In the first one, we compute the pull-back to S of (6.1)-(6.2). However, since (6.1) is

written in terms of the curvature tensor R ;, we will still need to rewrite its pull-
back equation in terms of the Riemann tensor R of h. This constitutes the second
step. The following lemma collects the results for the first part.

Lemma 6.4.1. Under the hypotheses of Theorem 6.1.1, let S € N be a codimension one

embedded hypersurface to which n is everywhere transverse. Then, the pull-backs to S of
(6.1)-(6.2) read

( )
_ uhuh h a h ;
0= V,Via+ 2w, Vipa+ 5 2V, Wp) + 2waws + Ras = R,p
( )
a P2
—i—(K(YAB—Vh(Ae 3() —I-Z_ V& Sp —S,)qSB —GWAB—?ZB + ZUAB
+ gzn(Q @)~ g¢ ZQSC +awe + Via - (2@ - 2Ok U, (6.55)
( )
0= V};‘K +a (£.w)a - VhAKn

( )
+ 2asc + £ B(k - akn) - i5V"@ Uas — w" (N (1, -))a. (6.56)
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Proof. We recall that r(n) = —ks, U(n,+) = 0, s(n) = 0 and n(a) = K — aka.
Particularizing (3.94) for T. = V,a, Ta = 7. and Tz = s. gives
(
: h

V05V @ = V) Via - n(a)Vh, ‘33>(_ (8@ = £mn(a) +)e Vea Uy, (6.57)

Uiﬁlvtho(a T’b) = V}EA T’B) + Ky, V’EA QB) + (g @ - Qll(z))Kn - g CT’C U AB> (658)

vt s =V's -0GU (6.59)

A BV b (A B) C AB

while the combination of (6.58)-(6.59) entails, in turn,

( )
2
UAUBV(a Wy = V 4 Wp) — KnV’EA lg - (£ @ _ Q”( ))Kn + 0w U 4. (6.60)

Inserting (6.57) and (6.59)-(6.60) into (6.1) yields (6.55). The proof of (6.56) is based
on computing the pull-back of (6.22) to S. The only non-trivial term in (6.22) is
PreU,; (w, a + 2as ), so it suffices to elaborate its pull-back. This is done by means
of the decomposition (3.50) of P (here h = hand wa = £ 4), from where one obtains

(. ) ( )(, )

vt PUa wpd + 200 = vf g Ua h%00 = €Pn" w0 + 208

A% )

= Uas hBCth 2asc — £ Bu(a) .
With the identity above, it is straightforward to get (6.56) from (6.22). ]

Equation (6.55) already constitutes a generalized form of master equation on the
transverse submanifold S. We now write (6.55) in terms of the Ricci tensor R of
the metric i on S.

Theorem 6.4.2. Under the hypotheses of Theorem 6.1.1, let S € N be a codimension one
embedded hypersurface to which n is everywhere transverse. Then, (6.55) can be written in

terms of the curvature tensor R" of V" as

0 =V, Vi + 2w, V' a + f (zvh(A Wy + 2wawp + Rap - R’;‘B)
C 4 ) ( , ) D ( 1, )
+ K+E(tl"hU") Yas = V" £ p) —ﬂAB+§UAB— a QCEDUCD-FEVCQC
( Y ) o
+ ecvha+ K+— trny; _—Kn L@ - Q”(z) - EtrhY" Uas (6.61)
)

a

(
a
+a P2 - é @)+ 0°0P UucUpp + Z_hCD 207" LU gy = 4U piy Yy
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Proof. The proof of (6.61) is based on two ingredients, namely the substitution of
(4.29) into (6.55) and the computation of Was. Inserting (3.78)-(3.79) into (6.4), we
get

Il
+ hPUp 2Ysc + Fee + (spy — 2rp) € c . (6.62)

1 1
Was = ~ 5 (trn Uy )(YAB ~ 5 (trnYy - 22 Crc + k(2 (2)) -0 (2)))UAB

Moreover, the combination of (2.19) and Lemma 3.2.21 one obtains

F —uwoF =0 0 + 0@y =vyhy
AB A B ab A BVa b AB [A Bl

Using the results above in the process of substituting (4.29) into (6.55) yields (6.61)
after a cumbersome but straightforward calculation. ]

We emphasize that the derivation of (6.61) does not require S to be a cross-section
(in fact, such cross-section does not need to exist in this context). This, together
with the reasons exposed in Section 6.1, already makes equation (6.61) a remark-
able generalization of the master equations (2.153) and (2.128).

Our next aim is to establish a comparison between (6.61) and the previous forms of
master equations valid for isolated horizons and multiple Killing horizons. Since
both cases give rise, at the abstract level, to abstract Killing horizons of order one
(see the discussion in Section 5.4.3), it is convenient to particularize (6.61) to this

case by enforcing U = 0 and N7 = 0. This yields

( )
0 vhvha+2w(Avha+— 2V w + 2waws + Ras = R"
2 (A B)
+K Yas-V'lp . (6.63)

The corresponding comparison of (6.63) with (2.153) and (2.128) is collected in the

following two remarks.

Remark 6.4.3. In Section 2.6.1, the derivation of the master equation (2.153) requires two
Killing vector fields ni, n- which are null, non-zero and tangent to the horizon Hi,, i.e.

they are null generators of Hir. These vector fields, in addition, have constant surface
gmvities K1, & = 0 and are related by N = am on Hl,r (see (2.139)—(2.140)).

Equation (2.153) is presented in terms of (i) the one-form @ associated to n1 (cf. (2.106))
and (ii) the scalar function agiven by (2.140). Thus, in order to recover (2.153) from (6.63)

we need to find the explicit expression of @ and a in terms of tensor fields and functions
at the abstract level.
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In the present case the embedding ¢ and the abstract hypersurface N need to satisfy
¢(N ) = Hu,, and it turns out that the pull-back of @ to N coincides precisely with
the one-form w. Indeed, the choice of transverse vector field L made in (2.112) corresponds,
in the formalism of hypersurface data, to select the gauge so that m = ¢.n and €a = 0.
This, together with Remark 2.4.11 (note that the function a in that remark is the propor-
tionality function between ¢.n and M, so it is equal to one), means that the one-form @
associated to N1 satisfies

def

po=s-r= w. (6.64)

The function a, on the other hand, must be the proportionality function between - and ¢.n
(which in this case is just N1). Thus, a = ae”*"t (cf. (2.140)), and since the derivatives of
e 1 along directions tangent to S are zero, one can write (6.63) as
o
S I 2V 2waws + Ras - R* ,  (6.65)
OZVAVBe{+2w(AVB)a+§ (A WB) + AB

where we have taken into account the fact that nr is degenerate which, together with Pro-

position 3.3.2 means that K = ¢ ki = 0. Equation (6.65) is precisely (2.153) since the
constraint tensor in the null case is simply the pull-back to N of the ambient Ricci tensor.

Remark 6.4.4. The master equation (2.128) from Section 2.5 only requires a privileged
null generator n of the horizon N, with surface gravity k. As before, the embedding ¢
and the abstract hypersurface N need to satisfy (N) = N, and the pull-back of @ to
N coincides precisely with the one-form w. This, again, is a consequence of the choice of
transverse vector field L made in (2.112), which amounts to enforce n = ¢.n and €1 = 0.

Since in this case the master equation is for the generator n, here the function a of (6.63)
is equal to one, so it does not appear in the master equation. Finally, the restriction of

K to S gives the second fundamental form of S with respect to L (recall (2.64)). This, in
combination with (2.65), means that KL|5 is just the pull-back W'Y, so we can rewrite
(6.63) as

( )

1
0= KYan + V', gy + wawp +,° Rap - R (6.66)

after reorganizing some terms. Equation (6.66) coincides with (2.128), again because R is
the pull-back to N of the ambient Ricci tensor.

For its use in Chapter 8, we now obtain the explicit form of the components of Y in
the case when {N, y, € £ @, Y} defines a non-degenerate abstract Killing horizon

of order one with constant surface gravity k.

def

Proposition 6.4.5. Assume the hypotheses and setup of Theorem 6.1.1 and let S = {p €
N such that n|p = 0}. Suppose further that {N, y, €, £ @,Y} defines an abstract Killing
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horizon of order one with non-zero constant surface gravity K, and that N can be foliated
by a family of diffeomorphic cross-sections. Take one such cross-section S and construct a
basis {n, va} of [(TN ) by taking a basis {va} of T(TS) and requiring £:va = 0. If, in
addition, ke = 0,s = 0and £ Lef €(v4) = 0, the components of the tensor Y in the basis
{n,va} are given by

Y(n,n) = 0, (6.67)
Y(n,v4) = Y(n, EJA)'S, ) (6.68)
1
Y(va, vB) =_ © Vﬁv}}a - Zr(A VhB) a
K ( )
_,_2% Rlg — Rap + ZV}QA”B) — 27arE . (6.69)

Remark 6.4.6. We know from Proposition 3.2.23, Lemmas 3.2.24 and 3.2.25 and Remark
3.2.26 that one can select the gauge so that s = 0, ku = 0 and £ a|s = 0. Moreover, since

the basis {n, va} 1is constructed so that £.va = 0, it holds that £. 8 4 = (£.€)(va) =
2s(va) = 0 (cf. (3.43)), so in these circumstances we can find a gauge where {s = 0, Kn =
0, £ 4 = 0} everywhere on N .

Proof. Let A € F(N) be the unique foliation function satgsffying Als = 0, n(A) = 1.

Then, the vector fields {va} are tangent to the leaves S, = {A = const.}, since
0 = (Ewa)A) = n(wa(A)) — va(n(A)) = n(va(A)) == va(A) = va(A)|s = 0.

Equation (6.67) follows at once because k» = 0 (recall (2.44)). On the other hand,
from (6.22) and using that kK = const., U = 0 and n’ = 0, it follows

at:r =0 == £y = 0, (670)

where the implication is a consequence of the fact that N \ S is dense in N. Since
£wa = 0, it is immediate that (6.70) implies #(va) = r(va)|s, which proves (6.68)
after again taking into account (2.44). Finally, in the present case equation (6.63)
must hold for all leaves {54}, hence everywhere on N . Particularizing it for £ 4 = 0

and constant non-zero K gives (6.69) (recall that wa = sa—ra= —7r4A). [l

6.5 vacuum degenerate killing horizons of order one

As an application of the results of Chapters 5 and 6, we consider the particular case

of N defining a vacuum degenerate abstract Killing horizon of order one without
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assuming that the horizon can be foliated by spacelike sections. The analysis will
reveal a version of the near horizon equation in a quotient space.

Our setup is the following. We consider an abstract Killing horizon of order one
{N,vy, € £ ®,Y} with everywhere non-zero symmetry generator ] (cf. Definition
5.4.5). We assume that {N , y, €, £ @, Y} is embedded in a spacetime (M, g) with
embedding ¢ and rigging ¢, and we let n) be an extension of n Lot ¢.7n to a neigh-
bourhood O of ¢(N ). The fact that 7) vanishes no-where on N means that N
cannot contain fixed points and that the proportionality function betweenr and n,
which we have called a before, is equal to one. Moreover, it allows us to select the
gauge so that /7 = n, which automatically forces the rigging { to satisfy ¢(n, {) = 1.
Observe that since N is an AKH1 it holds that U = 0 and that the tensor &, &' v

satisfies Zp(¢. X, ¢. W) = 0, X, W € I'(TN).

We let (M, g) be a spacetime admitting a Killing vector field n which defines a
Killing horizon H < M according to Definition 2.6.1.

As indicated elsewhere in this thesis, one can define the surface gravity-k of n|sm )
according to (2.81). Moreover, from Proposition 3.3.2 we know that the (abstract)
surface gravity kK of 17 coincides with the pull-back of K to N, i.e. K = ¢ k. Since in

the present case n = n, from (3.102) it also holds (recall that a = 1)

K=-Y(n,n) £ k.

When no assumptions on the topology of N are made, it is not possible in general
to select a global cross-section. However, one can can always introduce a quotient

space N / ~ of equivalent classes under the equivalence relation
pg€EN, p~g <<= gand p belong to the same integral curve of n. (6.71)

In general N / ~ is not a smooth manifold. Nevertheless, the case when N / ~ is
smooth is of special interest because, while still allowing for a simple treatment,
it includes not only all cases where a global section exists but also topologically
non-trivial cases. Since our aim in this section is to provide an example where
our previous results apply, it makes sense to restrict ourselves to this situation. We
therefore assume from now that {N, y, €, £ @, Y} constitutes a degenerate2 abstract
Killing horizon of order one such that N / ~ is a smooth manifold. We moreover

assume that the data is vacuum, i.e. that the constraint tensor Ra vanishes identically.

ZRecall the terminology introduced in Section 2.6 according to which degenerate Killing hori-
zons are those for which« (and hence k) vanishes identically.
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It is well-known that covariant tensor fields in the quotient are in one to one-
correspondence with covariant tensor fields on N that are completely orthogonal
to n and are Lie constant along n. For a tensor Tal...gp satisfying T(- - - ,n,--+) =0
and £, = 0, we shall denote with a hat the corresponding tensor in the quotient.
The only exception in this notation is y which indeed satisfies y(n,-) = 0 and
£y = 0 (because U = 0), but for which the corresponding tensor on N / ~ will
be denoted with h. A reasoning analogous to that of Section 2.4.1 allows one to
prove that / is a positive definite metric on N / ~, so we also define its associated

covariant derivative V®” and Ricci tensor R¥.

By Lemma 3.2.7 the tensor w = s~ ris gauge invariant under the subgroup Gi.
This tensor satisfies w(n) = 0 (because w(n) = Kx). By (4.19) together with Ra» = 0
and kK» = K = 0 we also have £:w = 0. Thus, this tensor descends to the quotient.

The following result determines the field equations that 9. and @ need to satisfy.

Proposition 6.5.1. Let {N, y, €, £ @, Y} be a vacuum degenerate abstract Killing horizon
of order one and assume that the quotient N / ~ is a smooth manifold. Then the metric f

and the covector W satisfy the near horizon equation, namely

RQ‘AB-Voh;@B -Voh@A—ZOQA(@B = 0. (6.72)
ggof NThE Rrojection. 7 I;omt pE ll\{I/ satlsfylnéub rsmg "Plcq)gl%dg wayy T

a local section Sy of N near p (i.e. a non-degenerate embedded hypersurface S

containing p). We let @ : S, '=--- N denote the corresponding embedding. Define

def

Uy = m(Sy) and ﬁ = 17 ° . This map is a diffeomorphism between S, and U ¢ and
satisfies T ° 4 =n Moreover, ' & = w , which follows at once from m' & = wand

Y’ w = wy. Moreover, the tensor §; vanishes identically as a consequence of (4.37)
together with (5.62) (recall that a = 1). Proposition 4.3.2 in the present context
yields the equation

Rhyy = Vs — V' gwa — 2waws = 0. (6.73)

Applying (17¢) " to this equation gives (6.72) on Uy. Since the point is arbitrary,

the equation holds everywhere on N / ~. =
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MATCHING FROM A SPACETIME
VIEWPOINT

In this chapter, we start addressing the problem of matching two completely gen-
eral spacetimes across a null hypersurface. The analyisis of this problem consists
of two distinct parts. In the first (corresponding to Chapters 7 and 8) we approach
the problem from a spacetime perspective, i.e. without considering the matching
hypersurfaces in a detached way from the ambient spaces. The main assumption
that we shall require is that the boundaries of the spacetimes to be matched can be
foliated by a family of spacelike cross-sections. Chapter 7 focuses on the matching
problem across null hypersurfaces in a general context while Chapter 8 is devoted
to the problem of matching across embedded abstract Killing horizons of order

Zero.

In the second part (namely Chapter 9), we adopt a fully abstract approach in order
to provide a completely abstract formulation of the matching problem. We do this
in a much more general framework, e.g. by refraining ourselves from making any
topological assumption on the boundaries. This abstract viewpoint, as we shall see,

is advantageous for various reasons.

The structure of the chapter is as follows. In Section 7.1 we obtain some prior
results that are needed later in the chapter. In Section 7.2, we include a brief dis-
cussion on the problem of matching in the general case, namely for boundaries
of arbitrary causal character. Section 7.3 constitutes the main part of the chapter
and focuses on the null case. We first rewrite the standard matching conditions
in terms of a basis of vector fields. Then we identify the necessary and sufficient
conditions that allow for the matching. In Section 7.3.1, we demonstrate that all the
information about the matching is encoded in a scalar function called step function
and in a diffeomorphism between the set of null generators of each side. We also
study the circumstances in which an infinite number of matchings are feasible,
which occurs in particular whenever the boundaries are totally geodesic. In Sec-
tion 7.3.2 we obtain explicit expressions for the matter-energy content of the most
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general null shell resulting from the matching. We conclude the chapter by partic-
ularizing the results to the matching of two regions of the spacetime of Minkowski
across a null hyperplane. This allows us to connect the matching formalism with
the cut-and-paste constructions (see e.g. [3], [85], [86], [87], [5]).

7.1 prior considerations and setup

So far, all the results we have presented in Chapters 3, 4, 5 and 6 (except those
in Section 6.5) apply to arbitrary signature either of the tensor A in the purely
abstract setting or of the semi-Riemannian ambient manifold (M, g) in the embed-
ded case. The only restriction of course is that this signature cannot be positive
or negative definite whenever we deal with null (metric) hypersurface data (cf.
Lemma 3.1.1).

From now on we shall concentrate on the matching problem of two spacetimes
across null hypersurfaces. Thus, for the purposes of this chapter we shall assume
that (M, g¢) is a spacetime with a null boundary N. As discussed in Section 2.4,
in such case N is two-sided. We follow the notation in Definition 2.4.1 and let ¢ :
N '—--- M be the embedding of the corresponding abstract hypersurface N in M
(i.e. (N) = N) and y be the first fundamental form (i.e. y = ¢ g). By construction,
y is semi-positive definite! (non-null directions tangent to N are all spacelike) and

N-always admits an everywhere transversal vector field Lo € ['(TM)| -

The vector field Lo defines a rigging of N—, and it can always be taken to be null
everywhere. Indeed, given a null generator k of N°, Lo being transversal means that
¢(Lo, k)/= 0 everywhere. Thus,

8(Lo. Lo) k (7.1)

L def LO_
2g(Lo, k)

is both transversal (because g(L, k)|s/= 0 at every point p € N') and null (which fol-
lows from squaring (7.1)). We emphasize, however, that the choice of a transversal

vector field is non-unique, even when we fix it to be null.

As mentioned above, in this chapter we shall assume that the boundaries of the
spacetimes to be matched have product topology S x R with the null generators

along R. This implies that they can be foliated by diffeomorphic spacelike sections
(see Section 2.4). In these circumstances, it becomes helpful to introduce a basis

of F(TM)|N—adapted to the foliation. Given a spacelike cross-section S C N, we

LOf course this is in agreement with Lemma 3.1.1 because in the present case g has Lorentzian
signature, and hence so does the ambient metric A.
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construct a foliation function v € F(N) (see Definition 2.4.4) and a basis {L, k, vi}
of T (TM) | N adapted to the foliation as follows:

(A) k is a future null generator with surface gravity k.

(B) v€F (N) isthe only foliation function satisfying = 0, k(v) AES

(C) Each vector field v: is tangent to the foliation, i.e. vi(v) = 0. (7.2)
(D) The basis vectors {k,vi} are such that [k, 1] = 0 and [v1, vj] = 0.

(E) Lisapastnull vector field everywhere transversal to N.

Remark 7.1.1. The basis vector fields {k, vi} can always be constructed. Indeed, given a
cross-section S € N and a choice of null generator k, one can take a basis {vi} of T(TS)

and extend its vector fields uniquely to N by enforcing £xor = 0. Then
0 = (Exo)(0) = k(vi(v)) = vi(k(v)) = k(vi(v)) == U’(U)|N = vi(v)|s = 0,

hence the vector fields {vi} are tangent to the foliation and satisfy [k, vi] = 0. If, in
addition, we take {vi} on S so that [v1, vj]l|s = 0, it follows that

£k(£v10]) = £y, (£xv)) + Lk o1 = 0, (7.3)

so [v1, v1]] = 0 holds everywhere on N.

def
As usual, we denote the leaves of the foliation by {S.}, i.e. we let Svo = {p €

N | v(p) = vo € R}. Although the topology of N allows us to take k affine (see the
discussion in Section 2.4), for the moment we refrain ourselves from enforcing kK« =

0. Observe that all vector fields {va} are by costruction spacelike and that {k, v:}
constitutes a basis of I'(TN ). The fact that k is future, together with k(v) k=1

means that the foliation function v increases towards the future of i¥.

Following the notation of 2.4, we let & be the induced metric on the leaves {S.},

and denote its components in the basis {v:} by hi, i.e.
hU éef g(YJI,UJ). (7.4)

The components of the inverse metric h#* of hin the dual basis {03} of {vi} are
h'l and, just as before, we use kY, hy to lower and raise Capital Latin indices. We

also define the second fundamental form K* of N with respect to the normal k

173



174

matching from a spacetime viewpoint

according to (2.84). By the property [k, v:] = 0 satisfied by the basis vectors {vi},
(2.85) can be rewritten in the present case as

k h(ovi, vy) al 2K (v, 7). (7.5)

As we did in (2.99), we introduce the tensor field ©* and the one-form o on the
leaves {S.} (recall that O, is not symmetric in general because L does not need
to be normal to the leaves {S.}). For any basis {L, k, v1} verifying (7.2), we also
define n scalar functions {u.} € F (N') as

pr(p) = g(L Ry, pr (p) e g(L, 01)|p  Vp € N. (7.6)

Although clearly the functions {u.} depend on the choice of the basis vectors
{L, k, v}, for the sake of simplicity we do not reflect this dependence in the nota-
tion. Observe that necessarily py1/= 0 everywhere on N (in fact, since L is past and

k is future y1 > 0 is forced, recall (A), (E) in (7.2)).

It may seem strange not to restrict L to satisfy 1 = 0, i.e. to be orthogonal to
the leaves of the foliation. The reason is that there are many cases where the most
convenient choice of L (e.g. to simplify the computations) does not verify i = 0.
An explicit example where choosing L non-orthogonal to the leaves turned out to
be useful appears in [5]. The functions pr in that paper happen to be the currents
J(U, n,A) and J (U, n, 7), which play a fundamental role in the physical description
of the impulsive gravitational wave associated to the matching.

For later purposes, it is convenient to provide the explicit form of several covariant
derivatives with respect to the vector fields k and v:. Since Vik is given by (2.82)

and Vior = Vuk (cf. (7.2)), we only require Vuv;, Ve k, Vik, Vo L and VL.
When L is normal to the sections, the corresponding expressions can be found

e.g. in [125]. The general form when L need not be orthogonal to the leaves was
obtained for the first time in our paper [103]. These expressions can be regarded
as an expanded form of equations (19) and (21) in [64].

Lemma 7.1.2. Let N° be an embedded null hypersurface admitting a foliation {S.} given
byv € F(N). Consider a basis {L, k, vi} of I (TM) | satisfying conditions (7.2). Then,
the tangential derivatives of the basis vectors read:

)
Vouy = — iKk (v1,0)) L + i or (uy) — OL (v, vy) — EX ux k + EXok,  (7.7)
! M1 U1 1 1
( y 1
Vivr = Vork = — o (ov1) + IJ_1Kk (v, ) k+ Kk(vz,v] )uj, (7.8)

Vik = Rk (7.9)
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A ) )
VoL = niL - ™ OL(vr,vy) — Ny k + oF (v1,v)) - niy vy, (7.10)
1 1
( 1( I
Y g,
Vil = JLIIJl—ll_Kk T
( yCyp
- k(ur) + prow (vn) IJ—k_ o (7.11)
H1
where Elfl and nr are defined by :
( uK
Chi (g(vK, Vooy) + —K (o, 0) (7.12)
ny L ULCHENS (7.13)
M1

Remark 7.1.3. The vector field L + ﬂ k- uv lis orthogonal to both v ]and L, whereas
51

1
Z—k — ol is orthogonal to L.
1

Proof. We start with Vo). For suitable scalar functions aij, 817 and EK],Ithis de-
rivative can be expressed as Vuv; = ayL + Bk + EIfIvK. Using (7.6), it follows
that

1
(k, Vo,u1)g = amua, == ay =, (k, Vo,0p)g,
(v, Vo 1) = aypur + EI<]]11<L, == EKHZ (0K, Vo pr)g — ayuk, (7.14)
( )
1
(L,Vor))g = By + ENuxk, == fy er (L,Vavr)g —Efux ,
which, together with (2.97) and (2.99), gives
1 1
ay = ——(vy, Vak)g = = —K (v1,v)),
1y ,U1(] 1k)g " (v1, v7)
- HE
Ef = (0, Vuruy)g + —K (01,0)), (7.15)
H1
( ) 4 ( )

1
By = v (W) =(Vé Lyvj)yg — T ux = TR (ur) = O (v1, vy) — EFuk

and hence (7.7). We can repeat the process for the derivative V.rk and decompose
it as Vuk = arL + Bik + gtvr. Then,

1

ar = — k,Vvk :0,
1 N1< 1k)g

g = (o', Vork)g = K (v, ot), (7.16)
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1 ( y ] !

u
,31 = — (L: vv1k>8 —&fux =- o (UI) + —Kk(vl, v])
M1 H1

Substituting in Vuik gives (7.8). Equation (7.9) is simply (2.82). On the other hand,
decomposing Vo L = &L + vik + g'v. one obtains

1 1 v (u)
H = _(k, Vo L)g = o (/Jl) - <VU k, L)g = ; + O'L(UI),
H1 ! 0t r it
L L L L L M L
P = (U , VUIL)g -M H =0 (UI, (Y ) - ;1 VI ([Jl) -M O'L(UI), (7_117)
vi = 1 (L, Vo L)g — PIH = —phJ] __H (OL(UI, vy) — o or (u1) — proc(or)
1 ! th th fh fh

Using the definitions (2.99) and (7.13) and inserting the results into VL proves
(7.10). Finally, writing ViL = aL + bk + clv: yields

a1 = (k, ViL)s = k (u1) — Ky, (7.18)

bur + clur = (L, ViL)g = 0, (7.19)

au; + ¢ = (v, VeL)g = k (u1) = (L, Vkvy)g = k (uy) + 1o (v)) . (7.20)
Equation (7.18) immediately provides a, while from (7.19) one gets b = - %’1
Multiplying (7.20) by WK gives ¢ = —k« —%’Jl U+ hk (u) + poe o', and
the substitution of 4, b, ¢! on VL proves (7.11). [

Remark 7.1.4. A straightforward calculation yields

K

1
=K ——ZhKA vr ha; + vy (har) —va (hyy) + Z—Kk (v1, v7) . (7.21)
1

Proof. The proof is based on the fact that [v1, v7]] = 0. A direct computation gives

29(va, Vorvg) = g(va, Vorvy) + g(va, Vojor)
= vi(hay) — g(v), Vorva) + vj(har) = g(v1, Vojva)
= vi(hay) + vi(har) = g(vy, Voavr) = g(vr, Voavy)
= vi(hay) + vy(har) = va(hyy)

from where (7.21) follows at once after using (7.12). [
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7.2 matching of spacetimes with boundaries of any causality

We devote the rest of the chapter to the problem of matching two spacetimes with
boundary. In particular, in this section we discuss briefly the general case (namely
when the boundaries have any causal character) while in later sections we focus
on the matching across null boundaries, which constitutes the core topic of the
second part of this thesis.

Consider two given spacetimes (M*, ¢*) with boundaries N* of any causal char-
acter. As we mentioned in Section 2.7, the matching of (M¥*, ¢*) across N* is

possible if and only if the so-called junction conditions or matching conditions are
satisfied. In the language of the formalism of hypersurface data, we already know
from Theorem 2.7.1 that the junction conditions require that there exists a metric
hypersurface data set that can be embedded in both spacetimes so that the riggings
{* to be identified in the matching process satisfy an orientation condition.

It should be emphasized however, that this formulation of the matching condi-
tions in terms of metric hypersurface data is a reformulation of the traditional
one, which can be called "standard" or "a la Darmois" matching conditions. In the
standard a la Darmois matching procedure, the junction conditions constitute a set
of equalities that provide information about the identification between points of
the boundaries * and between the tangent spaces TNiMi' together with the

mentioned restriction upon the orientation of two transverse vector fields that are
identified in the matching process. Specifically, the junction conditions in the tra-
ditional way are formulated as follows (see e.g. [64]).

Standard Junction Conditions. The matching of two given spacetimes (M*, ¢*) with
boundariesN * can be performed if and only if

(i) There exist two riggings ¢* along N* and a diffeomorphism @ : N~ —--- N ¥ such
that
P(g") = g,
P (g7(¢*, ) = g({, ), (7.22)

P (g7(¢, ¢) = (& ).
(i) One rigging must point inwards with respect to its boundary and the other outwards.

In the following, two riggings {* satisfying (7.22) for a diffeomorphism @ will be
called matching riggings. The diffeomorphism &, on the other hand, will be referred

to as matching map.
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Observe thatif (7.22) holds for one pair of riggings {* then, for any other choice
of rigging on one of the sides, conditions (7.22) are also fulfilled. Indeed, one can
take a function z € F “(N 7) and a vector V € I'(TN" ") and construct another
rigging {- = z({- + V) on the minus side, and it is straightforward to check that
the rigging {+ = §(¢+ + W) with z@éef (@) zand W' ®. Valso verifies (7.22).
Since the same logic obviously applies if one decides to change the rigging on the
plus side, it follows that the rigging can always be selected at will on one of the
sides (although of course different choices of rigging on one side will correspond
to different riggings on the other side). For the rest of the chapter, we shall make
use of this freedom to fix - at our convenience. This entails no loss of generality,

as one can always switch the names of the spacetimes to be matched.

As proven e.g. in Lemmas 2 and 3 of [65], given a rigging on one side (say {°)
and a diffeomorphism @ : N =~ —--- N 7 satisfying ® “¢* = ¢7, at non-null points
the second and third equations of (7.22) yield either no solution for {* (hence the
matching is not possible) or two solutions for {* with opposite orientation. At null
points, on the other hand, if there exists a solution {* then it is unique. This means
that at non-null points one can always make a suitable choice of rigging {* so that
the junction condition (i) is fulfilled (as long as (7.22) provide a solution). In the
null case, however, this is not so. Since both riggings must be identified in the
matching process (which in particular force them to point into the same side of the
matching hypersurface on the resulting spacetime), it could well happen that there
exists a solution {* of (7.22) with unsuitable orientation, and then the matching
could not be performed. Thus, at null points conditions (7.22) are necessary but
not sufficient to guarantee that the matching can be performed. As we mentioned
in Section 2.7, this can also be understood within the framework of the formalism
of hypersurface data, and has to do with the fact that there exist two gauge group
elements leaving a fully non-null metric hypersurface data set invariant, and only

one when the data contains a null point.

When a matching of two spacetimes (M*, ¢*) is possible, the associated matching
map @ turns out to be the key object upon which the whole matching depends.

This is so because once the point-to-point identification of the boundaries N=*

(ruled by @) is known, one matching rigging can be selected at will (as we have
seen) and the other is simply the unique solution that arises from enforcing both
(7.22) and (ii). This fact is relevant, since it implies that all the information about
the resulting thin shell (e.g. the matter-energy or the purely gravitational content)
is fully codified in @ (in fact, this is the underlying reason why e.g. in all cut-and-
paste constructions the whole matching information is codified in a specific jump
in the coordinates that takes place at the matching hypersurface).
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We have stated that the standard junction conditions can also be rewritten in the
language of the formalism of hypersurface data according to Theorem 2.7.1. For
the sake of self-consistency, we now justify how Theorem 2.7.1 follows from the

standard junction conditions.

For one of the boundaries, say N 7, we can consider an abstract manifold N and
an embedding ¢~ : N '=--- M~ such that (N ) = N—. We can also take any rig-
ging {- along N~ and define embedded metric hypersurface data {N, y, €, £ @}
according to (2.22). Should the matching be possible, there must exist a matching
map ®. In that case, one can define yet another embedding ¢+ : N '—---N * by
D - P Lo ¢*. The condition on the existence of a matching map @ is therefore equi-
valent to requiring existence of such extra embedding ¢+ of N in M". For a (still
unknown) rigging vector field {* along N=*, conditions (7.22) can be expressed in

terms of ¢+ as
@)@ =y ()@ () =€ ($7) (g*({+, ") = £@ (7.23)

after applying the pull-back (¢-)" to (7.22) and using that {N, y, €, £ @} is embed-
ded in (M7, ¢7) with embedding ¢~ and rigging {-. Thus, the matching requires
{N,y, & £ @} to be embedded also in (M*, g*) with embedding ¢+ and rigging

{+, as was claimed in Theorem 2.7.1. For the reasons explained above, one must
require in addition that one matching rigging points inwards and the other out-
wards, with completes the justification of Theorem 2.7.1. For later purposes, we
write (7.23) in terms of both ¢~ and ¢+*:

y = (97 (g) = (7)) (g"),
€ = (¢) (g(&, ) = (89) " (g+({*, ), (7.24)
2@ = (¢)" (g(&, ) = (¢7) " (g(*, &)

The same way as one of the riggings (in our case ¢-) can always be chosen at will,
it is always possible to select one of the embeddings freely. It suffices to adapt the
abstract manifold N to one of the boundaries. In the following we shall make use
of this freedom by fixing ¢~ at our convenience. Thus, all the information about
the matching (which was encoded in the matching map @ in the spacetime picture)
will be codified in the (unknown) embedding ¢+, which becomes the core object

upon which the matching depends.

To summarize, given two spacetimes with boundary, determining whether they
can be matched amounts to finding two embeddings of an abstract manifold N

onto their respective boundaries, in such a way that the matching conditions are
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Figure 7.1: Matching of two spacetimeM( * ¢*) with boundaries™* of any causality,

whereNis an abstract hypersurface embedded ifM +, ¢*) with embeddings
¢+, {* are matching riggings and @ is the corresponding matching map.

fulfilled (i.e. that the corresponding metric hypersurface data agree). We include
Figure 7.1 for a schematic picture of the construction. The embeddings and the
rigging vectors are not known or given a priori (although they can be freely chosen
on one of the sides). In many circumstances such embeddings do not exist, and
then the two spacetimes simply cannot be matched. In other cases, there exists
several (even infinite) possible embeddings, giving rise to a certain number of
joined spacetimes, which in general are different from each other (we discuss this
later in Section 7.3.1 and in Chapters 8 and 9).

When the junction conditions are satisfied, the geometry of the shell is determined
by the jump of the transverse tensors Y* defined as (cf. (2.39))

+ e 1 * e
Y2 LT (¢ gt namely  [Y] £'Yr-Y- (7.25)
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7.3 matching of spacetimes across a null hypersurface

For the rest of the chapter we concentrate on the null case, i.e. we assume that the

boundaries N* consist of null points exclusively.

Later we shall make use of the freedom of selecting one of the matching riggings
¢* by enforcing that - is null and past. We will also need to compute the explicit
expression for ¢* in terms of a basis of vector fields adapted to the boundaries.
In order to avoid complications with the signs of the components of {* in the ad-
apted basis, we take the following precaution. If the null past rigging ¢~ points
inwards (resp. outwards) with respect to (M7, ¢7) and the null riggings along
N-* which point outwards (resp. inwards) with respect to (M*, ¢*) happen to be
future, we change the time-orientation of (M*, ¢*) before doing the matching. If
this change of orientation was not done a priori, then it would have to be done
a posteriori after the matching was performed. Otherwise the resulting spacetime
would not have a well-defined notion of past and future at points on the matching
hypersurface. In the already matched spacetime, we would be allowed to change
the orientation to either the M~ or to the M~ side, so it may seem that the
choice we make of changing the orientation of M before matching entails some
loss of generality. However, this is not so because after we have performed the
matching it is always possible to change the orientation everywhere. In summary,
the choice we make is able to recover all matchings, and removes some spurious
signs that would complicate unnecessarily the presentation. This change, in the
end, is equivalent to assuming that one of the boundaries lies in the future of its cor-
responding spacetime while the other lies in its spacetime past. Diagrams (a)-(d) in the
left part of Figure 7.2 depict all scenarios where a null past rigging {- pointing
inwards (resp. outwards) is identified with a null future rigging {* pointing out-
wards (resp. inwards). Diagrams (a)-(d) in the right part of Figure 7.2, on the other
hand, show the corresponding matchings once the time-orientation of (M ™, ¢*)

has been changed.

For the rest of the section, our setup will be the following.

Setup 7.3.1. We let (M*, ¢*) be two spacetimes with null boundaries N* that can
be foliated by a family of diffeomorphic spacelike cross-sections. We construct respective
foliation functions v+ € F(N *) and basis {L*, k*, v } of F(TMi)lN . according to
(7.2). The leaves of the foliations, as usual, are denoted by {S.* }, while their corresponding
induced metrics are h*. We also let KX, be the second funglamentul forms of N* with
respect to the normals k* (cf. (2.84)), and introduce the tensor fields GLJ_, and the one-
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Figure 7.2: Left part: (a)-(d) depict the possible scenarios in which a null past rigging

¢~ along N~ points inwards (resp. outwards) and a null rigging {+ along
N * pointing outwards (resp. inwards) happens to be future. Right part: (a)-(d)
are the corresponding matchings after having changed the time-orientation of

(M+, g+)

forms @ % on the leaves {Sv:} (cf. (2.99)). The scalar functions {u%} < F (N *) are
defined by (7.6) with respect to the basis {L*,k*,v % }.

We have seen that the matching requires being able to embed a single metric hy-
persurface data set in both spacetimes, and that this metric hypersurface data can
always be adapted to one of the boundaries, namely that the embedding and rig-
ging on one side (in this case the (M~, ¢7) side) can always be selected at will.
On the other hand, in Setup 7.3.1 we have already taken a basis {L™, k", v 7} of
['(TM7)|  We codify the freedom in the choice of {¢~, {-} as follows. We first
consider an abstract null hypersurface N and define coordinates {y! = A, y*}

therein. Then, we construct null embedded metric hypersurface data by enforcing
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that (a) the push-forwards of the vector fields {9y} coincide with the basis vectors
{k,v 7 } (since we have full freedom in the choice of {k7, v 7 }, with this procedure

we ensure that the embedding ¢- is built at our convenience) and (b) that the
rigging ¢~ coincides with the basis vector L™ (with which we ensure that {- is
selected freely). This amounts to impose
e~ =k, e~ = v, =1L, where e7 = ¢ (). (7.26)
1 I I *

Observe that an immediate consequence of (7.26) is that y(d) ) = 0, i.e. A is a
coordinate along the degenerate direction of N.

For the matching of (M* ¢*) to be possible, there must exist another pair
{¢+,{*} so that (7.24) hold (and the o+ri§eptaJtrions of {* are SEitable). If that is
the case, we can build another basis {&z = ¢, (9,«)} of (TN ) and rewrite the
matching conditions (7.24) as?

vi =g (e ,e7) =g (et e?), (7.27)
i

i=g(e,0) =gt e T, (7.28)

L@ = o (&, ) = g7 (L, ¢). (7.29)

In these circumstances, determining the matching amounts to finding the explicit
form of the vector fields {¢"}, since they fully codify the embedding ¢+ and, as
we have seen, it is precisely this map that encodes all the information about the

matching.

One way of obtaining the vectors {{*, e;'} explicitly is to derive their components
in the basis {L+, kt, vy}. As one can expect, the vector field e takes a simple form.

Indeed, particularizing (7.27)-(7.28) for i = 1 and using (7.26) yields
g*lef, ef) = 0, /= £1=g+(@* {"),

which means that ef must be a null generator of N, hence proportional to k™. The

vector fields {¢*, e*} (still to be determined) can therefore be decomposed as

1
et = fk+, et = atkt + blo+, {t =~ L* + Bkt + CXkv+, (7.30)
1

I I7] A K
J K +
for suitable scalar functions f,a1,b;, A,B,C €F (N ).Note thatin (7.30) we have
written 1/A. This has been done for later convenience and to emphasize that this
coefficient cannot vanish because the rigging {* is, by definition, transversal to

ZAlthough the data tensor fields and the scalar products are evaluated on different points,
whenever it is clear from the context we do not reflect this in the notation.
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N~ *. Combining (7.2), condition (7.29) and the choice (7.26), it follows that both
riggings ¢* must be null. The sign of A, which cannot change because this would
mean that A vanishes at some point, must be such that L™ and A~1L7* have the
same causal character. Since L* are both past vector fields, A > 0 is required for
the matching to be possible.

The basis vectors k* have been taken future in (7.2). This, together with the choice
(7.26) and with the fact that the vector fields e1* are to be identified in the matching
process means that ei* are also future. Concretely, this means that the coordinate
A must increase to the future along the null generators on both sides. Since by
construction the foliation functions v+ also increase to the future along the null
generators, it follows that v+ must grow with A. More on the relation between the

foliation functions v+ and A is discussed in the next section.

Equations (7.27)-(7.29) can also be written in terms of the components

fa1, b, A, B, CK and the induced metrics h*. Indeed, inserting (7.30) into (7.27)-

(7.29) and defining f =" (u- ° ®~!)/u+ leads us to
1 1

W lp = Vi lee) (7.31)
-1, = ML,
=1 == er = fAK+ 7.32
P A o) 1 f ( )
1
pily = Z(azy{ + blfyfr) + CKb§h7K1¢(p) , (7.33)
0 = 2By} + 200t + ACICh* ] , (7.34)
J I o)

Where{Lp is any goint of N™. We recall that the spacetimes (M¥*, ¢*) and the
basis L* k%, v¥ "are known, and hence so are the quantities {y*} and h}—“]. In
these circumstances, equations (7.33)-(7.34) provide a unique solution for B and
CK in terms of the quantities A, ar and b, yet to be determined. Consequently, by
expressing the matching conditions as (7.31)-(7.34), we are reducing the problem
of matching to finding explicit expressions for the functions aj, bl/, A which, as we
shall see in the next section, are given by a set of n scalar functions (namely the

components of ¢+).

In order to simplify the notation from now on we make the slight abuse of notation

of identifying functions on N with their counterparts in N*.
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7.3.1 The step function

The fact that the quantities A, @ and bKl can be (locally) written in terms of a set
of n scalar functions will be proved by studying the properties of the vector fields
{e,*}. From the standard property ¢*[X,Y] = [¢.*X,¢.*Y], X,Y € I'(TN) and
given that e, are the push-forward of a coordinate basis, it must hold

[ef,e;—“] =0. (7.35)

For e;” these conditions are not helpful because {k™, v 7 } verify item (D) in (7.2).

On the other hand, the vectors {et} are still unknown, so (7.35) provide useful
information. Inserting (7.30) one easily finds

( ) ( )
0= [el+, e]+] = f+(”7) - §+(m) k+ + e;(b’;) - e*I(b’< vt

( )
0 = [at,g'] = a*(a) — e (H k+ + et (b)otL (7.37)

" (7.36)

Setting each component to zero and using that ¢+(X)(u) = X(u ° ¢+), we get

ou _on, N _ ok

et(a) = et(a), et (b5 = et (Y, &= =1 _J=_1  (7.38)
I ] I ] J I ay[ J I ay]

+ + + K aaj ?f gbVK

er(a) =e; (), e (by) =0, = = a7 _37\1_ = 0. (7.39)

It follows that, locally on N, there exist functions H(A, yA) and Kl (A, yA) such that

A o 2 A

a = HA YT &L _da_ #HMy) (7.40)
oyl oy oA dAoy/
bK 6hK(Z\, yA) K K A

A by = b (y ). (7.41)

From (7.41) we conclude that h!(A, yA) must decompose as
h(A, y4) = k' (A) + K (y2). (7.42)

A Yy

The integration "constant” k! (A) is irrelevant because it does not change bX or ai,
A I

hence it affects neither g+ nor the embedding ¢+. Thus we may set 1} (A) = 0
without loss of generality and conclude 4’ = h!(y") and

ok (y*)
o

7.43
bk = (7.43)
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On the other hand, substituting (7.32) into (7.40) yields

¥
3 OH A yA oH Ay*
o AT a—/\y =0, Qe ——— =fALBN, (744)

where B(A) is an arbitrary function of A. Since the function B(A) does not affect e

(by (7.30)), with a suitable redefinition of H(A, yA) we ensure

8BHW, vy 8H(, y*)
BT =fA=f T = ar. (7.45)
Now combining (7.2) and (7.30), it follows
et v Ak+ v oH(A, y*) - k- v 1, (7.46)
1(+)=f (+)=fA=a—A’ “Co= (9=
et v akt v OH(A, y*) - v- v 0, (7.47)
1= (+)=a1=T' “Cy=1(=

from where one concludes that the foliation functions v: verify
v-° ¢~ = A+ const, v: ° ¢+ = H(A y4) + const. (7.48)

on N. The constants are again irrelevant and can be absorbed in the coordinate A
and in H respectively, so we may set them to zero without loss of generality and

write
v-° P = A vy ° ¢t = H(A, y). (7.49)

Given a point p* € N, the value v+(p*) indicates at what height (as measured
by A) the point p* is located along the null generator that contains it. In view
of (7.49), the function H(A, yA) measures the step on the null coordinate when

crossing from M~ to M*. For this reason, we call H(A, y*!) step function.

The existence of the step function immediately connects the cut-and-paste construc-
tions with the matching formalism developed above. In the seminal construction
by Penrose [86], [87], plane-fronted impulsive gravitational waves propagating in
the Minkowski spacetime are constructed by cutting out Minkowski across a null
hyperplane and reattaching the two regions after shifting the null coordinate of
one of the regions. To be specific, using double null coordinates where the four-
dimensional Minkowski metric is guu = —2dudv + dx? + dyz and the impulsive
wave is located at u = 0, the reattachment is performed after shifting vin u = 0"
by v --- v + h(x, y), where h(x, y) is an arbitrary function. This jump is precisely
of the form (7.49) with H = v + h(x, y), provided we use {v = A, x, y} also as
coordinates intrinsic to the null hyperplane, so that the embedding ¢~ becomes
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the identity. Another example of the direct connection between the step function
H and the cut-and-paste construction appears in [5], where expression (7.49) is
equivalent to H =V - H(n, 7). More details about the connection between the
matching formalism and the cut-and-paste construction are given in Section 7.3.3
below.

At this point, it is convenient to pause for a moment and summarize what we
have found. Assuming that one matching rigging points inwards and the other
outwards, the matching is possible if and only if the junction conditions (7.31)-
(7.34) are satisfied. The last two are always solvable and determine uniquely the
coefficients B and C! (i.e. the tangential components of the rigging {*) in terms
of A, ar and b/, which in turn are given by {H(, /), K (y/)} according to (7.43)
and (7.45). The functions H(A, y]), hl(y]) € F(N ) verify that d,H > 0 (because
of (7.49), recall that v: and A increase towards the future) and that the Jacobian

matrix
o(h?, .., i1

oy?, .., y*+1)

has non-zero determinant (because {e¢+ } must be spacelike necessarily).

Equation (7.32), on the other hand, allows us to conclude that the null generator
e1~ must be identified with another null generator g* in the process of matching.
This equation also establishes the explicit form of ef in terms of k* and (the first
derivative of) the step function H(A, y*).

Finally, we come to equation (7.31), whose solvability constitutes the core problem
for the existence of the matching. In order to understand the geometric meaning of
this condition, we argue as follows. Firstly, note that for any p € N7, the section
Sv—_(p) ={v_= v_(p)} c N is mapped via ® to the (necessarily) spacelike sub-
manifold CI)(S; _(p) C NIn these circumstances, the combination of (7.31) and
(7.43) implies th at there exists an isometry between these two submanifolds. Even
more, since the functions {#"} depend only on {y}, this isometry must be uni-
versal in the sense of being independent of the value v-(p). This fact was already
observed in [126] (see equations (2.9)-(2.10)) and later in [127] when studying the
coordinate changes leaving the first fundamental form y invariant.

In order to describe this more explicitly, we transfer the coordinates {A, yl} from
N to N~ so that the embedding ¢~ takes the simple form

¢-: N '— N cM-
Ay) —— ¢Ay) = v-=Ay

(7.50)
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I + +
and construct coordinates {v+,u } on N such that v; = 9, (in particular, they
are constant along the null generators). Then, the embedding ¢+ takes the form

¢+: N '— N cM' (7.51)
Ay — ¢ty = ve = HA YD, W' = K () .

and the section SU:O in N~ is mapped to CID(SU:0 ) ={v+ = HA = v(z ,y]), u I(y ])}.

A point p € N~ can be identified uniquely by specifying the null generator to

which it belongs together with its height v-(p) along the generator, and the same

happens on N™*. Thus, the matching is feasible if and only if there exists a diffeo-

morphism W between the set of null generators of N~ and the set of null generat-
ors of N * (defined locally by u/ (y])) such that, for each possible value of P, the

map that takes each point at height v along a generator ¢ in N~ to the point at

height H |g(vf)) in I ¥ along the generator W(0), happens to be an isometry. This is

of course a very strong restriction and generically it will not be possible to find H
and ¥ verifying it (which simply means that the matching cannot be done). How-
ever, as we see next, there are situations where the matching is not only feasible
but it even allows for an infinite number of possibilities, and other cases where

there is at most one possible step function H for each admissible choice of W.

7.3.1.1 Second fundamental forms and multiple matchings

We conclude this section on the step function by showing that, in any feasible
matching, the second fundamental forms K are related to each other and to the
step function. To prove this, we first recall thate;” = k™ and ¢+ = (6AH)k™. Com-

bining this with (7.5) one obtains

k
i) = 8ahyy = 2K_ G, o)), ep(nf) = o4y = 2@ K, (o). (7.52)

On the other hand, the partial derivative of (7.31) with respect to A gives

o = (W Rt + v pPant = b pPant (7.53)
1] I ] AB I ] AB I AB

after using that the coefficients ¢/, do not depend on A (cf. (7.39)). Putting (7.52)-
(7.53) together yields

KE (o, 07) = @HbFHPKS 0, 0)). (7.54)
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Since we are assuming the geometry of N * to be known and the basis {k*, v#}
have been chosen, this expression determines, for each possible choice of W (i.e.
of b‘};‘ fulfilling (7.31)), a unique value for d,H unless the two second fundamental
forms vanish simultaneously. If, on the other hand, there exist open sets O* cN *
related by O™ = ®(0~) and such that

k
K, (v;—', v’j)| o =0, (7.55)

then (7.54) is identically satisfied. Whenever (7.55) holds, all the spacelike sections
in OF are isometric to each other, and the same happens in O". This is a con-
sequence of (7.5) and the equality (2.95) between the quotient metric at any point

p € N* and the metric h* of any spacelike section passing through this point.
Thus, the set of null generators can be endowed with a positive definite metric. If
there is an isometry W between these two spaces, then any step function H(A, yI )
satisfying diH > 0 defines a feasible matching. This means that a point p € N ~
lying on a null generator 0~ can be shifted arbitrarily along the null generator

def
ot =

¥(o) in N * with the only condition that if g is to the future of p along
0~ then their images have the same causal relation along o+. The matching in
these circumstances exhibits a large freedom. Two examples of this are the fol-
lowing cut-and-paste constructions: the plane-fronted impulsive wave [85], [86],
[87] by Penrose and both the non-expanding impulsive wave in constant-curvature

backgrounds [88], [6] and the impulsive wave with gyratons [5] by Podolsky and

collaborators.

7.3.2  Energy-momentum tensor of the shell

As mentioned in Chapter 2, the fundamental properties of the matter and energy
content of a shell are encoded in its associated energy-momentum tensor, which
we denote by 7. This tensor can be suitably defined within the formalism of hyper-
surface data (see Definition 2.7.3), so a natural question is whether one can find a
more explicit form for it, now that we have been able to codify all the information
about the matching in the set of functions {H(A, yA), hB(yA)}.

In this section, we assume that the two spacetimes (M%, g*) can be matched
and derive the energy-momentum tensor 7 explicitly in terms of the functions
{HA, y*), KBy} and all the (known) geometric objects defined on the boundar-
ies N'*,
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Our starting point is Definition 2.7.3 and Corollary 3.2.6. In terms of the basis
{01, 0,4} and its dual {dA, dy“}, it is straightforward to conclude from (7.26)-(7.29)
that the data tensors {y, €, £ @} are given by

V = hzpdy” @ dyP, € = pydA + pydy4, L@ =0. (7.56)

Observe that the components yi; coincide with those of the induced metric h 77on
the leaves {A = const.}. So, to simplify the notation, from now on we shall use yy
instead of & 77- We shall also use y” with the understanding that this just means

hY (the tensor y is degenerate and cannot be inverted).

The vector field n defined by (2.6) must be proportional to d, and such that €(1) =
1, and hence it is given by n = (y;)~1dr. Moreover, particularizing Lemma 3.2.5
for the basis {n,va = 9,4}, we get the following form for the tensor P:

yABu U
P =y, ® ds - VTELaA@)a A+ ( ])f; —A By Qo (7.57)
1

Combining (2.155) with the explicit form of the tensors {P, n, n(z)} above (or simply
using Corollary 3.2.6 for q = y; dA and 64 = dyA), one gets

VILY)@y1, 3y)

A, dh) = —€ —( o5, (7.58)
Y'IY1(84 9y1)
rdA, dy') = € o (7.59)
I }[Y](a/\ N
Hdy ,dy ) = ~€ ————— (7.60)

(u7)?

In view of (7.58)-(7.60), once we have derived the specific form of the components
of the tensor [Y], the calculation of the energy-momentum tensor follows at once.

For this reason, from now on we focus on the calculation of [Y]. As we will see,

the fact that the rigging had been adapted to the basis vector L™ in the minus
side makes the computation of Y- considerably less involved than that of Y*. It is

therefore convenient to compute Y+ and obtain Y- as a particular case.

We start the calculations with some lemmas and results that will aid us along the

way. In the first one, we provide the explicit form of the one-form g+(L+, ).

def

Lemma 7.3.2. The one-form L+ = g* (L*,) satisfies

(¢*)'L* = -8  where 8 =" -p+dH-pyrdi €T(T'N). (7.61)
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Proof. For any vector field Z € I'(TN), it holds

(¢+)*L+ Z”aya =Lt (¢+)* Z”ayﬂ = (L+, Z”e;)g+
= ZNLY, g )gr + ZHLT, ef)gr
= ZL*, fAK)gr + ZNL*, askt + b o)

( )
= @t fAZ' + Z4a + ZAbapf

= WrdH (2) + prd (2) = -8 (2), (7.62)

where we have used (7.32), (7.30) in the third equality, (7.6) in the fourth one and
(7.41), (7.45) for the last step. 0

Our next aim is to compute the explicit form of the matching rigging {* in the basis
{L*, k*, vf}, given in terms of the metric h* and the functions {H(A, y*), hP(y*)}
and {p%}. For that it is convenient to introduce a vector field X € I'(TN ) which
encodes the tangent part of {*+ in (7.30), namely

1

¢h=7 Lr+e¢rx . (7.63)

It is also helpful to define the functions X? € F (N" *) by the decomposition

¢+ X = x1e: + XAe+A. (7.64)

In the next lemma, we provide explicit expressions for the one-form y(X, ) and
the components {X“}.

Lemma 7.3.3. The vector field X = X0y satisfies
v(X,:) =8+ Apgdy + pt(aaH)dA (7.65)

Moreover, its components X* are given by

XA=ylt 9+ Aut , (7.66)
vl
X1 == d+ Ay 9 - AH- . (7.67)
2u A

Proof. Recallthat €1 =y, €4 =yp7,cf (7.56). Combining (7.2), (7.63) and Lemma
7.3.2 it follows that £ . = ({*,¢')s+ = & (L*, et)s+ + Xy = ZF - + Xyw ,
i.e.

XbVab = 1911 + AQ i (768)
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This proves (7.65)-(7.66) after using that y1. = 0, that y; is non-degenerate and

- + +
p A=y fA=p aH e  A=HMfa=Han (769
My My

On the other hand, condition (7.29) together with ¢~ and L™ being null entails
L ( )
0= <€+, (+)g+ = ZX['<L+, e;)g ++ XaXqub == —ZXa19a + XaXbYab =0
A2
Combining this with (7.68) and using X" £ . = lel_ + XApZ yields
XGa=AXu;y + XAuz == 2XIYtoaH = XA Sa-Apu3
which gives (7.67) after using again (7.69). [

We can now obtain the matching rigging {* as a corollary of the results above.

Corollary 7.3.4. In the basis {L*,k*, v} of T TM™ |-y, the matching rigging {*

reads ¥ ¥ ¥
My 4 O E
gt = ——Lt —pAB (p 1) 0/ H-—""(@ Hu + M 5, (7.70)
HH - py : SR i
y - ) )
where (b‘l)f = 0,1y and Zg = % () B 3y]H — Mil_(aAH)u} - —u* kT + v}

Proof. The coefficients (b™') are of course inverse to b/. From (7.31) one obtains
I I

5A _ hABh_EE hABbI b] hj‘b SN (b 1)A hABbI h+
== I (b ha — bL == hKL(b YA~ 1)f W=yA. (7.71)
K + K L -

The result (7.70) follows from (7.63) after inserting (7.66)-(7.67) and using (7.69),
the definition (7.61) of & and (7.71). O

Remark 7.3.5. The result (7.70) is relevant for various reasons. First, it proves that indeed
all the information about the matching can be fully codified in the embedding ¢+, since ¢*

is given by the functions {H(A, y?), hB(y?)}, which are actually the “components” of ¢+
if one selects suitable coordinates on N (see the discussion in Section 7.3.1).
Secondly, when the matching of (M*, ¢%) is possible, (7.70) provides the explicit form of

the matching rigging {* for whatever choice of null matching rigging ¢-. In other words,
in the spacetime (M, g) resulting from the matching of (M*,¢*), a C' curve C that
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crosses the matching hypersurface N c M with (arbitrary) direction {- continues with
direction {* given by (7.70) after passing through the shell.

Finally, (7.70) allows one to compute (for each choice of {-) the matching riggings {*

associated to each different matching by simply substituting the corresponding functions
{HW, v, KB4} in (7.70).

It is useful to define the quantities
o = Wi £ b, (7.72)
I I K I K

which will appear in several expressions below.

Now that we know the explicit form of the matching rigging {+, we can focus on
the computation of the components [Y](8,, d4), [Y1(,, 3yA) and [Y](ayA, ayB), for
which we need the pull-backs (¢*) " (£z:¢*) (cf. (2.39)). As a previous step, it is
convenient to calculate the derivative 9. A as well as several identities involving

scalar products of the form g+(Vea+ L, elj). This is done in the following lemma.

Lemma 7.3.6. The following identities hold:

ayaA _ ayaaAH + ay”/-li'— B ayﬂul ) (773)
A o\H ut My~
(V%L+,ef)g+ = 3AH(8A;JI“ —HI_K]:; 3AH ) (7.74)
+ L+, e+) N + L+, e+) + =0 3)\[3‘7 - 2”1+'f+ ay]H
<Ve+1 ] 8 + <Ve+] 1 8 AH O H 1 ikt :
+ 2utrot (W) + ay] ut  + ay] Hoyuty (7.75)
+
TLY, e g T T g HouH + Oy HOWT' . 0y Hoy
<Ve+l ] = — My K. 0 o\H 1
( )
+ w9, Hot (W) + 0, Hot (W)
+ OL (Wi, W)) . (7.76)

Proof. Throughout the proof, we shall use repeatedly the decompositions e} =

(OrH)k+, et;= (9,1 H)k* + Wi which follow directly from (7.30)-(7.32) and (7.45).
By direct computation, we get
1
ayuA 1 (fA 1 . ayaaAH ayaf

2 = Zayﬂ T = f_A ayua)\H - Aayuf aAH f )
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which leads to (7.73) by simply inserting f L u-/ut. By (7.11), one gets (7.74) as
11

an immediate consequence of
(ve+1+L+,el+ dor = @H2 (Vi Lt kt) ¢ = (@ H)? k* pty —prep . (7.77)

In order to prove (7.75), we compute each term in the left-hand side separately. In
both cases we use the covariant derivatives of L* given in Lemma 7.1.2. Firstly,

+ o+ o+ + o+ +
(VL e e = Vil L0y H K + Wik

« )

=0y H oy —ui k=0 H +O0AH k+ pur + urors (W)

=9yH i - piKkOH +onpt + pfdsH of, (W),  (7.78)

where in the second equality we used k*(b’) = 0. Secondly,

( )
<v€+]+L+,e1+>g+ = OaH 9, H(VE L k*) g + (V) L4 k) oo

=0 H oyuf —uiKLoH +0,H W, uf +u1+a§;(w,)
‘ ¥

o, H
=9 H O] ~H{KLOH +&H  ef - § et pt + prot (W)
( )
=0,H - u+1k,j+ay;H + 0,1t + pyop (W) . (7.79)

From (7.78)-(7.79) equation (7.75) follows at once. Finally, for the term
(V“;+L+, ef) ¢+ one obtains
I

8, H ( )
ai_H OyH oAy — HiKGONH + 9,07 + ptd \H of (W)

+ ayﬂzl (Vi LT K Yo + (Vi LY, Wigs )
o, H

_ Y -

= o ARG H GH AT+ o H g (W)

( )
+d 1 H ¢ wt +wurgr (W) + O (W, W),

(VLY )g =

from where one easily obtains (7.76). O]

We are now ready to compute the pull-backs (¢*)" £¢:g* . As before, we derive
the expression on the plus side (which is considerably more involved) and then

we get (¢7)" £.-¢- as a suitable specialization. The computation relies on the

well-known fundamental property

(o1)" Ergrz8% = fEzy + 2df @:s v(Z,-) (7.80)
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satisfied by any function f € F(N) and any vector field Z € I'(TN). At some
point in the calculations, we shall also need to use that

( 1
()" £12g* = (V5 L% e, )sr +(V 5L e % Yo dy” Q dy. (7.81)
a b

From the decomposition (7.63) we get (recall (7.65))
( )
@D L8t T @D £1(10,4v00) g7
F .

:(¢+)‘ 1£ 4 g+_2dA ®sg+ L++¢+(X),-
1 A (Lr+g. <Xf) % g

Z—A(¢+)* £r+ g+ +_A£XV_2T2 Qs (p7)" L+ +y(X,)

¢ ia _ ¢ )]
= @) fgr Ly -2 @ Aydy + 146, H)dA
( )
= % (@) £t + £xy - 2dA Qs ydy' = 2 dA Qs dA (7.82)

where we used (7.80) in the third line, Lemma 7.3.2 and (7.65) in the fourth and
(7.69) in the last one. Next we elaborate the term £xy. The first fundamental form

y is degenerate (i.e. y14 = 0), so in index notation £xy reads
(ExV)gp = XOyeYa + VaOyp X' + yndy X', (7.83)

The induced metric y;y on the leaves {A = const.} (understanding yy as hjj, as
mentioned before) is positive definite. In the following we denote this metric by i
(i.e. hy = y17) so that we can define the corresponding Levi-Civita connection V"
on each leaf. Now, inserting (7.66)-(7.67) into (7.83) and using (7.5) yields

(Exy)u1 = 0, (7.84)
k
(Exy)i = 8 AynX') = X' y = 0 §9 + Apr) -2X'K (v3,07),  (7.85)
(£xy)y = X oayy + XLayL yr + VILay]XL + yuaszL
—2X1K" 4, o) + VX + VX, (7.86)

where X1 = yu XL, By (7.61) and (7.66), the derivative VIhX/ can be expanded to

( ) ( )
ViX) =V) §+ Ay =V -ppViH - o + Ay

= ViV H - uf V'V H - Vi + AV + g ViAL (7.87)
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We have now all the ingredients to compute Y* and the energy-momentum tensor

on the shell. The result is given in the next proposition (where brackets, as usual,
denote symmetrization).

Proposition 7.3.7. The tensor Y+ has the following components:

¥
WOH  O\uT
Y+, 8,) =~ K50 H + g/\AH _ A:} , (7.88)
1
9,0,/ H
_ - h Yy
Y*(0p 0y) = —py K VH- 04 (W) + 50 H
k
XLK. (y,v7) Vi  our-
+ LA S e (7.89)
ptoH 20 2y
kKt VIHVIH Vi H oy 2V H of (Wy)
A 1t (8AH) A
o X'K @)  VAVEH Vimy Viu; ¥
0wy, W) wop  VIViH  ViaHp Yk (790)
Ui orH utoAH o\H UioH My~
while those of Y~ are
¥
Y-(8,0) =-u Kk _9Al;
A A 1 k- ~ ’
U1 ¥
Viug Oy
Y00 8,) =y o7 )+ L+ —L (7.91)

214 2y
Y-(0 1,0 1) = OL (v-,0).
vy - apn

Consequently, the components of the energy-momentum tensor of the shell are given by

vl kSVIHVIH  ViH o 2ViH of (W) @45 (W, W)

T(dA, dA) = e—
( ) My oH u1(0rH)? oH p1o:H
XlKk o vhvhH Vh—l— vh _ ¥
_ Y v VH  VIHE | @k (or, or) ’ (792)
ut o H o H uir o H | My
I VU + h 3A8y] H
T(dA, dy ) = —eu—l_ ki V) H + (aAH ) ¥
k
N X'K @o)  orW) - o) (7.93)
équH L ; L7

1]

y s
1@y’ dy)) = e~ rOH-r- + (7.94)

Hy aAH
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de

Proof. Throughout the proof, we use the notation Y, = " Y#(3ya, Q/ v). Using (7.82)
and the definition of Y* one finds
( )
1 .
Y+ = o (@) £r+g* + £xy - 2dA Qs ydy' = 2p7dA Rs dA (7.95)

For the Y%, component, combining (7.74), (7.81) and (7.84) yields
¥
OMT | M1 OAA
— t ’
My uy orH

1 * _ _
Yii=5r @) £ug" u-2iaA =-uT kLoH-

which is (7.88) after replacing drA as given in (7.73). The components Y+ y can be

obtained from (7.95) by using (7.75), (7.81) to obtain (¢+)" (£1-g*) (9 9,/) as well
as the definition (7.61) of & and (7.85) to get (£xy)1. This yields
o1 O )
Y1 = 51 (¢+)" £1+8" U+ (Exy)y —p7ohA-po, A
( ]
1
=7 oHH -2u7 k+VhH+ 2uot (W) + VhF )
¥

~pe B H+ Agy —2X K () - VA, (7.96)

after some cancelling of terms occurs. Inserting (7.73) into (7.96) proves (7.89). Fi-
nally, for the components Y*I}/ve combine (7.76), (7.81), (7.86), (7.87) and (7.95) to
obtain
L O )
I ﬂ( (@*)" £r+g* I + (Exy)py - H Oy A - M o A 1
1

(Vo L5 eh)ee + XK (g + VX - g Vi A

Z(
ke - h h
= H (Ve L e+ XK on00) = Vg 4tV H
1
h h h 4+ h

— bV VY H =V + AV
_ 1 v+ g "H+VPHWP £ 20tV Hor (W) + @ (W1, W) )
4 “THikeVe VY T 1 a1 ) )

]
+ X1K “(ojor) -V H - Vi uh + AVE wp

which becomes (7.90) upon using (7.45) and ]}; H = VhVP}H To get Y- it
suffices to particularize (7.88)-(7.90) for bf = 51 = 0 and H(A, yA) = A, as well
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as replacing all + superscripts by -. The components of the energy-momentum
tensor are obtained from (7.58)-(7.60). [

Remark 7.3.8. Proposition 7.3.7 provides explicit expressions for the tensor fields Y* and
T arising fram the matching of any two spacetymes, in terms of known geometric gbjects
(e.g. Ky, ©y) plus the functions {H(A,y ),h (y )} (note that the functions {h (y )}
are hidden in the coefficients bf, which are present in Wy and p). This result is fully
general except by the restriction on the topology of the boundaries of the spacetimes to be
matched.

The relevance of Proposition 7.3.7 relies on the fact that, given two (matchable) spacetimes
with null boundaries and once we know how the points of the boundaries are to be identified

(i.e. given the step function H(A, y*) and the map W which sends null generators to null

generators), Proposition 7.3.7 automatically yields the gravitational and matter-energy
content of the resulting null thin shell.

Remark 7.3.9. In the literature, the different components of the energy-momentum tensor
are interpreted physically as an energy density p, an energy-flux j and a pressure p (see
e.g. [128]). However, this is usually done in a context where the matching riggings are null
and orthogonal to the leaves of the foliation (i.e. where y 7 = 0 and £ @ = 0). We propose
the following geometric definitions for the physical qua(ntities {o,p.7}: )

P - etre[Y], p=- elY](n, n), j =€ P([YI(n,-),)-€ @pn . (7.97)

The underlying reason that justifies (7.97) is that the energy-momentum tensor (2.155) of
a null thin shell {N,vy, €, £ @,Y% p,* J* € can be written in terms of {p, p,j} as

( )
T=pn@n+p P+20@0nQ®@n +2jQsn. (7.98)

As mentioned in Remark 2.7.4, the sign € must be taken positive when {- points outwards
with respect to (M~, ¢7) and vice versa. Here the necessity of introducing € becomes
clear, since it makes the definitions 7.97 invariant under a change in the orientation of
the matching riggings (recall that [Y] changes its sign under a transformation of the form

Ci —_ _Ci).

The vector field j satisfies y(j, -) = €[Y](n, ) + p€ and €(j) = 0, which makes the defini-
tions (7.97) consistent since the one-form j Lef v(j, +) verifies j(n) = 0. Moreover, a direct
calculation that relies on (2.44) and (3.64) proves the following gauge behaviour for the
pressure p:

r
Genlp) = 2| (7.99)
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Whenever {u,” = 1,p7 = 0}, £ @ = 0, it is straightforward to check that (7.97) becomes
o = 1(dA, dA), py*® = 1(dy?, dyP), j = & 1(dA, dy?), (7.100)

after using (7.57)-(7.60) and the fact that n = (u; ) ~1da. The combination of (7.58)-(7.60)
and (7.100) allows one to recover the standard definitions for {o, p, j} introduced e.g. in
[128], namely3

p = _EVAB[Y](a]/AI a]/B )r p = _G[Y](aA: aA)r ]'u = Eég VAB[Y](aAr ayB) (7101)

7.3.2.1 Gauge behaviour of the energy-momentum tensor

As mentioned in Section 2.7.1 (recall (2.159)), the energy-momentum tensor on the
shell depends on the choice of rigging solely by scale. Specifically, two energy-
momentum tensors 7%, 7% jssociated to two different choices of rigging {, {” =
z¢ + V, where z is a function on the matching hypersurface and V is a vector field
tangent to it, are related by-7* = |z|~1r. This is a consequence of the fact that the
volume form (recall Definition 2.2.3) is also gauge dependent and transforms as
G(z,V)(Wvogej = |z|Wvoﬁe{59]. Under orientation preserving gauge transformations,
the suitable gauge-invariant object is actually mn, which is consistent because in
physical terms ™ is energy-momentum per unit volume. This fact can be used
to perform a non-trivial consistency check on the expressions (7.92)-(7.94), as we

show next.

Let us suppose that a matching of two spacetimes (M*, ¢*) has been performed
and that the rigging has been fixed by (7.26) after we have selected a null trans-
verse vector field L™. We may repeat the matching process using a different null
transverse vector

L- =al- + bk~ + clvy (7.102)
while still enforcing (7.26), i.e. T~ = L". Let us use tilde for all objects constructed
with L. Then, definitions (7.6) imply

- =ayu, M- =au +c, (7.103)
By 1 I 11

while the null character of L™ imposes

( )

—2a by + c'py = |q|i_ where |q|i_

def

= c’cfh—r] (7.104)

3Expressions (7.101) coincide with the definitions proposed by Poisson whenever € = -1 (i.e.
when the rigging {- points inwards with respect to (M~, g7)).
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Changing the rigging on the (M~, ¢-) side keeps the vector fields ¢ # invariant,
as they only depend on the embeddings ¢*. This means that the functions f, a:
and b/in (7.31)-(7.34) do not change either. On the other hand, the identification of
the riggings of both sides implies that the rigging in the (M7, ¢*) side also gets
modified. Let us decompose it in terms of L* and a vector field X € (TN ") as

" =(1/A) L" + X%, . The shell junction condition (7.32) forces

AUy~ Apy”
f= lJi aswellas f= ,11,
H1 M1
which together with (7.103) gives
.
f= a"il e Aa = A, (7.105)
H1
+ + a + +

Since { = (1/A)(L + X ea) (recall (7.63)), it follows that the two riggings {~

and ¢+ are related by
= alt + % X - X et (7.106)

Inserting (7.106) into ({" ", ¢*)s+ = g5, (¢~ ", {")g+ = 0 (which are simply the junc-
tion conditions (7.28)-(7.29)) and using (7.103)-(7.104) yields
A Ab

XB = x84+ _¢% x = x1 4 - (7.107)
a a

Byt ot 20 SHEPHBESE P TS9) Gk A, e
- _
|a| Y e(th-)-1 and therefore the transformation law of the energy-momentum

tensor will be guaranteed provided each bracket in (7.92)-(7.94) turns out to be
invariant. The only parts that are not trivially invariant are

kK (e o - Lo o
X'K- (o) VIH, L9y

1] °_ .
k
. XPR @) in  1(dA, dy). (7.109)
oL (U]) +
MirOAH
Combining (7.12), (7.26) and the definition i~ =°° ¢™(v-, v"), one finds
17 I J

aphy =5 (hp) =V _ (h)
A 2 k
— 28_(%_;7](1' v)p) = 2Epq hya — ’u—l_p(;K_ (v];,vB—).
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Therefore, the Christoffel symbols Fh‘gl of the Levi-Civita covariant derivative V"
of the metric i 7 are given by

1( _ _ _)_,_,_A _ 1k

b T =
JA® BI 2 y 1y ]

Now computing G_t (q—, v]—) gives

L - — —
o_ (q_’ U]_) - <vv; L, ZJ] >g‘
=(v; @L + aVv__IL_ +WV "k +ou] (CB)UE + CBV;_Z; T e

k
= u- L (- - S - B
,L}aylaﬁLaO_ (ZI) ,v])+bK_ (q ,v]) +hB]8yzc
¥
+ cB E‘B‘IhA]—_u-u]—K—k o, B,
1

—_

k
= Y 91a +a@ (y-,y) + bK (v, 77) + Vi,

w%er;e in the ;Palr—g }11{};-; we usey;lcl]..e,fthrlrllg’ Z/vlezc o Irt1 Cfﬂ%)ews directly from (7.103) that
Vid; =1y 0 M +V;

( )
Gt_(v;, v—]) =a OL_(U_I, v—) - VhH— ]+ ka _(v‘,lv‘)]+ Vh/]#'] (7.111)

and the invariance of (7.108) follows from this expression and the second in (7.107).
Concerning o (v-), we easily find

£ ] 1 1
o (v) = ( Tk L) = - (V™ k™ ,alL™ + CBU_>g—
i) _T vy - vy B
L B o
ap;

Given that ytdxH = p-A (cf. (7.45)), one obtains the invariance of (7.109) by
means of the irst expression in (7.107). This eventually proves that indeed ™=

17t holds, and hence establishes a consistency check of (7.92)-(7.94).
a

7.3.3 Matching of two Minkowski regions across a null hyperplane

As we have discussed, one of the main benefits of using the previous formalism is
that multiple sorts of matchings can be analysed at once. For instance, one may be
interested in considering a family of energy-momentum tensors verifying the sur-

face layer equations (2.160)-(2.161), or a set of step functions H(A, yA) with certain
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properties. In the general case, this task is out of reach by means of the cut-and-
paste method because these constructions only allow to match two regions of the
same spacetime and, even if one is interested on macthings of this type, more com-
plex shells will require more involved forms of the corresponding distributional
metric.

In this section, we will exploit the matching formalism introduced before to ana-
lyse the most general matching of two regions of the spacetime of Minkowski
across a null hyperplane. This was the first matching addressed with the cut-and-
paste procedure [3], [85], [86], [87]. In these seminal works, Penrose was able to con-
struct plane-fronted impulsive waves propagating in the spacetime of Minkowski
by considering a metric with a Dirac delta distribution with support on the match-
ing hypersurface. More recent research on the topic of plane-fronted impulsive
gravitational waves in the spacetime of Minkowski can be found e.g. in [88], [90],
[91],[92], [5],[6], [7] and references therein. In these latter publications, Penrose’s
construction has been generalized to a variety of more complex scenarios, e.g. to
the de Sitter and anti-de Sitter spacetimes or to spacetimes with impulsive metrics
containing so-called gyratonic terms.

Our aim in this section is two-fold. First, we will recover the results from cut-and-
paste across a hyperplane in Minkowski within our matching formalism, establish-
ing a connection between these two formalisms. Secondly, we will obtain the most
general shell that can be generated by matching two regions of Minkowski across
a null hypersplane. This will prove that one can produce more general shells with
different values of energy, energy flux or pressure.

Consider the (n + 1)-dimensional Minkowski spacetimes
M*, gt , with g* = -2dU:dV: + Sasdx4dx®, and U:=0. (7.113)
The boundaries of (M*, ¢*) are the null hypersurfaces defined by
Nt = {U. =0}, (7.114)

which clearly satisfy the topology condition that they can be foliated by diffeo-
morphic spacelike cross-sections.

The first step in order to apply the matching formalism presented above is to
construct two basis {L* k*,v % } of F(TM1)|N_£ and two foliation functions v: €
F (N #) according to (7.2). For simplicity, we take {k* = dy.,v# = 0. } as a basis
of I(TN) and v+ = V. as the foliation functions. These objects obviously verify
the requirements in (7.2). As transverse null vector fields we select L* = -du,
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(note that L* are past vector fields while k* are future). These choices satisfy
k

pt =1, gy = 0 and it is straightforward to check thay, k*, o* p* , Ke (vf, v9),

OL (v% v*) all vanish. Observe that (7.113) together with the choice of L™ (which

points inwards with respect to M ) requires that we take € = —1 when computing
the energy-momentum tensor (recall that with (7.26) we take L™ as a matching

rigging).
Now, to construct null metric hypersurface data {N,y, €, £ @} embedded in

(M7, ¢7), we consider an embedding ¢- of the form

¢ : N —— N < M~

(7.115)
A, yI) — (A, yI) = U.=0,V_-=AxL = yl .

In these circumstances, the data {N, y, €, £ @} being embedded in (M~, g) with
embedding ¢~ and rigging {- = L™ means (by (2.22))

v = Sasdy? @ dyb, e=d, L@=o, (7.116)

For the present case, equation (7.48) yields V4 = H(A, yA), while the vector fields
{ef} are given by

g = (0 H)dv, + (B, 1 ) (7.117)
as an immediate consequence of combining (7.30) and (7.40)-(7.41). It is straight-
forward to conclude that for the matching of (M*, ¢*) across N * to be possible

the embedding ¢+ corresponding to the plus side must be necessarily of the form

¢*: N '-— NtcM-

(7.118)
Ay — ¢+(\y) = UL =0,Ve = HA YD), XL = KW(/) .

As we discussed in Section 7.3.1, the viability of the matching relies on the solv-
ability of the isometry condition (7.31) because (7.32) only provides the form of

the vector field et (and hence of the function A which fixes the transverse part

of the matching rigging {*+) while (7.33)-(7.34) determine the tangent part of {+.
Concretely, when the matching is possible the rigging {* will read (see (7.70) in
Corollary 7.3.4)

( ( 11

1 1
¢r= Lo SO O yH) T [0 DT + o (7.119)
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Let us therefore check whether condition (7.31) can indeed be satisfied by the
boundaries N'*, Particularizing it to the present case yields

L K I def ahl
oy = by b] OLK, b] = W’ (7.120)

which constitutes an isometry condition between the spatial cross-sections
def

Sy = {A = const} of N and their images ¢+(S,) through the embedding ¢+.
In particular, this isometry condition forces {Sa} and {¢*(S))} to be euclidean
planes. The corresponding isometries are obviously translations and rotations, and
it turns out that the symmetry properties of (M*, ¢¥) allow one to perform the
necessary combinations of rotations and translations so that the initial coordinates
{U.4, V4, xL} transform into new coordinates {U Vi ,;Q'A} verifying §y = §/. In
other words, there always exists an isometry of M* which turns (8.31) into an
identically satisfied equation. Thus, the matching of (M*, ¢*) is always possible

and in fact, since N* are totally geodesic null hypersurfaces (recall that Kk = 0),
an infinite number of matchings can be performed (see the discussion in Section

7.3.1.1). Observe that the reasoning above allows one to set b/, = &/, whenever it
is convenient. However, the results that follow are insensitive to b/ | SO we refrain
ourselves from doing this.

Now that we know that the matching is feasible, we can compute the matter-energy
content of the resulting null shells. For that it suffices to particularize the results of
Proposition 7.3.7. Using the notation Y, 2<% yx(g,,, gv), T def 1(dy®, dyb), for the
tensor fields Y* one finds

_ aya ayb H
Yab =0, YZb =~ oH ’ (7-121)
whereas the energy-momentum tensor of the shell in the present case reads
n  9Y8u0,H y  9Yens,H iy 0YdrH -
T =- ENTI T = oH T =- NI (7. )
From (7.122) it is immediate to get
0,0,/ H
(n-1) 9,0,H _ A
5UTH _ 90 and &V = , (7.123)
o H o\H
which can be combined with (7.121)-(7.122) to obtain
51] ( )

. 2
Y = (GnH? (8,18, H) (8200H) ~ (8281 H) (840, H)
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( A1) 1

= 20y T i (7.124)

This, together with Y- = 0, | det A| = 1, ™ &€ = 119 %y = OPyas® and
the vanishing of the Einstein tensor in Minkowski, brings the shell field equations
(2.160)-(2.161) into the following form

.

( 1141]
T T
— Tll Tl

0=oryt + 3yA 4 — Oy —] ,

0=t + 9,1 (7.125)

A direct calculation shows that the expressions (7.122) indeed fulfil the surface
layer equations (7.125).

Our next aim is to study different shells that can be generated from the matching
of (M*, ¢%). As we shall see, for certain type of matchings we will recover the
jump (2.170) proposed by Penrose, which corresponds to a step function of the
form

H(A, y4) = A+ H(y), H € F(N). (7.126)

The matching of two Minkowski regions with the step function (7.126) will cor-
respond to spacetimes describing plane-fronted impulsive waves (purely gravita-
tional when H(y") is harmonic in the coordinates y*). The framework introduced
throughout Section 7.3, however, must provide all the possible matchings of two
Minkowski regions and hence a more general set of step functions. This general

matching, together with some interesting particular cases, are discussed below.

No-shell case

Let us start by considering no shell, i.e. [Y] = 0. The results for this case should be
viewed as a consistency check, since the absence of shell must give rise to the whole
Minkowski spacetime. Since by (7.121), condition [Y] = 0 is equivalent to Y*+ = 0,
we can integrate the right part of (7.121) and obtain H(A, yA) = aA + c;y] +d,
where 4, ¢;, d € Rand a > 0. In view of (7.115) and (7.118) this step function
corresponds to the jump Vi =aV_- + C]y] + d when crossing the hypersurface
U: = 0. This means that the only possible isometries between the boundaries
N* are (besides the translations and rotations in the {xl+} coordinates already
discussed) null translations and null rotations in the (M™, ¢*) side . Since all of
them are isometries of the Minkowski metric, the matching indeed recovers the

global Minkowski spacetime.

205
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Vacuum case

We next consider the vacuum case, i.e. ™ = 0. Integrating (7.122) with the Lh.s.

equal to zero gives the step function

W=11=0 &= HAvy") =aA+Hy*), where 0<a€R (7.127)
11 " 02H

T =0 == ——=0. (7.128)
Igz (33/1)2

The freedom in a corresponds to a boost in the (M™, g*) spacetime so we may

seta = 1 without loss of generality and hence recover Penrose’s step (7.126). Note

that setting m = 0 automatically forces H(yA) to be harmonic, which is consistent

with the Dirac delta limit of P (U, x, z) when the vacuum equations for (2.162) are

imposed (see the discussion in Section 2.7.2). This type of matching also constitutes
an example of the fact that ™ = 0 does not necessarily mean [Y] = 0, as we

mentioned in Section 2.7.1. The non-vanishing jump [Y] encodes, in this case, the
purely gravitational content of the shell.

Non-vanishing energy density

As a simple generalization of the previous example, one can consider non-zero
energy, i.e. 11 /= 0, while keeping 7/ = 17 = 0. This does not change the form
of the step function, which is still given by (7.127). It follows that the step function
(7.126) from Penrose’s cases corresponds to absence of pressure and energy flux.
Therefore, it describes either purely gravitational waves (when 7 = 0 but [Y]/= 0)
or shells of null dust (when 711/= 0, 1/ = 1/ = 0). The latter corresponds to
a pressureless fluid of massless particles moving at the speed of light. Observe
that (7.125) implies that 71! must be A-independent. By writing 111 = p(y*) (recall
(7.100)) and using (7.122), one gets

J’H A

I;Z] Gy = —ap(y ). (7.129)

Again, the constant a can be set to one by applying a boost in (M*, ¢*). Observe

that the energy condition p(y) = 0 is equivalent to H(A, y*) being a superhar-
monic function.
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General null shell in the spacetime of Minkowski

Finally, let us keep both the energy and the energy flux of the shell completely
free and consider a non-zero pressure p A, yA (recall Remark 7.3.9). This case has

not been covered in any of the cut-and-paste works cited above. Since d\H > 0,
the pressure can be_'_.expressed as p = -0i (ln (0AH)), whose integration gives
A

O0\H = ,B(y Jexp — p Ay dA,where B(y )> 0 is the integration "constant".
Therefore,

r Cr 1
HA, y) = By exp — pWAA y)dA dA + HyY), (7.130)

where H(yA) is a second integration function.

In order to discuss the effect of the pressure in the matching, we start by noting
the following simple consequences of ¢,” = k™ and ef = (6AH)k™. Since in the

present case k* are geodesic and affinely parametrized, it follows

“(v)) = 1 V__e_(v-)ZO,
e (@) =1, ! (7.131)
€1+ (TJ+) = aAH, +61 (U+) = aAaAH
Consider two null generators - ¢ N-, 0t = ®(0-) ¢ N*. Both foliation

functions v: have been built so that their rate of change measured by k* is equal
to one, cf. (7.2). We call "velocity" the rate of change of v: along a null vector along
N *and "acceleration" the rate of change of the velocity. The matching, however,

does not identify the vectors k* but the vectors ei*. Therefore, when moving along

o* c N, the velocity and acceleration associated to e, (i.e. as measured by A)
can be different, as shows (7.131).

Let us hence take A as the measure parameter for both sides. This allows us to intro-
duce the concepts of self-compression and self-stretching of points along any null
generator o*. There will exist self-compression (resp. self-stretching) whenever the accel-
eration measured by A is strictly negative (resp. positive). Accordingly, this effect will
not take place on N ™ due to its identification with N, but it may certainly occur in
N-*. Equations (7.131) show that the velocity and the acceleration are respectively
given by the first and second derivatives of H(A, yA). Consequently, this effect is
ruled by the pressure, as it essentially determines d,d1H at each point g € N..
Note that vanishing pressure entails constant velocity, which obviously gives no
self-compression nor self-stretching. However, the velocity along the curves ¢* can
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still be different (this is why we are not using the terms "stretching" or "compress-

ing", which would still be occurring in this situation).

From the definition of the pressure, it follows that sign p A yA =
-sign (0p0,H). Consequently, if the pressure is positive (resp. negative) (cf.
(7.131)), then the acceleration along g* is negative (resp. positive) and there exists
self-compression (resp. self-stretching) of points towards the future. Alternatively,
one can conclude that positive pressure pushes points towards lower values of H A,y

(or s™) and vice versa.

For a better understanding of this behaviour, let us consider a pressure depending
only on A and write p (A) = - 1_ where ' denotes derivative with respect to A and
g (A) is any regular function Witqh g (A) > 0 VA. From (7.130), it follows that d\H =
ByYg (A) > 0 and H(A, y4) = B(y*)g (A) + H(y4), after simple redefinitions of
B(y?) and H(y"). Note that necessary and suff1c1ent conditions for the range of the
embedding ¢+ to be the whole of N'* is that ,B(y ) > Oand that limi+ew g (A) =
+oo (recall that g(A) is monotonically increasing). The components of the energy-
momentum tensor are

m_ % (qaylayfﬁ " aylany) TR R KN (RE7)
Bq B q

Observe that this setup is still fairly general in the sense that it allows for energy-

momentum tensors with all components different from zero. The specific beha-

viour of the energy-momentum tensor is obviously ruled by g (A) and the partic-

ular form of the functions B(y*), H(y?). It is now clear that fixing the pressure

amounts to setting the form of H(A, yA), which in turn contains the information

about the effect of self-compression or self-stretching on the N boundary.

v
As an example, let us define the function 7 (A) £ (2 + 2)AZ + b2 and consider

Vo
g = @+ 1A= ag() (7.133)
v

with 2 > 0 and b real constants. As the inequality a + 1 — a(a + 2) > 0 holds for
all positive 4, this function satisfies lima-ze g (A) = *oo0. The previous expressions
ield
y J N

afa + 2)A ala + 2)b?
q'(A):a+1——qOD—>0, q”(A):__qS_OD_SO (7.134)

ala + 2)b2/

72()) @+ g - ala+ 2)A

HWAy4) = ByY) (@+1)A- ag(d) + Hy»), (7.136)

pA) =

> 0, (7.135)
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Figure 7.3: Matching of two regions of the spacetime of Minkowski: plot of the pressure
p, step function H and energy density p given by (7.135)-(7.137) along the null
generator {y* = 0} for the particular values a =1, b = 1, B(y*) = 1 and

HG") = o0y
and energy density of the shell is given by
v
A 4 @+1)A- ag- 6'9,
= - ‘V/.—
PRy )= -5 a+1)g- a@a+2)A

Iay]ﬁ + 5Uay1 ay]H

(7.137)

This density diverges asymptotically at infinity (i.e. for A --- +o0) unless B(y*) is
harmonic. If b vanishes we have zero pressure and we fall into a previous case
(H linear in A). When b/= 0, the pressure is everywhere regular, positive and
vanishes asymptotically at infinity. Under the restriction that B(y') is harmonic,
a plot of p(A), H(A,y*) and p A,y* along a null generator of N is depicted
in Figure 7.3. For large negative values of A, the step function exhibits a straight
line behaviour which is a consequence of the fact that the pressure is negligibly

small at past infinity. When p (A) starts increasing, the self-compression of points

starts taking place and this forces the slope of H(A, yA) to decrease until it reaches

again an almost constant value in the late future, once the pressure becomes again
negligible. The growth of the energy begins when the self-compression occurs and
ends when the pressure approaches next-to-zero values. It tends to a finite pos-
itive value when the pressure vanishes, which suggests that it only increases (resp.
decreases) on regions where there exists self-compression (resp. self-stretching), showing

an accumulative behaviour.

To illustrate that not all the choices for the pressure result in successful match-
ings, we consider one last case: positive constant pressure p (the negative case

is completely analogous). In these circumstances, the integrals in (7.130) yield
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H, y?1) = HyY) - pl Bye ! and hence 9,0.H = -pB(y*)e™ < 0. Com-
bining (7.122) with Remark 7.3.9, it follows that the energy and energy flux of the
shell are

( 1

1 . %
paylay,ﬁ—ep"ay, JH . = g1 9B, (7.138)

ol
B B

o=
In this situation, one finds that lima-+« H(A, yA) = H(yA). The positive pressure
produces sustained and systematic self-compression of points for all values of A,
which eventually results in a positive upper bound for the step func’;ion. This
spoils the matching, as all the points p* € N* with v+ (p*) > H(y ) cannot
be identified with any point of N~ or, in other words, the hypersurface N~ is

mapped onto the proper subset {v+ < H} € N~ via ®.

This last example suggests that finding possible matchings with non-zero pressure
may be a significantly complicated task, specially in non-flat spacetimes. In any
case, the influence of the pressure producing a kind of self-compression/self-stretching
of points along the matching and its associated energy storage is an interesting
effect that, in our opinion, deserves further investigation.

7.3.3.1  COform of the metric on the resulting spacetime

Now that we have analyzed the most general matching of the two Minkowski
regions (M*, ¢*) defined in (7.113) and that we have proven that its correspond-
ing step function H(A, y*) is given by (7.130) for an arbitrary pressure p(A, y%), a
natural question that arises is how to construct a C° metric in the spacetime res-
ulting from the matching. We devote this section to such matter. In particular, we
shall construct coordinates in a neighbourhood of the matching hypersurface and
prove that in such coordinates the metric in the resulting spacetime is Lipschitz-
continuous.

The results exposed in this section are part of a bigger ongoing projectin collabora-
tion with Argam Ohanyan and Roland Steinbauer (University of Vienna), in which
besides finding a C° form of the metric we intend to derive an associated distribu-
tional metric form for the most general matching of two Minkowski regions across
a null hyperplane.

Let us call N the matching hypersurface embedded in the spacetime (M, g) result-
ing from the from the matching of (M* ¢*) across N* Then, (MT" UM ™) /N
where the quotient indicates that we are identifying the boundaries and this iden-
tification gives rise to a single null hypersurface, namely N. The null shell is

therefore located on N. In these circumstances, there already exist two coordin-
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ate systems, namely the coordinates {U:, Vi, x4} which cover the (M*, g’—') re-
gions respectively. In such coordinates, the matching hypersurface N is defined by

N = {U. = 0}

Our aim is to build a new coordinate system* {i, v, z4} in a neighbourhood
O © M such that the metric g|o takes a C° form. We shall perform this task in
several sefarate steps. We will start by identifying {u, v, z4) with the coordinates
{U.,V_,x*} on the (M7, g") side. This will allow us to write the vector fields
{¢",e; } in terms of the coordinate vectors {0«, dv, 9,4 }. Combining these expres-
sions with the explicit form of {{*,e%} (which we know from previous sections),
we will be able to provide the relations between the coordinate sets {U+, V., x4}

and {u,v,z} on (M%, g%). The next step will be to write ¢* in the coordinates
{u,v, zA}, with which we will eventually find a CY-form of the metric of the space-
time resulting from the matching. For the rest of the section, we enforce v/ = 511

(which can always be done because of the symmetries of (M*, ¢*), see the discus-
sion above).

To simplify the construction of {u, v, ZA}, it is convenient to enforce a trivial iden-
tification between them and {U-, V_, JLA} on the region M7, i.e. to set

{U. =u,V_=9,x2 =2z} on M. (7.139)

Then, (7.26) together with the choice {L- = -du_,k~ = dv_,v7 = d,1} that we

made before force the vector fields {{-,¢; } to be given by
e; = Oy, e7 = 04, - = -0y (7.140)

in the basis {04, 0v,0,4} of I TM ||~ The matching identifies the vector fields

{e%, %}, so the rigging {* and the vector fields {e*,} must verify (recall (7.30),
(7.40)-(7.41) and (7.119))

e = (OH)y | = 0y, et = (8 H)ov  +9 = d, (7.141)
;¢ ¢ 11
{+ == _W’_I 3 U+ + 6AB(ayA H) _2(3]/3 H)aV + + 3x§ = —au, (7142)

Since only tangential derivatives of H(A, y) appear on (7.141)-(7.142) and {A =
Vo=o,y* = xf_\ = ZA} onN (cf. (7.115)), one can rewrite these equations as

61_ = (avH)aV

+

= 0., ef = (9uH)ov, + 6x1+ = d,, (7.143)

4The coordinate v should not be confused with the foliation functions v+ defined on the bound-
aries N*.
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1( ( 11

1
== %t 6"%(0.aH) " (0sH)v  +d5 = -0 (7.144)

The one-forms dU+, dV+ and dx4 are covariantly constant on the (M+,g+) side
(e.g. for dU; one finds V,; (dUs)p = VJ;V“}h = 9a0gU+ = 0, and the same
argument applies to dV+ and dx%). If we let d+ denote any of U, V. or x4 and

require that & =°° 9. is null and affinely geodesic everywhere on M, it follows that
&vy §ngd+ = avies VE(L + 6“65V2V+,;:l+ =0 &= d.=a-+ub,

A A

wherea v,z" andb v,z are scalar functions. Accordingly, the coordinate trans-

formation on the (M, g+) must be of the form
U+ = Uo + uly, Vi = Vo + uVy, x4 = xg + uxy, (7.145)

where Up, Uy, Vo, Vjy, xf;‘, xf only depend on the coordinates {v,z}. Moreover,

the trivial identification on the (M7, ¢-) side entails that N = {u = 0}. This
fact, together with b/, = &} and (7.118), forces Up = 0, Vo = H v,z ,x‘?) = z4,

Therefore,

+ = ulUy, Vi = H+ uVy, x4 = z4 + uxy, (7.146)
AU+ = Uidu + udUy, dVi = dH + Vidu + udVy, dx4 = dz* + x{du + udx’,

In the following, we extend any scalar function f€ F(N ) to M™ c M by requir-

ing that f is independent of the coordinate u. This, in particular, allows us to write
fInas f AyA and flu+ as f ©v,z4 .

The scalar functions Uy, V5, x‘? can be derived from (7.144) by decomposing d. as

ox’

= s o, + 0y = Uids, +Vidv, +xp 0 (7147)

ou

oV

Ou
ou

du, +

Inserting (7.147) into (7.144), one obtains

1
Uir="", Vi= MU, A =40

9.H 1 (7.148)
1
where M := Z_GABGZA Ho,zH, g% := 089, H.

Observe that the quantities 4% and U verify

( )
dg* = 648 0u0,5 Hdv + 0,c0,8 HdzC , (7.149)

)
dU; = -U? 8.0.Hdv + 0_sd:.Hdz® . (7.150)
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The final coordinate transformation is therefore given by
U+ = uUy, Vi = H + uMU;, x4 = z4 + uqUs. (7.151)

We are now ready to compute the metric ¢* in the coordinates {u, v, z}. From
(7.146) it follows

ds3 = — 2dU+dV+ + Oapdxdx®

=-2 (Ul%u + udU1) (dH + Vlsiu(+ udvs) )

+ Oap dz® + xf‘du + uc)bﬁf‘ dzB + xfdu + udxlB

= du? —2U1V(1 + Oasxx’ ) )
+ 2du u -VidUi - UidVy + OasyPdy? - UidH + Ouax(dz®
( ) ( )
- 2udU1dH - 2u?dU1dV1 + Oap dz”* + udx4  dzP + udx® . (7.152)

The vector field d. being null everywhere forces (this also follows directly from
(7.148))

-2U1V1 + Oasx4xB;= 0 == 0 = -VidU; — U1dV1 + dasxAdxB, (7.153)

Besides, since we have selected the rigging {- to be orthogonal to the spacelike
sections {V_- = const.} of N7, the combination of (7.139) (where we imposed

V_ = v) and (7.140) entails that d. is orthogonal to the spacelike sections of {v =
const.} of N-as well. In particular, this implies that (again this also follows from

(7.148) by means of a straightforward calculation)
-U10 o H + oasx® = 0 == -0 AH + 0486%0 yH = 0. (7.154)
Since dH = 0-Hdv + 0,4 Hdz4, it follows that

-UidH + Oasx4dz? = Ui(-dH + Oasq’dzP)
= U1(-0.Hdv — 9,4 Hdz* + 048070, Hdz*) = —-dv, (7.155)

where we have used (7.154) to cancel the last to terms and (7.148) to introduce the

coefficient U;. Inserting (7.153) and (7.155) into (7(152) yields) ( )

ds? = - 2dudv - 2udU1dH - 2u?2dU1dV1 + 0ap dz4 + udx? dz® + udx®
+ 1 1
( )
= — 2dudv + Oasdz4dz® + 2u -dU.dH + 6ABdZAdel

( )
+u2 -2dUidV: + SasdxAdxbe
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( ( )
= = 2dudv + Oapdz*dz® + 2u -dUidH + Oasdz* Uidg? + qPdU;

( ( ) ( )
+ u2 -2dU; (MdU; + UidM) + Oass U1qu + quU1 U1qu + quU1

Using (7.155), as well as the equalities —2M + 8asg”q® = 0, —dM + Sasg?dg® = 0
that follow from (7.148), one gets
( ) 1
ds2 = — 2dudv + Oapdz*dz? + 2u -~ dvdU1 + U10asdzAdq®
- U
C 1) )
+u2 dUr -2U0idM + 2Usasg*dq® + U2Sasdgidq® 4

= - 2dudv + Oapdz*dz? + 2u —Ldvdm + Uibasdz?dg®  + u?U *GasdgdgP.
Uy !

Finally, inserting (7.149)-(7.150) and using (7.121) and the definition of the pressure
(see Remark 7.3.9), it is straightforward to obtain the metric
( )
ds? = - 2dudv + 6ABd(ZAdZB + udv? ud**[Y1][Y1s] - 2p
+ 2u[YuldodzA -20', + uOBI[Y 8]

¢ )
- 2udzAdzB [Yas] - _25[][Y1A] [Ys] , (7.156)

Given that ds2 = —2dudv + Oasdz?dz® because of the identification of {u, v, zA}

and {U-,V_, x‘_‘k} on the minus side, it follows that the metric ¢ of M can be
written in a C° form in terms of {u,v,z4} as

( )
¢ = = 2dudv + 6ABdZAd?B + uO()dv?  ud*B[Y1a][Y1s] - 2p
+ 2u®(u)[Y1]dodzA -20', + uOBI[Y ag]

( )
— 2uB(u)dzdz® [Yas] = I [Y1al[Yss] (7.157)

where 0 (u) is the Heaviside step function. We can summarize the results of this
section in the following lemma.

Lemma 7.3.10. Let (M*, ¢*) be two regions of the spacetime of Minkowski and suppose
that their boundaries N * are null hyperplanes. Assume that all the required conditions
for the matching of (M¥, ¢*) are satisfied and denote by (M, g) the resulting spacetime
containing a null thin shell located on a null hyperplane N. Then, there exists a set of

continuous coordinates {u,v,z 4} on a neighbourhood O € M of N with the following
properties:
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(i) {u,v, zA} are Gaussian null coordinates® on both sides of N. Moreover, the vector

0|\ is a null generator of N~ while the vector du|g is a rigging of N* with the
properties of being future-directed, null, orthogonal to the spacelike planes N N {v =

const.} and satisfying g(du, 9:)|\—= -1.

(ii) In the coordinates {u,v,z"}, the metric g|o takes a CO-form and it is given by

( )
¢ = - 2dudv + 5ABdZAd%B + uB(u)do? M(S’;B[YlA][YlB] - 2p

+ 2u®(u)[YuldvdzA -20', + 1uOB[Yas]
( )
~ 2uO)dzAdz? [Yas] = “BI[Yial[Yr5] (7.158)

where O (u) is the Heaviside step function.

In particular, in the gravitational wave case (i.e. there is no energy density, no energy flux
and no pressure on the shell) the step function H(A, y*) is given by (7.127) and hence the

metric glo becomes (cf. (7.121)) ( )
¢ = —2dudv + Oapdz*dz® + Mﬂz(874]323 H) & + 06980 +H dz*dz?,
u
a A 2a z z

(7.159)
where a is a positive real constant and H(z4) is an arbitrary function.

Remark 7.3.11. The function u®(u) is Lipschitz continuous, so the metric (7.158) is
Lipschitz in the variable u, even across the null hypersurface N"= {u = 0}.

Remark 7.3.12. When (M?, gi) are 4-dimensional, one can define spatial complex co-

ordinates s _
g g 2G5 S Z_;;i (7.160)
2 4
where i denotes the imaginary unit, and then a straightforward calculation shows that the
one-form
( >
QL gz 4 WO oo 52 )AZ + (3707 )17 (7.161)
satisfies (we let Q be the conjugate of 1) ( )

2u0
20 Rs Q = (dz2)2 + (dz3)2 + M (6Z]aZBH) 5] + 0U0 10 aH dzAdzE.
- u

a A 9g %2

Thus, the metric (7.159) can be expressed in terms of Q as

g = —2dudv + 20 Qs Q, (7.162)

5See e.g. [129], [100] or Appendix D for details on the construction of Gaussian null coordinates.
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which is the standard form of writing the Lipschitz-continuous metric § when studying the
matching of two regions of Minwkoski across a null hyperplane by means of the cut-and-
paste method (note that (7.162) becomes (2.169) when enforcinga = 1, H = h). Recall
that in these cut-and-paste constructions there is neither energy flux nor pressure, and that
the constant a is usually set to one.



MATCHING ACROSS ABSTRACT KILLING
HORIZONS OF ORDER ZERO

In the previous chapter, we have seen that sometimes two spacetimes can be
matched in more than one way, and we have provided an explicit situation in
which this occurs, namely when the boundaries are totally geodesic null hyper-
surfaces. Although this is by no means the only scenario allowing for more than
one matching, it is of particular geometric and physical interest because it applies
whenever the boundaries of the spacetimes are horizons of the types we have in-
troduced throughout this thesis, i.e. non-expanding horizons, (weakly) isolated
horizons, (multiple) Killing horizons, abstract Killing horizons of order zero and
one (as well as their embedded versions). In these circumstances, the enormous
matching freedom can be exploited to consider a great amount of possibilities. For
instance, one may match a non-expanding and a multiple Killing horizon, or a
totally geodesic null hypersurface with a Killing horizon of order %. The combin-
ations are endless, and this facilitates the task of finding examples of matchable
spacetimes.

Now, the problem of matching two spacetimes with boundary can involve sev-
eral levels. For instance, one may be interested in finding the most general pos-
sible matching between them, in restricting the energy-momentum tensor type
and study only those, or in preserving some additional geometric property that
the two spacetimes might share. In this chapter we explore in detail a relevant
example of the latter. All notions of horizons presented in this thesis (with the
exception of non-expanding horizons) are defined in terms of a privileged vector
field that we have denoted by n. On the horizon, this vector field has the proper-
ties of being null, non-zero almost everywhere (or everywhere) and tangent, and
it defines a symmetry (up to whatever order) of the hypersurface under consider-
ation. Since this vector field defines a certain kind of symmetry on each spacetime,
it is of interest to study matchings for which the resulting spacetime is also en-

dowed with a special vector field so that the final spacetime also possesses certain
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kind of symmetry. For this to happen it is necessary to restrict the matchings in
such a way that the two vectors fields on each side are identified. By doing this,
the matched spacetime will be equipped with a privileged continuous vector field.
Note that in general we cannot expect more smoothness for this vector field, since
the metric itself is only continuous across the shell.

Thus, in this chapter we study in detail the problem of matching when the sym-
metry generators from both spacetimes are identified in the process of matching.
This, as we will see, restricts the set of all possible step functions and even the type
of matching.

In order to keep as much generality as possible, we need to work with the weakest
notion of horizon, so that our results are applicable to a variety of situations. Since
abstract Killing horizons of order zero constitute the less restrictive horizons intro-
duced in this thesis, it is sensible to consider the case when the boundaries of the
spacetimes to be matched are embedded versions of this abstract horizons. Note
the subtle difference between an embedded AKHo and a KHo. As we discussed in
Section 5.4, these two objects do not need to share the same properties. In partic-
ular, in an embedded AKHo the transverse components of the deformation tensor

K7 do not need to vanish.

In this chapter, our setup will be the following. We consider two spacetimes

(M*, ¢*) with boundaries N* which are embedded AKHo. As we did in the
previous section, we assume that N * can be foliated by a family of diffeomorphic
spacelike cross-sections, and that one boundary lies in the future of its respective
spacetime while the other lies in its spacetime past. We also suppose that (M*, g%)

verify all matching conditions. Since AKHo are totally geodesic null hypersurfaces,
this means that an infinite number of matchings of (M*, ¢*) across N * can be
performed. Each of these possible matchings corresponds to a different step func-
tion H(A, yA), and they all share the same identification between the set of null
generators of both sides (ruled by the diffeomorphism W). For each feasible match-
ing, one can find metric hypersurface data {N , y, €, £ @} that can be embedded
in both spacetimes. As usual, we let {¢*, {*} denote the corresponding matching
embeddings and riggings, and we define the matching map ® : N~ ——-- N * by

D - P Sef ¢*. In these circumstances, the hypersurface data sets

(N,y, € £®,Ys} with Y* é“zl(gbi)*(ﬁgigt) (cf. (2.39)) (8.1)

define abstract Killing horizons of order zero according to Definition 5.4.1. As
already stressed, in this chapter we are interested in the case when the symmetry

generators from the two sides are identified in the matching process. In the lan-
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guage of the formalism of hypersurface data, this means that {N, y, €, £ @, Y*}
are AKHo with the same symmetry generator, which we denote by n. We use S
to refer to the fixed point set of ). The symmetry generators n* on (M*, ¢*) are
given by

m="¢.n ar- £ ¢ a € R-{0). (8.2)

and we let S* = ¢=(S). We include the constant a in (8.2) in order to account for

the freedom of rescaljng the symmetry generators nt by a non-zero_real constant.
Finaﬁy, we assume t a% t%e s}{lrgce gr%vitieg K* o’} niyare everywhere constant
on N \ S*, and extend them trivially to N * (this in turn means that the surface

gravity K of rf defined in Lemma 3.3.1, is also constant on N , see Proposition
3.3.2). In order to simplify later discussions and results, if it happens that k¥/= 0
then we select n* so that k* > 0. Since R* are constant, this entails no loss of
generality, as one can always take —n* as the Killing vector field whenever k* < 0

with
(cf. (2.81)). As elsewhere in the thesis, here we also identify functions on N

their counterparts on N*
In the previous chapter we have seen that each matching can be codified in a pair

{H(A, yA), ¥}, where H(A, yA) is the step function of the matching and W is a dif-
feomorphism between the set of null generators on both sides. An important aspect
to bear in mind is that all the matching freedom that appears when the boundaries
are totally geodesic is fully encoded in the step function. For this reason, we shall
focus on this object, treating the diffeomorphism ¥ as known and concentrating
our effort on finding the set of possible step functions. This is not problematic at all,
since we are assuming that (M*, gi) are always matchable, which automatically
guarantees the existence of such a map V.

In order to exploit the matching formalism introduced before, we need to construct
two foliation functions v* and two basis {L*, k*, v§ } of I' (TM*) | according

to (7.2). We recall that in (7.2) the basis vector k* is a choice of future null generator.
For the purposes of this chapter, it is convenient that we select k* affine, i.e. such

that Kki'_r = 0. This can always be done because both boundaries admit a cross-
section (see the discussion in Section 2.4). The fact that N"* are totally geodesic

then means that the second fundamental forms Kf vanish everywhere on N'*,

The results (2.88)-(2.90) are fully valid in the present case because n* are null and
tangent to N* everywhere therein and k. = 0, k* € R. Thus, we can write

m Leatks,  @* & fr 4 geps (8.3)
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where v: is the foliation function constructed according to (7.2) (in particular
k*(v:) = 1) and f* € F(N™) satisfy k*(f*) = 0.

At the spacetime level, the identification of {n-,an*} is guaranteed if and only if

+

. n- p an* (8.4)

holds. On the other hand, using e;,” = k™ (cf. (7.26)), et = d1Hk™ (which follows
from (7.30) and (7.45)) and e* = ®.e", one obtains
1 1

4 +a +€+
-
an+ T etk Wl—, (8.5)
N* Nt —+ —+
ant = &, N~ = ad. k= ad.ef = aed. (8.6)

The combination of (8.5) and (8.6) hence yields

a " aar (8.7)

- O\H

Observe that equation (8.7) is consistent with the fact that the fixed point sets S*
(given by those points where @* vanish) must be identified in the matching process.
This, of course, was obvious from the abstract viewpoint, since there exists one

unique symmetry generatorn and by definition S* =° ¢(S).

Equation (8.7) is of relevance in the sense that it constitutes an extra matching
condition, namely that matchings across embedded AKHos in which the symmetry gen-
erators are to be identified cannot be performed unless the corresponding fixed point sets
can be mapped to each other. This restriction is important since, as we proved in
Lemma 5.4.11, the causality of the fixed point set of an AKHo strongly depends
on the geometric properties of the symmetry generator (and the matching map
sends null generators on one side to null generators on the other side, recall that
®.e; = ¢*). Thus, it could well happen that all matching conditions were satisfied
but (8.7) was not, and hence the matching would be possible but not under the

condition that the symmetry generators are identified in the matching process.

In Section 7.3, we proved that a general matching across totally geodesic null
boundaries (without a priori identifying any pair of generators) allowed for
an infinite set of possible step functions. This was a consequence of all leaves
{v* = const.} being isometric to each other (recall (7.5)). Because of condition
(8.7), this is no longer true here. Away from the zeroes of-a* the integration of
(8.7) determines the step function H(A, y) up to an integration function. This

solution, however, may be difficult to find in general. The problem becomes sim-
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pler under the assumptions of k* being affine (which implies no loss of generality)
and k* being constant (which is indeed a restriction that we are making). In fact,
combining (7.49), (8.3) and (8.7) gives

f- + T(_A i a_f+3+ o == BAH N;S —a frreH 0 (5.8)

AH f+ KA

where we have used that d1H > 0. The functions f* are constant along the null
generators, so they are A-independent. This makes it easier to integrate (8.8) in
order to obtain the explicit form of H(A, yA). Note that the second expression in
(8.8) only holds away from the fixed points. The value of H(A, yA) on S must be
determined by continuity (recall that N \ S is dense in N according to Definition
5.4.1). The right part of (8.8) can also be expressed as

sign (@) sign f+ +k*H =sign f~ + kA, (8.9)

which geometrically means that both symmetry generators {n-, an*} must be sim-
ultaneously either future or past. This of course is consistent with the fact that

ég)‘, lg_[];} arfbtj)i?i? ;dﬁnz}rilf(iiBEC')VY(g goB/ ?(l;rl}d:y 6e&a}1;§}gl}6t}}<q rr:1a6ching for the cases

8.1 case of n* degenerate

When k* vanish, we know by Lemma 5.4.11 that S* are either empty or the union
of smooth connected codimension-two null submanifolds of N *. The fact that the
map P is a diffeomorphism forces both boundaries to have the same number of
these connected components. On the other hand, enforcing k* = 0 in (8.8) yields
+(, A
the condition ﬂ;{%‘% > 0 as well as the explicit form of the step function, namely
af*t(y?) A
HA YY) = ————A+Hy ) (8.10)
f~(y?)
where H(yA) is an integration function.

Once we select the tuple {a, n-, n*}, the only remaining matching freedom is en-
coded in the function H(y*) (the scalar functions f* are known beforehand as
the spacetimes to be matched are assumed to be known, cf. (2.90)). In order to
understand this freedom, recall that we have called "velocity" the rate of change
of the foliation function v+ along a null generator of N *. The velocity along the

null generators of N'* is totally determined (outside of S*) by the identification of
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{n-, an*}. However, there still exist a freedom to select any pair of sections, one
on each side, and force their identification via ®. This is the freedom encoded in
the arbitrary function H(yA). Note that the step function (8.10) is linear in A. This
means, in particular, that the most general shell that can be generated under these
circumstances has vanishing pressure (recall (7.94) and Remark 7.3.9).

8.2 case of n* non-degenerate

We now study the case when k*/= 0. Again by Lemma 5.4.11, we know that

S* are either empty or spacelike cross-sections defined by S* = {p e N* | f* +
k*v:|p = 0}. We define the submanifolds N,*, Ni* by

N * & EN*|ff4+rv,<0 ,
S P f ’ (8.11)
N = peN*|f*+k*v:]p >0 ,

so that N* = N“pi UuS*u N“fi. Since we are assuming nothing on the geodesic
completeness of N*, we do not exclude the cases when any of Npi, N and
S* are empty. Note that, when N“pi, N are non-empty they are by definition
embedded AKHos. For later purposes, we also introduce the non-zero constant
kK =" ak+(k-)-1. Note that sign(k) = sign(a) because we have chosen the orienta-

tions of n* such that k* > 0.

We start by considering the case S*/= @ and show that in such case (8.8) forces k

to be equal to one. We apply the I’Hopital rule to (8.8) and get

lim oH = lim “C% _ jim aH e k=1 (812)
AT A—I K A"

Thus, a = k(k+)-1 > 0 and equation (8.8) becomes

(. 1C. 1,
O\H = f—++H ];—_—FA > 0, (8.13)
K
whose integration yields
( 1
m 16 gLy = gy 176D+ (8.14)
" AT R
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where ,B(yA) is a positive integration function. Putting (8.14), (8.9) and the fact that
a > 0 together gives

(
HA y4) =By A+

Ay ] (A
FYO_SYD gy >0 (e1s)

K+’

In combination with the results in Section 8.1 we conclude that whenever N * are
degenerate or contain non-empty fixed point sets any matching of (M*, ¢*) across

* in which the symmetry generators {n-|g,an*|~} are identified requires
the surface gravities {k-,ak*} to coincide. Moreover, the step function must be
linear in the coordinate A, which excludes matchings giving rise to shells with

non-vanishing pressure.

It is also physically interesting to study the matchings when no null generator of
N-* crosses a fixed point set, i.e. when S* are both empty. Integrating (8.8) now
leads to

ey + & HA y) 1= By TF-(y) + kA (8.16)
where ,B(yA) is a non-zero positive integration function. We analyse the casesa > 0
(i.e. Kk > 0) and a < 0 (i.e. K < 0) separately. For the former, condition (8.9) gives
sign(f* + k*H) = sign(f~ + kA), which only allows for the matchings (see (a),

(b) in Figur e 8.1)

Boundaries: N~ =N, N*t=N,
(@)  Matching map: o(N) = Nf,
A +(,,A
Step function: HW, y?) = Ay") )+ kAl K= f_(y._)
Kt Kk
Boundaries: N~ =N, Nt = N‘J,
(b)  Matching map: ®(N,”) = N'J,
Step function: H, v*) = - By 1 f- W) + l_(‘/\_I « — f+(y:‘)
K+ K

On the other hand, a4 < 0 together with (8.9) entail sign(f* + k+ H) = -sign(f~ +

k-A), whence (see (c), (d) in Figure 8.1)

Boundaries: N~ =N, N" = N'p+,
(©) Matching map: o(N;) = Ny, 1
. . A' — A B + K_A + A
Step function HA, v*) (y+)1f w*) k- ) ’
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Boundaries: N~ = N“p‘, N+ = Ngt,
(d)  Matching map: o(N,) = N,
Step function: H(A, yA) = B(yA) 1 £ (yA) + i_(‘/ﬂ K — f+(grA)
K+ K

The function H can be written in a form that covers all cases at once by defining

def

€ sign (K) sign(f~ + K A) (8.17)

and writing

1 ( )

HAY) = — By 1£-(v") KAl - fR) By > 0. (8.18)

We emphasize that the expression (8.18) for the step function H(A, yA) is only part
of the matching, as the boundaries N * must correspond to any of the situations
(a)-(d). Observe that in the present case the matchings (a)-(d) allow for shells with
pressure, as the derivatives of (8.18) are given by

H = ByMal| f-(y4) + kAT >0,  aidH = glg) T ol

which, together with (7.94) and Remark 7.3.9, implies

p(A,y4) = i kK~ (k—1)
pr f~(y4) + kA

. (8.19)

As discussed in Section 7.3.3, the pressure accounts for the compression/stretching
of points when crossing the matching hypersurface. This means, in particular, that

this effect takes place whenever K/= 1.

The positive function B(y*) introduces a freedom in the matching that we analyse
next. When S* = @, it corresponds to the freedom of selecting a section on each
side and impose their identification via @ (this is the same that happened in the
case with vanishing surface gravity of Section 8.1). The interpretation of this free-
dom is less obvious when S*/= @, because in such case the sections S* are forced
to be mapped to each other. In order to understand this, we again call "velocity"
the rate of change of v+ along a null generator of N *. Both when N * are degen-
erate and when N * are non-degenerate with S* = @, identifying two sections
not only provides a mapping between their points, but also of the velocity along
the null generators of N * at those sections. This latter information is encoded in

the symmetry generators to be identified. However, for non-degenerate N'* con-
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N ()
N

N
N

N

N
(d)
\\ —+

\\ M N

N Nf+ AN
\\ \\
AN Nhp_ \\
M~ '\

Figure 8.1: Possible matchings of two spacetimes (M*, g*) across their respective bound-
aries N * in the case when these are non-degenerate embedded AKH,s without
a fixed points set. Here boundaries directly in front of each other are to be iden-
tified and the dot represents the point at which the fixed points set would be
located if the horizons extended further.

taining fixed point sets S*/= @, the map between the subsets S* only provides
information on the identification of their points. The velocity along the null gener-
ators remains unfixed, as both symmetry generators vanish on S*. The function
,B(yA) encodes precisely the freedom of selecting the initial velocities at S* that
rule the identifications off the fixed points set. Once we are off S*, the velocity is
determined by the identification of the symmetry generators themselves, just as in

the previous cases.

83 caseofn—-degenerate, n* non-degenerate

Now we address the case when one boundary is degenerate and the other is not.
Since one symmetry generator is degenerate and the other is not, by Lemma 5.4.11

it follows that the matching (identifying {n-, an*}) is only possible if n* are every-
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where non-zero (again this is because ® cannot send spacelike cross-sections to
null submanifolds and vice versa). We therefore analyze the case S* = @.

Without loss of generality, we take the degenerate symmetry generator to be future.
First, let be the degenerate bo ry. In t case, the caysal character of

N re(i/{,l?res T > % t]"‘fleng(%.E?)r;%orcesua ‘}% ¥|- K+59? > a(?antlil canlt)e llntegrate(]{ to
,‘I —

get

A 1 (,3( A) ( aK*A 1 A 1 A
HA,y") = o B exp on Y W) . ByY >0. (820)
B Uighraee Sy A dsgrnsr Toay e analogous. Now £+ >
)
H, y%) :afK(_yA)ln B f-y )+ Al By» >0, (821)

Sunwihatienes, sigier{#.> 0 (resp. @ < 0), a degenerate horizon I~ can be matched

with a non-degenerate horizon N * = N (resp. N * = N, %) with step function
given by (8.20). On the other hand, a non-degenerate horizon N~ = N (resp.
N~ = N,7) can be matched with a degenerate horizon N* with step function
(8.21) and a > 0 (resp. a < 0). It is worth stressing that the step functions (8.20)-
(8.21) are not linear, so the shell has non-zero pressure. Matchings of this type are
allowed irrespectively of the extension of the degenerate horizon (which can even
be geodesically complete) while the non-degenerate horizon is always limited by
the fact that the would-be fixed point set must be absent. As before, from a physical
point of view it is the presence of pressure, and its associated compression/stretch-
ing effect, that makes a matching of this type possible.

We collect the results from Sections 8.1, 8.2 and 8.3 in the following theorem.

Theorem 8.3.1. The matching of (M*, ¢*) across the embedded AKHos N™* in which the
symmetry generators {n-, an*}, a € R\ {0} are to be identified is possible if the matching
conditions are satisfied and the fixed points sets S* are identified via ®. Moreover,

(i) if N are degenerate, the matching is possible with step function (8.10);
e TSR SR ol g e e et
K —

(iti) if N are non-degenerate and S* = @, the only possible matchings are (a)-(d) in
Section 8.2 with step function (8.18);
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(iv) if N~ (resp. N™") is degenerate with future symmetry generator n-|y-/= 0 (resp.
n*l5+/= 0) and N (resp. N7) is non-degenerate and with S* = @ (resp. S~ =
@), the matching can be performed with step function (8.20) (resp. (8.21));

(v) the matching between a degenerate and a non-degenerate boundaries is impossible
when any of them contains fixed points.

The resulting null shell has vanishing pressure in cases (i) and (ii) exclusively. Finally,
the matching allows for the freedom of selecting a section on each side and imposing their
identification via ® in (i), (iii) and (iv); and the freedom of setting the initial velocities at
S* in (ii).

8.4 killing horizons with bifurcation surfaces

From a physical point of view, perhaps one of the most interesting situations cor-
responds to non-degenerate Killing horizons with a bifurcation surface. This covers
all black hole spacetimes with non-zero constant temperature and whose boundar-
ies are geodesically complete Killing horizons, so it is sensible to analyze this case
in more detail.

A Killing horizon (cf. Definition 2.6.1) satisfying the assumptions in Section 2.6
(in particular that its closure constitutes a smooth connected hypersurface without
boundary) is also an embedded AKHo. Thus, the matching across geodesically
complete non-degenerate Killing horizons containing bifurcation surfaces falls into
item (i7) in Theorem 8.3.1. However, since now we have much stronger conditions,
namely the existence of a Killing vector on each side, we can restrict the matching
far more, as we shall see next.

Consider two spacetimes (M*, g*) with smooth connected null boundaries N*
containing bifurcation surfaces S* ¢ N* so that N*\ S* are non-degenerate

Killing horizons. As usual, we denote the corresponding Killing vectors by n*.
Our aim is to determine the matter content of the null shell arising from the match-
ing of (M*, ¢*) whenever it happens to be possible. For that purpose and given
the fact that the surface gravities k* of n* are constant (see the discussion in Sec-
tion 2.6.2) and non-zero onN *\ S*, itis convenient to take so-called Racz-Wald
coordinates {us, vs, xf‘_,} (see Appendix D for details on the construction of this

coordinates), which can be constructed so that

N-i = {Mi = 0}, Si = {ui = 0,0+ = 0} (8.22)
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and the Killing vectors n* and the spacetime metrics ¢* are given by
= KJ—'(—u:aui + Z)iavi), (8.23)

( )
gt = —2G*dv:  dus + usm*dxt. + @ 1gx4dx5, (8.24)

n

where as before we have extended k* to S* trivially as the same constants and
Gt m¥ s € F (M) only depend on the product u+v+ and on the spatial co-
ordinates {x§ }. The Racz-Wald coordinates have a residual freedom that allows
one to set Gi|N_t = const./= 0, which we enforce from now on. The non-zero
components of the inverse metric are

guv — __, guu — MZ VABmimi, guA = -y VABmi' (825)
+ Gt + + 01 A B + * 01 B
where y48 is the inverse of y , i.e. y28y* = oA
Oi QAB Qi QBC C

In order to study the matching, we need to construct basis {L* k*,v% } of
[(TM™)|g: according to (7.2). Our choice is

1
Lt=-—8, ,kt=80 ,v*=38, , (8.26)
Gi - S I X+
and it is straightforward to check that k* are affine! (i.e. with k* = 0). We let

k*
the coordinates v: be the corresponding foliation functions satisfying k*(v:) = 1.

Note that the choice (8.26) forces the functions {y§, y %} defined in (7.6) to be given
by ,uli =1, ¥ = 0. However, we still cannot fix the sign € of the energy-momentum
tensor, as we do not know whether the boundaries N * lie in the future or in the
past with respect to (M*, ¢*). The induced metrics on the sections {v: = const.}
arehji] et %]lu +=0-

We are interested in matchings for which the vector fields n* are identified. In the
language of the previous section, this means that 2 = 1, hence_k* = k= is forced
(see item (i) in Theorem 8.3.1). Since_k* must coincide, in the following we simply
write K to refer to both of them. Observe that the combination of (8.23) and (2.90)
implies that f* = 0.

ndeed, one gets (we drop * to ease the notation)

KAV kP N [ﬁv v gﬁuavguv v 5BvlaavG v 6BU uaawG il 0, where zbd:éuv.
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We construct null metric hypersurface data {N,y, €, £ @} embedded in (M", ¢7)
by considering an embedding ¢- of the form

[ N — N c M~

(8.27)
Ay —— ¢ Ay) = u-=0,0-=AxL =

In these circumstances, for the metric data {N,y, €, £ @} to be embedded in
(M, ¢7) with embedding ¢- and rigging {~ = L™ (recall (2.22)), it must hold
= yapdyt  dy?, € =dA L0 =0 (8.28)
v @

As happened in Section 7.3.3, the matching is possible if and only if (a)
{N,y, € £ @} is also embedded in (M*, ¢*) with embedding ¢+ given by

¢+: N — N'cM"

(8.29)
Ay —— ¢*Ay) = ur =00 = HAY),xL = W)

and (b) the isometry condition (7.31) is satisfied. Note that n* being identified by
the matching forces

HA, y4) = BlyMA (8.30)

where ,B(yA) is a strictly positive arbitrary function (this follows from combining
e NE— Kv:k* with (8.15)). In the present context condition (7.31) reads

Du =0 BN i o (8.31)
Wl- =1,9x .

The functions y % ; depend on {u:v: ; x4}, so condition (8.31) is A-independent.

+

For the rest of the section we assume that {bs, %} are such that (8.31) holds. By
Theorem 8.3.1, the bifurcation surfaces S* must be mapped to each other through

the matching map @, so they must be isometric. This means that
Bl =W floey,  VpEST, @) € ST, (8.32)

where RjB are the Ricci tensors of the leaves {v: = const.}. Obviously the tensors
*j\ g» Which are constructed from the metrics ¥435lu. -0, are independent of the
coordinates v+, i.e. they are constant along the null generators of N*. The scalars

bg on N do not depend on v+ either (cf. (7.43)), so 7, and bgbéﬁ;} take the

same value for all points of the null generators containing p € S~ and ®(p) €
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S* respectively. The fact that null generators must be identified by the matching
entails that condition (8.33) holds everywhere, i.e.

—+

I J + -
4B |» = bab H®1)|ow), VpEN , ®p)EN . (8.33)

In the following we shall remove the explicit writing of p and ®(p) in this ex-

pression and similar ones. The trivial identification between™N ~ and N ensures
that the pull-back (¢-)*Ré coincides with the Ricci tensor R" on the sections

{A = const.} € N (with metric has = yas). Consequently, it must hold that
R' = (¢2)(R¥).

The following theorem determines the tensor fields Y* and the energy-momentum
tensor of the null shell arising from the matching of (M*, g*).

Theorem 8.4.1. Consider two spacetimes (M*, g*) whose boundaries N * are closures

of non-degenerate Killing horizons containing bifurcation surfaces S*. Let n* be the
corresponding Killing vector fields and assume that they have constant surface gravities

k* on N'*. Construct Ricz-Wald coordinates {us, v+, x{} so that N* = {us = 0},
S* = {u+ = 0,0« = 0} and in which n and the metrics g* are given by (8.23)-(8.24).
Suppose that the matching of (M*, ¢%) across N * is feasible and that it identifies n*,
and let {N , y, € £ @, Y*} be the corresponding null thin shell with metric part given by
(8.28) and matching embeddings ¢* according to (8.27) and (8.29), where {A, yA} are
coordinates on N so that &, € Rady and H(A, y?) = By™)A for 0 < B(y*) € F(N ).
LetS < N be the cross-section defined by ¢*(S) 290 8% gnd R* £°° (¢*) "Ric* be the
constraint tensors corresponding to the boundaries N*. Denote by h, V" and R" the in-
duced metric, Levi-Civita connection and Ricci tensor on the leaves {A = const.}. Then,

the gravitational and matter-energy content of the null shell {N , y, €, £ @, Y*} is given
by

Y9, 8)) = O, Y04, 0y4) = 1%, Y*(0ya, Oy5) = EX3A,
(8.34)
1(dA, dA) = —ey?B[EaslA,  1(dA, dy?) = ey?B[rs],  1(dy?, dyP) = 0, (8.35)
where
— ief mZ )
i Tz oo a1 s 5 on e 2Tt (836)
Wmt V'R “ap = 5 Rap~Rap+ Vg~ aB
y+ det A B A
A 2 B !

and it holds thatr% = r% |sand E%; = E%gs.
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Remark 8.4.2. The notation r % in Theorem 8.4.1 is consistent with (2.44).

Proof. Recall that (8.26) forces entails ;Jli' = 1, p 5 = 0. We start by computing the
quantity 0% v¥ (cf. (2.99)), for which we use (8.24)-(8.25) and the fact that G*is

constant on N'*:

I+

+ + 1 + +
oy =8 Vg, O, (8:37)

G* * B G*

The more direct way of proving the first and second results in (8.34) is by means
of (7.88)-(7.89) and (7.91). In the present case K; = 0 (because N* are Killing
horizons), d,dx» H = 0 (since H(A, yA) = ,B(yA)A ) and Kki_r = 0. Consequently, (7.88)
and (7.91) give Y*(d, d») = 0, while (7.89) and (7.91) yield (recall (7.72))

3/\3 AH
Y+@ ,0 ) ="blore?)- ", Y(2,0
A A

yA A L B oH A

) = o(v). (8.38)
y L

A

Inserting (8.37) into (8.38) proves the second equations in (8.34).

To obtain an expression for Yi(ayA, 8y3) we use an argument based on Proposition

6.4.5. First, from (8.28) we know that € = dA, which forces n = ). Moreover,

it holds that £ 4 £°f g(a 4) = 0 and that s = 0 (because 2s = £.€ = 1.(d2A) +

d(1.€) = 0, cf. (3.43)). The matching is assumed to be possible and such that n*
. . pn . . — . . + —éef +

e dsputaegh Tt e SISt RSSO R A S AU S e sy

(8.27), it follows that 77 = an for a = kA, and since the surface gravit y k of n_
coincides with & (by Proposition 3.3.2), we get a = kA. In particular, this yields

VhAa = 0 and

(3A)a(33)bagob(l:aAaBG—(ca 3B)b°bd
Y Y vV Vv y*ry vAy v

y

= 9,4 0,n 0 — (vhayA 3,s)(a) = 0, (8.39)

where in the next-to-last step we have used (3.88)-(3.89) for ¢ = 0 and U =
0. Taking into account the considerations above and noticing that here k7 = 0
(because Y%(d), dx) = 0), on both sides we can particularize Proposition 6.4.5 for
the basis {n = d,, 8yA} and then the third equation in (8.34) follows at once. The
expressions (8.35) are an immediate consequence of (7.58)-(7.60).

The fact that r% are constant along the null generators follows either from their
definitions (8.36) (where nothing depends on A or v:) or from Proposition 6.4.5
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(see (6.68)). To prove that £%; are also A-independent, we first particularize (6.21)
fors = 0,k* = 0,U = 0and T4 = 0, obtaining

0= a-2r% a-—af Y +KY? (8.40)
b
ViVa ( Va n bd ba

Taking the Lie derivative along n and using (6.3) as well as kK = n(a) (recall (3.102)),
one gets

( 1
0=£, V,V.0- 2r(*bvd) a -at,£,Y,", (8.41)

which upon contracting with {(d,4)", (9,5)‘} and using that £.d,4 = 0 and (8.39)
gives

)
O = £n VZ VhBC{ - 21’64 VhB)G - a£n£nYi;qB = —aﬁnﬁnYiAB == £n£nYiB = 0,

where we used VZG = 0 and the implication is a consequence of the fact that
N \ S is dense in N . From this last result together with the last expression in
(8.34) it is immediate that Z %, are independent of A, i.e. constant along the null

generators. ]

Remark 8.4.3. Note the intrinsic curvature term R drops out from the jump [Eas]. The
underlying reason is the already mentioned isometry condition (§* ¥R = (¢-)4R".

The results (8.34)-(8.35) allow us to conclude that the matter-content of the shell,
given by the tensor fields Y* and 71, exclusively depends on the choice of ,B(yA),
on the intrinsic and extrinsic geometry of the bifurcation surfaces S* (we have just
proved that r% and E3%, are constant along the null generators, so they are given
by their values at S), on the curvature tensor RhAB of S and on the pull-back to S
of the constraint tensors R ; of each side.

It is worth mentioning that the energy density of the shell (ruled by 1(dA, dA)) is
either identically zero or unavoidably changes its sign at the bifurcation surface
(i.e. where A = 0). Moreover, the energy current jl is independent of A, which
means that the flux of energy is insensitive to the change of sign on the energy of
the shell. This raises some questions concerning the physical interpretation of the
quantities {p, jA, p} introduced in Remark 7.3.9. We include below some comments

in this regard.



8.4 killing horizons with bifurcation surfaces

As we did in Section 7.3.3, let us call velocity the rate of change of the foliation
functions v: along the null generators e1* and acceleration to the rate of change of
the velocity. In the present context we have

@)=t Veper @) =0 (8.42)
ef (v1) = 9 H = By?), V;}ef (v+) = 8,0,H = 0.

We have already discussed that the pressure p accounts for the effect of self-
compression or self-stretching of points when crossing from N ~ to N *. The trivial
mapping between N~ and N always gives velocity equal to one on this side. For
this reason, the effect of self-compression/self-stretching only appears when there
exists non-constant acceleration along the generators of N *. As also shown in Sec-
tion 7.3.3, the energy density of the shell increases when points are compressed
and vice versa. Nevertheless, despite the fact that here the shell has vanishing
pressure, some effect of compression or stretching of points is still taking place
because the velocity along the null generators of N, ruled by the function ,B(yA),
is different for each generator.

We find the change of sign on the energy density of the shell p across the bifurc-
ation surface really puzzling, and we do not know yet how to interpret this. The
result suggests that the causality change of the Killing fields from future to past
across the bifurcation surface somehow affects the energy density of the shell. We
emphasize however, that this behaviour is fully compatible with the shell field
equations obtained by Barrabés and Israel [63] for the case of null hypersurfaces.
This of course had to be the case and we include an explicit proof in next section
because this yields a non-trivial consistency check of our results.

8.4.1 Surface layer equations

As we have discussed in Chapter 2, the tensors Y* and energy-momentum tensor
T of a shell satisfy the so-called Israel equations (also known as shell equations
or surface layer equations). In the framework of hypersurface data, these equations
are given by (2.160)-(2.161), where the bulk energy and momentum quantities p *
]+ are defined by (2.57)-(2.58). In the present case the unique normal vector field
v* along N* satisfying ¢*({*, v*) = 1is v* = ¢;*. Moreover, Ein*(e],e% ) =
Ric=(ef, e %) = R*(n, 8yA) = 0, where we have used (4.17) first and then (4.19)
(recallthatU = 0,s = 0, £4* = 0 and k7 = 0). This immediately entails that J* =
0. On the other hand, in terms of the basis {{%, eli = v*,¢% } we can decompose
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the inverse metrics ¢* according to (2.27). By means of this decomposition, one
obtains
. . R*
Ein*({*, e5) = Ric*({%, ¢f) — —
o )
2

= Ric* (%, at) - 2Ric*({, et) + P“Ric*(est, gt)

1 + 1 +
= — PcdR;d = — VABR—

, , o (8.43)

where in the last two steps we have used (4.17), R*(n,-) = 0 and the decomposi-
tion (3.80) for P*, Combining the definition (2.57) with equation (8.43) yields

+ l +
pr =, v RY,. (8.44)

To prove that the shell equations hold for the tensor fields Y* and 1 of Theorem
8.4.1, we compute each term of the right hand side of (2.160)-(2.161) separately. We

start with (2.160). The tensor A (cf. (2.4)) is given in this case by

0 01
A= 20y o0, (8.45)

1 00

because € = dA. Consequently, | det y| = | det A|. On the other hand, the fact that
N *are totally geodesic entails k*(h#) = 0 (see (7.5)), from where it follows that
0=e; (hfj) = dayy. For spatial derivatives of | det y|, we use the well-known
identity 1

9 (| dety|) = 4, (8.46)
2| dety| ¥ Al

where th‘l are the Christoffel symbols of V". The following expressions are imme-
diate consequences of (8.34)-(8.35) together with [ = §! and y1. = 0:

Q= o (8.47)
rtyy =yt 2ty iy = 2ty (8.48)
™Y+ +Y-) = 2eyU[r](r+ + ) = 2ey[rir]. (8.49)
ab ab
ey = Py = ottty (8.50)
1 a

"0y Yba = THOwy11 + 2THO0wy1u + Tdyayy = O. (8.51)
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By (8.46) and (8.47), it follows

1 (j 1 ) (j 1
Lﬁﬁfaya |detA|rt 8, = Crgerrde | detylm
G

1
=Tt + L—— .
| dety| ~Y

— _GVU[EU] + Vh[H

1

| det y| !

= —ey![En] + Sy(V[r] + VD),
= SyiIRa] + eyl (8.52)

where in the last equality we inserted (8.36) and (8.35). Combining (8.44), (8.49)
and (8.52), the shell equation (2.160) follows immediately.

Checking the validity of equation (2.161) is almost direct. Since ]J* are zero, it
suffices to substitute (8.50)-(8.51) into (2.161) to obtain

" (j 1 | (j 1
0= 090, |det y|61b6fr11yz] = /_aA | dety|d'TVyy
|dety] * ’ | et y| !

which is automatically satisfied as nothing inside the parenthesis depends on A.

8.5 spherical, plane or hyperbolic symmetric spacetimes

To conclude this chapter, we apply the formalism above to study particular match-
ings of interest. We start by determining the necessary and sufficient conditions
that allow for the matching of two arbitrary spherical, plane or hyperbolic sym-
metric spacetimes admitting a Killing horizon with a bifurcation surface. We then
particularize the results for the cases of two Schwarzschild spacetimes and two
Schwarzschild-de Sitter spacetimes. We avoid * notation until the actual matching

is performed.

Let (M, g) be a spherical, plane or hyperbolic symmetric spacetime and A be its

corresponding cosmological constant. Assume that it admits a Killing vector field
n defining a bifurcation surface S € M. Any spacetime of this kind is by definition

a warped product of a 2-dimensional Lorentzian manifold (N ,_g) and an (n - 1)-
dimensional Riemannian space (W, /) of constant curvature k € {1, 0, -1} [130],
[131]. We letir € F (N) be the warping function and use Racz-Wald coordinates
{u,v,x} constructed as in Section 8.4. We again scale a priori the Killing vectors
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defining the horizons of each spacetime so that they have the same surface gravity.

In terms ofu;@gef uv, the warped metric is

= g+r2@)h (&), (853)
RS i

where g = -2G (uﬁ dudv, G € F* (M) (note that G| is constant).

The induced metric on the bifurcation surfaces S* = {us = 0,v: = 0} is g*[s:

r2h*| + = (r*)2h*, where r* =" r:| /= 0. The matchingmap ® : S~ —---
kS 0 k 0 N+

must be an isometry so the Ricci scalars of g*|s:, which in this case are given by

gt

(n-1)(n - 2)k=(ry) 2, (8.54)

must be preserved by ®. Therefore

Kok
(2 ()7

(8.55)

and we conclude that k* must coincide (recall that k* € {1,0,-1}). From now
on we simplify the notation and write k instead of k*. An immediate consequence

of (8.55) is that the jump [ro] = '@+ — ¢ is zero whenever k/= 0, and can take

whatever value in the plane case with k = 0.

Since N* are totally geodesic, equation (7.31) constitutes an isometry condition
between the leaves {v* = const.} € N*. These sections are euclidean planes,
spheres of radius roi and hyperbolic planes of curvature —ro_z when k=0, k=1
and k = -1 respectively. The corresponding isometries are respectively euclidean
motions, rotations and hyperbolic rotations. In each case they are also isometries
of the ambient spacetimes, so the freedom in the matching, encoded in ®, can be
absorbed (with full generality) in the coordinates {u+, v+, JgrA} in such a way that
the coefficients blf take the simple form bg = 5;. This will be assumed from now on.

Thus (cf. (2.22))
iy £ gx(et,e%) = (r£)2hy. (8.56)
17 0k

The metric (8.53) is of the form (8.24) with m## = 0 and y* = r&hg. The tensor

fields {rA_, EA_B} in this case read (cf. (8.36))

1
r~ =0, = =, R -R,
A AB 2 4B AB v
h h gh (8.57)
V"B _ 1 2V VBB .

s h A
rA=- g SAB T 5 RAB—MB_T
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The fact that the metric (8.56) is of constant curvature kro‘2 means that its Ricci
tensor is (recall that /, also called y; when indices are used, is the induced metric
at the bifurcation surface)

¥
= -1 =2k
=Dk T ) YART Ras oo (8.58)
AB T T(y%)Z Y4B =
0 =t 1 (7’1 - M + ¥

= -R
AB (r0)2 YAB AB ZVABVBB

Substituting this in the expressions of Theorem 8.4.1 and using (8.55), we obtain

Y-85, 01) = 0, Y-(81 8y4) = O, y

B (1 - 2)k ~ (8.59)
Y‘(ayA,ayB) - E WVAB - Ry ,
h
Y+(0) ) =0, Y+ (), 3yA) = - zéﬁ,
¥ 8.60
A (- 2k 2v", V'8 (6560
Y*(0y4,0,8) = 5 yap—Rap — 5
(r§) 2 B
vig
1(dy 4, dyP) = 0, d A, dy?) = -ey A}gj@ )
AyAB oyt yh (8.61)
7(dA, dA) = € Vj [Ras] + ATB'B .

The resulting shells have therefore energy density p and energy flux j] given by

¥
AyAB 2Vh v _ vhg
p=e—— [Ras] + ATBB : =y @62

An interesting particular case occurs when the spacetimes (M*, ¢*) to be matched

are, in addition, solutions to the A*-vacuum Einstein field equations

2A*
R: = g* . (8.63)

B p-1 9

In these circumstances, the constraint tensors R ; are given by (cf. (4.17))

2A*
R = yAB. (8.64)
AB n—-1
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Inserting this into (8.59)-(8.61) yields

Y-(0r, 1) = O, Y=(a 0y4) = 0,
A
Y_(ayA; ayB) = TYABI

V"B

Y@ =0 Y@nd) = - 4",
A 2v" V" 8 (8.65)
Y+(avA'avB) ) Etyas — AT ,
vh
rdy 4 dy®) =0, 1(dA dy?) = —ey EB’
AB_h_ h ¥

1dA dA) = e [A] + v%é

where we have defined

oow (=2 207
(rj)?2 n-1

It is worth stressing that the constant curvature parameter k does not appear expli-

. (8.66)

citly in (8.65). It however appears implicitly in the metric y;; and in the correspond-
ing covariant derivative V", In the next subsections we particularize further to (the
maximally extended) Schwarzschild and Schwarzschild-de Sitter spacetimes.

8.5.1 Schwarzschild spacetime

If the metrics on both sides are Schwarzschild we have A* = 0 and k = 1. By (8.55),
the radii ro* must coincide, so the Schwarzschild mass of both sides is necessarily
the same. We write ro instead of roi from now on. Thus, (8.65) reduces to

Y_(aA; aA) - Ol Y_(aA) ayA) = 01

_ _ (n=-2)A
Y (ayA'ayB) - TVAB,
h
YH@, ) = 0, Y+@n ) = - V4B,
(n-2) vh vh B ¥ (8.67)
A
Y+(a1/Ar aVB) = 21"% VAB - ﬁ AJ
vh
Kyt dyB) =0, A dy?) = e LB,
AB h h B
) = Y VAVEB,
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The tensor y is the round metric of radius ro so its Laplace-Beltrami operator is
7o 2Asn-1 where As,; is the Laplacian of the unit (1 - 1)-sphere.

For each natural number [ we let {Yi»}, m = 0,.., N(n,I) — 1 be a collection of
linearly independent solutions of

ASn—l Yl,m = —l(l + n - Z)Yl,m (868)
which, as usual we call spherical harmonics. The number N(n,I) is (see e.g. [132])

N1 =1 ifl =0,
N, 1) = (’“;‘2) + (”1’1‘13) otherwise.

(8.69)

Since {Yin} form a complete set of functions over S'-1, any (sufficiently regular)
function 8 can be decomposed in this basis. Observe that 8 can be ensured to be
positive by selecting the coefficient of Yo,0 suitably positive and large. By expressing

B as

o N(nD-1
B = Z Z amYim, where am €R, (8.70)
I=0 m=0
the energy density of the shell is given by (cf. (8.67), Remark 7.3.9)
A Yolll+n-2) ZN(n’l)_l a 'Y
p=€ fp A=-el= Ny ), (8.71)
0 0 2i=0 Zm=0 Lm Lm

The simplest case occurs when B is a positive constant. Then [Y] = 0 and we
have complete absence of shell. The step function H = 8A can be absorbed in

the coordinates of the (M™, ¢*) side. This coordinate freedom is a consequence
precisely of the fact that Schwarzschild admits a one-parameter isometry group
leaving the Killing horizon, and its generators, invariant. This ensures that, in the

absence of shell, we recover the global Schwarzschild spacetime, as we must.

We conclude with a simple but not trivial example in dimension four (i.e. n = 3).
Take

V \ 3 Yoo =
BO) =3 Yoo+ Zigyz,o(e) =1+ ,cos?6, 0TIy (8.72)

Yo0 = 2\/57§(cos 6),
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__B® T G

T (1, 0) f== i =~  p(0,6)
I i C) I - A C)

__B(®)
S T
P R

Figure 8.2: For ro = 1 and B (6) given by (8.72), the up-left, up-right and bottom plots
show B(6), j9(9) and the energy density p(A, 6) for A=1, A=0and A = -1
respectively. The figure corresponds to the case whenN ~ lies in the future of
M~ so that the past rigging - points inwards, hence € = -1.

where Pi(x) denote Legendre polynomials of degree L. This yields energy density

and energy fluxes

3 3cos26-1 A 0 3sin 6 cos O ‘
3 2 2 ] =—-€7 3 2n ’ ]¢ = 0. (8.73)
1+ 3 cos 6 r, ro 1+ 35 cos 6

P=-€

In Figure 8.2 we plot the functions B(6), je(G) and the energy density p(A, 6) for
A=1,A=0 and A = -1 in units where ro = 1. As already discussed, the energy
density changes sign at the bifurcation surface, despite the fact that the energy flux
is constant along each null generator, including at the crossing of the bifurcation
surface. The figure shows clearly how the energy flux component je is positive
(resp. negative) whenever the function 8 decreases (resp. increases), i.e. the energy

flows towards those null generators with higher values of .

8.5.2 Schwarzschild-de Sitter spacetime

Our final example in this chapter is the matching of two Schwarzschild-de Sitter
spacetimes. As before, k = 1 and the horizon radii ro* in both sides are forced to be

the same so we can simply write ro. A Schwarzschild-de Sitter spacetime of mass
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M and cosmological constant A > 0 may have several, one or none Killing horizons
located at 0{{ depending on the number of (positive) roots of the polynomial

20 (") 2M

O = ) T e D=2

(8.74)

Since we do the matching on a preselected horizon we change the point of view,
namely we take any positive value ro and use this expression to determine M in
terms of ro and A. The cosmological constants A* on both sides are allowed to
be different. However, once they are selected, the corresponding masses M* must

have jump

M] =

_1”—; N (8.75)

Thus, a priori one can match across a horizon two Schwarzschild-de Sitter space-
times with different masses and cosmological constants but only if the parameters
are related by (8.75).

The matter content of the shell is in this case given by (8.65). As in the previous
section we may decompose the function B in terms of spherical harmonics. The

corresponding expression for the energy density is now

¥
0 =-€ Yol +n-2) foé'l)_l anYim = (Al ) (8.76)
o Zo T Yo

Let us conclude with some interesting observations. The first is that it is impossible
to construct a (non-trivial) shell with vanishing energy density. This is because in

such case it must hold
Asp1 B = -13[A] B. (8.77)

and all solutions of these equation must necessarily have zeroes, which is not

allowed for the matching function .

An interesting example is when the shell is composed on null dust, i.e. with identic-
ally zero energy-flux. By (8.65), this requires 8 to be a (positive) constant and then
the energy density of the null dust is

p = €[AlA. (8.78)

The behaviour of this null dust is striking. Assume that N ~ lies in the future of
(M, ¢7) so that ¢~ (which has been chosen past-directed) points inwards. Then
we need to enforce € = —1. For definiteness suppose also that [A] > 0. In these
circumstances, the energy density is p = —[A]A, hence it is everywhere positive

in the past of the bifurcation surface (i.e. for A < 0) so the system starts being
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perfectly reasonable from a physical point of view. The shell then evolves on its
own in a manner dictated by the field equations and ends up in a state in which
the energy density is everywhere negative. This negative energy density cannot
be considered as unphysical, since it has evolved from a physically reasonable
initial state, the system itself is physically reasonable (a collection of incoherent
massless particles) and its evolution is dictated by the gravitational shell equations
that follow from the Einstein field equations. This is a rather surprising behaviour.

Furthermore, this behaviour is not exclusive of null dust. In fact, this occurs for
more general functions B. Provided that we select 8 to be an everywhere positive
function on S*-1, it holds that the energy density p is always positive for A < 0
as long as the jump [A] is suitably positive and large. Then, we have a shell with
initial positive energy density and non-zero energy flux which unavoidably evolves
into a state of negative energy density with no change along the evolution of the
energy flux, which by (8.65) is independent of A.



MATCHING FROM AN ABSTRACT
VIEWPOINT

In Chapter 7, we have studied the matching of two general spacetimes with null
boundaries that admit a foliation by diffeomorphic spacelike sections. The neces-
sary and sufficient conditions that allow for the matching have been identified, and
we have determined the geometrical objects upon which the matching depends.
We have also provided explicit expressions for the gravitational and matter-energy
content of the resulting shells (ruled by the tensors Y* and the energy-momentum
tensor), and particularized the corresponding results for the matching of two re-
gions of Minkowski across a null hyperplane (see Section 7.3.3) and for the case
when the boundaries are embedded AKHo (see Chapter 8). At this stage, at least
two questions arise naturally. The first one is whether one can obtain analogous
results without the topological assumptions on the boundaries and the second is
whether there is a way of formulating the matching problem in a fully abstract
manner, namely without making any reference to the actual spacetimes to be
matched. Addressing these questions constitutes the aim of the last chapter of
this thesis.

More concretely, we have seen that the matching of two given spacetimes is pos-
sible if the junction conditions are satisfied. These requirements are well under-
stood from the point of view of the spacetimes, and even in the picture of embed-
ded (metric) hypersurface data (recall Theorem 2.7.1), but it is not obvious how
to write them in a purely abstract (in the sense of detached from the spacetimes
to be matched) way. The specific purposes of this chapter are the following. First,
we will provide a suitable abstract formulation of the junction conditions for the
case of boundaries of any topology and any causal character. Then, we will study
the actual problem of matching two spacetimes with null boundaries, analyzing
(at the abstract level) the objects upon which the matching depends and includ-
ing explicit expressions for the riggings identified in the matching process and the
gravitational/matter-energy content of the (completely general) null shell. We will
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also address the problem of multiple matchings, relating the matter content and
the energy-momentum tensor of two different shells arising from different match-
ings of the same two spacetimes. The particular case when one of the multiple
matchings corresponds to having no shell will be studied in detail. These results
apply to the context of the cut-and-paste procedure for the matching, and will al-
low us to describe this matching method in an abstract manner. Finally, assuming
boundaries with product topology S x R (where S is a spacelike section and the
null generators are along R) we will recover the results from Chapters 7 in the
present setup, in particular the existence of a step function and the explicit form

of the enegy-momentum tensor of the shell.

9.1 abstract matching without topological assumptions

Let us start with the abstract formulation of the junction conditions. As mentioned
above, we first consider that the boundariesN * of the spacetimes (M*, g*) to
be matched have any topology and any causal character. Since™N ~is embedded,
there exists an abstract manifold N and an embedding i~ : N '—--- M~ such that
/(N ) = N—. From the embedding /-, one can construct an infinite number of em-
beddings simply by applying additional diffeomorphisms within N . To elude this
unavoidable redundancy, we henceforth let i~ be one specific choice among all pos-
sible. This allows us to build embedded hypersurface data D et {N,v, € £@,Y}
by requiring (2.22), (2.39), i.e. by defining

v E ) 2" (N (&), L= (D),

(9.1)
Y =f zl(’_)*(fé‘g_)'

As discussed in Chapter 7 and in Theorem 2.7.1, two spacetimes (M¥*, ¢*) can
be matched if there exists a pair of embeddings ¢* : N '—--- M* related to a
matching map ® by ¢+ = & - ¢-. Moreover, the embedding and the rigging on
one of the sides (say the minus side) can always be chosen freely. Suppose we
enforce ¢- = 1~ and take a specific rigging {-. Then all the information about
the matching (codified by @ at the spacetime level) is encoded in ¢+, and the
junction conditions can be written in terms of ¢* according to (7.23). The rigging
{* is uniquely determined by (7.23) from ¢+ and the data {y, €, £ @}, and the
gravitational/matter content of the shell is ruled by the tensor field [Y] (recall
(7.25)).
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The junction conditions (7.23), despite being of a more abstract nature than (7.22),
still codify the matching information in the pair {¢+, {*}, which are not of abstract
nature. In order to provide the matching information in terms of objects defined
at the abstract level, we must take one step further. The following theorem, based
on the existence of a diffeomorphism ¢ of the abstract manifold N onto itself, sets

up the corresponding construction.

Theorem 9.1.1. Consider two hypersurface data D def {N,vy €& £, Y},
e {N¢ 9. B2, Y} embedded in two spacetimes (M~, g7), (M*, ¢¥) with
embeddings I, I+ and riggings L™, L™ respectively. Assume that #(N ) =" N * are
boundaries of (M*, ¢*) and let €t = +1 (resp. €+ = —1) if L* points outwards (resp.
inwards) from M. Define € in the same way (i.e. € = +1 if L™ points outwards,
€~ = —1if inwards). The matching of (M*, g*) across N* is possible if and only if

(i) There exist a gauge group element Gev) and a diffeomorphism @ of N onto itself

such that
Gewnle'§) = Gen(@® @) = 4@)=19; (9.2
AN v, @ ®) =¢ Gev (o ;
(ii) sign(z) = -sign(e+)sign(e).

Proof. The fact that D, ¥ are embedded on (M?, ¢*) respectively means that

VE R e ()@@, L0 S () L))
§FEC) @Y, €))L,y 9= )t et L), (93)
v- o 30 -g0), ¥ = 307) (£ +g7).

Since the spacetimes (M*, ¢*), the embeddings /* and the riggings L* are all
given, the tensor fields in (9.3) are known. To prove the first part of the theorem,
we start by assuming (7)-(ii). Thus, there exist a pair {z€ F "(N ), V€ I'(TN )}
and a diffeomorphism ¢ : N —--- N so that (9.2) holds. These conditions can be
rewritten as (cf. (2.30)-(2.32), Proposition 2.2.10)

0'W=Gpy® = G = v, (9.4)
e
(p‘Q = G_%Z,V) (e) = G(Z_l,—ZV) (e) = ; - V(Vl ') ) (95)
@ 28(V)
99 =6, 0?) =Gy @) = % - tyWv. 96

def

Let us define the map ¢+ =" 1+ < @, the vector field V' =" 1+(¢. V), the functionz €
F' (N *) given by @ ((*)"z) =" z and the rigging ¢* =" z (L™ + V) along N'™.
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By definition of z', it holds that sign(z) = sign(z'). On the other hand, combining

(9.4)-(9.6) with the fact that¥D is embedded with embedding /+ and rigging L*, it
follows

y = w(*@' = <p*((l+)‘(g+)))= (94" (g"), (9.7)
€=z o€+ (e,
= Z<0(' ()" gHL*) + gH(V, ) = S¢+)'(g+(6+,-)), (9.8)
0O =2 @@ + 2000)V) + (g)(V, V)

= z2¢@" ()" gt(L*, L*) + 2g+(L+, V') + g+(V, V)
= (¢+) " (g+(d*, ¢ (9.9)

The data D is therefore embedded in (M¥, ¢¥) with embedding ¢+ and rigging
{*. Thus, conditions (7.24) are satisfied for ¢— = 1, ¢+ = 1 - ¢ and for the
riggings - = L~, {*. Moreover, combining (i7) (which holds by assumption), the
definition of {* and sign(z') = sign(z), it follows

¢+ = -sign(et)sign(e)|z| L+ + V' . (9.10)

[t is straightforward to check that (9.10) implies that whenever L™ points inwards
(resp. outwards) then {* points outwards (resp. inwards) irrespectively of the
orientation of L*. Thus, D is embedded in (M* ¢*) and L~, {* are such that
one points inwards and the other outwards, which means that the matching of
(M*, ¢*) is possible.

To prove the converse, we assume that the matching is possible for two pairs
{¢*, &*}. We have already discussed the flexibility of selecting at will the em-
bedding and the rigging on one side (say the minus side). Let us therefore set
¢- = 1-, & = L. Since both L* and {* are riggings along N, there exists
a pair {z € F*(N*),V € I'(IN*)} such that {+ = z (L™ + V). Moreover,

def

one can define a diffeomorphism ¢ : N —-- N by ¢+ = 1+ - ¢@. But then one

can follow the arguments of (9.7)-(9.9) backwards and prove (9.2) for a function
z € F*(N) defined by z =*' @ (()"Z). As before, sign(z) = sign(z') so both
C+ =2z (L* + V) and z L* = sign(z)|z |L* have the same orientation (because V'
is tangent to N 7). By assumption the matching is possible, hence L, {* are such
that one points inwards and the other outwards. If L™ points inwards (resp. out-
wards) then sign(z)L™ must point outwards (resp. inwards), so sign(z) = sign(e*)

(sign(z) = -sign(et)) is forced. This means that (i)-(i7) are both fulfilled. O
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Remark 9.1.2. Theorem 9.1.1 does not impose any conditions on the topology of the ab-
stract manifold N , except for the very mild one that hypersurface data sets can be defined
on N.

Remark 9.1.3. Observe that we have not restricted the gauges of the data sets D, B (we let
the two riggings L* be given, but no conditions have been imposed on them). Each specific
choice of L* will fix a particular gauge on D, . Moreover, Theorem 9.1.1 holds for data
sets D, B of any causal nature. In particular, D, ® are not required to contain non-null
or null points exclusively.

Remark 9.1.4. When there are no null points on N , condition (ii) can always be fulfilled
because there exist two gauge group elements which leave the hypersurface data invariant,
namely {G (o, G1,-20) ), where & £°° y*(€,-) and y* is the inverse of y (see Section
2.2.1.1). This means that when (i) is satisfied for a gauge group element G,v), it also
holds for G-1,-2¢) ° G v) = G(-z,-2 ¢ -v) (recall Proposition 2.2.10). This ensures that
there always exists a suitable choice of gauge parameter z for which (i) and (i) hold.

On the contrary, when N contains null points only the gauge element Ga,0) leaves the hy-
persurface data invariant, which means that (i) can be fulfilled for a gauge group element
Gev) but z may have the wrong sign. This is the underlying reason why the spacetime con-
ditions (7.22) provide one unique solution for {*+ for given {{-, ®} (see the corresponding
discussion in Section 7.2).

Remark 9.1.5. In Theorem 9.1.1, we have expressed the junction conditions as a restriction
over two data sets and a requirement on the sign of a gauge parameter. Theorem 9.1.1 there-
fore constitutes an abstract formulation of the standard matching conditions. In particular,
a remarkable advantage of Theorem 9.1.1 is that it allows us to study different matchings
in two different levels. At the first level one takes whatever hypersurface data sets D,§D
satisfying (i) and studies its properties from a fully detached point if view. At this level, the
spacetimes need not even exist. The problem can then move on and study whether or not
one can construct spacetimes in which such data can be embedded, and such that condition
(i1) holds. In other words, by Theorem 9.1.1 one can produce a thin shell of any causality
with full freedom to prescribe the gravitational and matter-energy content, and then study
the problem of constructing the resulting spacetime (M, ¢) which contains it. This is of
great use, as it provides a framework to build examples of spacetimes with thin shells of

any type.

In the setup of Theorem 9.1.1, the matching riggings are {L~, {*}, where {* is of
the form (9.10). This means that the sign €~ coincides with the sign € introduced in
the abstract notion of thin shell within Definitions 2.7.2 and 2.7.3. It is convenient

not to fix the signs €* (or the riggings L*) a priori because it may well occur
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that transverse vectors L* on each spacetime are already privileged or have been
chosen for whatever other reason. The main point of the construction in Theorem
9.1.1 is firstly that it provides a fully abstract description of the matching and
secondly that it keeps maximum flexibility so that one can adapt Theorem 9.1.1 to

any particular scenario.

9.1.1 Null boundaries

Our main interest in this thesis is on null matching. Thus, for the remainder of
the chapter, we focus on the case when both D and ® are null hypersurface data.
Under these circumstances, by Lemma 3.2.9 we know that there exists a pair {z, V}
ensuring the second and third equations in (9.2). It follows that the only restrictions

are therefore condition (ii) in Theorem 9.1.1 and the first equality in (9.2), namely

=V 9.11
oY (9.11)
Consequently, given two spacetimes (M*, g*) with null boundaries N *, either
there exists (at least) one diffeomorphism ¢ satisfying (9.11) or not. In the former
case the matching is possible (provided (i7) holds) and, as we shall see next, all

information about the matching is codified by ¢.

For the rest of the chapter and without loss of generality, we again make the harm-
less assumption that one of the boundaries lies in the future of its corresponding
spacetime while the other lies in its spacetime past (see the discussion in Section
7.3). The following lemma provides the explicit form of the gauge parameters

{z, V} and of the matching rigging {* in terms of the diffeomorphism ¢.

Lemma 9.1.6. Assume that conditions (i)-(ii) in Theorem 9.1.1 hold for a pair of embed-
ded null hypersurface data D, ¥ . Then, the gauge parameters {z, V} are given by

—_— ., V=-Po, )+rPoto® -0, (9.12)

(o' ®)(n) 200 ®)(n)

Moreover, the matching identifies the rigging vector field L™ in the minus side with the
rigging in the plus side

( ( ) )
fr=2 L= . P(¢'®,) +urt(p.n) , (9.13)
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wherez €F' (N 1), y € F (N ) are scalar functions defined by

0NN = o)W = TPt o t? (9.14)

(¢ ®)(n) 2(0' ) (n)

Proof. The explicit form (9.12) for the function z follows from contracting (9.5) with
n and using (2.7). The vector field V can be partially obtained also from (9.5) by

particularizing Lemma 2.2.8 for W=V, o =z"1€-¢" ®. This gives

( 1 g @F

(2.8)
V=P f—(p*@,- +uon :_P(qoﬁo,.)Jr o — n, (9.15)
z b4

where uo =" €(V) is a function yet to be determined. This is done by substituting
(9.15) into (9.6). First, y(V, V) = (V) = 2728 @ + P(¢p" & ¢ €) because of (2.7)-(2.8)
andz™1 = (qf’)(n). Thus,

‘@ 2 2@ 9 9
o =- —-uw +Pe &9
z z
0@ )
== w=-—"t5 P@boe)- o R (9.16)

so that substituting this into (9.15) proves (9.12). Equation (9.13) is a direct con-
sequence of (9.12) and the fact that {* =z (L* +.17(p.V)). O

Whenever there exists a diffeomorphism ¢ solving (9.11) and given a basis {n, ea}
of T'(TN ), it is possible to obtain specific expressions for the pushforward vector

fields {@.n, @.ea}. This is done in the next corollary.

Corollary 9.1.7. Assume that conditions (i)-(ii) in Theorem 9.1.1 hold for a pair of em-
bedded null hypersurface data D, B and consider the tensor fields {P, n}, {I§ ¢} defined
by particularizing (2.5) for these two data sets. Let {n, ea} be a basis of [(TN ) and define
the covectors {W a} and the functions {@a, X(a)} along N by

@ Wa="yles"), waz"er) xu=" (o) 1) -Walp.V).

Then,
R
qo'n - ((D_ 1)*Z’ (917)
@.ea=(W4-) + x1)h, (9.18)

Moreover, it holds that I8 (W 4,9€) = 0and ® Xy = (¢ #)(cn).
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Proof. Consider any point p € N. From (9.4) it follows thatg((p*n, MNow =

(qo'g)(n,-)lp = y(n, )y = 0,s0 @.n = brgfor some function b € F(N ). This,
together with (9.12) and §(n) = 1, entails that z Yo = (# €)(n)|y = €(@.1)|ow) =

blew) = @ blp, which proves (9.17). On the other hand, any vector field X € I'(TN )
satisfies

. (9.4) )
¥@.es, 0. X o) = (@ We 4 X, = yea, XNp =@ Wa(X)]p,
@-ealopy = @ B(ea)ly =Y, ~VleaVlp = ¥ — g WaW)ly,
which means that
¥(@.ea, ) =Wy, €(p.ca) = (0) @ lws) - Walep. V). (9.19)

Particularizing Lemma 2.2.8 for the data ® and for W = @.es, © = Wa and
uo = (1) (z7lwa) - Wa(g.V) yields (9.18). Finally, ﬂWA, €) = 0 because

PW 48 0) = € PW 460|000 = - £ D@D IW (@ 1))
= - 2D(@™) " Dlpp)(@ WM,
= —9(2)(((P_1)'Z)|<p(p)v(ez4' ”)lp =0,

while @ x(4) = (o' 8)(en) follows from

Wa * W ©5)
Xnlow) = . (@ WaAWe =7 =vleaVle = (@ #)(ea)ls.

O

Remark 9.1.8. From (9.17) it follows that @ is a diffeormorphism which sends null gen-
erators into null generators. Moreover, since the vector fields {Wa 2 (W 4, )} verify
6(WA) = 0, it follows that Wa & Rad\é This, together with the fact that @. is necessarily
of maximal rank, forces the vector fields {Wa} to be everywhere non-zero on N . In fact,
?,OWA} constitutes a basis of T(TN), since {Wa} are all linearly independent. This can

be proved by contradiction, by assuming that one can write one such vector field, e.g. W2

as a linear combination of the remaining vector fields, i.e. W2 = Y 5 crWr. By (9.18), this
r=

would mean that @.(e2 — Lz crer) = X@) — Yo" sCrX() ), which we know it cannot

occur (because only null generators can be mapped to null generators).

The point of introducing the objects {W 4, x(4)} will become clear later when
analyzing the particular case when the boundaries have product topology S x R,
where S is a spacelike cross-section and the null generators are along R. For the
moment, let us simply anticipate that in such case the property (W a4, Q) = 0 will
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allow us to conclude that the vector fields P(WA, -) are tangent to the leaves of a

specific foliation of N * while from ¢ x(4) = (¢ €)(e4) we will conclude that the
functions {x(4)} are actually spatial derivatives of the step function introduced in
Chapter 7.

One of the most important results from Chapter 7 is the relation (7.54) between the

second fundamental forms of each side. It turns out that in this abstract framework

with no topological assumptions one can also recover an equation of this form. To
P . . def 1 —

obtain it, we start by nogicing thgg U = %Eny, L} £10 ipand that Eﬁ\o— fﬁty; for

def 2

any f € F(N) because n € Rady (recall (5.19)). By direct computation one gets
def * @1 7Nz (94) z ® N [9

0@ =0 () = ;9 Lo = Ly=2U == U=— (920)
which connects the second fundamental forms U, @ corresponding to the hyper-
surface data sets D, Di Equation (9.20) generalizes (7.54) to the case of boundaries
with any topology, and has several implications that we discuss below.

In Theorem 9.1.1 we have seen that when the matching of two spacetimes
(M*, ¢%) is possible there exists a diffeomorphism ¢ verifying (9.11). In such
case, Lemma 9.1.6 and Corollary 9.1.7 provide explicit expressions for the gauge
parameters {z, V}, the matching rigging {* and the pushforwards {¢.n, ¢.ea} of

any basis vector fields {n, ea} in terms of the map @ still to be determined.

However, as the reader may have noticed, condition (9.11) does not fix ¢ com-
pletely, firstly because there can be more than one diffeomorphism ¢ satisfying

(9.11) and secondly because the tensor fields y and y are both degenerate. As

happened in Section 7.3.1.1, where the step function could not be fixed by the
isometry condition (7.31), here one also needs an extra condition in order to fix
@ fully. This second restriction is precisely (9.20) and, the same way as in Section
7.3.1.1, it provides useful information as long as both U and ¥J are non-zero. On the
contrary, when U and ¥ vanish simultaneously then z (and hence part of ¢, recall
(9.12)) remains completely free. This means that one can find an infinite number
of diffeomorphisms ¢ verifying (9.11), with which we recover the property that
whenever the boundaries are totally geodesic then (M*, ¢*) can be matched in

an infinite number of ways.

As anticipated before, one can obtain explicit expressions for the gravitational and
matter-energy content of a null shell (i.e. for [Y] and 1) in terms of the diffeomorph-

ism ¢. This is done in the following theorem.
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Theorem 9.1.9. Assume that conditions (i)-(ii) in Theorem 9.1.1 hold for a pair of em-
bedded null hypersurface data D, 9 andlete = €. Define

def

+ ger 1 aet 1
Y- =" (I) (E-9)), Y = —2(l+)*(£L+g+) and Y+ = E(p' ()" (Fgr gt)
where {* is given by (9.13). Then, the tensor [Y] =" Y+ - Y- reads
¢ + 2 € ) !
Yul =z (¢ ¥ )w+"2P(0 00" ®) —9' 4> Uu-vy, (o' -Y;, (921)

where z is given by (9.12). The components of [Y] in any basis {n,ea} of [(TN) are

”(Z) (9.22)

[Y]I(n,n) = z(@’

[Y]1(1, ea) = z(@ ¥ )(n, ea) = Y-(, ex) - E(gncp'i)(m)
eA( )
2z

[Yl(en, e) = 2(@' ¥ )(ea, es) = Y-(es, en)
2

Z « « * : «
+ P(ep 8¢ 8 ) 0@ Ulen, es) - ze%e%v(u((p Q)b), (9.24)

+s(e,) +2P(y @ U ), (9.23)

while the components of the energy-momentum tensor of the shell in the dual basis {q, 6}

of {n, ea} are

(
(qq) = - ehd® 2(0" ¥ )(ea, es) — Y-(ea, en) :
2 )
+— P(p QqJ 8 ® g a2 U(ea, eB) —ze“AeBV(a((p Qb) ,  (9.25)
(
1(q, 04) = eh® z(o ¥ )(n, es) - Y-(1n, es)
]
2(£n f)(es) + _BZ'(_)"+ s(es) + zP(g@’ € U, ) , (9.26)
(64, 0°) = — ehAv z((p Y Y01, 1) = Y-(n, 1) + ”(ZZ) , (9.27)

where has =" y(ea, es). Finally, the purely gravitational content of the shell is ruled by

YC(ea, es) et [Y](ea, es) + EiV(EA, en), (9.28)

n—1 ¢ )
where p="p+2P(qf)+p 2£@ + P(q,q)

and {p, p, j} are defined as in Remark 7.3.9.
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def

Proof First, we apply Lemma 3.1.4 for V &=
=" @(V) (cf. (9.16)). This yields
z ( 2 ( )—I o ( Q b) 1
EEVYub = 0@ 4= P((p Q Q) _(p'W) Uap t 2V, 5 _(QD'Q)b)

( ) , ,
= Z; Pl @ ¢ ® - ) 9y, - ;_(V(az) 04— 2Vu@" o) (9.29)

v(V,-) = 2718 - @ € (recall (9.5)) and

where in the last step we used that OVQQ p = — £ @Uaw (cf. (2.19)). By hypothesis
the matching of (M*, ¢*) is possible, so the datasets{N, ¢ ", @ € ot@, 0 ¥},
{N,y, € € @, Y+} are embedded in (M*, ¢™) with embedding i+ > ¢ and respect-
ive riggings L*, {*. This, together with (9.2), entails that the tensors @ ‘WY are
related by Y+ _ N ¥ ) where {z, V} are given by (9.12). Thus (cf. (2.40),
(9.11))
n . . z 05 . + dz z
Y =209 +dzQ:(p €+ y(V,) + JEW = 20 Y + L @€+ £y (9.30)

Inserting (9.29) into (9.30) yields the explicit form (9.21).

We now obtain the components of [Y] in the basis {n, ea}, for which we recall that
U(n, ) = 0 and s(n) = 0. Particularizing (3.11) for 8 = ¢ * 4 and using (9.12) gives

1 1,
OO 0+ (1) - (@ &) ()5 - P“Unle” #),,

2t
%En(cp ®, -2 —S_bz — P Un(@ ®)a, (9.31)

: (
" Ve (0 On =36 (0" ®)(n) —’;S):—”Z). (9.32)

Combining (9.31)-(9.32) with (9.21) yields (9.22)-(9.24). The results (9.25)-(9.27) for
the components of the energy-momentum tensor of the shell are a direct con-
sequence of (3.53)-(3.55).

Finally, we prove (9.28) as follows. First, we note that the one-forms j (see Remark
7.3.9) and € decompose in the basis {q, 84} as

j = jlex)6?, €=q + €6 (9.33)

because j(n) = 0 and €(n) = 1. Also by Remark 7.3.9, we know that the one-form

j verifies [Y](n, ea) = €(j(ea) — p€(ea)). Thus, a direct computation based on the
decomposition (3.51) of the tensor field P yields

tre[Y] = Pot[Ya] = h4B[Y](es, es) + 2P(q, 64)[Y](n, ea) + P(q, a)[Y](n, n)
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= h*8[Y](ea, es) + 2€P(q, j(ea)0* — p€(es)0*) - epP(q, q)
= hB[Y](ea, e5) + 2eP(q,7) + €p 28 @ + P(q,q)

where we used that P(84, 8%) = h“? (by Lemma 3.2.5), P(€, ) = — £ @n (cf. (2.8))
and (9.33) in this order. Taking into account the definition of the energy density p
(see (7.97)), one finds

( ( ))
hA8[Y](ea, e5) = —€ p + 2P(q,j) +p 2@ + P(q,q) = -

— €p. (9.34)
Now, from (3.53)-(3.55) it is clear that the only part of [Y] that does not contribute
to the energy-momentum tensor is the h-traceless part of [Y](es, es). By Lemma
3.2.5, we know that h48y(ea, es) = n — 1. Consequently, [Y](es, es) decomposes in
a h-traceless and a h-trace part as

hIY](es, e)
[Y](es, e8) = Y6 (ea, e) + %V(&q' es),

from where (9.28) follows at once after inserting (9.34). [l

Remark 9.1.10. We emphasize that we have not made any assumption on the topology
of the boundaries N~ * in Theorems 9.1.1 and 9.1.9 or in Lemma 9.1.6. The results above
therefore describe the most general matching of two spacetimes across null hypersurfaces
and generalize the results in Chapters 7 and 8, where the existence of a foliation on the
boundaries played an important role.

The gravitational/matter-energy content of the resulting null shell is given by (9.22)-(9.28),
and the associated energy density p, energy flux j and pressure p are given by (7.97). The
reason why we refer to YC(ea, es) as the purely gravitational part of the shell is that
only the components [Yl(n, n), [YI(n, ea) and the trace P(6*, 6°)[Y](es, es) contribute
to the energy-momentum tensor T (cf. (3.53)-(3.55)). This means that even if T vanishes
identically YC(ea, es) does not need to be zero. In fact, this case of Y(ea, en) being the
only non-zero contribution to the tensor [Y] corresponds to an impulsive gravitational

wave propagating in the spacetime resulting from the matching.

Remark 9.1.11. By Lemma 3.2.5 we know that P(q, -) = 0 if and only if €(ea) = 0 and
2 @ = 0. In such case, the scalar p coincides with the energy density p of the shell. In the
embedded picture, this restrictions amount to impose that the matching riggings ¢* are
null and orthogonal to the vector fields ¢ ea. This holds, in particular, in Sections 7.3.3,
8.4 and 8.5, where we enforced that the rigging ¢~ is null and orthogonal to the leaves of
the foliation on the minus side (recall the choice (7.26)).
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Remark 9.1.12. In Theorems 9.1.1 and 9.1.9 and Lemma 9.1.6, all expressions are fully
explicit in terms of the diffeomorphism @. The two data sets D, ¥ are completely known
(because the embeddings 1* and the spacetimes (M*, ¢*) are given) and the rigging {+
is determined by the pair {z, V} given by (9.12) in terms of @. This also happened in
Chapters 7 and 8, where the whole matching depended upon the step function H and the
coefficients bl which in turn determined the matching embedding ¢+ (recall (7.43) and

(7.51)) and the matching rigging {* (according to (7.70)).

J'_
Expressions (9.22)-(9.27) involve the pull-back ¢ ° ¥ , whose calculation can be cum-
bersome in general. It is more convenient to rewrite (9.22)-(9.27) in terms of pull-

backs of scalar functions referred to the data ® and objects defined with respect to
D. We provide the corresponding expressions in the following Lemma.

Lemma 9.1.13. Assume that conditions (i)-(ii) in Theorem 9.1.1 hold for a pair of embed-
ded null hypersurface data D, ®, let € = €~ and consider the tensor fields {P, n}, {§, ¢}

defined by particularizing (2.5) for these two data sets. Define the tensors {Y-, &, Y+}
as in Theorem 9.1.9, the covectors {W a} and the functions {X4), Wa} along N accord-

ing to Corollary 9.1.7 and the vector field Wa € R(W 4, -). Let z be given by (9.12) and

{n, ea} be a basis of T(ITN ) with dual basis {q, 8}. Then, equations (9.22)-(9.27) can be
rewritten as

(. )
Mo = Lo ) v+ "2 (9.35)
( + +
[Ylied) =@ ¥ (%, W) +xD¥ (8, 8) -Ye
( )
- Z§(£n(p' @ (e + %‘fl + s(ea) + zP(@" ®, Ules, ), (9.36)
[Y](es, e8) = z@° ?+(WA, Ws) + )((4) 9+ (4, Ws) + X B) 'QJF(@ Wa)
wx x 2GR -Y(.e)-zd  (¢'®)
4) ®) A B A BV b)
22 ( 2)
+ > P& ¢ #) - (p'@( Ulea, es). (937)
while the energy-momentum tensor of the shell reads
(
fa, @) = - et 29" ¥ Wa, WD) + X9 (4, W)+ x 8 (W)
x x PG -Yle.e)-ze_ (p'@)
(A) (B) yA B A BV@ b)
2 ( 2)
£ PO @ - g B Ules, er) (938)
(

1(q,00) = et @ ¥ (#, Wh) +X(B)'9+(70: ) -Y(e)
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( ) 1
200 ® @)+ B ) 1P U ) (939
(< ) 1
164, 8%) = — ehas 1402 Y (9, %) -Y—(n,n)+ﬂjl , (9.40)

where has =" ylea, es).

+ + . .
Proof. Inserting (¢’ ¥ )X, V), = ¥ (©.X, 9.Y)|ge) into (9.22)-(9.27) and using
(9.17)-(9.18), equations (9.38)-(9.40) follow at once. ]

In Section 9.2, we shall recover the results of Proposition 7.3.7 by particularizing
Lemma 9.1.13 to the case when the boundaries N * have product topology. Lemma
9.1.13 therefore generalizes Proposition 7.3.7 to (null) boundaries with any topo-
logy, and states the matter-energy content of any null thin shell arising from the
matching of two spacetimes.

9.1.1.1 Pressure of the shell

In Chapters 7 and 8, we have already discussed the effect and the importance of
a non-zero pressure in a null shell. This, however, has been done in very specific
contexts (namely in the matching of two regions of Minkowski across a null hy-
perplane or for matchings across embedded AKHos) and by following a non-fully
geometric approach (i.e. by analyzing the effect of the pressure in some specific
coordinates). Our aim in this section is to study the pressure of a completely gen-
eral null shell at a fully abstract level, providing its explicit expression in terms of
well-defined geometric quantities and reinforcing the geometric interpretation of
Chapters 7 and 8.

In the following lemma we find explicit expressions for the pressure p in terms of
the surface gravities of various null generators of N.

Lemma 9.1.14. Assume that conditions (i)-(ii) in Theorem 9.1.1 hold for a pair of em-
bedded null hypersurface dataD = {N , vy, €, £ @, Y-}, ={N, % $ @ (2),@? }, a diffeo-
morphism @ and a gauge group element Gv) (cf. (9.12)). Consider an arbitrary gauge
parameter’ V€ T(TN). Let € = €~ and {n, n} be the null generators constructed from

9
{D,1¥} respectively. Define

def

+ def 1 *
Ko _ Y_(Tl, 1”1), ﬁni_ef _9 (@, ﬁ), (p'Kfp*n ; ((P@” _ n(z)) . (9.41)
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Then, the pressure p of the corresponding null shell is given by

( )
p=—€ Kn— G(Z% (¢ #n) or,equivalently — p = —-€ Kn— @ Ko n (9.42)

for any vector field V € T(TN ). In particular, the pressure vanishes if and only if
G\ (@ ), =k,  or equivalently @ Ko = Ku. (9.43)

Proof. Recall that Gle) = G(-1,-z». We start by noticing that (3.64) implies that
zZ,

( )
-1
Gy, (k) = G(Z—1 ~zV) (Ku) = z K« + 2@ . On the other hand, combining (7.97)
and (9.35), it follows

( 1
p= —¢€ —14@'I071+Kn+ﬂ22l
¢ ) e » ’ )
= _; G(Z_l,—ZW (Kn)—(P&n :_; G(Z’%(Kn)_go 671 , (944)
1

from where we conclude that -G} (€p) =G~

(7.99)). Applying (zV) (CAY)
G on both sides of the equation one obtains the left part

of (9.42). The right part of (9.42) is an immediate consequence of inserting the
definition of @ K., into the first line of (9.44), while (9.43) is proven by setting

p = 01in (9.42). O

(kn) - (p*Kb(recall (2.154) and

Remark 9.1.15. The last expression in (9.41) defines a function Ke., on N . However,
we still need to justify this terminology. It turns out that Ke., coincides with the surface

gravity of the vector field ¢ .n with respect to the hypersurface connection V¥ constructed
from the data . To prove this, we let z 2" (@) "z, so that (cf. (9.41))

( )
Kq,n:; B — (@) (1(2) and (9.0)@) = ()" (n(2)),

where the right part follows from (@.n)@)|ewy = (@ dz)n)|, = e 2))|y =
n@)y = (@) (n2)|ew). Then, the combination of (3.46) and (9.17) gives (recall

(2.49)) 1 ¢ 1
ﬁ nziﬁ (101 21(1& n—ﬁ(z)n I ?+(n,n)+’0(z) Qn
Vo.n 9. z ¢ 7 7z QQ Z_ZQ ; XS T
L« ) ( )

> R - @@ @ =5 - () (1) @on = Ko n @

Remark 9.1.16. The gauge parameter Vis completely superfluous and plays no role in
determining the pressure, which is only influenced by the function z given by (9.12). We
keep V in the expression to emphasize this fact.
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Remark 9.1.17. In Chapters 7 and 8, we have introduced the notion of self-compression
and self-stretching on the boundaries of the spacetimes to be matched. We have seen that
this effect is completely ruled by the pressure, and that it has to do with the differences in
the acceleration along the null generators of both sides. With (9.42), we recover the same

result but for the case of boundaries with any topology. Indeed, the surface gravities Kn and
Ko.n verify

Vin = Kin, Vq,,n(p,n = Kg.n @1, (9.45)

so that, when the matching rigging ¢~ points inwards (hence € = —1), the pressure is pos-
itive when Kn > @ Ky, (namely when the "acceleration” of n is greater than that of ¢.n)
and negative otherwise, just as happened in Section 7.3.3. The only scenario where there
exists no pressure occurs when both surface gravities coincide, i.e. when the accelerations

of n and @.n are the same.

9.1.2 Multiple matchings

We have already seen that when two given spacetimes (M*, ¢*) can be matched,
in general there exists at most one way of matching (i.e. only one matching map
@ or one single diffeomorphism ¢). However, we are also aware of the fact that
sometimes multiple (even infinite) matchings can be performed (e.g. when both

second fundamental forms U, @ vanish). In the language of (7.24), this means

that given a choice of embedding ¢- and matching rigging ¢~ on the minus side,
there exist several embeddings ¢+ for which the matching conditions hold, and
each embedding gives rise to a unique solution for the rigging ¢+ with suitable
orientation.

In this section, our aim is to study the scenario of multiple matchings. The idea
is to assume that all information about one of the matchings is known, in particu-
lar its corresponding diffeomorphism ¢ and hence the gravitational/matter-energy
content. As we shall see, in these circumstances one only needs to consider a single
hypersurface data set D (instead of two) and it is possible to provide explicit ex-
pressions for the jump [Y] and the energy-momentum tensor 7 of any other shell
in terms of their counterparts of the known matching. These results can be par-
ticularized to the case when the known matching gives rise to no-shell (i.e. when
it is such that [Y] = 0). This precisely happens in all cut-and-paste constructions,

where (M*, ¢*) are two regions of the same spacetime.

Our setup will be the following. We make a choice {¢-, {} of embedding and
rigging on the minus side and consider two matching embeddings ¢+, p+, each

of them satisfying (7.24) for two riggings {+, " respectively. We also assume that
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the information about one of the matchings is completely known, namely we let
{¢+, "} be given.
From the spacetimes (M* ¢*), we can construct two data sets D =

+
{N,v,€ 2Y}, M = {N,w, @, @@2),? } and Theorem 9.1.1 ensures that we can

find two diffeomorphisms ¢, P and two pairs {z, V}, {z, V} for which (i)-(ii) hold.
Even more, since the pair {¢# *, "} is known, we can always make the choice

{r=9+L" = {Misothat {y, ©, $91 = {y, € 1@} and ¢ is the identity map, i.e.
¢ = In. In these circumstances, using (2.7)-(2.8) in (9.12) yields z= 1 and V" = 0.
Making the same choice of {i*, L*} for the matching of ¢ transforms (9.2) into

Gen(@'y) = v, Gen(@ € =&  Guplp 29) = 20, (9.46)

and forces the embedding ¢* to be given by

Bt p=¢r. (9.47)
Equations (9.4)-(9.6) now read
. . ¢ , @ 28(V)
Qy=y.  9et=--yV>, <pﬂ‘2)=§— vy (), (9.48)

while the expressions (9.12) for the gauge parameters {z, '} become

—1 Pl o€ -¢ L@

“wowy VT TCET T 0w )

z

It is important to emphasize that whereas- = [ forces the metric parts of D, § to
be the same, the tensors Y-, Y& do not coincide in general. We let [Y} S Y-,
ée f + _ _ . ipos . . _
B it el Yol e dnRs S0 fying SheRray FHORA{ ATy SHEIBYS RS 1o
must be given by
( ( ) 1
= A Z P o 10 P _
Yal=2z (¢°¥ Jap+ 5 Pl €9 ) -¢" £ Un- v, (98, =Y, (950

The jumps [Y], [Y] can actually be related, as we shall see next. Indeed, by defining
the tensor

Y& o9 -t (9.51)
expression (9.50) can be rewritten as

2 ( ) .
Yl = Yo + 5 PO €0 & =@ L¥ Up-zy,lo" Oy+[Yal (952
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Moreover, a direct calculation shows that the components (9.22)-(9.24) of [Y] in a
basis {n, ea} of I'(TN) can be expressed in terms of Y as

n(z)
Y10, n) = ¥ (n,m) + [Y J0n,m) + ——, (9.53)
[Y](n,e4) = Y(n,ea) +[Y 11, en) - f(;Encp'e)(e/%)
+ efz‘(Z) + s(es) + zP(@" €, Ules, -), (9.54)

[Y](ea, e8) = Y (ea, es) + [Y ](ea, e5)
2

+Z7 P € ¢ &) - ¢'l? Ulen en) - zeliehViu(@ "0y  (955)

1ot s“r“? SFREo shdifs: Spb ANy Tor R8s DS e S

one finds (r ecall thathas = y(ea, ez))

(
(q,a) = 7(q, q) - €12 Y (es, es)

2 ( ) o 1
+— Plp'€¢ (e) _o'1® Uea, es) - zeﬁeﬁV(a(Cp ©y , (956)

7(q, 84) = 1(q, 6*) + €h”8 Y (n, es)
]

- Zz(ﬁnrp‘e)(eg) + 832(2) + s(es) + zP(@" € Ules, »)) (9.57)
N |
K. &) =rd, 8 —a® Yum+"D (9.58)

Z

The results (9.53)-(9.58) turn out to be of particular interest when one of the match-
ings of (M*, ¢*) gives no shell. In order to see this, let us assume that this is the
case and take ¢ to be the diffeomorphism corresponding to the no-shell matching.

Then, [Y ] = 0 (ie. ¥ T = Y-) holds and the tensor Y is given by (cf. (9.51))
Y =20 Y- - Y-, (9.59)

Setting [Y] = 0 in equations (9.53)-(9.55) yields

n(z)
[YI(n, 1) = ¥ (n,m) + —, (9.60)
[Y](n,ea) = Y(n,ea) - Z(ﬁn “€)(ea) + eal) + s(ea) + zP(@ €, U(es, +)), (9.61)
2( 2z
(Yo er) = ¥es,en) + 5 P9 €9°0) - o' !1® Ulea, en)
— ze" ¢ ("9

. (9.62)
A BV@ b)
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Consequently, when a no-shell matching is possible, the jump [Y] correspond-
ing to any other possible matching is given by (9.60)-(9.62) in terms of the data
fields {y, €, £ @, Y-} and the diffeomorphism ¢. In other words, knowing the
information about the no-shell matching automatically allows one to obtain the
gravitational/matter-energy content of the remaining matchings by simply determ-
ining . In particular, there is no need to compute the new matching rigging ¢+ or
the tensor Y* to determine the shell properties. One simple needs to compute the
right-hand sides of (9.60)-(9.62) using (9.59).

We emphasize that (9.60)-(9.62) apply, in particular, when (M¥, ¢*) are two re-
gions of the same spacetime (M, g) and more than one matching can be performed.
Then, the existence of a no-shell matching is always guaranteed, as one can always
recover the full spacetime (M, g) from the matching of (M*, ¢*). This in fact oc-
curs in all cut-and-paste constructions, which means that (9.60)-(9.62) provide the
matter content of a null shell generated by any cut-and-paste matching procedure, as long
as the two regions (M*, g*) of (M, g) can be pasted in more than one way.

We conclude this section by discussing a particular situation of interest, namely the
case when a null hypersurface data D = {N, y, €, £ @, Y-} can be embedded in
two spacetimes (M*, ¢*) with embeddings /* (such that (N ) are boundaries of
M*) and riggings L* with the appropriate orientation. This means that (M*, ¢*)
can be matched so that the resulting spacetime contains no shell (because Y- is the
same for both spacetimes). We assume, in addition, that D admits a vector field
& € I'(TN ) with the property £¢y = 0. The vector & defines a (local) one-parameter
group of transformations {¢:} of N satisfying

oY =Y. (9.63)

We now prove that, for each value of ¢, the diffeomorphism ¢: gives rise to a
matching. First, we define gauge parameters {z, V} according to (9.49) for ¢ = @

Then, itis immediate to check that (9.46) holds for ¢ = ¢: and thatz > 0 (because
@: depends continuously on t and (¢ ;—¢€)(n) = €(n) = 1). Therefore, conditions
(1) and (i7) in Theorem 9.1.1 are both fulfilled (notice that, since L* are matching

riggings, one points inwards and the other outwards, so (i) is just z > 0) and in-
deed each ¢: corresponds to a different matching. The jump [Y] = Y+ - Y- where

+ def 1
YT =

energy content of the resulting shell. The vector field ¢ generates a multitude of

@ (%) (£z+g*) (and ¢+ is given by (9.13)) rules the gravitational /matter-

new shells. The construction is further simplified when, in addtion to (9.63), it
holds

oY =Y (9.64)
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Then (9.59) implies
Y=0z-1)Y, (9.65)

which simplifies the expressions (9.60)-(9.62) considerably. One may wonder what
is the final result when, in addition, E is the restriction to N of a Killing vector field
Eon M~ (ie. 17 & = &) and £¢L™ = 0 is fulfilled (so that (9.63) and (9.64) hold). It

is straightforward to see that

0l=0 ¢L0=140 (9.66)

which combined with (9.49) means thatz = 1,and V = 0,so Y = 0 (cf. (9.65)).
Moreover, one can easily check that the terms in the right-hand side of (9.60)-
(9.62) cancel out. Thus, the procedure gives rise to another no-shell matching, as
one would expect because the transformation induced by ¢ does not affect in any
geometric way the spacetime (M7, ¢7). This constitutes a non-trivial consistency
check of equations (9.60)-(9.62).

9.2 null boundaries with product topology S xR

In order to connect the results in this chapter with those from Chapters 7 and 8,
we now consider the case when the boundaries of the spacetimes to be matched
can be foliated by a family of spacelike cross-sections. In particular, we shall find a
step function H and provide explicit expressions for the gauge parameters {z, V}
(cf. (9.12)) and the gravitational/matter-energy content of the shell. The results for

the jump [Y] will be then compared with their counterparts from Chapter 7.

Our setup for the present section is the following. We consider two spacetimes
(M*, ¢*) with null boundaries N and assume that N-* have product topology
S* x R, where S* are spacelike cross-sections and the null generators are along

R. We select two future null generators k* € I'(TM*)|z of N*and two cross-

sections S,* € N*. We then construct foliation functions v+ € F (N *) by solving
k*(v:) = 1 with initial values v«|s » = 0. Finally, the riggings L* are fixed by
the conditions of being orthogonal to the respective leaves {v: = const}, null and

scaled to satisfy y* et (L%, k*) = 1.

We assume that (M*, ¢*) can be matched, so that conditions (i)-(i7) in Theorem
9.1.1 are fulfilled for a diffeomorphism ¢ : N —--- N verifying (9.11). This allows
us to take two embeddings i : N '=--- M* and construct the hypersurface data
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+
setsD = {N,y,8 £®,Y}, # — N, w, €, 4 ¥} according to (9.3). We also
introduce the functions

AL O 2 E M @) and HE ¢'v (9.67)

on N. Since by construction 15 (1) = k™ and 17(n) = k* (recall (2.25)), it is imme-

diate to check that {A, v} are foliation functions of N. Observe also that our choice

for the riggings L* implies
€ = d), 1@ _y, ® - @ =o, (9.68)
which in turn means (recall (2.10)-(2.11))
nA) =1, F=0, s=0, M) =1 B=0 ¢=0 (9.69)

We now select vector fields {ea} tangent to the leaves {A = const.} so that {n,ea}

is a basis of I'(TN ) satisfying [n, ea] = 0. As before, we let 1 be induced metric on
{A = const} and V" for its Levi-Civita derivative. In particular has =" y(es, es)
and we note that, for any f € F(N ), we can write eA(f) also as Vfgf. Since in the
present case ea(A) = 0, the pull-back of € to the leaves of constant A is zero, i.e.

2 4 = wa = 0. This, together with £ @ = 0 and (3.50), means that P = h8es & es.

Observe also that
¢ €=gd=dp o)=di, ¢4? =0 (9.70)

which in particular means that
. AB,_ "
P(op'®,-)=PdH-)=h"" (V aH)es. (9.71)

We can now particularize (9.12) to the case of boundaries with product topology.
For that we insert (9.70)-(9.71) into (9.12) and get

¥
n—ep . (9.72)

1 I vViLH
— ) V=hwBy,H B
2= (H) VAt o)

The push-forward vector fields {¢.n, ¢ .e4} can also be computed in terms of the
def

function H and the vector fields Wi = B(W 4, -) (recall Corollary 9.1.7). In fact,
combining (2.9) and (9.72) one finds

Viea V) = —yles, P(dH, -) = —ea(H), (9.73)
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which in turn entails that

“Wal@.Vowp = (@ Wa)(V)][p = —ylea, V)| = ea(H)|p Vp€N. (9.74)

Using wa = 0, (9.72) and (9.74) in the expressions of Corollary 9.1.7 yields

n = (e1) (n(H)n, (9.75)
®. o

@.ea = Wa+ (¢ 1) (ea(H))n. ¢ (9.76)

Observe that {WA} are tangent to the leaves {v = const.} (because by Corollary

EX/JVA Vggnll{rrrll% AR ngﬁ/generat f‘vr\{A)as we p(%)]el\/r[l%g(%over the vector fields

Lemma 9.2.1. The vector fields § and Wa satisfy [#, Wa] = 0.

def

fyenty RsTas s %n%s&{lesn”asin @0 ) g Xy, 5B Gy (HD), so thae

[Tl, WA] = [u l(p*n; (p*eA] - [Tl,X(A)n]

7] ¢ 17
=ule.(ne) +u=2@.ea We.n —9()((/1))n0

= u? @.ealu) - @.nlxwn) @.n (9.77)

where in the last equality we used [1,ea] = 0 and n = u~1¢.n. To prove the claim
we just need to show that the last parenthesis is zero. Indeed,

@.ea(u) = @.n(xp)) = @du)(@.ea) = [dxu)@.n) = @ ([du)es) - @ (dx)n)

= (do u)(es) - (o xa)n) = ea(n(H)) - nlea(H))
= [ea, n](H) = 0.

]
By Remark 9.1.8 we also know that {6, W4} constitute a basis of '(TN ). Therefore,

the vector fields

def def

{e="rn, e red, = o), e, E Hg.ed) (9.78)

form basis of I'(TN-) respectively. Inserting (9.75)-(9.76) into (9.78) and using
again that I+(n? = k™, one obtains

et = n(H)k+, et = ea(H)k* + 17 (W), (9.79)
1 A *
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where for simplicity we have dropped pull-backs affecting functions. Given that
{I*Wa} are linearly independent and tangent to the leaves {v; = const.} ¢ N,
they can be decomposed in a basis {L", k", 5} of T(TM™)|-4 satisfying (7.2) as
1T Wa = o}, with {2} defining an invertible matrix. Moreover, b ,Jare constant
along the null generators as a consequence of Lemma 9.2.1:

0 = [1.(n), 1.(Wa)] = [k+, bBo+] = k+(bB)v+ == k+(@®B) = 0.
9 A A A B A

Thus, with expressions (9.79) we recover the form of the matching vector fields
{eT} introduced in (7.30).

The matching rigging {* can be derived as well by inserting (9.72) into (9.13) and
using (9.75)-(9.76), (9.78)-(9.79). Specifically, one obtains

¥¥
¢ = L sy o - vhBHef
T a(H A 2n(H
n(H) n( )h ¥y
- (;‘l) LT —nBviH /T(WA)+V§Hk+ : (9.80)
n

In the language of Chapter 7, we have chosen L* so that y;* = 1, % = 0, firstly
because we have identified the vector fields {v 7 } introduced in Section 7.3 with

the push-forwards of {ea} (cf. (9.78)) and secondly because 1fWa = bivg means

that yi = ¢ (LY, 0% = G HB®(Ws) = (b")BWs(v) = 0. Moreover, the inverse
metric 14 is given by h8 = hﬂf(b_l)f‘(b_l)B] (again due to tWa = bBp+). Thus,
it is immediate to check that (9.80) is equivalent to (7.70).

Before studying the gravitational/matter-energy content of the shell, it is also
worth mentioning that equation (7.54) can now be obtained by simply particu-

larizing (9.20) for z=1 = n(H). In the present case one gets
U=n(H)o'¥. (9.81)

The expressions for [Y] are obtained as a particular case of Theorem 9.1.9.

Theorem 9.2.2. In the setup and conditions of Theorem 9.1.9 suppose further that the
boundaries N * can be foliated by cross-sections and define A, v, H € F(N ) as in (9.67).
Let h be the induced metric and V" the corresponding Levi-Civita covariant derivative on
the leaves {A = const.} € N. Then,

¥

Uwp-VaVy H —Y;.  (9.82)

1 ot HAB(VLE)(VH)
2 (H) (o L Yab + 20(H)

[Yab] =
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Let {ea} be vector fields in N such that {n, ea} is a basis adapted to the foliation {A =

const.} and define Wa by means of (9.76). Then the components the jump [Y] can be

written as
+ n(n(H))

Y1, 1) = n(H)ep" ¥ (%, %) -Y-(n,n)- T (9.83)

YIGe) =@ ¥ (i, Wa) + (VDo ¥ (9, ) -Y-(n,e0)
_ v, ()  piviy

TCET) e Ulea, e), (9.84)
1 . N
(en en) = o @ ¥V (Wa, We) +2(V", H)p" ¥ (#, Wp)
+ VIV e ¥ (h, %) - n(H)Y {ps, )
hY (Vi H)(V! H)
2D Uy(ea, ep) - VVH . (9.85)

Proof. Equation (9.82) follows at once after inserting (9.70)-(9.72) into (9.21). To
obtain (9.83)-(9.85), it suffices to particularize (9.35)-(9.37) for z7! = n(H), ¢ € =

dH, ) = (@) (ea(H)), 9 4 = 0,5 = 0and P(¢ ' &,-) = hAB(V;H)eB and
* a b I’l

notice that £A¢ ) = £.4dH = d(n(H)), as well as e egVaVyH = VaVBH (see
(3.94)). 0

Our aim now is to connect expressions (9.83)-(9.85) with those in Proposition 7.3.7.
However, as a prior step we need to relate hypersurface data quantities with the
tensors defined in (2.99). This is done in the following lemma.

Lemma 9.2.3. Let {N , y, €, £ @, Y} be hypersurface data embedded in a semi-Riemannian

manifold (M, g) with embedding ¢ and rigging {. Define the null generator k =" ¢.n and
denote by K its surface gravity. Consider a transverse submanifold S € N and assume
that the gauge is such that the rigging { is null and orthogonal to ¢(S). Then, for any
basis {ea} of T(TS) it holds (we identify scalars and vectors with their images on ¢(N ))

@ ke = -Y(n,n),

(b) oz(ea) = Y(ea, n) + F(es, n),
k
(c) K (ea, er) = Uf(ea, en).

(d) ©%(es, ery) = Y(ea, en),
¢ k
where o¢, © are defined by (2.99) for L = { and K is the second fundamental form of

(N ) with respect to k (cf. (2.84)).
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Proof. Claim (a) follows at once from (2.44) and (3.47) (note that here v = k). To

prove (b) we compute
(2.99)
o7(ea) = -g(Veak, Q) = g(Veal k) = Y(ea, n) + F(ea, n),

where in the last step we used (5.5) for y = k (so that 8 = 0 and y = n). Item (¢)
has already been stated after definition (2.47) and (d) follows from

1 2.99
Y(es, e8) = Z—(E(g)(eA, es) = g Vea { es (:)eC €A, €B) .

]

We are now in a position where the comparison can be made. Since in the present
case ;" =1, p% = 0 and n = ) (because €(,) = 1), the function A in equation
(7.30) is A = n(H) (recall (7.45)) and the one-form & of Lemma 7.3.2 verifies 1 =
—Vhﬁ. This in turn forces the components {X“} of (7.66)-(7.67) to be given by

1 hAthAHVhBH

Zuly X4 = —pasviH, (9.86)
Thus, expressions (7.88)-(7.90) become
nn(H))
[YI(n,n) = - n(H)kt + R - n(H) (9.87)
K =
[YI(n,e ) = o+ (W) - o-(v-) - (V' H)k
/ L J L ] ] Tk+
h
v "(n(H))  plByh [
- ]nu—l) + n(HE) K_ (v, v7), (9.88)
1 (
[Yl(e1,e)) = 2 2Vl oW ) — ks (VIH)(VJH) + Gi(W(I;W}%)
hABVh , HV" HKk

- o= o h_h
- (He(v;, v5) + () (v, o) —viv, H - (989)
Particularizing Lemma 9.2.3 to the sections {A = const} of D (with basis esa) and

the sections {v = const} of U?(with basis Wa), and recalling that F = P=0 (see
(9.69)), it is straightforward to check that (9.87)-(9.89) coincide with (9.83)-(9.85).

9.3 cut-and-paste construction: (anti-)de sitter spacetime

We have already mentioned that (9.60)-(9.62) hold for the specific case when the
two spacetimes to be matched are actually two regions of the same spacetime (with

267



268

matching from an abstract viewpoint

the additional requirement that more than one matching is allowed). In this sec-
tion, our aim is to provide an example of a cut-and-paste construction, namely
the matching of two regions of a constant-curvature spacetime across a totally
geodesic null hypersurface. For previous works on the cut-and-paste construc-
tion describing non-expanding impulsive gravitational waves in constant curvature
backgrounds we refer e.g. to [88], [91], [92] [5], [6] and references therein. In these
publications, the discontinuity in the coordinates when crossing the shell is given
by the Penrose’s jump (2.170). Moreover, as we shall see next, this jump can only
be recovered when the shell has neither pressure nor energy-flux, just as happened
in the case of Minkowski described in Section 7.3.3.

It is well-known that in any constant curvature spacetime (M, ) there exists only
one totally geodesic null hypersurface up to isometries (see e.g. [133], [134]). Let us
denote one such hypersurface by N. Then, one can always construct coordinates
{U, V, x4} adapted to N so that the metric is conformally flatand N £ {U = 0},

namely

g= 8Mk
2 def A (9.90)
where gmx = -24dUdV + Oandx?dx?, u=1+— Oasx3xB -2U0V .

12

Here A stands for the cosmological constant,so A = 0, A > 0, A < 0 correspond to

Minkowski, de Sittel;land anti-de Sitter spacetimes respectively. When A < 0, the
coordinates {U, V, x } cover a whole neighbourhood of N. However, for the de

Sitter case one needs to remove one generator of N . This is because the topology
of N"is S” x R while stereographic coordinates only cover the sphere minus one
point. In this section, we will analyze the three cases A = 0, A < 0and A > 0 at
once with the matching formalism introduced before.

The induced metric on N reads

N Oasdx AdxB
ds2 ¥ ¢ By, (9.91)

14 46

and obviously the topology of N is S x R, S being a spacelike section and the
null generators being along R. Therefore, all results from Section 9.2 apply in the
present context.

Let us construct hypersurface data associated to N. Since N is embedded on

M, g), there exists an abstract manifold N and an embedding / such that
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IIN) = N. We can select / to be as trivial as possible by constructing coordin-
ates {A, yA} on N so that

1: N — N
A yd) — 1Ay =U =0,V =Ax4 =4,

(9.92)

We also need a choice of rigging vector field { along N'. For convenience, we set
{ = —p2du (observe that p?| /= 0). The corresponding null metric hypersurface
data {N,y, € £ @} defined by (2.22) is

y = %dy’* ® dy?, € =dA\ L =0, (9.93)
N

where un = 1"y = 1+ 254y yB. Observe that & € Rady and that n = 9
12 A A

because €(d)) = 1. Moreover, F = 0 and s = 0 (cf. (2.10)-(2.11)) and U = 0 as a
consequence of (2.12) and (9.93).

In order to compute the explicit form of the tensor Y, we first obtain the derivative
£¢g. Using that du is a Killing vector of gm, one gets

( 1
2 AV
£8=— (8(J,u)ng 2du & gm(du, ) = —— )—ng ¥y 2dp Qs dV
=t Vew-2 Swx dx -VduU - ol &.av (9.94)
&Y B A
from where it follows (cf. (2.39))
Y=-—"" Ady* @ dyf - 2yPdy? Qs dA . (9.95)

6N

When A = 0 we recover Y = 0, which is in accordance with the first equation of
(7.121). The explicit expressions for the components of Y are

Adsy/ AA
Ym = Yrp = Y= - : 9.96
Mm =0, WP e Yy 6L Oy (9.96)
Cutting the spacetime across the hypersurface {U = 0} leaves two spacetimes

(M*, ¢*) defined to be the regions U 2 0 endowed with the metrics

¢ e — 2dU.dVe + Oandx”dx®
, Where Mk — + % (9.97)

8 ="r . y
M I dzfl—l—f_z 5ABXA;JJ.3_F—2U1V1 .

*
ng

Obviously, the boundaries are N* = {U. = 0}.

269



270

matching from an abstract viewpoint

It is clear that one can always perform a matching of (M¥, ¢*) and give rise to
a resulting spacetime with no matter/gravitational content on the matching hy-
persurface. It suffices to select the same two riggings along the boundaries and
paste (M*, ¢g*) across N with the identity matching map. With this procedure
we simply recover the global (anti-)de Sitter spacetime. Moreover, since'N *are
totally geodesic, by (7.54) (or (9.20)) we know that multiple matchings can be per-

formed.

We therefore proceed as in Section 9.1.2, i.e. we let the two embeddings /* be
given by r* = 1 and take {~ = —p29du_, {* = —pu%du, as the riggings defining
the no-shell matching, namely the matching for which [Y] = 0. Any other pos-
sible matching will be ruled by a diffeomorphism ¢ of N onto itself and it will
correspond to a different rigging {*+ along N-*. Specifically, the hypersurface data
corresponding to the no-shell matching is D = {N,y, €, £ ®,Y}, where {y, €, £ @}
and Y are respectively given by (9.93) and (9.95), while the matter/gravitational
content of the shell of any other possible matching (ruled by ¢) is given by the the
jump [Y] £ Y+ - Y with
) ( )

+ ef 1 . R
Y' = 50 1(£egh) . (9.98)
From Section 9.1.2, we know that there is no need to compute the new rigging ¢+
or its corresponding Y+, but the jump [Y] is explicitly given by (9.60)-(9.62). Con-
sequently, we only need to worry about the diffeomorphism ¢. The only restriction
that ¢ must satisfy is ¢y = y, which in coordinates reads

0y @) (8,0 ¥®)BaB 6A By
Y v % O (9.99)

1+ 050 ¢))> T a+ 1251]y Iyl >2

It follows that the components {¢4} cannot depend on the coordinate A. In
particular, if we let {hA(yB)} be a set of functions such that (a) the Jac-

obian matrix %l has non-zero determinant and (b) {hA(yB)} satisfy
1+ 2oyyly))- 38&; = (1 + Adyhlh))-2(0 chA)(athB)5AB any diffeomorphism

12 12
@ : N —- N of the form

@: N - N

(9.100)
A y® — o yP) = (HQ ¥P), KAGP)).

with 9\H/= 0 fulfils ¢y = y. A particular simple example is {#* = y*}, but many
more exist. In fact since the metric on any section of N is of constant curvature, it
is also maximally symmetric (and of dimension n - 1) so hA(yB) can depend on

n(n - 1)/2 arbitrary parameters. Once we find one such set {#"(y?)}, the gauge
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parameters z and V are given by (9.72) for {n = dr, ea = ayA} and for an arbitrary

step function H(A, y4).

In the present case the tensor Y is given by Y = w(%y(p'Y -Y (cf. (9.59)), so we

now compute the pull-back @Y. Defining pyy £ +A Sash*hPB, from (9.95) and
(9.100) it is straightforward to get

AOyl oWl oH

(@ Y)m =0, ((fp D = 6y 3yF an (9.101)
. Ady ~ ; OoH on' oW oH onl on
= + = (—
(@ Y), a8 671, h Ao T oy oy 3y 3y (9.102)
so that, multiplying (9.101)-(9.102) by rﬁ and subtracting Y (cf. (9.95)) yields
A B o _ gl 1¥
Ym =0 Y =0 K %- %Y (9.103)
HN N

( 1 ¥
AS | OH oW ohl 9H L] sl
v .= ] _H on'on +6A63A(H)

J
7
—_— + —
YV.oen(H) py ovtey®  oaytey®  Onoytoy®

Inserting these expressions into (9.60)-(9.62) and using n = d), s = 0, U =0
together with the identity (£:. @ €) (ea) = (£dH) (ea) = d(n(H))(es) = ea(n(H))
(here @ € = dH by (9.70) and € = €), one finds

n(n(H))
Yul = ==y
Y V" (n(H))
[ ayal = Youa - f;(—) (9.104)
F W # H
yAyB] :YyAyB_ A B ,
n(H)

which can be interpreted as the sum of the jump corresponding to the matching
of two regions of Minkowski across a null hyperplane (see Section 7.3.3, equation
(7.121)) plus the contribution of the tensor Y. Observe that A = 0 entails Y = 0,
so in this way we recover expressions (7.121) for the most general shell in the
spacetime of Minkowski.

A direct computation that combines the definitions (7.97), (9.93) and (9.104) yields

energy-density, energy flux and pressure (note that here we need to take € = -1)
h h
_ & By _ VAV BH
P = HUn yAyB n(H) ’
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h
j= 2 54° % ~ Yas Oy, (9.105)
_ _n(n(Hn
P n(H)

Observe that only the pressure is independent of the value of the cosmological
constant A (p and j depend on the conformal factor un and on Y'). The pres-
sure p takes the same value for the matchings of two regions of (anti-)de Sitter
or Minkowski (in fact, p coincides with the pressure obtained in Section 7.3.3). In
particular, in the case ¥ = yA (i.e. when the mapping between null generators of

both sides is trivial), then Y = 0 (cf. (9.103)) and (9.105) simplifies to

vh Vi H
AB A
p=ps Yyays = ]
h
=, 6A3%%, (9.106)
_ _ninﬂHn
n(H) .

In the cut-and-paste constructions corresponding to constant-curvature spacetimes,
the so-called Penrose’s junction conditions impose the jump (2.170) in the coordinates

across the shell. In the present case the matching embeddings ¢~ = / and ¢+ =
I ° @ are given by
< )
¢_(A’ yB) = U_ = 0) V— - A; xA_ = yA »
( )

(A yP) = Us =0,Ve = HA yP), x4 = hA(y®) ,

so the step function corresponding to Penrose’s jump is H(A y?) = A+ H(y%),
H € F(N ). In order to recover such an H, one needs that there is no energy flux
and no pressure on the shell. Indeed, imposing this in (9.106) and integrating for H
yields H(A, yA) = gA + H(yA) with H € F(N ) and a € R being positivel. Thus,
in this more general context with arbitrary cosmological constant, the Penrose’s
jump (2.170) still describes either purely gravitational waves (when p, jand p are
all zero) or shells of null dust (when j and p vanish but p/= 0), analogously to

what happened in Section 7.3.3 for the Minkowski spacetime.

In the present case, - point inwards with respect toM -, ¢7), so {* points outwards (be-
cause the matching is possible). In these circumstances, condition (i7) in Theorem 9.1.1 imposes
sign(z) = -sign(e*)sign(e) = (+1)( 1) = +1. This, together with (9.72), means that n(H) > 0
necessarily, which in turn forces the constant a to be strictly positive.



CONCLUSIONS

This thesis consists of two different parts. In Chapters 3, 4, 5, 6, we have studied in
deep detail the geometry of abstract null hypersurfaces by means of the formalism
of hypersurface data introduced in Chapter 2. The second part of the thesis, corres-
ponding to Chapters 7, 8, 9, is devoted to addressing the problem of matching two
completely general spacetimes across a null hypersurface. In view of the structure
of the thesis, we split the conclusions in two sections, one for each part.

10.1 formalism of hypersurface data

Let us start by summarizing the main results within Chapter 3. As we have seen,
the tensor field "Lie derivative of a connection D along a vector Z", denoted by
xz £ £2D, plays a fundamental role in the context of hypersurfaces equipped
with a privileged vector field. In Section 3.1, we have obtained explicit expressions
for Xz whenever D is torsion-free and the manifold is endowed with a symmetric
2-covariant tensor (Lemma 3.1.6 and Corollary 3.1.7). Precisely these last results
allow us to relate Iz with the deformation tensor KZ of Zin Chapter 5. As a
particular case, we have considered hypersurface data {N , y, ¢, 0@ Y} and intro-

duced the tensor "Lie derivative of the metric hypersurface connection”, namely
s & £,V . We have computed s explicitly in terms of the metric part of the data
(Lemma 3.1.8) and we have connected X with the tensor "Lie derivative of the
EE (Lemma 3.1.9).

Section 3.2 concentrates on hypersurface data in the null case. In Definitions 3.2.1

. nw def
hypersurface connection" X =

and 3.2.2 as well as in Lemma 3.2.3, we set up the notion of null (metric) hyper-
surface data. These concepts are based upon the fact that the tensor y has one
degenerate direction given by the data vector n, which must necessarily be every-

where non-zero. The data one-form € is also restricted to verify €(n)/= 0.
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In the spirit of recovering the standard notions of null hypersurfaces that are
well-known in the embedded context, at the abstract level we have introduced
a notion of surface gravity k» associated to n. When a null hypersurface data set
{N,v, € £ ®,Y} happens to be embedded with embedding ¢ and rigging ¢, the
scalar function k» defined in (2.44) coincides with the surface gravity of the unique
null normal v along ¢(N ) satisfying ¢(v,{) = 1 (see (3.47)).

Since the tensor y is degenerate, another key point is how to codify abstractly the
intrinsic geometry of a null hypersurface (i.e. the information about the full metric
tensor of the would-be ambient space). Two important results in this regard are
that one can always select the metric tensors {€, £ @} at will as long as €(n)/= 0
everywhere on N (Lemma 3.2.9) and that two null metric hypersurface data sets
{N,y, & £ @} {N,y € £ @} are related by a gauge transformation if and only if
Y = ¥ (Corollary 3.2.11). This implies that in the null case one can codify all the
intrinsic geometric information of the hypersurface in the tensor y up to gauge
freedom.

We have also studied the geometry of any transverse submanifold S within N . The
most important result in this context is Lemma 3.2.19, where we obtain the relation
of the Levi-Civita covariant derivative V" of S with V Finally, we analyze the case
when a null hypersurface data admits a cross-section S. In this context we prove
that the one-form s, the scalar £ @ and the pull-back €, can be selected freely while
K» can always be set to zero (Proposition 3.2.23, Lemma 3.2.24, Lemma 3.2.25).

The last part of Chapter 3 is Section 3.3, where we consider null hypersurface

data {N, y, € £ @, Y} equipped with an additional gauge-invariant vector field ) €

Rady. We introduce a new gauge-invariant scalar function k € F(N ) (Lemma

3.3.1) which in the embedded case happens to coincide with the surface gravity of
def

n = ¢.n (at points where n is non-zero). This makes Kk a smooth extension of the

surface gravity of n to the points of ¢(N ) where n vanishes (see Proposition 3.3.2).

Prior to this thesis, the formalism of hypersurface data had already succeeded in
determining various components of the ambient Riemann tensor at the abstract
level. Following in this direction, in this work we have been able to codify inform-
ation about the ambient Ricci tensor by introducing the constraint tensor R, to
which we devote Chapter 4. In Section 4.1, we provide the abstract definition of
R purely in terms of (general) hypersurface data {N, y, €, £ @, Y} (cf. (4.15)). Such
definition is built so that the tensor Y appears explicitly. This turns out to be ad-
vantageous in many situations, e.g. this fact allows us to obtain the generalized
master equation in Chapter 6 (see below). The definition of R does not require

any global topological assumption on N. Moreover, it is fully covariant on N des-
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pite the fact that N is not equipped with a metric tensor. In the embedded case,
the constraint tensor codifies a certain combination of components of the ambient
Riemann and Ricci tensors (see Proposition 4.1.4) and, at null points, it coincides
with the pull-back to N of the ambient Ricci tensor (cf. (4.17)). The rest of Chapter
4 concentrates on the null case. In particular, in Section 4.2 we compute the contrac-
tions Ran®, Run™n? (Theorem 4.2.2). With the latter we obtain the equivalent to
the Raychaudhuri equation (2.103) at the abstract level. We then study the pull-back
of R to a transverse submanifold S © N, obtaining the explicit relation between
Rap and the Ricci tensor of S (Theorem 4.2.3).

Chapter 4 concludes with Section 4.3, where we find several Gi-invariant quantities
on any transverse submanifold S of N . From equation (4.30) and using the fact that
the constraint tensor is gauge-invariant, we identify the tensors wy, P, and §,
which exhibit a simple gauge behaviour (see Lemma 4.3.1 and Corollary 4.3.3) and
in fact are invariant under the action of the subgroup G1. This in turn allows us
to write the pull-back of R to S in terms of Gi-invariant objects (Proposition 4.3.2).
The tensor §; codifies information on the first order variation of the tensor field
Y along 7 and its features are worth further consideration. It is intrinsic to S and
it codifies information on the curvature. Moreover, it plays a core role in the study
of abstract Killing horizons of order one because it is related to the pull-back to S

of the tensor field Z -n @ £:Y, which happens to vanish in this sort of horizons

in the gauge where the symmetry generator coincides with the null generator n

(which of course requires that the horizon does not contain fixed points).

Chapter 5 constitutes one of the main parts of the thesis. It is divided in
four sections. In Section 5.1 we consider completely general hypersurface data
{N,v,€ £ Y} embedded in a semi-Riemannian manifold (M, g¢) with embed-
ding ¢ and rigging {. We let (M, g) be equipped with an additional vector field
y € T'(IM) (non-necessarily tangent to ¢(N ) at any of its points). In this context,
we compute the Lie bracket [y, {] (for any extension of the rigging off ¢(N)) in
terms of the deformation tensor KV ' £y (Lemma 5.1.2). We then concentrate on
the case when y is tangent to ¢(N ) everywhere therein, and find the explicit ex-
pression for the Lie derivative £Y, y L ¢.y in terms of the data, the components
of K on ¢(N) and the pull-back ¢ (£;,KY) (Proposition 5.1.3).

In Section 5.2 we focus on the case when {N, y, €, £ @, Y} defines null embedded
hypersurface data. We also restrict y, i to be null and tangent to the hypersurface,
and denote them as n, 7 respectively. In such circumstances, we prove that the
components K7(Z, v) (where, as usual, v € I'(TM)|sn ) is the unique null normal
verifying ¢({, v) = 1) are gauge-invariant (Lemma 5.2.1).
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def
Section 5.3 is devoted to the geometric properties of the tensor field £, = £ V.

Its relation with the deformation tensor K" of n is given by (5.30). We start with
Lemma 5.3.1, where we obtain the pull-back ¢ (W (Z;)) in terms of {p, ¥, i, T} (cf.
(5.15)-(5.16)), the null data {N, y, €, £ @, Y} and the function a defined by i = an.
The analysis of ¢ (W (Z)) reveals the new tensor T1”, given by a certain combina-
tion of {p, ¥, i, T} (cf. (5.39)). It turns out that T17, TN (1, -) exhibit a simple gauge
behaviour (Lemma 5.3.2). In particular, when U = 0 the tensor n’ simply rescales
under gauge transformations, while N, ) is gauge-invariant. Another import-
ant result within Section 5.3 is Lemma 5.3.5, where we find explicit expressions for
the vector field 2,(¢.Y, ¢.Z), VY, Z € T(TN ). This becomes essential in the study
of horizons at a purely abstract level, as we shall see next.

Chapter 5 concludes with Section 5.4, where we present the notions of abstract
Killing horizons of order zero and one (see Definitions 5.4.1 and 5.4.5). The main
advantages of AKHo,1s are firstly that they allow us to study horizons without
the necessity of them being embedded on any ambient space and secondly that
they do not require any global topological assumption whatsoever. The notions
of AKHo/1s generalize those of non-expanding, isolated and Killing horizons (of
order zero and one). At the embedded level, we have also introduced the concepts
of Killing horizon of order zero and %. The former corresponds to an embedded
null hypersurface admitting a null tangent vector field n such that all components
of the deformation tensor vanish on the hypersurface. In the latter, in addition, the
tangent-tangent components of £,K7 are zero. As anticipated above, the results of
Section 5.3 are essential in this context because it occurs that an embedded AKH1
verifies that Zn(¢. X, . W) = 0, VX, We I'(TN ) and 11" = 0 (Lemma 5.4.7). The
tensors X, and " therefore play a crucial role in the understanding these sort of
abstract horizons.

Chapter 6 is another key part of the thesis. For any null hypersurface data
{N,v, € £ @, Y} embedded in a semi-Riemannian manifold with embedding ¢
and rigging ¢, and assuming that the data admits a gauge-invariant vector field
n € Rady, we derive the generalized master equation as well as its contractions
with the data vector field n (see Theorem 6.1.1). The generalized master equation
(6.1) is a fully covariant identity involving hypesurface data, derivatives of the
proportionality function a between 7} and #, the curvature tensors R and R , the
surface gravity k of /7 and the ambient objects {p, T1"}, where 1 is any extension
of ¢.7 off ¢(N) (in particular, the deformation tensor K7 has not been restricted
in any sense). This identity holds everywhere on the hypersurface (even at points
where 7] vanishes), is valid in any gauge and it does not require any topological

assumption besides the existence of an everywhere non-zero, smooth vector field



10.1 formalism of hypersurface data

n. The contractions of (6.1) with n (namely (6.2)-(6.3)) are of interest as well. For
a completely general null hypersurface admitting an additional vector field, these
identities allow us to identify the necessary and sufficient conditions for the sur-
face gravity K to remain constant along the null generators of N (Corollary 6.1.3)
and everywhere on N (Corollary 6.1.4). The behaviour of the surface gravity «
turns out to be ruled by the tensor X

In Section 6.2 we study the generalized master equation in the case when the
deformation tensor K7is proportional to the metric, i.e. K7 = 2xg for a suitable
function . The fact that the function ya-! must be everywhere regular on N
imposes that ¥ has a zero of higher order than a at least at those points where
a vanishes (Proposition 6.2.1), otherwise there exist singularities in the manifold
where the data is embedded (Remark 6.2.3). In particular, this fact allows us to
prove that a smooth homothetic Killing horizon cannot admit fixed points (Remark
6.2.4). Particularizing (6.1)-(6.3) to the case K7 = 2xg, we obtain the identity (6.48)
for the surface gravity k, in which the components R(nz, n) of the constraint tensor,
the proportionality function a and the function X are involved (Proposition 6.2.7).
Specifically, when x vanishes no-where on N, k is given by (6.49) in terms of
the quantities x, () and R(r5, 7). We also conclude that the surface gravity of a
homothetic vector field is everywhere constant if and only if R(7, /) is constant

therein.

In Section 6.3 we address the case of abstract Killing horizons of order zero and one.
In such context, we have obtained the necessary and sufficient conditions under
which k is everywhere constant on N (Proposition 6.3.1). We have also proven that
when N admits a cross-section, if dk is non-zero at any point of N then N cannot

be geodesically complete (Proposition 6.3.2).

Section 6.4 is devoted to computing the pull-back of the generalized master equa-
tion to any transverse submanifold S within N (see Lemma 6.4.1 and Theorem
6.4.2). The main advantage of our approach is that S does not need to be a cross-
section (in fact such section does not even need to exist). From this identity (namely
(6.61)), we recover the near horizon equation for isolated horizons (cf. (2.129)) as
well as the master equation for multiple Killing horizons (cf. (2.153)) as particular
cases (see Remarks 6.4.3 and 6.4.4).

Chapter 6 concludes with a section on vacuum degenerate Killing horizons of
order one. By identifying points along the same null generator, we introduce a
quotient structure and obtain a near horizon equation in the quotient space as
long as this quotient has a manifold structure (Proposition 6.5.1). The fact that we

are able to find the near horizon equation in a more general context opens up
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the possibility to exploit all the results concerning the possible solutions of these
equation available the literature (see e.g. [100]). These results should allow one to
address the problem of classifying near horizon geometries without assuming that
the manifold has a product structure. We intend to look into this problem in the
future.

10.2 matching of spacetimes

We start addressing the problem of matching of spacetimes in Chapter 7. We let
(M*, ¢*) be two spacetimes with boundaries N*. Our approach in this chapter
is based on considering N* as embedded in (M*, ¢*) rather than at a purely
abstract level (this is actually done in Chapter 9, see below). The main results in
this chapter can be found in Section 7.2 and 7.3. In the former, we discuss briefly
the matching problem for boundaries of arbitrary causal character. In particular,
we show that the matching requires the existence of a metric hypersurface data set
which is embeddable in both spacetimes, and that the gravitational/matter-energy
content of the shell is ruled by the jump in the extrinsic part of the data, namely the
tensors Y*. We also prove that all the information about the matching is encoded

in a diffeomorphism between the boundaries, the so-called matching map ®.

Section 7.3 constitutes one core part of the thesis. It is entirely devoted to study
the matching problem across null hypersurfaces. Our analysis is completely gen-
eral except by the fact that the boundaries are assumed to admit a foliation by a
family of spacelike cross-sections. The corresponding conclusions and results are
as follows.

We begin by rewriting the Standard Junction Conditions in terms of (the compon-
ents of) two basis of vector fields that are to be identified in the matching process.
The outcome is that the necessary and sufficient conditions for the matching to be
possible are (7.31)-(7.34) together with the requirement that one matching rigging
points inwards whereas the other points outwards with respect to their corres-

ponding spacetimes.

The solvability of (7.31) constitutes the key problem for the existence of the match-
ing. This condition forces any section on the minus side and its image through @ to
be isometric. Moreover, given a point p” €N 7, its image pointp™ = ®(p7) e N +
and the null generators 0* C N * containing p*, such isometry must be universal
in the sense of being the same for all points along o*. Condition (7.32), on the
other hand, forces null generators on one side to be mapped to null generators
on the other side. This, together with the fact that there must exist a one-to-one
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correspondence between points of the boundaries, means that there must exist a
diffeomorphism W between the sets of null generators of both sides. Finally, con-
ditions (7.33)-(7.34) determine, once we have selected one of the riggings (say {°),

the tangent part of the matching rigging {*.

Another important result is that the whole information about the matching is en-
coded in a scalar function H and in the diffeomorphism W. The function H, called
step function, must necessarily be monotonic along the generators of the plus side.
The name step function is justified by the fact that H accounts for the jump along
the tangent null direction of the matching hypersurface when crossing from one
side to the other. It is precisely the step function that connects the matching form-
alism with the cut-and-paste constructions, where there exists a jump in the null
coordinate when crossing the shell (recall (2.170)).

Of course, in general it will be impossible to find a pair {H, W} verifying the
junction conditions, and hence the matching will be infeasible. However, we have
seen that sometimes more than one matching can be performed. This occurs, for
instance, when the second fundamental forms K, with respect to any two null
generators k* of N* vanish simultaneously. In these circumstances, the matching
is not only feasible but it even allows for an infinite number of possibilities, since
the step function cannot be fixed or restricted in any way (cf. (7.54)).

Chapter 7 concludes with Sections 7.3.2 and 7.3.3. In the former, we obtain expli-
cit expressions for the matching rigging ¢* (Corollary 7.3.4), the tensor fields Y*
and the energy-momentum tensor 7T in terms of known tensor fields codifying the
geometry of the boundaries and the pair {H, ¥} (Proposition 7.3.7). We emphasize
that throughout this process the only assumption we have made is that the bound-
aries have product topologies. Apart from this, all the results are valid for the
matching of any two given spacetimes with null boundaries. We also provide the
first geometric notions of energy density, pressure and energy flux of any null thin
shell (Remark 7.3.9). These definitions are valid for any topology of the boundaries.
The definitions of energy density, pressure and energy flux are normally presen-
ted in the literature (see e.g. [128]) in a specific gauge and in a concrete local basis.
Instead, our definitions are fully covariant and valid in any gauge. In Section 7.3.3
we study the particular case of the matching of two regions of the spacetime of
Minkowski across a null hyperplane. We find that Penrose’s jump (2.170) corres-
ponds to either shells of null dust or to purely gravitational waves propagating in
the spacetime of Minkowski. We also obtain the step function corresponding to the
most general shell that can be generated by a matching of this type. This, in turn,
allows us to analyze the effect of the pressure, and find that a positive (resp. negat-

ive) pressure is responsible for an effect of self-compression (resp. self-stretching)
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of points on one of the boundaries. The last part of the chapter is devoted to
building a coordinate system in which the metric of the spacetime resulting from
the most general matching of two regions of Minkowski takes a C° form (Lemma
7.3.10). In fact, as a particular case we recover the Lipschitz-continuous metric
(2.169) corresponding to the four-dimensional Penrose’s cut-and-paste construc-
tion (see e.g. [5]). This result is part of an ongoing project with Argam Ohanyan
and Roland Steinbauer at the University of Vienna. The purpose of this research
collaboration is to find the distributional form of the metric of the spacetime res-
ulting from the most general matching of two regions of Minkowski across a null
hyperplane (see Section 7.3.3).

In Chapter 8 we particularize the results above to the case when the boundaries
N-*are embedded abstract Killing horizons of order zero with (spacetime) sym-
metry generators n*. As we did in Chapter 7, here we also assume thatN * have

product topology. We suppose further that the surface gravities k* of n* are con-

stant everywhere on N*, _ _ o o
In these circumstances the boundaries are totally geodesic, which in principle

would mean that the step function H cannot be determined. However, we are
interested in the case when the spacetime resulting from the matching preserves
the symmetry associated to n* which happens whenever the matching identifies
the vectors n*. This introduces new conditions on the matching, namely that the
fixed points sets S* of n* are forced to be mapped to each other and that both n*
must be either future or past. Moreover, the identification of n* restricts the step
function and by extension the set of feasible matchings.

In Sections 8.1 to 8.3 we obtain all possible matchings of this type, providing the
explicit expression of the step function for each of them and analyzing the nature
of the remaining matching freedom. The corresponding results are collected in
Theorem 8.3.1. A particularly interesting result is that a geodesically complete de-
generate boundary can be matched with a geodesically incomplete non-degenerate
boundary provided that that neither of them contain fixed points. This sort of
matching is characterized by having a non-zero pressure that is responsible for the
necessary self-compression of points in the non-degenerate boundary.

The condition that S* must be mapped to each other may seem superfluous but in
factitis not. This is so because, according to Lemma 5.4.11, the causal character of
S* depends on the properties of n*. Since throughout the matching process null
generators from one side are sent to null generators on the other side, even if all
matching conditions are fulfilled it may occur that there is no possible matching
in which n#* are identified.
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In Section 8.4 we analyze the particular case when the boundaries are non-
degenerate (full) Killing horizons containing a bifurcation surface. We again con-
sider matchings in which the Killing vector fields n* are identified. As before, the
surface gravities ‘k* of n* are assumed to be constant. These types of matchings
are of physical interest because they cover all possible cases of spacetimes obtained
from the matching of two stationary black holes glued across their event horizons
provided they have non-zero constant temperature.

In these circumstances, the matching freedom is encoded in a positive function 8
defined at the bifurcation surface and extended as a constant along the generators.
In Theorem 8.4.1 we find explicit expressions for the tensor fields Y#, 7 of any null
thin shell of this type. We show that the gravitational/matter-energy content of
the shell depends only on the function 8, on the intrinsic and extrinsic geometric
properties of the bifurcation surfaces S*, on the Ricci tensor of S* and on the

pull-back of the constraint tensor to S*.

In this sort of shells, the pressure is identically zero. Moreover, the energy dens-
ity either vanishes everywhere or unavoidably changes its sign at the bifurcation
surface. This behaviour is striking and suggests that the change in the causality
of the Killing fields that takes place at the bifurcation surfaces affects the energy
density. It is even more puzzling that the energy current jis constant along the
generators, which in particular makes it insensitive to the change of sign on the
energy density. We emphasize, however, that the behaviour of the pressure, energy
density and energy flux is fully compatible with the shell field equations, as we
proved in Section 8.4.1.

The last part of Chapter 8 is Section 8.5, where we particularize the results from
Section 8.4 to the case of spherical, plane or hyperbolic symmetric spacetimes.
We derive explicit expressions for the gravitational/matter-energy content of the
most general shell that can be constructed by matching two spacetimes of this
type. We then include two examples, namely the matchings of two regions of the

Schwarzschild and Schwarzschild-de Sitter spacetimes.

The thesis concludes with Chapter 9, devoted to the problem of matching as well.
There are two main differences with respect to our approach in Chapters 7 and 8.
First, the matching problem is addressed from a completely abstract viewpoint, i.e.
we want to provide a fully abstract formulation of the matching. The final aim is
to be able to describe matchings in a detached way from the actual two spacetimes
involved. The second difference is that in Chapter 9 we make no assumptions
whatsoever on the boundaries (in particular, there are no topological restrictions).
In this sense, the results within Chapter 9 are completely general.
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conclusions

The chapter consists of three parts. In Section 9.1, we start by setting up an abstract
formulation of the matching conditions for boundaries of arbitrary causal char-
acter (Theorem 9.1.1). Given two hypersurface data sets D Lef {N,y, & £ @Y},

def

2) 4
9 = {N, W, @, ( ,'9 }, we find that the matching of D, 9 is possible provided
that there exists a diffeomorphism ¢ : N —--- N and a gauge group element G¢,v)
such that the metric data {N, @' ¥, ¢' ¢, (p*O(Z)} transforms into {N,y, € (@} un-
der the action of G¢v) (see (9.2)). The condition on the orientations of the riggings
translates, at the abstract level, into a restriction upon the sign of the gauge para-
meter z.

Theorem 9.1.1 is of interest because it applies for any possible thin shell. It is fully
abstract in nature given that the matching conditions are written solely as a re-
striction over two data sets and a requirement on the sign of a gauge parameter.
The main advantage of Theorem 9.1.1 is that it allows us to split the matching
problem into two different levels. In the first one, we can consider a thin shell ab-
stractly and prescribe the gravitational and matter-energy content at will. Then, on
a second stage, we can address the problem of building a spacetime (M, g) con-
taining such shell. This can be of use e.g. to find examples of spacetimes containing
a certain type of shell.

In Section 9.1.1, we particularize the construction of Theorem 9.1.1 to the null
case. As we already know, the intrinsic geometry {N, y, €, £ @} of an abstract null
hypersurface is entirely codified by the tensor y (recall that {€, £ @} can be selected
at will). In the null case the matching conditions therefore reduce to y = ¢ ¢ (cf.
(9.11)) (together with the restriction on the sign of z). Assuming that they are
satisfied for a diffeomorphism ¢, we find the gauge parameters {z, V} explicitly in
terms of @, D and I (cf. (9.12)). Moreover, by embedding D, # and making a choice
of rigging on the minus side, we obtain the matching rigging {* also in terms of
@, D and Dd(Lemma 9.1.6). The restriction (7.54) on the second fundamental forms
can be generalized in this context (cf. (9.20)). In Theorem 9.1.9 and Lemma 9.1.13
we derive explicit expressions for the gravitational and matter-energy content of

any null thin shell. Since all these results depend exclusively on D, ® and @ (and

the data sets D, ® are known a priori), it follows that all the information of the
matching is encoded in @.

In Section 9.1 we also study the pressure of any null shell. In Lemma 9.1.14 we
show that the pressure is given by the difference of the surface gravities of the
null generators n and @.n. This, in particular, allows us to confirm that also in this
more general context the pressure accounts for an effect of self-compression/self-
stretching of points. Section 9.1 concludes with a discussion on multiple matchings.

Assuming that D, ® can be matched in more than one way and that the inform-
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ation about one of the matchings is fully known (concretely the diffeomorphism
and the contents of the shell), in (9.52)-(9.58) we find the matter-energy content of

any other possible matching in terms of its corresponding diffeomorphism.

The last two parts of Chapter 9 are Sections 9.2 and 9.3. In the former, we examine
the case when the null boundaries can be foliated by a family of diffeomorphic
spacelike cross-sections. We recover the results from Chapter 7, in particular the
existence of the step function H and the expressions for the jump [Y#] of the
shell (Theorem 9.2.2). In Section 9.3 we apply the abstract formalism to study the
matching of two regions of the spacetime of (anti-)de Sitter across a totally geodesic
null hypersurface. In particular, we compute the matter-energy content of the most
general null thin shell that can be generated in a matching of this type. We prove
that the pressure takes the same form as in the case of Minkowski (i.e. that it is
given by second derivatives of the step function). Moreover, we find that Penrose’s
jump (2.170) describes either shells of null dust or purely gravitational waves, with
which we connect our results with the cut-and-paste constructions of [88], [91], [92]
[5], [6]- In the limit of vanishing cosmological constant, we recover the results of
Section 7.3.3.
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GENERALIDENTITIES FOR CURVATURE
TENSORS

We start with the proof of two identities for the curvature tensor of any completely
general torsion-free connection.

Lemma A.0.1. Let V be a smooth manifold endowed with a torsion-free connection D,

W, @ symmetric two-covariant tensor field and RY . the curvature tensor of D. Define
Awei := —(DcDafar — DaDcWa). Then,

+ Rf =A (A.1)

RS 1%
Vor b f  acd i )

1
Wa R pea— W e iR gy > Dapea + Bacvd + Dadcy + Dvcda + Bodac + Begpa - (A2)

Proof. The Ricci identity for W, i.e. ﬂ]fRf bed T+ ﬁbef awcd = DiD&p = DDV
immediately yields (A.1). To prove (A.2), we use indices {a1, az, a3, a4} and write
the Bianchi identity four times:

( ) ( )
Kmf Rfamzaa + Rfuza3u1 + Rfawmz) =0, @m‘ lzfazamu + Rfa3a4az + Rfa4aza3) =0,

Wazf Rfa3a4a1 + Rfa4a1a3 + Rfa1113a4 = 0! Wa3f Rfa4u1a2 + Rfa1u2u4 + Rfﬂza4u1 = 0.
Adding the first two and subtracting the second two gives

0= ZolalfRfamM - zi{angfaA,maz = Dpiarazas T Dazasarar

- Aa1a3a2a4 + Au1u4aza3 + Aa4aza3a1 - Aa3aza4a1

where (A.1) has been used to swap indices several times. Since by construction
Awca is symmetric in the first two indices and antisymmetric in the last two, (A.2)
follows immediately after renaming a1 = a, a2 = b, a3 = ¢, a4 = d. O
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A GENERALIZED GAUSS IDENTITY

In this section, we obtain a generalized form of the well-known Gauss identity
(see e.g. [106]). On any semi-Riemannian manifold, the Gauss identity relates the
curvature tensor of the Levi-Civita connection along tangential directions of a non-
degenerate hypersurface with the curvature tensor of the induced metric and the
second fundamental form. It has been generalized in a number of directions, e.g.
when dealing with induced connections associated to a transversal (rigging) vec-
tor [64]. Here we find an identity where the connection of the space and of the
hypersurface are completely general, except for the condition that they are both

torsion-free.

Our primary interest will be in applying this identity when the space defines null
hypersurface data and the codimension one submanifold is non-degenerate. How-
ever, the identity is far more general and may be of independent value. We remark
that the tensor y in the statement of the lemma is completely arbitrary, so neither
%nor its pullback 9. to the submanifold are assumed to be non-degenerate.

Theorem B.0.1. Consider a smooth manifold N endowed with a symmetric 2-covariant
tensor field W and a torsion-free connection V. Let S be an embedded hypersurface in N
and assume that S is equipped with another torsion-free connection 8. Define h = " ¢

(where W : S '=--- N is the corresponding embedding) and the tensor P by means of
VxY=[BxY +PXY) VXY EITS),

and assume that there exists a transversal vector field n along S satisfying ¥(n, X) = 0 for
all X tangent to S. Define the 2-covariant tensor Q and the 1-contravariant, 2-covariant
tensor A on S by decomposing P(X, Y) in tangential and transverse parts as follows:

P(X,Y) = AX,Y) + QX, V)n. (B.1)
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a generalized gauss identity

Then, for all X,Y,Z,W € I(TS) it holds

WW, RY (X, Y)Z) = &(W, R?® (X, V)Z) + ©xA,)W, Y, Z) - (B A,)W, X, Z)
+ %(AY, W), AKX, Z)) - h(AX, W), A(Y, 2))

N WG, G Wszy, )

def

where Ay (W, X, Z) = (W, A(X, Z)).

Proof. Since the connections are torsion-free, the tensors P(X,Y), A(X,Y) and

Q(X,Y) are all symmetric in X, Y. First, we find

Wz = W(DRZ + P(Y, 2)) = I Z + P(X, B:2) + ¥x(P(Y, 2)), (B.3)
VixnZ = Bx y1Z+P(BxY,2) - P(BxY, 2). (B.4)

The quantity (DxP)(Y, Z) £ ¥x(P(Y, Z)) - P(¥Y, Z) - P(Y, BxZ) is tensorial
in X, Y, Z, and takes values in the space of vector fields (not necessarily tangent)
along @(S). Inserting (B.3)-(B.4) into the definition of the curvature tensor (2.3)
yields

RY (X, Y)Z = R® (X, Y)Z + (DxP)(Y, Z) - (DvP)(X, 2).

We now insert the decomposition (B.1). Using that §(n, W) = 0 and
DX, )= WX, Y) gives

WKW, P(Y, 2)) = WWW, A(Y, Z) + Q(Y, Z)n)
=9 (M xW, AY,2)) + A(A(X, W), A(Y, 2))
+ ¢, MAX, WY, 2), (BS5)

from where it follows

WW, (DxP)(Y, 2)) = §(W, ¥x(P(Y, 2))) - WW, P(DkY, Z)) - §W, P(Y, [Z))

= @x (W, P(Y, 2))) - @xg)(W, P(Y, 2)) - (¥xW, P(Y, Z))

= W(W, P(BxY, Z)\- (W, P(Y, I¥ x 7))
DB w, A0 2) — @, Py, 2)) - KW, A, 2)

- RAX, W), A(Y, 2)) - ¢(n, )X, W)Q(Y, Z)
- B(W, A(I0xY, 7)) - W, A(Y, BxZ))

= @)W, AY, 2)) - W, P(Y, 2)) + RW, (Bx A)(Y, Z2)))
~A(AX, W), A(Y, 2)) - #(n, n)X, W)Y, 2).
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Therefore,

WW, RY (X, Y)Z) =9n(W, R® (X, Y)Z) +§(n)(W, A(Y, 2)) - Wxg)(W, P(Y, 2))
+ 6w, (Bx A)(Y, 2))) - MAX, W), A(Y, 2)) - (Bxh)(W, AKX, 2))
+ (W, P(X, 7)) - W, (D§ A)X, 2))) + WA(Y, W), A(X, Z))
+ 4(n, n) (Y, WX, Z2) - QX, WY, 2)) . (B.6)

By virtue of the definition of Aq, it holds
By A4)W, X, 2) = @MW, AX, 2)) + *(W, By A(X, 2)).
This allows us to rewrite (B.6) as (B.2). ]

In abstract index notation the generalized Gauss identity (B.2) takes the form
UaAWaf(Rw Y etk veoh =g (Rl@)FBCD + 9 c AgyABD ~ mDz‘\ohABC

F___ F d
+ e ALap ATpc-HEL AL 4 A gD + op (¥, Wuf)UaAPfBC

- 5C(Q75 ﬁaf)ZaJAPfBD +§(n, n) (QaDQBC — QacQaD),
(B.7)

where the vectors ¢, are the push forward with @ of any basis vectors {v"4} in S.






GAUGE BEHAVIOUR OF S,

In this appendix we provide an alternative proof of Corollary 4.3.3. This serves as
a highly non-trivial test of the validity of the expressions obtained in Section 4.3.

Since for any gauge group element G¢v) it holds (cf. Proposition 2.2.10)

Gevy = Gy © Geop (C.1)

it suffices to prove that §; behaves as claimed in Corollary 4.3.3 for the gauge

parameters (z, 0) and that it is gauge invariant under the subgroup Gi. We establish
these two facts consecutively

Lemma C.0.1. Assume Setup 3.2.15and letz € F *(N), 2° = zlsand 24 =" n(z)|s. Then

A
n

Tohghs 2 _nogh~ 2 h o~ Zn
G o) (8 )ap = Sap + p VAVBZ_Z"ZVA VIE W Vi T P (C.2)

Proof. As usual, we denote gauge-transformed quantities with a prime. We start
by computing the Lie derivative £, Y. Using (2.34) and (2.44) we obtain

1 r 1 r Zd 1 1 ’ Zd 12
Y = £, Y = EY -FE@.Y(n) = “6Y - “F @7,
z z 72 z z
By Lemma 3.2.7, we know that ¥ reads
1 (z)
r=r+" dz+ Mz

2z 2z

4

Since under the action of Gp) the tensor Y transforms as Y' = zY + € Qs dz (cf.
(2.40)) and £.€ = 2s (cf. (3.43)), we conclude that

( 1
1 1
£Y = 8+ 22y | @) + taz @ 252 £
V4 zZ Z Z Z
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gauge behaviour of s;

A similar, but much simpler calculation gives

( T
£n’U, = _1 £nU - @U B
ZZ Z

while the quantities £ @, £ @), €, and Uy simply scale as (cf. (4.33)-(4.34))
I

, , , 1
P = 2p@ @ o 2p@ g e U ="U.
I I I I o

It only remains to determine the gauge behaviour of V};‘ s). Firstly we pull-back
(3.62)toSand gets = s+ 72 €, - 1 dz". Thus, the symmetrized covariant derivat-

I 27 27
ive satisfies
(vh s =V s+ "V g,
“Aa ) G Z_ZA () 1
n 1 | R
+2;1ﬁ Vh(AZ" V(A Z 2B) - Zﬁv’}lvﬁz +22A2 V}Zz V’}gz

Note also that (recall that @ﬁl L e )

v
( 1 ( T (

1 ' 1
- ?(Q@D—FZgAQf):ng—En(€®)+25AQﬁ) vy pP- 095 - 2V

€£g6U"(fe T,07) =ui(8F1e#) Inserting all these expressions into the definition
36) o

S, yields, after a direct computation,

1 ~ 1 RN
G.o) (8))aB = Sap + % Vth - szhz V%z
G )
2=h _A _ C h A~
+Z'V(AZ 285 =218y - 2Upg g £~ - V'p 2
¢ 1.o_ ) __—
£ Yap+ (8~ FI9UAB = Vg
which upon substituting the definitions of w; and P in Lemma 4.3.1 yields the
transformation law (C.2). O

Lemma C.0.2. Assume Setup 3.2.15. The tensor 8 defined in (4.36) is gauge invariant
under the action of the subgroup Gi.

Proof. Consider the gauge parameters (0, V) and decompose V as in (3.57). We

shall need the commutator [n, V]. Since Vubvb = w. and £.V* = f we can write

Vab[nr V]b = £,wg — (EnVab)Vb = £,w, — ZUubech
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(3.43)

2 n, VI* = £,(L V) = (£, £ )V =7 n(f) - 25,PCwy,

This implies (by Lemma 2.2.8)

( ) ( )
[, VI* = n(f) - 2P"sewe n® + P £aws — 2UpcPwa .

We define the covector p =" £av and note that p(n) = 0. To compute the gauge

transformation law of @’ (£.Y), we first need to determine £.£vy. For that purpose,
we use

Eqnfvy = £vEny + E[n,V]V = 2£yU + £[n,V]V

and compute its pull-back to S by applying Lemma 3.2.22 twice, namely to t =
V,T=Uandt = [n,V],T = y, and cancelling terms. The result is

( ) ( )
W (Ekvy) 45 =2 fls— € Cwe (EaU)ag + 2w Vch Uap - V’;l Upc + VBUac

+ 2 n(f)|s = 2scwc = £ pc + 2 € UcowP Uap + ZVh(ApB).

Given that Y = Y + }£vy we conclude

| ( ) ( )
(EY)ap =(EXas + fls = £ “we (EU)ap + w© YW Uap - V4 Upc + VpUac

+ n(f)|s - 2s“we - £ Cpc + 28 “UcpwP Ugp + V" PB). (C.3)
(A

The transformation law of £ @, £ @, Uj and €, has already been obtained in (4.33)-
II
(4.34).Settingz = 1,z" = 1 therein gives

( ) ( )
0@ - 0@ = 2@- 9@ 2 fls- 8 uc . (C4)

UI'| =Uj, e” = en + . (C.5)

On the other hand, pulling-back (3.62) to S yields
1

S” = S” + Zp. (C.6)

It only remains to determine how n( £ @) transforms. Given the fact that £ @' in-

volves P (see (3.59)) we need to know £.P*’. Thus, we compute

1
_zpc(a ”fchnb) + V. nb) _ ncnunb Ve 0 ()

)
(3.44) (
— 2P 250 + POfUcr — pagy(p @),

£.P0 = pey P - 2pa g ) V2D
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which inserted in the £. derivative of (3.59) yields

(@) = (@) + 2n(f) - ZPC“beUwaawb + ZP”bwapb
and hence

n(€@)|s = n(L@)|s + 2n(f)|s - 2w wPUas + 2w ps. (C.7)
Applying G, to the right-hand side of (4.36) and inserting (C.3)-(C.7), the gauge

invariance of §; follows after a somewhat long but straightforward calculation.
O



COORDINATES NEAR A NULL
HYPERSURFACE

In the main body of this thesis we have made use of so-called Gaussian null co-
ordinates and Rdcz-Wald coordinates. The former ones can be built in a neighbour-
hood of any null hypersurface, whereas the latter exist near a bifurcation surface.
The standard procedures that raise these two coordinate sets can be found e.g. in
[100] and [101] respectively. However, for this thesis to be self-contained, we next
provide their construction. This derivation is original and relies on a more geomet-
ric approach compared with those in [100], [101]. This is advantageous for at least
two reasons. Firstly, it allows us to construct both coordinate systems as particular
cases of a single, more general setup (the general framework is interesting in itself,
and it is likely that other useful particular cases can be extracted). Secondly, and
perhaps more important, it allows us to prove that Racz-Wald-type coordinates
exist not only near bifurcation surfaces of Killing horizons but also near any null

hypersurface.

This appendix has two parts. In the first one we find a very flexible coordinate
system near a general null hypersurface, while in the second one we particularize

the results for non-degenerate Killing horizons with constant surface gravity.

dl coordinates near a null hypersurface

The idea of the following construction is to introduce a function p from which
we build a pair of Lie-commuting vector fields {L, k}. Then we set up coordinates
adapted to {L, k} so that different choices of p give rise to different coordinate
systems. The following lemma constitutes the keystone for the construction.

Lemma D.1.1. Consider a spacetime M, g) of dimension at least two, an embedded
smooth connected null hypersurface N € M and a null generator k of N . Select a vec-
tor field § along N with the properties of being null, everywhere transversal to N and
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coordinates near a null hypersurface

such that (&, k)|y = —1. Extend § uniquely to a neighbourhood O of N as an affinely

parametrized geodesic vector field, i.e. enforcing Ve€ = 0. Let G € F* (0) be a non-zero
function and k be any extension of k| ¢ to O. If {G, k} satisfy

N )
( )
k(G) = % feg (K -p G, (D.2)

for some function p € F (0) then {L =" G&, k} verify [k, L] = 0 and £ (g (k, k)) = p.
Conversely, given a function p € F(O) that is allowed to depend on k but not on its
derivatives, then (D.1) yields a unique solution k given initial data k|, , while (D.2) gives a
unique solution G for each value G|ut on a hypersurface H+ € O to which k is everywhere

transverse. If the initial data for G is nowhere zero then the solution G is also nowhere

zero.

Proof. First, we note that ¢ is null everywhere on O because Vg (g(¢ &) =
29(Ve€, ) = 0. To prove that [L, k] = 0, it suffices to substitute (D.2) into (D.1),
which yields

k(G)
[ k] = o § == 0= GIEK -k (G)E = [GEK] = [L,K].

This entails, in turn, that ¢(§,k) = -1 everywhere on O. Indeed, combining
[k, L] = 0 with & being geodesic and null and L = G¢ being also null gives

Ve(g(EK) =g Ve& k +g EVek = Giz g (L, Vik)

1 1

which means that g (§k) = g (k) [ = —-1. Using (D.1) together with g (§ k) =
-1 one also gets

E(gR) = £ (g(kK) = £eg (k) + 2g (&K, K)
= £ig (K- £g GO +p=p,

as claimed. Since € is transverse to N7, (D.1) constitutes a system of ordinary dif-
ferential equations along the integral curves of ¢ (here we use the fact that p may
depend on k, but not on its derivatives), hence admitting a unique solution for
given initial data k|g. Once the unique extension kis known, (D.2) is simply an
ordinary differential equation along the integral curves of k. This yields a unique
solution provided the initial data G|n is given on a hypersurface H: transverse to
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k everywhere. The claim about the solution being nowhere zero is immediate from
the structure of the ODE (D.2). O

Remark D.1.2. Observe that in Lemma D.1.1 the vector field § is null everywhere on O,

d

and that He is not assumed to be null. For later purposes, we define y = le( £§ g (k k) -
p). Although w depends on p, on € and on k (but not on its derivatives), for simplicity we

do not reflect this dependence in the notation.

From now on, we make the extra assumption that N' can be foliated by a family of
diffeomorphic spacelike cross-sections. This can always be fulfilled by restricting
N if necessary. In these circumstances, one can introduce a foliation function v €
F(N™) as the solution of k(v)|N— =1, v|s = 0, where S is one such cross-section of
N". In the following we also restrict ¢}y to be orthogonal to the leaves SS'E {v =
const.}, which makes {| unique (recall that g(¢ &) = 0, g(§ k) = -1 also hold in
N).

The construction of the coordinates is as follows. In the setup of Lemma D.1.1, we
let k be the unique extension of k| given by (D.1) for some function p that may
depend on k but not on its derivatives. Given a choice G|ut, we also let G be the
only solution of (D.2) constructed from k. As before, we introduce the vector field
L =" GE which by Lemma D.1.1 verifies [L, k] = 0. Then, we take coordinates {x*}
on S and transfer them to all leaves {S.} by enforcing k(xA)|N = 0. It follows that
{v, x4 are coordinates on N and that k| g = 0» We complete the construction by

defining the functions 1, v",£“ € F(0) as the unique solutions of

L =1 L@)=0 L4 =0

N * N * AN
u=0 d=0v A=A

This allows us to drop the hat in {¢", #4} and let the context determine if we are
referring to v, x4 € F (0) or v,x4 € F (N'). The set {u, v, x4} constitutes a local
coordinate system in O. Let us show that L = d« and k = 9» everywhere in O. The
former is obvious from the construction and the latter holds because [L,k — 8:] = 0

(which is true because both k and the coordinate vector 9, commute with L). Since

kl¢ = 0 it follows from uniqueness of this ordinary differential equation that
k = 0. everywhere on O.

We can now write the metric g in the coordinates {u, v, xA}. For that we notice that
g(04, 0x) = 0 (because &, L are null) and that ¢(d, 9,4) = 0 since

1
Ve(Q(& 0,4)) = (€ Ved,a) = o g(L, Vid,4)
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coordinates near a null hypersurface

1 1
= EZg(L, VaxA L) = 262 VaxA (g(L,L)) =0,
which means that g(§ d,4) = g(§,0,4) |n = 0. The metric g therefore reads
( )
g = -2Gdv du+ qadx? + Joodv + yasdxAdx?, (D.3)

. A def
where we have defined g =

- g%l'c—ﬁ and qa, yas € F(0). The fact that k] is
anull generator of N implies that g (k, k) |[» = 0,g(k,0,4) | = 0.Consequently,
there must exists functions H,ha € F(O) such that ga = uha u,v,x8 , §'w =
uH u,v,x8 . Thus,

( )
g = —2Gdv du + uhadx* + uHdv + yasdx*dx®, (D.4)

with G, ha, H and ys depending on all variables. The components of the inverse
metric g# are given by
1 2uH

g =~ g = utyMhahs + 7 5, gt = —uyths, (D.5)

g% =0, gt =0, 52 = y*Byac. (D.6)

The freedom in the construction above is the choice of (i) a function p € F (0),
(1) a null generator Kkl (7ii) a cross-section S and (iv) a nowhere zero function G
on a hypersurface H: transversal to N~ (in fact it must be transversal to the vector
field k constructed by solving (D.1), but after restriction of O if necessary this will
always be true if H: is transversal to N').

d.1.1 Generalized Racz-Wald coordinates

The Racz-Wald form of the metric is characterized by the property that the vec-
tor field kis null everywhere on O. This can be achieved by enforcing p = 0. By
Lemma D.1.1 this entails that (g (k,k)) = 0, ie. g(k k) = g(k k) |\—= 0. There-

fore, in this case H = 0 and (D.4) becomes

( )
g = -2Gdv du + uhadx? + yasdxAdx®. (D.7)

We call generalized Racz-Wald coordinates to the coordinates constructed with
the above setup and in which the metric takes the form (D.7). They exist in some

neighbourhood of any point p of a null hypersurface N (corresponding to {u =



D.2 coordinates near a killing horizon

0} in this coordinate system). The generalized Racz-Wald coordinates admit the
freedom of items (i1)-(iv) above.

d.1.2 Gaussian null coordinates

The Gaussian null coordinates are characterized by G being everywhere constant
(usually equal to one) and L being null and affinely geodesic. By enforcing p =

£eg (k k) in the general construction above, equations (D.1)-(D.2) become
[$K =0, k(G) = 0. (D.8)

As before, the former provides a unique solution for k for given initial data k|
while the second entails that G = GJut. By simply taking G|ut = 1, one obtains
the metric form for Gaussian null coordinates, namely

( )
g = —2dv du + uhadx? + uHdv + yasdx*dx®, (D.9)

and it holds that G € R — {0} and hence that L = G¢ is affinely geodesic. Observe
thatin this specific construction we recover the well-known freedom associated to
Gaussian null coordinates, namely a choice of a null generator k of N and a choice
of a spacelike section S on N.

d2 coordinates near a killing horizon

We now study the case when N~is a null hypersurface constructed by taking null
geodesics starting orthogonally from a bifurcation surface S. The hypersurface I¥
therefore the closure of a non-degenerate Killing horizon H with respect toa
Killing vector field n. Moreover, it holds that the surface gravity k of n, defined
according to (2.81), is constant everywhere on N.. Since by construction N admits a
cross-section (namely S), we can take kf affine, i.e. satisfying Vik = 0 on N". Then,
k| ¢ is given by its value at S and by Remark 2.4.8 it holds that n| ¢ = (f + ko)k,
where f € F (N') fulfils k(f) | x = 0.If in addition, one enforces S = S in the

construction above, then | N = Kok.
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coordinates near a null hypersurface

In order to study the properties of the Killing vector field n off N, we decompose
it as n = n“L + m’k + n“9,a. Since § is geodesic, we know that Ve (g (n, §)) = 0, so

that g(n, &) = g(n, 8 | - This, together with § = G-1L = G-19. and (D.4), means
N N
" =-gn§d=-gnd=nm == =0k (D.10)
Thus n = n“L + kvk + n“0,4, where we have extended K to O as the same con-

stant. We can now write down the Killing equations £, ¢ = 0 for the metric (D.7).
Considering that d.n° = 0 and gw = 0, the non-trivial Killing equations are

0= n (G) + (3ur]” + K) G - gvAaur’A, (Dll)
O = VABaur’A, (D12)
0 = —Gavr]” + gvAavr]A, (Dlg)
0 = n(geu8) +-Kgos + yasdon* — GOz N* + goadyzN*, (D.14)
0 = n (yas) + yBcO,aN® + yacd,snC. (D.15)

Equation (D.12) entails that d.n4 = 0 because yas 2o (0 ¢4, 0;5) is necessarily
positive definite. Consequently, n* = n4| = 0 and hence (D.13) implies 0 = don“.
Taking this into account and deriving (D.11) along k, one obtains

0 ) k(n (G) + @un* + _K) WG (0=1) k(rz ( G)) —yn ( G)

== k(n(G) =wn(G). (D.16)

The null hypersurface N constructed by taking null geodesics starting from S
with tangent vector field §|s constitutes a branch of the bifurcate Killing horizon.
In particular, this means that N is a hypersurface everywhere transverse to k
and that there exists a function 8 € F (N") such thatn = B¢ on N'. If we select
H: = N and Glut so that £(G) |u+ = 0, then n(G) |i+ = 0. This, together with
(D.16), entails that n (G) = 0 everywhere on O. The explicit form of 1 on O can be
derived now by enforcing n (G) = 0 into (D.11). This turns (D.11) into dun* = -k,
from where it follows thatr] = —ku +fh % .SinceunN|- =N |u=0y = 0, Ig #
must vanish and the Killing vector field n reads

n=x (_uau + Uav) , (D17)

which is the standard form for the Killing vector field in Racz-Wald coordinates
(see e.g. [101]). Particularizing (D.11), (D.14) and (D.15) for (D.17) yields the ODEs

0 =n(G), 0=n(gv3)+ngB, 0=n(ys ), (D.18)
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whose respective solutions are (recall that gz = uGhs)
G = G(uv, x°), g5 = uG(uv, xYhs(uv, x°), vas = yas(uv, x). (D.19)

Substituting (D.19) in (D.7) yields the well-known form of the metric g in Racz-

Wald coordinates, namely

( )
¢ = —2G(uv, x)dv du + uha(uv, x)dx* + yas(uov, x)dx4dx®. (D.20)

Observe that nN(G)|nt = 0 means that G|ut is given by its value at S. Therefore,
the remaining freedom in this coordinates is the choice of G|s and k|s (recall that
k has been selected affine, so it verifies Vik = 0 on N ). In particular, by enforcing
G|s = const. one obtains G = G(uv) on O, and hence G is constant everywhere
on N and H-
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INTRODUCCION

La teoria de la Relatividad General, formulada por Albert Einstein de manera com-
pleta en [1] por primera vez, ha demostrado ser la teorfa fundamental méas precisa
para describir efectos gravitacionales a grandes escalas. Desde sus primeras predic-
ciones (la precesion del perihelio de Mercurio [2], la curvatura de los rayos de luz
[3], el efecto redshift gravitacional [4], [5] y la emisién de ondas gravitacionales
[6], [7]) hasta otras mds recientes (por ejemplo la existencia de agujeros negros
[8], [9] o el efecto de lente gravitatoria [10]), la teoria de la Relatividad General
ha anticipado con precisién muchos de los fenémenos naturales apoyados tiempo
después por las observaciones empiricas. Ya desde su nacimiento, la teoria de la
Relatividad General se ha mostrado inquebrantable y completamente consistente
con las observaciones experimentales, sin importar el creciente nivel de precision
de los resultados observacionales. Su solidez la convierte hoy en la teoria de la

gravedad mds aceptada por la comunidad cientifica.

Dependiendo del enfoque y del tipo de problemas que se estudian, la teoria de
Relatividad General se divide en varias areas de investigacion. A saber, Relatividad
Numérica [11], basada en métodos numéricos y cédigos de programacién; Astro-
fisica Relativista [12] y Cosmologia [13], cuyo objetivo es proveer modelos tedricos
y computacionales asi como estudiar aspectos experimentales de la teoria; o Re-
latividad Matemitica [14], que aborda cuestiones fundamentales de la f$ica grav-
itatoria con maximo rigor matematico. La tesis doctoral que aqui se describe se

encuadra precisamente dentro de ésta dltima area.

A pesar de ser una teorfa centenaria, existen multitud de problemas abiertos en
Relatividad General Matemaética. Por ejemplo, (las versiones débil y fuerte de) la
Conjetura de Censura Césmica [15], [16], [17], [18] y la Conjetura del Estado Final
[19] (y problemas relacionados como la unicidad de agujeros negros y la estabil-
idad de agujeros negros de Kerr-Newman). Esto convierte a la Relatividad General

Matemadtica en un campo de investigacion muy activo en la actualidad.
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La principal disciplina matematica en la que se apoya la Relatividad General
Matematica es la geometria, cuyos objetos matematicos principales son las var-
iedades y los tensores. Uno de los pilares fundamentales de la geometria es el
estudio de las hipersuperficies. En particular, éstas pueden ser temporales, espa-
ciales, nulas o mixtas. Precisamente las de tipo nulo desempefian un papel funda-
mental en Relatividad General, y constituyen el objeto central de estudio de esta

tesis.

El ejemplo por excelencia de hipersuperficie nula es el cono de luz de un punto en
un espaciotiempo. Sin embargo, existen incontables escenarios en los que las hiper-
superficies nulas estan involucradas. Por ejemplo, juegan un papel fundamental en
el estudio de causalidad, en el contexto de emisién de ondas gravitaciones, en el
andlisis de la geometria del infinito nulo, en el problema caracteristico, en el estu-
dio de cualquier horizontes (de Cauchy, de eventos, de Killing...). Es por ello que
entender la geometria de hipersuperficies nulas es clave para la comprensioén de
los aspectos fisicos y matemaéticos de la teoria de la Relatividad General. De hecho,
las hipersuperficies nulas son esenciales porque describen, localmente, las trayect-
orias de rayos de luz que se emiten perpendicularmente a una superficie espacial

de codimension dos.

La tesis doctoral que aqui se resume consta de dos partes diferenciadas. En la
primera, se estudia la geometria de hipersuperficies nulas abstractas (esto es, con-
siderando a la hipersuperficie como variedad en si misma, sin necesidad de enten-
derla como embebida en un espacio ambiente). Este anélisis se lleva a cabo por
medio del llamado formalismo de dato de hipersuperficie, que permite codificar la geo-
meria intrinseca y extrinseca de una hipersuperficie de cualquier cardcter causal

de manera abstracta.

La segunda parte de la tesis se centra en el problema de enlace de dos espaciotiem-
pos (véase, por ejemplo, [20], [21], [22], [23], [24], [25], [26], [27], [28], [29], [30]).
Determinar las condiciones bajo las cuales dos espaciotiempos generales pueden
enlazarse y dar lugar a un espaciotiempo nuevo es un problema fundamental en
cualquier teoria métrica de la gravedad. Es importante analizar las propiedades del
espaciotiempo resultante (en particular de la hipersuperficie de enlace). Un ejem-
plo paradigmatico ocurre cuando se estudian campos gravitatorios generados por
un objeto autogravitante, por ejemplo una estrella de neutrones. En ese contexto, el
contenido material en la regién interna de la estrella es distinto de cero, por tanto
el campo gravitatorio debe satisfacer las ecuaciones de Einstein (o cualesquiera
ecuaciones de campo que uno quiera imponer) con un término de fuente no cero.
Por otro lado, en la regién exterior no existe materia y por tanto el campo grav-

itatorio debe ser solucién de las ecuaciones de campo de vacio. Las ecuaciones
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para el campo gravitatorio son distitas en las diferentes regiones, y por tanto las
soluciones también han de serlo. Sin embargo, el espaciotiempo no estd separado
en dos partes, lo que hace esencial que se puedan enlazar las regiones externa e
interna, dando lugar a una tinica solucién. En el contexto de esta tesis doctoral, se
consideraran capas de materia-energia de grosor tan fino que se puede asumir que

se localizan sobre una hipersuperficie de cardcter nulo.






CONTENIDOS DE LA TESIS DOCTORAL

La tesis doctoral consta de tres partes. En la primera, correspondiente al Capitulo
2, se discuten las definiciones matemadticas, herramientas y resultados de la liter-
atura que se requieren mds adelante a lo largo de la tesis. Se establecen nuestras
convenciones de notacién y se presenta el formalismo de dato de hipersuperficie
[29], [31] (definiciones de dato (métrico) de hipersuperficie, construcciones de las
conexiones abstractas %, v, etcétera). Ademads, se repasan algunos aspectos clave
de geometria de subvariedades, en particular de hipersuperficies nulas embebidas.
También se revisan las definiciones y propiedades geométricas de varios tipos de
hipersuperficies nulas que juegan un papel esencial méds adelante en la tesis. A
saber, horizontes no expansivos, (débilmente) aislados y de Kiling. Finalmente, se
incluyen algunas consideraciones previas sobre enlace de espaciotiempos a través

de una hipersuperficie.

El resto de la disertacion presenta resultados originales obtenidos en el transcurso
de la tesis doctoral. En particular, la segunda parte estd dedicada al desarrollo del
formalismo de dato de hipersuperficie. Esta tarea se lleva a cabo en los Capitulos
3,4, 5y 6, cuyo contenido se describe a continuacién.

En el Capitulo 3, se proporcionan varios resultados nuevos en el marco del formal-
ismo de dato de hipersuperficie. En particular, se estudia el tensor "derivada de Lie
de una conexién" a lo largo de un vector privilegiado Z. Se obtienen varias iden-
tidades que involucran a X7 y se analiza el caso particular del tensor "derivada de
Lie de %" a lo largo de un campo vectorial n que puede definirse a partir de cu-
alquier dato métrico. También dentro del Capitulo 3 se estudia el caso de un dato
nulo (esto es, el dato que se corresponde con la abstraccion de una hipersuperficie
nula). Se demuestran varios resultados de fijado de gauge, asi como varias iden-
tidades nuevas que involucran a la conexién % y a los tensores de curvatura y de
Ricci asociados a ella. Ademas, se incluye un andlisis detallado de la geometria de
una hipersuperficie nula abstracta que admite una subvariedad no degenerada de

codimension uno. Finalmente, se estudia el caso en que una hipersuperficie nula
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abstracta admite un campo vectorial extra que es nulo e invariante bajo transform-

aciones gauge.

El Capitulo 4 se dedica al denominado tensor de ligadura R. Dicho tensor se define
para cualquier hipersuperficie abstracta de manera que, cuando el dato estd em-
bebido en una variedad semi-Riemanniana, éste captura una cierta combinacién
de componentes del tensor de Riemann del espacio ambiente. En primer lugar, se
motiva su definiciéon abstracta y se derivan algunas de sus propiedades. Posteri-
ormente, se particulariza el andlisis al caso nulo, encontrando las contracciones
de R con un generador nulo y proporcionando su pull-back a cualquier subvar-
iedad no degenerada dentro de la hipersuperficie abstracta. En particular, se cal-
cula su relacién con el tensor de Ricci de la métrica inducida en dicha subvariedad
Riemanniana. Finalmente, se presentan varias cantidades que son invariantes bajo
transformaciones gauge o tienen un comportamiento gauge simple. Los resultados

de este capitulo son de utilidad en otras partes de la tesis.

El Capitulo 5 constituye una de las partes fundamentales de la tesis doctoral. En
primer lugar, se considera un dato de hipersuperficie completamente general em-
bebido en una variedad semi-Riemanniana equipada con un campo vectorial priv-
ilegiado v. Inicialmente, se permite que 1 sea completamente arbitrario (en partic-
ular, no necesariamente tangente a la hipersuperficie). En este contexto, se derivan
expresiones explicitas para el corchete de Lie de y con cualquier extensiéon de un
campo vectorial de rigging (esto es, cualquier campo transverso a la hipersuperficie
en todos sus puntos). Luego, se examina el caso en el que y es tangente y se ob-
tiene la derivada de Lie del tensor de dato Y, que codifica la geometria extrinseca
de una hipersuperficie, a lo largo de 1. Estos resultados involucran al tensor de
deformacioén de 1. Posteriormente, el andlisis se centra en el caso en que la hiper-
superficie es nula y y es nulo y tangente a la hipersuperficie. En este contexto, se
estudia el tensor "Derivada de Lie a lo largo de 1 de la conexién de Levi-Civita", es
decir, %. Se calcula la forma explicita de X, en términos del dato mas un campo
tensorial adicional i1’ que resulta desempefiar un papel crucial en la descripcién
abstracta de horizontes de Killing de orden cero y uno. Estos son nuevos conceptos

abstractos de horizontes que motivamos y presentamos también en el Capitulo 5.

El Capitulo 6 es el dltimo dedicado al desarrollo del formalismo de dato de hiper-
superficie. En él, se obtiene la denominada ecuacion maestra generalizada. Dicha ecua-
cién se cumple para toda hipersuperficie nula que admita un vector nulo tangente
privilegiado . La ecuacién maestra generalizada involucra la funcién de propor-
cionalidad entre ) y un generador nulo de la hipersuperficie, el tensor de ligadura
R, el tensor 17 mencionado anteriormente y varios tensores abstractos. En este

capitulo, se obtienen también las contracciones de la ecuacién maestra generaliz-
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ada con un generador nulo. Posteriormente, se particulariza el anélisis al caso en
el que el tensor de deformacién de 1) es proporcional a la métrica. En este contexto,
se obtienen varios resultados interesantes relacionados con el conjunto de puntos
tijos de ), la regularidad del tensor de Ricci del espacio ambiente y la constancia
de la gravedad superficial k¥ de y. También se particularizan los resultados para ho-
rizontes de Killing abstractos de orden cero y uno. Esto permite identificar algunas
consecuencias de que k no sea constante. Otro resultado clave de este capitulo es la
restricciéon de la ecuacién maestra generalizada a cualquier subvariedad no degen-
erada dentro de una hipersuperficie nula. Como caso particular, recuperamos la
ecuacion maestra de horizontes de Killing multiples [32], [33], [34], asi como la near-
horizon equation para un horizonte aislado [35], [36], [37], [38], [39], [40]. Finalmente,
se aplican los resultados previos al caso de un horizonte de Killing degenerado en

el vacio.

La tercera parte de esta tesis, correspondiente a los Capitulos 7, 8 y 9, se dedica al
problema de enlace de dos espaciotiempos completamente generales a través de

una hipersuperficie nula.

En el Capitulo 7 se aborda el problema de enlace desde un punto de vista espa-
ciotiemporal, es decir, sin considerar los bordes de los espaciotiempos a enlazar
de manera independiente. Asumiendo que los bordes pueden ser foliados por una
familia de secciones espaciales, se determinan las condiciones necesarias y sufi-
cientes para que el enlace sea posible, y éstas se escriben en términos de una
base de campos vectoriales. Ademads, se demuestra que toda la informacion de
enlace se puede codificar en la llamada funcién salto y en un difeomorfismo entre
el conjunto de generadores nulos de cada borde. Resulta que, cuando los bordes
son totalmente geodésicos y los espaciotiempos pueden enlazarse de una manera,
entonces infinitos enlaces son posibles. Se obtienen expresiones explicitas para el
contenido de energia-materia de la capa delgada nula més general posible result-
ante de un enlace de este tipo. Finalmente, se aplican los resultados al caso del
enlace de dos regiones del espaciotiempo de Minkowski a través de un hiperplano
nulo. Esto nos permite relacionar nuestros resultados con los de las construcciones

de corte y pegado de la literatura.

En el Capitulo 8, se estudia un caso particular de lo anterior. A saber, el escenario
en que los bordes de los espaciotiempos a enlazar son horizontes de Killing ab-
stractos de orden cero. La idea es analizar la situacion en la que el enlace identifica
los campos vectoriales de "Killing" de orden cero. Se abordan los casos en que (a)
ambos bordes son no degenerados, (b) ambos son degenerados y (c¢) un borde
es degenerado y el otro no degenerado. También se particularizan los resultados

para el caso de horizontes de Killing con superficies de bifurcacion. El capitulo

11
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concluye con un andlisis detallado del caso en que se enlazan dos espaciotiempos

con simetria esférica, plana o hiperbdlica.

El Capitulo 9 es el ultimo dedicado al problema de enlace, y constituye otra parte
fundamental de la tesis por varias razones. Primero, porque se aborda el problema
de enlace desde un punto de vista puramente abstracto (es decir, sin requerir que
las hipersuperficies de enlace estén embebidas) y, en segundo lugar, porque los
resultados son completamente generales (en el sentido de que no imponemos re-
stricciones topolégicas ni ninguna otra condicién en las hipersuperficies nulas y los
espaciotiempos). Primero, se establece una formulacién abstracta del problema de
enlace. Posteriormente, se analiza el caso nulo, para el que se obtienen expresiones
explicitas del contenido gravitatorio/material de la capa delgada nula resultante.
También se analiza el escenario de multiples enlaces, se recuperan los resultados
del Capitulo 7 para el caso con bordes con topologia de producto y se incluye un
ejemplo de enlace a través de una hipersuperficie nula totalmente geodésica en los

espaciotiempos de (anti-)de Sitter y Minkowski.

Finalmente, en el Capitulo 10 de la tesis doctoral se recogen las conclusiones de

nuestro trabajo, asi como algunas perspectivas de trabajo futuras.

La tesis doctoral incluye cuatro apéndices. En el Apéndice A, demostramos varias
identidades generales relacionadas con el tensor de curvatura de una conexién
libre de torsion. El Apéndice B estd dedicado a la derivacion de una forma gener-
alizada de la identidad de Gauss. En el Apéndice C, ofrecemos una comprobacién
de la consistencia del comportamiento de calibre de un campo tensorial introdu-
cido en el Capitulo 4. La tesis concluye con el Apéndice D, donde presentamos
una nueva construccién geométrica de coordenadas cerca de cualquier hipersu-
perficie nula. El punto esencial de dicha construccién es que permite recuperar
las llamadas coordenadas nulas gaussianas (ver, por ejemplo, [41]) y coordenadas
de Racz-Wald [42] en un entorno de una hipersuperficie nula y una superficie de

bifurcacion, respectivamente.
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Dada la estructura de la tesis doctoral, es conveniente separar las conclusiones en
dos partes. En la primera, expondremos los resultados correspondientes al estudio
de hipersuperficies nulas abstractas, mientras que en la segunda presentaremos

los avances relacionados con el problema de enlace de espaciotiempos.

HIPERSUPERFICIES NULAS ABSTRACTAS

Hemos demostrado que, en el caso de hipersuperficies nulas abstractas, toda la
informacion acerca de la geometria intrinseca de la hipersuperficie puede ser codi-
ticada en un tinico tensor 7y, que juega el papel de primera forma fundamental en el
contexto embebido. Ademads, cuando la hipersuperficie admite un campo privilegi-
ado que es invariante gauge y nulo, se puede definir una funcién invariante gauge
que, en el caso embebido, coincide con la gravedad superficial de dicho vector
privilegiado. Esta funcién constituye, por tanto, una extensién (a nivel abstracto)
de la gravedad superficial ambiente a los puntos donde el vector privilegiado se

anula.

Para una hipersuperficie abstracta N/ de cualquier caracter causal, hemos constru-
ido un tensor abstracto, el tensor de ligadura R, que, en el caso embebido, codifica
una cierta combinacién de componentes de los tensores de Riemann y Ricci del
espacio ambiente y que, en puntos nulos, coincide con el pull-back a A/ del tensor
de Ricci ambiente. Esto se ha conseguido sin requerir ninguna suposicién topolé-
gica global sobre N. Ademads, la definicién de R es completamente covariante en
N a pesar de que NV no esté equipado con un tensor métrico. Cuando N es nula,
hemos obtenido una versién abstracta de la ecuaciéon de Raychaudhuri. Ademas,
hemos identificado varias cantidades con un comportamiento gauge simple. En
particular, una de ellas, el tensor & (que puede definirse en una subvariedad no

degenerada de codimension uno en N), codifica informacion sobre la curvatura y
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juega un papel clave en la geomertria de horizontes de Killing abstractos de orden
uno.

Otro punto fundamental de la tesis es el andlisis de las propiedades del tensor %,
para un vector f) invariante gauge, nulo y tangente a una hipersuperficie nula. Esto
nos ha permitido relacionar X con el tensor deformacién de v, asi como encontrar
varios tensores que desempefian un papel clave en la descripcién abstracta de
horizontes de Killing abstractos de orden cero y uno, definidos por primera vez en
el Capitulo 5.

Precisamente el estudio del tensor X, junto con el calculo de la derivada de Lie
del tensor de dato Y (que, recordemos, codifica la geometria extrinseca de ), nos
ha permitido obtener la ecuacion maestra generalizada para cualquier hipersuper-
ficie nula. Esta ecuacién (y sus contracciones con un generador nulo) permiten
identificar bajo qué condiciones la gravedad superficial ¥ de 1y permanece con-
stante. Ademds, para un horizonte de Killing homotético, esta identidad permite
demostrar que no pueden existir puntos fijos, y que x es constante si y solo si
R(n,n) es también constante.

Las condiciones necesarias y suficientes para que la gravedad superficial de y sea
constante en todas partes en un horizonte de Killing de orden cero o uno han
sido obtenidas. Esto nos ha permitido demostrar que, si el horizonte es tal que
la gravedad superficial no es constante en un punto, entonces éste no puede esr
geodésicamente completo.

ENLACE DE ESPACIOTIEMPOS

En lo que se refiere al problema de enlace de espaciotiempos, las principales
conclusiones son las siguientes. En primer lugar, se ha conseguido formular el
problema de enlace de manera completamente abstracta, lo que permite incluso
estudiar capas delgadas de manera desligada de cualquier espacio ambiente, para
luego analizar si dicha capa es embebible o no. Tanto para bordes nulos con topo-
logia arbitraria como para bordes nulos con topologia producto, se ha conseguido
determinar el contenido material de la capa delgada de manera explicita, asi como
demostrar que toda la informacién del enlace esta codificada por un difeomor-
tismo ¢ a nivel abstracto (que contiene exactamente la misma informacién que
la funcién salto y el difeomorfismo de enlace entre los conjuntos de generadores
nulos de ambos bordes).

Se ha estudiado ampliamente el caso de enlaces miltiples, que en particular ocurre

cuando los bordes nulos son totdlmente geodésicos. En este contexto, se ha de-
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mostrado que, dado el contenido material de uno de los enlaces, se puede ob-
tener el de cualquier otro enlace simplemente determinando su difeomorfismo ¢
asociado. Esto, en particular, permite conocer de manera automatica el contenido
material de cualquier capa delgada nula generada mediante el procedimiento de

corte y pegado.

Hemos analizado en detalle el caso del enlace de dos regiones del espaciotiempo
de Minkowski a lo largo de un hiperplano nulo, obteniendo la forma explicita de
la métrica C° del espaciotiempo resultante y expresiones explicitas para el con-
tenido material. El enlace de dos regiones del espaciotiempo de (anti-)de Sitter
a lo largo de una hipersuperfice nula totdlmente geodésica se ha estudiado tam-
bién. En concreto, se ha obtenido que la densidad de energia y el flujo de energia
son los correspondientes al enlace de Minkowski mds un término adicional. La
presion, por otra parte, es la misma en los casos de (anti-)de Sitter y Minkowski.
Estos ejemplos han permitido conectar las construcciones de corte y pegado con el

formalismo de enlace, tanto espaciotemporal como abstracto.
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