1-Spectroscopy: Interaction EMR-Matter

Table of Contents

- 1. PROPERTIES OF ELECTROMAGNETIC RADIATION
- 2- PROPERTIES OF MATTER
- 3- ELECTROMAGNETIC RADIATION-MATTER INTERACTION
- 4- TYPES OF SPECTRA
- 5. ABSORPTION AND EMISSION SPECTRA
- 6. WHAT IS NEEDED FOR GETTING ABSORPTION AND EMISSION SPECTRUM?
- 7. ABSORPTION AND EMISSION SPECTRA OF NATURAL PRODUCTS
- 8. REMEMBER
 - 9. BIBLIOGRAPHY

1. PROPERTIES OF ELECTROMAGNETIC RADIATION

WAVE - PARTICLE DUALITY

- v: <u>Frequency</u>: number of oscilations per time unit

v = 1/T

UNITS: s⁻¹

 $-\lambda$: <u>wavelength</u>: distance between two equivalent points in the wave, maxima or minima,

consecutive

UNITS: inverse of length: Å, nm, cm, m...

 $-\overline{v}$: <u>Wavenumber</u>: $|\overline{v} = 1/\lambda|$ UNITS: length: \mathbb{A}^{-1} , nm⁻¹, cm⁻¹, m⁻¹...

 $\mathbf{v} \cdot \mathbf{Speed} \mid \mathbf{v_i} = \mathbf{v} \lambda_i$

UNITS: m/s | c: *vacuum speed* = 2,99792 x 10⁸ m/s **(≈air speed)**

2- PARTICLE:

PHOTONS: Energy: E = hv

UNITS: Jules, electron volt

ELECTROMAGNETIC SPECTRUM

2- PROPERTIES OF MATTER

ENERGETIC LEVELS OF THE MATTER

3- ELECTROMAGNETIC RADIATION-MATTER INTERACTION

TRANSITIONS BETWEEN ENERGETIC LEVELS OF THE MATTER

- QUANTUM THEORY : Max Planck (1900)
- **1- Matter (atom, ion or molecule)** wins or release EXACTLY the amount of energy that separates two energetic levels of the matter.
- 2- BÖHR'S CONDITION: Electromagnetic Light: should be EXACTLY of the same energy that separates two energetic levels of the matter.

4- TYPES OF SPECTRA

- E_1 E_0 = $hv = hc/\lambda$
- E_1 E_0 = hv = n (hv/n) h= 6,62617610⁻³⁴Js

- T_{ROOM}: FS

ENERGY AND SEPARATION OF THE LEVELS DEPEND ON:

- CHEMICAL STRUCTURE OF THE MATTER
- INTERACTION WITH OTHER MOLECULES: SOLVENT OR SOLUTES

5. ABSORPTION AND EMISSION SPECTRA

SPECTRUM: INTENSITY OF LIGHT vs WAVELENTH

ABSORPTION

EMISSION

Margarita Valero

6. WHAT IS NEEDED FOR GETTIN ABSORPTION AND EMISSION SPECTRUM?

ABSORPTION

• 2°: The Wavelength Range Where Compound Absorbs

EMISSION

- 1°: Sample Excitation With An Adequate Wavelength: Absorption Spectrum
- 2°: Measure The Emission In The Wavelength Range Where Compound Emits: λem>λexc

7. ABSORPTION AND EMISSION SPECTRA OF NATURAL PRODUCTS

KETOCYANINE

Ground-state absorption spectra (solid black line) and fluorescence spectra of MPAC recorded in different solvents using 400 nm photoexcitation at room temperature (open circles) and in solid matrices at 77 K (solid circles).

Scheme 1. Chemical Structure of MPAC.

J. A. Mondal, S. Verma, H.N. Ghosh and D. K. Palit, *J. Chem. Sci.*, Vol. 120, No. 1, January 2008, pp. 45–55

Fernando Gandía-Herrero¹, Francisco García-Carmona¹ & Josefa Escribano¹, *Nature*, **437**, 334, 2005.|doi:10.1038/437334a;

Visible fluorescence in *Mirabilis jalapa* petals.

Margarita Valero

Absorption and Emission Spectra of Chlorophylls a and b

Figure 3: the excitation and emission spectra for chlorophyll-a and chlorophyll-b. The excitation spectra are on the left and the emission spectra are on the right. Say you wanted to excite fluorescence in chlorophyll-a as much as possible. Then you'd want to excite it with light having a frequency at the peak of its excitation spectra: somewhere around 425 NM If you did this, the light given off would have the spectral distribution as shown, being peaked around 680 NM If you had a mixture of Chl-a and Chl-b and wanted to primarily excite the Chl-b, you might choose to excite the sample at around 470 NM because the Chl-a excitation spectrum is very small while the Chlb is very big, meaning that the Chl-a wouldn't fluoresce much but the Chl-b would.

EMISSION

8. REMEMBER

- * The absorption and emission spectra are alike, since the levels involved are the same
- * BUT the wavelengths involved are not the same
- * ≠ substance (same conditions) → ≠ spectra
- * = substance (different conditions) ----- = or ≠ spectra
- * ALL substances are able of absorbing any electromagnetic radiation
- * BUT A little amount of them emitt.
- * The wavelengths of light absorbed or emitted by different substance are different

9. BIBLIOGRAPHY

Principios de Análisis Instrumental, <u>Douglas A. Skoog</u>, <u>Stanley R. Crouch</u>, <u>F. James Holler</u>, Méjico, 2008.