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A bstract

Tt isshown how a integrablem echanical systam providesall the localized static solu-—
tions of a deform ation of the linear O (N )=sigm a m odel in two space-tin e din ensions.
T he proof is based on the Ham ilton-Jacobi separability of the m echanical analogue
system that follow s when tin e-independent eld con gurations are being considered.
In particular, we describe the properties of the di erent kinds of kinks in such a way
that a hierarchical structure of solitary wave m anifolds em erges for distinct N .

1 Introduction

W e divide this Introduction into three parts: A . A brief history and the \state of the art".
B.New developm ents and results to be presented in this work . C. Scenardos of possible
physical applications.

A .

K Inks are solitary (non-dispersive) waves arising in several one-din ensional physical sys—
tam s. Here, we shall focus on the relativistic theory of N —interacting scalar elds built on
a spacetin e that is the (1+ 1)-in ensional M inkow ski space R '*. In this context, kinks
are nite energy solutions of the Eulerd.agrange equations, such that the tin edependence
is dictated by the Lorentz invariance: “x (X;t) = ek le—‘:; . Thus, the search for kinks
leads to the solving of a system of N -coupled non-linear ordinary di erential equations and
therefore becom es a very interesting problem in M athem atical Physics.

T he study of topological defects began as an area of research in  eld theory by them d-
seventies; see [l]]. Ttwas Inm ediately recognized that defects of the kink type are in oneto—
one corregpondence w ith the ssparatrix tra fctories between the bounded and unbounded
m otion ofa m echanical system , forwhich them otion equations precisely form the non-linear
system of di erential equations m entioned above. T he equivalent m echanical system is also
Lagrangian and thus autom atically integrable if N = 1. For N 2, com plete integrability



http://es.arxiv.org/abs/hep-th/0003224v1

is generically non-guaranteed and the equivalence to a m echanical system is not useful.
This circum stance has been an phasized by Rajframan; see [} pp. 2324, and partially
circum vented by hin self: the trdal orbit m ethod allow s one to guesstin ate particular types
of kink tra fctordes.

T here are, nevertheless, theoriesw ith N = 2-coupled scalar elds such that the equivalent
dynam ical system is com pletely integrable. T he prototype of this kind of system is the
M STB model: in [f] this was proposed in the context of the search for non-topological
solitons w ith stability provided by a U (1) intemal symm etry. In Reference ], the m odel
was consideraed asa classical continuum approxin ation toa 1D crystalw ith a tw o-com ponent
order param eter and it was shown that the search for kinks in this system requires that a
com plktely Integrable dynam ical system be addressed. Ito, in a sem inal paper [§], showed
the H am ilton-Jacobi separability of the system ofnon-lineardi erential equations. H e found
all the kink tra fctories and explained a very peculiar kink energy sum rule.

Very rich m anifolds of kinks were discovered In two N = 2 eld theoreticalm odels, close
relatives to the M STB systam , in a recent research perform ed by the authors of the present
work [d]. The investigation of kink properties in these m odels requires the analysis of the
separatrix tra fctories In two related dynam ical system swhich are type Tand III respectively
in the classi cation of Liouville bidin ensional (N = 2) com pletely integrable system s, see
@..

In fact, on choosing between the four types of Liouville dynam ical system s those that
m eet appropriate critical point structure, one builds an enom ous list of related N = 2 eld
theoretical m odels exhibiting m anifods of kinks of grow ing com plexity; see [§]. The role
of these m odels can be understood by noticing that the M STB system is a defom ation
of the O (2)-linear sigm a m odel. Instead of spontaneous symm etry breaking of O (2) by a
degenerated S! vacuum m aniold, theO (2) sym m etry group is explicitly broken to Z, Z, by
amass tem ;only invarianceunder , ! ( 1) ,,forb= 1;2,survives. From the pointof
view of quantum eld theory, this deform ation is very naturalbecause in (1+ 1)-dim ensions
Infrared divergences forbid the existence of G oldstone bosons, according to a theorem of
Colkman [§]. Even if it is absent in the classical action, a m ass temm w ill be generated by
quantum corrections.

W e Interpret this as follow s: in the param eter space of the N = 2 relativistic scalar eld
theories invariant under the 2, 7, w ith generatorsm entioned above, and potential energy

of the fom !

Uu)= = 1f+ 2§+?111+ 12 ?2
there are at least two distinguished points. T here is a choice of coupling constants such that
there is explicit O (2) symm etry, which is spontaneously broken. This is the linear O (2)-
sigm a m odel. T he other Interesting point is the M STB m odel where the explicit 2, 7,
symmetry generated by . ! ( 1)2® ,,forb= 1;2,breaks spontaneously to the Z, sub-
group generated by 5 ! ». The key obsarvation is that the renomm alization group ow
Induced by quantum corrections in the param eter space avoids the O (2)-sigm a system and
Instead leads to the M STB m odel, which also o ers a variety of kinks. A 1l the other eld
theoretical m odels exhibiting an abundant supply of kinks also correspond to deform ations
of O (2)-symm etric system s w ith potential energies that depend on higher powers of ; and
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T here are strong analogies w ith the Zam olodchikov c-theorem , [[J]: deform ations in the
goace of (1+ 1)dim ensional el theories leading from conform al to integrable system s are
the m ost Interesting ones. W e m est an analogous nite dim ensional situation: replace the
(In nite dim ensional) conform al group by the O (2) group and integrability of one system
w ith in nite degrees of freedom by integrability of a bidim ensionalm echanical system .

B.

T his paper is devoted to investigating the kink solitary waves of the deform ation of the
lJinear O (N )-sigm a m odel that generalize the M STB systam to the case of N —interacting
scalar elds. Non-lhear waves In relativistic eld theordes with N 3 scalar eds were
sketchily described for the rst time in Reference fI1]]. In this work, we o er a detaild
analysis of this issue. T he follow ing points m erit em phasis:

a) Thedynam icalsystem thatencodesthe solitary waves of them odelas separatrix tra—
FctorieshasN  rst integrals in involution and hence is com pletely integrable. Passing
from Cartesian to Jacobielliptic coordinates in the \intemal" space,R " , the dynam —
ical system becom es H am itton-Jacobi separable. A 11 the kink tra fctories, and hence
all the solitary waves, are then found by a special choice of the ssparation constants.

b) D esp insight Into the structure of the kink m anifold is gained by focusing on the
N = 3 case. There are three kinds of kinks: 1. A two-param eter fam ily of topological
kinks w ith three non-null com ponents that are \generic", ie. they are not xed under
the action of the 2, 72, Z, group generated by ., ! ( 1) ,,forb= 1;2;3.
2. Four oneparam eter fam ilies of \enveloping" non-topological kinks, also w ith three
non-null com ponents. T he four fam ilies are related through the action ofone z, 7,

sub-group and, together, form the envelop of the separatrix tra pctories. 3. A1l the
solitary waves of the N = 2 M STB m odel appear \embedded" tw ice; once In each

plane containing the two ground states. D i erent Z , sub-groups leave these em bedded

kinks invariant.

c) T he structure of the kink m anifold ofthe O (N ) systam w ith both explicit and spon—
taneous sym m etry breaking repeats the pattems shown in theN = 2 M STB ) m odel
and its generalization for N = 3. There are also generic, enveloping and em bedded

kinks, although when N increases the com plexity of the kink m anifold also increases.

For instance, the N 1 kink m anifold is em bedded N 1 tin es In the m anifold of
kinks of the deform ed linear O (N )-sigm a m odel.

d) In a rem arkable system obtained from thegeneralized M STB m odelby also allow ing
asymm etries in the quartic temm s of the potential, only the em bedded and enveloping
topological kinks Iiving on singular edges survive as solitary wave solutions. In this
systam , proposed in Reference f[3] for the N = 2 case, the energy of all the above
topological kinks is exactly the sam e. Together w ith vacuum degeneration, there is
therefore kink degeneration, a phenom enon that deserves further analysis.

C.
Solitary waves of the kind that we are to describe play an im portant r®le in condensed
m atter physics. Phase transitions characterized through order param eters of the vector type



areunderstood in term s ofthe linear (ornon linear) O (N )-sigm am odel. T he order param eter
is organized in the fiindam ental representation of O (N ) and the system becom es non-linear
when this N =vector is forced to take its values in the coset space M = O (N )=0 (N 1).
In (1 + 1)din ensional spacetin e, kinks are accom panied by the ferm ion fractionization
phenom enon [L3]; this describes the continuous approxin ation to the bizarre behaviour of
certain one-din ensional polym ers such as poly-acetilene. W hen the spatial dim ension is 3,
as in the realworld, kinks becom e dom ain walls which are thus related to theories involving
goontaneous breaking of discrete sym m etries. T his happens in the hot B ig Bang cosm ology,
where dom ain wall topological defects can be form ed In a phase transition occurring in
the expansion of the very early Universe; see [[4]. M ore recently, dom ain walls have been
characterized asBPS states of SUSY gliodynam ics and the W essZum ino m odel, [3]. In all
these cases there are sets of scalar elds, as in our systam , that presents a vardety ofdom ain
walls w ith di erent characteristics when seen from a 3-dim ensional perspective.

In quantum eld theory, the linear O (N )-sigm a m odel describes system s w ith sponta-—
neous symm etry breakdown to an O (N 1) sub-group and N 1 G odstone bosons in the
particle spectrum . A t the beginning of the sixties G elllM ann and Levy analyzed low energy
hadronic phenom enology by introducing an e ective Lagrangian eld theory of this type
]. Besides becom ing the centralelam ent of current algebra, linear sigm a m odels also enter
fundam ental physics in the H iggs sector of gauge theories for elam entary particle physics,
see report [L]]for a com prehensive review (of the perturbative sulb—sector). For instance, the
linear O (4)-sigm a m odel corregoonds to the H iggs sector of the electro-weak theory, while
the O (24) O (5) case provides the bosonic sector of the SU (5) G rand Uni ed T heory.

E ither considered on their own or form ing part of G auge theories, there are reasons to
discuss deform ations of the linear sigm a m odel. In the phenom enological approach, pions
are denti ed with the G odstone bosons of the m odel; a deform ation is then necessary to
convert these m assless excitations in pseudo-G odstone particles, accounting for the pions
Iight m ass. G auge theories are today found in the low energy lin it of (fundam ental) string
theory. Even though deform ations in the bosonic sector of gauge theories produced by an all
m ass tem s gpoil renom alizability, the low energy features rem ain (alm ost) untouched and
it is (aIm ost) legitin ate to trust them .

Here,we shall search fordom ain wallswhen thesem id deform ations are perform ed in the
IinearO (N )-sigm am odel. Tt isprecisely In thiskind ofm odelw here the coan ologicalproblem
of walldom ination is avoided [[§]. M oreover, the system has a rich m anifold of topological
and non-topological solitons, allow Ing for topological defects w ith \Intemal" structure and
Jleading to the existence of defects inside defects, a situation that generalizes a proposal of
M orris [[9].

T he organization of the paper is as follow s: In Section x2 we discuss the particle spec—
trum of the deform ed linear O (N )-sigm a m odel as well as the m anifold of the solitary wave
solutions of the system . Section x3 is devoted to the N = 3 case, which is described in
fulldetail. W e describe the situation of the generalized M STB m odel for any N in Section
x4 and brie y discuss the phenom enon of kink degeneration in the Bazeia system . Finally,
som e conclusions are drawn and som € new prospects opened In Section x5. An appendix on
elliptic Jacobi coordinates is also o ered.



2 K inks in the deform ed linear O (N )sigm a m odel

In a generic sense we understand \kinks" as the solitary waves of a relativistic (1+ 1)-
din ensional scalar eld theory. W e shall stick to the standard de nition of solitary waves;
see @Bland @B
A solitary wave is a non-singular solution of the non-linear coupled eld equations of
nite energy such that their energy density has a space+tin e dependence of the fom :

"Xt ="z Vb

w here v is som e velocity vector.

G iven one N -com ponent scalar eld,which isam ap from theR ' M inkow skispacetin e
toRY , ~(x;t) ( 1(x;8); 2(x;0);:::; x (x;1)), thedynam ics of the systam is govemed by
the action: 7 1

s= d S8~ @ V()

Here, = 0;1 are indices In the spacetime and we shalluse a = 1;2;:::;N to label

com ponents of the ed in the \intemal" R" space ;n such a way that ~ ~ = a2 a-
| a=1

. , 1 0 . . . .
In R " we choose themetric as g = 0 1 and the Einstein convention will be used

throughout the paper only for the indices in R '*. T he potential energy density is:

S}

m2 %2 & 2

\Y% jri; =— ~ ~ — + -2 2

(1ieitiow)= R
where ;m and . are coupling constants of inverse length. The linear O (N )-sigm a m odel
corresoonds to the case , = 0, 8a, which exhibbitsmaximum O (N ) symm etry. W e shall
focus on the defom ation of this system , which ism axin ally non-isotropic In the ham onic
term s, ie. 2 6 1, 8a 6 b. Somehow, the deform ation is natural from a quantum eld
theoretical vantage point aswe shallexplain Jater and, m oreover, we shall stick to the range
2 < m?,8a,n the param eter space because in this regin e the structure of the kink m anibd

is richer.

P
Introducing non-dim ensional variables ! & ,y ! m—zx and m% ! az,we nd our
expression for the action to be:
m 2?2 5 5 N
S=— dx G @ V(7225 n)
(1)
1 2 A1
V(l;:";N)=§ 1+ 5 aa

2.1 Con guration space and particle spectrum

T he Cauchy problem for the eld equations

Qv
2 4= ; a= 1;2;::4N (2)
@ .




is xed by choosing a \point" ~(x;%) 2 M apsR ;R" ) in the con guration space C , and
its \tangent", *(x;t) 2 T.-M aps® ;R" ), as nitial conditions to solve the system () of
non-lnear PDE .

The con guration space itself is isom orphic to the space of nite energy static con gura—
tions; if ~ (x;t) = g(x),C is the set of continuousmaps g :R ! RY (g (q;:::;9 ) such
that the (static) energy is nite:

)

(
E——p—m dx 1dg OkBI+V() < +1 ; (3)
2 2dx  dx i !

thus,C = fgx)=E gl< +1 g.q(x) 2 C only if g satis es the asym ptotic conditions:

dqa — O . l-[n — . 8 — l ..... N 4
Xi 1&_ ’ i lqa(x)_var a= reeey ( )
wherev  (vy;:::;Vy ) Isa constant vector that belongs to the set M of vectors annihilating
V . W e assum e, w ithout loss of generality, the follow ing ordering in the space of param eters:
1=0< 5< :11:< g < 1.M isthus formed by two vectors

M = v = ( 1;0;:::;0) (5)

which are the absolutem inina ofV .

WerefertoM as the vacuum m anifold because in the quantum version of the theory
pointsin M are the expectation values of thequantum eld operators Aa at the ground states
(\vacua") ofthe system . Thevacuum degeneration —ie.the existence ofm ore than one vector
nM -—isrelated to the breaking of sym m etry. B esides tw o-din ensional Poincare invariance,
there is a \intemal" symm etry w ith respect to thediscretegroup G = 2, &: Z, = Z,"
generated by L ! ( 1) ,,forb= 1;2;:::5;N ,8a= 1;:::;N . The vacuum m anifold is
the orbit of one elem ent by the group action

M =G=H, = Z,; Hy v =w

H, = 7, MN:} Z, isthe little group of the vacuum ¥ . The generators of H, are
the tansform ations ., ! ( 1)@ _,forb= 1;2;:::5;N ,and a = 2;3;:::;N , o that H
survives as a symm etry group when quantizing around v . W e can understand the intemal
parity group G as thediscrete \gauge" symm etry: in (1+ 1)-din ensions no dynam icaldegrees
of freedom related to gauge potentials appear.

Vectors In M are critical points of V. satisfying @@V ~ = 0 and therefore constant
a T=w

solutions of the el equations (f]). T he plane wave expansion around ~ (x;t) = v
X

L it =v, + A, (ke t
k
is a solution of (3) if the dispersion relation
@*v
w!?= K ML )y MI= W ) (6)
@ a@ b



hods.

In the quantum theory, these plane waves becom e the fundam ental quanta w ith m ass
m atrix M aZb (v ) and one reads the particle spectrum at a chosen critical point of V. from
@). Becausev 2 M areminima of V there are no negative eigenvalues of M 3 (v ) and
the dependence on tin e of the plane waves around v is bounded: € *. The choice of v
as the starting point of the quantization procedure \gpontaneously" breaks the sym m etry
G =17%," oftheaction toH, = Z, Y which is the ram aining one that survives in the
particle spectrum .

Tn ourm odel, we read the particle spectrum from :

’ 4 0 ::: O '
2 B 2 ...
m? B O 5 :::: O é
M 2(’V )= 7 E . (7)
@ : . A
0 0 =::: 7

Considering this systam as a physical description of the continuum approxin ation to
a onedin ensional crystal with an N -com ponent order param eter, the particle spectrum
describes a single phase with N phonon branches. W e see explicitly how the symm etry
group G = 7,V is \broken" by the choice of thev vacuum to theH, = Z," ' sub-
group: the N phonon branches have di erent m asses or \energy gaps". From the point of
view of particle physics we can say that there are no tachyons; only a pseudo-G odstone
particle becom es a G odstone boson if the corresponding 5 goes to zero.
Tt is interesting to see them odelas a m em ber of the fam ily characterized by the potential
energy densities: 0 1,
b by
e ab a b °A + _;b
ajp=1 ajp=1

V = a b

1
2
where ,.; .p and 2 are \bare" non-din ensional param eters. U ltraviolet divergences are
controlled by nom al ordering in the quantum theory, but the need arises to introduce a
renom alization foint’ 2, and the dependence of the renom alized param eters on 2 is
determ ined by the renom alization group equation. O ne special solution, a speci ¢ renor-

m alization group ow ,m ight Jead to the \point":
U= E(H=0 f(H=1

In the space of quantum eld theory m odels in the fam ity. This point is the linear O (N )-
sigm a m odelwhich hasG = O (N ) as the (continuous) symm etry group. T he vacuum orbit
is, however,M = O (N )=O (N 1)= 8V !, the N 1)-din ensional sphere, and thus there
isno unbroken symm etry left: thereareN 1 m assless particles. If the only m odi cation of
the renomm alized param eters is to allow for non-zero values of ib( 2y;a=Db=1+ 1;:::N
there are stillr 1 G odstone bosons.

Colem an [§]established that in (1 + 1)-din ensions the infrared asym ptotics of the two—
point G reen finctions of a quantum scalar eld forbids poles at ! 2 = k?; there are no
G odstone bosons In (1 + 1)din ensions. It is thus in possible to reach the O (N )=sigm a
m odel or its deform ation w ith the O (r) symm etry spontaneously broken to O (r 1) in the
renom alization group ow . T he closest adm issible points are the m odels characterized by :

ib(Z): i (=15 =0;a6b
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ROH=0< (%= - 2«1
In this paper we shall focus on the case of m axin al explicit symm etry breaking; ie.
when strict inequalities In the param eter space occur. N evertheless, we shall comm ent on

the allow ed situation characterized by

2 _ 2_ ... 2 2 L i.en 2 e 20 a..o 2
1=0< J== 0 < [ == < ini< [og= = o<1

when there is degeneration in the spectrum but no G oldstone bosons. N ote that the genera—

torsoftheO (ry 1) O(r» 1) ::: ON 1) symmetry sub-group are in the little group
ofthevacuum . The symmetry group isG =72, O(ry 1) O ny) ::: ON 1),
H, =0 1) O(r» ny) ::: ON 1n)andthevacuum orbitisM = G=H, = 7Z,.

2.2 Con guration space topology: kinks and dynam ical system s

The con guration gpace of the m odel is the union of topologically disconnected sectors:
e2
C = C ; thus, o(C)= Z, Z, and jo(C)j= 4 are respectively the zeroth-order
;=1
hom otopy group of C and its order. T his com es from the asym ptotic conditions (4) and the
continuity ofthe tin e evolution . T here are topologicalchargesde ned foreach con guration
in C as: 7
1-1 d, 1

r== dx— = = 150 a1t
0.=7  dx~=5(a1;1 ( )

Tt should be noted that Q! is independent of t, 8a, and in our system equal to zero if
a 2. Therefore the four sectors C  are labelled by the values ; ofthe eldsatin nity
com patible with nite energy and Q | detemm nes the hom otopy classin ((C)= Z, Z,.

T he criticalpoints of E are tim e-independent nite-energy solutionsofthe eld equations.
If they are not spatially hom ogeneous, the critical points correspond to solitary waves that
are therefore related to the topological structure of C . Besides com plying w ith (4), solitary
waves satisfy the system of ordinary di erential equations:

d? Qv
2o — ®)
dx CleA

Recall that ,(x;t) = g (x). Solving the system (§) is tantam ount to nding the solutions
of the Lagrangian dynam ical system in which x = plays the r0le of tim e, the \particle"
position is determ ined by @, ( ), and the potential energy of the particle isU () = V (g).
From this perspective the static eld energy E is seen as the particle action:

7 ( )
l1dg dg

E=J= >4 4 U (9) 9)
T ra Fctories that behaves asym ptotically in the -timeasruled by [}) havea niteaction,
J , In them echanical problem and are in one-to-one corregpondence w ith solitary waves/kinks

that have energy E = J In the eld theoretical system .
T hem echanical analogy is very helpfulwhen one isdealing w ith a real scalar eld theory
because, then, a rst integral is all that we need to nd all the solutions. Vector scalar



eddsof N com ponents lead to N -din ensionaldynam ical system s which are seldom solvable.
M agyari and Thomas [] realized that the two-dim ensional dynam ical system arishg in
connection w ith theM STB m odel is a com pletely integrable one in the Liouville sense; there
aretwo rst Integrals In involution. M oreover, Tto [E] has shown that the m echanical system
isH am ilton-Jacobissparable, nding allthe tra fctories and hence all the kinks of theM ST B
m odel. Tn a recent publication [q], we have developed this procedure fortwo N = 2 m odels
w ith interesting features: the rst system is a deform ation of the (1+ 1)-din ensional scalar

eld theory, where the potential energy density is the C hem-Sin onsH iggs potential arising
n selfdual planar gauge theories. T he second one is a deform ation of the linear O (2)-sigm a
m odel, which isdi erent from theM STB m odel.

To extend thism ethod of nding kinks to the linearO (N )-sigm am odel, N 3,deform ed
in such a way that the O (N ) symm etry is explicitly broken to G = Z," ,we start from the
\particle" action:

z ( )z

1dy d 1 18
g = )+ z

i B = - 41
ST g ts@ « > e ()

a=1
T he particle m otion equations are:
d?q,
d 2

=209 9 l)+§qa; 8a= 1;:::;N (10)

which are m athem atically dentical to the eld equations for static con gurations. Finite
action tra fctories, kinks in the eld theory, should also satisfy the asym ptotic conditions:

da .
=0 In &()= a (11)
W e shalluse the Ham iltonian form alisn to integrate the m echanical system . T he canon-
icalm om enta p; ( )=@% = i&( ), together w ith the positionsg ( ), form a system of local

) = C;; when going back to

coordinates In phase space. W e should bear in m ind that p, (
the el theory. Them echanical Ham iltonian

. 1 1( A b
1 = 213 i 5 g 4g
leads to the systam of canonical equations

da dp

5 - fhi%g; d—a = f1;p.g

equivalent to ({[(). G iven any two functions F (g;p), G (¢;p) In phase space, the Poisson
bracket isde ned in the usualway:

A QF @G @F @G

fF;Gg = —
' g a=1 @% @pa @pa @pa

O bviously % = 0,but ourm echanical systam is full of other invariants. In fact, as early
as 1919 G amier (] solved them otion equations and described periodic tra fctordes in tem s



of T heta functions: the kink tra fctories of nite \action" correspond to a Iim iting case and
are the separatrices between the periodic tra ctories and unbounded m otion . M ore recently
G rosse, and other authors @] have shown that the functions:

A
Ka= ———Lte+r 2 O £ & (13)
a b=1

b= % DB
are rst integrals in involution:

fIl;Kag:O fKa,'Kbg:O

There is a sest of N + 1 invariants in involution: T;;K1;K »;:::;Ky . The dynam ical
systam is not superintegrable, how ever, because there are only N -independent invariants:
Ki+ Ky+ i:+ Ky = 21 + 1. According to the Liouville theoram , the N din ensional
m echanical system is com pletely integrable and all tra fctories can be found, at least in
principle.

At this point we pause to explain the singular nature of the deform ation of the linear
O (N )=igm a m odel chosen from am ong m any possibilities. T he 75 2 term s explicitly break
the O (N )symm etry of the linear sigm a m odel; the case j = 0,8a= 1;2;:::;N . In
the m echanical systam the O (N ) Intemal transform ations becom e ordinary rotations. The
angularm om entum com ponents, l,, conserved in the lim it a2 = 0, 8a,are no longer “im e"—
independent if Z & 0. There are, however, N invariantsK ,,which .n the linit , = 0, 8a,
are given in tem s of the O (N )=nvariants: the r C asin ir invariants and the r generators of
the Cartan sub-algebra, where r = N; or N—21 if N -even or -odd is the rank of the group.
A waming: in the N = odd case, the energy m ust be added to the other N 1 Invariants
built from the Cartan sub-algebra and the Casin ir Invariants. For any N , the m axin ally
asym m etric chosen deform ation is special because it retains enough symm etry to solve the
m echanical systam . T here isno Lie algebra associated w ith K , how ever; since the invariants
are quadratic in ¢, , ., the action of K , in the phase space, given by fK . ;9.9 and fK . ;p.9,
is non-linear.

In (1+ 1)din ensional eld theory, the energy-m om entum tensor:

QL
T ee o) @, g L
is divergenceless due to invariance under spacetin e transhtions. P = 5 dxT? are thus

conserved quantities w hatever the values of j .The O (N ) \isospin" currents how ever,

hAl
J, = Cae b@ ¢
bre=1

are only djyergencepl\ess if = 0,8a. The ¢y are the Lie O (N ) structure constants and
the charges Q, = dxJ! are not conserved if there is no symm etry with respect to the
transform ation generated by them . For static con gurations, we have

Z
dxT%=8=7J; TY=1%=0; TH=1,

10



0 1 A
J, = 0; J; = Carcde
bpe=1
TIn term s of the “isospin‘currents, the invariants K , can be w ritten as:
| | |
& 1 R TR ' @ 2 &
Kam o awdl ewdl v 2w HIZ 2

2 2
b=1p6a b a c=1 d=1 b=1

W e expect that the tin eevolution occurs in such a way that there is som e equation of
non-linear character !

@L. @K. .
et " ex
between K , and
& R ey ! 2 R
1 @
L,= - Cared S Gl + @ta + (2 0 : b
b=1p6a b a =1 d=1 b=1
which reduces to 1) _ e when ., = 0,8a. The situation is analogous to that occurring

et @x
between conform al eld theories and m odels w ith in nite-dim ensional algebraic sym m etry

as In (1+ 1)<din ensional Toda eld theories and Toda a ne m odels [. There are two
di erences: (1) the conform al group is in nite din ensional in (1+ 1)-din ensions. W e have
only one nitedim ensional group O (N ) and thus we can solve only the static 1im it of the

eld theory m odel. (2) D ue to the non-linear character of the deform ation of the O (N ) Lie
generators, we do not even have a nitedin ensional Lie algebra.

2.3 The H am ilton-Jacobiequation and kink tra jectories

The K , invariants de ned in (E) are quadratic in the m om enta, but not orthogonal (they
contain term s n papys;a € b). T herefore, the Stackel theoram can not be applied to assure
H am ilton-Jacobi separability. T his problam is surpassed in our dynam ical system w ith the
choice of som e suitable system of coordinates. T he appropriate systam is provided by elliptic
Jacobi coordinates, w ith a choice of sgparation constants determ ined by the deform ation
param eters giving m ass to the G odstone bosons; 2= 1 2 8a= 1;2;:::5;N . Thuswe

a a;
de ne:
W
(2 b 2
b=1 a
Qj= = (14)
W 5 A% 2)
(2 5)
b=1)6a
ruling the change of coordinates from Cartesian,q  (cg;:::;9 ) toelliptic™ (15:::5 n)-

In the A ppendix, it is explained how the elliptic variables are split:
1 < 1< 2< ,< F o <imi< 2< o y<1 (15)

N otice that formula ([[4) coincides with formula ([3) in the A ppendix if we change g, by

2
& a+1 and choosery 441 = 5.

11



Togetherw ith form ula (I4), this splitting m eans that the change of coordnates produces
amap from a sub-gpace of R , characterized as the set of points which are not invariants
under the Z," group generated by o ! ( 1)=q;b= 1; ;N , to the interior of the
in nite parallelepiped Py (1 ) obtained by replacing the inequalities n (I3) by equalities:

1 < P y 1. Notice that ;n thismap 2V regular points in RN go
to a single point in the nterior of Py (1 ); Singularpoints lie in theR™ ,m = 0;1;:::5;N 1,
sub-spaces that are invariant under the action of som e non-trivial element of G = Z ¥ .
T hese singular sub-spaces are m apped into the boundary of Py (1 ).

T he standard length of an interval in Euclidean space is expressed in elliptic coordinates

n the form
. S I
ds® = dode, = Gaa (T)d od 4

a=1 a=1

because them etric g, (7 ), as derived in the A ppendix, is:

= =0, (“)=0;8a6 b
Yaa 4A( a)l Jab ’
¥ 2
whereA ( )= (. {),andf]
b1
W
fa(N)_ fa( 17 27 N/)= ( a b)
b=1
bs a
T herefore, the Lagrangian reads:
& 2
1 dog
L = 3 — U@izian)
2., d
‘2
1% _.dg,
= 3 Gaa (7) 3 U (158055 w) (16)

a=1

w here the potential in elliptic coordinates is:

bl 1 N+ 1 ( 1) N + (1 + )N 1
U (15115 n)= — S = (17)
am1 2 £.0)
B R - B bl & 5 5
- a r - a b
a=1 a=la<bb=2
The com putation of U (7) is highly non—rivial and requires the use of form ulas that
ollow the Jaccbilemma, such as (79), [I1]), (/§), etc.
pal
!The standard notation in the literature on elliptic Jacobi coordinates is 0 1) = (a b)s See

b=1
b6 a

Appendix. We shall use £5(7) In the main text instead of 9 .), to stress the fact that this quantity
depends on all the com ponents of ™

12



T he canonicalm om enta associated to the , variables are:

X d d
a = gab(N )d— = gaa(N)da
b=1

and, through the standard Legendre transform ation, we w rite the Ham iltonian:

1% 4a( L), .
H = - — [+ U ™) (18)
2.1 £.()

The key point isthat H can be written In Stackel’s fom :

bl H.
H = 2 - (19)
a:ll’fla( ) i
A2 () 2 2 Y o nY+a o+ )i
a1 £.(7)

@—+H — il ;iiiy; o =0 (20)

is com pletely separable. W e now prove this Jast statem ent.
Fixing H = I;,the rst ntegralof energy, and having in m ind the expression [L9) ofH ,
we w rite the solution of (2Q) as:

R
S= I, + Si(.) (21)
a=1
T herefore, (£Q) reduces to :
|
ds ds - ® g
L =H i/ iy = . (22)
d d y =15 (7)

TheH am ilton-JacobiPD E equation () becom esequivalent to the system ofnon-coupled
ordinary di erential equations

!

ds
Ho —; 0 = 18 M+ o0 24 0k 1 o+ (23)
d .
w here
| |
-2
ds ds
ad:,a=2A(a)d: 52*1 ( DY+ a + )Yty @
due to the dentity
BN 1 N 2 2 1
L=1 + a + + N (25)
a:lfa(N) azlfa(N) azlfa(N)



-obsarve that ; = I1-which Pllows from the Jacobi Lemm a and the subsequent relations
(A ppendix)
BHoooN 1 b
a =1; = 0;8i= 2;:::;N
a=1fa(~) azlfa(N)
A ltermatively, one could take a m ore direct approach to show formula 3). W e start from
(24), w ritten explicitly as

Q=
=

Hi( 1) Hao( 2)
+ +
(1 201 3) 10 n) (2 (2 3) 2( n)
H
+ w v ) -1 (26)
( DI 2) v § o1
Here,each H,( ,) isof the form (4) due to the ansatz 2]]). M ultplying (24) by ( 1 5)
and setting | = , one sees that H 1 ( ) H,( ), and hence by symmetry, allH ( ),
a= 1;2; ;N are dentical. Tt su ces therefore to nd;H ). M ultiplying )by £)
one obtains
Hi( 1)+ Po(T)HL( 2)+ 1+ P Hy (n)=TL( 1 2)( 1 3) 10w (27)
where each P, (7),a = 2;3; ;N , is a polynom ial of degree N 1 in. D i erentiating
1) N tin es with respect to ; yields
d'H
SHCD o5
d 1

whence it follows that H;( ) isa degree N polynom ial in  with leading coe cient I, In
agream ent w ith equation @3).

T he set of sgparation constants ;;i= 1;2;:::;N is another system of rst ntegrals in
Involution. They can be expressed in the elliptic phase space T Py (1 ) as functions of 4
and , = jS: by solving the linear system of equations (3) in the unknown ;,which isa
Vandem onde system . The N 1 roots of the polynom ial

e 2N Ta ik = (L Fu)(. Fy)ii(. Fy)

L I
together with the energy F; = I; form another system of invariants in involution. Both
system s are related through the dentities ; = I; and:

.= (171 FyFy t0Fy ;1 = 2;3;::N
1< ip< iy
T herefore, all the separation constants . are proportional to the \particle" energy I; .
D e ning the polynom alB ( ,) In the fom :

B(.= Y"1 ( 1»HY¥+aq + +2)) 8 P2, fy i 2y

the solution of the di erential equation (R3) is a quadrature:

1 dS!ZEB()
S = —sign - t =
2(a)= gsen o A(.)

d . (29)
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and the general solution of the H am ilton-Jacobiequation reads:

| v
: u
4B (L)
d . A(a)

A1 ds.
S = 1 + Es:gn

a=1

d . (30)

T he explicit Integration of the quadratures in (29) requires the theory of T heta functions
of genus depending on N . T he action of the associated tra fctories is in nite because they
are efther periodic or unbounded. T he asym ptotic conditions () that guarantee nite action
to continuous tra pctories satisfying them also require that the energy used by the particle
in these tra fctories should be zero. This is so because I; j . ; = 0 and, being an nvariant
of the evolution, I; = 0;8

W e recall that the tra ctordes of nite action in an evolution lasting an in nite tim e are
the kinks of the parent eld theory system : one just trades the nite action of the tra fctory
for nite energy of the non-linear wave. T herefore, the kinks are the tra Ectories obtained
when all the sgparation constants in ) are zero: , = 0;8a. These are the separatrices
betw een bounded and unbounded m otion and the integrals in (29) are easier to com pute.

T he explicit tra fctories are also provided by the H am itton-Jacobiprinciple, through the

set of equations:
@s
= ; a= 1;2;::4N
(S
where the . are integration constants. In the hypersurface of the phase space determ ined

by 1= :::= y = 0,the st equation

a

v
A 7N g p A( L)

Tt ) ey YT DYsa v )Y e

(31)

rules the tin edependence of the particle in its pumey through the orbit. From the el
theoretical point of view , it provides the kink form factor. The other N 1 equations,
i= 2;3;::4N,

v
. u
wg N g ,n A( L)
2 A 2)] Ml DY+ + )yt

(32)

detemm ine the orbit In Py (1 ), the Intersection of N 1 hypersurfaces in the con guration
goace. T herefore, there isa N 1din ensional fam ily of kinks param etrized by the nite
values of ;.

A lthough @) and (B3) dentify all the separatrix tra fctories of the m echanical system
and henceforth all the kink solutions of the deform ed linear O (N )-sigm a m odel, an explicit
description of such solitary waves is di cult for two reasons: (1). (31) and (32) form a
systam of transcendent equations of In possible analytical resolution. (2). Even if it were
possble, expressing back the solution In Cartesian coordinates through (74) for N 3 is
another I possible task by analytical m eans.
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3 N=3

To galn insight into the nature of the di erent kinks of the m odel, in this Section we shall
address In fulldetailthe N = 3 case. W e shalldealwith a (1+ 1)din ensional eld theory
Including three scalar eldswhich transform according to a vector representation of the O (3)
group. T he structure of the solitary wave solutions of the N = 3 systam is extram ely rich
from di erent points of view and show s the behavioural pattem of the general case w ith
N -com ponent elds.

3.1 The general solution of the H am ilton-Jacobi equation
T he H am iltonian of the underlying dynam ical system reads:

1

1 2
H=- p +p+ D 5q12+qj+q§ 1

2 2
_2 _3
2 2q§ qu 3)

In Cartesian coordinates. To write the Ham iltonian in elliptic coordinates, note that for
N = 3 we have:

A()=(a (2 D02 2
)= ( 2)( 1 3); )= (o (2 3); s = (s 1)( 3 2)
%3 1
Hence, H = o H,,where
a=1 a
1h2 i

S5 e DG D) (34)

T he ssparatrix tra gctories, those In oneto-one correspondence w ith solitary waves of
kink type in the encom passing el theory, are fully determ ined by the equations (39) re—
stricted to the N = 3 case:

3sign( 1) P

1 + 1
c2: 1 2 1 3
1 1 2 1 1t 3
pl + 3sign( 2) pl 2sign( 2)
2 2 2 3 (35)
1 2 2 1 2t 3
o 1 T+ ssign( 3) P 1 B s 2sign( 3)
p—— p——
1 3 2 1 3t 3
where C, = expf2 ; 5 3( 3 2)g is constant, and:
pl 1 2 3( % 3)sign( 1) p + 3 3sign( 1)
C3= -pil ie#
1 1+ 1 1 1 2
pl . s 2 3sign( 1) pl ; 1 2 3( % 3)sign( 2)
p—— p——
1 1+ 3 1 2+ 1
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2 2sign( 2)

1 + 1

p# p# (36)
1 2 2 1 2t 3

pl B 1 2 303 3)sign( 3) pl T+, 3 Zsign( 3)
1 3+ 1 1 3 2

pl B s 2 §sign(3)

pi
1 3+ 3

_ 2 2 2
with Cs = expf2 5 , 3 5 5( 5 2)g

Tntegration of (3]) in the N = 3 case show s the tin etable of the particle in each trafc-
tory, or, the kink form factor:

o pl - , 3 Zsign( 1) Pl T 2 Zsign( 1)
1 = P P
1+ 11 3
p 1 N s 2sign( ) P 1 2 Zsign( 2)
2 2 2 3 (37)
1 2 2 1 2+ 3
P T 5 Zsign( 3) P T N 2 Zsign( 3)
3 2 3 3
P P
1 5+ 1 5 3
FC1( )= expf2(1+ )(5 %), 3g9.Therefore, there isa fam ily ofkinks param etrized by

the integration constants ,, 3: it corresponds to the fam ily of curves in P53 (1 ) determ ined
by the intersection of the surfacesde ned by (83) and (Bq). T he third constant, ;, xesthe
center of the kink, the point w here the energy density reaches itsm axinum value.

Better intuition of the kink shapes requires an interpretation of the solutions described
by equations (83) and (39) in Cartesian coordinates. W e shalldescribe how is this achieved
in the next sub-sections, but before this it is convenient to note som e details of the change
of coordinates from Cartesian to elliptic in R *:

1
¢ = 50 @ HT 3
2 3
1
% = m(é DCE o0y (38)
2\ 3 2
1
€ = 55— (2 D

T he change of coordinates is singular at the threeR ? coordinateplanes;q = 0,0 = 0and
g = 0. The mageoftheq = 0 plane isa unique face, ;= 1,ofthe Ps(1 ) paralklepiped:

1< 1 2 5 5 50 (39)

The @ = 0 plane, however, is mapped into faces , = 2 and 3 = £, while the
% = Oplknegoesto faces , = and ;= 2 ofP3(l ). Observe thatgi( 3; 25 3) =
Go2( 17 57 3)= 92 17 27 3)=933( 17 27 2)=933( 1; 2;1)=1 . Thewholke R > space
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ismapped in P5(1 ). Due to the symm etry under thegroup G = Z, Z, 7, generated
by ¢, ! a., them apping (B9) is eight to one in regular points of R *: to any point in the
interior of P5(1 ) correspond eight points in R ® away from the coordinate planes. These
planes are xed lociof som e subgroup of G .

T he asym ptotic conditions (4) in g, restrict the m otion to the com pact sub-space D ° of
R ° bounded by the tri-axial ellipsoid:

TR N )
2 3
and are satis ed by nite action and zero energy tra pctories. E lliptic coordinates are best
suited for dem onstrating such a restriction. In this coordinate system D ° ism apped to the
nite parallelepiped P5(0):

0 1 ;§ 2 § 3 1 (41)

T he unigque non-sinqular face of P5(0) w ith respect to the change of coordinates is ; = 0
and the fnverse im age of this face is the ellipsod (4(). T he asym ptotic conditions @) force
» = 0;8b, and thus, by @), H_, = 0;8a, for the nite action solutions. , and 3 are

bounded, see (@]]). Thus, we focus on,
1

2 1 1
Hl:O) 514‘5 :O (42)

Equation (47) describes them otion of a particle w ith zero energy m oving under the in uence
of a potential

=N

1

V(1)=7l 1'
1

= 1; i< 1<

V(i1)hasamaximum at ;= Oandgoesto 1 when ; tendsto 1 ;therefore, bounded
m otion occursonly in the | 2 [0; §]jntervaland the tra ctordes giving rise to kinks lie in
P3(0), seen in elliptic coordinates, or D 3 in C artesian Space.

In Figure 1 the whole picture is depicted and we notice the follow Ing im portant elem ents
of the dynam ics:
—~Points: (1) theorigin. Thisisa xed point of G = Z 2 and thus only one point O in D ° is
m apped to the vertex O in P5(1 ). (2) Points B, C, D : these are the intersection points of
the three distinguished ellipses , of + q—% = 1,0+ q—% = 1 and q—é + q—% = 1, n the ellipsod
(20). They are xed points under the action of a sub-group 7, 2 of G and thus, two points
in the boundary ofD ® arem apped to a single point in the boundary of P5(0). D is the point
where the two vacuum pointsv arem apped and hence it is a very In portant point of the
dynam ics: every nite action tra pctory startsand endsatD . (3) PointsF,,F,,F3, the foci
of the above ellipses. A gain two points in D ° arem apped in a unique point in P5(0). (4) The
um bilicus A of the ellipsoid ; = 0 is another characteristic point; iIn C artesian coordinates
A corresponds to four points in the boundary of D ® because they are nvariant only under a
Z , sub-group ofG .

—Curves:
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Bl

Figure 1: (a) Thedomain D 3 in R 3: Cartesian coordinates (b) T he dom ain P5(0) n R 3: Jacobi
elliptic coordinates

T he ellipse w ith fociF,
+ ——=1 (43)

In thegs = 0 plane passing through Fs; and F1. This istheedge , = § = ; InP5(0).
O bserve that four points on the ellipse (43) are m apped to one point in the edge of
P5(0), because it is Invariant under a Z, sub-group of G . Them ap leading to F3 and
F1 is, however, two to one: the Invariance group of these points is bigger, Z, 2 G,
T he hyperbola
*F %
- =2 21 (44)
2 3 2
In theg = 0 planepassing through F, and A and having fociF; (theedge , = §= 3
in P5(0)).

T he above points and curves play a special dle in the de nition of the elliptic coordinates
and are also \critical loci" of the dynam ics.

3.2 G eneric K inks

The generic kinksof theN = 3 systam are the tra fctories given by the solutions of (83)(39)
for non-zero nite values of C, and C;. The solutions of the in plicit equations (33)-(39)
cannot be graphically represented by m eans of the built=in functions of M athem atica. W e
use a num erical algorithm in plem ented in M athem atica to obtain the graphic portrait of
the tra fctories. T he algorithm allow s us to calculate an arbitrary num ber of points on the
orbit. These points pined by straight segm ents provide a visualization of the tra fctory.
T here is a special step and an iteration of routine steps in the procedure, which isbased on
the N ew tonR aphson m ethod.
F irst step. Identi cation of two points on the tra fctory.

For given values of C,,Cs, ,, 3 and a choice of signs, we set the rst variabl to the
\point" 1= 1. ([B3)-(34) becom es a system of two equations in two unknow ns that can be

19



solved by the N ew ton-R aphson m ethod w ith starting values ( g; g ). The outcom e isa point
P;  ( 1; 2; 3)on the trafctory. W e repeat this operation starting rom ;= 1+ = !
to nd a second pointP, ( {; 3; 9) on the orbit.

1, Y, 9 and § are chosen at random ; good convergence is attained if these points
belong to the m iddle zones of the variation ranges of ;, , and 3 or,at least, they are far
away from the singularities on the faces of P5(0)

Successive steps.

P, and P, provide an approxin ation of the curve by the secant line pining them . For
somesnall 2 R',wechooseP? = P;+ (P, P;)as the starting value of the N ew ton-
R aphson procedure applisd to the solution of equations (83) and (B4); we thus obtain the
point P53 on the curve. P, and P53 lead to guesstin ate by the sam e token another value Pf
that produce the next point P, on the orbit and now the iteration is obvious. R eplacing
by we travel along the opposite sense on the tra gctory. T he algorithm stopswhen one of
the three variables 1, », 3 reaches its extram e value; it is applied iIndependently on each
stage, determ ined by the signs of , and the global tra Ectory is obtained by the dem and for
continuity.

W e now describe the portrait of these orbits. Having xed , and 3, the corresponding
kink tra fctory isa non-plane curve In the interior of P (0) that starts from the vacuum point
D , reaches the top face BCF;0 and hits the edge AF,. Tt then goes to the edge F1F'3, back
again to the top face, hits the edge AF, a second tim e, the top face a third tim e and ends
atD :seeFigure 2 and Fgure 3. Varying , and 3 In the range of nite realnum bers, other
sin ilar tra fctories are cbtained that hit the edgesAF, and F1F3 atdi erent points. G ven a
sense of tim e there therefore exists a twoparam eter fam ily of kink tra fctordes in oneto-one
correspondence w ith the points in the interior of AF, and F,F3. It should be m entioned
that a whole congruence of tra fctories param etrized by the interior of F1F; converges at
one single point in the nterior of AF, and viceversa.

\

<Y --------

D ¢=---=-fF--—eT

>
1
T
H
:
]
]
]
]
!
]
]
]
1]
<

\ o

Figure 2: A generic kink drawn both in D 3 and in P3(0). Observe In D 3 that the generic kink is
a heteroclinic tra fctory

T he translation of a generic kink tra ctory to C artesian coordinates is a delicate m atter;
due to the non-uniqueness of the m apping in plied by the change of coordinates special care
is necessary in the analysis of the tra jctory near the special conics (@3)—{4) where several
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D #=---c==-} -7

-1 -\ L\.\_____ —

Figure 3: Several generic kinks, all of them intersecting once w ith the edge F1F3 and tw ice w ith
the edge AF, of P3(0).

options are a prioripossible. Since it requires continuity and deriability to the tra fctories
in the interjor of the ellipsoid [@Q), the interior of D *, the behaviour of the curve is m ostly

xed. Two choices, the speci cation of D= v  as the starting point and the location of the
Intersection of the kink tra pctory with the g = 0 plane in the quadrant characterized by
> 0,3 > 0,completely x the itinerary.

T here is a crossroad w here the \particle" touches theq > 0 branch of the hyperbol (49)
and tums back towards the ellipse {¢3). T here, the m ovem ent enters the g; < 0 halfspace
and the kink trafctory reaches the other branch, o < 0, of the critical hyperbola after
crossing the oo = 0 plane. At this stage, the particle m akes its way for a third crossing of
the g = 0 plane and, nally, the pumey ends at D= v* . This kind of kink trafctory is
therefore heteroclinic: it starts and ends at di erent unstable points, so that:

Qi=- d—= 1; 0;=05=0 (45)
W e call these topological kinks TK 3 because they have three non-null com ponents:

a( )= 1x)60; ()= 2x)60; x( )= 3x)60

Tt should be noted that a unigue, apparently non-derivable, kink tra ctory in elliptic
coordinates corresponds to eight derivable tra ctories in C artesian coordinates: the choices
ofv orv® and gz < Oorgz > 0,9 < 0 org > 0 as the starting point and initial quadrant
give the eight possibilities.

T he energy of a threecom ponent topological kink is the action of the tra fctory tim es
2= and hence com putabk fiom muk @F) ortheN = 3 case:

p_
277 24, %*:io2.,d, ?%13.d,
—"Bixs = Pe——+ + (46)
m 0 1 1 g 1 2 g 1 3
4 2h ) , 1
= §+§ 3(3 30+ 23 5)

It is Independent of , and ;3 and hence the sam e for every kink in the TK 3 fam ily.
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3.3 Enveloping K inks

T here isanother fam ily of N = 3 kinks living on the surfaceM 3  f( 1; »; 3)= 1= 0Og,the
unigue face 0f P53 (0) where the elliptic coordinates are not singular. Tn M 3, the H am iltonian

becom es: . S , , 2)
X Ha X ZA a 1 a a
( )az 2 f)( ) 47)

and therefore there is a two-dim ensional system hidden inside the N = 3 model which is
H am ilton-Jacobi separable. T he orbit equations,

7 3 , 3sign( 2) 7 AT 2sign( 2)
C = P e

1 2t 2 1 2 3

| 3sign( 3) p 2sign( 3)
1 1 +

19# p# (48)
1 3+ 2 1 3 3

are param etrized by only one realconstant , (C = e 2 3¢ EOY )

Figure 4: The NTK 3 fam ily

The M athem atica plot of these solutions is shown in Figure 4. Having xed 5, the
corresponding kink tra fctory is a plane curve in M 3 that starts from the vacuum point
D , reaches the top edge BC, goes to the um bilicus A and then back to the edge BC, to
end nally In the vacuum point D .The value of , detem ines the points in BC where the
tra ctory bounces back and thus the oneparam eter fam ily of this kind of kink tra Fctordes
is In one—to-one correspondence w ith the points in the interior of BC .

In C artesian coordinates the enveloping kinks are tra ctories that unfold on the ellipsoid

(4q):
o + ﬁ+

2
2

The starting point is either D= v* or D= v and the tra fctordes also end In either
D= v" orD= v . Asociated with \hom oclinic" tra fctories, the corresponding kinks are
\non-topological': Q7 = Q; = Q3 = 0. The three Cartesian com ponents g, di er from

w8
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zero and the appropriate nam e for this kind of solitary wave is a non-topological kink of
three com ponents, NTK 3 for short. Every NTK 3 trafctory on s way from D= v to
D= v crosses the um bilicus point of the ellipsoid. Note that, again, eight tra fctories in
the C artesian space R ° correspond to one trajctory in P5(0): the particle has the freedom
to choose the points v* or v as base points of the curve. Having xed one of them , the
trajctory m ay develop in the halfellipsoids determ ined in (B3) by o 0 or o3 0 and,
nally, there are two travelling senses in each orbit.

A Iso, the energy of a threecom ponent non-topological kink is essentially the action of

the NTK 3 tra fctory:

p_ !
277 224, %12.4d, 2
p7+ :2 2+3

Eyxrr3 =
m’ 1 ;1 3

N
w |+

3

according to the H am iltton-Jacobi theory.

34 Embedded K inks

T hreecom ponent topological and non-topological kinks arise as genuine solitary waves in
the N = 3 model. Restriction to the g3 = 0 and/or g, = 0 planes shows that the N = 2
systam is included tw ice, once In each plane, In the N = 3 m odel. T herefore, all the solitary
waves of the N = 2 m odel are em bedded tw ice as kinks of the larger N = 3 systam . The
em bedded kinks Iive on theq, = 0 and gz = 0 planes, ie. the faces of P53 (0) w here the elliptic
coordinate system is singular.

I.Em bedded kinks in the ¢ = 0 plane

Both ;= Jand 3= 5giveqg = 0,se (BF), and hence this coordinate plane in R ° is
the union of the two faces, ;= Zand 3= 3,0fP3(0). Therefore, In

n 20 n ] 1 9
M23= (17 27 3)= 3= 5t (17 27 3)= 2= > =M, tM;

we expect to nd allthe kinksoftheN = 2 case.

InM, , 3= j,wearei thefaceofP;(0)such that0< ;< $< ;< j,and

=

w[\)| =

1
1 D@ )5 k=5 0 3
3

The Ham iltonian also reduces to the N = 2 H am iltonian

2A ( 1) 1

H = O(f)f TS 21 H. D
28 ( 5) 1
0(22)5 AT 20, 2, 9
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and the H am ilton-Jacobim ethod prescribes the equation

p p_— ! sign
. T . T ,+1 ° =ty
2332 _ O e
e = P i
1 1+ 3 1 1 1
.
pl 3 s pl 2+13539n(2)
B P (50)
1 2+ 3 1 2 1

as ruling the portion of the tra fctories at this face, bounded by the edgesAD ,AF,,
F,F3; and F3D (see Figure 5).

Figure 5: SeveralN TK 2 . kink trafctories of the N = 2 system embedded in the qu = 0 plane

InM? , ,= Zand the face in theboundary of P5(0) is0< ;< 35< 2< 3< 1.

3

T he tra Bctory equations at this face are:

[
, pl ; , pl T+ 1 3 sign( 1)
23 2 _
e -3 = B P
1 1+ 3 1 1 1
P —_— ! sign
1 ; . 1 3+1 3 sign( 3)
i (51)

T .+ 5 1 5 1
and the boundary is form ed by the edgesAF,,F,0 ,0B and BA .

For nite values of ,, som e kink trafctories given by (5J)—(E]) are depicted in Figure
5. Tt m ay be observed that the tra fctory starts at D and then runs through the face M 21 .
until the edge AF,. From this point, the particle enters the M ? . face (here the path is not
derivable), reaches the BO edge and com esback to the AF, edge. T his is the second point of
non-di erentizbility re-entering the tra fctory the M ; _ face. A Il the tra ctories then m eet
at the vertex F3; and com e back In a symm etric way to end in the D point. In Cartesian
coordinates, these kink tra pctories start and end in either D=v" orD= v , do not leave
the ¢ = 0 plane, and cross either the focus (g = 3,3 =0)or (g = 3,3=0).We
therefore call them NTK 2 |, because they are two-com ponent non-topologicalkinks, m erely
the fam ity of NTK 2 kinks of the N = 2 m odel, en bedded this way within the m anifold of
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kinks of the N = 3 system . T here are four tra fctories of this kind inside the ellipsold (@J)
in R 3 per trafctory in the boundary of P5(0): there is freedom to choose v* orv and
the sense of travel In each orbit. The NTK 2 . kinks are xed points of the Z , sub-group of

G = 223 generated by o ! @, that, however, does not leave invariant the TK 3 and the
NTK 3 tra ectories . T he energy of these solutions is:
P
273 i d, Pio2,d, %124,
T EnTr2, = Pt o
m 0 1 1 N 1 2 5 1 3
4 2
= —-+2 1 — 52
3 3 3 (52)

T here is a lim iting case to this fam ily of kinks: a tra pctory along the DA and AB edges
and back to D through the sam e way. E lliptic coordinates are even m ore singular on the
edges, but the dynam ical system reduces to a onedin ensional Ham iltonian system which
can be integrated analytically. W e have a two-step tra fctory:

At the DA edge, ; = 0and 3 = §, the canonical equations (after use of the st
Integral) reduce to:

dz2_ 5 2)ql (53)
d 2 3 2
w ith the solution
2 2 2
Cry=0; 5T =1 Ztanh®( 5 ); 5 ()= 2 (54)

for 2 (1 ;—jarctanh—i]t [%arctanh—i;l ). The second step occurs on the AB edge,

w here, again, the canonical equations reduce to a single di erential equation: if ; = 0 and

2
2 = 27

d 3 5
— = 2 1 55
3 (3 3) 3 (55)
has the solution
2 2 2
Ctry=0; 5= 2 (=1 Ztanh®( 5 ) (56)
h i

for 2 —31 arctanh —i ;% arctanh —j . The corresponding kinks in C artesian coordinates are
TK2, and TK 2 _, the four two-com ponent topologicalkinks of the N = 2 m odel:

0 TK2 | 1 0 1 0 TK2 , 1 0

B Ch ( )8 5 tanh( 3 ) c B 1 (X;t)g 5 tanh( 3X) c

Fag i ()§= & 0 A P = 6 0 X
@ ) Jsech( 5 ) 2 ) 3 e 5x)

(57)
T hus, the enveloping kinks of the N = 2 m odel are also embedded in the N = 3 system .
T he energy for these solutions and their antikinks is:

p_ |
22E —ng&+21 A, : (58)
3 TK23 % 1 ) g 1 s 3 3

In the @ = 0 plane there is still one tra Fctory that is even m ore singular: it is a three
step path running on the edges D F5, F3F,,F,0 and back to D through the sam e way. T he
canonical equations and its solutions in the three steps are:
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d g9
d—1= 2., 1 ,; 2 ¢(1; arctanh 5]t [arctanh 5;1 )
PO =1 o 2RC)= 5 RO = g
2. 1= Sand 3= 3.
d g9
d—2= 2 5, 1 57 2 [ arctanh sj;arctanh ,]t [arctanh ;j;arctanh 3]
FrO= 3 FO)=1 tani o SR )= ]
3. 1= fand ,= 3
d ; !
d—: 2 3 1 37 2 [arctanh 2;arctanh 2]
=% =3 Y )=1 tand

Only one Cartesian com ponent is di erent from zero:

0 1 0 1 0 1 0 1
a ¥t ) tanh ¥l (x;t) tanh x

B g ()x=8 o £ f Mlxna=8 0 & (59)
EE() 0 TElx;0) 0

and hence the one<com ponent topologicalkink of the N = 1 m odel is embedded rst in the
m anifold ofkinksoftheN = 2m odel, and then in theN = 3 system . T here are two kinks of
thiskind in Cartesian coordinates which arem apped in a unigque tra ctory in the boundary
of P5(0). The TK1 trafctories are xed points of the Z 2 sub-group of G generated by
! g and oz ! . The energy is

P_

277 2 94, *: 4, *r 4,5 4

; Brx1= P+ P P -3 (60)
m 0 1 1 % 1 2 § 1 3 3

Em bedded K inks in the gz = 0 plane

The DF3, F3F, and F,0 edges form the intersection of the g = 0 and g = 0 planes.
T herefore, the TK 1 kinks also live In the gz = 0 plane. T here is another m axin ally singular
tra fctory lving on the \edge" in the gz = 0 plne:

At the DC &dge, , = § and ; = 0, the canonical equations for the nite action
tra fctories are:

d 3 9
— = 2 1 61
3 (3 5) 3 (61)
T he path
2 2 2
Crey=0; 5T ()= % e )=1 Ztanh®(, ) (62)



solves (B]) and runswhen goesfrom 1 to+1 from D toD passing through the vertex
C at = 0. In Cartesian coordinates we recover the four two-com ponent topological kinks
oftheN = 2model,now embedded in the gz = 0 plane:

1

TK2 , 1 0 1 0 TK2 , 0 1
B G ( )8 5 tanh( 2 ) o B 1 (X;t)g 5 tanh( ZX) c
o (5= € Zsh(,)E § 7§ = € Zsch( x4
TK2 , 0 X2, 0
1S¢] () 3 (x;1)
(63)

T hese are heteroclinic tra fctories that produce the TK 2 , and TK 2 | topological kinks.

T he energy is: |
P - 7 !

2 1 id 5

3 3 2
——E1x2, = p—=2, 1 = (64)
m 21 3 3

Figure 6: NTK 2 , kink tra fctories of the N = 2 system embedded in the gz = 0 plane

O fooursethe fullm anifold of kinks of the N = 2 m odel is em bedded in the gz = 0 plane
: the set of kinks of the N = 3 systam is com pleted by the two-com ponent non-topological
kinks living in the gz = 0 plane, see Figure 6. The oz = 0 plane ism apped to the union of
two faces in the boundary of P53 (0):

is a wellde ned change of coordinates in therange < ,< < 3< 1. In this

region, the interjor of the ellipse [#3), the tra Fctories providing kinks are given by the
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equations:

2 sign( 2)
e2222 _ Y\l 2 2 1 >+ 1
1 >+ 1 > 1

1.
sign( 3)
1 5 1 s+1°
P (65)

1 3+ 9 1 2 1

2.InM222, »= Zfalompliesg=0.mtherange0< ;< 35< < 3< 1the
change of coordinates is de ned as

1

¢ = =@ a3
2
1

¢ = (2 0 5

1.
L, Pr— , P74 2w
2 = P P
1 1+ 2 1 1 1
p | !'n
1 ; ) 1 3_l_:|_2519(3)
P (66)

T .+ ., 1 L, 1

T he features of thiskind ofkinks are dentical to the characteristics of the tw o-com ponent
non-topological kinks that exist in the @ = 0 plane. The only di erence is that they have
support in the facesM ; and M ; instead of M, and M ; and we therefore call them
NTK 2 ,. They meet at the vertex F,, and therefore at the foci (g = 5;0;0) NR3; see
Figure 6. T he energy is:

p_ n #
277 2 a4, %*: 4, i1 4,
3 ENTK22 = 2 Pt , P 2p =
m 0 1 ]_' 3 1 2 5 1 3
,!
= Z+2, 1 2 (67)
? 3

In sum : the m anifold of kinks of the N = 2 model is embedded twice in the N = 3
systam , once in the ¢, = 0 plane and other in the g3 = 0 plane. They are sewn togehter by
thecommon TK1,anbedded from theN = 1 model. The enbedded kinks 11 the gaps left
by the TK 3 fam ilies of kinks in the interdor of the ellipsoid (49) and also develop through
the curves Jeft by the NTK 3 fam ilies on the boundary ofD . D ? is thus a \totally" geodesic
m anifold with respect to the separatrices between bounded and unbounded m otion in the
N = 3 dynam ical system . The NTK 3 fam ily form the envelop of the separatrices and the
NTK 3 kinks are them selres separatrices.
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Figure 7: Plot of the \sihgular" topological kinks TK 2 , (solid line), TK2 , (broken line) and
TK 1 (dash-dotted line) in both C artesian and E lliptic coordinates.

4 Further Comm ents

W e now infer the general structure of the kink m anifold of the linear O (N )-sigm a m odel
from the pattem shown by the O (2)-and O (3)-sigm a m odels. W e can safely state that all
the kink trafctordes live in the sub-maniod DY RY detem ined by the inequality:

2+ & S

—2"1‘ it —
2 N

T here are three categories:
1. G eneric K inks

A . There exists a fam ily of generic kinks param etrized by N 1 real constants that
live in the interiorofD ¥ . T he intersection lociof the generic kinks are the singular

quadrics:
o % % 4 2
= T = 7+ 2 1 :1;%20; 1= 2T xN
N N 2 5 N N21
2 2
I g %N 2 A _ . _ . _ _ 2
o+ e+ > 7 7 7 =1, o 1=0; 2= 3= N 1
N 1 N 1 2 N 1 N 2 N N 1
2

B . G eneric kinks are non-topological-hence NTK N -ifN even, and topological-hence
TKN-ifN isodd.

2. Enveloping kinks.

A . The restriction of the dynam ical systam to the boundary @D Y ofD " , the hyper-
elljpsoid:
o+ %+ mit L _ 1
2

2
N
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provides a fam iy of enveloping kinks param etrized by N 2 real constants. Re-
calling that in elliptic coordinates @D N is characterized by the equation ; = 0,
the Intersection lociof this congruence are the um bilical sub-m anifolds:

1=0 ; 4= é as1 = a+1 5 8a= 2;3;uyN 1

ofdimension N 3 of the hyperellipsoid @D " .

B . Enveloping kinks are topological, hence TKN , ifN is even, and non-topological,
hence NTKN, ifN isodd.

3. Em bedded K inks.

On theN 1RY ! sub-m anifolds determ ined by the conditionsq, = 0,ifa= 2 or3
or :::0rN , thedynam ical system reduces to the m echanical system that arises in the
IinearO (N 1)-sigm am odel T hus, thekink m anifold oftheN 1cassisincidedN 1
tin esin theO (N )-m odel, Iling the holes left in the interiorofD M by the generic kinks,
and also covering in @D N the sub-gpaces which are not covereded by the enveloping
kinks. Each N 1 kink sub-m anifold is not, however, included (N 1) (N 2)
times n the O (N )-m odelbecause theR N 2 sub-gpaces are intersections of the N 1
RY !,de ned above. The N 1 kink m anifolds are not separated but sewn togehter
through the N 2 kink sub-m anifolds. This is a iterative process in sych a way that

N 1
the kink m anifold of the O (N r)-sigm a m odel is Included . tin es In the

kink m anifold ofthe O (N ) system .

O ne can ask what happens if a continuous sub-group O (r) ofO (N ) survives as symm e-
try group of the system . T his happens if the deform ation is chosen in such a way that
0< 2= 2= 2< 2 < i< 2 < 1.Tnhthiscasewe obtain a sub-m anibd
of kinks from O (r) rotations around the ¢ axis of the kink m anifold of the N = 2
systam that lives in the g : ¢ plane. T he ram aining kinks correspond to the solitary
waves of the N = r 1 system de ned in the orthogonalR Y **! sub-space. A lso
the deform ations where 1 < 2| < ¢ are easy to understand. Finite action

tra fctordes spread out in thedom ain in R ¥ bounded by the hyper-hyperboloid:

q12+§2+ EﬁF % % =1:

S R i3

The kink m anifold of this system is the kink m anifold of the N = r m odelde ned in
the sub-spaceR* RY such thatqg,; = 9 0.

Finally we consider a m id deform ation of our m odel by introducing asym m etries in
the non-ham onic term s of the potential energy and also adapting the quadratic tem s
n a suitable m anner:



The new non-din ensional constants ", and , are de ned in temtm s of the old  .'s
through:
(.+1) S+ )
1+ "= —— az P 5 = a= 2;3;uN
Am ong the kinks of the deform ed linear O (N )-sigm a m odelonly the follow ing survive
as solitary wave solutions of this perturbbed systam :

(a) TheTK1.
1= tanhx; .= :m= y =0

(o) Allthe TK 2 kinks. On the ellipse,

2 a 2
I+ =1

1 2 e

the TK2 , and TK2 , con gurations,
S
1 2
1= tanh .,x; .= ] “sech .x; ,=0;8b6 ab6 1

+ a

are solutions of the eld equations. T he am azing fact is that in this deform ation
of the O (N )-linear sigm a m odel, discussed by Bazeia et al. if N = 2 [[J], the
energy of all these kinks is the sam e:

w

4 m
Erx1= Erkz,= i= Ergo, = EP_E_Z
O n onehand,we have a deform ation of the linearO (N )-sigm a m odel that exhibits
a com plex variety of kinks; on the other hand, another deform ation of the O (N )—
m odel reects alm ost every kink but the sin plest ones as solutions, and all of the
surviving kinks are degenerated in energy.

5 Outlook

T he developm ents disclosed in this paper suggest a general strategy in the search for kinks
In two spacetim e dim ensional el theories. W hen the eldshave N com ponents assam bled

In a vector representation of the O (N ) group, we focus on system s w ith sym m etry breaking
to a discrete sub—group of O (N ) which hasm ore than one elem ent. If the dynam ical system

that determ ines the localized static solutions is com pletely integrable, all the solitary waves
can be found, at least in principle. Particularly interesting is the situation where theN 1
Invariants in Involution with the m echanical energy act non-trivially on the m anifold of
Jocalized solutions and the orbit is a continuous gpace. O ne can then perturb such a system ,
Joosing in the perturbation m any of the solitary wave solutions: only few of the localized
static solutions survive as kinks of the perturbed (m ore realistic) m odel.

W e nally list several interesting questions that w ill be postponed for future research:

study of the structure of the kink m anifold of the deform ed linear O (N )-sigm a m odel
as a m oduli space seam s to be worthw hile.
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A detailed analysis of the sum rules between the energies of the di erent kinds ofkinks
isnecessary to x the structure m entioned above.

A treatm ent a Ja Bogom olny is also possible. T his allow s for a supersym m etric exten—
sion of them odel in such a way that the kinks becom e BP S states.

Thedi cult problem rem ainsofdeterm ining the stability ofthedi erent kinds ofkinks.
A pplication of the M orse index theorem helps In  nding the stability propertieswhich
n tum provide inform ation about the quantization of these topological defects.
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A ppendix: E lliptic coordinates

G ven any set of N real positive num bers such that 0 < 3 < 1, < :::< 1y , et us consider
the equation:
R
qﬁ =1 (68)
a:lra
L <

The left-handmenberQ (g) = of this equation can be understood either as a

a=1 Ta

function ofR" ,for xed 2 C ,orasa function of the com plex variable ,for xedg2 RY .
From (¢§) one inm ediately deduces:

T herefore, the N roots , of the polynom ial In the numerator of 1 Q (g), a rational
function of ,are the roots ofequation ).Theroots aarealorealnumbersand 1 Q ()
is a rational function such that ; < 31 < , < i< 1y 1< y§ < ny,sLeFigure 8. To
prove this point one needs to study 1  Q (g) along the -—realaxis, near the poles = rn,
using Bolzano’s theoram .

D e nition. The elliptic coordinates of the point g (@90 ) 2 RY are the roots
"5 (15:t:; w)2PY (1 )ofQ (a)= 1.

PY¥ (1 ) RY istheopen sub-space of RN givenby: 1 < 1< 1n,n < ,< I5y,:::
Iy 1< y < &y .Thesolution of f§) or = ; constant2 ( 1 ;r;) is,geom etrically, a
quadric surface, a hyperellipsoid, when g vardies in R Y . The fam ily of quadrics obtained by
taking = , oonstant?2 (ry 1;r.),a 2, corresponds to a fam ily of hyper-hyperboloids
of every possble signature n RY , ifQ (g) is considered as a function ofq.
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N N s

%3
Figure 8: P ot of the function y =

and the function y = 1, see (fg), or xed values of
T.
a=1"2

gy and ;.

Tt is convenient to denote the products in (9) as:

bl ¥
()= ( a) i A( )= ( )
a=1 a=1
o that
’ (
a)
A
1+ Cﬁ _ a=1 ( ) (70)
a=1 ) A( )
( )
a=1

An explicit form ula for de ning qj as a function of the ’'s, 8a, is obtained by applying
the residue theoram to both m em bers of the equation (@ ):

| (71)
R os () _ (ra); A%, )= dA ()
AC)  _. A%ry) d .
T herefore:
Nal
(r ) (ra b)
_ al _ =1 72
< A%r,) ¥ t72)
(ra rb)
=116 a
and we see that the transform ation (o ;:::;0 ) ! ( 15:::; x ) 82¥ to 1.

Inverting (73) to express , asa function of the g’s, 8a, requires one to solve an algebraic
equation In , with powersup to Y . Thisiseasy for N = 2, possble, but very di cult
for N = 3;4 usihg Cardano’s form ulas, and in possible if N 5. For this reason, another
derivation of ([72) isuseful, which in passing allow s one to show dentities between C artesian
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and elliptic coordinates that m ake practical com putations possible. To do this, notice that

(70) i plies:
W S W
()= ( m)+ ¢ ( n) (73)
a=1 a=1 b=1p6a
Setting = r. in ([3) one inm ediately derives (74). M ore im portant, expanding the two
menbersof)jnapowerser:iesjn ,We obtain:

| 0 1
b3 b3 ’ X X A by
Nyl n+ o + V2@ rr, o nh + i
a=1 a=1 < a a=1 b=1p6a
| 0 1
N X\T N 1 X X\T N 2 N SN
= N + @ S + i+ (1) N
a=1 < a a=1

Equalizing the coe cients of the term sw ith the sam e power of in the last equation we
have N non trivial identities. W e shall use the equalities between the coe cients of N !

and N ?:
bl bl bl
2= T % (74)
a=1 a=1 a=1
X A bl bl il X A
a b= racé Cﬁ I, + Yy (75)
< a a=1 a=1 =1 < a

A nother In portant tool using elliptic coordinates is the Jacobi lemm a:
Lem m a. T he expression

R s
a
a=1 ( a 1) a 2)(8')( a N )
where ( 1;:::; ) are N realnumbers such that ; < , < :::< y Isegualto O if
s N 2and 1 fors= N 1.

Proof:
C onsider the function

a=1
which hasN poles In the com plex planeat z= ., 8a, and another pole at in nity. If is
a closad curve which is the boundary of a region D of the com plex plane containing all the
nite poles of £4(z), the residue theoram tells us that:

]I 8 1!
— Ls(z)dz = Res(fs)( a)= Res(f)1 )= — fs(z)dz
2 1 a1 2 1
A lso,
b hral s
Res(fs)( a)= = )
a1 ( a=1 ( a 1)( a o) i, N )
Res(f.)(1 ) = 0; 8s<N 1



and the lemm a is proved.
Applying this result to the choice .= .,8a= 1;:::;N ,we obtaln new identities

hral s
Oa =0;8s< N 1 (76)
a=1 (a)
N 1
a =1 (77)
g 22)
because °( .)= ( . BIGA p)isr B, x ). A ltematively if we take , = r,,
the Jemm a In plies that:
R RN 1
Oa = (0;8s< N 1; a =1 (78)
a1 Alr a1 A%r)

An in portant dentity obtained from the lemm a is:

x® %@

a=1 (ra b)(ra c)

= 0; 8b;c (79)

T he nom al vectors to the fam iy of quadrics (69)

atthepointg (;:::;q ), are

O bserve that (79) in plies

bl
na( b)na( c)= O; 8a;b
a=1

T herefore, all the quadrics are orthogonalw ith each other and the elliptic coordinates form
an orthogonal system . The standard Euclidean m etric in Cartesian coordinates can be
expressed n elliptic coordinates in the form :
>l AW
d52 = dqj = gab(NE )d ad b

a=1 a=1lb=1

D erivation of the two m em bers of equation (74) leads to:

2d g
e -

o5 }Flra b
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and, using the JacobilLenm a,

d 2
4 = b
=1 Ta b
F inally, we have:
N
1 O( ) 1 (a b)
a ajpb=1
= - = - ; = 0;8a6 Db 80
Gaa 4A( a) 4 W 7 Yab ’ ( )
( a rb)
b=1

T he kinetic energy of a naturaldynam ical system in elliptic coordinates is;

13 18
T== == Gu—s (81)
2a:1 2a=1 :
In term s of the canonicalm om entum , = @?—T,T reads:
A 13 1 o
T = s T==- — 2= 2 O(a)j (82)
a=1 2a:]_gaa a=1 (a)
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