
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 29, 17-34 (2013)

17

How Evolutionary Visual Software Analytics Supports
Knowledge Discovery*

ANTONIO GONZÁLEZ-TORRES, FRANCISCO J. GARCÍA-PEÑALVO

AND ROBERTO THERÓN
Department of Computer Science

Faculty of Science
University of Salamanca

Plaza de los Caídos, 37008 Salamanca, Spain

Evolutionary visual software analytics is a specialization of visual analytics. It is

aimed at supporting software maintenance processes by aiding the understanding and
comprehension of software evolution with the active participation of users. Therefore, it
deals with the analysis of software projects that have been under development and main-
tenance for several years and which are usually formed by thousands of software arti-
facts, which are also associated to logs from communications, defect-tracking and soft-
ware configuration management systems. Accordingly, evolutionary visual software an-
alytics aims to assist software developers and software project managers by means of an
integral approach that takes into account knowledge extraction techniques as well as
visual representations that make use of interaction techniques and linked views. Conse-
quently, this paper discusses the implementation of an architecture based on the evolu-
tionary visual software analytics process and how it supports knowledge discovery dur-
ing software maintenance tasks.

Keywords: evolutionary visual software analytics, visual software analytics, visual ana-
lytics, human-computer interaction, software visualization, software evolution visualiza-
tion

1. INTRODUCTION

Visual analytics is a process that iteratively collects information, preprocesses data,
carries out statistical analysis [1], performs data mining, and uses machine learning [2],
knowledge representation [3], user interaction [4], visual representations [5-7], human
cognition [8], perception, exploration and the human abilities for decision making [9,
10].

It has been applied thoroughly to problems as diverse as avian flu [11], paleocean-
ographic conditions [12], organization analysis [13], decision making [14, 15], temporal
patterns [16, 17], social networks [18], security analysis [19] and software systems [20,
21]. Therefore, one can say that knowledge discovery is an intrinsic property of visual
analytics, as it is aimed at supporting analysts in gaining insight from large multivariate
datasets [22].

The visual analytics tasks are named after components of the process and are the
following: the knowledge extraction engine, the data transformation engine for visualiza-
tion models, the visual knowledge explorer and the user [23]. Such process begins with

Received May 31, 2011; accepted March 31, 2012.
Communicated by Francisco J. García-Peñalvo, Ricardo Colomo-Palacios and Jane Yung-Jen Hsu.
* This work was supported by Spanish Government project TIN2010-21695-C02-01, by the Castile and Lion

Regional Government through GR47, by the Ministerio de Ciencia e Innovación of Spain under project FI2-
010-16234 and also by the Ministry of Science and Technology (MICIT) of Costa Rica.

ANTONIO GONZÁLEZ-TORRES, FRANCISCO J. GARCÍA-PEÑALVO AND ROBERTO THERÓN

18

the retrieval of data from heterogeneous data sources which then is processed by the
knowledge extraction engine using one or more techniques for discovering, representing
and managing knowledge. Knowledge extraction techniques include information re-
trieval, knowledge representation and management, data mining, statistical analysis, ma-
chine learning, compression and filtering and semantic based approaches.

Although the aim of applying one or more knowledge extraction techniques to large
data sets is to support analysts by producing condensed data sets of relevant facts, usually
those resulting data sets are still large and complex. Thus, the visual knowledge explorer
is complementary to the knowledge extraction engine. It is comprised of techniques for
presenting information and aiding the comprehension and understanding of facts through
relationships. To this end it uses linked views, interaction and usability techniques to
provide a tool to users for exploring and applying human cognition, perception, sense-
making, analytical reasoning and critical thinking for decision making.

This paper is aimed at evolutionary visual software analytics, a specialization of
visual analytics that is concerned with knowledge discovery for supporting software
maintenance processes. Therefore, evolutionary visual software analytics addresses the
analysis of large software projects whose life cycle usually expands through several
years, generates thousands or even millions of lines of source code (LOC) [24], hundreds
of software components and thousands of revisions [25]. Furthermore, it also deals with
the relationships among software items in the form of inheritance, interface implementa-
tion, coupling and cohesion. In addition, source code details such as variables, constants,
programming structures, methods and relationships among those elements must be con-
sidered. Besides, logs, communication systems, defect-tracking systems and SCM tools
keep records with dates, comments, changes made to software projects, associated users
and programmers [26].

Accordingly, section 2 describes and discusses the visual software analytics and
evolutionary visual software analytics processes; section 3 explains an architecture for
evolutionary visual software analytics; section 4 expounds some visualization designs for
socio-technical analysis within software maintenance; and section 5 states the main con-
clusions.

2. BACKGROUND

Understanding the evolution of a software project is a complex process that requires
the automatic analysis of the project evolution, the visual representation of such analysis
and the active participation of users in the knowledge discovery process by interacting
with the visual representations. The aforementioned analysis takes into consideration the
evaluation of individual revisions and the comparison of the output produced by such
evaluation for a given number of revisions or all the existing revisions associated to the
project. Thereafter, the output of the analysis is visually represented and appropriate in-
teraction techniques are added to the visual representations. The aim is to involve the
active participation of users in the knowledge discovery and comprehension processes of
relevant facts regarding the evolution of the software project.

Consequently, the next sections focus on the discussion of the evolutionary visual
software analytics process and software evolution visualization.

HOW EVOLUTIONARY VISUAL SOFTWARE ANALYTICS SUPPORTS KNOWLEDGE DISCOVERY

19

2.1 Evolutionary Visual Software Analytics

The evolutionary visual software analytics process is a specialization of visual soft-

ware analytics, which in turn is based on visual analytics. Therefore, the evolutionary
visual software analytics process described in Fig. 1 is shared by visual software ana-
lytics as well as by visual analytics. So, the generic process starts with the retrieval of
data from heterogeneous data sources (reads data, arrow 1). Then, the retrieved data is
processed by the knowledge extraction engine using one or more knowledge extraction
techniques for discovering, representing and managing knowledge (produces facts, arrow
2). In turn, the output of the knowledge extraction engine is stored in the facts database.
Then, the facts analyzer engine reads facts from the software evolution facts database
(reads facts, arrow 3) and process them appropriately. Following, the data transformation
engine for visualization models takes the analysis results from the facts analyzer engine
(first analysis results, arrow 4) and creates the appropriate data structures required by the
visual knowledge explorer to display the most important results (shows the important
outcome, arrow 5). Next, using a combination of techniques the visual knowledge ex-
plorer provides a tool to users which allows knowledge exploration and discovery (zoom,
filter, interact, arrow 6).

This process is iterative and requires additional details as the user interacts, explores
and discovers knowledge through the creation of associations and relationships among
visual elements in the visual knowledge explorer (request of details on demand, see ar-
row 7). Thus, the visual knowledge explorer automatically requests additional informa-
tion for providing more details to users and if the requested data is unavailable from the
persistent data structures created by the data transformation engine, the facts analyzer
engine performs further analysis tasks (further analysis, arrow 8). Consequently, those
results are passed to the data transformation engine and added to the persistent data
structures (further analysis results, arrow 4). Finally, the corresponding details are visu-
ally represented in the visual knowledge explorer (details on demand, arrow 5) and the
user continues working on the knowledge discovery process until he/she decides to stop
once the proposed goals have been reached.

Furthermore, evolutionary visual software analytics and visual software analytics
also share their aim of supporting the study and analysis of the dynamics of software
systems for aiding software maintenance processes [26]. Although, the main difference
between them is that evolutionary visual software analytics looks to support the compre-
hension of the overall software project evolution while visual software analytics supports
the comprehension of the current state of the software project, without taking into ac-
count its past. Therefore, visual software analytics only takes into consideration a revi-
sion of the software project whereas evolutionary visual software analytics considers all
the revisions of the software project. A practical analogy for explaining such difference
between evolutionary visual software analytics and visual software analytics is that the
first could be seen as a movie while the latter would be a movie frame.

Therefore, evolutionary visual software analytics requires to compare the results
carried out on individual revisions. The techniques used by the knowledge extraction
engine, as well as the software facts that are extracted, and the software visualization
techniques, vary according to the aims of the research or tool design. However, the use of
interaction techniques and how visualizations are linked plays a relevant role in the

ANTONIO GONZÁLEZ-TORRES, FRANCISCO J. GARCÍA-PEÑALVO AND ROBERTO THERÓN

20

knowledge discovery process. Programmers and project managers make use of human
cognition, perception, sense-making, analytical reasoning and critical thinking to find
relevant facts and relationships to understand the software project by means of human
interaction. Similarly to visual analytics, the evolutionary visual software analytics proc-
ess stops when users have completed the knowledge discovery task that has been carried
out, or no satisfactory answer has been found.

Fig. 1. The evolutionary visual software analytics process.

The complexity of evolutionary visual software analytics is higher than in visual
software analytics because of the additional dimension added by the analysis of evolution
and the representation of time. Therefore, the techniques used by the knowledge extrac-
tion engine, the facts stored by the software evolution facts database and the visual
knowledge explorer for software evolution visualization take into account the complete
evolution of the software project or a given period of time.

The aim of the knowledge extraction engine is to produce software facts, such as
evolution metrics, logical coupling details, structural relationships, source code differ-
encing, software item lifelines, socio-technical relationships, defect tracking and com-
munications, and architectural relationships. For this purpose, it makes use of several
analysis techniques: origin analysis, contribution analysis, software prediction models,
frequent coupling mining, evolutionary metadata analysis, frequent patterns mining,
refactoring analysis, source code differencing, and defect classification and analysis. Be-

HOW EVOLUTIONARY VISUAL SOFTWARE ANALYTICS SUPPORTS KNOWLEDGE DISCOVERY

21

sides, the visual knowledge explorer for software visualization makes use of several
visualization techniques for representing software facts. Among the techniques used are
polymetric views, matrices, dependency graphs, software cities, UML-based diagrams,
call graphs, clustering and heatmaps techniques, algorithm animation, and socio-tech-
nical views.

2.2 Software Evolution Visualization

In software evolution, change events can be seen at different scales, or granularities
[27]. Several visualizations address the problem of getting insight in time series [28].
However, this is not enough for software-related problems, as stakeholders need to cor-
relate time events with data changes, such as structural or metric changes [24, 29]. As
such, researchers have investigated ways to combine time events with data changes in
timelines, i.e., the representation or exhibition of key events within a particular historical
period, often consisting of illustrative visual material accompanied by written commen-
tary, arranged chronologically.

In information visualization, several visualizations focus on correlating time events
with structure or metrics (values). For example, SemTime uses a set of stacked timelines
for the same or different time ranges, decorated with arrows to show relationships be-
tween data elements in the timelines [30]. Continuum combines the use of a timeline
with a scalable histogram overview and allows the navigation through a complete hier-
archical data set [31]. Treevolution introduces a tree ring metaphor to represent hierar-
chical time-based structures to browse and discover relationships in the history of com-
puter languages [32]. Spiral Graph employs a spiral metaphor to show a timeline to visu-
alize large time data sets, compare values along time, and detect periodic behaviors and
trends [33]. The Spiral Semantic Timeline [34] takes advantage of a radial layout and
accumulates activities in each time period. This visualization uses semantic zoom to al-
low pattern discovery by years, months, weeks, days and hours.

The use of timelines in the visualization of software evolution is often linked to the
representation of software project hierarchies with the use of treemaps, graphs (using
different layouts), and cone trees. Two related approaches to our work that have been
applied to visualize software project hierarchies are [35] and [36]. The evolution visuali-
zations of Pinzger et al. [29] and Voinea et al. [37], show the evolution of metrics over
thousands of software artifacts and hundreds of changes, apply to a higher level of granu-
larity.

Without detailing further due to space limitations, however, one can see several un-
solved, yet general, challenges in software evolution visualization. First, one may want to
visualize data at different time scales (years, months, days, hours) and also correlate the
different scales. Secondly, visualizing software structural relationships is still difficult,
although much work has been done in graph animation and evolution. Last but not least,
it is crucial to intuitively combine different types of visualizations when addressing a
real-world task, as outlined by visual analytics research [38]. While not claiming to fully
address such goals, our work here presents several steps in designing such a solution for
software evolution analysis purposes.

ANTONIO GONZÁLEZ-TORRES, FRANCISCO J. GARCÍA-PEÑALVO AND ROBERTO THERÓN

22

3. ARCHITECTURE DESIGN FOR THE EVOLUTIONARY VISUAL
SOFTWARE ANALYTICS PROCESS

This section describes and discusses an architecture based on the evolutionary visual

software analytics process (see Fig. 2). The goal of such architecture is to provide a ref-
erence design for novel researchers and tool designers interested in the evolutionary vis-
ual software analytics process. Its implementation has been carried out in Java and tested
with several open source software projects such as jEdit, JabRef, Jmol, and JFreechart.

The knowledge extraction engine on an evolutionary basis supports the addition of
modules for backing up new software configuration management systems (SCM) and
allows configuring connections to several different projects and software repositories for
extracting evolutionary details and carrying out software evolution analysis. Its compo-
nents are: the monitor of new revisions, the source code extractor, the source code parser
and the metadata and software evolution analysis engine.

Fig. 2. Architecture for the evolutionary visual software analytics process.

The monitor of new revisions is a process that continuously monitors the addition
of new revisions to software projects and notifies about new revisions to the source code
extractor. Then, the source code extractor starts extracting source code from the software
repository and invokes the source code parser for collecting details about the software
project structure, the hierarchy of classes, the coupling relationships and the source code
and metrics raw data for calculating metrics for classes and methods. Finally, the meta-
data and software evolution analysis engine takes the outcomes produced by the source
code parser and queries additional details from the software repository. Then, it applies
an exhaustive software evolution analysis and stores the results in the software evolution

HOW EVOLUTIONARY VISUAL SOFTWARE ANALYTICS SUPPORTS KNOWLEDGE DISCOVERY

23

facts database.
The knowledge extraction engine and the software evolution facts database are

server side components with a graphical interface. The facts analyzer engine and the data
transformation engine are a middleware processes that are configured using a graphical
interface and are executed automatically when new additions to the software evolution
facts database are detected.

Because our interest in analyzing the correlation between the contributions made by
programmers and the structural changes in software project evolution, the software evo-
lution facts that have been considered for the implementation of the architecture are the
software item lifelines, the evolution metrics, the socio-technical relationships and some
architectural/structural relationships such as inheritance, interface implementation, and
the correlation of structural data with metrics. Therefore, the data transformation engine
for visualization models transforms the software evolution facts into the appropriate data
structures that are used by software evolution visualizations.

Fig. 3. Main view of the visual knowledge explorer.

4. VISUAL KNOWLEDGE EXPLORER FOR SOFTWARE EVOLUTION

The visual knowledge explorer for software evolution has been developed in Java
as an Eclipse plugin. It makes use of linked views (organized by an overview + details

ANTONIO GONZÁLEZ-TORRES, FRANCISCO J. GARCÍA-PEÑALVO AND ROBERTO THERÓN

24

approach), interaction techniques and a color code for representing programmer’s con-
tributions. Fig. 3 shows the views that it includes: the Granular Timeline (displayed at
the left bottom corner), the Grid Master (located at the right top panel) and a social-
technical graph (depicted at the right bottom panel). Accordingly, the Granular Timeline
provides an overview of the project activities and the Gridmaster, as well as the socio-
technical graph, provide specific details regarding the correlation of project structure,
associations and time. Thus, after the visualizations are launched from the contextual
menu of the Eclipse’s Package Explorer view, the knowledge discovery workflow (as
indicated by numbers and arrows in Fig. 3) begins with the analysis of the programmers’
contribution patterns in the Granular Timeline, and the selection, for further analysis in
the Gridmaster, of one or more time units from this radial view. Then, the user can select
one of the displayed time units in the Gridmaster for presenting the associated socio-
technical relationships in the corresponding view.

Fig. 4. Granular timeline showing statistics for revisions committed for the jEdit source open soft-

ware project during 10 years.

HOW EVOLUTIONARY VISUAL SOFTWARE ANALYTICS SUPPORTS KNOWLEDGE DISCOVERY

25

Accordingly, the next sections explain the decisions taken for the visual representa-
tions and how they contribute to knowledge discovery in the context of software evolu-
tion.

4.1 Granular Timeline

The granular timeline uses a modified circular ring chart layout, to show an entire
overview of the time dimension of a project (Fig. 4). Concentric rings demonstrate the
different time scales that record change events, from coarse (years, outer ring) to fine
grain (hours or finer, innermost ring). A related layout was used by Holten et al. to depict
software project hierarchies [28]. This type of layout compactly presents large quantities
of data and provides an overview + detail view.

As opposed to most applications using circular ring charts, such as [35], the space
within each chart cell is used to embed different types of visualizations for representing
the number of revisions at that cell’s level of detail. First, the ‘years’ ring cells insert bar
charts that show the number of revisions for each month for each year.

The ‘months’ ring embeds a height plot chart presenting the number of committed
revisions per day-of-month. Next, the ‘days’ ring shows revisions within each day, so
this ring has 30 or 31 cells. In each cell, a matrix dot plot is drawn in polar (, ) coordi-
nates, where  maps the creation hour of a revision. Finally, the innermost ‘hours’ ring
shows revisions by hour, so it has 24 cells.

Additionally, statistics are displayed in the center of the visualization as time units
are selected. Note that time unit selections start in the outer ring that corresponds to
‘years’ and follows the sequence months  days  hours, as highlighted in Fig. 4 (2008
 August, 2008  August 2nd, 2008  August 2nd, 2008 at 12).

4.2 Gridmaster

This visualization is based on a matrix-like representation for being a simple struc-

ture widely known by programmers and because it allows the easy establishment of rela-
tionships among multivariate elements. The cells of the matrix representation, with the
packages and software items in the rows and the time units in the columns, are used for
the correlation of details associated to the corresponding package or software item. Basi-
cally, the evolution details that are correlated with the project structure are programmer
contributions, the creation of software items, the addition or removal of inheritance or
interface implementation relationships, and software item metrics.

Colors are associated to programmers and the area associated to each one depends
on the number of contributions, in terms of committed revisions, as well as on the repre-
sentation that has been chosen from the contextual menu: relative or absolute. In this
context,  = /is the area assigned to any time unit in the visual representation, where
is the dimension of the graphic area in pixels and  is the number of time units (years,
months or days) in the visual representation. Then, for the relative representation,  = /
is the area assigned to a programmer contribution, where  is the number of contributions
for the time unit with more contributions. Therefore, the area assigned to a given pro-
grammer for a given time unit is  =  * , where  is the number of contributions made
by the programmer during that time unit. For the absolute representation, the area as-

ANTONIO GONZÁLEZ-TORRES, FRANCISCO J. GARCÍA-PEÑALVO AND ROBERTO THERÓN

26

signed to a programmer contribution is different for each time unit. So,  = /, where 
is the number of contributions for the time unit under consideration.

The visual representation of the project structure is made up of all the packages and
software items that have been added to the project during its evolution. This allows cor-
relating all software items involved in the evolution process with programmers, metrics,
and architectural relationships such as inheritance and interface implementation rela-
tionships. On the left side, Fig. 5 shows the current project structure of jEdit in the
Eclipse workbench and depicts the project and its corresponding structure inside the vis-
ualization, including packages and software items that are no longer part of the current
project version. Such design feature allows representing the lifeline of software items and
packages using an intuitive approach, when the absolute representation is chosen as
shown in Fig. 5. The details view on the right side of the visualization presents that the
performed activities on the package “bsh” were carried out between 2001 and 2006.
Moreover, that package currently is not part of the latest version of the project, which is
corroborated when reviewing the project structure on the Eclipse workbench. So, the
lifeline of a package or software item is determined by the representation of program-
mer’s activities in the matrix view that is depicted by the use of colors.

Fig. 5. Absolute representation of programmer’s contributions showing project structure and lifelines.

Fig. 6. Relative representation of programmers’ contributions using 2008 as the reference year.

On the other hand, the relative representation allows comparing with precision the
activity carried out in packages as well as the time period that concentrates on more ac-
tivities, at the time that also provides visual information regarding programmer’s contri-
bution, as the area assigned to a contribution is the same for all time units in the visuali-
zation. Fig. 6 shows that the package with more activities is “org”, the year in which
more activities were carried out is 2008, and the programmer with more activity during
the period 2001 to 2005 is the one represented by the user spestov (whose name is ob-

HOW EVOLUTIONARY VISUAL SOFTWARE ANALYTICS SUPPORTS KNOWLEDGE DISCOVERY

27

tained from the tooltip that is displayed when the mouse is moved over the colored ar-
eas).

The representation of the project structure in Gridmaster is composed by foldable
nodes. Packages contain source code files and source code files contain software items,
whereas software items include details about inheritance and interface implementation
relationships, as illustrated by Figs. 7 (a) and (b). Complementary, Fig. 8 shows inheri-
tance and interface implementation relationships are conveyed by a green oval, and its
termination is represented by a red oval. In addition, the location of associated software
items is explicitly indicated (Java, current project or external library). Software item met-
rics are represented using bar charts with the aim of highlighting changes. Similar to the
representation of programmer contributions, metrics are represented using relative and
absolute areas. Relative representation takes into consideration the highest metric value
associated to the software item and the absolute representation takes into account the
software item with the highest metric value for calculating the chart height.

Software item metrics are represented using bar charts for highlighting changes in
metrics (see Fig. 9). Similar to the representation of programmer contributions, metrics

 (a) Software items contained by a file. (b) Inheritance and interface implementation relationships.

Fig. 7. File contents and relationships.

Fig. 8. Inheritance and interface implementation relationships.

Fig. 9. Representation of metrics.

ANTONIO GONZÁLEZ-TORRES, FRANCISCO J. GARCÍA-PEÑALVO AND ROBERTO THERÓN

28

are depicted using absolute and relative areas. The relative representation takes into con-
sideration the software item with the highest metric value for calculating the chart height.
On the contrary, the absolute representation only considers the highest metric value asso-
ciated to the software item.

The interactions supported by Gridmaster include the possibility of zoom-in and
zoom-out, the fisheye distortion, the reorder of project structure elements, and the capa-
bility of filtering out nodes from the structure. In addition, it supports year selection from
the timeline for depicting data according to associated months. Moreover, the user has
the possibility to choose how metrics and programmers are represented by selecting be-
tween relative or absolute value representations.

5. KNOWLEDGE DISCOVERY SCENARIO: SOCIO  TECHNICAL
RELATIONSHIPS

The visual knowledge explorer components discussed above allows knowledge
discovery for several software evolution facts such as the lifeline of software items, the
evolution of inheritance and interface implementation relationships, metrics and socio-
technical relationships. Accordingly, this section focuses on knowledge discovery from
socio-technical relationships.

The Granular Timeline represents contributions using bar charts (Fig. 4) or a combi-
nation of bar charts and treemaps [6] (Fig. 10). The bar chart representation provides de-
tails about the number of contributions at each granularity level. However, the represen-
tation of data at the ‘days’ and ‘hours’ granularity levels does not take full advantage of
the small graphic area available. Thus, treemaps were applied as they employ a space fil-
ling algorithm, which makes better use of space, and additionally allow to better high-
light individual revisions.

Analyzing the contribution patterns is an intuitive task with the Granular Timeline.
Fig. 11 shows the contributions made to jEdit during 11 years. The use of color is an
important feature in this representation and the area covered in the graph by a given color
is proportional to the number of contributions made by a given programmer. Accordingly,
it is easy to realize, at first glance, that during the years 2001, 2002, 2003, and 2004 most
of the contributions were made by the programmer represented by the light green color,
which name is spestov (note that the names of programmers are obtained from a tooltip
that appears when the mouse moves over the corresponding graphic area). However, in
2005 the contributions were made by 7 programmers (this is observed from the colors
representing programmers), being spestov and ezust (dark pink) the ones with more
contributions. Later, in 2006 the programmer with more contributions is ezust and the
number of contributions made by kpouer (orange) has increased, and no contributions
were made by the user spestov since May, 2005. Therefore, one can conclude that
spestov left the project by that month. Thereafter, ezust and kpouer have shared the
maintenance and development of the project until 2011, with a relevant number of
contributions made by vanza (yellow) and shlomy (purple).

Contributions patterns could be observed in the Granular Timeline as well as in the
GridMaster. However, the GridMaster correlates contributions with the project structure
down to the file level, as it can be noted in Fig. 3. This allows project managers to deter-

HOW EVOLUTIONARY VISUAL SOFTWARE ANALYTICS SUPPORTS KNOWLEDGE DISCOVERY

29

Fig. 10. Granular timeline using treemaps for highlighting contributions.

mine which software items have been changed by each programmer and assign program-
ming tasks to programmers according to their previous experience.

The socio-technichal graph is a simple and powerful view that is displayed when a
time unit, a year or month, is selected from the GridMaster. In this scenario, it is a com-
plementary view for visualizing the relationship between programmers, based on the
software items they have changed in common. The nodes of the graph represent program-
mers and their size conveys the number of contributions they have made (see Fig. 11).
Edges connecting programmers depict relationships among these programmers based on
changes to software items. The thickness of edges represents the number of common
software items that the associated programmers have changed. Accordingly, kpouer is
the programmer that has made more contributions in the selected year (2010), followed
by ezust, k_satoda (light yellow), and daleanson (light gray). Additionally, kpouer has
changed several software items in common with ezust, k_satoda, and daleanson. Thus,

ANTONIO GONZÁLEZ-TORRES, FRANCISCO J. GARCÍA-PEÑALVO AND ROBERTO THERÓN

30

Fig. 11. Socio-technical graph showing the relationships between programmers based on the soft-

ware items they have modified in common.

the relationship between kpouer and ezust is very strong due to the large number of
software items they have changed in common. Therefore, this visualization is useful in
scenarios where programmer’s tasks need to be redistributed to an unexpected situation
or organization change. Consequently, programming tasks performed by kpouer could be
eventually taken over by ezust, k_satoda, and daleanson.

6. CONCLUSIONS

The main contribution of this paper is defining of the evolutionary visual software
analytics process, due to its usefulness in the design of the tools and architectures that
look for supporting software maintenance tasks. Accordingly, it has explained in detail
the definition of such process and its main components. In addition, it has also discussed
the design and implementation of an architecture based on the aforementioned process.

Consequently, the implementation of this architecture has allowed to test the feasi-
bility of applying the evolutionary visual software analytics process to software main-
tenance tasks and determine if it could effectively contribute to knowledge discovery
within software evolution. Hence, the use of the resulting tool during controlled tests at
the lab has showed that evolutionary visual software analytics can effectively contribute
to software maintenance tasks by providing information about structural project details,
software metrics, and socio-technical relationships. Although it is important to highlight
that the knowledge elements, which any tool based on this process could provide, can be
related to any software evolution detail, according to the developer’s interest and the
specificity of the implementation. Thus, the evolutionary visual software analytics pro-
cess, as well as its usefulness in knowledge discovery tasks, has been partially tested and
a more rigorous validation with a group of users is pending for showing its usefulness in
day to day tasks.

Undoubtedly, the application of information visualization, and specifically visual
analytics, to any problem that involves data analysis, allows to grasp easily and quickly
(within a few minutes) the details that otherwise remain hidden from users. Therefore,
one of the strongest points of the evolutionary visual software analytics process in know-
ledge discovery tasks is the use of visualization techniques.

HOW EVOLUTIONARY VISUAL SOFTWARE ANALYTICS SUPPORTS KNOWLEDGE DISCOVERY

31

Finally, an additional contribution of this research is that it could be used as re-
ference for guiding other researchers to define specific visual analytic processes for their
own research areas (i.e. visual ontology analytics and evolutionary visual e-learning
analytics).

REFERENCES

1. R. Peck, C. Olsen, and J. L. Devore, Introduction to Statistics and Data Analysis, 4th
ed., Brooks/Cole, Independence, Cincinnati, 2011.

2. F. Harmelen, V. Lifschitz, and B. Porter, Handbook of Knowledge Representation,
Elsevier Science Publishers B. V., Amsterdam, The Netherlands, 2008.

3. I. H. Witten and E. Frank, Data Mining: Practical Machine Learning Tools and
Techniques, 2nd ed., Morgan Kaufmann, Oxford, United Kingdom, 2011.

4. Y. Rogers, H. Sharp and J. Preece, Interaction Design: Beyond Human-Computer
Interaction, 3rd ed., John Wiley & Sons, Inc., Hoboken, New Jersey, 2011.

5. Y. K. Leung and M. D. Apperlley, “A review and taxonomy of distortion-oriented
presentation techniques,” ACM Transactions on Computer-Human Interaction, Vol.
1, 1994, pp. 126-160.

6. B. Johnson and B. Shneiderman, “Treemaps: a space-filling approach to the visuali-
zation of hierarchical information structures,” in Proceedings of the 2nd Conference
on Visualization, 1991, pp. 284-291.

7. G. G. Robertson, J. D. Mackinlay, and S. K. Card, “Cone trees: animated 3d visuali-
zations of hierarchical information,” in Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, 1991, pp. 189-194.

8. A. Drigas, L. Koukianakis, and Y. Papagerasimou, “Towards an ICT-based psycho-
logy: e-psychology,” Computers in Human Behavior, Vol. 27, 2011, pp. 1416-1423.

9. D. A. Keim, F. Mansmann, J. Schneidewind, and H. Ziegler, “Challenges in visual
data analysis,” in Proceedings of IEEE Conference on Information Visualization,
2006, pp. 9-16.

10. X. Llorá, K. Sastry, F. Alías, D. E. Goldberg, and M. L. Welge, “Analyzing active
interactive genetic algorithms using visual analytics,” in Proceedings of ACM Con-
ference on Genetic and Evolutionary Computation, 2006, pp. 1417-1418.

11. P. Proulx, S. Tandon, A. Bodnar, D. Schroh, R. Harper, and W. Wright, “Avian flu
case study with space and geotime,” in Proceedings of IEEE Symposium on Visual
Analytics Science And Technology, 2006, pp. 27-34.

12. R. Theron, “Visual analytics of paleoceanographic conditions,” in Proceedings of
IEEE Symposium on Visual Analytics Science and Technology, 2006, pp. 19-26.

13. S. K. Card, S. Bongwon, B. A. Pendleton, and H. Jeffrey, “TimeTree: Exploring
time changing hierarchies,” in Proceedings of IEEE Symposium on Visual Analytics
Science and Technology, 2006, pp. 3-10.

14. M. Migut, J. van Gemert, and M. Worring, “Interactive decision making using dis-
similarity to visually represented prototypes,” in Proceedings of IEEE Symposium on
Visual Analytics Science and Technology, 2011, pp. 141-149.

15. A. Savikhin, R. Maciejewski, and D. Ebert, “Applied visual analytics for economic
decision-making,” in Proceedings of IEEE Symposium on Visual Analytics Science

ANTONIO GONZÁLEZ-TORRES, FRANCISCO J. GARCÍA-PEÑALVO AND ROBERTO THERÓN

32

and Technology, 2008, pp. 107-114.
16. C. Weaver, D. Fyfe, A. Robinson, D. Holdsworth, and D. Peuquet, “Visual analysis

of historic hotel visitation patterns,” in Proceedings of IEEE Symposium on Visual
Analytics Science and Technology, 2006, pp. 35-42.

17. H. Ziegler, M. Jenny, T. Gruse, and D. Keim, “Visual market sector analysis for fi-
nancial time series data,” in Proceedings of IEEE Symposium on Visual Analytics
Science and Technology, 2010, pp. 83-90.

18. A. Perer, I. Guy, E. Uziel, I. Ronen, and M. Jacovi, “Visual social network analytics
for relationship discovery in the enterprise,” in Proceedings of IEEE Symposium on
Visual Analytics Science and Technology, 2011, pp. 71-79.

19. L. Harrison, W. Dou, A. Lu, W. Ribarsky, and X. Wang, “Guiding security analysis
through visualization,” in Proceedings of IEEE Symposium on Visual Analytics Sci-
ence and Technology, 2011, pp. 317-318.

20. A. Gonzalez-Torres, R. Theron, A. Telea, and F. J. García-Peñalvo, “Combined visu-
alization of structural and metric information for software evolution analysis,” in
Proceedings of ACM Workshops on Principles of Software Evolution and Software
Evolution Workshops, 2009, pp. 25-30.

21. A. González-Torres, R. Therón, F. J. Garcia-Penalvo, M. Wermelinger, and Y. Yu,
“Maleku: An evolutionary visual software analytics tool for providing insights into
software evolution,” in Proceedings of IEEE International Conference on Software
Maintenance, 2011, pp. 594-597.

22. J. J. Thomas and K. A. Cook, Illuminating the Path: Research and Development
Agenda for Visual Analytics, IEEE Press, Los Alamitos, CA, 2005.

23. A. González-Torres, F. J. García-Peñalvo, and R. Therón, “Human-computer inter-
action in evolutionary visual software analytics,” Computers in Human Behavior, in
Press, doi:10.1016/j.chb.2012.01.013

24. H. Kagdi, M. L. Collard, and J. I. Maletic, “A survey and taxonomy of approaches
for mining software repositories in the context of software evolution,” Journal of
Software Maintenance and Evolution: Research and Practice, Vol. 19, 2007, pp. 77-
131.

25. M. D’Ambros, H. C. Gall, M. Lanza, and M. Pinzger, “Analyzing software reposito-
ries to understand software evolution,” Software Evolution, Springer, Berlin, Ger-
many, 2008, pp. 37-67.

26. A. E. Hassan, “Mining software repositories to assist developers and support man-
agers,” Ph.D. Thesis, Department of Computer Sciences, Waterloo University, Can-
ada, 2005.

27. U. D. Lago, A. Montanari, and G. Puppis, “On the equivalence of automaton-based
representations of time granularities,” in Proceedings of the 14th IEEE International
Symposium on Temporal Representation and Reasoning, 2007, pp. 82-93.

28. H. Hochheiser and B. Shneiderman, “Dynamic query tools for time series data sets:
timebox widgets for interactive exploration,” Journal of Information Visualization,
Vol. 3, 2004, pp. 1-18.

29. M. Pinzger, H. Gall, M. Fischer, and M. Lanza, “Visualizing multiple evolution met-
rics,” in Proceedings of ACM Symposium on Software Visualization, 2005, pp. 67-75.

30. M. Jensen, “Visualizing complex semantic timelines,” Technical Report NBTR2003-
001, NewsBlip, 2003.

HOW EVOLUTIONARY VISUAL SOFTWARE ANALYTICS SUPPORTS KNOWLEDGE DISCOVERY

33

31. P. André, M. L. Wilson, A. Russell, D. A. Smith, A. Owens, and M. C. Schraefel,
“Continuum: Designing timelines for hierarchies, relationships and scale,” in Pro-
ceedings of Symposium on User Interface Software and Technology, 2007, pp. 101-
110.

32. R. Therón, “Hierarchical-temporal data visualization using a ring tree metaphor,” in
Proceedings of the 6th International Symposium on Smart Graphics, 2006, pp. 70-81.

33. M. Weber, M. Alexa, and W. Muller, “Visualizing time-series on spirals,” in Pro-
ceedings of IEEE Symposium on Information Visualization, 2001, pp. 7-13.

34. D. A. Gomez, R. Theron, and F. J. García-Peñalvo, “Semantic spiral timelines used
as support for e-learning,” Journal of Universal Computer Science, Vol. 15, 2009, pp.
1526-1545.

35. B. Cornelissen, D. Holten, A. Zaidman, L. Moonen, J. van Wijk, and A. van Deursen,
“Understanding execution traces using massive sequence and circular bundle views,”
in Proceedings of the 15th IEEE International Conference on Program Comprehen-
sion, 2007, pp. 49-58.

36. J. García, A. González, D. A. Gómez, R. Therón, and F. J. García-Peñalvo, “A visual
analytics tool for software project structure and relationships among classes,” in Pro-
ceedings of the 9th International Symposium on Smart Graphics, 2009, pp. 203-212.

37. L. Voinea and A. Telea, “Multiscale and multivariate visualizations of software evo-
lution,” in Proceedings of the 3rd ACM Symposium on Software Visualization, 2006,
pp. 115-124.

38. P. C. Wong and J. Thomas, “Visual analytics,” IEEE Computer Graphics and Appli-
cations, Vol. 24, 2004, pp. 20-21.

Antonio González-Torres received his master degree in
Computer Sciences from the University of Costa Rica in 2001 and
currently he is pursuing the Ph.D. in Computer Sciences at the
University of Salamanca, Spain. He has worked as network ad-
ministrator for more than 12 years and holds industry certifica-
tions in the field. His current research interests include visual
analytics, software evolution, network security and visual net-
work analytics. Currently, he is member of the GRIAL (Research
Group in InterAction and eLearning) and VisUsal research groups.

Francisco José García-Peñalvo received the Ph.D. degree
in Informatics, Salamanca University in 2000. He is working in
Informatics Department of the Salamanca University, Spain and
leads the researching group GRIAL (research GRoup in InterAc-
tion and eLearning). He is member of the Science Education
Research Institute. His current research interests include human-
computer interaction, software engineering, semantic web, visual
analytics, services oriented systems and technology management
applied to educational contexts, systems and institutions.

ANTONIO GONZÁLEZ-TORRES, FRANCISCO J. GARCÍA-PEÑALVO AND ROBERTO THERÓN

34

Roberto Therón received his doctoral degree in Robotics
at the University of Salamanca, where his research focused on
combining fields such as computer science, artificial intelligence,
statistics, and data visualization. Currently is the manager of the
Visual Analytics and Information Visualization Research Group.
His current research interests lie in the proposal of customized
and advanced visual interfaces for specific analytical tasks in
various domains (from bioinformatics to linguistics).

