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Evolutionary visual software analytics is a specialization of visual analytics. It is 

aimed at supporting software maintenance processes by aiding the understanding and 
comprehension of software evolution with the active participation of users. Therefore, it 
deals with the analysis of software projects that have been under development and main-
tenance for several years and which are usually formed by thousands of software arti-
facts, which are also associated to logs from communications, defect-tracking and soft-
ware configuration management systems. Accordingly, evolutionary visual software an-
alytics aims to assist software developers and software project managers by means of an 
integral approach that takes into account knowledge extraction techniques as well as 
visual representations that make use of interaction techniques and linked views. Conse-
quently, this paper discusses the implementation of an architecture based on the evolu-
tionary visual software analytics process and how it supports knowledge discovery dur-
ing software maintenance tasks. 
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1. INTRODUCTION 
 

Visual analytics is a process that iteratively collects information, preprocesses data, 
carries out statistical analysis [1], performs data mining, and uses machine learning [2], 
knowledge representation [3], user interaction [4], visual representations [5-7], human 
cognition [8], perception, exploration and the human abilities for decision making [9, 
10].  

It has been applied thoroughly to problems as diverse as avian flu [11], paleocean-
ographic conditions [12], organization analysis [13], decision making [14, 15], temporal 
patterns [16, 17], social networks [18], security analysis [19] and software systems [20, 
21]. Therefore, one can say that knowledge discovery is an intrinsic property of visual 
analytics, as it is aimed at supporting analysts in gaining insight from large multivariate 
datasets [22]. 

The visual analytics tasks are named after components of the process and are the 
following: the knowledge extraction engine, the data transformation engine for visualiza-
tion models, the visual knowledge explorer and the user [23]. Such process begins with 
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the retrieval of data from heterogeneous data sources which then is processed by the 
knowledge extraction engine using one or more techniques for discovering, representing 
and managing knowledge. Knowledge extraction techniques include information re-
trieval, knowledge representation and management, data mining, statistical analysis, ma-
chine learning, compression and filtering and semantic based approaches.  

Although the aim of applying one or more knowledge extraction techniques to large 
data sets is to support analysts by producing condensed data sets of relevant facts, usually 
those resulting data sets are still large and complex. Thus, the visual knowledge explorer 
is complementary to the knowledge extraction engine. It is comprised of techniques for 
presenting information and aiding the comprehension and understanding of facts through 
relationships. To this end it uses linked views, interaction and usability techniques to 
provide a tool to users for exploring and applying human cognition, perception, sense-
making, analytical reasoning and critical thinking for decision making. 

This paper is aimed at evolutionary visual software analytics, a specialization of 
visual analytics that is concerned with knowledge discovery for supporting software 
maintenance processes. Therefore, evolutionary visual software analytics addresses the 
analysis of large software projects whose life cycle usually expands through several 
years, generates thousands or even millions of lines of source code (LOC) [24], hundreds 
of software components and thousands of revisions [25]. Furthermore, it also deals with 
the relationships among software items in the form of inheritance, interface implementa-
tion, coupling and cohesion. In addition, source code details such as variables, constants, 
programming structures, methods and relationships among those elements must be con-
sidered. Besides, logs, communication systems, defect-tracking systems and SCM tools 
keep records with dates, comments, changes made to software projects, associated users 
and programmers [26].  

Accordingly, section 2 describes and discusses the visual software analytics and 
evolutionary visual software analytics processes; section 3 explains an architecture for 
evolutionary visual software analytics; section 4 expounds some visualization designs for 
socio-technical analysis within software maintenance; and section 5 states the main con-
clusions. 

2. BACKGROUND 

Understanding the evolution of a software project is a complex process that requires 
the automatic analysis of the project evolution, the visual representation of such analysis 
and the active participation of users in the knowledge discovery process by interacting 
with the visual representations. The aforementioned analysis takes into consideration the 
evaluation of individual revisions and the comparison of the output produced by such 
evaluation for a given number of revisions or all the existing revisions associated to the 
project. Thereafter, the output of the analysis is visually represented and appropriate in-
teraction techniques are added to the visual representations. The aim is to involve the 
active participation of users in the knowledge discovery and comprehension processes of 
relevant facts regarding the evolution of the software project. 

Consequently, the next sections focus on the discussion of the evolutionary visual 
software analytics process and software evolution visualization. 
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2.1 Evolutionary Visual Software Analytics 
 
The evolutionary visual software analytics process is a specialization of visual soft-

ware analytics, which in turn is based on visual analytics. Therefore, the evolutionary 
visual software analytics process described in Fig. 1 is shared by visual software ana-
lytics as well as by visual analytics. So, the generic process starts with the retrieval of 
data from heterogeneous data sources (reads data, arrow 1). Then, the retrieved data is 
processed by the knowledge extraction engine using one or more knowledge extraction 
techniques for discovering, representing and managing knowledge (produces facts, arrow 
2). In turn, the output of the knowledge extraction engine is stored in the facts database. 
Then, the facts analyzer engine reads facts from the software evolution facts database 
(reads facts, arrow 3) and process them appropriately. Following, the data transformation 
engine for visualization models takes the analysis results from the facts analyzer engine 
(first analysis results, arrow 4) and creates the appropriate data structures required by the 
visual knowledge explorer to display the most important results (shows the important 
outcome, arrow 5). Next, using a combination of techniques the visual knowledge ex-
plorer provides a tool to users which allows knowledge exploration and discovery (zoom, 
filter, interact, arrow 6). 

This process is iterative and requires additional details as the user interacts, explores 
and discovers knowledge through the creation of associations and relationships among 
visual elements in the visual knowledge explorer (request of details on demand, see ar-
row 7). Thus, the visual knowledge explorer automatically requests additional informa-
tion for providing more details to users and if the requested data is unavailable from the 
persistent data structures created by the data transformation engine, the facts analyzer 
engine performs further analysis tasks (further analysis, arrow 8). Consequently, those 
results are passed to the data transformation engine and added to the persistent data 
structures (further analysis results, arrow 4). Finally, the corresponding details are visu-
ally represented in the visual knowledge explorer (details on demand, arrow 5) and the 
user continues working on the knowledge discovery process until he/she decides to stop 
once the proposed goals have been reached.  

Furthermore, evolutionary visual software analytics and visual software analytics 
also share their aim of supporting the study and analysis of the dynamics of software 
systems for aiding software maintenance processes [26]. Although, the main difference 
between them is that evolutionary visual software analytics looks to support the compre-
hension of the overall software project evolution while visual software analytics supports 
the comprehension of the current state of the software project, without taking into ac-
count its past. Therefore, visual software analytics only takes into consideration a revi-
sion of the software project whereas evolutionary visual software analytics considers all 
the revisions of the software project. A practical analogy for explaining such difference 
between evolutionary visual software analytics and visual software analytics is that the 
first could be seen as a movie while the latter would be a movie frame.  

Therefore, evolutionary visual software analytics requires to compare the results 
carried out on individual revisions. The techniques used by the knowledge extraction 
engine, as well as the software facts that are extracted, and the software visualization 
techniques, vary according to the aims of the research or tool design. However, the use of 
interaction techniques and how visualizations are linked plays a relevant role in the 
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knowledge discovery process. Programmers and project managers make use of human 
cognition, perception, sense-making, analytical reasoning and critical thinking to find 
relevant facts and relationships to understand the software project by means of human 
interaction. Similarly to visual analytics, the evolutionary visual software analytics proc-
ess stops when users have completed the knowledge discovery task that has been carried 
out, or no satisfactory answer has been found.   

 
Fig. 1. The evolutionary visual software analytics process. 

 

The complexity of evolutionary visual software analytics is higher than in visual 
software analytics because of the additional dimension added by the analysis of evolution 
and the representation of time. Therefore, the techniques used by the knowledge extrac-
tion engine, the facts stored by the software evolution facts database and the visual 
knowledge explorer for software evolution visualization take into account the complete 
evolution of the software project or a given period of time. 

The aim of the knowledge extraction engine is to produce software facts, such as 
evolution metrics, logical coupling details, structural relationships, source code differ-
encing, software item lifelines, socio-technical relationships, defect tracking and com-
munications, and architectural relationships. For this purpose, it makes use of several 
analysis techniques: origin analysis, contribution analysis, software prediction models, 
frequent coupling mining, evolutionary metadata analysis, frequent patterns mining, 
refactoring analysis, source code differencing, and defect classification and analysis. Be-
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sides, the visual knowledge explorer for software visualization makes use of several 
visualization techniques for representing software facts. Among the techniques used are 
polymetric views, matrices, dependency graphs, software cities, UML-based diagrams, 
call graphs, clustering and heatmaps techniques, algorithm animation, and socio-tech- 
nical views. 

 
2.2 Software Evolution Visualization 
 

In software evolution, change events can be seen at different scales, or granularities 
[27]. Several visualizations address the problem of getting insight in time series [28]. 
However, this is not enough for software-related problems, as stakeholders need to cor-
relate time events with data changes, such as structural or metric changes [24, 29]. As 
such, researchers have investigated ways to combine time events with data changes in 
timelines, i.e., the representation or exhibition of key events within a particular historical 
period, often consisting of illustrative visual material accompanied by written commen-
tary, arranged chronologically. 

In information visualization, several visualizations focus on correlating time events 
with structure or metrics (values). For example, SemTime uses a set of stacked timelines 
for the same or different time ranges, decorated with arrows to show relationships be-
tween data elements in the timelines [30]. Continuum combines the use of a timeline 
with a scalable histogram overview and allows the navigation through a complete hier-
archical data set [31]. Treevolution introduces a tree ring metaphor to represent hierar-
chical time-based structures to browse and discover relationships in the history of com-
puter languages [32]. Spiral Graph employs a spiral metaphor to show a timeline to visu-
alize large time data sets, compare values along time, and detect periodic behaviors and 
trends [33]. The Spiral Semantic Timeline [34] takes advantage of a radial layout and 
accumulates activities in each time period. This visualization uses semantic zoom to al-
low pattern discovery by years, months, weeks, days and hours.  

The use of timelines in the visualization of software evolution is often linked to the 
representation of software project hierarchies with the use of treemaps, graphs (using 
different layouts), and cone trees. Two related approaches to our work that have been 
applied to visualize software project hierarchies are [35] and [36]. The evolution visuali-
zations of Pinzger et al. [29] and Voinea et al. [37], show the evolution of metrics over 
thousands of software artifacts and hundreds of changes, apply to a higher level of granu-
larity. 

Without detailing further due to space limitations, however, one can see several un-
solved, yet general, challenges in software evolution visualization. First, one may want to 
visualize data at different time scales (years, months, days, hours) and also correlate the 
different scales. Secondly, visualizing software structural relationships is still difficult, 
although much work has been done in graph animation and evolution. Last but not least, 
it is crucial to intuitively combine different types of visualizations when addressing a 
real-world task, as outlined by visual analytics research [38]. While not claiming to fully 
address such goals, our work here presents several steps in designing such a solution for 
software evolution analysis purposes. 
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3. ARCHITECTURE DESIGN FOR THE EVOLUTIONARY VISUAL 
SOFTWARE ANALYTICS PROCESS 
 
This section describes and discusses an architecture based on the evolutionary visual 

software analytics process (see Fig. 2). The goal of such architecture is to provide a ref-
erence design for novel researchers and tool designers interested in the evolutionary vis-
ual software analytics process. Its implementation has been carried out in Java and tested 
with several open source software projects such as jEdit, JabRef, Jmol, and JFreechart.  

The knowledge extraction engine on an evolutionary basis supports the addition of 
modules for backing up new software configuration management systems (SCM) and 
allows configuring connections to several different projects and software repositories for 
extracting evolutionary details and carrying out software evolution analysis. Its compo-
nents are: the monitor of new revisions, the source code extractor, the source code parser 
and the metadata and software evolution analysis engine.  

 
Fig. 2. Architecture for the evolutionary visual software analytics process. 

 

The monitor of new revisions is a process that continuously monitors the addition 
of new revisions to software projects and notifies about new revisions to the source code 
extractor. Then, the source code extractor starts extracting source code from the software 
repository and invokes the source code parser for collecting details about the software 
project structure, the hierarchy of classes, the coupling relationships and the source code 
and metrics raw data for calculating metrics for classes and methods. Finally, the meta-
data and software evolution analysis engine takes the outcomes produced by the source 
code parser and queries additional details from the software repository. Then, it applies 
an exhaustive software evolution analysis and stores the results in the software evolution 
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facts database.  
The knowledge extraction engine and the software evolution facts database are 

server side components with a graphical interface. The facts analyzer engine and the data 
transformation engine are a middleware processes that are configured using a graphical 
interface and are executed automatically when new additions to the software evolution 
facts database are detected. 

Because our interest in analyzing the correlation between the contributions made by 
programmers and the structural changes in software project evolution, the software evo-
lution facts that have been considered for the implementation of the architecture are the 
software item lifelines, the evolution metrics, the socio-technical relationships and some 
architectural/structural relationships such as inheritance, interface implementation, and 
the correlation of structural data with metrics. Therefore, the data transformation engine 
for visualization models transforms the software evolution facts into the appropriate data 
structures that are used by software evolution visualizations. 

 
Fig. 3. Main view of the visual knowledge explorer. 

4. VISUAL KNOWLEDGE EXPLORER FOR SOFTWARE EVOLUTION 
 

The visual knowledge explorer for software evolution has been developed in Java 
as an Eclipse plugin. It makes use of linked views (organized by an overview + details 
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approach), interaction techniques and a color code for representing programmer’s con-
tributions. Fig. 3 shows the views that it includes: the Granular Timeline (displayed at 
the left bottom corner), the Grid Master (located at the right top panel) and a social- 
technical graph (depicted at the right bottom panel). Accordingly, the Granular Timeline 
provides an overview of the project activities and the Gridmaster, as well as the socio- 
technical graph, provide specific details regarding the correlation of project structure, 
associations and time. Thus, after the visualizations are launched from the contextual 
menu of the Eclipse’s Package Explorer view, the knowledge discovery workflow (as 
indicated by numbers and arrows in Fig. 3) begins with the analysis of the programmers’ 
contribution patterns in the Granular Timeline, and the selection, for further analysis in 
the Gridmaster, of one or more time units from this radial view. Then, the user can select 
one of the displayed time units in the Gridmaster for presenting the associated socio- 
technical relationships in the corresponding view. 

 
Fig. 4. Granular timeline showing statistics for revisions committed for the jEdit source open soft-

ware project during 10 years. 
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Accordingly, the next sections explain the decisions taken for the visual representa-
tions and how they contribute to knowledge discovery in the context of software evolu-
tion. 
 
4.1 Granular Timeline 
 

The granular timeline uses a modified circular ring chart layout, to show an entire 
overview of the time dimension of a project (Fig. 4). Concentric rings demonstrate the 
different time scales that record change events, from coarse (years, outer ring) to fine 
grain (hours or finer, innermost ring). A related layout was used by Holten et al. to depict 
software project hierarchies [28]. This type of layout compactly presents large quantities 
of data and provides an overview + detail view.  

As opposed to most applications using circular ring charts, such as [35], the space 
within each chart cell is used to embed different types of visualizations for representing 
the number of revisions at that cell’s level of detail. First, the ‘years’ ring cells insert bar 
charts that show the number of revisions for each month for each year.  

The ‘months’ ring embeds a height plot chart presenting the number of committed 
revisions per day-of-month. Next, the ‘days’ ring shows revisions within each day, so 
this ring has 30 or 31 cells. In each cell, a matrix dot plot is drawn in polar (, ) coordi-
nates, where  maps the creation hour of a revision. Finally, the innermost ‘hours’ ring 
shows revisions by hour, so it has 24 cells.  

Additionally, statistics are displayed in the center of the visualization as time units 
are selected. Note that time unit selections start in the outer ring that corresponds to 
‘years’ and follows the sequence months  days  hours, as highlighted in Fig. 4 (2008  
 August, 2008  August 2nd, 2008  August 2nd, 2008 at 12).  
 
4.2 Gridmaster 

 
This visualization is based on a matrix-like representation for being a simple struc-

ture widely known by programmers and because it allows the easy establishment of rela-
tionships among multivariate elements. The cells of the matrix representation, with the 
packages and software items in the rows and the time units in the columns, are used for 
the correlation of details associated to the corresponding package or software item. Basi-
cally, the evolution details that are correlated with the project structure are programmer 
contributions, the creation of software items, the addition or removal of inheritance or 
interface implementation relationships, and software item metrics.  

Colors are associated to programmers and the area associated to each one depends 
on the number of contributions, in terms of committed revisions, as well as on the repre-
sentation that has been chosen from the contextual menu: relative or absolute. In this 
context,  = /is the area assigned to any time unit in the visual representation, where 
is the dimension of the graphic area in pixels and  is the number of time units (years, 
months or days) in the visual representation. Then, for the relative representation,  = / 
is the area assigned to a programmer contribution, where  is the number of contributions 
for the time unit with more contributions. Therefore, the area assigned to a given pro-
grammer for a given time unit is  =  * , where  is the number of contributions made 
by the programmer during that time unit. For the absolute representation, the area as-
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signed to a programmer contribution is different for each time unit. So,  = /, where   
is the number of contributions for the time unit under consideration. 

The visual representation of the project structure is made up of all the packages and 
software items that have been added to the project during its evolution. This allows cor-
relating all software items involved in the evolution process with programmers, metrics, 
and architectural relationships such as inheritance and interface implementation rela-
tionships. On the left side, Fig. 5 shows the current project structure of jEdit in the 
Eclipse workbench and depicts the project and its corresponding structure inside the vis-
ualization, including packages and software items that are no longer part of the current 
project version. Such design feature allows representing the lifeline of software items and 
packages using an intuitive approach, when the absolute representation is chosen as 
shown in Fig. 5. The details view on the right side of the visualization presents that the 
performed activities on the package “bsh” were carried out between 2001 and 2006. 
Moreover, that package currently is not part of the latest version of the project, which is 
corroborated when reviewing the project structure on the Eclipse workbench. So, the 
lifeline of a package or software item is determined by the representation of program-
mer’s activities in the matrix view that is depicted by the use of colors. 

 
Fig. 5. Absolute representation of programmer’s contributions showing project structure and lifelines. 

 

 
Fig. 6. Relative representation of programmers’ contributions using 2008 as the reference year. 

 

On the other hand, the relative representation allows comparing with precision the 
activity carried out in packages as well as the time period that concentrates on more ac-
tivities, at the time that also provides visual information regarding programmer’s contri-
bution, as the area assigned to a contribution is the same for all time units in the visuali-
zation. Fig. 6 shows that the package with more activities is “org”, the year in which 
more activities were carried out is 2008, and the programmer with more activity during 
the period 2001 to 2005 is the one represented by the user spestov (whose name is ob-
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tained from the tooltip that is displayed when the mouse is moved over the colored ar-
eas).  

The representation of the project structure in Gridmaster is composed by foldable 
nodes. Packages contain source code files and source code files contain software items, 
whereas software items include details about inheritance and interface implementation 
relationships, as illustrated by Figs. 7 (a) and (b). Complementary, Fig. 8 shows inheri-
tance and interface implementation relationships are conveyed by a green oval, and its 
termination is represented by a red oval. In addition, the location of associated software 
items is explicitly indicated (Java, current project or external library). Software item met-
rics are represented using bar charts with the aim of highlighting changes. Similar to the 
representation of programmer contributions, metrics are represented using relative and 
absolute areas. Relative representation takes into consideration the highest metric value 
associated to the software item and the absolute representation takes into account the 
software item with the highest metric value for calculating the chart height. 

Software item metrics are represented using bar charts for highlighting changes in 
metrics (see Fig. 9). Similar to the representation of programmer contributions, metrics 

           
   (a) Software items contained by a file.     (b) Inheritance and interface implementation relationships. 

Fig. 7. File contents and relationships. 
 

 
Fig. 8. Inheritance and interface implementation relationships. 

 

 
Fig. 9. Representation of metrics. 
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are depicted using absolute and relative areas. The relative representation takes into con-
sideration the software item with the highest metric value for calculating the chart height. 
On the contrary, the absolute representation only considers the highest metric value asso-
ciated to the software item. 

The interactions supported by Gridmaster include the possibility of zoom-in and 
zoom-out, the fisheye distortion, the reorder of project structure elements, and the capa-
bility of filtering out nodes from the structure. In addition, it supports year selection from 
the timeline for depicting data according to associated months. Moreover, the user has 
the possibility to choose how metrics and programmers are represented by selecting be-
tween relative or absolute value representations. 

5. KNOWLEDGE DISCOVERY SCENARIO: SOCIO  TECHNICAL 
RELATIONSHIPS 

The visual knowledge explorer components discussed above allows knowledge 
discovery for several software evolution facts such as the lifeline of software items, the 
evolution of inheritance and interface implementation relationships, metrics and socio- 
technical relationships. Accordingly, this section focuses on knowledge discovery from 
socio-technical relationships. 

The Granular Timeline represents contributions using bar charts (Fig. 4) or a combi- 
nation of bar charts and treemaps [6] (Fig. 10). The bar chart representation provides de- 
tails about the number of contributions at each granularity level. However, the represen- 
tation of data at the ‘days’ and ‘hours’ granularity levels does not take full advantage of 
the small graphic area available. Thus, treemaps were applied as they employ a space fil- 
ling algorithm, which makes better use of space, and additionally allow to better high- 
light individual revisions.  

Analyzing the contribution patterns is an intuitive task with the Granular Timeline. 
Fig. 11 shows the contributions made to jEdit during 11 years. The use of color is an 
important feature in this representation and the area covered in the graph by a given color 
is proportional to the number of contributions made by a given programmer. Accordingly, 
it is easy to realize, at first glance, that during the years 2001, 2002, 2003, and 2004 most 
of the contributions were made by the programmer represented by the light green color, 
which name is spestov (note that the names of programmers are obtained from a tooltip 
that appears when the mouse moves over the corresponding graphic area). However, in 
2005 the contributions were made by 7 programmers (this is observed from the colors 
representing programmers), being spestov and ezust (dark pink) the ones with more 
contributions. Later, in 2006 the programmer with more contributions is ezust and the 
number of contributions made by kpouer (orange) has increased, and no contributions 
were made by the user spestov since May, 2005. Therefore, one can conclude that 
spestov left the project by that month. Thereafter, ezust and kpouer have shared the 
maintenance and development of the project until 2011, with a relevant number of 
contributions made by vanza (yellow) and shlomy (purple).   

Contributions patterns could be observed in the Granular Timeline as well as in the 
GridMaster. However, the GridMaster correlates contributions with the project structure 
down to the file level, as it can be noted in Fig. 3. This allows project managers to deter- 
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Fig. 10. Granular timeline using treemaps for highlighting contributions.  
 

mine which software items have been changed by each programmer and assign program- 
ming tasks to programmers according to their previous experience.  

The socio-technichal graph is a simple and powerful view that is displayed when a 
time unit, a year or month, is selected from the GridMaster. In this scenario, it is a com- 
plementary view for visualizing the relationship between programmers, based on the 
software items they have changed in common. The nodes of the graph represent program- 
mers and their size conveys the number of contributions they have made (see Fig. 11). 
Edges connecting programmers depict relationships among these programmers based on 
changes to software items. The thickness of edges represents the number of common 
software items that the associated programmers have changed. Accordingly, kpouer is 
the programmer that has made more contributions in the selected year (2010), followed 
by ezust, k_satoda (light yellow), and daleanson (light gray). Additionally, kpouer has 
changed several software items in common with ezust, k_satoda, and daleanson. Thus, 
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Fig. 11. Socio-technical graph showing the relationships between programmers based on the soft-

ware items they have modified in common. 
 

the relationship between kpouer and ezust is very strong due to the large number of 
software items they have changed in common. Therefore, this visualization is useful in 
scenarios where programmer’s tasks need to be redistributed to an unexpected situation 
or organization change. Consequently, programming tasks performed by kpouer could be 
eventually taken over by ezust, k_satoda, and daleanson. 

6. CONCLUSIONS 

The main contribution of this paper is defining of the evolutionary visual software 
analytics process, due to its usefulness in the design of the tools and architectures that 
look for supporting software maintenance tasks. Accordingly, it has explained in detail 
the definition of such process and its main components. In addition, it has also discussed 
the design and implementation of an architecture based on the aforementioned process. 

Consequently, the implementation of this architecture has allowed to test the feasi- 
bility of applying the evolutionary visual software analytics process to software main- 
tenance tasks and determine if it could effectively contribute to knowledge discovery 
within software evolution. Hence, the use of the resulting tool during controlled tests at 
the lab has showed that evolutionary visual software analytics can effectively contribute 
to software maintenance tasks by providing information about structural project details, 
software metrics, and socio-technical relationships. Although it is important to highlight 
that the knowledge elements, which any tool based on this process could provide, can be 
related to any software evolution detail, according to the developer’s interest and the 
specificity of the implementation. Thus, the evolutionary visual software analytics pro- 
cess, as well as its usefulness in knowledge discovery tasks, has been partially tested and 
a more rigorous validation with a group of users is pending for showing its usefulness in 
day to day tasks.  

Undoubtedly, the application of information visualization, and specifically visual 
analytics, to any problem that involves data analysis, allows to grasp easily and quickly 
(within a few minutes) the details that otherwise remain hidden from users. Therefore, 
one of the strongest points of the evolutionary visual software analytics process in know- 
ledge discovery tasks is the use of visualization techniques.   
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Finally, an additional contribution of this research is that it could be used as re- 
ference for guiding other researchers to define specific visual analytic processes for their 
own research areas (i.e. visual ontology analytics and evolutionary visual e-learning 
analytics). 
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