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A bstract

The Com pton e ect in a two-dim ensionalworld is com pared w ith the sam e process
in ordinary threedin ensional space.

1 Introduction

QED , the strange theory of light and m atter, []], en braces in a uni ed dogm a severalof the
m ost successfiil physical doctrines. Q uantum electrodynam ics describes the interactions of
the electrom agnetic eld w ith electrons and positrons in a fram ework ruled by the law s of
special relativity and quantum m echanics. A ccording to Feynm an, see R eference [, QED
is the fwel of physics: there is no signi cant di erence between experin ent and theory.
N evertheless, nobody understand w hy N ature works that way, quoting Feynm an again. T he
lack of com prehension is partly due to the conceptual di culties of both special relativity
and quantum m echanics, so far from comm on sense, and partly due to the com plexity of
the phenom ena involved. T here are too m any degrees of freedom entering the gam e and a
nightm are of divergences m ust be tam ed by proper physical insight.

D uring the eighties, interesting investigations were devoted to QED in a spacetin e of
(2+ 1)<din ensions, see eg. Reference . T he research was pushed forward by either purely
theoretical reasons, to study conventional Q ED at the in nite tem perature lim it, or con—
densed m atter experin ents: both the Quantum HallE ect [§]land H igh T, Superconductiv—
ity @]arem any-body quantum phenom ena including interactions of charged femm ions w ith
the electrom agnetic eld that essentially occur in two-din ensions.

Perturbation theory of planar quantum electrodynam ics is rich enough to be com pared
w ith perturbative features of the theory of photons, electrons and positrons in three —di-
m ensional space. T he theoretical analysis of photon-electron scattering perform ed w ithin
the fram ework o£QED,, ; allow s for a com parative study with the sam e process in three
din ensions. Besides the academ ic interest, we nd it fruitfill to enlarge the list of lowest
order processes analyzed n QED .W e com pute the di erential cross section, a length in two-—
dim ensions [§1, up to second order in perturbation theory starting from the usualplane wave
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expansion of eld operators. W e then com pare the results in di erent physical situations
w ith the outcom e of the very well known analysis in three dim ensions.

T he organization of the paper is as follows: In Section x2 we brie y present QED ,, ;
Perturbation T heory and its application to com pute S -m atrix elem ents. Section x3 isdivided
Into two sub-sections: calculation ofboth thedi erentialand total cross—lengths of scattering
for the Com pton e ect is performed in x3.1. The planar analogue of the Thom son and
K lein-N ishina form ulas are discussed In x32 and com pared w ith the behaviour of the sam e
expressions in three din ensions. Finally, in the A ppendices the de nition of the D irac and
electrom agnetic elds in threedim ensional M inkow ski space is given. A Iso, som e useful
form ulas are collected and the conventions to be used throughout the paper are xed.

2 Quantum electrodynam ics in the plane.

Quantum electrodynam ics in theplane,Q ED ,, ; ,describes the interaction of tw o-din ensional
electrons, positrons and photons by m eans of the quantum eld theory derived from the
Lagrangian density

L=1Ly+ Ly (1)
w ith the free- eld Lagrangian density
1
Lo=N ¢ (x)(@dh @ mc) (x) Zlf x)E (x) (2)
where: (1) (x) and (x) = Y(x) ? are the Diac elds that have relativistic m atter

particles of spin %, electrons and positrons, as quanta. W e take the charge of the electron
asg= e< 0,and m isthe mass of the particle. Study of the D irac free-eld In (2+1)
din ensions and its quantization can be found in A ppendix El 2)a (x), = 0;1;2,isthe
threevector electrom agnetic potential and £ the associated antisym m etric tensor to the
electrom agnetic eld :

f =Qa Qa:

A Lorentz-covariant form ulation of the free electrom agnetic eld in the plane, the quan—
tization procedure leading to the identi cation of polarized photons as its quanta, is also
developed In the Appendix D]. (3) h and c are respectively the Planck constant and the
spead of light in vacuum . T he interaction Lagrangian density is

h i 1
L:=N e (x) a (x) (x) N Ej (x)a (x) (3)

which couples the conserved current j (x) = ( e)c (x) (x) (c (x)7j(x)) to the elec—
trom agnetic eld. W e have de ned the Lagrangian density as a nom al product, N [ ], each
creation operator standing to the left of any annihilation operator, to ensure that the vac-
uum expectation values of all obsarvables vanish, (we follow the conventions of ], chapters
456 and 7).

The action integral S for quantum electrodynam ics in three-din ensional space—tim e is
therefore

S= &xN ¢ «x) he + Sa x) mc (x) %f x)f (%) (4)
C



In relativistic quantum eld theory it is convenient to work in naturalunits (nau.),h =

c = 1. In these units the findam ental din ensions are the mass (M ), the action (A ) and

the velocity (V) instead of them ass (M ), length (L) and tin e (T ) that are the fundam ental

din ensions in cg.s. (or S.I.) units. Tt is Interesting to analyse the dim ensions of the free-

elds and constants that appear in the action S ©orQ ED ,, ; ,and to com pare than w ith the

din ensional features of the sam em agnitudes in QED 5, ; . In general, given the dim ension of
the action integral, 7

s= d¥'xL; (5)

where L isde ned by () and (J); the din ension of the elds is detemm ined from the kinetic
term s, and then the dim ension of the coupling constants is xed. W e nd that:

Q uantity cgs. nau.
Action S M LT ! 1
Lagrangian density L MLZ? 4T 2 | Mdrt
Electrom agnetic ed a (x) |M L2 5T ! |M*7
Dirac ebs (x)and (x) L : M %
. 14 1 3 d
E lectric charge e Mz2L2T M
M ass of the electron m M M

The cgs. din ensions ofe nd= 3are ]= ML3T ? hc]due to the fact that the
Coulomb force decreases as r—12 . In naturalunits, however, the electron charge is din ension—

1 . .
less. The ne structure constant 5701 18 9iven by,

e’ e

- T (cgs:)  or = (n:) (6)

T hism eansthatonecan take orthe electron charge asa good expansion param eter because
both of them are din ensionless in na..

Things are di erent In a two-dim ensional world: ifd = 2, the electron charge is not
din ensionless but [?]= M L°T 2 ;n cg.s. units, or [€]= M in nu. because the Coulomb
force is proportional to % . The ne structure constant is still the expansion param eter for
a perturbative treatment of QED ,, ; but we must keep In m Ind that the electron charge
has din ensions. The din ension of the product of € tin es the Com pton wave length mlc is
1= ML’T ?or [i—z]= 1, respectively In cg.s. orna. system s. T herefore, we express
the ne structure constant as:

e e’
=T a (cgss:) or i (na:) (7)



bearing in m ind that e’ isnot din ensionless in naturalunitswhen d = 2. Thus, In 2+ 1)-
din ensionalM inkow skispace the ne structure constant is (ezif;r;—rmrzg ,(upto 4 factors).
Perhaps a rapid com parison of the several system s of units used in electrom agnetism
will help to clarify this point: In the above formulas we have adopted the rationalized
LorentzH eaviside system of electrom agnetic units; that is, the 4 factors appear in the
force equations rather than in the M axwell equations, and the vacuum dielectric constant |
is set equal to unity []]. In rationalized m ks units, the ne structure constant is de ned as:

e e

= = =——— @d=2
4 onc @7 T ame 077 ©

where a; has dim ensions of pem itivity by length. W e de ne ag = Omlc’ the pem itivity of
vacuum tin es the fundam ental length of the systam . Then,

e’ e 1

= 9
4 ohc 4 agmc 13704 ©)

w here the rationalized electric charges e—j and % have di erent dim ensions.

The Ham iltonian H of the systam gplits into the free H ¢ and the interaction H ; Ham il
tonians. H: can be treated as a perturbation since the dim ensionless coupling constant,
characterizing the photon—electron interaction in the plane, is an all enough: Wlm . In
the Interaction picture the S-m atrix expansion is
o Z v4

5 = . dxd’x,  CxdTEH0H () 1Ba)g (10)
n=0 .

where T fg is the tin e-ordered product. The QED ,, ; interaction Ham iltonian density

determ Ines the basic vertex part of the theory.
For the jii ! i transition, the S-m atrix elam ent is given by
" Y m =2y 1:2#

hfHii= i+ 2 ) D@ Py) — M : (12)

1
ext: AE ext: 2A !

Here, P; and P are the total threem om enta of the initial and nal states, the products
extend over all extemal particles, and A = L? isa large but nite area in the plane. E and
! are the energies of the ndividual eg;temal ferm ions and photons, respectively. M is the
Feynm an am plitude such that: M = .M ®) and the contribution toM @’ (nth order in
perturbation theory) from each topologically di erent graph is obtained from the Feynm an
rules [@]. W e only enum erate the fundam entaldi erences w ith respect to the Feynm an rules
nQEDS, ,:

T he fourm om enta of the particles are now threem om enta.

For each initial and nal electron or positron there is only one label, s = 1 , that
characterizes the spin state.



Foreach initialand nalphoton there is also only one label, r = 1, that characterizes
the polarization state.

Initial and nalelectrons and positrons have associated tw o-com ponent spinors.

The -m atrices arising at vertices and the & -functions, com ing from propagation of
Intemal ferm ion lines, are 2 2 m atrices.

For each threem om entum g which is rﬁot xed by energy-m om entum conservation one
must carry out the integration 2 ) ° d°q.

3 A QED,,; Lowest Order Process: The Com pton
E ect

Tn this Section we shalldiscuss the scattering cross—section, a cross—-length in d= 2, for planar
C om pton scattering up to second order in perturbation theory.

3.1 Com pton Scattering

T he S-m atrix elem ent for the transition
ji= dEW®)PL | fi= @) EROHPL (13)

to second order in e is:
Z h i
s@= & Ixd®xN (%) a (x)iSr (1 %) a (%) (%) = S.+ Sp: (14)

Here, 1Sy (X1 X, ) isthe farm ion propagator (64). Feynm ann technology provides the form ula

| |
v - 1=2 v 1 1=2

AE, 2Rl

nfFp@i= 2 P P+ k° p k) M o+ M) (15)

ext ext

for the S-m atrix elem ent up to second order in perturbation, w here the Feynm an am plitudes
are

M 4 eu@) KR9SSy (p+ k) (R)ulp)
My, = ul” ®iSre k) ®)ulp): (16)

T he di erential cross—-length for this process is therefore

(2m )? d?g’ d?Rro

4E ' vy (2 P2EC (2 )22!Oj‘4 f 17)

d =272k p k)

wherep= (E;p)and k = (! ;K) are the threem om enta for the nitial electron and photon,
and the corresponding quantities for the nal electron and photon are p° = (& %) and
k0= (1%RO).



Analysis of the scattering of photons by electrons is easier in the laboratory fram e, in
which p= (m ;0;0) and = ¥ R’ The relative velocity in this system is unity, i. e.,
Vel = Tf—j= 1.

From the energy-mom entum consevation law p+ k = p’+ kO, the Com pton chift :n
wavelength for this process is easily deduced. In the laboratory system : p = (m ;0;0),
¥ R°= !!%0s , isthe scattering angle, and

m !

10— (18)
m+!(1 oos )

T here areno di erencesw ith the three-din ensionalcase in this regpect. T he recoilenergy
of the electron is q

E°= m2+ 12+ 1% 2110s (19)

In (1) we can Integratew ith respect to the dependent variablesR° and ° asa consecuence
of the conservation of the initial and nalmomenta. Using ([§) and ([9), we cbtain the
di erential cross—length in the laboratory fram e

|

|
d 1 10

T Tsr o7 M 2

Lab

In QED ,, ; to obtain unpolarized cross-sections we m ust average M F over all the pola—
rizations and spins of the initial state and sum it over all nalpolarizations and soin states.
By doing this, we render the square of the Feynm an am plitudes as the trace of products of

-m atrices. It is shown in A ppendix [{ that despite the lack of polarization or spin degrees
of freedom in QED ,, ; the square of the Feynm an am plitudes is also the trace of products
of -m atrices. T he right-hand m em ber of ), ™M f, is the sum of four tem s:

o h i
xaa=mn ( p+k) +m) ( p+m) ( @E+k)+m) ( P +m)
(21)
64 h 0 0 1

Xap= ( p+k) +m) (( p+m) ( (p k) +m) ( p +m)

Tr
1ém 2 (pk ) (Pk?)
and X o= XakS k% $ 9, Xpm=Xupks$ k% $ 9. Computation of the traces
in (1) is considerably sim pli ed by the use of the contraction dentities, see A ppendix B],
because it involves products of up to eight -m atrices. N ote that the contraction dentities
for2 2 -matricesarevery di erent than theusualin (3+ 1)-din ensions. In short, in term s
of the three lnearly independent scalarsp? = p” = m 2, pk = pk®and pk’= p% we have

e h 4 2 ot
Xaa = W 4m " + 4m “ (pk) + (pk) (k")
e h 4 2,40 oi
Xiyp = m 4m 4m “(pk”) + (pk)(Pk") (22)
o h i
Xyp= ————— 4dm*+ 2m?@pk pk%  (pk)EK®) + i6m k k°
ab 7 ok (k) Pk p Pk ) (P P
o h i
Xpm= ————— 4dm*+ 2m?@k pk”) (Ek)Ek® iom k k°
=7 m 2 (oK) (k) R F



Tn the lboratory system pk = m !, pk’= m !%and from (€3) and @) we obtain the
di erential cross-length for the C om pton scattering in the plane

d' 2 |O' (| 1 0 )

— = -~ — St tdwsd 2 ; (23)

i— has din ensions of length (or M 1 in the naturalunits system ).
P lugging ([d) into (23) and integrating the resulting equation over the scattering angle,
we nd the total cross—kength

2 2 p—— )
1+ ) 1 41+ YA+ 1+2 ) 2 24)
= + 1+ o D
ot 1+ 2 )2 ) Y1+ 2
where denotes the ratio of the photon initial energy to the electron rest energy, ie., = m'—

In naturalunits.

3.2 Planar Thom son and K lein-N ishina form ulas

C ontact between the experin ental outcom e of the Com pton e ect in the realworld and the
theory is established through the K lein-N ishina and Thom son formulasderived in QED 4, 4 .
A Iso, the totalcross—section o ersa direct connection between theory and experin ent, which
is particularly fruitfiil at the non—+relativistic and extrem e relativistic lin its. Very good
Inform ation about the behaviour of photons when scattered by electrons can be obtained
by studying the angular distribution of the unpolarized di erential crosssection. ITn this
sub-section we discuss the sam e aspects In QED ,, ; and com pare the results of the analysis
w ith their higherdin ensional counterparts.

Starting w ith the fam ousK lein-N ishina form ula for the polarized di erential cross-section
of C om pton scattering:

d' 2 !O!Z(| !O )

0
=— = g2 2 (25)
Lab;pol 41'[12 ' !O I

we focus on the sam e m agnitude .n QED,, ;. Before, however, lt us notice that ('’
O @yand 7 % %% are the polarizations of the ncident and scattered photons and
; 9= 1;2.
Tt is convenient to write (3) in the form

d! 2 !0!2(| 1 0 )

Lab;pol - . -

where ( () %2 = oo and s the angle form ed by the polarization vectors of the nci-

dent and scattered photons. In QED ., ; , the polarized di erential cross—kength is given pre-
cisely by equation (3). W e therefore call this expression the plnar K lein-N ishina form ula;

(1)
choosing the polarization vectors of the incident, ~*) (), and scattered, 0 " (k°), photons in



a reference fram e where the wave vector ¥ and ~*) (¥ ) are respectively taken along the z-and
x-axes, the form ula reads:
! Vo )
d 2 10 ! 1o
_ o - - (1) ol)\2 .
a . 20 TR oz 27)

Lab

The angle between the polarization vectors and the scattering angle now coincide
(W 02— v | Tt is rem arkable that one could have derived the planar from the spatial

K lein N ishina form ula: taking the rstofthepolarization vectors ~h (cos cos ;o0s sen

sen ), we obtain: co¢ = cos? o .For = 0we al ost recover the planar K lein—
N ishina form ula, but din ensional reasons forbid a perfect dentity between both form ulas
and also di erences between volum e and area elam ents induce som e distinct factors. The
other polarization vector ~? (sen ; ocos ;0) is nonproEctable to the plane, because
when = 0 it points in the direction which disappears.

A subtlepoint; n (2+ 1)-din ensions there isno di erence betw een polarized and unpolar-
ized photon scattering because planar photons have only one polarization. The di erential
cross—kength of scattering in QED ,, ; can also be com pared w ith the unpolarized di erential
crosssection In QED 5, ; . At the non—+elativistic Iim it it is given by the Thom son formula:

4 = §(1+ cos ) (28)

d LabANR
where ry = — is the classical electron radius. At the NR linit,where ! << m and !° !,
we nd from (R3) an analogous formula,

!

d 2 2
d e T (29)
d LabNR .
that we shall call the planar Thom son formula. Besides the scattering angle, i— AR
a.
depends on the parameter = !=m , the ratio of the frequency of the incident photon

to the rest electron m ass. A 1o, we have introduced a constant w ith din ensions of length
L = (2 ? )rp outofthetwo findam entalconstants and ry,whosem eaning or the problem
w illbe clear Jater. U nlike the classical T hom son form ula, thedi erential cross—kength depends
on the incident photon energy at the non—relativistic Iim it; In fact (d =d ), ,, diverges
when ' 0. d = )Lab;NR , however, is ! <independent. The intensity of the scattered
radiation isthushigherwhen decreasesin theplanarCom pton e ect, but itdoesnot change
when energy varies in (3+ 1)-din ensions. A comm on point is that both di erential scattering
cross—legths and cross-sections of the C om pton e ect are backw ard-forward symm etric.

T here are also noticeable di erences in the behaviour of the scattering di erential cross—
ength and unpolarized cross—section at the extreme relativistic Imit ! >> m . If ! (1

cos )<< m ,in this regin e occuring at very am all scattering angles, !° ! and:
| |
d d 2
;i — Tt ;L D1+ cof ) (30)
d LabER d LabER

In this case, the intensity distribution of scattered radiation obeys the sam e T hom son
form ulas as at the non—relativistic lim it. T he cross—enght at stake in the planar C om pton



e ect is an aller than the classical one because the energy of the incom ing photons is very
high; in three din ensions the cross-section at low energy and the crosssection at high-energy

and sn all enough angles are, however, the sam e. If ! 0= T “;OS and ' (1 cos )>>m ,we

are at the extram e relativistic lim it looking at very large scattering angles. T hus,
| |
d d v 1
— = P e —— (31)
2 d 2 (1 cos )

LabER Lab/ER

J— + .
2 14

and the intensity of the planar C om pton e ect decreases w ith increasing energy of the in—
com ing photon, although it is independent of the scattering angle. T he latter feature is not
shared by the cross-section at the extram e relativistic Iim it ofQ ED 4, ;.
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Figure 1: Total crossength =l for the planar C om pton scattering as a function of the initial
photon energy = w=m on a logarithm ic scale. k isthe Thom son lengthde nedby &k = (2 2 )rg.

It is interesting to w rite the di erential cross—ength and the unpolarized cross—section as
functions of

2_ _ k 1 ! + (1 cos )+ 4mé 1 (32)

4 I+ (1 cos )) 1+ (1 cos ))

! ( )
d 2 1 1
= — + (1 cos )+ cod (33)
d 21+ (1 oos )¢ 1+ (1 oos )

Lab

From these expresions one com putes respectively the total cross—length
( P

)
1+ 41+ 1+ 1+ 2 27
_x o, LA a+ ) (34)
2 (1+ 2 p=2 221+ 2
for the planar C om pton e ect, and the total cross-section
( ! )
—2rzl+ 2 0+ )]o(1+2)+llog(l+2) 1+ 3 (35)
o 3 1+ 2 J 2 1+2 §
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Figure 2: Totalcrosssection = 1 forCom pton scattering asa function of the initial photon energy
= w=m on a logarithm ic scale In order to cover a large energy region. ¢ is the crosssection for
the Thom son scattering, ].

for the sam e process in space 1.
The non—relativistic Iimit, << 1,of and iseasily obtained

2 2 b
NR T o - (36)
8
N = ?rg =665 10 ?’: (37)
T he crosssection r yr for Thom son scattering is constant and independent of the
incom ing photon frequency. ygr ,however,dependson ;we introduce a \natural" T hom son
kngth = 2— = 406 10'an . Tt happens that for a photon such that ! = 0:05m =

0:0025M ev, yr = 812 10%an  © 5.0 ther s aller values of lead to higher values of
yr:for = 003we nd yg =135 10%an,or = 001, ygr = 406 10*?am ,and so
on.

At the other, extram e relativistic Iimit, >> 1,we have

!

» 1 5 1
BER T -+ EP—EE | (38)
3. 1 1

and we see that for very high energy the Com pton e ect is a negligble e ect and pair
production becom es dom inant both In the plane and in the threedim ensional world. The
lJogarithm ic factor In gz announces that ultraviolet divergences in higher order corrections
willbemore severe in QED 4, 4 .

The total crossZlength and cross—section are respectively plotted as functions of in
Figures 1 and 2. T he intensity of the scattered radiation is very large for am all energies in

10
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Figure 3: Angular distribution of the P Janar C om pton scattering as a function of the scattering
angle for several values of the initial photon energy = -

m
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the plane whereas in gpace it is practically constant and equal to the classical value. For
high energy of the incom ing photons the intensity is very am all in both cases, although it

goes to zero faster than in the rst case.
Finally, we study how S- ., and - . _ depend on the scattering angle. The angulr
distrdbution of the di erential cross—length is p]otted In Figure 3 for several chosen values

of Dbetween the non—+elativistic 1im it and the high energy regime. A sim ilar picture of

g— . isdrawn in Figure 4. Tn both cases, the angular distribbution is forward-Jackward
al
symm etric In the non—+relativistic Iim it ( ! 0), whereas in the relativistic regine ( >> 1)

the forw ard direction becom esm ore and m ore preponderant. For sn all angles, the scattered
Intensity in the threedim ensional case has aln ost the classical (non—relativistic) value for
all the incident energies; in the bidin ensional case, how ever, we obsarve that the higher the
Incident energy, the an aller the Intensity. Particularly, for ! 0 theplanar intensity is larger
than the classical value In Thom son scattering. For Jarge angles the angular distribution is
sin ilar in both casesbut whereas in the plane i— (E)= 0, dd— (E)jsnotzero.
LabNR LabNR
For high incident energies, the intensity is practically equal to the m inimum in the range
= (=2; ).

A Jast comm ent on the pole found in i— Lab at ! = 0: this is an Infrared divergence
due to soft photons. This nfrared catastrophe is sim ilar to that arising in brem sstrahluing
processes in QED 5, ;. Infrared divergences seem to be m ore dangerous in QED ,, ,, but
fortunately, a \topological" m ass for the photons is generated by the vacuum polarization

graph, see [}, and a natural infrared cuto exists in the theory due to quantum corrections.

Figure 4: Angular distribution of the C om pton scattering as a function of the scattering angle
for several values of the initial photon energy = m'— [E].
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A Gamma M atrices in 3-dim ensional Space-tim e

The D irac (C 1i ord) alyebra in the 3-din ensionalM inkow ski space M 5 = R '# is built from
the three gamm a m atrices satisfying the anticom m utation relations:

f 5 9=2 (40)
= 0;1;2 ; g =dag(l; 1; 1)
and the hem iticity conditions Y= ¢  °. The tensors
1; A A T I G (41)

with respect to the SO (2;1)group, the piece connected to the dentity of the Lorentz
group In atland, om the basis of the D irac algebra, which is thus 2°-dim ensional. 1 and

o2 3= 41 23] areregpectively scalar and pseudo-scalar ob Ects. isa threesector
but ' 2 can be seen altematively as a anti-sym m etric tensor or a pseudo-vector, which
are equivalent irreducible representations of the SO (2;1)group. If we denote by the

com pletely antisym m etric tensor, equal to + 1(-l) for an even (odd) pem utation of (0,1,2)
and to 0 otherw ise, the -m atricesm ust also satisfy the com m utation relations:

=S50 i 1= (42)

The -m atrices are the Lie algebra generators of the spin(1;2;R ) = SL (2;R )group, the
universal covering of the connected piece of the Lorentz group.

T he irreducile representations of the Lie SL (2;R )group are the spinors and, before
choosing a particular representation suitable for describing planar electrons and positrons,
we list som e algebraic dentities that are useful in the evaluation of the trace of -m atrix
products:

-m atrix contractions:

=3 ; 4g (43)

“products:
=99 g9g ; =29 ; =6 (44)
Traces of products of -m atrices:
Tr( )=0=Tre( ) ; Tx( )= 29 (45)
Tx( )= 21 7 T )=2 9 g g9 tgg
For an even num ber of -m atrices,
Tx( )= Tx( ) (46)
but this dentity is false for an odd num ber of -m atrices. For instance, T x( )=

T r( ).

13



B The D irac Equation.
M assive classical D irac elds satisfy them om entum space D irac equations at rest:

(% 1uO)=0 ( %+ 1)w@©)=0 (47)

T he spinors u(0) and v(0) are eigenfinctions of the spin m atrix % 2= 0 yith % eigen-

TN

valies. Th a spinor representation, a general Lorentz transform ation, p’ P.,P= (E—CP’ )
wihp= (o) and Eg= + m?c* + pp, isgiven by:

0/,-0 i

Fp)=ep - £(P (48)

Lorentz boosts arisewhen !; 6 0 and 2 is thus the generator of rotations at the centre of
m ass of the system . Applying a pure Lorentz transfom ation to (@7]), we obtain the D irac
equations

(p mojuE)=0 ( p +mcjv(E)=0 (49)
which are autom atically Lorentz=invariant. W e also w rite the conjugate equations satis ed
by the D rac ad pint spinorsu () = w(e) ;vE)= W) °:

uE)( p mc)=0 vep)( p +mc)=0 (50)

Choosing the nom alizations as follow s,

' (plu(e) = v (pv(p) = mE—zz ; uEuE)= vEvE) =1
and given the orthogonality conditions,
u'Ev( p)=0  ;  uEvE) = vEeuE) =0
these spinors satisfy the com pleteness relation:
u @Eu @ v EvE-= ioro= 152 (51)

n a representation of the D irac algebra of m inim al din ension.

In fact, In 3-dim ensional M inkow ski space (pseudo)-M a prana spinors do exist: in this
representation of the C1i ord A Igebra, the -m atrices are purely In aginary 2 2 m atrices
and the spinors have two real com ponents. W e wish to describe charged particles, so we
choose the representation of the D irac algebra as:

O_ L 1oi,; 2=, (52)

where the 2;a = 1;2;3 are the Pauli m atrices. In this representation the nomm alized
solutions of ([@9) are:

s — | S

@ ]
) Cc(p2t+ip1)
uE)= fetme C(mlm . v = tmC TEES -
2m ¢ Eomd 2m ¢ 1

14



Putting the system in a nom alization square of Jarge but nite area, A = L?, we can
expand the classical D irac eld in a Fourier series:

+

(x) = (x)+ ' (x)
X mC2 ’ lzzh ipx ipxi
= cpluEle = +d (p)vip)er (54)
AE,
x) = T®+ ' (x)
X mCZ ‘ l:Zh ipx

i
ipx
= dE)ulp)e » + C vip)en
AE, ®E)uE) )v(p)
P
The Fourder transform of equations §9) and (5Q) are the D rac equation and its conjigate
n the con guration space:

¢ &) mc (x)=0 ; jh@ ()
@x @x

T he plane wave expansions @),where c(p) and d(p) are the Fourier coe cients, solve (35).

T he sym m etry group of classical (CED ),, ; is the Poincare group, the sam idirect product
of the Lorentz group tim es the abelian group of translations in M inkow ski space. The two
sheets of the hyperboloid p* = m 2,

+mc x)=0 (55)

St =fp2Ms;pP=m?;py> 0g;0, = fp2Ms;p° =m?;py < Og;

are disconnected orbits of the Lorentz group in the dualofM inkow ski space MA3 . Equations
(@) hod at the pointsp = ( m ;0;0), respectively. Thus, solitions on o correspond to
Eg= m ¢ and, after quantization, v (p) w illbe interpreted as the antiparticle spinor. T here
is a very im portant di erence w ith the situation in 4-din ensional space+tin e: the isotropy
group of thep = ( m ;0;0) points is now SO (2), which has R as covering group. T here-
fore, the spin is a scalar in (2+ 1)-din ensions having any real value because the irreducible
representations of an abelian group such asR are onedim ensional.

O ne can check that the D irac equation is the E ulerd.agrange equation for the Lagrangian :

|

@

L = i —
c &) @x

mc (x) (56)
w hich, besides the invariance w ith respect to the Poincare group transform ations connected
to the dentity, is Invariant under the discrete transform ations of parity and tim exeversal:
1)

0= x%;x%)= ( x';x%)
P x%xpP '= ! %"
2)
Y= x°
T %;x)T '= 2 (XOO ;%)
F inally, the energy proction operators (P) = 2’;“7;“ are
TE=uEuE E)= v PV (@) (57)



C The D irac Field

From the Lagrangian,we obtain the D irac H am iltonian
Z h i
Hp = d%x Y(x) o~ ( )+ md (x) (58)
where = %and 7= J3,9= 1;2,and quantize the system by prom oting the Fourier
coe clients to quantum operators which satisfy the anticom m utation relations:

fe) ; J@)g= fd(p) ; & @)g = (59)

pip°

and all other anticom m utators vanish. cand & are the annihilation and creation operators of
electrons, while d and d¥ play a sin ilar role w ith respect to planar positrons. T he ferm ionic
Fock space is built out of the vacuum ,

ce)Pi= dE)Pi= 0 ; 8p
by the action of strings of creation operators:
H (! n (e, ) AR )i/ @ E )PP e )P®) Y )P e )PPl

wheren(p, )= 0 or 1 due to the Fem i statistics com ing from (@).
From (B9) and the plane wave expansion (54) one cbtains

f x); (yig=1£f x); (ylg=0 ; f x); (Ylg=1i & V) (60)
where the 2 2-matrix function S (x)= S* (x)+ S (x) isgiven by

SRR B L (61)
xX)= i —+ — b
@x h
Here, (x) are the nvariant -functions, see [eﬂ], that adm it the Integral representation
z
h ipx P +mC
S (x)= d’pe m ——— 62
(x) 2 hy o P 2 med (62)

ifC are the contours in the com plex py-plane that enclose the polesatpy =  (Ex=c).

T he ferm ion propagator Sy (x  y) is the expectation value of the tim e-ordered product
Tf (x) (y)gatthevacuum state:

iSp(x y) = WIEf x) (yigPi=
= i @ Y)sTx vy ¢ xS x y)= (63)
B Jh 2 d3 ip();1 v) p + m C (64)
- 2np °P° 2 m22+ 1

(x) isthe step function, (x)= 1ix> 0, (x)= 0ifx> 0.

TheDirac edatp= 0
" ! ! #
C 1 -mc2 O ~mc2
(x) = T c(0) o © TR @Y (0) 1 et © (65)

destroys an electron of spin h=2 and creates one positron of spin h=2. Quanta with any p
are obtained from the center ofm ass states by the action of Lorentz boosts. Unlike in four-
din ensional spacetin e, we cannot talk of helicity in a purely threedim ensional universe
because the spin is a scalar.
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D T he electrom agnetic eld in (2+ 1)dimn ensions.

T he canonical quantization of the electrom agnetic ed in (2 + 1)-din ensions is equivalent
to the fourdim ensional case. W e shall follow the covariant form alismn of G upta and B keuler,
see []. W e consider the Femm 1 Lagrangian density

1
L = > (@a (x))(@a (x)) (66)
wherenow a (x); = 0;1;2 is the threewvector potential. The elds equations are

2a (x)=0 (67)

which are equivalent to M axwell’s equations if the potential satis es the Lorentz condition
@ a (x)= 0.W eexpand the free electrom agnetic eld in a com plete set of plane wave states:

a x) = a’x)+a )
X 1 . .
= g—— _®)b®)e ™+ _®)DE®) (68)
K 2A'T<

Here, the summ ation is over wave vectors, allowed by the periodic boundary conditions in
A,with k% = %!k = K. The summ ation over r = 0;1;2 corregponds to the three linearly

Independent polarizations states that exist for each K. The real polarization vectors , (K)
satisfy the orthonom ality and com pleteness relations
& ®) s R)= . i ris= 0;1;2 (69)
K, K)= g (70)
o= 1; 1= 2=1
T he equaltin e comm utation relations for the elds a (x) and their m om enta (x) =
~a (x)are
[a (x;t);a ®%0)]= & (x;t);a R%0)]= 0
B (xitia &%H]= ihdg Y@ 20 (71)
T he operators b (K) and K (K) satisfy
h(k);b;/(]zo)]z r rs gRo (72)

and all other com m utators vanish. For each value of r there are transverse (r = 1), longi-
tudinal (r= 2) and scalar (r = 0) photons, but as result of the Lorentz condition, which in
the G upta-B leuler theory is replaced by a restriction on the states, only transverse photons
are obsarved as free particles. T his is accom plished as follow s: the states of the basis of the
bosonic Fock space have the form ,

o 5 oo b e ey B ek
Fr, (R0, (R2) o )1/ &l (Ry) a;, (k) ay, (Ky) Pi;

17



wheren, (R;) 2 27 ,81i= 1;2; ;N and
a,K)Pi=0,;,r= 0;1;2

de nes the vacuum state. To avoid negative nom states the condition

h i
a,®) a®) jJi=0;8 K() hN,K)Ji=h N K)Ji

is required on the physical photon states of the H ilbert space. T herefore, In two din ensions,
there is only one degree of freedom for each K of the radiation eld.
From the covariant com m utation relations we derive the Feynm an photon propagator:

T fa (x)a (y)gPi= thDF (x v) (73)
W here 1 Z
_ 3 g ikx
D ()= o ke (74)

Choosing the polarization vectors in a given fram e of reference as

o ®)=n = (1;0;0)

1 &)= (0;~(K));~(K) K=20 (75)
®) = (O-E B k (kn)n
2 - ’j~<j - ((kn)2 k2)1=2

it is possible to express the m om entum space propagator from (74) as

g

Dp k) = 157
= Dor()+ Doe )+ Doy (k) ) , 79
3 1 ®) ®)+ nn N 1 k k kn)kk n + kn )
k24 i PR kn)? k2 k2+ 1 (kn)> k2

The rst tem in () can be interpreted as the exchange of transverse photons. The
rem aining two tem s follow from a linear com bination of longitudinaland tem poralphotons
such that
xZ

0.0% 42 ik
dk e . 1 1
g g dk%e KOx0 _ g0g 0 I

@2 ) %7 4 3

Dy (%)= 2); (77)

This term corresponds to the instantaneous Coulom b nteraction between charges in the
plane, and the contrbution of the ram ainding term D . (k) vanishes because the electro-
magnetic eld only interacts w ith the conseved charge-current density, [{].
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E Spin and polarization sum s in (2+ 1) dIm ensions.

In QED ., ; the unpolarized cross-section is cbtained by averaging # F over all initial po—
larization states and summ ing it over all nal polarization states. However, n QED ,, ; we
have seen on the one hand that there are not degrees of freedom conceming the spin of the
particles and, on the other hand, that there is only one transverse polarization state for the
photon: in the plane there is no need to average and summ over all the polarization states.
H owever, it is possible to show that ¥ F can be written in one of the two fom s:

1. W e consder a Feynm an am plitudeM = uf’) u(p), where u(p) and u(gP) are two
com ponent spinors that specify the m om enta of the electron in the initial and nal
states,and isa 2 2 matrix built up out of -m atrices. T hen

M F o= uE uEurE) u@)
= u @nu @) (u (e (p)~
= e T E)r
0
= Tr P rm P rm. (78)
2m 2m
w here we have used the positive energy profction operator (51) and = ° ¥ 9. This

can be extended to Feynm an am plitudes w ith one or two spinors of antiparticles using
the negative energy profction operator (57).

2. W e consider a Feynm an am plituide of the form M = ; KM (K), i e., wih one
extermal photon. T he gauge Invariance requiresk M (K) = 0 so that:

M Ff= . ®,®M ®M ®= M &M {&); (79)

Here we have usad the relation
|
k k kn)k n +n k)

LK), K)= g o7 (80)

for a physical photon k? = 0. Once again, this form alisn can be extended to several
external photons.
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