arXiv:hep-th/0205137v2 19 Jun 2002

Sam rclassicalm ass of quantum k-com ponent topological
kinks

A .Anso Izquierdo®, W .G arc a Fuerte” ,M A .G onzalez Leon®
and J.M ateos G uilarte®
@) D epartam ento de M atem atica A plicada, U niversidad de Salam anca, SPA IN
®) D epartam ento de F sica, Universidad de O viedo, SPA IN
©) D epartam ento de F sica, U niversidad de Salam anca, SPA IN

A bstract

W e use the generalized zeta function regularization m ethod to com pute the one-loop
quantum correction to them asses ofthe TK 1 and TK 2 kinks in a deform ation of the O (N )
linear sigm a m odelon the real line.


http://es.arxiv.org/abs/hep-th/0205137v2

1 Introduction

In thispaperwe shallapply the generalized zeta fiilnction regularization m ethod to unveil the sem -
classical behaviour of the quantum topological kinks arising as BP S states in m ulti-com ponent
scalar (1+ 1)-din ensional eld theory. T he interest of this investigation lies in the fact that these
system s live at the heart of the low energy regim e of string/M theory. E ective theories such as
N =1 SUSY QCD and/or the W essZum Ino m odel [I]] encom pass N -com ponent scalar elds and
have a discrete set of vacuum states. From a one-dim ensional perspective one can foresse the
existence of k-com ponent topologicalkinks, k N ,which are the seeds of the BP S dom ain walls.
T hese extended states play such a prom inent rdle in the three-din ensional world that analysis of
the quantum behaviour of k-com ponent topological kinks becom es an in portant issue.

Here, we shall focus on a oneparam etric fam ily of defomm ations of the O (N ) linear sigm a
m odel, In (1+ 1)din ensional space+tin e. The m odel to be addressed form s the bosonic sector of
a supersymm etric theory with N real super- eldds and is of the general type of the W essZum ino
m odel, Ike those studied in fll]and [J]. An im portant feature comm on to all these m odels is the
non-existence of continuous sym m etries in intermal space and they can therefore be included in the
class of systam s considerad in R eference [g]. T he authors of these w orks use continuous phase<shift
m ethods to calculate the one-loop correction to the kink energy in filll super-sym m etric theordes.

O ur approach di ers in two ways: 1) we restrict ourselves to the bosonic sector and leave the
ferm jonic uctuations for future research ; 2) the generalized zeta function regqularization procedure
isapplied to dealw ith the in nite quantities arising in the quantization prescription. T hism ethod
has been usad previously In the description of quantum corrections to kink m asses for theordes
with a single real scalar eld, see []], but here we shall ©ollow the m ore elaborated procedure
developed in [§] and [@] for one-com ponent system s. N evertheless, our m ethod is particularly
suited to m odels w ith several real elds because in general, In theories of this type, the goectrum
of the second order uctuation operator around kink solutions is only partially (asym ptotically)
known. Since this operator is a Schrodinger operator acting on fiinctions belonging to the H ibbert
space L2(R) CV, one can write an associated heat equation. From the asym ptotic expansion
to the heat function one obtains enough Inform ation about the generalized zeta function of the
second  uctuation operator [L0] to provide a good approxin ation to the one-loop correction to
the kink m ass. A sym ptotic m ethods to com pute the m ass of quantum solitonswere rst used in
R eference [13].

W ithin a given range of the deform ation param eter, the m odi ed O (2) linear sigm a m odel
that we shall consider is the celebrated M ontonen-Sarker— Trullinger- Bishop ( M STB ) m odel
1. 0 ver the years, several kinds of kink solitary waves w ith very noticeable properties have been
discovered in this system , B1. The kink m oduli space of the N 3 generalizations of the M ST B
m odel has been described In [§], whereas m ore recently the stability of the di erent kinds of kink
was established in ]. T herefore, com putation of the sam i<lassicalm ass of the stable topological
kinks w ith one non-null com ponent, TK 1 , or two non-null com ponents, TK 2, is com pelling. To
achieve this task, which is them ain goalof this paper, the zeta function reqularization m ethod is
specially appropriate , because of the im possibility of soking the spectral problem of the second
order uctuation operator.

T he organization of the paper is as follow s: In Section x2 the general sem i<lassical form ula
for the m ass of quantum solitons, the zeta filnction regularization procedure, and the zero point
energy and m ass renom alization prescriptions are explained. In Section x.3 we com pute the one-



Joop quantum corrections to them asses of topologicalkinksw ith one and tw o non-nullcom ponents
In the M STB model. In Section x4 sin ilar form ulas are given in the deform ation of the linear
O (N ) sigma model, with N 3, that generalizes the M STB model. Section x5 o ers some
comm ents on possble extensions of our results. Finally, n Appendix A the st coe cients of
the m atrix heat kemel expansion are w ritten, w hereas, iIn A ppendix B, it is shown that only the
stable two-com ponent topological kinks saturate the topological bound.

2 Sem iclassicalm ass form ula for k-com ponent quantum
topological kinks

N -com ponent scalar elds are m aps from the R*'? M inkow ski spacetin e to the RN \intemal"
space:

X
(v )= 2y Je, :RT LRV

a=1

Here,y , = 0;1,are coordinates in R'*;@ = % isabasisin TR'?,and e,;a = 1;2; N,
are orthonom alvectors in RY ,e, g= ... W e chall consider (1+ 1)-din ensional eld theories
whose classical dynam ics is govermed by the action

Z

yz@@ U (™)

W e choose the m etric tensor in T?(R'?) asg = diag (1; 1) and the E instein convention w ill be
used throughout the paper only for the indices in R'". The system of units -identical to that
chosen in [} is such that only the speed of light isset to c= 1.
T he classical con guration gpace C is form ed by the static con gurations ™ (y) —we denote the
spatial coordinate as y* = y - for which the energy fiinctional
~ z 1% 4 .4, ~ )
E(T)= dy 5 + U (7)

2a:1 dy dy

is nite: C= £7(y)=E (7)< +1 g. In the Schrodinger picture, the quantum evolution is ruled
by the Schrodinger functional equation

P?[WWﬂ=WFH[NMﬂ=Wk

If 7y isa constantm inimum of U , the m asses of the fundam ental quanta are: vj ab =
T he quantum Ham iltonian operator

acts on wave fiinctionals [ ~(y);t]that belong to L2(C).



A straightforward generalization of the argum ents and de nitions of the Section x2 of [{] -
ollow ing the classical papers [1]], [[4] - show s that the kink ground state energy at the sem i
classical lim it is:

Ef = E[% 1+ STr@K)7 + o) = E[% 1+ 5 e ( $)+ 0ol 1)
Here K is the second variation operator, w ith spectral equation K 7, (x) = !ffn (x),and
X 1
pk (8) = (!rzl)s

2
14>0

is the associated generalized zeta function; P is the pro fctor to the strictly positive part of SpecK .
In thiscase, however, K isaN N \matrix" di erential operator w ith \m atrix elem ents"

@2 2y
@—y2 ab t ;o oajb=1;2; N e
a b ~

K

Kap =

2.1 G eneralized zeta function regularization m ethod

W e shall regularize pxk ( %) by de ning the analogous quantity pk (S) at som e point in the
com plex splane where px (s) does not have a pole. px (S) is a m erom orphic function of s such
that its residues and poles can be derived through heat kemelm ethods, see ]. IfKk (y;z; )is
the kemeloftheN N \m atrix" heat equation associated to K ,

@
@_1N+K Kk (yiz; )=0 ; Kx(y;z;0)=1y (v 2); (2)
the M ellin transform ation tells us that
Z 1
px (8)= — d °'Tre %
s) o
w here Z 4
hpg [ 1= Tre 7% =Tre © 4= J+ dyKx (y;y; )

1

is the heat function hpx [ ], if K is positive sem ide nite and dimKerk = j. The \regularized"
kink energy is at the sam iclassical 1im it:

EX(s)= B[« ]+ = % g (5)+ o) (3)

where isaunitoflength ! ntroduced to render the term s in @) hom ogeneous from a din ensional
point of view . The in niteness of the bare quantum energy show s itself here in the pole that the
zeta function develops for s =
T he renom alization of Ef (s) w illbe perform ed In the sam e three stepsas n [{1:
A .Thequantum uctuations around the vacuum are govemed by the Schrodinger operator:

— nle
.

d2 2 U .
— +
dy2 ab a N }v

Vap =



U4 =2, is the m atrix of second

a b v a

variationalderwvatives of U at y . T he kemel of the heat equation

where 7y isa constantm nimum of U and Uy, (Tyv ) =

@
@—+V Ky(yiz; )=0 ; Ky(yiz;0)=1y (y 2)
provides the heat function hy (),
R L
hy( )= Tre V= dyK v (y;y;i )

a=1 1
and, through the M ellin transform ation,we othajn
1 1
v(s)= —— d °'Tre V:
(s) o

T he reqularized kink energy m easured w ith respect to the reqularized vacuum energy is thus

EX (s) = E[%1+ 1™ (s)+ o(~%)

= E[~K1+§ 2711 L (8) v (8)]+ of~?):

B.Ifwe now pass to the physical lin £ EX = lim 1 EX (s),we stillcbtain an in nite result.
The reason for this is that the physical param eters of the theory have not been renom alized.
It iswell known that in (1+ 1)-din ensional scalar eld theory nom al ordering takes care of all
renom alizations In the system : the only ultraviolet divergences that occur In perturbation theory
com e from graphs that contain a closed Ioop consisting ofa single ntemalline, [[4] . From W ick’s
theoram , adapted to contractionsof two elds at the sam e point in spacetin e, we see that nom al
ordering adds to the H am iltonian the m ass renomm alization counter-tem s

L2 X 2
2 2 U 2
H(m")= - dy Maq +0o(~7)
2 a=1 a @
up to one-loop order. To regularize .
2 dkﬂ aa
Maa = S 7
k?+ Uaa (Tv)
we rst put the system in a 1D box of length L so that m2, = = v, (3), if the constant
elgen-function ofV,, isnot included in y__ . Then,we again use the zeta function regularization
method and de ne: mZ(s) = +-°2 1 (s+ 1). Note that mZ, = Iin, 1 mZ(s).

T he criterion behind this reqularization prescription is the vanishing tadpole condition, which is
shown in A ppendix B ofR eference [§] to be equivalent to the heat kemel subtraction schem e.
T he one-loop correction to the kink energy due to H ( m?(s)) is thus
E

D E D
;" (s) = "¢ H( m?(s)) k ~y H (m?(s)) ~y =
Z n #
L
. ey s+ 1) 7 ¥ 2y 23
= m 2L T (s) dy vaa (S+ 1) 2 a
L! (s) L? a1 a ~y a ~y
Z
_ ey s+ DX 1
= m — 2 v (s+ 1) dyVaa (y) (4)
L!1 2L (S) _ 1



because the expectation values of nom alordered operators in coherent states are the correspond—
Ing cnum bervalued functions.

C . Finally, the renom alized kink energy is :
Er =E[x I+ Iim "™ (s)+ "™ (s) +o(?) : (5)

R
s!

N

2.2 A sym ptotic approxin ation to sem iclassical kink m asses

In general it is very di cult to compute h px [ ] exactly. In such a case, we shall m ake use
of the asym ptotic expansion of hpx [ ], which is well de ned if 0 < < 1. In oxer to use
the asym ptotic expansion of the generalized zeta function of the K operator to com pute the
sam iclassical expansion of the corresponding quantum kink m ass, it is convenient to use non-—

din ensional variables. W e de ne non-din ensional spacetin e coordinates x = mgy and eld
amplitudes “(x ) = ¢~y ), where m4 and ¢ are constants with dimensions mg]= L L and
2
[w]l=M L %.Also,wewrtiteU(N)= ;—% (7).
d

T he action and the energy can now be w ritten in temm s of their non-din ensional counterparts:

Z
1 1e~ e~ 1
S["] = = d’x ——— U(") ==S["
(] 2 X S ex ox () 2 "]
!
Z .
E[~] = Mad dx }d_wd_N_FU(N) —EE[N]'
2 2dx dx -2 ’

T he in portant point is that the Hessians at the vacuum and kink con gurations can always be

1 1
written asthe N N matrix di erential operators V. = —V and K = — K, given by
m

m g d

d? 5

Vap = e abt Vi ab
d? 5

Kap = ) abt Vi oap Vap(X)

2 2
where — 3, = vj and 3, = Va2 ab  Vap(x). T herefore,
a a b
v (s)= o7 vis) i x(s)= T k (s):

d

T he asym ptotic expansion of N N m atrix heat kemels is given in R eference [13]. N evertheless,
we shall sketch this procedure in order to adapt it to our com putationalneeds. W e thus w rite the
heat kemel In the form

Ky (x;x% )= A x;x% Ky xx% )

w here o

0 1 (x x
Kylolxix’j )= pe—=exp ———— expl V) ap



isthe solution of the heat kemelequation fortheV operatorw ith the nitialcondition K Ly (x ;x%0) =
5 (x ¥). Them atrix elam entsoftheN N m atrix-valied finction A (x;x°% ) satisfy the system
of N 2 coupled PDE:

N : 0
T ma " e Ve Bh&IKy k&G )=0 (6)
c=1d=1
whereas A (x;x%0)= 1y istheN N identity m atrix.
p 1For < 1,wesoke (§) by m eansofan asym ptotic (high-tem perature) expansion: A (x;x%; )=
@ (x;x% ™. In this regin e the heat function is given by:

}é\] Z 1 }4\] }(1 e vg Z 1
Tre & = dx Ky La(x;x; )= p4: dx [a, ha (x;x) "
a=1 1 a=1n=0 1
X o v .
= 194:[an]aa(K) :
a=1n=0

The coe cients [a , Ly (x;x") can be found by m eans of an iterative procedure that starts from
3o Lo (¢;x%) = 45 and becom es m ore and m ore involved w ith Jarger and larger N . In A ppendix
A , this procedure is explained and the explicit expressions for the low er orders are shown.

The use of the power expansion of hpx [ ]= Tre F¥ in the formul for the quantum kink
m ass is developed in three steps:

1. First, we write the generalized zeta function ofV in the fom :

Z
1 mde ! s 2 .
v(8)= —Pp— d ze 2+ By (s) ;
(s) 4 .
a=1
w ith
dLX\] [S

T 2s 1
4 Vi [s

N =

Y%

2]
]

m
7o ov(s)=9#®

[s;v2]land  [s % ;v? 1 being respectively the upper and lower incom plete gamm a functions, see
[Lq]. It ©lows that  (s) is a m erom orphic function of s w ith poles at the poles of [s % ;va2 1
which occur when s % is a negative integer or zero. By, (s), however, is an entire fiinction of s.

2. Second, from the asym ptotic expansion ofhpx [ Jwe estin ate the generalized zeta fiinction
ofK :

" Z Z #
1 L .1 ¥ X Lo
pk (S) = 5 i d ° '+ p—= brla®) d %" Z2e "4+ D x(s) + Bpg(s)=
0 a=1 n<np 0
J LT a2 L e
= + e — an ha = + Jx (8)+ S);
s (8 4 ... e b (s) ¥ o
where
1 ¥ X [s+n 2;v2]
b, % (s)= 19? B ba (K )1
a=1ln np a :



is holom orphic forRes > no+%,whereas
p ¥ 4
Bpy (S)= —— d Trle %, ¢!
(S) a=1 1

is an entire function of s. The values of s where s+ n % is a negative integer or zero are the

poles of [k (s) because thepolsof [s+ n % ;v§ ] Iie at these points In the com plex splane.
R enomm alization of the zero point energy requires the subtraction of  (s) from x (s). We

nd: n 4
1 3 X R IE LK) [+n 1
pK(S) v(S) N -+ P— 2(s+n L) 7
(s) S a=1 n=1 4 Va ?

and the error in this approxin ation w ith respect to the exact result to "™ is:
_ Mdr 3 1 1 141,
errorl—T[ 2_}%01(( §)+BPK( E) Bv( E)]-

N ote that the subtraction of  (s) exactly cancels the contribution of a4 (K ) and hence the diver-
gence arising at s = %,n = 0.

3. Thid, "™ now reads:

& g o~ 20 X ml.K) B+ 3]
* - 1 It 3 ]I[ll m2 = 2s+ 1 +
1
fmg X R Bl ®) b 1)
* f“4_ ( 1y v 2
a=1 n=2 2 a

T he surplus In energy due to the m ass renom alization counter-tem is:

2s+ 1

X
~ [a K s+ 1
S = Tm M Tm — ¥v (s+ 1)+ o(~?)
L!1 2L st 1 o myg (s) -
a=1 2
N 2s+ 1 1,2
~m ) [+ =;v2]
- = LK) ln — — e+ o(~?);
2 4 1 st 1 mg vistt (s)

and the deviation from the exact result is :

L X
B K . 1.
error, = L]!Jml T 1 ha K By, (5):
a=1
T herefore,
" . #
. ~m g 1 X% n 1;%]
ER=E[x]+ Mx =E[«k] 2?— ]+4P— [an Lha (K) o 2 +
a=1 n=2 Va
N 2s+1 1.2 1.2
~ 4 [s+ 3iv;] [s+ 3iv:] 5
+ — a K ) Iim — o(~
Ep— [l]aa( )S' 1 m g4 V§s+l (S) V25+1 (S) ( )



T he contributions proportional to [a; L, (K ) of the poles at s = I "™ (s) and "™ (s)
exactly cancel.

W e thus obtain the very com pact form ula:

Mg = ~mqgl o+ Dn,l U@ LK) b 1721 )

2n 2
8 A

S/
)
g
[

a=1 n=2

In summ : there are only two contrbutions to sam iclassical kink m asses obtained by m eans of
the asym ptoticm ethod: 1) ~m 4 ( isdue to the subtraction of the zero m odes; 2) ~m 4D ,, com es
from the partial sum of the asym ptotic series up to the ny order. W e stress that the m erit of the
asym ptotic m ethod lies in the fact that there is no need to solve the spectral problem ofK : all
the inform ation is encoded in the potentialV (x).

3 TheM STB m odel: adeform ed O (2) linear sigm a system

Let us consider now a N = 2 m odeldetemm ined by the potential energy density, [J1:

m2 2

UV]= = (7~ —)P+ — 2: 8
("] 4( ) N (8)
The systam is a generalization of the ( ), modeltoaN = 2 scalar ek, the O (2)-linear sigm a

m odel, although it has been deform ed by a quadratic term in  , In order to avoid the G oldstone

boson. T he deform ation param eter has din ensions of inverse length, [ ]= L !, and the ch%jS:e
of non-din ensional variables in the so called M STB model com es from the choice of ¢ = —,
mg=#and *=m? ?:
1 2
U( 15 2)=5(§+ § 1)2+?§

2 is the non-din ensional param eter that m easures the deform ation and we shall also use the

2

related parameter 2 = 1 2. U (") is not invariant under the O (2)-m atrix group if 2 is not

zero. The \Intermal" symm etry group isthe Z, 7%, group of discrete transform ations:
Gr= ea! S ea! ( 1)1896

The vacuum classical con gurations are:
m

iD= e ; i) = pe=er:
T herefore, if we denote by

H?= e! & ;! (1)~ e

the Z ,— subgroup that leaves &, invariant, the vacuum orbit and the vacuum m oduli space are
respectively: M = HG(I“ =z,,M = g—l = point.

T here are two kinds of topological kinks which are thus loop kinks and candidates for being
stable solitary waves of the systam :




Topological kinks w ith one non-null com ponent:

~ ~ 0 m my
rx1(X;0) = (tanhx)e ; rr1(Yiy )= 19:(1:anhie—E e

Topological kinks w ith two non-null com ponents:

Trx2(X;t) = [(tanh X)e (sech x)e);

- 0 1 Y P
rx2(Yiy )= p:[rn(tanhp—i)el (m 2 2)(sechp=)e It

ol

N ote that there are two tw o-com ponent topologicalkinks ,which only exist if 0 < 2 < 1.

The kink and vacuum solutions have classical energies: E [Trx1]= %é%,E[NTKz]= 2 (1
—)¥=— and E[y ] = 0. Thus, E[rx:]> E["rx.] and we shall see that the TK 1 kink, as a

quantum state, is unstable if 2 < 1. The lower bound i energy in the topological sector of
the con guration space is attained, however, by the TK 2 kink. This Jast statem ent is proved in
Appendix B.

T he Hessian operator for the vacuum solution is:
|

2
§?+ 2m ? 0 m 2 df“—22+4 0 m 2
V = a2 2 :7 * g2 2 = —V ’
0 W‘F? 0 @‘l‘
and hence the m asses of the fundam ental quanta are vi = 2m ? = m—;vf and v = 72 = %vﬁ,jn

such a way that the H I(Z) symm etry is spontaneously broken.
T he H essian operators for the topological kinks read :

TK1, !

dx? cosh? x

2
m
and K = 7K . Note that K has a negative eigenvalue if 2 < 1, as it should be for a

unstable solution.

TK 2, !
a2 n 22+ ?) tanh x
H = dx? cosh? x cosh x )
tanh x a2 4 24 2237
cosh x dx? cosh?® x

m
and H = —H .
2
T he corresponding generalized zeta functions satisfy

2 ° 2 2
v (s8)= — v(s) ; opx(s)= — px (8) 7 pu(S)= — py (S)
m m

10



3.1 The quantum TK 1 kink: exact com putation of the sem iclassical
m ass

G eneralized zeta function ofV :
Acting on the L?(R) C? Hibert space, we have that

2

SpecV = fkf + 4g [ fk§ + “g= SpedVii [ SpedVy,;;

ki;ks 2 R ,whereas the spectral density over a lJarge Intervalof length L is :

8 mL

2 pz— for k2 4 2

v (kiiko) = s mL , ,
. 5]_95— for k2< 4

From these data, the heat and generalized zeta functions can be readily com puted :

Tre V= Tre "'+ Tre V22=p8:e + e quad;
!
B _ mL 1 1 (s 2)
e S I (s)

G eneralized zeta function ofK
In the case of the onecom ponent topological kink, com putation of the heat and generalized
zeta functions is easy because K is diagonal. M oreover, K 11 and K ,, are regpectively the H essian
operators for the ( ) kink and the sineG ordon soliton (in the second case shifted by 2 1).
T herefore, we shall take advantage from the work perform ed in [§]. T he specttum of the H essian
operator for the TK 1 kink is :

Speck = £0; 3; * 1g[ £ki+ 4giox [ £K2+ “goor
and the spectral density and the phase shifts for the continuous spectrum read :

d (k) N d ,(ky)
dky dk,

1
g kitke) = (kijke)+ 2_

3k ) 1
2 ; 2(ky) = 2arctank—2
respectively. Besides the continuous spectrum there are three bound states w ith eigenvalues 0, 3
and 2 1. The elgenfunction of 0 eigenvalue is the translationalm ode. T here is a second bound
state in the e direction, but the third bound state points along the e, axis. N ote that to develop
a non-zero , com ponent is energetically favorable if 2 < 1 and this process costs energy when
2> 1 and the TK 1 kink is stable. The second zero m ode that occurs at 2 = 1 is the signal of
this phase transition.

1(ky) = 2arctan2

11



T he heat function

Tre "% = Tre "f4 4+ Tre 2=
s , ! nL 1d (k) 2
=e” +e 1 P=+ - e & f
12 8 2 dkl
1
o : mL  1d (k)
+e + e dky P=+ - e
. T8 T2 dk,
is therefore equal to :
p— P —
Tre ¥ =Tre 4+ e +e " Y Erf[ ] Erel2 ] ;

where Erf and Erfc, [[], are respectively the error and com plam entary error functions. TheM ellin
transform provides the corresponding zeta function:
"

#
1 2 ) 1, ., 1 2 ) 1, .. (s+3)
pk ()= v (S)+ P= 35+%2F1[EIS+ 27 5] 4SS+ WZFl[EIS'l' 5151—2] s
in term s of G auss hypergeom etric functions of the form ,F; [a;b;c;d], [L4].
Applying these results we obtain :
w7 1 o 22 °
e e
" # .
2 1 13,1 3.1 (s+ 3)
12 1Gis+ 5% 5] 4Ss+ ( )+22F1[2,S+ 5151—2] S

which is still a divergent quantity. T hem ass renom alization counter-tem s add another divergent
quantity :

2 s+ %
"= Iim  lin Eag ZMB (s+ 1)+ (s+ 1)1 ; 9)
i s 4101 Lom? ) v '
and we obtain:
"o ) #
l 2 2 3 1 nw
l"K + nK = N]jf[l —m - 4 _"+ " f_ ) +
" #
p_ 2 " 1 1 l ( )
~ m 2 2 1.m.3. 1 1.n.3.1 "
R T e U L e R G G A U G S

Tt is appropriate to consider the contributions from Kq; and K,, separately before taking this
Iim it:

From K;; we obtain :

D g 3
o2 2
~m 2
+ —p=— 4+ 35+ 1g(3 2 3lbg—+3 (@) FE;0;2; L1 +o0();
) m2 2 1ipr¥rzr 3 4



and

22
3p+3bg— 6bg2 3 (3) +of)
m

1)y .
;"= lin p——+ —p=
to2 2 2 2

Here,  is the Euler gamm a constant; is the Psi(D igamm a) function, and zFlo is the
derivative of the G auss hypergeom etric function w ith respect to the second argum ent, [[4] .

From K,, we obtain :

(2) yK . ~m
" Im o——

' RPN

~m 2 2 2 3 ol .n.3. 1
+ —].9—2 > E bg—mz + Jog ( D+ G) 2F7Ei0;5i7—=—=1 +0o();
and )
(2) wr = lim v:’m :m o 2 2 3

"!021"5 +2f§ E+ gmz bg (2) +O( )

G athering all this together,we nally nd:

lHK + 2uK — il)uK + él)uK + iz)va + éz)va
~m 4 0l .n.3. 1 ’ 0l .n.3. 1
= —P—Z 5 4+ Jn§+ 2F1 055 = 1+ In(— 1)+ Ei 05—
~m p 3 o1
= —p—z (3 -pi )+ (1 1l arcsin—) : (10)
Notethat M 1x1( 2)= 1™ + "™ aocgquiresan inagiary part if 2 < 1 and i this latter

regin e the quantum TK 1 kink becom es a resonance. Form ula (I() show s one interesting pattem
In the one-loop correction to the kink m asses: First, the argum ents of the logarithm s are always
quotients of the eigenvalue where the continuous spectrum starts by the energy of the bound
eigen-state. Second, the fourth argum ent of the derivatives of the G auss hypergeom etric functions
is always m inus the nverse of the bound —state eigenvalues.

3.2 The quantum topological kinks: asym ptotic expansions

The di culty In com puting the quantum correction to the m ass of the TK 2 kink lies In the fact
that the H Hessian operator at this con guration is a Schrodinger operator for which the 2 2
m atrix-valued potentialV (x) isnon-diagonal. T herefore, the spectralproblem ofH isvery di cult
to solve and we are Jed to use asym ptotic m ethods to calculate the quantum TK 2 kink m ass.

In the M STB m odel there are two regin es:

1. ?< 1:TheTK 2 kink exists and is stable. In this case we have that

( )_ ( )_
12 21 :
is an odd function of x such that [a] ]12(H )— [alb] (H )— O.Beamgmmmd that'v']l(x)—

2 2
202 X) and V,, (x) = Zcfshf X),we present the coe cients @, ko (H ) up to ng = 11 with

the help of M atham atica In the Tables 1 and 2 for several values of
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=05 = 0:7 =08
n [@n k1 (H) [@an b2 (H) [an k1 (H) [an b2 (H) an k1 (H) [@an b2 (H )
1 17.9984 -9.99909 14.2285 -3.02857 13.2000 -0.4000
2 34.9975 163313 27.5051 495579 25.6320 2.42133
3 47.9636 -16.8309 38.5365 -3.88117 36.3858 -1.46193
4 49.4219 13.2491 40.9039 2.58248 39.2877 0.984184
5 40.6415 -8.41779 34.5847 -1.43041 33.7529 -0.53935
6 27.7911 4.4983 24 .2279 0.696572 23.9672 0.267282
7 16.2632 -2.08006 14.4768 -0.30375 14.4819 -0.117869
8 831759 -0.849979 7.53962 0.119982 761204 0.0464771
9 3.77771 -0.295903 3.47957 -0.0425253 3.53989 -0.0162638
10 151992 0.0884623 1.44002 0.0132872 1.47558 0.00497705

Table 1: Heat functon coe cients for several values of the deform ation param eter such that < 09 .

=029 = 095 1

n [an k1 (H) [@an b2 (H) [an k1 (H) [an b2 (H) n [an k1 (K) [@an b2 (K )
1 12.4889 191111 12.2211 2.97895 1 12.0000 4.0000

2 24.5218 167378 24.1951 1.952444 2 24.0000 266667
3 35.3368 -0.241656 35.16.16 0.310882 3 35.2000 1.066667
4 38.8216 0.341514 38.9553 0.230323 4 39.3143 0.304762
5 33.8715 -0.16798 342227 -0.053986 5 34.7429 0.0677249
6 24.3610 0.0863412 24.7475 0.0372813 6 25.2306 0.0123136
7 14.8742 -0.0370868 15.1758 -0.0145382 7 15.5208 0.0018944
8 7.88516 0.0140749 8.07351 0.00547229 8 8.27702 0.000252587
9 369263 -0.0046464 3.79191 -0.00173035 9 3.89498 2.9713410 °
10 1.54847 0.001313 1.594006 0.0003535 10 1.63998 3.1259110 °

Table 2: Heat function coe cients for several values such that 09. If 1 the coe cients com ing
from K are shown .
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W e also need to know that j= 1: there isonly one translkational zero m ode In the spectrum
of H ,and that v = 4 ,vZ = . Plugging this inform ation in the asym ptotic ormul ([7)
we obtain the values shown In Table3 for M k.

2. > 1: Theonly solitary wave is the TK 1 kink, which is stable. To detemm ine the quantum
TK 1 kink m ass by using the asym ptotic m ethod, the general form ulas m ust be applied to
K.Now,Vi(x)= Vy (x)= 0Oand trivially [a; 1, (K )= [, b1 K )= 0. The [a, L. (K )mustbe
read from the om ulas in the A ppendix applied to Vi; (x) = 6 and V,, (x) = 2

cosh® x cosh® x '
and are shown In Tabl 2 up tong = 11.
M rx1

M x> 10 0:528311~m

04 1:103270~m 12 0:518426~m
05 0:852622~m 14 0:509645~m
06 0:689001~m 16 0:502291~m
0:7 0:583835~m 18 0:496369~m
08 0:524363~m 290 0:49172~m
09 0:505708~m 25 0:484183~m
095 0:511638~m 30 0:480101~m
40 0:476181~m

Table 3: O ne-loop corrections to the m ass of topolgical kinks

Note that In this case the coe cients of the asym ptotic expansion of the generalized zeta
function of K are independent of . Nevertheless, the quantum correction to the TK 1 kink

m assdependson through the factors [nzn 12”5 ! Again j= 1: there isonly one transkational
V2

zero m ode n the spectrum of K ,and vi = 4 ,vi = 2. Application of formula (]) provides
the values of M 1x1,also shown in Tabl 3 for several values of

W e sum m arize the results obtained in this Section in the next Figure, where M x is depicted
as a function of . Tt isunderstood that for > 1 weplot M k71 and for 0 < <1 M g2
is represented . T he continuous line show s the exact value of M 1x; as a function of ,whereas
the dots correspond to the answer provided by the asym ptoticm ethod to M 1k 1, (wWhites ), and
M rx2, (blacks ), for several values of
W e observe the follow Ing facts:

In the 12 range, the approxin ation established by the asym ptotic m ethod is extrem ely
good : the discrepancy w ith the exact answer is com patible w ith zero.

In thel < < 12 interval the error is larger and can be estim ated exactly in tem s of
By ( 3)/by,x( 3),By( 3)and By, (). The clser the value of  to 1, the snaller the
rst eigenvalue in the spectrum of K and the larger By ( %).Theasymptotjcmethodjs
better when uctuations in the , direction of the TK 1 kink cost m ore energy.
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Figure 1: Quantum correction to themass in the M STB model: TK 2 (0 < 2 < 1, black dots) and TK 1
( 2 1,white dots).

Thepoint = 1,where the error ism axinum , is singular. T here isa second zero eigenvalue
which is the signal for an instability—type phase transition on the TK 1 kink. T he co-existing
unstable TK 1 and stable TK 2 kinksfor < 1 coalescetoa singke TK1 kinkat = 1,which
becom es stable for > 1.

In the 0 < < 1 regin e there is no way of estin ating the error in the approxin ation to
M 1x, obtained by m eans of asym ptotic m ethods because the exact value is not known.
W e expect, however, that the result will be better for an aller values of because of the
sam e qualitative argum ent as above: the cost in energy for climbing from the TK 2 to the
TK 1 kink is larger w ith sm aller

Thevalue 2 = 4 isa very specialone. In this case the systam isN = 2 pre-supersym m etric
n the sense that there exists a superpotential :

W ()=W'(1; e+ W2 15 2)e ;

w here

w|z\>w

3
Wi 2= 1 31"' LS WA )= o T2+
and
. , lew'lew ! 1ew'ew ' 1@W ?@Ww? 1@W ‘@w ?
= 1Y+ 2 5= < + = = = + =
2@,0@, 2@,€@, 2€@.€, 2@;0C;

T his is no m ore than the superpotential of the holom orphic W essZum ino m odel,

ew' ew?®  ew'  ew?*
e, @, ' @, e .
see [[7], and we have thus calculated the quantum correction to the kink in this in portant

system .

4 Quantum kinks in a deform ed O (N ) linear sigm a m odel

Letus nally consideran O (N ), N 3 m odeldeterm ined by the potential energy density :

m 2 XN 2
Ul™l= = ("~ — )\ + Zlfquad; (11)
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which generalizes the system discussed in Sect. 3. W ithout loss of generality, the deform ation

param eters are chosen In such a way that , < 3 < :::< . Passing to non-din ensional
variables, the potential is:
1 2 2 i
U(N)=§(NN 1)+ o1
=2
with , < 3 < :::< . The \intemal" symmetry group is (Z,)' ; the vacuum classical
con gurations are :
m
Y= e ; Y yiy') = p=e;

and the vacuum orbit and the vacuum m oduli space are respectively: M = % = ZZ,MA = 2—1 =

point.

There is a very rich maniold of kinks In thism odel, see [§]. W e shall only study the one-
com ponent and tw o-com ponent topological kinks, w hich are Joop kinks and candidate stable soli-
tary waves In this systanm :

Topological kinks and antikinks w ith one non-null com ponent:

~ ~ 0 m my
k1 (X;8) = (tanhx)e ; k1 (Yiy )= p:(tanh?—z)el

Topological kinks and antikinks w ith two non-null com ponents. For each n from 2 to N
such that , < 1,wehave :

tx2 , (X;0)= [(tanh ,X)e n(sech x)e, |;

~ 0y 1 nY p TR nY
TK2 n (Y/Y )— ‘piﬁ“ﬂ ('tf:‘l.l’ll'l—p—z )el (m n)(sajh_p_E )en]

P

where = 1 2

z.
The kink and vacuum solutions have classical energies: E [Trx1 )= %é%,E [Ttk ., 1= 2 1 (1

é)é‘%,E[N\, 1= 0. Thus,E[Trx1]> E[Trk2 , 1> :::> E[Trx2 , . The Jower bound In energy in
the topological sector of the con guration space is attained by the TK2 , kink. If , > 1, only
the TK 1 kink existsand isstable. If ;< 1< 4 1,thekinksTK1,TK2 ,;:::; TK2 5 exist, but
only the TK 2 , is stable, see [L9].

T he Hessian operators In non-din ensional variables are as follow s:

Vacuum :
V. = diag(Vy)
d d 5
Vll = @4‘ 4; VH: @*’ l;l 2
TK1:
K = diag®n)
& 6 & 2
Fu = dx? : cosh? x Fu= @ b ocos®x] L2



TK2,: !

)
(n) HND 0
H™ = (n)
0 H,
|
e 202+ 2) tanh ,x
H ) _ dx? cosh® ,x N cosh nx
N D 4 tanh px i_l_ 2+2(23§)
N cosh ,x dx? n cosh’® .x
2 2
(n) . d 2 2 7 A
H = dag( — + ——); 1= 1;2;3;::5;0;::5N ;
D 1 14 4 14 4 4 4 4 4
dx? cosh? ,x

where the hat over an index m eans that this index is absent and row s and colum ns have
been rearranged in such a way that H I(an) acts on the an alldeform ationsof ,; , and H E()n)

on the rem aining ones.

T hese operators are direct sum s of the Hessian operators used in Sect.3. W e can therefore take
advantage of the calculations already m ade to give the quantum corrections to the kinks of the
present m odel.

41 The quantum TK 1 kink: exact com putation of the sem iclassical
m ass

T he relevant quantities are:

G eneralized zeta function ofV :

X mn 1 X1 s 1)
v(s) Vi1 (S) vu(s)z e— s 1 + s 1
- ) 45 3 L, (2P 2 (s)

12 ) 1, (s+ 3)
pr (S) =  y(s)+ 1?: 3S+£2 1Gis+ 5927 g]# 1os )
1 X 2 1 (s+ )
3.1 2
+ = 5 S+12F1[2’S+ Erzl_f] (S)
v 1)
A pplying these results, we obtain
~ 1 22 ° 2 1 1 (s+ %)
K — - s+ — 3 1 2
1 25' %p_ m2 38+%2 1[21 2!2! 3 45:8 (S)
n #
~ 1 22 ° X 2 1 (s+ %)
+ = Iim = — FilE;s+ ;2% 2
2.3 77 e (kT gl TG
=2 1
T he m ass renom alization counter-tem s are :
. b T2 2 %2 (54 Do er ) X 4 1)1
L M + + + :
2 s %Lv 1 L 2 (S) Vi1 S 1:2 Vi S
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T herefore,

nw #
K WK _ ~m 4 0l .q.3. 1 X i 0l .n.3. 1
1t 2 = = 4+ ]T15+ FGi0i5i5 1+ n(— )+ 2505 i—==]
272 . L
~m X d
= —p= @3 — )+ (1 ¢ larcsin—) (12)
2 2, .

The TK1 kink isa bona de quantum state only if f> 1,81 2.

4.2 Quantum m asses of two-com ponent topologicalkinks: asym ptotic
expansion

Inthe 5< lregineonly theTK 2 , kink is stable. In this sub-section, therefore, we shall present
the calculation of the one-loop quantum correction to the TK 2 , kink mass. Since Tre * -
Tre Hvo + Tre Ho , we encounter two ol friends: the heat functions arising respectively in
connection with the TK 2 kink in the M STB m odel and the soliton of the sineG ordon m odel.

U sing the nform ation collected in previous Sections, we nd:

Casin ir energy : |

weo_oSmo 200 1 XM arayy) Brn g
2 2st 1 m? s(s) ., vt 4 (s) |
~m 2z = X 2 1 s+ 1)
+ —p= ln — o F1Bis+ =i i ="
2 2s % s (f %)S+2 2 102 (s)
M ass renomm alization energy
2 S+2 2 ;. 2 ; 2
- ~m 2 2+ 5 [+3:4] 2 35 [s+3; 3]
2" = f2_ ']lnl p 4s+l S) + 2s+ 1 (S)
2 S | 2 2
S LT
+ 2 2s+ 1 (s)
=3 1
W e nally obtain the answer: |
~m X2 @) s} 1,V§]'
Morxz,(2; 1) = —P= 1+ = B T (B ) )
2 2 4 a=1 n=1 van
~om X 2 2
N ]Og - 2 + ZF]_O[%;O;%I f 1%] ’
2 2 . b
or |
~m X2 R 2, 1,Va2]'
M orx2,(27 1) = = 1+ = [anlaa(HND)T
2 2 4 a=1 n=1 Van
2 2 L2
— 5 (7 5 )arcsin
2 =3 1
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In both form ulas the contribution com ing from H I(f])j can be read from the inform ation on the

quantum correction to the TK 2 kink m ass in the M STB m odel, collected in the Tables and the
Figure of sub-Section x.32 . A sim ilar formula would show usthat M (x, ,,81 2, receives an
In aginary contribution any TK 2 ; quantum kink state is therefore a resonance.

5 Further comm ents

T he fam ily ofdeform ations that we have treated adm itsa N = 1 super-sym m etric extension. T he
superpotentialW ( ) in theN = 2 case is:

q 1
W)= (1 P+ PECI+ 3 1+ 1)
For the special value = 2, this system also adm its the superpotential m entioned at the end

of sub-Section x3.2 because it becom es the W essZum ino m odel. TEN 3, it is very di cult to
w rite the superpotential in C artesian coordinates n theRY intemal space; nevertheless, passing
to elliptic coordinates one obtains easy expressions for the superpotential, see [L§].

T he super-sym m etric extensions also include M a prana spinor elds:

~1(x )
~(x )= L ;o o~ =~ =1;2
~2 (%)
Choosing theM aprana representation %= 2; '=i?'; °= 3oftheCliomdalgebraf ; g=
2g and de ning the M ajprana adpint ~ = ~* 9, the action of the supersymm etric m odel is:
1 z n 5 o
S = — dx* @@ "+1 @~ FWEW ~W -~ ;
22
. X el NS S @2
rw (x ) = @a(x)ea ; W = ¢ rw = e, %W:
a=1 a=1b-1

TheN = 1 supersymm etry transform ation is generated on the space of classical con gurations
by the H am iltonian spinor function :

T he com ponents of the M a prana spinorial charge Q close the supersymm etry algebra :

f0 ;0 g=2( % P 21t T: (13)
T heir (anti)-P ojssonf?rad(et stgjyen in ) In tem s of themomentum P and the topological
centralcharge T = j AW j= j W d7j.

The chiralprogctionsQ = %Q and
super-sym m etric charges:

provide a very special com bination of the

0, +0Q = dx  (~y ~ ) (~ + ~)EW
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Q. + Q iszero for the classical con gurations that satisfy g = W and ~ = 0 which are
thus classical BPS states. In Appendix B it is proved that the stable TK 2 kinks are such BPS
states and besides the an all bosonic uctuations one m ust take into account the an all ferm ionic

uctuations around the kink in order to com pute the quantum correction to the kink m ass in the
extended super-symm etric systam . The ferm jonic uctuations around the kink con guration lead
to other solutions of the eld equations iftheN N matrix D irac equation

n @)

i@+ W (%) rp~x9=0

is satis ed. W em ultiply this equation for the ad pint of the D irac operator :

n on @]
i@+ "W (k) 1 @+ "W (k) rp~x;09=0 5

and,due to the tin e-independence of the kink background, look for solutionsofthe form : ¢ ~(x;t) =
fr (x;!)e" . This is tantam ount to soXing the spectral problem

a2 . o ~
@"‘NW(NK)NW(NK) ilfw (Tg )T W (k) fF(X;!):!ZfF(X;!):

P rofcting onto the elgen-spinors of i *,

1

1+ i 1 £ (x; ! £ ;!
£ (x;1) = ()= = P Xin) B ()
2 2 fx;0 )+ £ (x!)
we end w ith the spectral problem :
d2 - o~ N N - ~ ~ (1) Oy (1) gy 120D O
2t WO () EW COF W () G = KE g = RV G )

for the sam e Schrodinger operator that govermns the bosonic uctuations.

T herefore, generalized zeta function m ethods can also be used In super-symm etric m odels to
com pute the quantum corrections to the m ass of BPS kinks. G reat care, however, is needed in
choosing the boundary conditions on the ferm ionic uctuations w ithout spoiling super-sym m etry.
W e ook forward to extending this research in this direction.

A Appendix: the m atrix heat kernel expansion

In this A ppendix we describe how to nd the coe cients of the asym ptotic expansion of the heat
kemel associated with K and show the explicit expressions for them up to third order; fora m ore
com plete treatm ent see [T31. Fom uk () in the text tells us that them atrix elem ents of A (x;x% )
satisfy the N 2 coupled PDE :

O@ @2 XN
- X& @x? BL&xix% )= Vae®B LG )+ F VIR L&Y );

@
—
@
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w ith the initial condition: A ., (x;x%0) = .. Pluggihg the power expansion of A 4, (x;x% ) into
this system of equationswe nd the recurrence relations:

2 X
Gt = o B0 T g B i)
b @x

0 @ [an ]ab

nia, Lpxix)+ x %%

c=1

+ (v V)n 1 Lex;x°)

In order to take the x° ! x lim it properly, we introduce the notation:

k
“n,lx)= Im Fhals (x;x°)

x01 x @xk

T hen, the recurrence relations in the x°= x lin it becom e:

( " )

1
B Lo (%) = — DR, 1)+ Ve 1b&ix)+ (v )En 1k (xix)

c=1

W e also need the secondary recurrence relations am ong the %', 1, (x) derived from k-tin es
di erentiation of the prin ary recurrence relations above:

(

1 XX g vy
R, x)= —— PR L)+

i J
n+ k 1 0 J @x

k 3)

N otice that %) [ o Ly (x) = T o o SBoke = K0 Thys, the ® A, 1, (x)and, hence, the [a, Ly (x;x)

@xk
can be generated recursively . T he three st coe clents are :

Bal, %) = Vap(x)
_ 1o 1 2 1 o
2], ®) = 2 Ven (x)+ >V ap (X)+ E(Vb V2 WVap (%)
1w 1 1
Bsly (%) = Vo )+ 5 VIRV () o 5 VWV IR r o VIV
Ly L VZHV(Z) 2 v?2 °
oz ap () ﬁ(b L) Vg () ap %)
1 2 212 1X\T
oo Ve o () Ve Vae (X )Ves (X)
c=1

W e mention that, as happens in the scalar case [[9], the diagonal tem s [a, L. (x;x) can be
interpreted as the densities giving the in nite conserved charges of a m atrix K ortew eg-de Vries
equation; nam ely :

Qv Qv Qv R’V

o Ve T e Y 4

where now them atrix potentialevolves In \tine" t,V = V (x;t). The reason is that (I4) can be
w ritten as a Lax equation
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for the operators

@2
L = — Vv 15
@x? (15)
3
M = 4@— 3V£ 3£V + B(t) (16)
@x3 @x @x

w ith B (t) arbitrary. T herefore, standard argum ents [PQ] guarantee that the tin e evolution ruled
by ([4) produces an uniparam etric isospectral transfom ation of the Schodinger operator (L3).
Because the integrals [a, L, are detem ined by the spectrum of ([3), their invariance follow s.

B Appendix: BPS and non-BP S kinks

This A ppendix is devoted to characterize respectively the TK 1 and TK 2 kinks as nonBP S and
BPS states In the N = 2 case, see R eference @]. W e have seen In Section x5 that the m odel
adm its four superpotentials. If , = 0;1;a= 1;2 , the four superpotentials

(15 2) . — 1p PR
W (15 2)= (1) (++ (12 r+ of

(2+ 2 (1) 1+ % 11 ; @an

Wl

satisfy:
1X2 QW (1;2)@W (172)
2 Q. Q.

a=1

1 2, 2 2 2
:5(1+ 2 1)"'72

T he energy for static con gurations reads:

1 X2 d w (1i2) d w (1i2) X2 d w (1i2)
E=—- dx 2 @ 2 @ +  dx a@i
2 ., e . dx G 1 I
The BPS kinks are the solutions of the ODE rstorder system
d Qw (172 (DY 1+ D+ 12 )+ ;
el - r AN ! 2 (18)
dx @, 5 2
S+ 1+ ()7
d, ew 2 (L) o0 2+ P4 (14 (1)2 )] o)
dx @ i 5 2
S+ 1+ ()7
From the values of the superpotential at the vacuum points
(17 2) 1 2 1 2 2
W ( L;0)=(C 1)@ 1) ) 1+ 5(1 (1) + 7))
we calculate the Bogom olny bound
z 2
EBPS — 5 dw (1;2)j= W (1;2)(1;0) W (1;2)( 1;0)j= 2 1 ? ; (20)
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which is saturated by the solutions of ([§JI9), the BPS kinks.

In the derivation of (2(Q) we have used Stokes’s theorem . Thefoci( ¥ = ( 1)2 ; § = 0)of
theellipse 2+ % ,= 1 i theR? \intemal" space are branching points of W  *7 2}, T herefore,
we are legitin ated to use Stokes’s theorem —and the Bogom olny bound is reached—- only if the
kink con guration does notﬁross any of the two foci above m entioned. The TK 2 kinks live on
the sem tellipses 157 = 1 ( T¥2)2 and everything is ne: they are BPS kinks. The TK 1
solutions arem ore involved. If , = 0 ([§) reduces to:

i (e 22N e ) (L (DY (1)7%)

dx IR ' ' '

where (u) istheH eaviside step function. Thus, %' (x)= tanhx isnotsolution ofthe rst-order
equationson thewholerealline;if 1+ ( 1) ? < O,wemustchoose ;= 0,and ; = 1 otherw ise.
Onthehalflnex 2 ( 1 ; arctanh[( 1)? ]ltheTK 1 solution isthe ow line ofgradWw ©/2) but
it becom es the ow line ofgradW “72) onx 2 [ arctanh[( 1)? J1 ).Onecan easily check that
the TK 1 kink is a proper solution of the second-order equations w ith energy given by a piecew ise
application of Stokes’s theoram :

ET =40 @2 1;0) w U (1) 03+ Y 1)2 50 w<”2>(1;0>j=§
Tn a super-sym m etric extension of thism odel the corresponding state would be not annihilated by
any com bination of the super-sym m etry generators built from one oftheW ( *72) superjpotentials
and, therefore, the TK 1 kink is a non-BPS state in this system if 2 < 1.

It is shown In Reference [L§] that only the stable TK 2 kinks are BPS kinks in the N 3
m odels; the proof has been perform ed using elliptic coordinates for the eld variables.
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