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The main motivation of this work has been the description of the heavy quark
systems within the framework of a constituent quark model. The difficulties to solve
nonperturbative QCD make phenomenological models a useful tool to approach the
data and, at the same time, to learn about the theory.

The investigation of properties of the heavy mesons has allowed us to understand
the model applicability and to generate possible improvements. The properties studied
are the meson spectra and the electromagnetic, strong and weak decays.
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Chapter 1

Introduction

The theory that describes the strong interaction is Quantum Chromodynamics (QCD).
It was proposed in the 1970s and was widely accepted after the discovery of asymptotic
freedom in 1973 as it offered a satisfying explanation to some of the puzzling
experimental results at the time. However, QCD has remained only partially solved
until today due to the non-Abelian structure of the gauge group which generates
it. The main problem is that a perturbative understanding can only be properly
done at very high energies where the quark-gluon coupling constant becomes small
enough. In the low-energy region one has to develop nonperturbative methods of
limited applicability or to model the theory to describe the phenomenology. Among
them one has constituent quark models, numerical techniques in a discrete lattice space,
Lattice QCD, or other approaches that build an Effective Field Theory taking some
limit of QCD and generate from it a systematic expansion, Chiral Perturbation Theory,
Heavy Quark Effective Field Theory, Non-Relativistic QCD or 1/Nc approaches.

The difficulties to solve QCD make phenomenological models incorporating the
basic properties of the original theory a useful tool to approach the data and, at the
same time, to learn about the theory. Among them, constituent quark models have
surprisingly described quite well hadrons as composite objects made of constituent
valence quarks. The quark model of hadrons was first introduced in 1964 by Gell-
Mann [1] and, independently, by Zweig [2]. There was no universal agreement if the
quarks were real particles or merely mathematical objects until 1967 when the situation
changed due to an electron-proton deep inelastic scattering experiment performed by
Friedman, Kendall and Taylor at the Stanford Linear Accelerator Center (SLAC). They
found that the scattering rate deviated from Rutherford formula for the scattering
between point particles, proving the proton was formed by three point-like particles.

Before 1974 it was possible to understand the experimental data using only three
different types of quarks (and the corresponding antiquarks), up (u), down (d) and
strange (s). Then very narrow hadron resonances were discovered simultaneously at
Brookhaven National Laboratory [3] and SLAC [4]. The states were interpreted as a
bound state of a new heavy quark, the charm quark (c). In 1977 another heavy meson
named Υ was discovered at Fermilab in the 9.5GeV region [5], a discovery that leads
to the bottom quark (b). The top quark (t), was discovered in 1995 at Fermilab [6]
with a mass around 175GeV, although no meson containing a t quark has ever been
detected 1.

1Due to the large weak decay rate, t→ bW+, it is not expected that the top quark appears as a constituent
in bound states.

1
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The scientific community has witnessed what is called the golden age for heavy
quarkonium physics, dawned a decade ago and initiated by the confluence of exciting
theoretical advances in QCD and an explosion of related experimental activity.
Focusing on the charmonium sector, it is important to remark that since its discovery
in 1974 [3, 4], the charmonium system has become the prototypical “hydrogen atom”
of meson spectroscopy [7–10]. The experimentally clear spectrum of relatively narrow
states below the open-charm threshold of 3.73GeV can be identified with the 1S, 1P ,
and 2S cc̄ levels predicted by potential models, which incorporate a color Coulomb term
at short distances and a confining term at large distances. Spin-dependent interquark
forces are evident in the splittings of states within these multiplets. Discussions of the
theoretical importance and experimental status of heavy quarkonium, including recent
experimental results for charmonium, have been given by Quigg [11], Galik [12], the
CERN Quarkonium Working Group [13], Seth [14–16], and Swarnicki [17].

Concerning charmonium one open topic remains its spectroscopy. In this respect
the B-factories have contributed to the study of the missing cc̄ states [18] but also to
find unanticipated states. The most important experiments are BaBar [19], Belle [20],
BES [21], CLEO [22] and LHCb [23], but there are also some future projects as the
PANDA experiment at FAIR [24].

Within the conventional cc̄ states they have contributed with the discovery of the
long missing 21S0 η

′
c state performed by the Belle Collaboration [25], which has since

been confirmed by BaBar [26], and has also been observed by CLEO in γγ collisions [27].
There has also been experimental activity in the spin-singlet P -wave sector, with
recent reports on the observation of the elusive 11P1 hc state by CLEO [14, 28]. The
surprisingly large cross sections for double charmonium production in e+e− reported
by Belle [29–31] suggest that it may be possible to study C = (+) cc̄ states in e+e−

without using the higher-order O(α4) two-photon annihilation process. Finally, one of
the great current interests in cc̄ spectroscopy is the search for ψ2(1

3D2) and ηc2(1
1D2)

states, which are expected to be quite narrow due to the absence of open-charm decay
modes.

On the other hand, since the discovery of the unexpected and still-fascinating
X(3872) by Belle [32] and CDF [33] in B decays to J/ψπ+π−, the interest of
charmonium has been focused on the namely XY Z charmonium-like states that appear
to lie outside the quark model. Despite of many of these states still need experimental
confirmation, there has been a huge theoretical effort to describe these states as quark-
gluon hybrids, mesonic molecules and tetraquarks.

Another important topic is the Lorentz nature of the confinement. This is tested by
the multiplet splittings of orbitally excited cc̄ states in naive quark models. With a pure
scalar confinement, as is normally assumed, there is no spin-spin hyperfine interaction
at O(v2/c2). Therefore the mass of the spin-singlet 1P1 hc state is degenerated with
the corresponding triplet center-of-gravity (c.o.g.) of the 3PJ χcJ states. However, in
the original Cornell model [34] was assumed that the confinement acts as the static
term of a Lorentz vector structure, which breaks the degeneracy of the 1P1 and the 3PJ
center-of-gravity. Another possibility is that confinement may have a more complicated
Lorentz structure being a mixture of a scalar and a vector contributions [35]. Of course
these simple potential model considerations may be complicated by mass shifts due to
other effects, such as couplings to open-flavor channels.
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Li et al. [36] have shown that a screened linear confinement potential gives similar
global features to those of a coupled channel calculation based on the Cornell potential
and therefore describes, in an effective way, the effects of dynamical light quark pair
creation. However, it seems evident the great influence that lead a meson-meson
threshold on the nearby mesons. The mixing between quark model qq̄ basis states
and two-meson continuum has been cited as a possible reason for the low masses of the
recently discovered D∗

s0(2317) and Ds1(2460) states [37, 38]. The effects of unquenching
the quark model by including meson loops can presumably be studied effectively in the
cc̄ system, in which the experimental spectrum of states is relatively unambiguous.
The success of the qq̄ quark model is surprising, in view of the probable importance
of corrections to the valence approximation; the range of the validity of the naive
quenched qq̄ quark model is an interesting and open question [39].

In the end, the heavy quarkonium physics is of great interest to the scientific
community and its relative simple structure makes it an ideal system to learn more
about QCD. The main motivation of this work is the description of heavy meson
properties within the framework of a constituent quark model. The meson properties
studied include meson spectra and electromagnetic, strong and weak decays. This will
allow us to understand the model applicability and to generate possible improvements.

The thesis is organized as follows. After the introduction, we describe in Chapter
two the basic properties of QCD and how they are implemented into the constituent
quark model. There is a detailed description of all different terms of the interacting
potential. To find new physics it is very important to test the theoretical model with
as many as possible known states. It allows us to clearly understand the strengths and
weaknesses of the model and thus to extract later reliable predictions. Moreover,
it is widely believed that confinement is flavor independent. Based on these two
cornerstones, in this Chapter, we develop a reparametrization of the model to describe
the spectrum of light mesons up to the recent highly excited states reported by the
Crystal Barrel Collaboration. This constrains the model parameters and allows us to
carry out predictions within the heavy quark sector.

In Chapter three we focus on the heavy quark sector. Introducing the meson
spectra we calculate the radiative decays. It includes leptonic, E1 and M1 decay rates
and the decays into two and three photons. We present the experimental analysis of
higher multipole contributions to the radiative decays between spin-triplet charmonium
states. It allows us to discuss about the phenomenological mixing between JPC = 1−−

charmonium states proposed by other groups to explain the leptonic widths. Once the
meson spectra has been presented, certain modifications to the model are suggested.
We study firstly the influence of the Lorentz structure of the confinement in the
meson spectra. Second, the incorporation of the one-loop QCD corrections to the
spin-dependent terms of the one-gluon exchange potential. This is motivated by the
fact that in the one-loop computation there is a spin-dependent term which affects only
to mesons with different flavor quarks. And finally, the application of a renormalization
technique with boundary conditions to disentangle the physics of the ground state to
that of the excited states. This involves the elimination of the ad hoc cutoffs of the
model, providing information on the way the original model takes into account the
unknown short-distance dynamics. Once the regulators are eliminated, a study of the
properties of the heavy mesons with respect some parameters with physical meaning
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is also included.
Chapter four is devoted to the development of a microscopic decay model to explain

the open-flavor strong decays of heavy mesons. We begin with the 3P0 model, the
strength γ of the decay interaction is regarded as a free parameter and it is fitted to
the data. We propose a scale-dependent strength, γ, given by a global fit of the total
decay widths of mesons which belong to charmed, charmed-strange, hidden charm and
hidden bottom sectors. Once we have got experience in that model, we will perform a
calculation of meson strong decays in terms of quark and gluon degrees of freedom
to address a more fundamental description of the decay mechanism. Results and
applications of both models concerning different heavy quark sectors are included.

In Chapter five we study the spin-nonflip dipion transitions between triplet
charmonium states and also between triplet bottomonium states. To do that we will
follow the QCD multipole expansion method in which is necessary to develop a model
of hybrid mesons. Many XY Z mesons have been discovered in hadronic transitions
that can be analyzed from a theoretical point of view to facilitate possible assignments.

Chapter six is devoted to the semileptonic and nonleptonic decays of B mesons.
The B-factories have become a fundamental tool to find new heavy hadrons. The
experimental data concerning the properties of these new heavy hadrons are usually
accompanied of information about the weak decay of meson B. Moreover, we will
see, on one hand, that the theoretical analysis of the semileptonic B decays into
orbitally excited charmed mesons, that include both weak and strong decays, offers
the possibility for a stringent test of meson models. On the other hand, the B
nonleptonic decays into D(∗)DsJ channels provide information about the structure of
the DsJ mesons.

Finally, we give the conclusions in Chapter seven.



Chapter 2

Review of the constituent quark

model

QCD is generally regarded as the non-Abelian gauge theory that describes quark and
gluon physics. It is very successful at high energies since perturbative calculations
are allowed and some non trivial and unexpected properties of QCD have been well
understood and confirmed experimentally.

However, the nonperturbative regime of QCD, where the hadron properties are
involved, remains to be understood. For instance, a rigorous proof is still lacking
that QCD works as a microscopic theory of strong interactions that gives rise to
the phenomenological properties of hadron spectra as spontaneous chiral symmetry
breaking or quark confinement.

The main problem is that perturbation theory cannot be applied to low energy
scales and other methods should be developed to deal with. One of them is to use
phenomenological models, but there are more as Lattice gauge theories, the Dyson-
Schwinger formalism, Light-cone QCD and Effective Field Theories.

The phenomenological models incorporate the main properties of QCD. Among
them, constituent quark models describe quite well mesons and baryons as composite
objects made of constituent valence quarks. Their electromagnetic, strong and weak
decays have been studied offering explanations and raising questions that have made
the understanding of theory and experiment to advance. In conclusion, constituent
quark models offer one of the most complete descriptions of hadron properties.

2.1 Main properties of Quantum Chromodynamics

2.1.1 Gauge invariance: non-Abelian theories

One can infer the structure of Quantum Chromodynamics from local gauge invariance
where the group of phase transformations on the quark color fields is SU(3) [40]. The
free Lagrangian is

L0 = ψ̄j(iγ
µ∂µ −m)ψj , (2.1)

where j = 1, 2 and 3 denotes the color index. For simplicity, we show just one quark
flavor.

Let us explore the consequences of requiring L0 to be invariant under local phase
transformations of the form

ψ(x) → Uψ(x) ≡ eiαa(x)Taψ(x), (2.2)

5
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where U is an arbitrary 3×3 unitary matrix for which we give a general parametrization.
A summation over the repeated suffix a is implied. Ta with a = 1, . . . , 8 are a set
of linearly independent, traceless, hermitian 3 × 3 matrices, and αa are the group
parameters. The matrices λa/2, where

λ1 =



0 1 0
1 0 0
0 0 0


 , λ2 =



0 −i 0
i 0 0
0 0 0


 , λ3 =



1 0 0
0 −1 0
0 0 0


 ,

λ4 =



0 0 1
0 0 0
1 0 0


 , λ5 =



0 0 −i
0 0 0
i 0 0


 , λ6 =



0 0 0
0 0 1
0 1 0


 ,

λ7 =




0 0 0
0 0 −i
0 i 0



 , λ8 =

√
1

3




1 0 0
0 1 0
0 0 −2



 ,

(2.3)

are the conventional choice of the Ta matrices.
The group is non-Abelian since not all the generators Ta commute with each other.

It is easy to show that the commutator of any two is a linear combination of all the
T’s

[Ta, Tb] = ifabcTc, (2.4)

where fabc are real constants, called the structure constants of the group.
To impose SU(3) local gauge invariance on the Lagrangian, Eq. (2.1), it is sufficient

to consider infinitesimal phase transformations

ψ(x) → [1 + iαa(x)Ta]ψ(x),

∂µψ → (1 + iαaTa)∂µψ + iTaψ∂µαa.
(2.5)

The last term spoils the invariance of L. However, we can introduce (eight) gauge
fields Ga

µ, each transforming as

Ga
µ → Ga

µ −
1

gs
∂µαa − fabcαbG

c
µ, (2.6)

where the last term is introduced to achieve gauge invariance of L when the group of
transformations is non-Abelian, and form a covariant derivative

Dµ = ∂µ + igsTaG
a
µ. (2.7)

We then make the replacement ∂µ → Dµ in Lagrangian, Eq. (2.1), and obtain

L = ψ̄(iγµ∂µ −m)ψ − gs(ψ̄γ
µTaψ)G

a
µ. (2.8)

Finally, we may add to L a gauge invariant kinetic energy term for each of Ga
µ fields.

The final gauge invariant QCD Lagrangian is then

L = ψ̄(iγµ∂µ −m)ψ − gs(ψ̄γ
µTaψ)G

a
µ −

1

4
Ga
µνG

µν
a , (2.9)

where
Ga
µν = ∂µG

a
ν − ∂νG

a
µ − gsfabcG

b
µG

c
ν . (2.10)
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The Eq. (2.9) is the Lagrangian for interacting colored quarks ψ and vector gluons
Gµ, with coupling specified by gs, which follows simply for demanding that the
Lagrangian be invariant under local color phase transformations to the quark fields.
Since we can arbitrarily vary the phase of the three quark color fields, it is not surprising
that eight vector gluon fields (Ga

µ with a = 1, . . . , 8) are needed to compensate all
possible phase changes. Local gauge invariance requires the gluons to be massless

The kinetic energy term in L is not purely kinetic but includes an induced self-
interaction between gauge bosons, last term in Eq. (2.10), which diagrammatically
represents three and four gluon vertices and reflects the fact that gluons themselves
carry color charge. This arises on account of the non-Abelian character of the gauge
group. The gauge invariance uniquely determines the structure of these gluon self-
coupling terms. There is only one coupling gs.

2.1.2 Chiral symmetry and its spontaneous breaking

As the masses of the u and d quarks are quite small compared to ΛQCD and the typical
hadronic scale of 1GeV, one can take the chiral limit which consists on neglecting the
mass of the quarks. We define the right and left-handed components of quark fields

ψR =
1

2
(1 + γ5)ψ,

ψL =
1

2
(1− γ5)ψ.

(2.11)

If there is no interaction, the right and left-handed components of the quark field get
decoupled, as it is seen from the kinetic energy term of the quark field in Eq. (2.9)

iψ̄γµ∂µψ = iψ̄Lγ
µ∂µψL + iψ̄Rγ

µ∂µψR. (2.12)

In QCD the quark-gluon interaction term of the Lagrangian is a vectorial coupling
which does not mix the right and left-handed components of quark fields. Hence in the
chiral limit the right and left-handed components of quarks are completely decoupled
in the QCD Lagrangian. Then, assuming only one flavor of quarks such a Lagrangian
is invariant under two independent global variations of phases of the left-handed and
right-handed quark

ψR → exp(iθR)ψR,

ψL → exp(iθL)ψL.
(2.13)

Such a transformation can be identically rewritten in terms of the vectorial and axial
transformations

ψ → exp(iθV )ψ,

ψ → exp(iθAγ5)ψ.
(2.14)

The symmetry group of these phase transformations is

U(1)L × U(1)R = U(1)A × U(1)V . (2.15)

Consider now the chiral limit for two flavors, u and d. The quark-gluon interaction
Lagrangian is insensitive to the specific flavor of quarks. For example, one can
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substitute the u and d quarks by properly normalized orthogonal linear combinations
of u and d quarks (i.e. one can perform a rotation in the isospin space) and nothing
will change. Since the left and right-handed components are completely decoupled, one
can perform two independent isospin rotations of the left and right-handed components

ψR → exp

(
i
θaRτ

a

2

)
ψR,

ψL → exp

(
i
θaLτ

a

2

)
ψL,

(2.16)

where τa are the isospin Pauli matrices and the angles θaL and θaR parametrize rotations
of the left and right-handed components, respectively. These rotations leave the QCD
Lagrangian invariant. The symmetry group of these transformations

SU(2)L × SU(2)R, (2.17)

is called chiral symmetry.
Actually in this case the Lagrangian is also invariant under the variation of the

common phase of the left-handed uL and dL quarks, which is the U(1)L symmetry and
similarly for the right-handed quarks. Hence the total chiral symmetry group of the
QCD Lagrangian is

U(2)L × U(2)R = SU(2)L × SU(2)R × U(1)V × U(1)A. (2.18)

If one includes into this consideration the next flavors, the respective chiral symmetry
is strongly explicitly broken due the quark mass.

Generally if the Hamiltonian of a system is invariant under some transformation
group G, it is expected that one can find states which are simultaneously eigenstates
of the Hamiltonian and of the Casimir operators of the group, Ci. If the ground state
of the theory, the vacuum, is invariant under the same group, i.e. if for all U ∈ G

U |0〉 = |0〉 , (2.19)

then eigenstates of this Hamiltonian corresponding to excitations above the vacuum can
be grouped into degenerate multiplets corresponding to the particular representations
of G. This mode of symmetry is usually referred to as the Wigner-Weyl mode.
Conversely, if Eq. (2.19) does not hold, the excitations do not generally form degenerate
multiplets. This situation is called spontaneous symmetry breaking.

If chiral SU(2)L×SU(2)R symmetry were realized in the Wigner-Weyl mode, then
the excitations would be grouped into representations of the chiral group. This feature
is definitely not observed for the low-lying states in hadron spectra. This means that
the Eq. (2.19) does not apply; the continuous chiral symmetry of the QCD Lagrangian
is spontaneously (dynamically) broken in the vacuum and according to the Goldstone
theorem there exist a boson, which couples to the fermions of the theory, for each group
generator which fails to annihilate the vacuum.

2.1.3 Asymptotic freedom

In a non-Abelian gauge theory such as Quantum Chromodynamics, the gluons also
carry color charge. As a consequence, a virtual gluon emitted from a quark does
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g0s g0s

(a)

+

(b)

+

(c)

+ ...

= −→ ḡs(Q
2) ḡs(Q

2)

(d)

Figure 2.1. Diagrams which contribute to second order in g0s to the running coupling constant ḡs(Q
2).

=

(a)

+

(b)

Figure 2.2. Decomposition of the two gluon loop in Coulomb gauge into transverse components (wiggly lines)
and “Coulomb” components (arrow lines). Only the self energy diagram (b) gives anti-screening.

not only see the color charge of another quark (diagram (a) in Fig. 2.1) and of a
virtual quark-antiquark pair (diagram (b)), but also the color charge of virtual gluons
(diagram (c)). The combined effect of the Feynman diagrams in Fig. 2.1 yields the
effective coupling constant [41]

αs(Q
2) =

g2s(Q
2)

4π
= α(0)

s

[
1− 2

3
nf
α
(0)
s

4π
ln

Λ2

Q2
+ 11

α
(0)
s

4π
ln

Λ2

Q2

]
, (2.20)

where α
(0)
s = (g0s)

2/4π, g0s is the bare quark-gluon coupling constant, nf is the number
of quark flavors which contribute at the corresponding energy, Q2 is the space-like
momentum transfer carried by the virtual gluon, and Λ is a cutoff parameter. The
second term is the contribution of the virtual quark-antiquark pairs. It is negative
and leads to charge screening. The third term comes from the virtual gluon loop. It
is positive and gives anti-screening. The appearance of these two competing terms of
opposite sign is a peculiarity of non-Abelian gauge theories.

The anti-screening mechanism works only for loops of massless gauge bosons. For
these bosons the longitudinal and the time-like components do not correspond to the
propagation of physical particles. One of these components can be eliminated using
current conservation, but one unphysical component is left over. In Coulomb gauge
the gluon propagators in diagram (c) of Fig. 2.1 [42, 43] can be decomposed into the
unphysical “Coulomb” part and a transversal part, which yields the two diagrams
shown in Fig. 2.2. The transversal gluon loop (diagram (a) in Fig. 2.2) leads to charge
screening, as do all physical intermediate states, while the loop in diagram (b), which
consists of a “Coulomb” gluon and a transversal gluon, gives anti-screening. Thus the
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last term in Eq. (2.20) is actually the sum of two terms

− α
(0)
s

4π
ln

Λ2

Q2
, (2.21)

for diagram (a) and

+
12α

(0)
s

4π
ln

Λ2

Q2
, (2.22)

for diagram (b) in Fig. 2.2. The anti-screening due to the unphysical component is
twelve times stronger than the charge screening due to the two transversal components
[42–44].

The cutoff parameter and the bare coupling constant in Eq. (2.20) can be eliminated
by renormalization group techniques. For a qualitative discussion of the results we
may use a short cut, and differentiate Eq. (2.20) with respect to lnQ2. The resulting

equation does not contain the cutoff any more and α
(0)
s is replaced by the cutoff-

independent quantity ᾱs(Q
2). Hence one arrives at the differential equation [45, 46]

dᾱs(Q
2)

d lnQ2
= −(11− 2

3
nf )

ᾱ2
s(Q

2)

4π
. (2.23)

This equation can be integrated to give [45, 47, 48] the running strong fine structure
constant

ᾱs(Q
2) =

ᾱs(Q
2
0)

1 + (11− 2nf/3)[ᾱs(Q2
0)/4π] ln(Q

2/Q2
0)
. (2.24)

Here Q2
0 is a suitable reference momentum transfer where the coupling constant is

known from experiment. While the effective quark-gluon coupling constant may be
rather large at small energies, and hence perturbation theory does not hold in this
regime, Eq. (2.24) tells us that the coupling constant decreases with increasing energy.
In particular, in the limit of very high momentum transfers one obtains

ᾱs(Q
2) ≃

(
33− 2nf

12π
ln
Q2

Q2
0

)−1

−−−−→
Q2→∞

0 for nf ≤ 16. (2.25)

Now Eq. (2.25) is the essence of asymptotic freedom. It allows us to justify the quark
parton picture, which describes high energy hadron phenomena in terms of free point-
like constituents. Furthermore, the corrections to this picture may be calculated using
perturbation theory, because at large Q2 the effective coupling constant ᾱs(Q

2) is
small. Incidentally, the restriction nf ≤ 16 in Eq. (2.25) gives an upper limit on the
number of quark flavors which are allowed if asymptotic freedom holds in the very high
energy domain. Since the logarithm varies very slowly, Eq. (2.25) really only holds for
extremely high energies.

The expression for ᾱs(Q
2), Eq. (2.24), depends on the arbitrary renormalization

point Q2
0. It is possible to express ᾱs(Q

2) by the renormalization group invariant
parameter Λ′, which is characteristic for the strength of the coupling constant and can
be determined from experiment.

In the derivation of Eq. (2.24) only the one-loop corrections in Fig 2.1 were taken
into account. Its validity for small Q2 depend on the magnitude of higher-order loop
corrections.
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2.1.4 Confinement

The hadron spectrum found in nature consists of color singlet combinations of color
non singlet objects: the quarks and gluons. Unlike atomic physics, where electrons
can readily be separated from atoms, there is no color charge version of ionization in
hadronic physics. Every attempt to kick a quark free from a hadron, via high energy
collisions, only results in the production of more color singlet hadrons; a non singlet
particle is never produced. Particle and nuclear physicists have become accustomed to
this fact, which is often referred to as color confinement, but after nearly forty years of
intense effort this very basic feature of hadronic physics still has no generally agreed
upon explanation.

An indication for permanent quark confinement comes from the fact that the
running coupling constant of QCD grows as one approaches the region of low
momentum transfer, long distances. This means that the strength of the force which
binds quarks increases making impossible to separate them. The weak point in this
argument is that it is precisely in that limit where the perturbative calculations are
unreliable.

Since the problem of confinement appears as a nonperturbative phenomenon, it has
also been investigated in the framework of lattice gauge theories. These theories have
their own definition of confinement. Field theory is said to exhibit confinement if the
interaction potential between quarks, which corresponds to the Wilson loop calculated
on the lattice, has asymptotic linear behaviour at large distances (a review of potentials
from Lattice QCD can be found e.g. in Ref. [49]). Moreover, there are exact inequalities
for the Wilson loop exploiting reflection positivity [50, 51], namely

V ′(r) > 0, V ′′(r) ≤ 0, (2.26)

where the latter identity is saturated by the linear potential.
A remarkable pattern emerges in the hadronic spectrum when the spin of mesons

and baryons is plotted against their squared mass. In such plots the mesons and
baryons of given flavor quantum numbers seem to lie on nearly parallel straight lines,
known as linear Regge trajectories.

Suppose that we picture a meson as a straight line of length L = 2R, with mass per
unit length σ. The line rotates about a perpendicular axis through its midpoint, such
that the endpoints of the line are moving at the speed of light, v(R) = c = 1. Then
for the energy in the rest frame, i.e. the mass, of the spinning stick we have

m = Energy = 2

∫ R

0

γσ dr = 2

∫ R

0

σ dr√
1− v2(r)

= 2

∫ R

0

σ dr√
1− r2/R2

= πσR, (2.27)

and for the angular momentum

J = 2

∫ R

0

γσrv(r) dr = 2

∫ R

0

σrv(r) dr√
1− v2(r)

=
2

R

∫ R

0

σr2 dr√
1− r2/R2

=
1

2
πσR2. (2.28)

Comparing the two expressions, we see that

J =
1

2πσ
m2 = αm2. (2.29)
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The constant α is known as the Regge slope.
The spinning stick model is, of course, only a caricature of the real situation. In fact

the various Regge trajectories do not pass through the origin, and have slightly different
slopes. To make the model more realistic, one might want to relax the requirement of
rigidity, and allow the stick to fluctuate in transverse directions. This line of thought
leads to string theory. However, since QCD is the theory of quarks and gluons, the
question to be answered is how a stick-like or string-like object actually emerges from
that theory.

One possible answer is via the formation of a color electric flux-tube. We imagine
that the color electric field running between a static quark and antiquark is, for some
reason, squeezed into a cylindrical region, whose cross-sectional area is nearly constant
as quark-antiquark separation L increases. In that case, the energy stored in the color
electric field will grow linearly with quark separation, i.e.

Energy = σ L with σ =

∫
d2x⊥

1

2
~Ea · ~Ea, (2.30)

where the integration is over a cross-section of the flux-tube. This means that there
will be a linearly rising potential energy associated with static sources, and an infinite
energy is required to separate these charges an infinite distance.

2.2 Constituent quark model

Spontaneous chiral symmetry breaking of the QCD Lagrangian together with the
perturbative one-gluon exchange and the nonperturbative confining interaction are
the main pieces of the potential models. Using this idea, Vijande et al. [52] developed
a model of the quark-quark interaction which is able to describe meson phenomenology
from the light to the heavy quark sector.

We have adopted this model and fine tune its parameters to reproduce the higher
excited light mesons despite of our study is focused on the heavy quark sector. The
reason for that lies in the fact that it is widely believed that confinement is flavor
independent. Therefore the interactions, which largely determine the high energy
quarkonium spectrum, should be constrained by the light quark sector.

The dynamics of the light quark sector is characterized by the spontaneous chiral
symmetry breaking. It makes that the nearly massless current light quarks (u and d)
acquire a dynamical momentum-dependent mass, namely, the constituent mass, and
that they interact through Goldstone bosons. This feature divides the quarks into two
different sectors, light quarks (u, d and s) where the chiral symmetry is spontaneously
broken, and the heavy quarks (c and b) where the symmetry is explicitly broken.

Therefore, for the light sector hadrons can be described as systems of confined
constituent quarks (antiquarks) interacting through gluons and Goldstone-boson
exchanges, whereas for the heavy sector hadrons are systems of confined current quarks
interacting through gluon exchanges.

2.2.1 Goldstone-boson exchanges potential

The picture of the QCD vacuum as a dilute medium of instantons [53, 54] explains
nicely the spontaneous breaking of chiral symmetry at some momentum scale. Quarks
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interact with fermion zero modes of the individual instantons in the medium. Therefore,
the light quark propagator gets modified and quarks acquire a momentum dependent
mass, which drops to zero for momenta higher than the inverse of the average instanton
size ρ̄.

The momentum dependent mass acts as a natural cutoff of the theory. In the domain
of momenta k < 1/ρ̄, a simple Lagrangian invariant under chiral transformations can
be derived as [53, 54]

L = ψ̄ (iγµ∂µ −MUγ5)ψ, (2.31)

where Uγ5 = exp (iπaλaγ5/fπ), π
a denotes the pseudoscalar fields (~π,Ki, η8) with

i = 1, . . . , 4, λa are the SU(3) flavor matrices, fπ is the pion decay constant and
M(q2) is the constituent quark mass. An expression of the constituent quark mass can
be obtained from the theory, but we use the parametrization M(q2) = mqF (q

2) with

F (q2) =

[
Λ2

Λ2 + q2

] 1
2

, (2.32)

where Λ determines the scale at which chiral symmetry is broken. Besides the
constituent quark mass one obtains terms in which the quarks interact through
Goldstone bosons. The Lagrangian in Eq. (2.31) is invariant under chiral rotations
since the rotation of the quark fields can be compensated renaming the boson fields.
Uγ5 can be expanded in terms of boson fields as

Uγ5 = 1 +
i

fπ
γ5λaπa − 1

2f 2
π

πaπa + . . . (2.33)

The first term generates the constituent quark mass and the second one gives rise to
a one-boson exchange interaction between quarks. The main contribution of the third
term comes from the two-pion exchange which can be simulated by means of a scalar
exchange potential. Inserting Eqs. (2.32) and (2.33) in Eq. (2.31), one obtains the
simplest Lagrangian invariant under the chiral transformation SU(3)L ⊗ SU(3)R with
a scale dependent constituent quark mass, containing SU(3) scalar and pseudoscalar
potentials. The nonrelativistic reduction of this Lagrangian has been performed for
the study of nuclear forces in Refs. [55, 56]. The different terms of the potential
contain central and tensor or central and spin-orbit contributions that will be grouped.
Therefore, the chiral part of the quark-quark interaction can be expressed as follows

Vqq (~rij) = V C
qq (~rij) + V T

qq (~rij) + V SO
qq (~rij) , (2.34)

where C stands for central, T for tensor and SO for spin-orbit potentials. The central
part presents four different contributions

V C
qq (~rij) = V C

σ (~rij) + V C
π (~rij) + V C

K (~rij) + V C
η (~rij) , (2.35)
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given by

V C
σ (~rij) =− g2ch

4π

Λ2
σ

Λ2
σ −m2

σ

mσ

[
Y (mσrij)−

Λσ
mσ

Y (Λσrij)

]
,

V C
π (~rij) =

g2ch
4π

m2
π

12mimj

Λ2
π

Λ2
π −m2

π

mπ

[
Y (mπrij)−

Λ3
π

m3
π

Y (Λπrij)

]
×

× (~σi · ~σj)
3∑

a=1

(λai · λaj ),

V C
K (~rij) =

g2ch
4π

m2
K

12mimj

Λ2
K

Λ2
K −m2

K

mK

[
Y (mKrij)−

Λ3
K

m3
K

Y (ΛKrij)

]
×

× (~σi · ~σj)
7∑

a=4

(λai · λaj ),

V C
η (~rij) =

g2ch
4π

m2
η

12mimj

Λ2
η

Λ2
η −m2

η

mη

[
Y (mηrij)−

Λ3
η

m3
η

Y (Ληrij)

]
×

× (~σi · ~σj)
[
cos θp

(
λ8i · λ8j

)
− sin θp

]
,

(2.36)

where Y (x) is the standard Yukawa function defined by Y (x) = e−x/x. We consider
the physical η meson instead of the octet one and so we introduce the angle θp. The λ

a

are the SU(3) flavor Gell-Mann matrices, mi is the quark mass and mπ, mK and mη

are the masses of the SU(3) Goldstone bosons, taken at their experimental values. mσ

is determined through the PCAC relation m2
σ ≃ m2

π + 4m2
u,d [57]. Finally, the chiral

coupling constant, gch, is determined from the πNN coupling constant through

g2ch
4π

=
9

25

g2πNN
4π

m2
u,d

m2
N

, (2.37)

which assumes that flavor SU(3) is an exact symmetry only broken by the different
mass of the strange quark.

There are three different contributions to the tensor potential

V T
qq(~rij) = V T

π (~rij) + V T
K (~rij) + V T

η (~rij), (2.38)

each term given by

V T
π (~rij) =

g2ch
4π

m2
π

12mimj

Λ2
π

Λ2
π −m2

π

mπ

[
H(mπrij)−

Λ3
π

m3
π

H(Λπrij)

]
Sij

3∑

a=1

(λai · λaj ),

V T
K (~rij) =

g2ch
4π

m2
K

12mimj

Λ2
K

Λ2
K −m2

K

mK

[
H(mKrij)−

Λ3
K

m3
K

H(ΛKrij)

]
Sij

7∑

a=4

(λai · λaj ),

V T
η (~rij) =

g2ch
4π

m2
η

12mimj

Λ2
η

Λ2
η −m2

η

mη

[
H(mηrij)−

Λ3
η

m3
η

H(Ληrij)

]
Sij
[
cos θp

(
λ8i · λ8j

)
− sin θp

]
,

(2.39)

where Sij = 3(~σi · r̂ij)(~σj · r̂ij) − ~σi · ~σj is the quark tensor operator and H(x) =
(1 + 3/x+ 3/x2)Y (x).
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Finally, the spin-orbit potential only presents a contribution coming from the scalar
part of the interaction

V SO
qq (~rij) = V SO

σ (~rij) = −g
2
ch

4π

m3
σ

2mimj

Λ2
σ

Λ2
σ −m2

σ

[
G(mσrij)−

Λ3
σ

m3
σ

G(Λσrij)

]
(~L · ~S).

(2.40)
In the last equation G(x) is the function (1 + 1/x)Y (x)/x.

2.2.2 One-gluon exchange potential

Beyond the chiral symmetry breaking scale one expects the dynamics to be governed by
QCD perturbative effects. There are consequences of the gluon fluctuations around the
instanton vacuum and we take it into account through the one-gluon exchange (OGE)
potential. Following de Rújula et al. [58] the OGE is a standard color Fermi-Breit
interaction obtained from the vertex Lagrangian given by Eq. (2.9).

The nonrelativistic reduction of the OGE diagram for point-like quarks presents
an hyperfine interaction which contains a delta function in configuration space. This
contact term is normally smeared to make it nonperturbatively tractable [59]. We have
regularized it in a suitable way by replacing the Dirac delta function by a Yukawa form

δ(~rij) →
1

4πr20

e−rij/r0

rij
, (2.41)

where r0(µ) = r̂0
µnn
µij

with r̂0 as a model parameter and µij the reduced mass of quarks

with n referred to light u and d quarks. As a consequence, the central part of the OGE
reads

V C
OGE(~rij) =

1

4
αs(~λ

c
i · ~λcj)

[
1

rij
− 1

6mimj

(~σi · ~σj)
e−rij/r0(µ)

rijr
2
0(µ)

]
, (2.42)

with ~λc being the SU(3) color matrices and αs is the quark-gluon coupling constant.
The non-central terms of the OGE behave as 1/r3. Therefore, these contributions

are singulars and it is necessary to introduce phenomenological regulators to treat them
exactly, obtaining tensor and spin-orbit potentials of the form

V T
OGE(~rij) = − 1

16

αs
mimj

(~λci · ~λcj)
[
1

r3ij
− e−rij/rg(µ)

rij

(
1

r2ij
+

1

3r2g(µ)
+

1

rijrg(µ)

)]
Sij ,

V SO
OGE(~rij) =− 1

16

αs
m2
im

2
j

(~λci · ~λcj)
[
1

r3ij
− e−rij/rg(µ)

r3ij

(
1 +

rij
rg(µ)

)]
×

×
[
((mi +mj)

2 + 2mimj)(~S+ · ~L) + (m2
j −m2

i )(~S− · ~L)
]
,

(2.43)

where rg(µ) = r̂g
µnn
µij

with r̂g as a model parameter and ~S± = ~Si ± ~Sj .

The wide energy range needed to provide a consistent description of light, strange
and heavy mesons requires an effective scale dependent strong coupling constant [60–
62]. The freezing of the strong coupling constant at low energies studied in
several theoretical approaches [63, 64] has been used in different phenomenological
models [65, 66]. The momentum-dependent quark-gluon constant is frozen for each
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flavor sector that, as explained in [67], can be assimilated to the reduced mass of the
system. As a consequence, we use an effective scale dependent strong coupling constant
given by [52]

αs(µ) =
α0

ln
(
µ2+µ20
Λ2
0

) , (2.44)

where µ is the reduced mass of the quarks and α0, µ0 and Λ0 are parameters.

2.2.3 Confinement potential

Confinement is one of the crucial aspects of the strong interaction that is widely
accepted and incorporated into any QCD based model. Color charges are confined
inside hadrons. It is well known that multigluon exchanges produce an attractive
linearly rising potential proportional to the distance between quarks. This idea
has been confirmed, but not rigorously proved, by quenched lattice gauge Wilson
loop calculations for heavy valence quark systems. However, sea quarks are also
important ingredients of the strong interaction dynamics. When included in the lattice
calculations they contribute to the screening of the rising potential at low momenta
and eventually to the breaking of the quark-antiquark binding string. This fact, which
has been observed in nf = 2 lattice QCD [68], has been taken into account in our
model by including the term

V C
CON(~rij) =

[
−ac(1− e−µcrij ) + ∆

]
(~λci · ~λcj), (2.45)

where ac, µc and ∆ are parameters, ∆ is a global constant fixing the origin of
energies. At short distances this potential presents a linear behaviour with an effective
confinement strength σ = 16

3
acµc and becomes constant at large distances with a

threshold defined by Vthr =
16
3
(ac −∆).

No qq̄ bound states can be found for energies higher than the threshold. The system
suffers a transition from a color string configuration between two static color sources
into a pair of static mesons due to the breaking of the color string and the most favored
decay into hadrons.

One important question which has not been properly answered is the Lorentz
character of confinement. Analytic techniques [69] and numerical studies using lattice
QCD [70] have shown that the confining forces are spin independent apart from the
inevitable spin-orbit pseudo-force due to the Thomas precession [71]. However, there
is no a clear agreement which is the Lorentz structure of the confinement. We consider
a confinement spin-orbit contribution

V SO
CON(~rij) =− (~λci · ~λcj)

acµce
−µcrij

4m2
im

2
jrij

[
((m2

i +m2
j )(1− 2as)

+4mimj(1− as))(~S+ · ~L) + (m2
j −m2

i )(1− 2as)(~S− · ~L)
]
,

(2.46)

where as controls the mixture between the scalar and vector Lorentz structures.

2.2.4 Summary of the potential

Once perturbative (one-gluon exchange) and nonperturbative (confinement and chiral
symmetry breaking) aspects of QCD have been considered, one ends up with a quark-
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quark interaction of the form (we refer to a light quark, u or d, as n, s is used for the
strange quark and Q for the heavy quarks c and b):

Vqq =





qq = nn ⇒ VCON + VOGE + Vπ + Vσ + Vη,

qq = ns ⇒ VCON + VOGE + Vσ + VK + Vη,

qq = ss ⇒ VCON + VOGE + Vσ + Vη,

qq = nQ ⇒ VCON + VOGE,

qq = QQ ⇒ VCON + VOGE.

(2.47)

The corresponding qq̄ potential is obtained from the qq one as detailed in [72]. In
the case of VK(~rij), where G-parity is not well defined, the transformation is given by

λa1 · λa2 → λa1 · (λa2)T , which recovers the standard change of sign in the case of the
pseudoscalar exchange between two nonstrange quarks.

2.3 Solving the two-body system

The main objective of this work is the study of mesons which contain heavy quarks.
After the discovery of the first heavy-quark bound states, the ψ and Υ systems, it was
soon realized that a nonrelativistic picture seemed to hold for them. However, it is
more difficult to justify the nonrelativistic treatment in the light sector. In Ref. [73]
the results of nonrelativistic, semirelativistic and relativistic quark-quark Hamiltonians
with a QCD-inspired interactions were compared, concluding that the qq̄ spectra are
very similar when the model parameters are adjusted.

Therefore, we solve the Schrödinger equation for the relative motion of the qq̄ pair
with the potential described in Sec. 2.2. We use the Rayleigh-Ritz variational principle
which is one of the most extended tools to solve eigenvalue problems due to its simplicity
and flexibility. However, it is of great importance how to choose the basis on which to
expand the wave function.

Our choice is the Gaussian Expansion Method (GEM) which was proposed by
Kamimura in Refs. [74, 75] to carry out non adiabatic three-body calculations of muonic
molecules and muon-atomic collisions. Following Ref. [76], we employ Gaussian trial
functions whose ranges are in geometric progression. This enables the optimization
of ranges employing a small number of free parameters. Moreover, the geometric
progression is dense at short distances, so that it allows the accuracy description of
the dynamics mediated by short range potentials. The fast damping of the gaussian
tail is not a problem, since we can choose the maximal range much longer than the
hadronic size. Other feature of this basis is that most matrix elements can be computed
analytically.

2.3.1 Gaussian Expansion Method

Let us consider the two-body Schrödinger equation

[
− ~

2

2µ
∇2 + V (r)− E

]
ψlm(~r ) = 0, (2.48)
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where µ is the reduced mass and V (r) is a central potential. We expand ψlm(~r ) in
terms of a set of Gaussian basis functions with given range parameters

ψlm(~r ) =

nmax∑

n=1

cnlφ
G
nlm(~r ),

φG
nlm(~r ) = φG

nl(r)Ylm(r̂),

φG
nl(r) = Nnlr

le−νnr
2

,

Nnl =

(
2l+2(2νn)

l+ 3
2

√
π (2l + 1)!!

) 1
2

,

(2.49)

where Nnl is a normalization constant. Note that the set
{
φG
nlm;n = 1, . . . , nmax

}
of

Gaussian basis functions is a non-orthogonal set.
The set of Gaussian size parameters are in geometric progression

νn =
1

r2n
,

rn = r1a
n−1,

(2.50)

where the free parameters are {nmax, r1, rnmax} or {nmax, r1, a}. The non-orthogonal
basis functions φG

nl(r) satisfy the condition that the overlap between the nearest
neighbors, 〈φG

nl|φG
n−1l〉, is a constant independent of n, which is considered to be one of

the reasons why the expansion works well.
As we have said above, the expansion coefficients {cnl} and the eigenenergies E are

determined by Rayleigh-Ritz variational principle, which leads to a generalized matrix
eigenvalue problem

nmax∑

n′=1

[(Tnn′ + Vnn′)− ENnn′] cn′l = 0, (2.51)

the generalization for coupled channels make that the Eq. (2.51) is converted in

nmax∑

n′=1

[
(T αnn′ −ENα

nn′) cαn′l +
num. channels∑

α′=1

V αα′

nn′ cα
′

n′l = 0

]
, (2.52)

where T αn′n, Nα
n′n and V αα′

n′n are the matrix elements of the kinetic energy, the
normalization and the potential, respectively. T αn′n and Nα

n′n are diagonal whereas
the mixing between different channels is given by V αα′

n′n .

2.3.2 Complex-range Gaussian basis functions

Despite of the advantages of the expansion in terms of Gaussian basis functions, it
is difficult to reproduce highly oscillatory functions or even wave functions with some
nodes which are present in few-body systems. Therefore we use a more useful basis
functions which satisfy the above requirement, taking Gaussian functions multiplied
by cosine and sine functions

φGC
nl (r) = NGC

nl r
le−νnr

2

cos(ανnr
2),

φGS
nl (r) = NGS

nl r
le−νnr

2

sin(ανnr
2).

(2.53)
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Figure 2.3. Masses, in MeV, of the well established states in Ref. [78] and the analyzed states in Ref. [77]
for the light mesons. The left panel shows the I = 0 light mesons and the right panel shows the I = 1 light
mesons.

The Gaussian sizes, νn, are taken to form a geometric progression in the same manner
as in Eq. (2.50) and the parameter α is a free parameter in principle, but it is taken
as π/2.

The reason why the functions φGC
nl (r) and φ

GS
nl (r) are easy to be used in numerical

calculations is that they can be rewritten as

φGC
nl (r) = NGC

nl r
l e

−ηnr2 + e−η
∗
nr

2

2
n = 1, . . . , nmax, (2.54)

φGS
nl (r) = NGS

nl r
l e

−ηnr2 − e−η
∗
nr

2

2i
n = 1, . . . , nmax, (2.55)

with complex size parameters

ηn = (1 + iα)νn, η∗n = (1− iα)νn. (2.56)

Some useful formulas involving matrix elements which are calculated within GEM
in a complex range can be found in Appendix A.

2.4 Fitting the model parameters

To find new physics it is very important to test the theoretical model with as many as
possible known states. It allows us to clearly understand the strengths and weaknesses
of the model and thus to extract later reliable predictions.

We perform a study of the light meson spectrum taking into account the new
resonances collected in Ref. [77] from the Crystal Barrel and PS172 data. This study
implies a continuation of the previous work presented in Ref. [52], extending their
thorough study of mesons to the higher excited states of light mesons. This leads to a
fine tune of the model parameters, as we will see below.

The Fig. 2.3 shows the masses of all light mesons reported by the Particle Data
Group [78] up to 1.9GeV, and by Ref. [77] in which one can find resonances of light
mesons up to 2.4GeV. A more quantitative presentation of the experimental data
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and their comparison with the theoretical predictions can be found in Appendix B,
comments are also included.

An extensive spectrum of light non-strange qq̄ states up to a mass of 2.4GeV has
emerged from Crystal Barrel and PS172 data on p̄p → Resonance → A + B in 17
final states. Crystal Barrel experiment ran at LEAR (CERN). Most of the data were
taken during the last four months of LEAR operation, August-December 1996. The
corresponding p̄p mass range is from 1962 to 2409MeV. PS172 experiment ran during
1986 and extended the mass range to 1912MeV.

All these data have been reviewed with detailed comments on the status of each
resonance in Ref. [77]. The most striking feature is that all observed resonances cluster
into fairly narrow mass ranges (i) 1590 − 1700MeV, (ii) 1930 − 2100MeV and (iii)
2240 − 2340MeV. It has been interpreted as a signal of an effective chiral symmetry
restoration.

Based in that hypothesis, some authors [79–81] suggest that the dynamics of the
light mesons is different in the lowest spectrum than in the higher one. The typical
scale of chiral symmetry breaking is Λ ∼ 1GeV. Below this scale the chiral symmetry
is known to be realized non-linearly (the Nambu-Goldstone realization), but above this
scale the linear (Wigner-Weyl) realization is expected to be restored. The rationale
for that is the following: if an hadron is highly excited the typical quark momenta
are also high and therefore the quark dynamical mass becomes small, quarks decouple
with Goldstone-bosons and the chiral symmetry gets approximately restored.

If the chiral symmetry restoration is realized, hadrons are placed in chiral multiplets.
It means that for qq̄ mesons one has [79]

• Mesons with J = 0:

(1/2, 1/2)a : (I, J
PC) = (1, 0−+) ↔ (0, 0++),

(1/2, 1/2)b : (1, 0
++) ↔ (0, 0−+).

(2.57)

• Mesons with J = 2k, k = 1, 2, . . .:

(0, 0) : (0, J−−) ↔ (0, J++),

(1/2, 1/2)a : (1, J
−+) ↔ (0, J++),

(1/2, 1/2)b : (1, J
++) ↔ (0, J−+),

(0, 1)⊕ (1, 0) : (1, J++) ↔ (1, J−−).

(2.58)

• Mesons with J = 2k − 1, k = 1, 2, . . .:

(0, 0) : (0, J++) ↔ (0, J−−),

(1/2, 1/2)a : (1, J
+−) ↔ (0, J−−),

(1/2, 1/2)b : (1, J
−−) ↔ (0, J+−),

(0, 1)⊕ (1, 0) : (1, J−−) ↔ (1, J++).

(2.59)

Above, we have considered only mesons of isospin I = 0, 1 and therefore three
types of irreducible representations of the parity-chiral group exist. The parity-
chiral group is SU(2)L × SU(2)R × Ci where the group Ci has two elements, the
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Quark masses mn (MeV) 313
ms (MeV) 555
mc (MeV) 1763
mb (MeV) 5110

Goldstone bosons mπ (fm−1) 0.70
mσ (fm−1) 3.42

mK (fm−1) 2.51
mη (fm−1) 2.77

Λπ (fm−1) 4.20
Λσ (fm−1) 4.20

ΛK (fm−1) 4.21
Λη (fm−1) 5.20
g2ch/4π 0.54
θp (◦) −15

One-gluon exchange α0 2.118

Λ0 (fm−1) 0.113
µ0 (MeV) 36.976
r̂0 (fm) 0.181
r̂g (fm) 0.259

Confinement ac (MeV) 507.4

µc (fm
−1) 0.576

∆ (MeV) 184.432
as 0.81

Table 2.1. Model parameters.

identity and the inversion in three-dimensional space. This symmetry group is the
symmetry of the QCD Lagrangian neglecting quark masses. The three types of
irreducible representations specified by the isospin of the left-handed and right-handed
quarks are (IL, IR) = (0, 0), (1/2, 1/2), where there are two independent irreducible
representations (1/2, 1/2)a and (1/2, 1/2)b, and (0, 1)⊕ (1, 0).

However, the experimental data shows additional degeneracy, see Fig. 2.3. It can
be interpreted as a larger symmetry that includes chiral SU(2)L × SU(2)R and U(1)A
as subgroups, but also other mechanisms with different physics origin can explain it,
like the modification of the confinement potential due to the color screening.

We analyze the role played by the screened confining potential as a possible
explanation of the observed degeneracy. We have parametrized the behaviour of
confinement potential in Eq. (2.45). At short distances this potential presents a linear
behaviour while it becomes constant at large distances. It provides a threshold mass
characterized by

Mthr =
16

3
(ac −∆) +mq +mq̄, (2.60)

which has been fixed phenomenologically.
We have taken, as a reference, the model parameters for the quark-quark interaction

of Ref. [52] and perform a fine tune. The most important changes are the parameters of
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Light mesons Heavy-light mesons Heavy mesons
I = 1 I = 0 I = 1/2 (nc̄) (sc̄) (nb̄) (sb̄) (cc̄) (cb̄) (bb̄)

Theo. 2.35 2.83 2.59 3.80 4.04 7.15 7.39 5.25 8.60 11.94
Exp. 2.33 2.51 2.49 2.64 2.86 5.74 5.85 4.42 6.28 11.02

Table 2.2. Threshold values, in GeV, for the different quark sectors. Experimental data refer to the highest
state which is experimentally known in the corresponding sector [78]. We exclude those states which are
quoted as “needs confirmation”. The n symbol stands for u or d quark.
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Figure 2.4. The left panel shows the experimental data of I = 0 light mesons, our theoretical results are
shown in the right panel.

the confinement potential which has been tuned to obtain the experimental thresholds.
This process has been done keeping constant the product acµc to guarantee the good
description of the low lying spectrum. The resulting parameters are shown in Table 2.1
and assuming flavor independence of the confinement potential, we show the threshold
values for the different quark sectors in Table 2.2. The experimental data are the last
states appearing in the Particle Data Group [78] except those which need confirmation.
One can see that all the states are included in our theoretical thresholds. This is an
important fact which tells us that we are very close to the limit where the meson string
breaks and no more states are allowed. We are then in a critical region to understand
the properties of the confinement interaction.

In Figures 2.4 and 2.5 we compare our calculation with the light meson spectrum
with I = 0 and I = 1, respectively. One can see that the pattern of the degeneracy
is very well reproduced. The sector I = 1 is more suitable to single out the effect of
the confinement color screening because it is not coupled to the strange sector and
no suffers of the presence of glueballs. The theoretical calculation for sector I = 0
is done in coupled channel calculation where ss̄ components have been included. As
expected, the degeneracy pattern is well reproduced although the comparison with the
experimental data is worse.

It is worth to notice that the results are obtained without changes in the dynamical
quark mass. Although the chiral symmetry is still broken, in fact this symmetry
breaking is irrelevant because, as one can see in Tables 2.3 and 2.4, the contribution
of the Goldstone-bosons is almost negligible compared with that from the confinement
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Figure 2.5. The left panel shows the experimental data of I = 1 light mesons, our theoretical results are
shown in the right panel.

η0(4S) ω1/φ1(4S) η4(1G) ω4/φ4(1G)

Goldstone bosons +34.14 −37.73 −0.74 +1.94
Confinement −476.17 −685.85 −447.56 −432.39

Table 2.3. Contribution, in MeV, to the mass of the high excited states from the different potential pieces in
the I = 0 sector.

π0(4S) ρ1(4S) π4(1G) ρ4(1G)

Goldstone bosons −7.90 −1.46 +0.18 −0.64
Confinement −480.19 −393.29 −445.62 −439.42

Table 2.4. Contribution, in MeV, to the mass of the high excited states from the different potential pieces in
the I = 1 sector.

potential. Then, apparently, the effect is very similar to the decoupling of the Goldstone
bosons from the quark sector.

Although chiral symmetry restoration and our model are able to reproduce
degeneracy patterns for the high excited meson states, the physics behind the two
approaches is very different. The hypothesis that Goldstone boson decouples from
quarks is based on the assumption that increasing the excitation energy of an hadron
one also increases the typical momentum of valence quarks. So the wave function range
in coordinate space decreases as the excitation energy increases. In our approach, the
degeneracy comes about from the gradual decreases of the confinement potential slope
and so the wave function range in coordinate space increases as the excitation energy
increases.

The differences between the two models can be single out studying the leptonic
widths of the excited resonances. These are given by the Van Royen-Weisskopf formula
with the QCD correction taken into account [82]. It contains, beside some known
quantities, the wave function at the origin. Then, accurate knowledge of the leptonic
widths of high meson excitations is of especial importance because the square module
of the wave function at the origin |RnS(0)|2, proportional to Γe+e−, directly provides
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ψ(nS) ρ(nS)
2S 3S 4S 2S 3S 4S

The. 1.78 1.11 0.78 0.155 0.058 0.026
Exp. 2.33 ± 0.07 0.89 ± 0.08 0.71 ± 0.10 - - -

Table 2.5. The leptonic widths, in keV, of higher excited states of ψ and ρ mesons. Experimental data are
from Ref. [78] for ψ(2S) and from Ref. [84] for ψ(3S) and ψ(4S).

information about the mechanism which produces the degeneracy.
If Goldstone-bosons decouple from quarks the wave function in coordinate

space should decrease as the excitation energy increases and Γe+e− should increase
accordingly. In our model the behaviour of the wave function at the origin is just the
opposite and the leptonic widths will decrease as the excitation energy increases. This
behaviour is observed in the leptonic widths of high excitations in heavy quarkonia and
explained by the flattening of the confinement potential at distances r ≥ 1.2 fm [83].
Assuming flavor independence for the confinement, it should also be expected for high
excitations in light mesons. In Table 2.5 we show the agreement between our results for
the leptonic widths of charmonium and the experimental data. In Table 2.5 we give also
our predictions for high excitations of ρ meson. The measurement of these widths in
the new PANDA experiment at FAIR may give definitive arguments about the possible
effective restoration of chiral symmetry on the high spectrum of light mesons.



Chapter 3

Heavy meson spectroscopy

The discovery of charmonium and bottomonium states in 1970’s opened up the
possibility to use a nonrelativistic picture of QCD. They can indeed be classified in
terms of the quantum numbers of a nonrelativistic bound state. The spacing of the
excitations and of the fine and hyperfine splittings has a pattern similar to the ones in
positronium, a well studied QED nonrelativistic bound state.

In addition, after the discovery of the X(3872) more and more similar narrow
resonances have been discovered and confirmed at electron-positron and proton-
antiproton colliders. Some of namely XY Z mesons are in conflict with standard
quarkonium interpretations, others fit well within the expected quarkonium levels.

We use the nonrelativistic potential model described above to study the heavy quark
sector in order to establish which states can be explained as qq̄ pairs and which do not
fit in this scheme. In this chapter, we do not only study the energy spectrum but also
electromagnetic decay widths.

3.1 Charmonium

In Table 3.1 we compare the calculated spectrum with the experimental data. We
have taken into account the possible XY Z assignments predicted by our model. New
conventional states have been well established in the PDG [78] during the last years.
The hc is the 1P1 state of charmonium, singlet partner of the long-known χcJ triplet
3PJ states. The ηc(2S) is the first excitation of the pseudoscalar ground state ηc(1S)
and the Z(3930) whose assignment as the 23P2 state, χc2(2P ), seems widely accepted.

3.1.1 The ψ states

In Table 3.2 we compare the calculated spectrum of JPC = 1−− cc̄ states with the
experimental data. The difference with respect Table 3.1 is that we show in Table 3.2
all possible XY Z mesons whose quantum numbers are more likely 1−−. The masses
are taken from Ref. [78] for the well established states and from their respective original
works for XY Z mesons. As one can see, the agreement with the experimental data is
remarkable except for three states: the G(3900), X(4008) and X(4260) which do not
seem to fit in the qq̄ scheme.

The first observation of an unexpected vector charmonium-like state was made by
BaBar [89] in ISR production of X(4260) → π+π−J/ψ. Then CLEO [90] and Belle [91]
confirmed the BaBar result, but Belle also found a smaller, broader structure at
4008MeV. BaBar [92] found one more apparent enhancement, X(4360), in π+π−ψ(2S),

25
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State JPC n The. (MeV) Exp. (MeV) [78]

ηc 0−+ 1 2990 2980.3 ± 1.2
2 3643 3637 ± 4
3 4054 -

χc0 0++ 1 3452 3414.75 ± 0.31
2 3909 3915 ± 3± 2 [85]
3 4242 -

hc 1+− 1 3515 3525.42 ± 0.29
2 3956 -
3 4278 -

ψ 1−− 1 3096 3096.916 ± 0.011
2 3703 3686.093 ± 0.034
3 3796 3775.2 ± 1.7
4 4097 4039 ± 1
5 4153 4153 ± 3
6 4389 4361 ± 9± 9 [86]
7 4426 4421 ± 4

8 4614 4634+8+5
−7−8 [87]

9 4641 4664 ± 11 ± 5 [86]

χc1 1++ 1 3504 3510.66 ± 0.07
2 3947 -
3 4272 -

ηc2 2−+ 1 3812 -
2 4166 -
3 4437 -

χc2 2++ 1 3532 3556.20 ± 0.09
2 3969 3929 ± 5± 2 [88]
3 4043 -

ψ2 2−− 1 3810 -
2 4164 -
3 4436 -

Table 3.1. Masses, in MeV, of charmonium states. We compare with the well established states in Ref. [78]
and assign possible XY Z mesons.

which Belle [86] measured with somewhat larger mass and smaller width. Belle also
found a second structure near 4660MeV.

The e+e− → Λ+
c Λ

−
c cross section was measured by Belle [87] using ISR and

partial reconstruction. A clear peak is evident near the threshold. The nature of
this enhancement remains unclear. Although both mass and width of the X(4630)
are consistent, see Table 3.2, within errors with those of the X(4660), this could be
coincidence and does not exclude other interpretations.
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(nL) States The. (MeV) Exp. (MeV)

(1S) J/ψ 3096 3096.916 ± 0.011 [78]
(2S) ψ(2S) 3703 3686.09 ± 0.04 [78]
(1D) ψ(3770) 3796 3772 ± 1.1 [78]

G(3900) - 3943 ± 21 [93, 94]
X(4008) - 4008 ± 40 [91]

(3S) ψ(4040) 4097 4039 ± 1 [78]
(2D) ψ(4160) 4153 4153 ± 3 [78]

X(4260) - 4260 ± 10 [89]

(4S) ψ(4360) 4389 4355+9
−10 ± 9 [86]

(3D) ψ(4415) 4426 4421 ± 4 [78]

(5S) X(4630) 4614 4634+8+5
−7−8 [87]

(4D) X(4660) 4641 4664 ± 11± 5 [86]

Table 3.2. Masses, in MeV, of ψ states. (nL) refers to the dominant partial wave.

The DD̄ cross sections across the entire charm energy range from Belle [93] and
BaBar [94] are consistent with one another. Both observe a structure in the ISR DD̄
cross section, known as G(3900), which must be taken into account to describe both the
DD̄ cross section and R 1 in the region between ψ(3770) and ψ(4040). This structure
is qualitatively consistent with the theoretical predictions of the DD̄ cross section and
the R ratio using the Cornell model and without considering that the G(3900) is a
specific cc̄ bound state [95]. Another explanation as a hybrid meson is also possible
since different approaches of hybrid mesons predict states in this energy region.

We can assign as qq̄ structures theX(4360),X(4630) andX(4660) mesons attending
to the masses. Throughout this work we will try to explain other properties of the
XY Z assignments, as their decays, considering them as quark-antiquark pairs. For
those mesons which we suspect more complex structures than qq̄, we will give some
explanation when possible. The X(4008) resonance needs confirmation according to
Ref. [13], a reasonable explanation of the X(4260) is given below and a calculation of
hybrid mesons will be discussed in another chapter.

The knowledge of the leptonic width of higher charmonium states is important for
several reasons. First of all it allows to test the wave function at very short distances.
Moreover it can help to distinguish between conventional cc̄ mesons and multiquark
structures which have much smaller dielectron widths [96]. The leptonic widths for the
predicted states are compared in Table 3.3 with the recent data reported by the BES
Collaboration in Ref. [97] and, once again, the agreement is good.

One striking feature of our model is the new assignment of the ψ(4415). Usually
this state has been assigned as a 4S state. Our particular choice of the potential
includes the new X(4360) as a 4S state between the well established ψ(4160) and
ψ(4415) which are both predicted as D-wave states. Whether or not this assignment is
correct can be tested with the e+e− leptonic widths. From Table 3.3 one can see that
the width of the 4S state is 0.78 keV, whereas the experimental value for the ψ(4415)
is Γe+e− = 0.35 ± 0.12 keV, in excellent agreement with the result for the 3D state

1R is the ratio between the total e+e− annihilation cross section into hadrons and σ(e+e− → µ+µ−).
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(nL) State MThe. (MeV) ΓThe. (keV) ΓExp. (keV)

(1S) J/ψ 3096 3.93 5.55 ± 0.14± 0.02 [78]
(2S) ψ(2S) 3703 1.78 2.33 ± 0.07 [78]
(1D) ψ(3770) 3796 0.22 0.22 ± 0.05 [97]
(3S) ψ(4040) 4097 1.11 0.83 ± 0.20 [97]
(2D) ψ(4160) 4153 0.30 0.48 ± 0.22 [97]
(4S) X(4360) 4389 0.78 - -
(3D) ψ(4415) 4426 0.33 0.35 ± 0.12 [97]
(5S) X(4630) 4614 0.57 - -
(4D) X(4660) 4641 0.31 - -

Table 3.3. Leptonic decay widths, in keV, of ψ states.

State Mass (MeV) P3S1
P3D1

J/ψ 3096 99.959 0.041
ψ(2S) 3703 99.958 0.042
ψ(3770) 3796 0.032 99.968
ψ(4040) 4097 99.935 0.065
ψ(4160) 4153 0.060 99.940
ψ(4360) 4389 99.908 0.092
ψ(4415) 4426 0.089 99.911
ψ(4660) 4614 99.884 0.116
ψ(4660) 4641 0.114 99.886

Table 3.4. The 3S1 and 3D1 channel probability, in (%), of ψ states.

(0.33 keV). The measurement of the leptonic width for the X(4360) is very important
and would clarify the situation.

It is generally assumed that the 1−− cc̄ mesons are a mixture of 3S1 and
3D1 states

in order to reproduce the leptonic widths. The mixing angle ranges from θ = −17 [98]
to θ = +34 [99]. In our model the mixing is not fitted to the experimental data but
driven by the tensor piece of the quark-antiquark interaction. In Table 3.4 we show
the different components of these states. One can see that all are almost pure states
either 3S1 or 3D1 and we can reasonably reproduce the leptonic widths.

The study of higher multipole contributions to the radiative transitions between
spin-triplet states involves an alternative way to disentangle the mixing between S and
D-waves in 1−− cc̄ mesons. The radiative decay sequences

e+e− → ψ(2S), ψ(2S) → γ′ χ(c1,c2), χ(c1,c2) → γJ/ψ, J/ψ → e+e− or µ+µ−,
(3.1)

has been studied experimentally in Ref. [100]. The electric dipole E1 amplitudes are
dominant but higher multipole contributions are allowed.

For the χcJ (J = 1, 2) sequences, they search for two multipole amplitudes bJ=1, 2
2

and aJ=1, 2
2 , where b stands for the amplitude where χcJ is a reaction product (ψ′ →

γ′χcJ) and a stands for the amplitude where χcJ is the decay particle (χcJ → γJ/ψ).
In the case χcJ with J = 2, the process has contribution from E3 amplitude but is
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Mode ΓThe. ΓExp.

γ(γJ/ψ)χc0 0.156 0.125 ± 0.007 ± 0.013
γ(γJ/ψ)χc1 4.423 3.56 ± 0.03 ± 0.12
γ(γJ/ψ)χc2 2.099 1.95 ± 0.02 ± 0.07

Table 3.5. Branching fraction for the decay ψ(2S) → γ(γJ/ψ)χcJ
. Experimental data are from [102].

considered negligible.
Theoretically, if one defines E1, M2 and E3 to be the electric dipole, magnetic

quadrupole and electric octupole amplitudes, respectively. The amplitudes mentioned
above are given by [101]

aJ=1
2 ≡ M2√

E12 +M22
= − Eγ

4mc

(1 + κc),

aJ=2
2 ≡ M2√

E12 +M22 + E32
= − 3√

5

Eγ
4mc

(1 + κc),

bJ=1
2 ≡ M2√

E12 +M22
=

Eγ′

4mc
(1 + κc),

bJ=2
2 ≡ M2√

E12 +M22 + E32
=

3√
5

Eγ′

4mc

(1 + κc),

(3.2)

where these expressions are first order contributions in Eγ/mc or Eγ′/mc assuming that
the ψ(1S) and ψ(2S) are pure S-wave states (no mixing with D-wave states) and that
the χcJ states are pure P -wave states (no mixing with F -wave states).

We show in Fig. 3.1 the experimental data (solid circles) obtained by the CLEO
Collaboration in Ref. [100]. The rest of the data are previous to Ref. [100]. Our
theoretical estimations assuming mc = 1763MeV and κc = 0 are represented by
a vertical solid line. The same theoretical estimations considering a c-quark mass
(mc = 1.5GeV) closer to the PDG value are represented by a vertical dashed line as
given in Ref. [100]. The last experimental measurements and the theoretical estimations
agrees well. In some sense it indicates us that the mixing between S and D-waves in
the 1−− cc̄ states is small. Note that the mixture in our model is given by the tensor
piece. Its contribution is small for the 1−− channel, but also in others as the 2++

channel where the mixing is between the P and F -waves.
The mixing between L = J − 1 and L = J + 1 partial waves of a state with J 6= 0

and S = 1 is provided by the tensor term of our OGE potential. This tensor force is
small enough to have almost purely one orbital state component.

To end the above discussion, the formula for the E1 transitions, Eq. (C.2), can be
used to calculate the branching fraction of the process ψ(2S) → J/ψγγ trough γχcJ .
In Table 3.5 we compare our results with those of Ref. [102]. We reproduce not only
the tendency of the experimental data but the agreement of the absolute value is also
good.

Finally in Tables 3.6, 3.7, 3.8 and 3.9 we quote the E1 and M1 radiative transitions.
The results are in general agreement with the scarce experimental results. CLEO
has recently reported [103, 104] results on ψ(3770) → γχcJ with J = 0, 1 and upper
limit for J = 2. Also upper limits are placed on the decays ψ(4040) → γχcJ and
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Figure 3.1. Figure from Ref. [100]. Experimental values of the magnetic quadrupole amplitudes obtained by
the CLEO Collaboration and their comparison with previous experimental data and theoretical expectations.

ψ(4160) → γχcJ . Our results slightly overestimate the experimental results which may
indicate that coupled-channel corrections may be significant in this case.

The J/ψ → 3γ width

The CLEO Collaboration has recently measured the branching ratio of the J/ψ → 3γ
decay using ψ(2S) → π+π−J/ψ events acquired with the CLEO-c detector operating at
the CESR e+e− collider. A signal of 6σ significance was found with branching fraction
B3γ = (1.2 ± 0.3 ± 0.2) × 10−5 [105]. This value is almost a factor 5 below the one
expected from the J/ψ → e+e− decay ignoring QCD corrections which suggests that
these corrections can be large. Then the understanding of this disagreement is very
important because it can shed some light on the knowledge of the behavior of QCD
loop expansion when its coefficients are large.

The expression for the width of the J/ψ → 3γ can be calculated in the formalism
developed by Glover and Morgan for one boson decay to three photons [106]. The
calculation is analogous to the decay of the orthopositronium (o-Ps) to three photons
which has the same quantum numbers. This rate has been extensively studied in the
past mainly due to the discrepancies that, from time to time, appeared between the
successive improvements of the experimental data and the theoretical corrections. The
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Initial meson Final meson ΓThe. (keV) BThe. BExp.

ψ(23S1) χc0(1
3P0) 31.9 11.2 × 10−2 (9.62 ± 0.31) × 10−2

χc1(1
3P1) 35.4 12.5 × 10−2 (9.20 ± 0.40) × 10−2

χc2(1
3P2) 30.1 10.6 × 10−2 (8.74 ± 0.35) × 10−2

ψ(13D1) χc0(1
3P0) 252.3 9.6 × 10−3 (7.3± 0.9) × 10−3

χc1(1
3P1) 99.1 3.8 × 10−3 (2.9± 0.6) × 10−3

χc2(1
3P2) 3.6 1.4 × 10−4 < 9.0 × 10−4

ψ(33S1) χc0(1
3P0) 16.8 - -

χc1(1
3P1) 18.2 2.3 × 10−2 < 1.1 × 10−2

χc2(1
3P2) 14.8 1.9 × 10−4 < 1.7 × 10−2

χc0(2
3P0) 10.7 - -

χc1(2
3P1) 14.0 - -

χc2(2
3P2) 48.5 - -

ψ(23D1) χc0(1
3P0) 165.0 - -

χc1(1
3P1) 60.3 5.9 × 10−4 < 7× 10−3

χc2(1
3P2) 1.6 1.5 × 10−5 < 1.3 × 10−2

χc0(2
3P0) 144.2 - -

χc1(2
3P1) 93.5 - -

χc2(2
3P2) 6.8 - -

Table 3.6. E1 radiative transitions of ψ states. The branching fraction BThe. is calculated using the
experimental value for the total width. The experimental data are from [78].

theoretical result from o-Ps decay can be written as

Γ0 =
16

9

(π2 − 9)

m2
α3e6|φ(0)|2. (3.3)

This formula coincides with the old Ore and Powell [107] expression if one takes for
the wave function at the origin the hydrogen-like wave function value.

To obtain the J/ψ → 3γ width from Eq. (3.3) one has to use eQ = +2/3 instead of
e = −1 and multiply by a factor 3 to take into account the three quark colors, leading
to the final expression

Γ0(J/ψ → 3γ) =
4

3π

(π2 − 9)

m2
Q

α3e6Q|R1S(0)|2, (3.4)

where we have separated the radial part from the total wave function. Using the wave
function calculated by the constituent quark model we obtain B3γ = 3.4× 10−5 where
we have used the experimental value for the total width. This theoretical estimation
is almost three times the experimental result.

One-loop QCD corrections can be adapted from the expressions for o-Ps decay.
This correction has been calculated in Ref. [108] using the formalism of Ref. [106] in
the framework of the nonrelativistic QED. We show the diagrams that enter in the
one-loop correction to the decay amplitude in Fig. 3.2, where the photon which gives



32 3.1. CHARMONIUM

Initial meson Final meson ΓThe. (keV)

ψ(43S1) χc0(1
3P0) 21.6

χc1(1
3P1) 28.9

χc2(1
3P2) 29.4

χc0(2
3P0) 24.0

χc1(2
3P1) 41.8

χc2(2
3P2) 81.7

χc0(3
3P0) 27.2

χc1(3
3P1) 51.6

χc2(3
3P2) 68.4

ψ(33D1) χc0(1
3P0) 120.6

χc1(1
3P1) 43.0

χc2(1
3P2) 0.9

χc0(2
3P0) 107.2

χc1(2
3P1) 58.0

χc2(2
3P2) 2.7

χc0(3
3P0) 93.7

χc1(3
3P1) 63.1

χc2(3
3P2) 2.6

Table 3.7. E1 radiative transitions of ψ states (Continuation I).

OV IV DV SE

L A

Figure 3.2. One-loop diagrams that contribute to the decay amplitude at first order in αs.

the radiative correction has been changed by a gluon. Following [108] we refer to the
six diagrams as the outer vertex (OV), inner vertex (IV), double vertex (DV), self-
energy (SE), ladder (L), and annihilation vertex (A). The separated contributions of
each diagram can be found in [108]. Collecting all the contributions together we arrive
for the orthopositronium at

Γ = Γ0

[
1 + A

(α
π

)]
, (3.5)
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Initial meson Final meson ΓThe. (keV)

ψ(53S1) χc0(1
3P0) 19.5

χc1(1
3P1) 27.2

χc2(1
3P2) 29.4

χc0(2
3P0) 22.1

χc1(2
3P1) 39.4

χc2(2
3P2) 72.0

χc0(3
3P0) 22.4

χc1(3
3P1) 39.2

χc2(3
3P2) 47.0

χc0(4
3P0) 22.9

χc1(4
3P1) 43.0

χc2(4
3P2) 56.9

ψ(43D1) χc0(1
3P0) 100.1

χc1(1
3P1) 36.6

χc2(1
3P2) 0.7

χc0(2
3P0) 94.4

χc1(2
3P1) 50.1

χc2(2
3P2) 1.9

χc0(3
3P0) 82.6

χc1(3
3P1) 49.2

χc2(3
3P2) 1.5

χc0(4
3P0) 72.1

χc1(4
3P1) 51.2

χc2(4
3P2) 2.0

Table 3.8. E1 radiative transitions of ψ states (Continuation II).

where the best value for A is given by [108] and is A = −10.286606.
To adapt these diagrams to the QCD case one has to include a factor λc/2 in each

vertex diagram which contributes with a global factor 4/3. Furthermore, the diagram
(A) does not contribute to the QCD case due to color conservation. Summing up all
the contributions one arrives at the expression

Γ = Γ0

[
1 + AQCD

(αs
π

)]
, (3.6)

with AQCD = −12.630.
Now, using the value of the αs(m

2
c) coupling constant at the charm quark mass (αs =

0.288) the first correction to the width cancels with the zeroth order approximation
given a theoretical prediction compatible with zero.

Because of the strong cancellation between the first two terms in Eq. (3.6), the most

important contribution to the decay rate comes from the
(
αs
π

)2
term. This correction

has two different sources. The first one arises when we square the one-loop corrections
to the annihilation amplitude. The second one corresponds to the leading order two-
loop corrections. This part cannot be straightforwardly deduced from the two-loop
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Initial meson Final meson ΓThe. (keV) BThe. BExp.

ψ(13S1) ηc(1
1S0) 2.1 2.2 × 10−2 (1.7 ± 0.4) × 10−2

ψ(23S1) ηc(1
1S0) 10.8 3.8 × 10−2 (3.4 ± 0.5) × 10−3

ηc(2
1S0) 0.2 5.5 × 10−4 < 8.0 × 10−4

ψ(33S1) ηc(1
1S0) 12.2 - -

ηc(2
1S0) 2.0 - -

ηc(3
1S0) 4.6× 10−3 - -

ψ(43S1) ηc(1
1S0) 16.7 - -

ηc(2
1S0) 5.3 - -

ηc(3
1S0) 1.4 - -

ηc(4
1S0) 4.7× 10−2 - -

ψ(53S1) ηc(1
1S0) 16.7 - -

ηc(2
1S0) 6.1 - -

ηc(3
1S0) 2.3 - -

ηc(4
1S0) 0.7 - -

ηc(5
1S0) 2.3× 10−2 - -

Table 3.9. M1 radiative transitions of ψ states. The branching fraction BThe. is calculated using the
experimental value for the total width. The experimental data are from [78].

QED corrections due to the non-Abelian character of QCD. However, we can naively
estimate the first contribution as

B1,QCD =

(
AQCD

2

)2

. (3.7)

In the o-Ps case Burichenko has shown [109] that this estimate is in fact a lower
bound for the contribution under consideration. Thus we estimate the J/ψ → 3γ decay
rate as

Γ(J/ψ → 3γ) = 3.17× 10−3

[
1− 12.630

(αs
π

)
+ 39.879

(αs
π

)2]
, (3.8)

expressed in keV. With this new correction the theoretical value is now B3γ = 0.6×10−5

lower than the experimental data but near the experimental error bar.
This result shows the importance of the high order corrections in this particular

decay. The leading order of the two-loop corrections, which are almost of the same
size as the one coming from the square of one-loop corrections in the orthopositronium
decay [110] should contribute to obtain more precise results.

Non-resonant explanation for the X(4260) structure

The X(4260) JPC = 1−− charmonium enhancement was discovered in π+π−J/ψ by
the BaBar Collaboration [89]. It was later confirmed and also seen in π0π0J/ψ as well
as K+K−J/ψ by CLEO [104], and finally by Belle in π+π−J/ψ [91].
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Figure 3.3. A stepwise study of how the presumed X(4260) signal in e+e− → π+π−J/ψ [89] is depleted by
OZI-allowed processes.

The experimental observation of the completely unexpected X(4260) resonance
has stimulated extensive interest among theorists and experimentalists. In the past
years, different theoretical interpretations were proposed to understand its underlying
structure, which can be categorized in two groups, i.e. an exotic state and a
conventional charmonium. Although there already exist many theoretical explanations,
we cannot give a definite solution. This has sparked our interest in further investigating
X(4260) under a framework different from these existing theoretical explanations.

In Ref. [112] Eef van Beveren and George Rupp, with my collaboration, discuss
the shape of the X(4260) observed in the Okubo-Zweig-Iizuka (OZI)-forbidden process
e+e− → π+π−J/ψ, in particular, at and near vector charmonium resonances as well
as open-charm threshold enhancements. The model used differs from that presented
in this work and so the predicted masses for charmonium resonances are also slightly
different. The reader is referred to [112] and references therein for further details.

The most interesting and puzzling aspect of all experimental data related with
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Figure 3.4. BaBar data for e+e− → D∗D̄∗ [111], (•), and the missing signal in e+e− → π+π−J/ψ [89], (�),
due to OZI-allowed decay processes as shown in panel (12) of Fig. 3.3. The annotations at the vertical axis
on the left-hand side refer to the data of Ref. [111], while those on the right-hand side concern the data of
Ref. [89]. The missing signal is adjusted in magnitude so as to be compared with the e+e− → D∗D̄∗ data.

the X(4260) resonance, in particular, the initial-state radiation events for e+e− →
γISRπ

+π−J/ψ collected by BaBar detector in the invariant-mass spectrum of π+π−J/ψ,
is the depletion of the signal exactly at the mass of the ψ(4415) resonance. Our
interpretation of the enhancement at X(4260) observed in e+e− → π+π−J/ψ is that
near a cc̄ resonance its decay into open-charm mesons dominates and hence depletes the
π+π−J/ψ signal. Actually, panel (9) of Fig. 3.3 shows the lack of signal just above all
open-charm thresholds and also at the vector charmonium resonances in the relevant
invariant-mass region.

The original signal (panel (1) of Fig. 3.3) from which we have eliminated in a
stepwise fashion the depletions due to the cc̄ resonances and the open-charm thresholds
(remaining panels in Fig. 3.3) is the very broad X(4260) structure. It does not seem
to classify itself as a 1−− cc̄ resonance rather as a non-resonant structure.

In order to judge whether our presumed shape of the X(4260) enhancement makes
any sense, we compare it to production data for open-charm pairs. To that end,
in Fig. 3.4 we depict, in one and the same figure, BaBar production data [111] for
the open-charm reaction e+e− → D∗D̄∗ (•), as well as the differences (�) between
the presumed shape of the X(4260) enhancement and the experimental data, also by
BaBar [89], for e+e− → π+π−J/ψ. We have indicated in Fig. 3.4 how the magnitudes
of the two signals are adjusted, due to different experimental efficiencies for the two
processes, in order to be comparable. As a matter of fact, close to the D∗D̄∗ threshold
(at 4.02GeV) we cannot really compare the two data sets, because the phase space
factors of π+π−J/ψ and D∗D̄∗ are very different at that energy. However, from roughly
4.2GeV upwards we may to some extent ignore phase space effects.

One observes in Fig. 3.4 that indeed the OZI-allowed signal of e+e− → D∗D̄∗

is in very good agreement with the signal stemming from the missing signal in
e+e− → π+π−J/ψ reaction, both sharing in detail their maxima and minima as a
function of the invariant mass.
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3.1.2 The ηc states

Here we discuss the 1S0 singlet cc̄ states. The ηc(1S) is the lowest state of charmonium.
The model predicts a mass of 2990MeV in good agreement with the experimental one.
The splitting between 11S0 and 13S1 is given by the Dirac delta term of the OGE
potential. This splitting is measured experimentally to be 116.6 ± 1.2MeV which is
in reasonable agreement with our prediction of 106MeV. The ηc(1S) decays only into
mesons via weak interaction or annihilates into two photons due to its even C-parity.
The decay of ηc into two photons is given by the wave function at the origin and our
prediction is 7.77 × 10−4 for its branching fraction. It is 12 times larger than the
experimental value, (6.3 ± 2.9) × 10−5. Theoretically one can suppose that the wave
function at the origin of 11S0 and 13S1 is the same and predicts the ratio between
11S0 → 2γ and J/ψ → e+e− decay rates where the value of the wave function at the
origin cancels. The theoretical ratio obtained is 1.6 with αs ∼ 0.3 and the experimental
one is 1.21± 0.22 [78]. This indicates that ηc and J/ψ may have a similar value of the
wave function at the origin. It is not the case in our model because the range of the ηc
wave function is small and it peaks up its value at the origin, increasing the theoretical
values of annihilation rates.

The search for a reproducible ηc(2S) signal has a long history. Recently, Belle [25]
found a signal in B → Kηc(2S) in the exclusive ηc(2S) → K0

SK
−π+ decay mode

(a favorite all-charged final state for ηc(1S)), at 3654 ± 6 ± 8MeV. Since then,
measurements of ηc(2S) in that mass region have been reported by BaBar [26],
CLEO [27], and Belle [113] in γγ-fusion to KK̄π final states and by BaBar [114]
and Belle [115] in double charmonium production.

Our predicted mass for the ηc(2S) is shown in Table 3.1 as 3643MeV. It is in very
good agreement with the experimental data. The updated ratio into two photons of
the ηc(2S) is < 5 × 10−4 [78]. Our result is 1.28 × 10−3, 2.5 times larger than the
experimental upper bound. As one can see, the effect of the high value at the origin
for the wave function is reduced as we go up in the spectrum.

The ηc(3S) is the first state which can decay into open-charm mesons, being its
mass 4054MeV. We will study later the strong decays into open-charm mesons. We
also calculate the partial width of the ηc(3S) into two photons and our prediction is
17.0 keV.

For completeness, we give the decay rates for different E1 and M1 transitions of the
n1S0 states in Table 3.10.

3.1.3 The hc states

Two experiments reported the observation of the hc(1P ) in 2005. CLEO [116, 117]
obtained a 6σ statistical significance in the isospin-forbidden decay chain e+e− →
ψ(2S) → π0hc, hc → γηc(1S). E835 [118] found a 3σ evidence in pp̄ → hc,
hc → γηc(1S), ηc(1S) → γγ.

The precision measurement of its mass was reported by CLEO in 2008 [119],
3525.28 ± 0.19 ± 0.12MeV. Later, BES III [120] has confirmed this with a mass of
3525.40± 0.13± 0.18MeV. The measurement of the hc mass is important since lattice
data show a vanishing long-range component of the spin-spin potential. Thus, this part
of the potential appears to be entirely dominated by its short-range, delta-like term,
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Initial meson Final meson ΓThe. (keV)

ηc(2
1S0) hc(1

1P1) 42.41

ψ(13S1) 3.90

ηc(3
1S0) hc(1

1P1) 9.12
hc(2

1P1) 67.21

ψ(13S1) 4.16
ψ(23S1) 1.02

Table 3.10. E1 and M1 radiative transitions of ηc states.

n m(hc) (MeV) 〈m(n3PJ )〉The. (MeV) 〈m(n3PJ )〉Exp. (MeV)

1 3515 3513 3525.30 ± 0.20
2 3956 3955 -
3 4278 4278 -

Table 3.11. The theoretical masses, in MeV, of the ground state and the first two excitations of hc, compared
with the spin-averaged centroid, in MeV, of the corresponding triplet P -wave states. We compare with the
experimental data [78].

suggesting that the 1P1 should be close to the center-of-gravity of the 3PJ system

〈m(13PJ)〉 ≡
mχc0 + 3mχc1 + 5mχc2

9
. (3.9)

This makes the hyperfine mass splitting, ∆mhf [hc(1P )] = 〈m(13PJ)〉 −m[hc(1P )],
an important measurement of the spin-spin interaction. The centroid of the 13PJ
states is known to be [78] 3525.30 ± 0.04MeV and then the hyperfine splitting is
+0.02± 0.23MeV from CLEO and −0.10± 0.22MeV from BES III.

Table 3.1 shows the masses for the three excitations of the singlet 1P1 and the
triplet 3PJ mesons. In Table 3.11 we show the comparison between the centroid of 3PJ
states and the corresponding hc mass for the ground state and the first two excitations,
showing that our spin-spin interaction is negligible for these channels and it is in perfect
agreement with the lattice expectations and the experimental measurements for the
ground state.

Focusing our interest on hc we have calculated other properties of that state.
Table 3.12 shows the E1 and M1 radiative decays into those states which are allowed by
phase space requirements. These numerical results can be useful for future experimental
searches.

The decay chain ψ(2S) → π0hc(1P ), hc(1P ) → γηc(1S) was first observed by
CLEO [117, 119] and later confirmed with higher statistics by BESIII [120]. BESIII has
also measured B(ψ(2S) → π0hc(1P )) allowing the extraction of B(hc(1P ) → γηc(1S)).
This paper also gives the total width of hc(1P ) and it allows us to calculate the
theoretical estimation of the hc(1P ) → γηc(1S) branching fraction. It is in good
agreement with the experimental data, as shown in Table. 3.12. Other M1 radiative
decays appear very small.
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Initial meson Final meson ΓThe. (keV) ΓExp. (keV)

hc(1
1P1) ηc(1

1S0) 353.41 (394.20 ± 294.40) [120]

hc(2
1P1) ηc(1

1S0) 175.42 -
ηc(2

1S0) 197.35 -
ηc2(1

1D2) 53.64 -

χc0(1
3P0) 1.20 -

χc1(1
3P1) 0.39 -

χc2(1
3P2) 0.010 -

hc(3
1P1) ηc(1

1S0) 115.62
ηc(2

1S0) 139.19 -
ηc(3

1S0) 144.34 -
ηc2(1

1D2) 25.80 -
ηc2(2

1D2) 65.46 -

χc0(1
3P0) 1.24 -

χc1(1
3P1) 0.48 -

χc2(1
3P2) 0.02 -

χc0(2
3P0) 0.50 -

χc1(2
3P1) 0.26 -

χc2(2
3P2) 0.02 -

Table 3.12. E1 and M1 radiative transitions of hc states.

3.1.4 The χcJ states

Although they cannot be produced directly in e+e− collisions, radiative decays of the
ψ(2S) into χcJ states occur with a branching ratio of about 27% [78] and provide large
χcJ samples that have proven to be a very clean environment for studies of the χcJ
states. According with Table 3.1 the long known 13PJ states are in agreement with
the model predictions.

The mean 2P multiplet mass is predicted to be near 3.95GeV. Although no 2P
cc̄ state has been clearly seen experimentally, there are reports from the different
Collaborations which claim enhancements in that energy region. We have the X(3872),
X(3915), Y (3940), X(3940) and Z(3930).

The X(3872) is one of the most studied and well established of those states. It was
first discovered by the Belle Collaboration in the J/ψππ invariant mass spectrum of
the decay B+ → K+π+π−J/ψ [32]. Its existence was soon confirmed by BaBar [121],
CDF [33] and D0 [122]. The world average mass isMX = 3871.2±0.5MeV and its width
ΓX < 2.3MeV. The measurements of the X(3872) → γJ/ψ decay [123, 124] implies
an even C-parity. Moreover, the angular correlation between final state particles in
the X(3872) → π+π−J/ψ decay measured by Belle [123] and CDF [125] indicates that
the most likely quantum numbers should be JPC = 1++ but cannot totally exclude the
JPC = 2−+ combination.

The X(3872) mass is difficult to reproduce by the standard quark models, see
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Initial meson Final meson ΓThe. (keV) ΓExp. (keV)

χc0(1
3P0) ψ(13S1) 127.18 121.80 ± 12.50

χc0(2
3P0) ψ(13S1) 32.35 -

ψ(23S1) 150.56 -
ψ(13D1) 50.50 -

hc(1
1P1) 0.35 -

χc0(3
3P0) ψ(13S1) 12.43 -

ψ(23S1) 52.96 -
ψ(13D1) 14.98 -
ψ(33S1) 221.34 -
ψ(23D1) 36.68 -

hc(1
1P1) 0.39 -

hc(2
1P1) 0.17 -

Table 3.13. E1 and M1 radiative transitions of χc0 states. The experimental data are from [78].

Table 3.1. Moreover no four-quark bound state configurations have been found in this
mass region [126, 127]. The X(3872) mass is extremely close to the D0D∗0 threshold so
it appears as a natural candidate to an even C-parity D0D∗0 molecule. This structure
will also explain the large isospin violation. The molecular interpretation runs into
trouble when it tries to explain the high γψ′ decay rate. This puzzling situation
suggests for the X(3872) state a combination of a 2P cc̄ state and a weakly-bound
D0D∗0 molecule. In Ref. [128] we have performed a coupled channel calculation of the
1++ cc̄ sector including qq̄ and qq̄qq̄ configurations. Two and four quark configurations
are coupled using the 3P0 model which will be introduced in the following Chapter.
The elusive X(3872) meson appears as a new state with a high probability for the DD∗

molecular component. The original cc̄(23P1) state acquires a sizable DD∗ component
and can be identified with the X(3940).

The Y (3940) → ωJ/ψ enhancement was initially found by Belle [129] in B+ →
K+Y (3940) decays. It was confirmed by BaBar [130] with more statistics, albeit with
somewhat smaller mass. But Belle [85] also found a statistically compelling resonant
structure X(3915) in γγ fusion decaying to ωJ/ψ. It shares the same production and
decay signature as that of BaBar’s Y (3940), which has mass and width consistent with
the X(3915). An interpretation of these two states as the same appears as a widely
accepted idea and the name which is conserved is X(3915). We only know at the
moment that this state has an even C-parity. If X(3915) was a cc̄ state, the most
probable quantum numbers would be 0++. The mass predicted for the 23P0 is 3909, in
very good agreement with the experimental measurement. One can find in Table 3.13
its E1 and M1 radiative decays.

In 2005 Belle [88] observed an enhancement in the DD̄ mass spectrum from
e+e− → e+e−DD̄ events with a statistical significance of 5.3σ. It was initially dubbed
the Z(3930), but since then it has been widely (if not universally) accepted as the
χc2(2P ). There is some Lattice calculations [131] which suggest that the χc2(2P ) and
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Initial meson Final meson ΓThe. (keV) ΓExp. (keV)

χc1(1
3P1) ψ(13S1) 264.40 302.72 ± 21.68

χc1(2
3P1) ψ(13S1) 94.06 -

ψ(23S1) 194.94 -
ψ(13D1) 22.60 -
ψ2(1

3D2) 36.55 -

hc(1
1P1) 0.04 -

χc1(3
3P1) ψ(13S1) 53.63 -

ψ(23S1) 102.26 -
ψ(13D1) 9.48 -
ψ2(1

3D2) 16.83 -
ψ(33S1) 241.72 -
ψ(23D1) 19.26 -
ψ2(2

3D2) 44.86 -

hc(1
1P1) 0.06 -

hc(2
1P1) 0.04 -

χc2(1
3P2) ψ(13S1) 323.26 380.25 ± 29.77

χc2(2
3P2) ψ(13S1) 130.52 -

ψ(23S1) 212.28 -
ψ(13D1) 0.83 -
ψ2(1

3D2) 9.39 -

hc(1
1P1) 0.52 -

χc2(1
3F2) ψ(13D1) 345.08 -

ψ2(1
3D2) 45.76 -

Table 3.14. E1 and M1 radiative transitions of χc1 and χc2 states. The experimental data are from [78].

the 13F2 state could be quite close in mass, so that perhaps the Z(3930) is not the 23P2

but rather the 13F2. Our constituent quark model predicts a mass for the 23P2 and
13F2 of 3969MeV and 4043MeV, respectively. Therefore the mass splitting is 74MeV,
so we do not predict states nearby degenerated and assign the Z(3930) as the 23P2

state.
The next states in mass for the χcJ mesons are 33P0, 3

3P1 and 13F2. The 3P states
have an expected mean multiplet mass of about 4.3GeV according with our model.

All E1 and M1 radiative decays of the states commented above as a cc̄ meson can
be found in Tables 3.13 and 3.14.

3.1.5 D-wave states with J = 2

Since the 13D2 and 11D2 states do not have allowed open-flavor decay modes, these
states are difficult to observe. One possibility is that the 13D2 may be found in E1
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Initial meson Final meson ΓCQM (keV)

ηc2(1
1D2) hc(1

1P1) 276.95

ηc2(2
1D2) hc(1

1P1) 114.66
hc(2

1P1) 211.78

ηc2(3
1D2) hc(1

1P1) 69.34
hc(2

1P1) 124.56
hc(3

1P1) 155.78

Table 3.15. E1 radiative transitions of ηc2 states.

Initial meson Final meson ΓCQM (keV)

ψ2(1
3D2) χc1(1

3P1) 224.10
χc2(1

3P2) 53.74

ψ2(2
3D2) χc1(1

3P1) 95.44
χc2(1

3P2) 19.92
χc1(2

3P1) 164.35
χc2(2

3P2) 47.92
χc2(1

3F2) 3.88

ψ2(3
3D2) χc1(1

3P1) 58.17
χc2(1

3P2) 11.42
χc1(2

3P1) 99.61
χc2(2

3P2) 25.00
χc1(3

3P1) 120.52
χc2(1

3F2) 1.96

Table 3.16. E1 radiative transitions of ψ2 states.

transitions from the 23P2 state since this has been recently well established in the
PDG and its production comes from γγ fusion. However, it appears difficult to get a
signal of 11D2 because this state need parent states which have not been seen at the
moment. Tables 3.15 and 3.16 show the E1 radiative decays which can be useful to the
experimentalists for future searches.

3.2 Charmed and charmed-strange mesons

The spectra of charmed and charmed-strange mesons contain a number of long known
and well established states [78], all of them are low-lying states. The high excited states
have been difficult to find due to the poor statistics and their relatively large widths.

We find as well established states in the charmed sector, the S-wave states of
quantum numbers JP = 0− and 1− which are the D and D∗ mesons, respectively. Also
the P -wave states with quantum numbers 0+ (D∗

0(2400)), 1
+ (D1(2420) and D1(2430))

and 2+ (D∗
2(2460)) are given in Ref. [78]. In addition, the PDG lists the D∗(2640)
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meson seen in Z-decays [132] which lacks confirmation.

In the case of the charmed-strange sector the scheme is very similar, the S-wave
states of quantum numbers JP = 0− and 1− are the Ds and D

∗
s , and the P -wave states

are D∗
s0(2317), Ds1(2460), Ds1(2536) and D

∗
s2(2573) with quantum numbers 0+, 1+, 1+

and 2+, respectively.

However, in the last years several new resonances have been observed and their
quantum numbers are a matter of active discussion.

The BaBar Collaboration have performed a study of the D+π−, D0π+ and D∗+π−

systems in inclusive e+e− → cc̄ reactions to find new excited D mesons [133]. The
D(2550), D∗(2600), DJ(2750) and D

∗
J(2760) mesons have been observed.

The D(2550) is considered the singlet 21S0 state due to its helicity-angle
distribution [133]. By the same reasoning, the resonance D∗(2600) is consistent with
the excited 23S1 state. The D∗

J(2760) signal observed in D+π− is very close in mass
to the signal DJ(2750) observed in D∗+π−. The quantum numbers of the resonances
DJ(2750) and D

∗
J(2760) are not clear but the 2− and 3− possibilities are given as the

most probables.

In addition there are a number ofDs states which have been observed more recently.
These are the D∗

s1(2710), observed by both BaBar [134, 135] and Belle [136], the
D∗
sJ(2860) [134, 135], the DsJ(3040) [135] and an unconfirmed state previously observed

by SELEX [137], the DsJ(2632). While the D∗
s1(2710) is commonly believed to have

quantum numbers JP = 1−, there are several possibilities for the other states which
are not ruled out by experiment. The D∗

sJ(2860) is most often identified with a 3−

state, while some still argue the possibility of a 0+ identification. The DsJ(3040) is
commonly interpreted as either 1+ or 2− state.

Table 3.17 shows the current status of charmed and charmed-strange mesons with
some of their properties. The model prediction in both sectors is shown in Table 3.18
up to J = 3 and for the first four excitations.

A simple analysis about the properties of hadrons containing a single heavy quark
Q = c, b can be carried out in the mQ → ∞ limit. In such a limit, the heavy quark
acts as a static color source for the rest of the hadron, its spin sQ is decoupled from
the total angular momentum of the light degrees of freedom jq, and they are separately
conserved. Hadrons can be classified according to the values of jq and of the total

spin ~J = ~jq + ~sQ. In particular, heavy mesons can be organized in doublets, each one
corresponding to a particular value of jq and parity. The members of each doublet
differ for the orientation of sQ with respect to jq and, in the heavy quark limit, are
degenerated. Mass degeneracy is broken at order 1/mQ.

For Qq̄ states, one can write ~jq = ~sq + ~l, where sq is the light antiquark spin
and l is the orbital angular momentum of the light degrees of freedom relative to the
heavy quark. The lowest lying Qq̄ mesons correspond to l = 0 (S-wave states of

the quark model) with jPq = 1
2

−
. This doublet comprises two states with spin-parity

JP = (0−, 1−). For l = 1 (P -wave states of the quark model), it could be either jPq = 1
2

+

or jPq = 3
2

+
, the two corresponding doublets having JP = (0+, 1+) and JP = (1+, 2+).

The mesons with l = 2 (D-wave states) are collected either in the jPq = 3
2

−
doublet,

consisting of states with JP = (1−, 2−), or in the jPq = 5
2

−
with JP = (2−, 3−), and so

on.
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Meson JP Mass (MeV) Width (MeV) Seen in

D0 0− 1864.91 ± 0.17 1.60 × 10−9 K−X and K̄0X +K0X
D± 0− 1869.5 ± 0.4 6.33 × 10−10 K−X and K̄0X +K0X

D∗0 1− 2006.97 ± 0.16 < 2.1 D0π0 and D0γ
D∗± 1− 2010.25 ± 0.14 96± 4± 22 keV D0π+, D+π0 and D+γ

D∗0
0 0+ 2318 ± 29 267 ± 40 D+π−

D∗±
0 0+ 2403 ± 14± 35 283 ± 24± 34 D0π+

D1(2420)
0 1+ 2422.3 ± 1.3 20.4 ± 1.7 D∗+π−, D0π+π−, D∗+

0 π−

D1(2420)
± 1+ 2423.4 ± 3.1 25± 6 D∗0π+, D+π+π−, D∗0

0 π
+

D1(2430)
0 1+ 2427 ± 26± 25 384+107

−75 ± 74 D∗+π−

D∗
2(2460)

± 2+ 2460.1+2.6
−3.5 37± 6 D0π+ and D∗0π+

D∗
2(2460)

0 2+ 2460.9 ± 1.3 49.0 ± 1.4 D+π− and D∗+π−

D(2550)0 0− 2539.4 ± 4.5± 6.8 130 ± 12± 13 D∗π
D∗(2600)0 1− 2608.7 ± 2.4± 2.5 93± 6± 13 Dπ/D∗π
DJ(2750)

0 2−, 3− 2752.4 ± 1.7± 2.7 71± 6± 11 D∗π
D∗
J(2760)

0 2−, 3− 2763.3 ± 2.3± 2.3 60.9 ± 5.1± 3.6 Dπ

Meson JP Mass (MeV) Width (MeV) Seen in

D±
s 0− 1969.0 ± 1.4 - K∗K̄∗

D∗±
s 1− 2112.3 ± 0.5 < 1.9 D+

s γ
D∗
s0(2317)

± 0+ 2318.0 ± 1.0 < 3.8 D+
s π

0

Ds1(2460)
± 1+ 2459.6 ± 0.9 < 3.5 D∗+

s π0

Ds1(2536)
± 1+ 2535.12 ± 0.25 < 2.3 D∗K

D∗
s2(2573)

± 2+ 2572.6 ± 0.9 20± 5 D0K+

D∗
s1(2710)

± 1− 2710 ± 2+12
−7 149 ± 7+39

−52 B+ → D̄0Ds1 → D̄0D0K+

D∗
sJ(2860)

± 3−, 0+ 2862 ± 2+5
−2 48± 3± 6 DK

DsJ(3040)
± 1+, 2− 3044 ± 8+30

−5 239 ± 35+46
−42 D∗K

Table 3.17. Charmed and charmed-strange mesons well established in PDG [78] and the latest experimental
data which have been taken from Refs. [133] (charmed mesons) and [135] (charmed-strange mesons).

The two states D and D∗ (Ds and D
∗
s) can be identified with the members of the

lowest lying jPq = 1
2

−
doublet. Our mass prediction is in good agreement with the

experimental measurements in both charmed and charmed-strange sectors.

In the infinite heavy quark mass limit the strong decays of the DJ (jq = 3/2)
proceed only through D-waves, while the DJ (jq = 1/2) decays happen only through
S-waves [138]. The D-wave decay is suppressed by the barrier factor which behaves as
q2L+1 where q is the relative momentum of the two decaying mesons. Therefore, the
states decaying through D-waves are expected to be narrower than those decaying via
S-waves. Our assignment in Table 3.18 for the 2+ state and one of the low lying 1+

states corresponding to the doublet jPq = 3
2

+
follows the reasoning above and so the 1+

states which belong to that doublet are the assignments D1(2420) and Ds1(2536).



CHAPTER 3. HEAVY MESON SPECTROSCOPY 45

Charmed mesons Charmed-strange mesons
JP n Mass (MeV) Assignment Mass (MeV) Assignment

0− 1 1896 D 1984 Ds

2 2695 D(2550) 2729
3 3154 3178
4 3448 3487

0+ 1 2516 D∗
0(2400) 2510 D∗

s0(2317)
2 3033 3025
3 3366 3376
4 3582 3625

1+ 1 2466 D1(2420) 2554 Ds1(2536)
2 2596 D1(2430) 2593 Ds1(2460)
3 3008 3056 DsJ(3040)
4 3079 3077 DsJ(3040)

1− 1 2017 D∗ 2110 D∗
s

2 2756 D∗(2600) 2797 D∗
s1(2710)

3 2935 2915 D∗
sJ(2860)

4 3193 3224

2− 1 2812 DJ(2750) 2886
2 2973 2948
3 3227 3278
4 3323 3317

2+ 1 2513 D∗
2(2460) 2591 D∗

s2(2573)
2 3037 3081
3 3220 3196
4 3372 3417

3+ 1 3090 3151
2 3244 3216
3 3409 3464
4 3503 3507

3− 1 2847 D∗
J(2760) 2911 D∗

sJ(2860)
2 3249 3296
3 3443 3428
4 3511 3569

Table 3.18. Masses, in MeV, of charmed and charmed-strange mesons. We show our assignment for the new
mesons.

We cannot explain the mass of the doublet jPq = 1
2

+
corresponding to the ground

state of the 0+ meson and the remainder of the 1+ mesons. Lattice calculations
of charmed and charmed-strange mesons present the same features as those of the
phenomenological models (for a review of that results one can read Ref. [139]). We
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will study the inclusion of one-loop corrections to the Fermi-Breit spin dependent
OGE potential. These terms improve the agreement for the 0+ state, we postpone
this discussion for a later Section. It is also important for the states which belong to
the doublet jPq = 1

2

+
, and in particular for the charmed-strange sector, the coupling

between qq̄ and non-qq̄ structures in the 1+ channel, this discussion is left over for a
later Section.

Concerning the new discovered mesons, the assignment is not justified if one attends
only to the masses, see Table 3.18. This has been done following their strong decays
which will be studied later.

3.3 Bottomonium

The bound states of the bb̄ system are the heaviest and most compact bound states
of a quark and an antiquark in nature. They were discovered as spin triplet states
called Υ(1S), Υ(2S) and Υ(3S) by the E288 Collaboration at Fermilab in 1977 in
proton scattering on Cu and Pb targets studying muon pairs in a regime of invariant
masses larger than 5GeV [5, 141]. Later, they were better resolved and studied at
various e+e− storage rings. Six triplet-P states, χb(2PJ) and χb(1PJ) with J = 0, 1, 2,
were discovered in radiative decays of the Υ(3S) and Υ(2S) in 1982 [142, 143] and
1983 [144, 145], respectively.

Despite such early measurements during the next thirty years there were no new
contributions to the spectrum of bottomonium. This was largely because the B-
factories were not usually considered ideal facilities for the study of the bottomonium
spectrum since their energy was tuned to the peak of the Υ(4S) resonance, which
decays in almost 100% of cases to a BB̄ pair. However, during the last years both
BaBar and Belle Collaborations have reported data samples at various energies in the
bottomonium region that made possible discoveries like the ηb [146], and the hb(1P )
and hb(2P ) [140].

The world average masses reported in Ref. [78] and our model predictions are
collected in Table 3.19. In general the experimental data and our theoretical results
are in good agreement.

3.3.1 The Υ states

The predicted masses of the narrow Υ(1S), Υ(2S) and Υ(3S) resonances are in
reasonable agreement with the values from PDG. They are below the open-bottom
threshold (10.56GeV) and thus the electromagnetic transitions involve an important
contribution to the total decay width. Table 3.20 shows the E1 and M1 electromagnetic
transitions of Υ(1S), Υ(2S) and Υ(3S) states, the predictions agree with the
experimental data. As expected the M1 radiative decays for bb̄ mesons are very small.

The current generation of B-factories have scanned the energy range above open-
bottom threshold. BaBar [148] performed a comprehensive scan between 10.54 and
11.2GeV, followed by an eight-point scan in the proximity of the Υ(6S) peak.
Belle [149] acquired nine points over 10.80 − 11.02GeV, as well as spread over seven
additional points more focused on the Υ(5S) peak. Both scans suggest that the
simple Breit-Wigner parametrization, previously used to model the peaks observed
in the CLEO [150] and CUSB [151] scans, is not good enough for the description
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State JPC n The. (MeV) Exp. (MeV) [78]

ηb 0−+ 1 9455 9390.9 ± 2.8
2 9990 -
3 10330 -

χb0 0++ 1 9855 9859.44 ± 0.42 ± 0.31
2 10221 10232.5 ± 0.4 ± 0.5
3 10500 -

hb 1+− 1 9879 9898.25 ± 1.06+1.03
−1.07 [140]

2 10240 10259.76 ± 0.64+1.43
−1.03 [140]

3 10516 -

Υ 1−− 1 9502 9460.30 ± 0.26
2 10015 10023.26 ± 0.31
3 10117 -
4 10349 10355.2 ± 0.5
5 10414 -
6 10607 10579.4 ± 1.2
7 10653 -
8 10818 10865 ± 8
9 10853 -
10 10995 11019 ± 8
11 11023 -

χb1 1++ 1 9874 9892.78 ± 0.26 ± 0.31
2 10236 10255.46 ± 0.22 ± 0.50
3 10513 -

ηb2 2−+ 1 10123 -
2 10419 -
3 10658 -

χb2 2++ 1 9886 9912.21 ± 0.26 ± 0.31
2 10246 10268.65 ± 0.22 ± 0.50
3 10315 -
4 10521 -
5 10569 -

Υ2 2−− 1 10122 10163.7 ± 1.4
2 10418 -
3 10657 -

Table 3.19. Masses, in MeV, of bottomonium states. We compare with the well established states in Ref. [78].

of the complex dynamics in the proximity of the B(∗)B̄(∗) and B
(∗)
s B̄s

(∗)
thresholds.

The new data points on Rb = σ(bb̄)/σ(µµ) are better modeled assuming a flat bb̄
continuum contribution which interferes constructively with the 5S and 6S Breit-
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Initial meson Final meson ΓThe. (keV) BThe. BExp.

Υ(1S) ηb(1S) 0.014 2.59 × 10−4 -

Υ(2S) χb0(1P ) 1.09 3.41 × 10−2 (3.8± 0.4) × 10−2

χb1(1P ) 1.84 5.75 × 10−2 (6.9± 0.4) × 10−2

χb2(1P ) 2.08 6.50 × 10−2 (7.15 ± 0.35) × 10−2

ηb(1S) 0.059 1.85 × 10−3 (1.1± 0.4+0.7
−0.5)× 10−3 [147]

ηb(2S) 0.0015 4.69 × 10−5 -

Υ(3S) χb0(1P ) 0.15 7.38 × 10−3 (3.0± 1.1) × 10−3

χb1(1P ) 0.16 7.87 × 10−3 < 1.7× 10−3

χb2(1P ) 0.08 3.94 × 10−3 < 19.0 × 10−3

χb0(2P ) 1.21 5.95 × 10−2 (5.9± 0.6) × 10−2

χb1(2P ) 2.13 10.48 × 10−2 (12.6 ± 1.2) × 10−2

χb2(2P ) 2.56 12.60 × 10−2 (13.1 ± 1.6) × 10−2

ηb(1S) 0.059 29.04 × 10−4 (5.1± 0.7) × 10−4

ηb(2S) 0.012 5.91 × 10−4 < 6.2× 10−4

ηb(3S) 0.00066 3.25 × 10−5 -

Table 3.20. E1 and M1 radiative transitions of Υ(1S), Υ(2S) and Υ(3S) states. The experimental data are
from Ref. [78].

Υ The. BaBar [148] Belle [149] PDG2010 [78]

5S 10818 10876 ± 2 10879 ± 3 10865 ± 8
6S 10995 10996 ± 2 - 11019

Table 3.21. New masses, in MeV, reported by BaBar and Belle for Υ(5S) and Υ(6S) and the comparison
with the model prediction.

Wigner resonances, and a second flat contribution which adds incoherently. Such fits
alter the PDG results on the 5S and 6S peaks. Table 3.21 compares the theoretical
prediction with the new parameters reported by BaBar and Belle and the PDG values
for the 5S and 6S resonances.

The Υ family can be studied easily via e+e− annihilation as they have the same
quantum numbers of the emitted virtual photon. However, their production rate in
this reaction is related with their leptonic widths. They are smaller than the ψ states
and for D-wave states are negligible. This is the reason why there is no experimental
confirmation of the 3D1 states. Potential model predicts that these states are close
to their S-wave partner. In our model this feature is highlighted due to the linear
screened confining interaction. Table 3.22 shows our prediction for the leptonic widths
of JPC = 1−− bb̄ states.

Additional insight can be provided by the exclusive decomposition of the two-body
(e.g. BB̄, BB̄∗, B∗B̄∗) and other decay modes. Results from e+e− collisions have been
given by Belle [152] and they will be studied later.
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(nL) States MThe. (MeV) ΓThe. (keV) ΓExp. (keV)

(1S) Υ(1S) 9502 0.71 1.340 ± 0.018
(2S) Υ(2S) 10015 0.37 0.612 ± 0.011
(1D) 10117 0.14 × 10−2 -
(3S) Υ(3S) 10349 0.27 0.443 ± 0.008
(2D) 10414 0.25 × 10−2 -
(4S) Υ(10580) 10607 0.21 0.272 ± 0.029
(3D) 10653 0.31 × 10−2 -
(5S) Υ(10860) 10818 0.18 0.31 ± 0.07
(4D) 10853 0.36 × 10−2 0.31 ± 0.07
(6S) Υ(11020) 10995 0.15 0.130 ± 0.030
(5D) 11023 0.38 × 10−2 -

Table 3.22. Leptonic decay widths, in keV, of Υ states. The experimental data are from [78].

Initial meson Final meson ΓThe. (keV)

ηb(2S) hb(1P ) 2.20

ηb(3S) hb(1P ) 0.008
hb(2P ) 2.61

Table 3.23. E1 radiative transitions of ηb states.

3.3.2 The ηb states

The BaBar Collaboration have succeeded in observing the ηb(1S) in 2008 [146]. The
ηb remained elusive because branching fractions for transitions from the Υ(nS) states
are small and no low-multiplicity decay modes, analogous to ηc(1S) → KK̄π, appear
to exist for ηb. This makes the decay Υ(nS) → γηb the most suitable for searching but
this is also non-trivial.

The hyperfine mass-splitting of singlet-triplet states, ∆mhf [ηb(1S)] = m(13S1) −
m(11S0), probes the spin-dependence of bound-state energy levels and imposes
constraints on theoretical descriptions. It is given experimentally by

∆mhf [ηb(1S)] = 69.6± 2.9MeV, (3.10)

although the masses of the 11S0 and 13S1 states are not so well reproduced by the
model, the splitting between them is good.

The ηb states and their E1 radiative decays are shown in Tables 3.19 and 3.23,
respectively.

3.3.3 The hb and χbJ states

Belle [140] has very recently reported a large cross section for e+e− → π+π−hb(1P )
or π+π−hb(2P ) at the center-of-mass energy of Υ(5S). This is reminiscent of CLEO’s
observation of a large cross section for e+e− → π+π−hc at

√
s = 4170MeV [153].

The masses of the hb(1P ) and hb(2P ) [140], as well as the hc(1P ) discovered earlier,
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n m(hb) (MeV) 〈m(n3PJ)〉The. (MeV) 〈m(n3PJ)〉Exp. (MeV)

1 9879 9879 9899.87 ± 0.27
2 10240 10240 10260.24 ± 0.36
3 10516 10516 -

Table 3.24. The theoretical masses, in MeV, of the ground state and the first two excitations of hb, compared
with the spin-averaged centroid, in MeV, of the corresponding triplet P -wave states. We compare with the
experimental data [78].

are very close to the spin-weighted average of the corresponding 3PJ states, indicating
small hyperfine splitting in P -wave mesons as expected in the naive quark model.

The centroid of the n3PJ states with n = 1, 2 is known to be, respectively,
9899.87±0.27MeV and 10260.24±0.36MeV [78]. The hyperfine splittings measured by
the Belle Collaboration [140] are ∆mhf [hb(1P )] = +1.6±1.5MeV and ∆mhf [hb(2P )] =
+0.5+1.6

−1.2MeV which are compatible with zero.
Table 3.19 shows the masses for three excitations of the singlet 1P1 and the

triplet 3PJ mesons. They are in reasonable agreement with the experimental data.
In Table 3.24 we show the comparison between the centroid of 3PJ states and the
corresponding hb mass for the ground state and the first two excitations, showing that
our spin-spin interaction is negligible. For completeness, we show the E1 radiative
transitions in Table 3.25.

The χb(nP ) states have been recently produced in proton-proton collisions at the
LHC at

√
s = 7TeV and recorded by the ATLAS detector [154]. These states have

been reconstructed through their radiative decays to Υ(1S, 2S) with Υ → µ+µ−. In
addition to the mass peaks corresponding to the decay modes χb(1P, 2P ) → Υ(1S)γ,
a new structure centered at a mass of (10.530 ± 0.005 ± 0.009)GeV has been also
observed, in both the Υ(1S)γ and Υ(2S)γ decay modes. This structure has been
interpreted as the χb(3P ) system. One can see in Table 3.19 that our mass prediction
for the triplet χbJ(3P ) states is in very good agreement with the experimental one. We
give in Table 3.25 their E1 decays into the different Υ states.

3.3.4 D-wave states with J = 2

Based on 122 × 106 Υ(3S) events, the BaBar Collaboration have attempted to
measure the Υ(13DJ) bottomonium multiplet through the Υ(3S) → γγΥ(13DJ) →
γγπ+π−Υ(1S) decay chain [155]. The process Υ(13DJ) → π+π−Υ(1S) is of interest
because looking at the distribution of the differential decay width with respect the
invariant mass of the π+π−, one can distinguish the orbital angular momentum of the
initial meson. The BaBar Collaboration has only provided the mass of the J = 2
member of the Υ(13DJ) triplet due to their significances (5.8σ for this state) with a
value of 10164.5 ± 0.8 ± 0.5MeV. We predict a mass of 10122MeV, lower than the
experimental data but in reasonable agreement considering the uncertainties in the
naive quark model. The members of the triplet are expected to be within 10MeV or
less according to our model and others as Ref. [156]. The model predicts the next
excitations of the triplet in 10.42GeV and 10.65GeV energy regions.

It is expected that in the same energy range of the 13D2 appears the 11D2 state,
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Initial meson Final Meson ΓThe. (keV) BThe. BExp.

hb(1P ) ηb(1S) 45.33 - -
hb(2P ) ηb(1S) 15.36 - -

ηb(2S) 19.40 - -
hb(3P ) ηb(1S) 8.16 - -

ηb(2S) 7.29 - -
ηb(3S) 12.27 - -

χb0(1P ) Υ(1S) 28.07 - < 6× 10−2

χb1(1P ) Υ(1S) 35.66 - (35± 8)× 10−2

χb2(1P ) Υ(1S) 39.15 - (22± 4)× 10−2

χb0(2P ) Υ(1S) 5.44 - (9± 6)× 10−3

Υ(2S) 12.80 - (4.6 ± 2.1) × 10−2

χb1(2P ) Υ(1S) 9.13 - (8.5 ± 1.3) × 10−2

Υ(2S) 15.89 - (21± 4)× 10−2

χb2(2P ) Υ(1S) 11.38 - (7.1 ± 1.0) × 10−2

Υ(2S) 17.50 - (16.2 ± 2.4) × 10−2

χb0(3P ) Υ(1S) 1.99 - -
Υ(2S) 2.99 - -
Υ(3S) 8.50 - -

χb1(3P ) Υ(1S) 4.17 - -
Υ(2S) 4.58 - -
Υ(3S) 9.62 - -

χb2(3P ) Υ(1S) 5.65 - -
Υ(2S) 5.62 - -
Υ(3S) 10.38 - -

Table 3.25. E1 radiative transitions of hb and χbJ states. The experimental data are from [78].

ηb2. Unfortunately there are no data about the 11D2 state. One possibility to find
this state is studying the decays of the very recently discovered hb(2P ) because the E1
transition hb(2P ) → γηb2(1D) is allowed. Our prediction is 5.26 keV.

3.4 Bottom, bottom-strange and bottom-charmed mesons

The B-factories have reached a kinematically clean environment of B meson decays
providing an excellent opportunity to search for new states. Most of the hadronic B
decays involve a b → c transition at the quark level, and so they have been used to
search for new, conventional or unexpected, charmonium and charmed mesons and to
study their properties in detail.

The experimental data concerning the properties of the new hidden or open-charm
mesons are usually accompanied of information about the weak decay of meson B.
Within the constituent quark model, we will have to deal with observables which involve
weak decays of B mesons and thus these mesons should be well described by the model.

Until a couple of years ago, excited meson states containing b quarks have not been
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Particle JP The. (MeV) Exp. (MeV) [78]

B±

B0 0− 5275
5279.1 ± 0.4
5279.5 ± 0.5

B∗ 1− 5317 5325.1 ± 0.5
B1(5721)

0 1+ 5776 5723.4 ± 2.0
B∗

2(5747)
0 2+ 5794 5743 ± 5

B∗
J(5732)

[
0+

1+

] [
5885
5914

]
5698 ± 8

B0
s 0− 5348 5366.0 ± 0.9

B∗
s 1− 5393 5415.8 ± 1.5

Bs1(5830)
0 1+ 5841 5829.4 ± 0.7

B∗
s2(5840)

0 2+ 5856 5839.7 ± 0.6

B∗
sJ(5850)

[
0+

1+

] [
5851
5883

]
5853 ± 15

B±
c 0− 6275 6277 ± 6

Table 3.26. Masses of B, Bs and Bc states. We compare with the well established states in Ref. [78].

studied well. Only the stable 0− ground states B+, B0 and B0
s and the excited 1− state

B∗ had been firmly established. On Table 3.26 we give the mass predictions for these
states which are in very good agreement with those from the PDG.

The B-factories can produce the B∗
s by running on the Υ(5S) resonance, i.e.

Υ(5S) → B∗
s B̄

∗
s . The CLEO [157, 158] and Belle [159] Collaborations have isolated

B∗
s states. The average of the two measurements about the B∗

s mass and the mass
splitting between B∗

s and Bs mesons (including an older CUSB2 measurement [160])
are M(B∗

s ) = 5412.8 ± 0.9MeV and ∆M(B∗
s − Bs) = 46.7 ± 1.0MeV, respectively.

These are in good agreement with our values 5393MeV and 45MeV.

Focusing on the orbitally excited mesons, the doublet jPq = 3
2

+
is well established

in the PDG. The mesons which belong to this doublet are B1(5721) and B∗
2(5747)

within the B sector, and Bs1(5830) and B
∗
s2(5840) within the Bs sector. The predicted

masses are in good agreement with the experimental ones. There are no experimental
evidences of the mesons which belong to the doublet jPq = 1

2

+
. These states should

have quantum numbers 0+ and 1+. Also, following HQS, these mesons are expected to
be broad and this may be the reason why they have not been seen so far. The PDG
provides one state whose quantum numbers are not well established in the bottom and
bottom-strange sectors, we are referring to the B∗

J(5732) and B
∗
sJ(5850) mesons. The

mass is nearby degenerated with the doublet jPq = 3
2

+
and we have assigned this meson

to our theoretical doublet jPq = 1
2

+
, as one can see in Table 3.26.

The Bc is the heaviest of the ground state b-flavored mesons, and the most difficult
to produce: it was observed for the first time in the semileptonic mode by CDF
in 1998 [161], but its mass was accurately determined only in 2006, from the fully
reconstructed mode B+

c → J/ψπ+ [162]. The agreement between our prediction and
the experimental data is good.
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3.5 Lorentz structure of the confinement

The interquark potential depends on the Lorentz nature of the interaction and so
assumptions for it are needed. Although it seems clear the Lorentz structure of the
Goldstone-boson and the OGE potentials, the Lorentz character of the confinement
has not yet established firmly. In this section we study the influence of the Lorentz
structure of the confinement in the previously presented spectra, to do that we focus
on some physical observables which are more sensible to this effect.

One of the most experimental evidences in the heavy quark sector which favors the
scalar structure of the confinement is the measurement, compatible with zero, of the
hyperfine mass splitting between the 1P1 state and the center-of-gravity (c.o.g.) of the
corresponding triplet 3PJ states. Within the charmonium sector, the ∆mhf [hc(1P )] =
〈m(13PJ)〉 −m[hc(1P )] has been measured to be +0.02± 0.23MeV from CLEO [119],
and −0.10 ± 0.22MeV from BES III [120]. In the case of the bottomonium sector,
the Belle Collaboration [140] has reported ∆mhf [hb(1P )] = +1.6 ± 1.5MeV and
∆mhf [hb(2P )] = +0.5+1.6

−1.2MeV.

A hyperfine mass splitting between the 1P1 and the c.o.g of the triplet 3PJ states
compatible with zero means that the interquark potential has a vanishing long-range
component of the spin-spin contribution. At large distances, the confinement potential
is dominant. If it had a vector Lorentz structure, it would present a spin-spin
contribution, proportional to the Laplacian of its central term, that does not behave as
a delta-like term. Only the short range of the interquark potential, the coulomb term
of the OGE potential, has a spin-spin contribution proportional to a delta function.

In the case of a scalar Lorentz confinement, there is no magnetic field to influence
the quark spin and the only spin-orbit interaction is the kinematic Thomas precession
term. The Thomas type spin-orbit interaction partially cancels that of the short
range one-gluon exchange, in agreement with the observed spectrum. Sophisticated
QCD calculations predict spin-dependent [163] and spin-independent [164] relativistic
corrections of the long-range potential. The spin dependence is just the Thomas
type spin-orbit interaction. Moreover, Lattice QCD simulations study the spin-
dependent terms of the potential finding that they can be associated with the Thomas
interaction [165]. However, the spin-independent corrections differ from those of scalar
confinement [166].

Our confining potential has a mixture of scalar and vector Lorentz structures which
was fixed in Ref. [52] to reproduce the masses of a0(980), a1(1260) and a2(1320) mesons.
The model parameter which controls the mixture is as. In Ref. [52] its value was 0.78
and with the fine tuned model is 0.81. The value of as indicates that our confinement
is dominantly scalar.

We have considered that the central part of the scalar and vector Lorentz structures
of the confinement are the same

V C,scalar
CON (~rij) = V C,vector

CON (~rij) =
[
−ac(1− e−µcrij ) + ∆

]
(~λci · ~λcj). (3.11)

There are different spin-dependent corrections related with the scalar or vector
Lorentz character of the confinement. We have both corrections weighed by the model
parameter as. For the scalar potential we calculate the spin-orbit contribution as



54 3.5. LORENTZ STRUCTURE OF THE CONFINEMENT

follows

V SO,scalar
CON (~rij) = − 1

4m2
im

2
j

1

r

dV C,scalar
CON (~rij)

drij

[
(m2

i +m2
j )(
~S+ · ~L) + (m2

j −m2
i )(
~S− · ~L)

]
,

(3.12)
whereas for the vector one, there are spin-spin, tensor and spin-orbit contributions
which are calculated as

V SS,vector
CON (~rij) =

1

6mimj
(~σi · ~σj)∇2V C,vector

CON (~rij),

V T,vector
CON (~rij) =

1

12mimj

(
1

r

dV C,vector
CON (~rij)

drij
− d2V C,vector

CON (~rij)

dr2ij

)
Sij ,

V SO,vector
CON (~rij) =

1

4m2
im

2
j

1

r

dV C,vector(~rij)

drij
×

×
[
((mi +mj)

2 + 2mimj)(~S+ · ~L) + (m2
j −m2

i )(~S− · ~L)
]
.

(3.13)

So that the different contributions of our confinement potential are

V C
CON(~rij) =

[
−ac(1− e−µcrij) + ∆

]
(~λci · ~λcj),

V SO
CON(~rij) = −(~λci · ~λcj)

acµce
−µcrij

4m2
im

2
jrij

[
((m2

i +m2
j )(1− 2as)

+4mimj(1− as))(~S+ · ~L) + (m2
j −m2

i )(1− 2as)(~S− · ~L)
]
,

V T
CON(~rij) = −(~λci · ~λcj)

acµce
−µcrij

12mimjrij
(1− as)(1 + µcrij)Sij,

V SS
CON(~rij) = −(~λci · ~λcj)

acµce
−µcrij

6mimjrij
(1− as)(2− µcrij)(~σi · ~σj).

(3.14)

We show in Fig. 3.5 different observables related with meson spectra as a function
of as. The observables are calculated using the constituent quark model taking into
account the central and spin-orbit contributions of Eq. (3.14) (solid line) and including
also the tensor and spin-spin terms coming from the vector nature of the confinement
(dashed line).

We have in panel (a) m(J/ψ) − m(ηc(1S)), in panel (b) m(ψ(2S)) − m(ηc(2S)),
in panel (c) 〈m(χcJ(1P ))〉 − m[hc(1P )] and in panel (d) 〈m(χcJ(2P ))〉 − m[hc(2P )].
All these observables are in the charmonium sector and they are more sensitive to
the spin-spin contribution of the potential. One can see that we need a dominantly
scalar confinement to reproduce simultaneously the different observables and that,
within this assumption, the inclusion of the tensor and spin-spin terms coming from
the vector nature of the confinement produces differences of 5 − 10MeV. Panels (e),
(f), (g) and (h) are referred to the same observables but in the bottomonium sector,
the same conclusion of the charmonium sector can be derived also in this case. The
mass of the D∗

s0(2317), Ds1(2460) and Ds1(2536) mesons are shown in panels (i), (j)
and (k), respectively. The inclusion of the tensor and spin-spin terms coming from the
vector nature of the confinement produces a negligible effect. It is interesting to note
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Figure 3.5. We show as a function of as the following observables: (a): m(J/ψ)−m(ηc(1S)), (b): m(ψ(2S))−
m(ηc(2S)), (c): 〈m(χcJ(1P ))〉 −m[hc(1P )], (d): 〈m(χcJ(2P ))〉 − m[hc(2P )], (e): m(Υ(1S)) − m(ηb(1S)),
(f): m(Υ(2S)) − m(ηb(2S)), (g): 〈m(χbJ (1P ))〉 − m[hb(1P )], (h): 〈m(χbJ (2P ))〉 − m[hb(2P )], (i): Mass
of D∗

s0(2317), (j): Mass of Ds1(2460), (k): Mass of Ds1(2536), (l): Masses of a0(980), a1(1260) and
a2(1320) mesons. The solid line is the constituent quark model taking into account the central and spin-
orbit contributions. The dashed line reflects that we include also the tensor and spin-spin contributions
coming from the vector nature of the confinement. The vertical solid line indicates our value of as.

that while the mass of the D∗
s0(2317) meson is sensible to the Lorentz structure of the

confinement potential, we never reach an agreement with the experimental situation
for the masses of the Ds1(2460) and Ds1(2536) mesons, whatever be the value of as.
Finally, in panel (l) are drawn the masses of a0(980), a1(1260) and a2(1320) mesons.
Again, the inclusion of the tensor and spin-spin terms coming from the vector nature of
the confinement produces a negligible effect. A dominantly scalar confining interaction
is needed to explain the masses of the a0(980), a1(1260) and a2(1320) mesons.

We conclude that the confinement interaction is dominantly scalar and the inclusion
of the tensor and spin-spin terms coming from the vector nature of the confinement
does not affect the global description of the spectrum in the different sectors.

3.6 One-loop QCD corrections to the OGE potential

The spectra of charmed and charmed-strange sectors are not so well reproduced
theoretically. There are some inconsistencies with experiment, mainly in the charmed-
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Charmed mesons Charmed-strange mesons
Contribution Parameters Set I Set II Set I Set II

Mass mq (MeV) 313 313 555 555
mc (MeV) 1763 1763 1763 1763

OGE α0 2.118 2.118 2.118 2.118

Λ0 (fm−1) 0.113 0.113 0.113 0.113
µ0 (MeV) 36.976 36.976 36.976 36.976
r̂0 (fm) 0.181 0.149 0.181 0.158
r̂g (fm) 0.259 0.259 0.259 0.177

Confinement ac (MeV) 507.4 464.4 507.4 507.4
µc (fm

−1) 0.576 0.630 0.576 0.576
∆ (MeV) 184.432 184.432 184.432 184.432
as 0.81 0.78 0.81 0.81

Table 3.27. The two sets of model parameters.

strange sector due to the fact that the mass splittings between the D∗
s0(2317),

Ds1(2460) and Ds1(2536) mesons are difficult to reproduce with quark models and
also with Lattice QCD calculations [167]. For instance, one would expect that the

mesons D∗
s0(2317) and Ds1(2460), which belong to the doublet jPq = 1

2

+
, are nearby

degenerated. This feature is almost fulfilled with the other P -wave doublet jPq = 3
2

+
,

the Ds1(2536) and D
∗
s2(2573) mesons. In principle and depending on the mass of the

D∗
0(2400) meson, the charmed sector follows the expectations and the mass splittings

are small between D∗
0(2400), D1(2420), D1(2430) and D

∗
2(2460).

The strong interest on the charmed-strange meson spectroscopy was originated by
the discovery of the D∗

s0(2317) meson by the BaBar Collaboration [37]. It was seen
in the isospin violating Dsπ decay mode in KK̄ππ and KK̄πππ mass distributions.
The CLEO Collaboration, motivated by the recent discovery of BaBar, found later
the missing meson of the doublet, Ds1(2460), decaying into D∗

sπ
0 channel. Potential

models, in particular our potential model, predict usually the ground state of the 0+

and 1+ cs̄ mesons above the DK and D∗K thresholds, respectively. The experiment
tell us that the mass of the state is below the corresponding threshold, which has
important consequences on the width of the state.

The interpretation of the D∗
s0(2317) as a multiquark state (e.g. [168, 169]), in

particular as a DK molecule, has several attractive features. This is supported by
its isospin violating discovery mode and the proximity of the S-wave DK threshold.
The same occurs for the Ds1(2460) as a D∗K molecule. However, if the Dsπ

0 mode
dominates the total width of the D∗

s0(2317), the measured product of branching
ratios [170]

B(B0 → D∗
s0(2317)K)× B(D∗

s0(2317) → Dsπ
0) = (4.4± 0.8± 1.1)× 10−5 (3.15)

implies that the B(B0 → D∗
s0(2317)K) ∼ 10−5. Other similar branching ratios of

the B meson decays into well established Ds mesons can be seen in Ref. [78], e.g.
B(B0 → D−

s K
+) = (2.2± 0.5)× 10−5, all of them are of the same order of magnitude

than the previous one and this is consistent with the D∗
s0(2317) being a canonical 0+
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Charmed mesons Charmed-strange mesons

JP n Set I Set II Set I Set II
αs α2

s αs α2
s αs α2

s αs α2
s

0− 1 1896 1896 1867 1867 D 1984 1984 1969 1969 Ds

2 2695 2695 2646 2646 D(2550) 2729 2729 2720 2720
3 3154 3154 3075 3075 3178 3178 3173 3173
4 3448 3448 3334 3334 3487 3487 3483 3483

0+ 1 2516 2362 2464 2368 D∗
0(2400) 2510 2383 2473 2318 D∗

s0(2317)
2 3033 2925 2960 2896 3025 2934 2995 2883
3 3366 3292 3262 3221 3376 3310 3353 3271
4 3582 3533 3442 3419 3625 3576 3608 3548

1+ 1 2466 2499 2450 2482 D1(2420) 2554 2560 2555 2560 Ds1(2535)
2 2596 2535 2548 2492 D1(2430) 2593 2570 2588 2564 Ds1(2460)
3 3008 3033 2955 2979 3056 3061 3056 3059 DsJ(3040)
4 3079 3030 3006 2963 3077 3058 3073 3054 DsJ(3040)

1− 1 2017 2014 2006 2005 D∗ 2110 2104 2109 2102 D∗
s

2 2756 2754 2715 2715 D∗(2600) 2797 2794 2796 2792 D∗
s1(2710)

3 2935 2905 2869 2851 2915 2890 2913 2893 D∗
sJ(2860)

4 3193 3191 3117 3117 3224 3221 3224 3221

2− 1 2812 2822 2784 2793 DJ (2750) 2886 2888 2886 2888
2 2973 2962 2908 2899 2948 2943 2948 2943
3 3227 3234 3158 3165 3278 3280 3278 3281
4 3323 3313 3228 3221 3317 3313 3317 3313

2+ 1 2513 2544 2497 2516 D∗
2(2460) 2591 2609 2594 2608 D∗

s2(2573)
2 3037 3059 2983 2996 3081 3094 3084 3093
3 3220 3207 3136 3129 3196 3184 3196 3186
4 3372 3387 3279 3287 3417 3427 3419 3427

3+ 1 3090 3094 3045 3049 3151 3151 3151 3152
2 3244 3240 3161 3158 3216 3215 3216 3215
3 3409 3412 3321 3323 3464 3464 3464 3464
4 3503 3500 3386 3384 3507 3506 3507 3506

3− 1 2847 2863 2819 2828 D∗
J (2760) 2911 2922 2911 2920 D∗

sJ(2860)
2 3249 3260 3179 3185 3296 3304 3296 3302
3 3443 3437 3340 3336 3428 3421 3428 3423
4 3511 3518 3398 3402 3569 3575 3569 3574

Table 3.28. Masses, in MeV, of charmed and charmed-strange mesons. The predictions are without (αs)
and with (α2

s) one-loop corrections of the OGE potential. A possible assignment of the new mesons is also
included. We show the results for two sets of parameters, Table 3.27.

cs̄ meson. For this reason it is important to exhaust possible canonical cs̄ descriptions
before resorting to more exotic models.
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The quark model explanation of the P -wave mass splittings lies on the spin-
dependent interactions. The spin-dependence of our constituent quark model is based
on the Fermi-Breit reduction of the OGE interaction supplemented with the spin-
dependence due to the confinement interaction. This dependence is common with
other quark models. The incorporation of the one-loop QCD corrections to the spin-
dependent terms of the OGE potential was proposed by Lakhina et al. in Ref. [171]. It
was motivated by the fact that in the one-loop computation there is a spin-dependent
term which affects only to mesons with different flavor quarks [172].

We want to see what happens if we incorporate these corrections to our potential.
The net result is a quark-antiquark interaction that can be written as:

V (~rij) = VOGE(~rij) + VCON(~rij) + V 1−loop
OGE (~rij), (3.16)

where VOGE and VCON have been already defined and will be treated nonperturbatively.
The V 1−loop

OGE is the one-loop correction to the OGE potential and presents singular
contributions. In order to avoid ad hoc cutoffs, this part of the potential is treated
perturbatively.

As in the case of VOGE and VCON, we write the V 1−loop
OGE as follows:

V 1−loop
OGE (~rij) = V 1−loop,C

OGE (~rij) + V 1−loop,T
OGE (~rij) + V 1−loop,SO

OGE (~rij) , (3.17)

where C stands for central, T for tensor and SO for spin-orbit potentials. These
contributions are given by [171]

V 1−loop,C
OGE (~rij) = 0,

V 1−loop,T
OGE (~rij) =

CF
4π

α2
s

mimj

1

r3
Sij

[
b0
2

(
ln(µrij) + γE − 4

3

)
+

5

12
b0 −

2

3
CA

+
1

2

(
CA + 2CF − 2CA

(
ln(

√
mimj rij) + γE − 4

3

))]
,

V 1−loop,SO
OGE (~rij) =

CF
4π

α2
s

m2
im

2
j

1

r3
×

×
{
(~S+ · ~L)

[ (
(mi +mj)

2 + 2mimj

) (
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(
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√
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(
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1

12
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(
mj

mi

)]

+(~S− · ~L)
[
(m2

j −m2
i )
(
CF + CA − CA

(
ln(

√
mimj rij) + γE

))

+
1

2
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2CA ln

(
mj
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)]}
,

(3.18)

where CF = 4/3, CA = 3, b0 = 9, γE = 0.5772 and the scale µ ∼ 1GeV.
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These additional terms do not destroy the agreement in the QQ̄ spectra. Table 3.27
shows the two sets of model parameters which have been considered (Set I is the original
one). The masses of charmed and charmed-strange mesons predicted by the constituent
quark model without and with one-loop corrections to the OGE potential are shown
in Table 3.28.

We conclude that the 0+ states are more sensitive to the inclusion of the one-
loop corrections to the OGE potential. This feature is fulfilled in both charmed and
charmed-strange sectors. It allows us to explain the lower mass of the D∗

s0(2317) meson
within our constituent quark model. If the mass of the D∗

0(2400) was lower than the
expected one, this mass would be explained also. This effect does not solve the puzzle
of the 1+ mesons, which may be an indication that in the 1+ cs̄ sector the effects of
the meson-meson continuum are important.

Finally, the work presented here may explain the difficulty in accurately computing
the mass of the D∗

0(2400) and D∗
s0(2317) in lattice simulations. According to the

Ref. [171], the rationale for that is the following: if the extended quark model is correct,
it implies that important mass and spin-dependent interactions are presented in the
one-loop level OGE quark interaction. It is possible that current lattice computations
are not sufficiently sensitive to the ultraviolet behaviour of QCD to capture this physics.
The problem is exacerbated by the nearby, and presumably strongly coupled, DK
continuum; which requires simulations sensitive to the infrared behaviour of QCD.

3.7 Renormalization approach to the CQM

We have already mentioned that after the discovery of the first heavy-quark bound
states, the ψ and Υ systems, it was soon realized that a nonrelativistic picture seemed to
hold for them. Potential models, which incorporate OGE interaction at short distances
and confinement at large distances, describe well the spectrum of charmonium and
bottomonium systems when one solves the bound state problem with the Schrödinger
equation.

In the nonrelativistic framework, the OGE potential is singular at the origin. A
potential is said to be singular at r = 0 if

lim
r→0

r2V (r) = ±∞. (3.19)

A singular potential is called repulsively or attractively singular according to whether
the limiting value in Eq. (3.19) is, respectively, +∞ or −∞, regardless of whether the
potential maintains one sign for r > 0. The basic feature of an attractive singular
potential is seen to lie in the fact that physical processes are not uniquely determined.
This gives rise to the possibility of imposing unusual or unconventional boundary
conditions in physical problems as a means of representing particular physical processes.
In contrast to the attractive potential, the repulsive case poses no problem as regards
physical interpretation. The solutions to physical problems are uniquely given.

The presence of the OGE short-distance singularities motivates the introduction of
phenomenological gluonic form factors in potential models (see e.g. [173] for an early
proposal). This triggers an unpleasant short-distance sensitivity and, as we will show,
it mainly hides the fact that the ground state is actually being used as an input rather
than a prediction.



60 3.7. RENORMALIZATION APPROACH TO THE CQM

We want to address the question on how much can we deduce for the spectrum of
1−− cc̄ meson from the knowledge of the potential at long distances in a way that our
ignorance at short distances needs not play a crucial role. This allows to disentangle
the physics of the ground state to that of the excited states. The method which we
will be using is based on renormalization ideas. The presence of long-range confining
forces suggests pursuing the calculations in coordinate space. One of the advantages of
the coordinate space treatment of renormalization is that it can directly be extended
to other singular cases such as the multigluon exchange potentials.

There is the added difficulty that we have coupled second order differential equations
in the JPC = 1−− channel. Then one has four independent solutions, which according to
their singularity structure correspond to either two regular and two irregular solutions
at infinity or three regular and one irregular solution at the origin. The normalization
of the wave functions of the 1−− cc̄ states eliminates all constants for a given J/ψ
binding energy, which instead of being predicted has to be treated as an independent
parameter.

Actually, our original motivation for the present study was to analyze the role of
regulators within the constituent quark model described before. However, our ideas
can be generally extended to any quark model and shed some light on their predictive
power.

3.7.1 The uncoupled JPC = 1−− cc̄ system

Let us consider the standard nonrelativistic Schrödinger equation for bound states in
S-waves

− u′′n(r) + U(r)un(r) = −κ2un(r), (3.20)

where U(r) = 2µV (r) is the reduced potential, κ2 = 2µ(Vthr − En) with Vthr =
16
3
(ac − ∆), un(r) is the reduced wave function (Rn(r) = un(r)/r) which vanishes

at long distances and the energy is defined with respect to the q − q̄ threshold,
En =Mn −mq −mq̄.

Anticipating our discussion we will assume for definiteness a short-distance auxiliary
cutoff, rc, below which the potential vanishes. This cutoff is just a parameter which
will ultimately be removed while keeping some physical condition fixed. Typically the
range taken will be rc = 0.3−0.01 fm. In our case we will choose to fix the ground state
energy to the experimental value. In the numerical application we will be concerned
with the residual cutoff dependence of observables induced by such a procedure.

Using the standard trick of multiplying Eq. (3.20) by um(r) and subtracting the
similar equation with n ↔ m, we get for two different energies En 6= Em the
orthogonality relation between their bound state wave functions

u′n(rc)um(rc)− un(rc)u
′
m(rc) = 2µ(En −Em)

∫ ∞

rc

un(r)um(r) dr. (3.21)

Note that usually the regularity condition at the origin, un(rc) = 0 for rc → 0,
is imposed. Whence orthogonality of wave functions with different energies holds.
However, this is not the only solution to the orthogonality requirement. Instead the
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common boundary condition, we may as well take

u′m(rc)

um(rc)
=
u′n(rc)

un(rc)
, (3.22)

for any two states, meaning that the logarithmic derivative at short distances becomes
state independent. In particular, choosing the ground state as a reference state we get
the condition

u′0(rc)

u0(rc)
=
u′n(rc)

un(rc)
. (3.23)

How can this logarithmic derivative be determined? If we know the energy of the ground
state and the potential we may integrate from the long distance region inward to deduce
u′0(rc)/u0(rc). Once this number is known, we may use Eq. (3.23) to integrate out the
excited state and the corresponding bound state energy can be fixed by requiring the
wave function to vanish at large distances2. Thus, such a procedure allows to treat the
ground state energy, E0, as an independent variable from the potential V (r) and still
deduce wave functions and the excited spectrum. There is of course the question on
how to interpret the short-distance cutoff, rc. In principle one may look for stability
at scales below the relevant sizes. Actually, varying the cutoff in this region is a way
of assessing theoretical uncertainties3. However, there are situations where the limit
rc → 0 is rather smooth and induces moderate changes in observables.

A good feature of the present approach is that since wave functions are matched
at short distances the resulting energies are largely independent on the short distance
behaviour of the potential.

The previous discussion has been conducted for S-waves and regular potentials,
i.e. fulfilling limr→0 r

2|V (r)| < ∞. Higher partial waves cannot be renormalized in
this fashion as short distances are dominated by the centrifugal barrier. This also has
the benefit of diminishing the dependence on the short-distance potential since the
short-distance behaviour of the wave function, u(r) ∼ rl+1, is not controlled by the
potential.

The case of singular potentials has also been discussed at length (see e.g.
Refs. [175–177] regarding nuclear or atomic systems). The relation to momentum
space renormalization and the corresponding Lagrangian counterterms is discussed in
Ref. [178]. The irrelevance of form factors is analyzed in Refs. [177, 179].

The treatment of the potential in this framework has the advantage to reduce the
number of model parameters. This allows us to study in a cleaner way the existence of
correlations between physical observables and model parameters which have a direct
physical interpretation.

Our first aim is to reanalyze the calculation of the JPC = 1−− cc̄ spectrum. While
the tensor force induces a mixing between S and D-waves we will, in a first step,

2There is of course the subtlety that if we include exactly the origin the radial wave function does not
provide a three-dimensional solution of the Schrödinger equation as it generates a δ(~x) term [174]. As has
been discussed at length in previous works [175–177] we can take any arbitrarily small (but non-vanishing)
short-distance cutoff r > rc > 0 which in the limit rc → 0+ generates a well defined result. In all our
discussions we assume this limiting procedure.

3In a model where phenomenological form factors are implemented ad hoc, just to prevent singularities,
the assessment of theoretical errors could be done by choosing all possible regularization functions, unless the
form factor is known from first principles.
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Figure 3.6. Dependence of the mass, in MeV, on the short distance cutoff, rc, in fm, for the excited 1−−

charmonium states 23S1 (left panel) and 23D1 (right panel).

State n MRSC (MeV) MCQM (MeV) MExp. (MeV) Ref.
3S1 1 3096† 3096 3096.916 ± 0.011 [78]

2 3703 3703 3686.093 ± 0.034 [78]
3 4097 4097 4039.6 ± 4.3 [78]
4 4389 4389 4361 ± 9± 9 [86]

5 4614 4614 4634+8+5
−7−8 [87]

3D1 1 3796† 3796 3772.92 ± 0.35 [78]
2 4153 4153 4153 ± 3 [78]
3 4426 4426 4421 ± 4 [78]
4 4641 4641 4664 ± 11± 5 [86]

Table 3.29. Masses, in MeV, of uncoupled JPC = 1−− cc̄ states within the renormalization scheme (RSC)
and potential model with form factors (CQM). The symbol † indicates that the state has been fixed.

neglect such a mixing. This implies that both ground states are completely unrelated
and renormalization is pursued independently. As expected, the masses in this scheme
depend on the short-distance cutoff, rc. Fig. 3.6 shows this dependence for the first
excitations of S and D-wave states. One can see that at some value of rc the masses
do not depend on the short-distance cutoff.

In Table 3.29 the masses predicted by the renormalized model and the standard
constituent quark model (with form factors) are displayed. We find a perfect agreement
between both schemes. This provides confidence on the way the original model took
into account the unknown short-distance dynamics, on the one hand, and also on the
irrelevance of those form factors for excited states as long as the ground state mass is
fixed.

As it becomes clear from the expressions of the potential, the perturbative and
non-perturbative contributions dominate at short and large distances respectively.
Therefore, we want to study now the dependence of the mass with respect to two
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Figure 3.7. Mass, in MeV, dependence on the strong coupling constant of excited JPC = 1−− cc̄ states.

important model parameters, the strong coupling constant, αs, and our effective string
tension of the confinement potential, σ, featuring those short and long distance effects.

The dependence on αs can be seen in Fig. 3.7 for S and D-wave states. For S-wave
states the mass changes about 15MeV meaning a 0.4% change in the total mass and
we see a flattening behaviour along the considered range of αs. We find a similar trend
for the D-wave states, although in this case the change in mass is larger than in the
case of S-wave states, the picture shows again a rather clear plateau.

We now turn to the mass dependence on the effective string tension of our
confinement potential, fixing the threshold. Fig. 3.8 shows such a dependence for
the S and D-wave states. The range for the effective string tension is in percentage
level equal than the range of the strong coupling constant and we can see that the
masses change on the hundreds of MeV. We can conclude that at least the masses of
excited states are dominated by the confinement potential as long as the ground state
mass is kept to its physical value.

It is interesting to see what is the renormalized model sensitivity to the parameters.
Of course, at this level one should envisage the possibly non-negligible contribution
of the missing mesonic thresholds and the induced mass shift. To this end we fit the
model parameters from the experimental masses of 1−− cc̄ states [78] and estimate their
theoretical uncertainties as well as an educated mass-shift guess. The way to perform
the first task is of course debatable. This requires some compromise as to what are
the errors attached to the masses within the present framework. Naively one would
just take the quoted PDG errors on the experimental masses. Meson-meson thresholds
which have not been taken into account may affect more significantly the higher excited
states via a subthreshold induced mass shift, which we take as a systematic error of
the model.

We decide to make a χ2 fit using as fitting parameters the quark mass, mc, ac and
µc related with the confinement strength and the strong coupling constant, αs. We
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Figure 3.8. Dependence of the JPC = 1−− cc̄masses, in MeV, on the effective string tension of our confinement
potential, σ = −ac µc (~λci · ~λcj), in GeV2.

define the

χ2(~p ) =
∑

i

(MExp.(i)−MThe.(i, ~p ))
2

σ2
Exp.(i)

, (3.24)

where ~p represents our model parameters and the experimental data are taken as
Mψ(2S) = 3686.093 ± 0.143MeV, Mψ(3S) = 4039.6 ± 42.25MeV and Mψ(4S) =
4361 ± 37MeV, where the errors are taken as the half-width of the state, as our
educated guess. By minimizing the χ2 function we obtain the theoretical uncertainties
from the corresponding covariance matrix at the minimum. The outcoming values for
the parameters are

mc = 1862± 12.6MeV (0.68%),

ac = 524± 43MeV (8.2%),

µc = 88± 7.2MeV (8.2%),

αs = 0.41± 0.14 (34%), (3.25)

where we put in parenthesis the relative uncertainties in percentage. Here we clearly see
that the highest uncertainty corresponds to the value of the strong coupling constant.
This rather large insensitivity to the otherwise too large αs is a rewarding feature of
the renormalization approach. Actually, quite natural values of αs are obtained. The
spectrum at the χ2−minimum is given by

ψ(2S) = 3687± 80MeV,

ψ(3S) = 4108± 79MeV,

ψ(4S) = 4348± 80MeV,

ψ(5S) = 4586± 66MeV. (3.26)

We now focus on the leptonic widths of S-wave states given by the Eq. (C.10).
This will illustrate the interesting subject of the wave function renormalization. Decay
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Figure 3.9. Left picture shows the dependence of the ratio R for ψ(2S) with respect to the short-distance
cutoff, rc. Right picture shows the dependence of the ratio R for the 1−− S-wave cc̄ states on the strong
coupling constant, αs.

widths depend on the value of the wave function at short distances. Of course while
the decay may be triggered by a short-distance operator, we may predict decay ratios
as

R =
Γ (n3S1 → e+e−)

Γ (13S1 → e+e−)
=

|RnS(0)|2
|R1S(0)|2

M2
1

M2
n

. (3.27)

This corresponds in practice to implement a common wave function renormalization
which factors out in the ratio.

Fig. 3.9(a) shows the dependence of R with respect to the short-distance cutoff for
the first excitation of S-wave states. At some range of rc, the ratio does not depend
on its value. Fig. 3.9(b) shows the dependence of the ratio for the S-wave states along
the range of strong coupling constant used for the mass study. We find a stronger
dependence on the strong coupling constant as expected since the leptonic decay width
is a short range observable.

We have studied the leptonic widths taking into account momentum dependent
effects, Eq. (C.12). These tend to diminish the absolute value of the leptonic decay
rate but in the study of ratios between them the difference with respect the original
results, Eq. (C.10), is negligible.

It is straightforward to extend the previous analysis on the leptonic widths to the
ψ(nS) → 3g and ψ(nS) → 3γ cases. Using the usual formulas which describe these
processes, one can see that the ratios from excited states to the ground state are process
independent and identical to the corresponding leptonic decay widths discussed above

Γ (n3S1 → 3g)

Γ (13S1 → 3g)
=

Γ (n3S1 → 3γ)

Γ (13S1 → 3γ)
=

Γ (n3S1 → e+e−)

Γ (13S1 → e+e−)
. (3.28)

This obviously allows to predict the excited state decay widths from the experimental
ground state decay widths. The results are presented in Table 3.30.
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ψ(nS) → e+e− ψ(nS) → 3g ψ(nS) → 3γ

ψ(nS) ΓThe. (keV) ΓExp. (keV) ΓThe. (keV) ΓExp. (keV) ΓThe. (eV) ΓExp. (eV)

1S input 5.55± 0.14 input 59.5 ± 2.0 input 1.11 ± 0.37
2S 2.49 ± 0.06 2.33± 0.07 26.7 ± 0.9 30.3 ± 4.9 0.49 ± 0.18 -
3S 1.55 ± 0.04 0.86± 0.07 16.6 ± 0.6 - 0.31 ± 0.11 -
4S 1.08 ± 0.03 - 11.5 ± 0.4 - 0.21 ± 0.08 -
5S 0.78 ± 0.02 - 8.4 ± 0.3 - 0.16 ± 0.06 -

Table 3.30. Absolute annihilation rates for excited 1−− S-wave cc̄ states. We use the ground state experimental
width as input. The quoted errors reflect the uncertainty stemming from the ground state only.

3.7.2 The coupled JPC = 1−− cc̄ system

Our previous discussion of renormalization was undertaken without taking into account
the role played by the tensor force. In the channel JPC = 1−−, these states are a
combination of S and D-wave components due to the tensor force contribution. As we
will see below, this tensor force is small enough to have almost pure S and D orbital
state components. The interesting aspect of our discussion below is that using just one
renormalization condition we can predict all S and D-wave mesons, i.e. we reduce the
number of renormalization conditions.

The radial Schrödinger equation for the 3S1 − 3D1 coupled channel reads in our
unregulated model

− u′′(r) + US(r)u(r) + USD(r)w(r) = −κ2u(r),

− w′′(r) + USD(r)u(r) +

[
UD(r) +

6

r2

]
w(r) = −κ2w(r),

(3.29)

with US, UD and USD are the different contributions of the reduced potential, U(r) =
2µV (r), where the 3S1 − 3D1 coupled channel potential is given by

VS(r) = −4αs
3r

+
16

3

[
ac(1− e−µcr)−∆

]
,

VD(r) = −4αs
3r

+
16

3

[
ac(1− e−µcr)−∆

]
− 8acµce

−µcr

m2
cr

(3− 4as)−
20

3

αs
m2
c

1

r3
,

VSD(r) =
2
√
2

3

αs
m2
c

1

r3
.

(3.30)

Obviously, in order to describe a bound state we seek for normalizable solutions

∫ ∞

0

[
u2(r) + w2(r)

]
= 1, (3.31)

which impose conditions on the wave functions both at infinity as well as at the origin.
The set of equations (3.29) must be accompanied by asymptotic conditions at

infinity. We have a screened confining potential at large distances for both channels.
Once we have discarded the irregular function at long distances, the wave functions at
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infinity have the following behaviour

u(r) → AS e
−κ r,

w(r) → AD

(
1 +

3

κr
+

3

(κr)2

)
e−κ r, (3.32)

where AS is the normalization factor and the asymptoticD/S ratio parameter is defined
by η = AD/AS. Ideally, one would integrate the Schrödinger equation taking its
solutions at infinity, Eq. (3.32), which depend on the bound state energy and η. The
singular structure of the problem at short distances requires a specific analysis of the
coupled equations as it has been done extensively elsewhere [179] and we adapt it for
our particular case in Appendix D. The result amounts to integrate from infinity for the
physical value of MJ/ψ and η. Generally, the solutions diverge strongly at the origin,
so that the normalization of the state is precluded. However, there is a particular
value of η which guarantees that the wave function becomes normalizable. Then, if
one imposes the regularity condition at the origin one will determine η and therefore
the wave function of the bound state. In practice, however, the converging solution is
rather elusive since integrated-in solutions quickly run into diverging solution due to
the round-off errors and dominate over the converging solution.

According to Ref. [179] one may proceed as follows. One can impose different
auxiliary short-distance boundary conditions corresponding to a choice of regular
solutions at the origin

u(rc) = 0 (BC1),

u′(rc) = 0 (BC2),

w(rc) = 0 (BC3),

w′(rc) = 0 (BC4),

u(rc)−
√
2w(rc) = 0 (BC5),

u′(rc)−
√
2w′(rc) = 0 (BC6). (3.33)

All of these boundary conditions must predict the same value of η at some value of the
cutoff radius, rc. The precise convergence value corresponds to the particular choice.
As in Ref. [180] we find a better convergence for the boundary conditions BC5 and
BC6 for larger cutoff radii, which improves the numerical results.

To calculate the D/S asymptotic ratio, η, it is convenient to use the superposition
principle of boundary conditions to write

u(r) = uS(r) + ηuD(r),

w(r) = wS(r) + ηwD(r),
(3.34)

where (uS, wS) and (uD, wD) correspond to the boundary conditions at infinity,
Eq. (3.32) with AS = 1 and AD = 0 and with AS = 0 and AD = 1, respectively.
Through that decomposition the boundary conditions, BC1-BC6, can be rewritten as
algebraic expressions for η. For instance, if we use the BC6 boundary condition we get

η = − u′S(rc)−
√
2w′

S(rc)

u′D(rc)−
√
2w′

D(rc)
. (3.35)
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Once η has been calculated, the wave function of the bound state is completely
determined by the normalization factor AS

u(r) = AS(uS + η uD),

w(r) = AS(wS + η wD),
(3.36)

in which AS is obtained normalizing the wave function to one

A2
S

∫ ∞

0

[(uS + η uD)
2 + (wS + η wD)

2]dr = 1. (3.37)

The above procedure can be undertaken for the ground state of the system if its
energy is known. Now, if we want to calculate the excited states of the system we must
impose the orthogonality condition between wave functions of states with different
energy together with the regularity condition at the origin.

Thus, given the ground state and one excited state, the orthogonality condition can
be written as ∫ ∞

0

dr [u0(r)um(r) + w0(r)wm(r)] = 0, (3.38)

where it is useful to rewrite the above expression through a Lagrange identity

[u′0um − u0u
′
m + w′

0wm − w0w
′
m]
∣∣∣
∞

0
= 0. (3.39)

Note that any individual term in the integrand is actually divergent, because of
the dominance of the singular solutions at the origin. At very short distances, the
orthogonality between wave functions and the regularity condition of them have been
imposed at a certain cutoff radius, rc. Of course, we always check that the numerical
calculation is stable against suitable changes of the short-distance cutoff so that the
range rc ∼ 0.01 − 0.3 fm is sufficient. In that case, the orthogonality condition,
Eq. (3.39), can be written as

u′0(rc)um(rc) + w′
0(rc)wm(rc) = u0(rc)u

′
m(rc) + w0(rc)w

′
m(rc), (3.40)

and combining this expression with the corresponding one of the boundary conditions,
Eq. (3.33), we obtain in the case of the boundary condition BC6

w′
m(rc)√

2 um(rc) + wm(rc)
=

w′
0(rc)√

2u0(rc) + w0(rc)
, (3.41)

and similarly for all other auxiliary boundary conditions. Obviously in this case the
D/S mixing of the excited state is determined from the requirement of regularity at
the origin

ηm = −
u′S,m(rc)−

√
2w′

S,m(rc)

u′D,m(rc)−
√
2w′

D,m(rc)
. (3.42)

Results on the mass, the asymptotic D/S ratio parameter and D-wave probability
are presented in Table 3.31. The comparison between renormalization scheme and
constituent quark model with form factors is given in Table 3.32. One can see that
the agreement is completely satisfactory. Essentially, this proves that the form factors
only provide the correct mass of J/ψ. Once this is fixed the rest of the excited states
with either S or D-wave character are predicted. For completeness, Fig. 3.10 shows
the S and D-waves of the different states.
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State Mass (MeV) η PD (%)

J/ψ 3096† −0.0117 0.146
ψ(2S) 3703 +0.0112 0.221
ψ(1D) 3796 −13.2229 99.852
ψ(3S) 4098 +0.0349 0.446
ψ(2D) 4152 −10.3577 99.606
ψ(4S) 4389 +0.0563 0.758
ψ(3D) 4425 −8.8022 99.279
ψ(5S) 4614 +0.0775 1.109
ψ(4D) 4640 −7.4616 98.924

Table 3.31. Mass, in MeV, the asymptotic D/S ratio parameter and D-wave probability, in %, of JPC = 1−−

cc̄ states including S-D mixture. We take the ground state of the original model, MJ/ψ = 3096† , as input.

Renormalized scheme Form factors scheme Exp. data

State n P3S1
P3D1

M P3S1
P3D1

M M
(%) (%) (MeV) (%) (%) (MeV) (MeV)

J/ψ 1 99.85 0.15 3096† 99.96 0.04 3096 3096.916 ± 0.011
ψ(2S) 2 99.78 0.22 3703 99.96 0.04 3703 3686.093 ± 0.034

ψ(3770) 3 0.15 99.85 3796 0.03 99.97 3796 3772.92 ± 0.35
ψ(4040) 4 99.55 0.45 4098 99.94 0.06 4097 4039.6 ± 4.3
ψ(4150) 5 0.39 99.61 4152 0.06 99.94 4153 4153 ± 3
X(4360) 6 99.24 0.76 4389 99.91 0.09 4389 4361 ± 9± 9
ψ(4415) 7 0.72 99.28 4426 0.09 99.91 4426 4421 ± 4

X(4630) 8 98.89 1.11 4614 99.88 0.12 4614 4634+8+5
−7−8

X(4660) 9 1.08 98.92 4640 0.11 99.89 4641 4664 ± 11± 5

Table 3.32. Comparison of different properties of JPC = 1−− cc̄ states between the renormalization scheme
and the constituent quark model with form factors, considering coupled channels in both cases. The symbol
† indicates that the state has been fixed.

3.7.3 Generalization of the renormalization procedure

Once we have presented the renormalization ideas applied to our potential model
and we have studied the case of JPC = 1−− cc̄ states, we extend the study to the
whole spectrum of charmonium. For completeness, the bottomonium spectrum is also
presented.

Not always we can apply the renormalization procedure. It depends on the character
of the potential at short distances. The study of the solutions at the origin and the
regularity conditions gives the free parameters of the regularized theory. We can find
different cases:

• In the case of an uncoupled channel with a singular attractive potential, the
renormalization procedure implies to fix an observable. On the contrary, if the
potential is repulsive we do not have this freedom.

• In the case of a coupled channel, the number of free parameters depends on
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Figure 3.10. S and D-wave functions of the different states of the JPC = 1−− cc̄ states calculated through
the coupled renormalized model.

the values of the potential near the origin. Two attractive eigenvalues indicate
the need to establish three observables, one attractive eigenvalue requires one
parameter and finally, with two repulsive eigenvalues no parameter can be fix.

Focusing on the charmonium and bottomonium sectors, we continue working in the
nonrelativistic framework. The dynamics of the system is given by the Schrödinger
equation and the reduced one for every case can be written as

• Singlet channel (S = 0, L = J)

− u′′n(r) +

[
U0J
J,J(r) +

J(J + 1)

r2

]
un(r) = −κ2un(r), (3.43)

• Triplet uncoupled channel (S = 1, L = J)

− u′′n(r) +

[
U1J
J,J(r) +

J(J + 1)

r2

]
un(r) = −κ2un(r), (3.44)

• Triplet coupled channel (S = 1, L = J ± 1)

−u′′n(r) +
[
U1J
J−1,J−1(r) +

(J − 1)J

r2

]
un(r) + U1J

J−1,J+1(r)wn(r) = −κ2un(r),

−w′′
n(r) + U1J

J+1,J−1(r)un(r) +

[
U1J
J+1,J+1(r) +

(J + 1)(J + 2)

r2

]
wn(r) = −κ2wn(r).

(3.45)

At short distances the dominant contributions of the potential are the tensor and
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the spin-orbit terms of the OGE. These contributions when r → 0 can be written as

V T
OGE(r → 0) =

1

3

αs
m2

1

r3
〈S12〉 ,

V SO
OGE(r → 0) =

6

3

αs
m2

1

r3
〈~L · ~S 〉 .

(3.46)

We need to know their character for the different cases:

• Singlet channel (S = 0, L = J). We have 〈S12〉 = 0 and 〈~L · ~S 〉 = 0 showing
that the potential is regular and there is no observable free parameters. For the
1S0 channel we must take into account that the potential has an attractive Dirac
delta function and thus it is singular. In this case, we have to set an observable
for a regularized solution.

• Triplet uncoupled channel (S = 1, L = J). We have 〈S12〉 = +2 and 〈~L · ~S 〉 = −1,
thus the potential is singular attractive and an observable have to be fixed for a
regularized solution.

• Triplet coupled channel (S = 1, L = J±1). If we denote L = J−1 and L′ = J+1,
we will have

〈3LJ |S12|3L′
J〉 =

6
√
J(J + 1)

2J + 1
,

〈3LJ |S12|3LJ〉 = −2(J − 1)

2J + 1
,

〈3L′
J |S12|3L′

J〉 = −2(J + 2)

2J + 1
,

〈3LJ |~L · ~S|3LJ〉 = J − 1,

〈3L′
J |~L · ~S|3L′

J〉 = −(J + 2),

(3.47)

and diagonalizing the matrix of the potential we find the eigenvalues

E(J) = −10± 6
√
1 + J + J2 (3.48)

with J ≥ 1. We always have one attractive and one repulsive eigenvalue and it
requires one parameter.

Tables 3.33 and 3.34 shows the renormalized charmonium and bottomonium
spectrum, respectively. We denote this calculation as RSC(1) and it is showed in
column 5. For the channels in which the ground state can be fixed, we take the original
value provided by the constituent quark model with form factors (CQM). Column 4
shows the masses predicted by CQM. The comparison between RSC(1) and CQM
must be done taking the mass of the ground state predicted by the original model as a
parameter, this is why we denote this calculation as RSC(1). RSC(2) in column 6 is the
renormalized calculation where the experimental ground state is used when possible.
The symbol † indicates that the mass of the ground state has been established as a
parameter in RSC(1) and RSC(2). When the potential is regular or singular repulsive,
we cannot fix the mass of the ground state and the symbol † does not appear.
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Particle JPC n CQM RSC(1) RSC(2) Exp. [78]
(MeV) (MeV) (MeV) (MeV)

ηc 0−+ 1 2991 2991† 2980.3† 2980.3 ± 1.2
2 3643 3640 3634 3637 ± 4
3 4054 4050 4046

χc0 0++ 1 3452 3452† 3414.75† 3414.75 ± 0.31
2 3909 3910 3872 3915 ± 3± 2 [88]
3 4242 4243 4209

hc 1+− 1 3515 3516 3516 3525.42 ± 0.29
2 3956 3957 3957
3 4278 4279 4279

ψ 1−− 1 3096 3096† 3096.916† 3096.916 ± 0.011
2 3703 3703 3704 3686.093 ± 0.034
3 3796 3796 3796 3775.2 ± 1.7
4 4097 4097 4098 4039 ± 1
5 4153 4153 4152 4153 ± 3
6 4389 4389 4390 4361 ± 9± 9 [86]
7 4426 4426 4425 4421 ± 4

8 4614 4614 4615 4634+8+5
−7−8 [87]

9 4641 4641 4640 4664 ± 11± 5 [86]

χc1 1++ 1 3504 3504† 3510.66 3510.66 ± 0.07
2 3947 3947 3955
3 4272 4272 4278

ηc2 2−+ 1 3812 3812 3812
2 4166 4166 4166
3 4437 4437 4437

χc2 2++ 1 3531 3531† 3556.20† 3556.20 ± 0.09
2 3969 3968 3974 3929 ± 5± 2
3 4043 4043 4043

ψ2 2−− 1 3810 3810† 3810†

2 4164 4164 4164
3 4436 4436 4436

Table 3.33. Masses, in MeV, of charmonium states calculated within the constituent quark model with form
factors (CQM), the renormalized quarkonium model where the ground states have been fixed to the values
predicted by CQM (RSC(1)) and the renormalized quarkonium model where the ground states have been
fixed to the experimental data (RSC(2)). The symbol † means that the ground state is a parameter in the
renormalization scheme. We compare with the well established states in Ref. [78] and assign possible XY Z
mesons.

The agreement between predicted masses in RSC(2) and the experimental data
is good. The renormalization procedure allows to avoid unpleasant regulators that
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Particle JPC n CQM RSC(1) RSC(2) Exp. [78]
(MeV) (MeV) (MeV) (MeV)

ηb 0−+ 1 9455 9455† 9390.3† 9390.9 ± 2.8
2 9990 9989 9957
3 10330 10329 10306

χb0 0++ 1 9855 9855† 9859.44† 9859.44 ± 0.42 ± 0.31
2 10221 10221 10226 10232.5 ± 0.4± 0.5
3 10500 10500 10505

hb 1+− 1 9879 9879 9879 9898.25 ± 1.06+1.03
−1.07

2 10240 10241 10241 10259.76 ± 0.64+1.43
−1.03

3 10516 10516 10516

Υ 1−− 1 9502 9502† 9460.3† 9460.30 ± 0.26
2 10015 10015 9992 10023.26 ± 0.31
3 10117 10117 10117
4 10349 10349 10331 10355.2 ± 0.5
5 10414 10414 10414
6 10607 10607 10592 10579.4 ± 1.2
7 10653 10653 10653
8 10818 10818 10805 10865 ± 8
9 10853 10853 10853
10 10995 10995 10984 11019 ± 8
11 11023 11023 11023

χb1 1++ 1 9874 9874† 9892.78† 9892.78 ± 0.26 ± 0.31
2 10236 10236 10254 10255.46 ± 0.22 ± 0.50
3 10513 10513 10527

ηb2 2−+ 1 10123 10123 10123
2 10419 10419 10419
3 10658 10658 10658

χb2 2++ 1 9886 9886† 9912.21† 9912.21 ± 0.26 ± 0.31
2 10246 10246 10248 10268.65 ± 0.22 ± 0.50
3 10315 10315 10315

Υ2 2−− 1 10122 10122† 10163.7† 10163.7 ± 1.4
2 10418 10418 10418
3 10657 10657 10657

Table 3.34. Masses, in MeV, of bottomonium states calculated within the constituent quark model with form
factors (CQM), the renormalized quarkonium model where the ground states have been fixed to the values
predicted by CQM (RSC(1)) and the renormalized quarkonium model where the ground states have been
fixed to the experimental data (RSC(2)). The symbol † means that the ground state is a parameter in the
renormalization scheme. We compare with the well established states in Ref. [78].



74 3.7. RENORMALIZATION APPROACH TO THE CQM

State ΓCQM BCQM ΓExp. BExp.

ηc(1S) 22.23 7.77× 10−4 6.7+0.9
−0.8 (6.3 ± 2.9) × 10−5

ηc(2S) 17.95 1.28× 10−3 1.3 ± 0.6 < 5× 10−4

ηc(3S) 16.98 - - -

Table 3.35. Annihilation rates of the ηc states into two photons, in keV, calculated with the constituent quark
model with form factors (CQM).

triggers unwanted short-distance sensitivities. The only prize to pay is to treat the
mass of the ground state, which is very well known experimentally, as a parameter.
Indeed the use of regulators mainly hides the fact that the ground state is actually
being used as an input rather than a prediction for the potential models.

Focusing on the CQM and RSC(1) calculations, one can see that the agreement is
completely satisfactory. It provides confidence on the way the original model took into
account the unknown short-distance dynamics.

3.7.4 Study of the ηc → γγ decay

The ηc(1S) was seen long time ago, but the ηc(2S) is the subject of numerous
experimental studies since it was observed in 2002 by the Belle Collaboration [25].
The γγ-fusion to KK̄π final states is one of the most favorite reactions to find the
ηc(2S) state, there are data from BaBar [26], CLEO [27] and Belle [113]. This reaction
allows to measure the 2γ decay width of the ηc(2S). In fact, the PDG [78] reports
Γγγ(ηc(1S)) = 6.7+0.9

−0.8 keV and Γγγ(ηc(2S)) = 1.3 ± 0.6 keV based mainly on the work
published by the CLEO Collaboration [27]. The CLEO Collaboration have reported
also the branching ratio

R =
Γ(ηc(2S) → γγ)

Γ(ηc(1S) → γγ)

B(ηc(2S) → KSKπ)

B(ηc(1S) → KSKπ)
= 0.18± 0.05± 0.02. (3.49)

The OGE potential has a spin-spin contact hyperfine interaction which is
proportional to a Dirac delta function. We have regularized it in a suitable way by
replacing the Dirac delta function by a Yukawa form within the constituent quark
model with form factors. This term allows us to determine the hyperfine splittings
between the n1S0 and n3S1 states. They have been measured experimentally for the
ground and the first excitation to be m(J/ψ) − m(ηc(1S)) = 116.6 ± 1.2MeV and
m(ψ(2S))−m(ηc(2S)) = 49.1±4.0MeV. We obtain reasonable values of 106MeV and
60MeV, respectively.

Despite of the good description of masses, we have seen that the two photon
annihilation rates of the ηc states are in strongly disagreement with the experimental
data when they are calculated with the constituent quark model with form factors, see
Table 3.35. This is because the spin-spin interaction for the 1S0 channel is attractive
and to give a good description of the mass, we have reduced artificially the range of
the wave function peaking up its value at the origin.

The calculation of the annihilation rates of the ηc states into 2γ within the
renormalization scheme provides another opportunity to address the interesting issue
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CQM RSC(1) RSC(2) Exp.

R̃(2S)× B̃ 0.15 ± 0.10 0.10 ± 0.07 0.10 ± 0.07 0.18 ± 0.05± 0.02

R̃(3S) 0.42 0.22 0.21 -

Table 3.36. The CLEO branching ratio calculated in the CQM with form factors (CQM) and in the
renormalization scheme taking as an input the ground state mass predicted by CQM (RSC(1)) and its

experimental value (RSC(2)). We give also the R̃(3S) ratio, which provides a 2γ decay rate for the ηc(3S).

State RCQM RRSC(1) RRSC(2) RExp.

Υ(2S) 0.52 0.5228 0.4850 0.457 ± 0.010
Υ(3S) 0.38 0.3780 0.3426 0.331 ± 0.007
Υ(4S) 0.30 0.2984 0.2670 0.203 ± 0.022
Υ(5S) 0.25 0.2452 0.2174 0.231 ± 0.052
Υ(6S) 0.21 0.2059 0.1814 0.097 ± 0.002

Table 3.37. The ratio R for 1−− S-wave bb̄ states calculated within the CQM with form factors (CQM) and
within the renormalization scheme taking as an input the ground state mass predicted by CQM (RSC(1)) and
its experimental value (RSC(2)). The experimental data are taken from Ref. [78].

of the wave function renormalization. We may predict decay ratios as

R̃ =
Γ (n1S0 → γγ)

Γ (11S0 → γγ)
=

|RnS(0)|2
|R1S(0)|2

M2
1

M2
n

, (3.50)

where the two photon decay rate of a n1S0 state is given by Eq. (C.21) without the
approximation Mn ∼ 2mc.

To compare our theoretical result with the branching ratio reported by CLEO,
Eq. (3.49), we need the additional information

B̃ =
B(ηc(2S) → KSKπ)

B(ηc(1S) → KSKπ)
= 0.27± 0.18, (3.51)

that has been taken from PDG [78]. Table 3.36 shows our theoretical result for the
CLEO branching ratio calculated in the constituent quark model with form factors
(CQM) and in the renormalization scheme taking as an input the ground state mass
predicted by CQM (RSC(1)) and its experimental value (RSC(2)). We give also in the

Table 3.36 the R̃(3S) ratio, which provides a 2γ decay rate for the ηc(3S) in the order
of (0.2− 0.4)× Γγγ(ηc(1S)).

We conclude that despite of our prediction of the absolute values for the two photon
decay widths of ηc(1S) and ηc(2S) are in strong disagreement with the experimental
data, the constituent quark model predicts a ratio between them in good agreement
with the CLEO branching ratio. As the experimental errors are still large, the
renormalization approach obtains also a reasonable ratio. In view of what we have
for the masses and the ratios, we predict that in γγ-fusion to KK̄π final states should
be traces of the ηc(3S) in the energy region of 4.05GeV with a strength production
Γγγ(ηc(3S)) = (0.2− 0.4)× Γγγ(ηc(1S)).
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Figure 3.11. The dependence of the ratio R for the 1−− S-wave bb̄ states on the strong coupling constant,
αs.

3.7.5 Study of the leptonic decay widths of S-wave Υ states

The renormalization approach can be applied to the calculation of the leptonic widths of
1−− S-wave states of bottomonium. As in the case of 1−− S-wave states of charmonium,
we predict decay ratios, R, given by Eq. (3.27) which means that a common wave
function renormalization is implemented and factors out in the ratio.

We show our results for the ratio R in Table 3.37. Column 2 are the theoretical
values calculated with the quark model with form factors (CQM) and columns 3 and
4 are the values calculated within the renormalization approach when the mass of the
ground state is fixed to the CQM prediction (RSC(1)) and to the experimental value
(RSC(2)), respectively.

One can see that we obtain similar results within the CQM and the RSC(1).
Our values in these two schemes are in reasonable agreement with the experimental
ones. However, RSC(2) improves the results, bringing them closer to the experimental
values. In fact, the theoretical ratios, R, for the Υ(2S) and Υ(3S) states are close to
the experimental ones. For the Υ(4S) and Υ(5S) resonances we obtain a reasonable
agreement between theory and experiment, note that the experimental pattern seems
to change for these two states. In the case of the Υ(6S) resonance our value is higher
than the experimental one. Remind that the open-bottom threshold, 10.56GeV, is
located just bellow the mass of the Υ(4S) state.

Figure. 3.11 shows the dependence of the ratio for the S-wave states along the range
of strong coupling constant, αs. The range is in percentage level equal than in the case
of the 1−− S-wave charmonium states. The vertical line indicates our value for αs
in the bottomonium sector. We find a stronger dependence on the strong coupling
constant as expected since the leptonic decay width is a short range observable.



Chapter 4

Strong decays of heavy mesons

Meson strong decay is a complex nonperturbative process that has not yet been
described from first principles of QCD. This is a rather poorly understood area of
hadronic physics and it is unfortunate because decay widths comprise a large portion
of our knowledge of the strong interaction.

Several phenomenological models have been developed to deal with this topic, like
the 3P0 model [181–183], the flux-tube model [173, 184, 185], or microscopic models
(see Refs. [34, 95, 186, 187]). The difference between the two approaches lies on the
description of the qq̄ creation vertex. While the 3P0 and the flux-tube models assume
that the qq̄ pair is created from the vacuum, in the microscopic decay models the qq̄
pair is created from the interquark interactions which determine the spectrum.

Focusing on the microscopic decay models presented in Refs. [34, 186] and [187],
the main ingredients are the one-gluon exchange and the linear confinement. The
difference between them lies in the Lorentz structure of the confinement, being vector
for Refs. [34, 186] and scalar for Ref. [187]. Phenomenology suggests that confinement
has to be dominantly scalar in order to reproduce the hyperfine splittings observed in
Quarkonium, as seen in Sec 3.5. Strong decays may provide some information about
the Lorentz structure.

Inspired on Refs. [34, 186, 187] we explore a microscopic decay model assuming
that the interquark interactions which cause the strong decays are the contributions of
our potential model, the one-gluon exchange and the screened linear confinement. We
study the possible influence of the mixture of scalar and vector Lorentz structures in
the confinement.

4.1 The 3P0 decay model

The 3P0 model was first proposed by Micu [181]. The meson decay process A→ B+C
is described by the 3P0 model assuming that a quark-antiquark pair is created with
vacuum quantum numbers, JPC = 0++. The strength γ of the decay interaction is
regarded as a free constant and is fitted to the data.

Le Yaouanc et al. applied subsequently the 3P0 model to meson [182] and
baryon [183] open-flavor strong decays in a series of publications in the 1970s. They
also evaluated strong decay partial widths of the three charmonium states ψ(3770),
ψ(4040) and ψ(4415) in the 3P0 model [188, 189].

The 3P0 model, which has since been applied extensively to the decays of light
mesons and baryons, was originally adopted largely due to its success in the prediction

77
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of the D/S amplitude ratio in the decay b1 → ωπ. Another success of the decay model
is that it predicts a zero branching fraction B(π2(1670) → b1π) and the experimental
upper limit is < 1.9 × 10−3 at 97.7% confidence level. It would not be necessarily
negligible in a different decay model or if final state interactions were important.

Recent variants of the 3P0 model modify the pair production vertex [190] or
modulate the spatial dependence of the pair-production amplitude to simulate a
gluonic flux-tube [184]. The latter is the flux-tube decay model and gives very similar
predictions to the 3P0 one.

4.1.1 Transition operator

The interaction Hamiltonian involving Dirac quark fields that describes the production
process is given by

HI =
√
3 gs

∫
d3x ψ̄(~x)ψ(~x), (4.1)

where we have introduced for convenience the numerical factor
√
3, which will be

canceled with the color factor. As in Ref. [187], we want to keep the relation of gs with
the dimensionless constant giving the strength of the quark-antiquark pair creation
from the vacuum as γ = gs/2m, being m the mass of the created quark (antiquark).

If we write the Dirac fields in second quantization as

ψ(~x) =
∑

ν

∫
d3pν

(2π)3/2

√
mν

E~pν

[
aν(~pν)uν(~pν)e

+i~pν ·~x + b†ν(~pν)vν(~pν)e
−i~pν ·~x

]
,

ψ̄(~x) =
∑

µ

∫
d3pµ

(2π)3/2

√
mµ

E~pµ

[
bµ(~pµ)v̄µ(~pµ)e

+i~pµ·~x + a†µ(~pµ)ūµ(~pµ)e
−i~pµ·~x

]
,

(4.2)

where µ (ν) are the spin, flavor and color quantum numbers of the quark (antiquark),
the interaction Hamiltonian is given by

HI =
√
3 gs

∑

µ,ν

∫
d3pµd

3pν

√
mµmν

E~pµE~pν
[
+bµ(~pµ)aν(~pν)v̄µ(~pµ)uν(~pν)δ

(3)(~pµ + ~pν) + bµ(~pµ)b
†
ν(~pν)v̄µ(~pµ)vν(~pν)δ

(3)(~pµ − ~pν)

+a†µ(~pµ)aν(~pν)ūµ(~pµ)uν(~pν)δ
(3)(~pµ − ~pν) + a†µ(~pµ)b

†
ν(~pν)ūµ(~pµ)vν(~pν)δ

(3)(~pµ + ~pν)
]
,

(4.3)

where we have integrated in x to get the δ-functions. The only contribution of the
interaction Hamiltonian which creates a (µν) quark-antiquark pair is the fourth one.
Therefore the transition operator can be written as

T =
√
3 gs

∑

µ,ν

∫
d3pµd

3pν

√
mµmν

E~pµE~pν
a†µ(~pµ)b

†
ν(~pν)ūµ(~pµ)vν(~pν)δ

(3)(~pµ + ~pν). (4.4)

The nonrelativistic reduction of Eq. (4.4), see Appendix E, gives

T = −
√
3
∑

µ,ν

∫
d3pµd

3pνδ
(3)(~pµ+~pν)

gs
2mµ

√
25π

[
Y1

(
~pµ − ~pν

2

)
⊗
(
1

2

1

2

)
1

]

0

a†µ(~pµ)b
†
ν(~pν),

(4.5)
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Figure 4.1. Diagrams that contribute to the decay width through the 3P0 model.

where the spin of the quark and antiquark is coupled to one. The Ylm(~p ) = plYlm(p̂)

is the solid harmonic defined in function of the spherical harmonic. The factor
√
25π

can be absorbed in the definition of γ′ = (gs/2mµ)
√
25π. The strength of the decay

interaction is considered as a free parameter of the 3P0 model which is ultimately fixed
by the experimental data. Our final expression for the transition operator is

T = −
√
3 γ′

∑

µ,ν

∫
d3pµd

3pνδ
(3)(~pµ + ~pν)

[
Y1

(
~pµ − ~pν

2

)
⊗
(
1

2

1

2

)
1

]

0

a†µ(~pµ)b
†
ν(~pν).

(4.6)

4.1.2 Transition amplitude

We are interested on the transition amplitude for the reaction (αβ)A → (δǫ)B +(λρ)C .
The meson A is formed by a quark α and antiquark β. At some point it is created a
(µν) quark-antiquark pair. The created (µν) pair together with the (αβ) pair in the
original meson regroups in the two outgoing mesons via a quark rearrangement process.
These final mesons are meson B which is formed by the quark-antiquark pair (δǫ) and
meson C with (λρ) quark-antiquark pair.

We work in the center-of-mass reference system of meson A, thus we have ~KA =
~K0 = 0 with ~KA and ~K0 the total momentum of meson A and of the system BC with
respect to a given reference system. We can factorize the matrix element as follow

〈BC|T |A〉 = δ(3)( ~K0)MA→BC . (4.7)

The initial state in second quantization is

|A〉 =
∫
d3pαd

3pβδ
(3)( ~KA − ~PA)φA(~pA)a

†
α(~pα)b

†
β(~pβ) |0〉 , (4.8)

where α (β) are the spin, flavor and color quantum numbers of the quark (antiquark).
The wave function φA(~pA) denotes a meson A in a color singlet with an isospin IA with
proyection MIA , a total angular momentum JA with proyection MA, JA is the coupling
of angular momentum LA and spin SA. The ~pα and ~pβ are the momentum of quark and

antiquark, respectively. The ~PA and ~pA are the total and relative momentum of the
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(αβ) quark-antiquark pair within the meson A. The final state is more complicated
than the initial one because it is a two-meson state. It can be written as

|BC〉 = 1√
1 + δBC

∫
d3KBd

3KC

∑

m,MBC

〈JBCMBC lm|JTMT〉 δ(3)( ~K − ~K0)δ(k − k0)

Ylm(k̂)

k

∑

MB,MC ,MIB
,MIC

〈JBMBJCMC |JBCMBC〉 〈IBMIBICMIC |IAMIA〉

∫
d3pδd

3pǫd
3pλd

3pρδ
(3)( ~KB − ~PB)δ

(3)( ~KC − ~PC)

φB(~pB)φC(~pC)a
†
δ(~pδ)b

†
ǫ(~pǫ)a

†
λ(~pλ)b

†
ρ(~pρ) |0〉 ,

(4.9)

where we have followed the notation of meson A for the mesons B and C. We assume
that the final state of mesons B and C is a spherical wave with angular momentum l.

The relative and total momentum of mesons B and C are ~k0 and ~K0. The total spin
JBC is obtained coupling the total angular momentum of mesons B and C, and JT is
the coupling of JBC and l.

The 3P0 model takes into account only diagrams in which the (µν) quark-antiquark
pair separates into the different final mesons. This was originally motivated by the
experiment and it is known as the Okubo-Zweig-Iizuka (OZI)-rule [191–193] which
tells us that the disconnected diagrams are more suppressed than the connected ones.
The diagrams that can contribute to the decay width through the 3P0 model are shown
in Fig. 4.1, we have two cases:

• Case in which α = µ = β̄. The two diagrams, d1 and d2, contribute to the decay
amplitude. The contribution of diagram d1 is MA→BC and the contribution from
diagram d2 can be calculated from the amplitude of the d1 diagram changing
meson B and C (MA→CB), so the total amplitude is given by

MA→BC =MA→BC + (−1)IB+IC−IA+JB+JC−JBC+lMA→CB. (4.10)

• Other case. Only one of the two diagrams contribute to the amplitude

MA→BC =MA→BC . (4.11)

When the initial A meson has definite C-parity we have to use final states with
definite C-parity. If CB = C the state has definite C-parity and the amplitude is given
by the above rules. If CB 6= C then the appropriate C-parity combination has to be
taken and this gives a factor

√
2 in the amplitude (or the amplitude cancels for the

wrong C-parity, see Section E.5).
For illustration we build the result for diagram d1. The amplitude MA→BC is a

product of a Fermi signature phase, a color factor, a flavor factor and a spin-space
overlap integral

MA→BC = Isignature × Icolor × Iflavor × Ispin−space. (4.12)
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Figure 4.2. Color factor of diagram d1.

Fermi signature phase, Isignature
The matrix element 〈BC|T |A〉 contains creation and destruction operators. The Fermi
signature arises from the ordering of the quark and antiquark operators. It may be
read off from the diagram as the number of line crossings, in the case of diagram d1 we
have

Isignature = (−1)3 = −1. (4.13)

Color factor, Icolor
We show in Fig 4.2 the color wave functions for the initial and final mesons and the
color operators. We have

Icolor =
1

3
3
2

∑

i,j

∑

k,l

∑

m,n

δijδklδmnδjnAmlBki

=
1

3
3
2

∑

j,l,n

δjnAnlBlj

=
1

3
3
2

∑

l,n

AnlBln

=
1

3
3
2

Tr(AB),

(4.14)

where the operators are A = I and B = I, and we arrive at

Icolor =
1√
3
. (4.15)

This factor is canceled with the numerical one that we have introduced ad hoc in
Eq. (4.1).

Flavor factor, Iflavor
For the flavor sector we have

Iflavor = (−1)tα+tβ+IA
√
(2IB + 1)(2IC + 1)

{
tβ IC tµ
IB tα IA

}
, (4.16)
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where tξ is the isospin of a given quark or antiquark ξ. Note that the isospin operator
in the creation vertex is uū+ dd̄+ ss̄.

Spin-space overlap integral, Ispin−space

The spin-space overlap integral for the diagram d1 reads as follow

Ispin−space =−
√
3 γ′

1√
1 + δBC

∫
d3KBd

3KCd
3pαd

3pβd
3pµd

3pνδ
(3)( ~K − ~K0)

δ(3)( ~KB − ~PB)δ
(3)( ~KC − ~PC)δ

(3)(~pµ + ~pν)δ
(3)( ~PA)

δ(k − k0)

k

〈{[[φB(~pB)(sαsν)SB] JB [φC(~pC)(sµsβ)SC ]JC ] JBCYl(k̂)} JT |

{[φA(~pA)(sαsβ)SA] JA [Y1

(
~pµ − ~pν

2

)
(sµsν)1] 0} JA〉 ,

(4.17)

where sξ is the spin of a given quark or antiquark ξ. One can decouple the spin and
angular momentum terms through Eq. (E.8) such that the Eq. (4.17) can be written
as

Ispin−space = −
√
3 γ′

1√
1 + δBC

∑

LBC ,L,S

J (A→ BC)E(A→ BC), (4.18)

where

J (A→ BC) =δJT JA (−1)LA+JA+JBC+l+L+SC
√
(2JB + 1)(2JC + 1)(2JBC + 1)(2LBC + 1)

√
(2SA + 1)(2SB + 1)(2SC + 1)(2L+ 1)(2S + 1)

{
SA LA JA
L S 1

}

{
S LBC JBC
l JT L

}


1/2 1/2 SB
1/2 1/2 SC
SA 1 S









LB SB JB
LC SC JC
LBC S JBC



 ,

E(A→ BC) =

∫
d3KBd

3KCd
3pαd

3pβd
3pµd

3pνδ
(3)( ~K − ~K0)

δ(3)( ~KB − ~PB)δ
(3)( ~KC − ~PC)δ

(3)(~pµ + ~pν)δ
(3)( ~PA)

δ(k − k0)

k

〈{[φB(~pB)φC(~pC)]LBCYl(k̂)}L| {φA(~pA)Y1

(
~pµ − ~pν

2

)
}L〉 .

(4.19)

The analytical expression for E(A → BC) has been given in Ref. [194] when the
radial wave function of the mesons involved in the reaction is expanded in terms of
Gaussian basis functions. Details of the formalism following Ref. [194] can be found
in Appendix E. We will calculate de different matrix elements that appear in the
microscopic decay model in the same way.

4.2 The microscopic decay model

The microscopic decay models are an attempt to describe the strong decays in terms
of quark and gluon degrees of freedom. They assume that the strong decays are driven
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by the same interquark Hamiltonian which determines the spectrum.
However, there has been little previous work in this area. Two different examples

are the study of open-charm decays of cc̄ resonances by Eichten et al. in their original
work [34, 95] and in its updated version [186], and the study of a few strong decays in
the light sector by Ackleh et al. [187].

In Refs. [34, 95, 186] the pair production amplitude transforms as the time
component of a Lorentz vector and it is given by the linear confining term of the
potential model. The wave function of the charmonium states is the solution for the
potential model while the wave function of the open-charm mesons is approximated by
a Gaussian function. They performed a coupled channel calculation between cc̄ and
meson-meson sectors. The decay rates into some open-charm channels and the total
decay width are given for ψ(3770), ψ(4040) and ψ(4160) resonances.

Ackleh et al. in Ref. [187] assumes that the qq̄ pair production is driven by the one-
gluon exchange and the scalar linear confining interactions. Meson wave functions are
those of a simple harmonic oscillator which allow them to obtain analytical expressions
for the decay rates. They applied the model to the light quark sector.

Inspired in the last references, our microscopic decay model, which will be applied
to the heavy quark sector, takes the one-gluon exchange and the confining potentials
as the kernels of the interaction Hamiltonian that determines the strong decays. Our
confinement is a screened linear potential with a mixture of scalar and vector Lorentz
structures. The wave function of mesons are the solutions of the Schrödinger equation
with the potential model using the Gaussian expansion method.

4.2.1 Transition operator

The one-gluon exchange and the confinement interactions are the only non zero
contributions in our model. Their associated decay amplitudes are undoubtedly all
present and should be added coherently. Therefore, the current-current interactions
can be written in the generic form as [187]

HI =
1

2

∫
d3xd3y Ja(~x)K(|~x− ~y|)Ja(~y). (4.20)

The current Ja in Eq. (4.20) is assumed to be a color octet. The currents, J , with the
color dependence λa/2 factored out and the kernels, K(r), for the interactions are

• Currents

J(~x) = ψ̄(~x) Γψ(~x) =





ψ̄(~x) I ψ(~x) Scalar Lorentz current,

ψ̄(~x) γ0 ψ(~x) Static part of vector Lorentz current,

ψ̄(~x)~γ ψ(~x) Spatial part of vector Lorentz current.

(4.21)

• Kernels

K(r) =






−4as [−ac(1− e−µcr) + ∆] Confining interaction,

+αs
r

Color Coulomb OGE,

−αs
r

Transverse OGE.

(4.22)
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For the Lorentz vector structure of the confinement we use

K(r) = ±4(1 − as)
[
−ac(1− e−µcr) + ∆

]
, (4.23)

where ± refers to static and transverse terms, respectively. Following Ref. [187], we
refer to this general type of interaction as a JKJ decay model, and to the specific cases
considered here as sKs, j0Kj0 and jTKjT interactions.

The interaction Hamiltonian in function of the Dirac quark fields in second
quantization, see Eq. (4.2), is given by

HI =
1

2

∫
d3xd3y

{[∫
d3p1

(2π)3/2

√
m1

E~p1

∑

r1

[
br1(~p1)v̄r1(~p1)e

+i~p1·~x + a†r1(~p1)ūr1(~p1)e
−i~p1·~x

]
]

Γ

[∫
d3p2

(2π)3/2

√
m2

E~p2

∑

r2

[
ar2(~p2)ur2(~p2)e

+i~p2·~x + b†r2(~p2)vr2(~p2)e
−i~p2·~x

]
]}

K(|~x− ~y|)
{[∫

d3p3
(2π)3/2

√
m3

E~p3

∑

r3

[
br3(~p3)v̄r3(~p3)e

+i~p3·~y + a†r3(~p3)ūr3(~p3)e
−i~p3·~y

]
]

Γ

[∫
d3p4

(2π)3/2

√
m4

E~p4

∑

r4

[
ar4(~p4)ur4(~p4)e

+i ~p4·~y + b†r4(~p4)vr4(~p4)e
−i~p4·~y

]
]}

.

(4.24)

If one considers only the contributions in which a quark-antiquark pair is created, the
interaction Hamiltonian reduces to the following transition operator

T =

∫
d3xd3y

1

2
K(|~x− ~y|)

∫
d3p1d

3p2d
3p3d

3p4
(2π)6

√
m1m2m3m4

E~p1E~p2E~p3E~p4

∑

r1

∑

r2

∑

r3

∑

r4[
+br1(~p1)b

†
r2(~p2)a

†
r3(~p3)b

†
r4(~p4) [v̄r1(~p1)Γvr2(~p2)] [ūr3(~p3)Γvr4(~p4)] e

+i(~p1−~p2)·~xe−i(~p3+~p4)·~y

+ a†r1(~p1)ar2(~p2)a
†
r3(~p3)b

†
r4(~p4) [ūr1(~p1)Γur2(~p2)] [ūr3(~p3)Γvr4(~p4)] e

−i(~p1−~p2)·~xe−i(~p3+~p4)·~y

+ a†r1(~p1)b
†
r2(~p2)br3(~p3)b

†
r4(~p4) [ūr1(~p1)Γvr2(~p2)] [v̄r3(~p3)Γvr4(~p4)] e

−i(~p1+~p2)·~xe+i(~p3−~p4)·~y

+a†r1(~p1)b
†
r2
(~p2)a

†
r3
(~p3)ar4(~p4) [ūr1(~p1)Γvr2(~p2)] [ūr3(~p3)Γur4(~p4)] e

−i(~p1+~p2)·~xe−i(~p3−~p4)·~y
]
,

(4.25)

where the first term is equal to the third one. This can be seen exchanging the ~x and
~y variables in the first term and then, changing 1 ↔ 3 and 2 ↔ 4 particles taking into
account the anti-commutation rules of the creation and destruction operators to arrive
at the third term. This is possible because the kernel depends on ~x and ~y as |~x − ~y|.
The same occurs with the second and fourth terms. Therefore we have a factor two
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and we can write the transition operator as

T =

∫
d3xd3y K(|~x− ~y|)

∫
d3p1d

3p2d
3p3d

3p4
(2π)6

√
m1m2m3m4

E~p1E~p2E~p3E~p4

∑

r1,r2,r3,r4[
+a†r1(~p1)b

†
r2
(~p2)a

†
r3
(~p3)ar4(~p4) [ūr1(~p1)Γvr2(~p2)] [ūr3(~p3)Γur4(~p4)] e

−i(~p1+~p2)·~xe−i(~p3−~p4)·~y

+a†r1(~p1)b
†
r2
(~p2)br3(~p3)b

†
r4
(~p4) [ūr1(~p1)Γvr2(~p2)] [v̄r3(~p3)Γvr4(~p4)] e

−i(~p1+~p2)·~xe+i(~p3−~p4)·~y
]
,

(4.26)

where the first and second terms refer to the qq̄ pair creation from the quark line and
from the antiquark line, respectively. The diagram representation of these two terms
can be seen in Fig. 4.3, diagrams d1q and d1q̄. For illustration we build the result from
the diagram d1q, the transition operator is

T =

∫
d3xd3y K(|~x− ~y|)

∫
d3p1d

3p2d
3p3d

3p4
(2π)6

√
m1m2m3m4

E~p1E~p2E~p3E~p4

∑

r1,r2,r3,r4

[ a†r1(~p1)b
†
r2(~p2)a

†
r3(~p3)ar4(~p4) [ūr1(~p1)Γvr2(~p2)] [ūr3(~p3)Γur4(~p4)] e

−i(~p1+~p2)·~xe−i(~p3−~p4)·~y ] .
(4.27)

The calculation of the diagram d1q̄ can be followed from that of the diagram d1q. If the
initial meson is formed by a quark and an antiquark with equal masses, the contribution
of both diagrams to the decay rate is the same and they contribute constructively.

Now we can integrate in ~x and ~y

T =

∫
d3p1d

3p2d
3p3d

3p4K(| ~Q|) δ(3)(~p1 + ~p2 + ~p3 − ~p4)

√
m1m2m3m4

E~p1E~p2E~p3E~p4∑

r1,r2,r3,r4

[
a†r1(~p1)b

†
r2
(~p2)a

†
r3
(~p3)ar4(~p4) [ūr1(~p1)Γvr2(~p2)] [ūr3(~p3)Γur4(~p4)]

]
,

(4.28)

where ~Q = ~p1 + ~p2 = ~p4 − ~p3 is the momentum transferred, and the δ-function implies
the momentum conservation.

4.2.2 Transition amplitude

We are interested on the transition amplitude for the reaction (αβ)A → (δǫ)B +(λρ)C .

In the center-of-mass reference system of meson A one has ~KA = ~K0 = 0 and the
matrix element factorizes as follow

〈BC|T |A〉 = δ(3)( ~K0)MA→BC , (4.29)

where the initial and final states are defined in Eqs. (4.8) and (4.9).
The diagrams that contribute to the reaction and are allowed by the transition

operator are shown in Fig. 4.3. Two of them are coming from the quark line, d1q and
d2q, and take into account the different rearrangement of the quarks and antiquarks in
the final mesons. The other two diagrams are referred to the antiquark line, d1q̄ and
d2q̄. As in the case of the 3P0 model, we have different cases:
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Figure 4.3. Diagrams that contribute to the decay width through the microscopic model.

• Case in which α = µ = β̄. The two diagrams, d1q and d2q, contribute to the decay
amplitude. The contribution of diagram d1q is MA→BC and the contribution from
diagram d2q can be calculated from the amplitude of the d1q diagram changing
meson B and C (MA→CB), so the total amplitude is given by

MA→BC =MA→BC + (−1)IB+IC−IA+JB+JC−JBC+lMA→CB. (4.30)

• Other case. Only one of the two diagrams contribute to the amplitude

MA→BC =MA→BC . (4.31)

If the quark and antiquark in the original meson are the same then the contribution
of diagram d1q (d2q) is equal to the diagram d1q̄ (d2q̄) and both contribute constructively.
In other case they have to be calculated separately.

When the initial A meson has definite C-parity one has to take it into account in
the same way as already mentioned in the 3P0 model.

For illustration we build the result from the diagram d1q (MA→BC). The amplitude
is a product of a Fermi signature phase, a color factor, a flavor factor and a spin-space
overlap integral

MA→BC = Isignature × Icolor × Iflavor × Ispin−space. (4.32)

Fermi signature phase, Isignature
The Fermi signature can be read off from the diagram as the number of line crossings
because it arises from the ordering of the quark and antiquark operators. In the case
of d1q diagram we have

Isignature = (−1)3 = −1. (4.33)
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Figure 4.4. Color factor of diagram d1q .

Color factor, Icolor

Fig 4.4 shows the color wave functions for the initial and final mesons and the color
operators which appear in the vertex. We have

Icolor =
1

3
3
2

∑

i,j

∑

k,l

∑

m,n

δijδklδmnδjnAmlBki

=
1

3
3
2

∑

j,l,n

δjnAnlBlj

=
1

3
3
2

∑

l,n

AnlBln

=
1

3
3
2

Tr(AB),

(4.34)

where the operators are A = B = λa

2
with a sum over the color index, a, and we arrive

at

Icolor = +
22

3
3
2

. (4.35)

Flavor factor, Iflavor

The isospin operator for this decay mechanism is the same as in the 3P0 model, therefore
the flavor factor is

Iflavor = (−1)tα+tβ+IA
√
(2IB + 1)(2IC + 1)

{
tβ IC tµ
IB tα IA

}
, (4.36)

where tξ is the isospin of a given quark or antiquark ξ.
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Spin-space overlap integral, Ispin−space

The spin-space overlap integral for the diagram d1q: 1 ↔ µ, 2 ↔ ν, 3 ↔ δ′ and 4 ↔ α′,
reads as follow

Ispin−space =
1√

1 + δBC

∑

m,MBC ,MB ,MC

〈JBCMBC lm|JTMT 〉 〈JBMBJCMC |JBCMBC〉
∫
d3KBd

3KCd
3pδd

3pǫd
3pλd

3pρd
3pµd

3pνd
3pδ′d

3pα′d3pαd
3pβ

√
mµmνmδ′mα′

E~pµE~pνE~pδ′E~pα′

δ(3)( ~K − ~K0)δ(k − k0)δ
(3)( ~KB − ~PB)δ

(3)( ~KC − ~PC)δ
(3)(~PA)

Ylm(k̂)

k
φB(~pB)φC(~pC)φA(~pA)K(|~pµ + ~pν |)δ(3)(~pµ + ~pν + ~pδ′ − ~pα′)
∑

α′,δ′,µ,ν

δα′αδ
(3)(~pα′ − ~pα)δδδ′δ

(3)(~pδ − ~pδ′)δǫνδ
(3)(~pǫ − ~pν)δλµδ

(3)(~pλ − ~pµ)

δρβδ
(3)(~pρ − ~pβ) [ūµ(~pµ)Γvν(~pν)] [ūδ′(~pδ′)Γuα′(~pα′)] .

(4.37)

Now using some δ-functions in momentum and spin of quarks (antiquarks) we can
simplify the above expression

Ispin−space =
1√

1 + δBC

∑

m,MBC ,MB,MC

〈JBCMBC lm|JTMT 〉 〈JBMBJCMC |JBCMBC〉
∫
d3KBd

3KCd
3pδd

3pρd
3pµd

3pνd
3pαd

3pβ

√
mµmνmδmα

E~pµE~pνE~pδE~pα

δ(3)( ~K − ~K0)δ(k − k0)δ
(3)( ~KB − ~PB)δ

(3)( ~KC − ~PC)δ
(3)(~PA)

Ylm(k̂)

k
φB(~pB)φC(~pC)φA(~pA)K(|~pµ + ~pν |)δ(3)(~pδ − (~pα − ~pµ − ~pν))

δρβδ
(3)(~pρ − ~pβ) [ūµ(~pµ)Γvν(~pν)] [ūδ(~pδ)Γuα(~pα)] .

(4.38)

The nonrelativistic reduction of Eq. (4.38) without specifying the JKJ decay model is

Ispin−space =
1√

1 + δBC

∑

m,MBC ,MB,MC

〈JBCMBC lm|JTMT 〉 〈JBMBJCMC |JBCMBC〉

∫
d3KBd

3KCd
3pδd

3pρd
3pµd

3pνd
3pαd

3pβ δ
(3)( ~K − ~K0)δ(k − k0)

Ylm(k̂)

k

δ(3)( ~KB − ~PB)δ
(3)( ~KC − ~PC)δ

(3)(~PA)φB(~pB)φC(~pC)φA(~pA)

K(|~pµ + ~pν |)δ(3)(~pδ − (~pα − ~pµ − ~pν))δρβδ
(3)(~pρ − ~pβ)

lim
v/c→0

[ūµ(~pµ)Γvν(~pν)] lim
v/c→0

[ūδ(~pδ)Γuα(~pα)] .

(4.39)

Then, the expression for the different contributions are
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• The sKs decay model

IsKs
spin−space =

−1√
1 + δBC

1

2mν

√
25π

∫
d3KBd

3KCd
3pαd

3pβd
3pµd

3pνd
3pδ

δ(3)( ~K − ~K0)δ
(3)( ~KB − ~PB)δ

(3)( ~KC − ~PC)δ
(3)(~PA)

δ(k − k0)

k
δ(3) (~pδ − (~pα − ~pµ − ~pν))K(|~pµ + ~pν |)
〈
[
[[φB(~pB)(sαsν)SB] JB [φC(~pC)(sµsβ)SC ]JC ]JBCYl(k̂)

]
JT |

|
[
[φA(~pA)(sαsβ)SA]JA

[
Y1

(
~pµ − ~pν

2

)
(sµsν)1

]
0

]
JA 〉 .

(4.40)

• The j0Kj0 decay model

I j0Kj0

spin−space =
1√

1 + δBC

1

2mν

√
23π

∫
d3KBd

3KCd
3pαd

3pβd
3pµd

3pνd
3pδ

δ(3)( ~K − ~K0)δ
(3)( ~KB − ~PB)δ

(3)( ~KC − ~PC)δ
(3)(~PA)

δ(k − k0)

k

δ(3) (~pδ − (~pα − ~pµ − ~pν))K(|~pµ + ~pν |)
〈
[
[[φB(~pB)(sαsν)SB] JB [φC(~pC)(sµsβ)SC ]JC ]JBCYl(k̂)

]
JT |

| [[φA(~pA)(sαsβ)SA] JA [Y1 (~pµ + ~pν) (sµsν)1] 0]JA 〉 .

(4.41)

• The jTKjT decay model

I jTKjT

spin−space =
1√

1 + δBC

∑

m,MBC ,MB,MC

〈JBCMBC lm|JTMT 〉 〈JBMBJCMC |JBCMBC〉

∫
d3KBd

3KCd
3pδd

3pρd
3pµd

3pνd
3pαd

3pβ δ
(3)( ~K − ~K0)δ(k − k0)

Ylm(k̂)

k

δ(3)( ~KB − ~PB)δ
(3)( ~KC − ~PC)δ

(3)(~PA)φB(~pB)φC(~pC)φA(~pA)

K(|~pµ + ~pν |)δ(3)(~pδ − (~pα − ~pµ − ~pν))δρβδ
(3)(~pρ − ~pβ)

lim
v/c→0

[
ūµ(~pµ)γ

ivν(~pν)
](

δij −
QiQj

~Q2

)
lim
v/c→0

[
ūδ(~pδ)γ

juα(~pα)
]
.

(4.42)

The procedure followed, according to Ref. [194], to solve the above spin-space
overlap integrals is given in Appendix E.

4.3 Decay width

The total width is the sum over the partial widths characterized by the quantum
numbers JBC and l

ΓA→BC =
∑

JBC ,l

ΓA→BC(JBC , l), (4.43)
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where

ΓA→BC(JBC , l) = 2π

∫
dk0δ(EA − EBC)|MA→BC(k0)|2. (4.44)

We use relativistic phase space, so

ΓA→BC(JBC , l) = 2π
EB(k0)EC(k0)

mAk0
|MA→BC(k0)|2, (4.45)

where

k0 =

√
[m2

A − (mB −mC)2][m
2
A − (mB +mC)2]

2mA
, (4.46)

is the on-shell relative momentum of mesons B and C.
The above formula is only valid for mesons B and C with small widths. If we

consider the process A → B + C with the subsequent decay of the meson B into two
mesons B1 and B2 we must take into account the width of the daughter meson, B, by
replacing the Dirac δ-function in Eq. (4.44).

Following the formalism of Ref. [195], one may regard the δ-function as arising from
the narrow-width limit of the energy denominator

1

EA −EBC − iǫ
= P 1

EA −EBC
+ iπδ(EA −EBC), (4.47)

where ǫ is related to the total width of the unstable final state. For daughter mesons
that are broad, the energy denominator becomes

1

EA −EBC − iΓB
2

=
EA −EBC + iΓB

2

(EA − EBC)2 +
Γ2
B

4

, (4.48)

implying the replacement

δ(EA − EBC) →
ΓB

2π
[
(EA − EBC)2 +

Γ2
B

4

] . (4.49)

The decay rate for A→ (B1B2)B + C then generalizes to [184]

ΓA→(B1B2)BC(JBC , l) =

∫ kmax

0

dk
|MA→BC(k)|2 ΓB→B1B2(k)

(EA −EBC)2 +
Γ2
B

4

, (4.50)

where ΓB→B1B2(k) is the energy-dependent partial width of the unstable daughter
meson.

The variable of integration in the expression above is k, the modulus of the three-
momentum of the daughter meson B. In the rest frame of A, this ranges from k = 0

(B1 and B2 back to back, with ~k1 = −~k2) to kmax (B1 and B2 collinear). These limits
correspond, respectively, to mB(k = 0) = mA −mC and mB(k = kmax) = mB1 +mB2 ,
where mB(k) is the momentum dependent effective mass of the daughter meson B, so

kmax =

√
[m2

A − (mB1 +mB2 +mC)2] [m
2
A − (mB1 +mB2 −mC)2]

2mA
. (4.51)
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4.4 Running of the 3P0 γ strength

The 3P0 model has been extensively applied to meson and baryon strong decays with
considerable success (see Ref. [196] for recent summaries of the 3P0 model). An
important characteristic, apart from its simplicity, is that the model provides the gross
features of various transitions with only one parameter, the strength γ of the decay
interaction, which is regarded as a free constant and is fitted to the data.

It is generally believed that the pair-production strength parameter, γ, is roughly
flavor-independent for decays involving production of uū, dd̄ and ss̄ pairs. A total
of 32 experimentally well-determined decay rates have been fitted in Ref. [197] using
the 3P0 model, the large experimental errors preclude definitive conclusions about the
dependence of γ with respect the flavor sector. The authors follow the convention
of using a unique value for the γ parameter. However, it is important to note that
only 3 of the total 32 decay modes are referred to the heavy quark sector. They are
D∗+ → D0π+, ψ(3770) → DD̄ and D∗

s2 → DK+D∗K+Dsη. There are no data about
the bottomonium sector and the remaining 29 decay modes involve light and strange
mesons.

We have seen in a previous section an equivalent formulation of the 3P0 model given
by an interaction Hamiltonian involving Dirac quark fields, Eq. (4.1). This presents a
coupling constant, gs, which is related with the pair-production strength parameter, γ,
as γ = gs/2m, being m the mass of the created quark (antiquark). If gs is related to
fundamental QCD parameters, among them the strong coupling constant, one expects
that gs, and hence γ, depends on the scale.

Our purpose here is to calculate through the 3P0 model the total strong decay widths
of the mesons which belong to charmed, charmed-strange, hidden charm and hidden
bottom sectors. Certainly, the theoretical results suffer from uncertainties coming
from the decay model itself in the description of the creation vertex and from the wave
functions used. Therefore, we expect to reach a global description of the meson strong
decays in every quark sector, but the details of each decay mode could fail. Our main
goal is to perform a global fit of the experimental data that elucidates the γ dependence
on the scale.

To perform the overall fit of the decay widths, not all of the experimental data are
equally reliable. Table 4.1 shows the experimental data taken for the fit. In the case of
the charmed and charmed-strange mesons we have considered the total decay widths
of the mesons which belong to the jPq = 3/2+ doublet, mainly that of the member

of the doublet whose quantum numbers are JP = 2+. This is because any quark
model predicts the doublet jPq = 3

2

+
in reasonably agreement with the experiment.

Focusing on the 2+ meson there are no doubts about its nature and wave function
composition. Moreover, in the infinite heavy quark mass limit these states are narrow,
and so we expect that their resonance parameters are better determined than other
states of the same sector. For the charmonium and bottomonium sectors, we have
considered that the best experimental measurements of strong decay widths are those
of the states immediately above the open-flavor threshold. This means the total decay
width of the ψ(3770) resonance in the charmonium sector and the Υ(4S) resonance in
the bottomonium sector.

Once the experimental data have been established, we propose a scale-dependent
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Meson I J P C Mass (MeV) ΓExp. (MeV)

D1(2420)
± 1/2 1 +1 - 2423.4 ± 3.1 25± 6 [78]

D∗
2(2460)

± 1/2 2 +1 - 2460.1 ± 4.4 37± 6 [78]

Ds1(2536)
± 0 1 +1 - 2535.12 ± 0.25 1.03 ± 0.13 [198]

D∗
s2(2575)

± 0 2 +1 - 2572.6 ± 0.9 20± 5 [78]

ψ(3770) 0 1 −1 −1 3775.2 ± 1.7 27.6 ± 1.0 [78]
Υ(4S) 0 1 −1 −1 10579.4 ± 1.2 20.5 ± 2.5 [78]

Table 4.1. Meson decay widths which have been taken into account in the fit of the scale-dependent strength,
γ. Some properties of these mesons are also shown.

Figure 4.5. The scale-dependent strength, γ, in function of the reduced mass of the qq̄ pair of the decaying
meson, µ. The data points are the value of γ needed to reproduce the meson decay widths shown in Table 4.1.
The solid line is the fit and the shaded area is the confidence interval with 90% confidence level.

strength, γ, given by

γ(µ) =
γ0

log
(
µ
µγ

) , (4.52)

where µ is the reduced mass of the qq̄ pair of the decaying meson and γ0 = 0.81± 0.02
and µγ = 49.84 ± 2.58MeV are the parameters determined through the total decay
widths mentioned above.

Fig. 4.5 shows the scale-dependent strength, γ, in function of the reduced mass of
the qq̄ of the decaying meson, µ. The data points are the value of γ needed to reproduce
the meson decay widths shown in Table 4.1. The solid line is the fit and the shaded
area is the confidence interval with 90% confidence level. For completeness, we show in
Table 4.2 the values of the scale-dependent strength, γ, in the different flavor sectors
following Eq. (4.52).

Table 4.3 shows our results for the total strong decay widths of the mesons which
belong to charmed, charmed-strange, hidden charm and hidden bottom sectors. We
get a quite reasonable global description of the total decay widths. A detailed study
to the decay modes of the different mesons will be done later, but now we can give
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Light mesons Heavy-light mesons Heavy mesons
(nn̄) (ns̄) (ss̄) (nc̄) (sc̄) (nb̄) (sb̄) (cc̄) (cb̄) (bb̄)

µ 156.5 200.1 277.5 265.8 422.1 294.9 500.6 881.5 1310.8 2555.0
γ 0.707 0.582 0.471 0.483 0.379 0.455 0.351 0.282 0.247 0.205

Table 4.2. Values of the scale-dependent strength γ in the different quark sectors following Eq. (4.52). The
reduced mass of the qq̄ pair of the decaying meson, µ, is given in MeV.

Meson I J P C n Mass (MeV) ΓExp. (MeV) [78] ΓThe. (MeV)

D∗(2010)± 0.5 1 −1 - 1 2010.25 ± 0.14 0.096 ± 0.022 0.036
D∗

0(2400)
± 0.5 0 +1 - 1 2403 ± 38 283 ± 42 212.01

D1(2420)
± 0.5 1 +1 - 1 2423.4 ± 3.1 25± 6 25.27

D1(2430)
0 0.5 1 +1 - 2 2427 ± 36 384± 150 229.12

D∗
2(2460)

± 0.5 2 +1 - 1 2460.1 ± 4.4 37± 6 64.07
D(2550)0 0.5 0 −1 - 2 2539.4 ± 8.2 130 ± 18 132.07
D∗(2600)0 0.5 1 −1 - 2 2608.7 ± 3.5 93± 14 96.91
DJ(2750)

0 0.5 2 −1 - 1 2752.4 ± 3.2 71± 13 229.86
D∗
J(2760)

0 0.5 3 −1 - 1 2763.3 ± 3.3 60.9 ± 6.2 116.41

Ds1(2536)
± 0 1 +1 - 1 2535.12 ± 0.25 1.03 ± 0.13 [198] 0.99

D∗
s2(2575)

± 0 2 +1 - 1 2572.6 ± 0.9 20± 5 18.67
D∗
s1(2710)

± 0 1 −1 - 2 2710 ± 14 149 ± 65 170.76

D∗
sJ(2860)

± 0

[
1
3

]
−1 -

[
3
1

]
2862 ± 6 48± 7

[
153.19
85.12

]

DsJ(3040)
± 0 1 +1 -

[
3
4

]
3044 ± 31 239 ± 71

[
301.52
432.54

]

ψ(3770) 0 1 −1 −1 3 3775.2 ± 1.7 27.6 ± 1.0 26.47
ψ(4040) 0 1 −1 −1 4 4039 ± 1 80± 10 111.27
ψ(4160) 0 1 −1 −1 5 4153 ± 3 103 ± 8 115.95
X(4360) 0 1 −1 −1 6 4361 ± 9 74± 18 113.92
ψ(4415) 0 1 −1 −1 7 4421 ± 4 119± 16 [84] 159.02
X(4640) 0 1 −1 −1 8 4634 ± 8 92± 52 206.37
X(4660) 0 1 −1 −1 9 4664 ± 11 48± 15 135.06

Υ(4S) 0 1 −1 −1 6 10579.4 ± 1.2 20.5 ± 2.5 20.59
Υ(10860) 0 1 −1 −1 8 10865 ± 8 55± 28 27.89
Υ(11020) 0 1 −1 −1 10 11019 ± 8 79± 16 79.16

Table 4.3. Calculated through the 3P0 model, the strong total decay widths of the mesons which belong to
charmed, charmed-strange, hidden charm and hidden bottom sectors. The value of the parameter γ in every
quark sector is given by Eq. (4.52).

general comments.
The results predicted by the 3P0 model for the well established charmed mesons

are in good agreement with the experimental data except for one case, the total decay
width of the D∗ meson. The D∗ decays only into Dπ channel via strong interaction and
it is assumed that the total decay width is given mainly by this decay mode. However,
the disagreement may be due to, at least, two reasons. The first one is that the available
phase space is very small and so final-state interactions can be important enhancing the
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decay width. The second one is that the neutral-charged case, D∗(2007)0, presents a
branching fraction of (38.1±2.9)% for its electromagnetic decay D∗(2007)0 → D0γ [78],
which means a large contribution to the total decay width.

Our theoretical results are in good agreement with the experimental data in the
charmed-strange sector. Note that this agreement holds for the new D∗

s1(2710),
D∗
sJ(2860) and DsJ(3040) resonances which have been recently observed by the BaBar

Collaboration [135].
The ψ(3770) meson decays into theDD channel, being this the only open-flavor final

state. Its updated branching fraction reported by the PDG has been taken into account
in the global fit because its non-DD decay modes sum together a branching fraction
of about 10%. One can see in Table 4.3 that the general trend is well reproduced for
the total decay widths of the 1−− charmonium states.

We obtain a good agreement between experimental and theoretical total decay
widths in the bottomonium sector. The most significant disagreement is found for the
Υ(5S) state, note however the large error in the experimental data.

4.5 Results

This section is devoted to investigate the strong decays of mesons through the two
models explained above. It complements the information about the structure of mesons
since the matrix elements present an overlap integral between the wave functions of
the initial and final mesons.

We begin with the strong decays of JPC = 1−− cc̄ states into open-charm mesons.
We compare our predictions coming from the 3P0 decay model and the microscopic one.
Comments on the results of different microscopic models are also included. Then, we
extend the calculation of the strong decays to the rest of charmonium spectrum. This
will provide useful information in order to assign cc̄ states to possible XY Z mesons.
We continue with a thorough study of the open-flavor strong decays of the charmed and
charmed-strange mesons. This gives us the assignment of quantum numbers. Finally,
results on the JPC = 1−− bottomonium family are shown.

4.5.1 Results for ψ states

From an experimental point of view there are a few data in the open-charm decays
of the 1−− cc̄ resonances. The main experimental data are the resonance parameters,
mass and total decay width, of the excited ψ states fitting the R value measured in the
relevant energy region.

Tables 4.4 and 4.5 show the strong decay widths predicted by the 3P0 and the
microscopic models for the 1−− cc̄ states established in Table 3.1. The notation D1D2

includes the D1D̄2 and D̄1D2 combination of well defined CP quantum numbers. For
the kinematics we use experimental masses whenever they are available.

One can see that the general trend of the total decay widths is well reproduced in
the case of the 3P0 model. The total widths are lower in the microscopic model without
improving the agreement with the experimental data. However, the microscopic model
gives the correct order of magnitude of the strong decays with no free parameter, as
the strength γ introduced by the 3P0 model.
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Meson State Channel Γ3P0
B3P0

ΓMic. BMic.

ψ(3770) 13D1 D+D− 11.34 42.8 8.03 42.3
D0D̄0 15.13 57.2 10.94 57.7
DD 26.47 100 18.97 100

27.6 ± 1.0 total 26.47 18.97

ψ(4040) 33S1 DD 4.61 4.1 10.17 26.0
DD∗ 22.23 20.0 18.75 47.9
D∗D∗ 82.35 74.0 9.06 23.2
DsDs 2.08 1.9 1.14 2.9

80± 10 total 111.27 39.12

ψ(4160) 23D1 DD 22.82 19.7 17.03 52.1
DD∗ 2.22 1.9 7.38 22.6
D∗D∗ 83.73 72.2 5.28 16.2
DsDs 0.24 0.2 2.61 7.9
DsD

∗
s 6.94 6.0 0.40 1.2

103± 8 total 115.95 32.70

X(4360) 43S1 DD 8.02 7.0 5.73 5.6
DD∗ 8.19 7.2 29.81 29.2
D∗D∗ 8.87 7.8 46.46 45.5
DD1 54.51 47.8 2.18 2.1
DD′

1 4.29 3.8 12.02 11.7
DD∗

2 27.17 23.8 0.56 0.6
DsDs 0.07 0.1 1.86 1.8
DsD

∗
s 1.90 1.7 3.36 3.3

D∗
sD

∗
s 0.91 0.8 0.17 0.2

74± 15± 10 total 113.92 102.15

ψ(4415) 33D1 DD 15.11 9.5 7.93 18.5
DD∗ 5.82 3.7 6.66 15.6
D∗D∗ 32.56 20.5 7.23 16.9
DD1 64.77 40.7 6.06 14.2
DD′

1 6.92 4.4 2.12 5.0
DD∗

2 23.60 14.8 1.82 4.3
D∗D∗

0 7.12 4.5 2.39 5.6
DsDs 0.31 0.2 2.22 5.2
DsD

∗
s 0.68 0.4 1.09 2.5

D∗
sD

∗
s 2.13 1.3 5.20 12.2

62± 20 total 159.01 42.72

Table 4.4. Open-flavor strong decay widths, in MeV, and branchings, in %, of ψ states.

The total width of the ψ(3770) predicted by the microscopic model is lower than
the 3P0 model. We find the same situation for the next two resonances, ψ(4040) and
ψ(4160). Later we will see that taking into account only the j0Kj0 decay model as in
Refs. [34, 95, 186] the widths grow.
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Meson State Channel Γ3P0
B3P0

ΓMic. BMic.

X(4630) 53S1 DD 6.62 3.2 1.44 0.8
DD∗ 26.23 12.7 15.82 8.4
D∗D∗ 15.57 7.5 30.40 16.2
DD1 2.88 1.4 18.70 9.9
DD′

1 4.52 2.2 2.58 1.4
DD∗

2 0.00 0.0 21.14 11.2
D∗D∗

0 6.97 3.4 10.10 5.4
D∗D1 39.21 19.0 22.47 11.9
D∗D′

1 14.35 7.0 26.24 13.9
D∗D∗

2 80.47 39.0 18.28 9.7
DsDs 0.92 0.4 1.28 0.7
DsD

∗
s 0.30 0.1 6.70 3.6

D∗
sD

∗
s 1.14 0.6 6.34 3.4

DsDs1 2.82 1.4 0.92 0.5
DsD

′
s1 0.79 0.4 0.03 0.0

DsD
∗
s2 0.19 0.1 0.22 0.1

D∗
sD

∗
s0 2.76 1.3 1.30 0.7

D∗
sDs1 0.14 0.1 3.74 2.0

D∗
sD

′
s1 0.26 0.1 0.29 0.1

D∗
s0D

∗
s0 0.22 0.1 0.23 0.1

92+40+10
−24−21 total 206.37 188.22

X(4660) 43D1 DD 10.92 8.1 3.21 2.3
DD∗ 7.55 5.6 4.10 2.9
D∗D∗ 38.04 28.2 2.67 1.9
DD1 2.41 1.8 20.51 14.4
DD′

1 0.51 0.4 2.62 1.8
DD∗

2 0.00 0.0 6.75 4.8
D∗D∗

0 3.44 2.5 0.71 0.5
D∗D1 34.83 25.8 10.89 7.7
D∗D′

1 6.98 5.1 2.96 2.1
D∗D∗

2 21.92 16.2 77.52 54.5
DsDs 0.96 0.7 1.46 1.0
DsD

∗
s 0.00 0.0 1.35 0.9

D∗
sD

∗
s 0.33 0.2 4.28 3.0

DsDs1 3.63 2.7 0.0 0.0
DsD

′
s1 1.09 0.8 0.62 0.4

DsD
∗
s2 0.08 0.1 0.07 0.1

D∗
sD

∗
s0 1.18 0.9 0.43 0.3

D∗
sDs1 0.48 0.4 0.93 0.6

D∗
sD

′
s1 0.17 0.1 0.37 0.3

D∗
s0D

∗
s0 0.53 0.4 0.74 0.5

48± 15± 3 total 135.06 142.19

Table 4.5. Open-flavor strong decay widths, in MeV, and branchings, in %, of ψ states (Continuation).
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Decay Ref. [186] j0Kj0 Mic. Exp. [78]

ψ(3770) → DD 20.1 29.8 19.0 27.6 ± 1

ψ(4040) → DD 0.1 1.4 10.2
ψ(4040) → DD∗ 33.0 25.2 18.7
ψ(4040) → D∗D∗ 33.0 35.0 9.1
ψ(4040) → DsDs 8.0 0.3 1.1
total 74.0 61.9 39.1 80± 10

ψ(4160) → DD 3.2 25.0 17.0
ψ(4160) → DD∗ 6.9 0.5 7.4
ψ(4160) → D∗D∗ 41.9 21.3 5.3
ψ(4160) → DsDs 5.6 0.03 2.6
ψ(4160) → DsD

∗
s 11.0 0.6 0.4

total 69.2 47.4 32.7 103± 8

Table 4.6. Open-flavor strong decay widths, in MeV, of ψ states reported in Ref. [186] and our decay rates
taking into account the static vector contribution or the full model.

If one compares the total widths of the next two resonances, X(4360) and ψ(4415),
the microscopic decay model predicts a better result than the 3P0 one for the total
width of ψ(4415). However, we should mention that the experimental data from
Ref. [78] are clustered around two values (∼100MeV and ∼50MeV) corresponding
the lower one to very old measurements. The recent experimental result of Seth et

al. [84] (Γ = 119± 16MeV) is in reasonable agreement with the prediction of the 3P0

model and a factor 3 greater than that predicted by the microscopic model.
When we go up through the spectrum, the states are more and more wide and the

total widths for S and D-waves are larger in both decay models, always D-wave widths
are smaller. This is the case of the two states in the vicinity of 4660MeV. The small
total width of the X(4660) favors the 43D1 option for this state although interference
between the two states can be the origin of the poor description of the total decay
widths.

It is difficult to compare our results from the microscopic decay model with former
similar calculations because either they are not fitted to the heavy quark sector [187]
or do not include the same pieces of the current [34, 95, 186]. For the sake of the
comparison we show in Table 4.6 the results of Ref. [186] together with our model
prediction including only the static vector contribution and the full decay model. The
basic difference between the two calculations is that in Ref. [186] the coupling with the
meson-meson channels is treated nonperturbatively and this enhances the results when
the threshold is close to the state. The predictions of the full decay model are below
the experimental data and taking only the j0Kj0 contribution the decay rates grow.

The decay width of ψ(3770) into DD has been widely studied in the literature. This
is because the DD is the only open threshold for the ψ(3770) resonance and therefore
the total width should be given almost by its decay into DD. However, during the
last years the non-DD contribution to the total decay width was measured to be large,
15%. Now, the PDG [78] provides a branching fraction of B(ψ(3770) → DD) =
(93+8

−9)%, in good agreement with the theoretical expectations. The predicted width of
ψ(3770) → DD decay in Ref. [186] is similar to those predicted by j0Kj0 contribution
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State Ratio Ref. [186] j0Kj0 Mic. 3P0 Exp. [78]

ψ(4040) DD̄/DD̄∗ 0.003 0.06 0.54 0.21 0.24 ± 0.05 ± 0.12
D∗D̄∗/DD̄∗ 1.00 1.39 0.48 3.70 0.18 ± 0.14 ± 0.03

ψ(4160) DD̄/D∗D̄∗ 0.08 1.17 3.23 0.27 0.02 ± 0.03 ± 0.02
DD̄∗/D∗D̄∗ 0.16 0.02 1.40 0.03 0.34 ± 0.14 ± 0.05

X(4360) DD̄/D∗D̄∗ - 0.40 0.12 0.90 0.14 ± 0.12 ± 0.03
DD̄∗/D∗D̄∗ - 0.08 0.64 0.92 0.17 ± 0.25 ± 0.03

ψ(4415) DD̄/D∗D̄∗ - 1.54 1.10 0.46 0.14 ± 0.12 ± 0.03
DD̄∗/D∗D̄∗ - 0.28 0.92 0.18 0.17 ± 0.25 ± 0.03

Table 4.7. Open-flavor strong ratios of ψ states predicted by different decay models and their comparison
with the experimental data.

and the full decay model. If we apply the microscopic decay model of Ref. [187] to the
charmonium sector, the result for that decay is very large, 104.0MeV.

Finally, in Table 4.7 we compare the experimental ratios of some charmonium decays
with the prediction of different models. None of them can explain the experimental
data. In Ref. [199] a coupled channel calculation in the 4.1GeV energy region including
the 33S1, ψ(4040), and 23D1, ψ(4160), cc̄ states and the DD, DD∗, D∗D∗, DsDs, DsD

∗
s

and D∗
sD

∗
s meson-meson channels has been performed. The branching fractions of the

resulting dressed 33S1 and 23D1 cc̄ states improve the agreement with the experimental
data.

Any decay model fails to explain all experimental data about the strong decays of
charmonium, and so more theoretical and experimental effort is needed to solve this
problem.

4.5.2 Results for the rest of charmonium states

We calculate in this section the strong decays into open-charm mesons for the rest of
charmonium states reported in Table 3.1. It completes our study of strong decays in
the charmonium sector and reports information about our assignments as cc̄ states of
some XY Z mesons.

The ηc states

The ηc(3S) is the first state which can decay into open-charm mesons, being its mass
4054MeV. Table 4.8 shows the different channels and their partial widths predicted by
the 3P0 and the microscopic decay models. This state should be observed in the DD∗

and D∗D∗ channels and its total width is large in the 3P0 model and moderate in the
microscopic decay model. The difference between the predictions of the two theoretical
decay models is important. In fact the dominant decay channel is different among the
two models.

The hc states

Focusing our interest on the hc meson, Table 4.9 shows the open-charm strong decays
calculated by the two decay models. These numerical results could be useful for future
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Meson State Channel Γ3P0
B3P0

ΓMic. BMic.

ηc 31S0 DD∗ 38.72 22.8 19.66 71.4
D∗D∗ 131.50 77.2 7.89 28.6
total 170.23 27.55

Table 4.8. Open-flavor strong decay widths, in MeV, and branchings, in %, of ηc states.

Meson State Channel Γ3P0
B3P0

ΓMic. BMic.

hc 21P1 DD∗ 88.78 100 6.87 100
total 88.78 6.87

31P1 DD∗ 35.03 56.8 20.49 20.8
D∗D∗ 8.46 13.7 27.68 28.2
DD∗

0 10.88 17.6 41.42 42.1
DsD

∗
s 4.77 7.7 5.80 5.9

D∗
sD

∗
s 2.59 4.2 2.90 3.0

total 61.73 98.29

Table 4.9. Open-flavor strong decay widths, in MeV, and branchings, in %, of hc states.

experimental findings. For instance, the 21P1 state has a mass of 3956MeV and by
conservation of quantum numbers it only decays to the DD∗ channel. However, while
this state appears wide in the 3P0 model is not so much in the case of the microscopic
decay model. For the 31P1 state, both models predict a relatively wide resonance with
dominant decay channel DD∗ and DD∗

0 for the 3P0 and the microscopic decay model,
respectively. In the case of the microscopic model its decays into DD∗ and D∗D∗ are
of relevance.

The χcJ states

In Table 4.10 one can find the open-charm strong decay widths of χcJ states.
For the 2P cc̄ multiplet some candidates have appeared in the last years, these are

X(3872), X(3915), Y (3940), X(3940) and Z(3930). In the previous Chapter, we have
made assignments for the X(3915) and Z(3930) as cc̄ states. Recently, the X(3915)
and Y (3940) have been proposed as the same state due to the compatibility of their
measured properties [13].

We have assigned the 23P0 state to the X(3915). The mass predicted is 3909, in
very good agreement with the experimental measurement, and we have also calculated
its electromagnetic decays. Now we are ready to give its full width. Table 4.10 shows
our results with the 3P0 and the microscopic models. The numbers in parentheses have
been calculated using the experimental mass and some assumption for the assignment.
We also give our prediction using the theoretical mass for completeness. The 3P0

model predicts an extremely narrow state while the microscopic model increases the
agreement but remains lower than the experimental data.

It is generally accepted that the Z(3930) is the χc2(2P ) state. Assuming this
assignment due to the agreement between theoretical and experimental masses, we
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Meson State Channel Γ3P0
B3P0

ΓMic. BMic.

χc0 23P0 DD 0.81 (0.17) 100 (100) 6.15 (7.60) 100 (100)
(17± 10± 3 [85] total 0.81 (0.17) 6.15 (7.60)

33P0 DD 10.67 21.5 22.83 26.6
D∗D∗ 33.29 67.2 58.22 67.9
DsDs 3.26 6.6 2.44 2.8
D∗
sD

∗
s 2.34 4.7 2.27 2.7

total 49.56 85.76

χc1 23P1 DD∗ 130.55 100 4.79 100
total 130.55 4.79

33P1 DD∗ 17.57 58.7 26.05 40.8
D∗D∗ 0.39 1.3 34.46 53.9
DD∗

0 0.24 0.8 0.08 0.1
DsD

∗
s 8.56 28.6 2.35 3.7

D∗
sD

∗
s 3.17 10.6 0.95 1.5

total 29.93 63.89

χc2 23P2 DD 35.44 (33.66) 38.4 (64.0) 2.68 (2.47) 30.9 (60.0)
DD∗ 56.54 (18.94) 61.2 (36.0) 5.98 (1.68) 69.0 (40.0)
DsDs 0.36 (−) 0.4 (−) 0.01 (−) 0.1 (−)

(29 ± 10± 2) [88] total 92.34 (52.60) 8.67 (4.15)

13F2 DD 44.71 44.5 19.39 61.2
DD∗ 50.10 49.8 11.85 37.4
D∗D∗ 0.84 0.8 0.06 0.2
DsDs 4.94 4.9 0.39 1.2
total 100.58 31.69

Table 4.10. Open-flavor strong decay widths, in MeV, and branchings, in %, of χcJ states. The numbers in
parentheses are calculated using the experimental mass and some assumption for the assignment. The symbol
(−) indicates that the corresponding open-flavor channel is closed when we calculate with the experimental
mass.

calculate its strong decays in Table 4.10. Again the numbers in parentheses have
been calculated using the experimental mass and the others using our theoretical
prediction. The total decay rate predicted by the 3P0 model is reasonably good when
using the experimental mass. It is interesting to observe that the dominant decay
channel changes when we calculate with the experimental mass, being this the DD
channel in which Z(3930) is observed. Both decay models predict the same branchings
and behaviour when we calculate with the theoretical or the experimental masses.
We show in Table 4.11 our results and the experimental measurements performed by
Belle [88] and BaBar [200] for some observables concerning the Z(3930). One can see
the good agreement obtained for the product ΓγγB(Z(3930) → DD̄) in both decay
models.

The next states of χcJ mesons are 33P0, 3
3P1 and 13F2. The 3P states have an
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Observable The. Belle [88] BaBar [200]

Mass (MeV) 3969 3929 ± 5± 2 3926.7 ± 2.7± 1.1

Width (MeV)

[
52.60
4.15

]
29± 10± 2 21.3 ± 6.8± 3.6

ΓγγB(DD̄) (keV)

[
0.17
0.16

]
0.18 ± 0.05 ± 0.03 0.24 ± 0.05 ± 0.04

Table 4.11. Different observables of Z(3930) as a 23P2 state. Values within brackets are the theoretical results
if one considers the 3P0 model (upper value) and the microscopic model (lower value) for the involved strong
decay.

expected mean multiplet mass of about 4.3GeV and many open-charm channels are
open at the 3P mass scale. When we calculate the total width through the decay
models, we find narrower states in the 3P0 model than in the microscopic decay model
except for the 13F2 state where the inverse situation holds. This is because the partial
widths of the 13F2 state into the DD and DD∗ predicted by the 3P0 model are larger
than in the microscopic decay model. However, both decay models agree, predicting
these two decay modes as the dominant.

The 33P1 should be seen in DD∗ and D∗D∗ channels in the case of the microscopic
model and only in DD∗ according to the 3P0 model. The prediction of both models
for the 23P1 is also very different, while the 3P0 model predicts a broad state, the
microscopic one predicts a relatively narrow meson.

We have ruled out the assignment of Z(3930) as the 13F2 state attending the mass.
Following the 3P0 decay model, one possibility to distinguish between the 23P2 and
13F2 assignments is measuring the ratio between DD and DD∗ decay modes because
the situation for both states is just the opposite.

D-wave states with J = 2

Tables 4.12 and 4.13 show the strong decays into open-charm mesons for the 1D2 and
3D2 states. The 3P0 model predicts broad states with total widths about 150MeV.
However, the microscopic decay model anticipates relatively narrow states with total
widths of 30MeV.

The 21D2 state decays into DD∗ and D∗D∗ final states with the same strength,
both decay models predict similar branching fractions despite of the difference on
the absolute values. The partial widths are moderate, even larger in the 3P0 model,
indicating that this state can be seen experimentally in both channels. There is a strong
disagreement between the predictions of the 3P0 and the microscopic model about the
decays of the 23D2 state. The 3P0 model predicts a similar situation than in the case
of the 21D2 state for the decays into DD∗ and D∗D∗, whereas the microscopic model
predicts a suppressed D∗D∗ channel with respect the DD∗ one.

The S + S channels appear important for the 31D2 and 33D2 states, but also the
S+P channels as DD∗

2 and DD′
1 are significant. In fact, DD∗

2 and DD′
1 are dominant

following the prediction of the 3P0 model and of the same order of magnitude as DD∗

and D∗D∗ in the case of the microscopic decay model.



102 4.5. RESULTS

Meson State Channel Γ3P0
B3P0

ΓMic. BMic.

ηc2 21D2 DD∗ 71.24 50.4 8.95 47.1
D∗D∗ 60.76 43.0 9.36 49.2
DsD

∗
s 9.31 6.6 0.70 3.7

total 141.32 19.01

31D2 DD∗ 39.46 22.1 5.82 17.5
D∗D∗ 21.53 12.1 7.35 22.1
DD∗

0 1.12 0.6 1.25 3.7
DD1 0.02 0.0 0.23 0.7
DD′

1 0.07 0.0 0.18 0.5
DD∗

2 62.75 35.1 4.94 14.8
D∗D∗

0 0.25 0.1 0.05 0.2
D∗D1 4.79 2.7 0.55 1.6
D∗D′

1 43.67 24.4 7.82 23.5
DsD

∗
s 1.43 0.8 2.30 6.9

D∗
sD

∗
s 2.24 1.3 2.26 6.8

DsD
∗
s0 1.35 0.8 0.56 1.7

DsDs1 0.00 0.0 0.0 0.0
D∗
sD

∗
s0 0.00 0.0 0.0 0.0

total 178.69 33.31

Table 4.12. Open-flavor strong decay widths, in MeV, and branchings, in %, of ηc2 states.

4.5.3 Results for open-charm mesons

Using the 3P0 and the microscopic models, we study two-body strong decays of the
newly observed charmed mesons D(2550), D∗(2600), DJ(2750) and D∗

J(2760), and
charmed-strange mesons D∗

s1(2710), D
∗
sJ(2860) and DsJ(3040). This allows us to

characterize these resonances and justify the quantum number assignments made in
Table 3.18.

The running of the strength γ of the 3P0 model is given by Eq. (4.52). It allows us
to obtain a quite reasonable global description of the decay widths along the different
flavor sectors. The value of γ, which will be used in the description of the strong decays
of charmed and charmed-strange mesons, can be seen in Table 4.2. The microscopic
decay model assumes that the strong decays are driven by the same interquark
Hamiltonian which determines the spectrum, thus it has some flavor dependences.
Among others, we must take into account the running of the strong coupling constant
and the different contributions of the diagrams d1q and d1q̄ due to the different mass of
the quark and the antiquark of the original meson. We use always experimental masses
for all mesons involved in the decays.

Tables 4.14 and 4.15 show the results predicted by the 3P0 and the microscopic decay
models for the well established charmed and charmed-strange mesons, respectively.
We show the absolute values and the branching fractions, the comparison with the
available experimental data is also included. One can see the good agreement between
the theoretical results of the 3P0 model and the experimental data in most cases. The
microscopic model predicts always lower strong decay widths although it is interesting
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Meson State Channel Γ3P0
B3P0

ΓMic. BMic.

ψ2 23D2 DD∗ 53.63 40.5 14.92 72.8
D∗D∗ 66.18 49.9 4.41 21.5
DsD

∗
s 12.68 9.6 1.16 5.7

total 132.48 20.49

33D2 DD∗ 36.05 19.6 10.43 24.8
D∗D∗ 27.63 15.1 4.24 10.1
DD∗

0 0.01 0.0 0.79 1.9
DD1 1.98 1.1 2.54 6.1
DD′

1 13.41 7.3 3.76 8.9
DD∗

2 49.16 26.8 2.37 5.6
D∗D∗

0 8.93 4.9 1.78 4.2
D∗D1 6.65 3.6 3.74 8.9
D∗D′

1 36.85 20.1 6.60 15.7
DsD

∗
s 1.27 0.7 2.93 7.0

D∗
sD

∗
s 1.53 0.8 2.76 6.7

DsD
∗
s0 0.00 0.0 0.06 0.1

DsDs1 0.02 0.0 0.0 0.0
D∗
sD

∗
s0 0.02 0.0 0.0 0.0

total 183.50 42.00

Table 4.13. Open-flavor strong decay widths, in MeV, and branchings, in %, of ψ2 states.

to note that the branching fractions predicted by both decay models are very similar
in the charmed and charmed-strange sectors.

In Ref. [133] the BaBar Collaboration reported the new charmed states D(2550),
D∗(2600), DJ(2750) and D∗

J(2760) in inclusive e+e− collisions. The D(2550) and
DJ(2750) were observed in D∗+π− channel, the D∗

J(2760) was observed in D+π−

channel, and the D∗(2600) was observed in both D∗+π− and D+π− channels. The
resulting masses and widths of these four states with neutral-charge are

M(D(2550)0) = 2539.4± 4.5± 6.8MeV, Γ(D(2550)0) = 130± 12± 13MeV,

M(D∗(2600)0) = 2608.7± 2.4± 2.5MeV, Γ(D∗(2600)0) = 93± 6± 13MeV,

M(DJ (2750)
0) = 2752.4± 1.7± 2.7MeV, Γ(DJ(2750)

0) = 71± 6± 11MeV,

M(D∗
J (2760)

0) = 2763.3± 2.3± 2.3MeV, Γ(D∗
J(2760)

0) = 60.9± 5.1± 3.6MeV,

(4.53)

and the following ratios of branching fractions were also obtained

B(D∗
2(2460)

0 → D+π−)

B(D∗
2(2460)

0 → D∗+π−)
= 1.47± 0.03± 0.16,

B(D∗(2600)0 → D+π−)

B(D∗(2600)0 → D∗+π−)
= 0.32± 0.02± 0.09,

B(D∗
J(2760)

0 → D+π−)

B(DJ(2750)0 → D∗+π−)
= 0.42± 0.05± 0.11.

(4.54)
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Meson nJP Channel Γ3P0
B3P0

ΓMic. BMic. Exp.

D∗(2007)0 1 1− D0π0 15.70 × 10−3 8.72 × 10−3 (61.9 ± 2.9)%
total 15.70 × 10−3 8.72 × 10−3 < 2.1MeV

D∗(2010)+ 1 1− D+π0 11.44 × 10−3 31.74 6.34 × 10−3 31.72 (30.7 ± 0.5)%
D0π+ 24.61 × 10−3 68.26 13.65 × 10−3 68.28 (67.7 ± 0.5)%
total 36.05 × 10−3 19.99 × 10−3 (96 ± 4± 22) keV

D∗
0(2400)

0 1 0+ D0π0 81.74 33.14 5.82 33.81
D+π− 164.92 66.86 11.40 66.19
total 246.65 17.22 (267 ± 40)MeV

D∗
0(2400)

+ 1 0+ D+π0 70.97 33.47 8.25 32.99
D0π+ 141.05 66.53 16.76 67.01
total 212.01 25.01 (283 ± 24± 34)MeV

D1(2420)
0 1 1+ D∗0π0 8.38 34.49 5.78 33.90

D∗+π− 15.91 65.51 11.27 66.10
total 24.29 17.05 (27.1 ± 2.7)MeV

D1(2420)
+ 1 1+ D∗+π0 8.31 32.87 5.75 33.05

D∗0π+ 16.97 67.13 11.65 66.95
total 25.27 17.40 (25 ± 6)MeV

D1(2430)
0 2 1+ D∗0π0 75.93 33.14 13.54 33.46

D∗+π− 153.19 66.86 26.93 66.54

total 229.12 40.47 (384+107
−75 ± 74)MeV

D∗
2(2460)

0 1 2+ D0π0 13.80 21.87 1.29 23.08
D+π− 26.68 42.31 2.42 43.29
D∗0π0 7.67 12.17 0.66 11.81
D∗+π− 14.64 23.22 1.22 21.82
D0η 0.28 0.43 0.0028 0.05
total 63.08 5.59 (49.0 ± 1.4)MeV

D∗
2(2460)

+ 1 2+ D+π0 13.48 21.04 1.24 21.56
D0π+ 27.60 43.07 2.57 44.70
D∗+π0 7.50 11.70 0.63 10.96
D∗0π+ 15.28 23.84 1.31 22.78
D+η 0.23 0.35 0.0021 0.04
total 64.07 5.75 (37 ± 6)MeV

Table 4.14. Open-flavor strong decay widths, in MeV, and branchings, in %, of the well established D mesons.

The D(2550) meson has been seen only in the decay mode D∗π, thus its possible
spin-parity quantum numbers up to J = 3 are JP = 0−, 1+, 2− and 3+. It is the lower
in mass of the newly discovered mesons and within the possible assignments, the 0−

is the most plausible because the remaining options are very far in mass, ∼ 3.0GeV,
according to our quark model prediction. Table 4.16 shows the decay widths of the
D(2550) meson. There are only two open channels, D∗π and D∗

0π, with different
predictions attending both decay models. The total width predicted by the 3P0 model
is in very good agreement with the experimental one, however, the microscopic model
predicts a lower value. The helicity-angle distribution of D(2550) turns out to be also
consistent with the prediction of a 21S0 state. Therefore, the 2

1S0 assignment appears
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Meson nJP Channel Γ3P0
B3P0

ΓMic. BMic. Exp.

Ds1(2536)
+ 1 1+ D∗+K0 0.43 43.48 4.86 47.32

D∗0K+ 0.56 56.52 5.41 52.68
total 0.99 10.27 < 2.3MeV

D∗
s2(2573)

+ 1 2+ D+K0 8.02 42.95 3.03 44.27
D0K+ 8.69 46.54 3.36 49.09
D∗+K0 0.82 4.40 0.19 2.78
D∗0K+ 1.06 5.67 0.25 3.65
D+
s η 0.08 0.44 0.014 0.21

total 18.67 6.84 20± 5MeV

Table 4.15. Open-flavor strong decay widths, in MeV, and branchings, in %, of the well established Ds
mesons.

D(2550) as nJP = 20−

Channel Γ3P0
B3P0

ΓMic. BMic.

D∗π 131.90 99.87 0.17 0.87
D∗

0π 0.18 0.13 19.48 99.13
total 132.07 19.65

Table 4.16. Open-flavor strong decay widths, in MeV, and branchings, in %, of the D(2550) meson with
quantum numbers nJP = 20−.

the most plausible looking our results.
The D∗(2600) meson decays intoDπ andD∗π final states, thus its possible quantum

numbers are JP = 1−, 2+ and 3−. The helicity-angle distribution of D∗(2600) is found
to be consistent with JP = 1−. Moreover, its mass makes it the perfect candidate to be
the spin partner of the D(2550) meson. The predicted mass is about 100MeV above
the experimental value and this is typically found in quark models. Table 4.17 shows
its strong decays as a 23S1 state, we find D∗π as the dominant decay mode being its
decay into Dπ final state smaller in the 3P0 model and of the same order of magnitude
in the case of the microscopic one. Therefore the ratio of branching fractions measured
experimentally are predicted as

B(D∗(2600)0 → D+π−)

B(D∗(2600)0 → D∗+π−)
=





0.32± 0.02± 0.09 Exp.

0.20 3P0

1.09 Mic.

(4.55)

The 3P0 model predicts a reasonable value if we compare with the experimental one,
but the microscopic prediction is worse. The total width predicted by the 3P0 model is
again in good agreement with the experimental data. The prediction of the microscopic
model is lower than the experimental one but with the correct order of magnitude. If
this assignment was correct, there would be traces of Dη, DsK and D∗η.

There is a strong discussion in the literature about the possible quantum numbers
that could have the mesons DJ(2750) and D∗

J(2760) providing a wide range of



106 4.5. RESULTS

D∗(2600) as nJP = 21−

Channel Γ3P0
B3P0

ΓMic. BMic.

Dπ 10.84 11.19 23.17 44.14
D∗π 54.10 55.83 21.20 40.39
Dη 11.86 12.24 2.23 4.25
DsK 8.73 9.01 3.11 5.92
D∗η 9.65 9.95 1.10 2.10
D1π 0.28 0.29 1.67 3.18
D′

1π 1.44 1.49 0.0071 0.01
D∗

2π 0.01 0.00 0.0066 0.01
total 96.91 52.49

Table 4.17. Open-flavor strong decay widths, in MeV, and branchings, in %, of the D∗(2600) meson with
quantum numbers nJP = 21−.

assignments. It is important to take into account the experimental observations about
these two mesons reported in Ref. [133] before assigning any quantum number. First,
despite of the two mesons are close in mass and their total widths are similar, they are
considered different particles. Second, the helicity-angle distribution of both mesons is
compatible with an angular momentum between quark and antiquark equal to L = 2.
Third, the DJ(2750) and D

∗
J(2760) mesons have been seen only in the decay mode D∗π

and Dπ, respectively. And finally, the following branching ratio has been measured

B(D∗
J(2760)

0 → D+π−)

B(DJ (2750)0 → D∗+π−)
= 0.42± 0.05± 0.11. (4.56)

These data allow two scenarios. The first one in which the DJ(2750) has quantum
numbers nJP = 1 2− or 3 1− and the D∗

J(2760) meson is a 1 3− state. And the second
one in which the DJ(2750) meson has quantum numbers nJP = 1 2− or 1 3− and
the D∗

J(2760) meson is a 3 1− state. Tables 4.18 and 4.19 show the open-flavor
strong decays of both mesons taking into account the two allowed scenarios. We
concentrate on the prediction of the 3P0 decay model to distinguish between the
different quantum numbers. The model prediction for the mass of the nJP = 3 1−

state is 2935MeV, which is larger than those of the DJ(2750) and D
∗
J(2760) mesons.

Moreover, the theoretical decay width for the nJP = 3 1− state considering that this
is either the DJ(2750) or D

∗
J(2760) meson is ∼300MeV, in strong disagreement with

the experimental data. This rules out the scenario 2, where the D∗
J(2760) meson is

considered as the nJP = 3 1− state, and simplifies the scenario 1, where the DJ(2750)
meson as the nJP = 1 2− state and the D∗

J(2760) meson as the nJP = 1 3− state seem
the most plausible assignments. The 3P0 model, assuming the possible assignment,
gives a total width of 230MeV and 116MeV for the DJ(2750) and D

∗
J(2760) meson,

respectively. We obtain a value of 0.68 for the branching ratio written in Eq. (4.56).

Two new charmed-strange resonances, D∗
s1(2710) and D∗

sJ(2860), have been
observed by the BaBar Collaboration in both DK and D∗K channels [135]. The
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DJ (2750) as nJ
P = 12− DJ (2750) as nJ

P = 31− D∗
J(2760) as nJ

P = 13−

Channel Γ3P0
B3P0

ΓMic. BMic. Γ3P0
B3P0

ΓMic. BMic. Γ3P0
B3P0

ΓMic. BMic.

Dπ - - - - 25.87 7.64 16.17 12.00 48.37 41.55 0.13 1.62
D∗π 71.11 30.93 6.14 10.01 24.89 7.35 0.01 0.01 43.44 37.31 0.16 1.99
Dη - - - - 13.90 4.11 5.93 4.40 7.08 6.08 0.04 0.50
DsK - - - - 34.81 10.29 11.43 8.48 2.68 2.29 0.0049 0.06
D∗

0π 0.92 0.40 0.49 0.80 - - - - - - - -
D∗η 4.01 1.75 1.13 1.84 10.21 3.02 0.44 0.33 2.78 2.39 0.12 1.49
D1π 3.91 1.70 2.96 4.82 154.29 45.59 77.47 57.49 0.88 0.76 2.22 27.59
D′

1π 0.14 0.06 0.08 0.13 1.30 0.38 5.50 4.08 1.06 0.91 1.64 20.38
D∗

2π 0.95 0.41 3.74 6.10 3.38 1.00 1.92 1.43 3.03 2.60 3.36 41.75
D∗
sK 0.81 0.35 0.91 1.48 13.41 3.96 0.45 0.33 0.56 0.48 0.0018 0.02

DsK
∗
0 0.35 0.15 0.04 0.07 - - - - - - - -

Dρ 113.28 49.28 36.34 59.22 44.04 13.01 12.10 8.98 5.42 4.66 0.28 3.48
Dω 34.43 14.97 9.53 15.53 12.36 3.65 3.33 2.47 1.13 0.97 0.09 1.12
total 229.86 61.37 338.46 134.75 116.41 8.05

Table 4.18. (Scenario 1) Open-flavor strong decay widths, in MeV, and branchings, in %, of the DJ (2750)
and D∗

J (2760) mesons with quantum numbers nJP = 12− or 3 1− and 1 3−, respectively.

DJ (2750) as nJ
P = 12− DJ (2750) as nJ

P = 13− D∗
J(2760) as nJ

P = 31−

Channel Γ3P0
B3P0

ΓMic. BMic. Γ3P0
B3P0

ΓMic. BMic. Γ3P0
B3P0

ΓMic. BMic.

Dπ - - - - 46.32 43.03 0.07 1.05 24.22 7.15 16.46 12.14
D∗π 71.11 30.93 6.14 10.01 40.83 37.93 0.07 1.05 23.94 7.07 0.02 0.01
Dη - - - - 6.48 6.01 0.05 0.75 13.34 3.94 5.99 4.42
DsK - - - - 2.36 2.18 0.0052 0.08 35.52 10.49 11.99 8.84
D∗

0π 0.92 0.40 0.49 0.80 - - - - - - - -
D∗η 4.01 1.75 1.13 1.84 2.36 2.18 0.12 1.80 10.28 3.04 0.41 0.30
D1π 3.91 1.70 2.96 4.82 0.74 0.68 1.84 27.63 151.33 44.69 73.97 54.54
D′

1π 0.14 0.06 0.08 0.13 0.92 0.85 1.47 22.07 1.27 0.37 5.39 3.97
D∗

2π 0.95 0.41 3.74 6.10 2.43 2.25 2.73 41.05 4.22 1.25 4.49 3.31
D∗
sK 0.81 0.35 0.91 1.48 0.46 0.42 0.0016 0.02 14.54 4.29 0.49 0.36

DsK
∗
0 0.35 0.15 0.04 0.07 - - - - - - - -

Dρ 113.28 49.28 36.34 59.22 4.01 3.72 0.23 3.45 46.68 13.78 12.85 9.48
Dω 34.43 14.97 9.53 15.53 0.81 0.75 0.07 1.05 13.31 3.93 3.56 2.63
total 229.86 61.37 107.64 6.66 338.63 135.62

Table 4.19. (Scenario 2) Open-flavor strong decay widths, in MeV, and branchings, in %, of the DJ (2750)
and D∗

J (2760) mesons with quantum numbers nJP = 12− or 1 3− and 3 1−, respectively.

available experimental results on these two states are

M(D∗
s1(2710)

+) = 2710± 2+12
−7 MeV, Γ(D∗

s1(2710)
+) = 149± 7+39

−52MeV,

M(D∗
sJ(2860)

+) = 2862± 2+5
−2MeV, Γ(D∗

sJ(2860)
+) = 48± 3± 6MeV,

(4.57)

with respect masses and widths, and the next branching ratios

B(D∗
s1(2710)

+ → D∗K)

B(D∗
s1(2710)

+ → DK)
= 0.91± 0.13± 0.12,
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D∗
s1(2710) as nJ

P = 21−

Channel Γ3P0
B3P0

ΓMic. BMic.

D0K+ 18.30 10.72 0.55 0.62
D+K0 18.69 10.95 0.54 0.61
D∗0K+ 49.27 28.85 0.02 0.02
D∗+K0 48.51 28.41 0.03 0.03
Dsη 3.67 2.15 0.30 0.34
D∗
sη 9.51 5.57 0.03 0.03

D∗K∗
0 22.80 13.35 87.21 98.35

total 170.76 88.68

Table 4.20. Open-flavor strong decay widths, in MeV, and branchings, in %, of the D∗
s1(2710) meson with

quantum numbers nJP = 21−.

B(D∗
sJ(2860)

+ → D∗K)

B(D∗
sJ(2860)

+ → DK)
= 1.10± 0.15± 0.19, (4.58)

with DK = D+K0 +D0K+ and D∗K = D∗+K0 +D∗0K+. In the D∗K channel, the
BaBar Collaboration have also found the evidence for the DsJ(3040) whose mass and
width are 3044 ± 8+30

−5 MeV and 239 ± 35+46
−42MeV, respectively. There is no signal of

DsJ(3040) in the DK channel [135].

It is commonly believed that the D∗
s1(2710) is the first excitation of the D∗

s meson.
Our quark model predicts a mass in this energy range but also for the 21S0 state.
However, if the D∗

s1(2710) had quantum numbers JP = 0− it would not decay into DK
final state, and this is incompatible with the branching ratio measured experimentally.
Therefore, Table 4.20 shows the open-flavor strong decays of the D∗

s1(2710) meson as
the 23S1 state. Both decay models give a large total width, being the prediction of
the 3P0 model in agreement with the experimental data. The result of the microscopic
model is lower than the experimental one. The branching ratio of Eq. (4.58) predicted
by both decay models is

B(D∗
s1(2710)

+ → D∗K)

B(D∗
s1(2710)

+ → DK)
=





0.91± 0.13± 0.12 Exp.

2.64 3P0

0.05 Mic.

(4.59)

which are in strong disagreement with the experimental value. We observe a strong
coupling of the 23S1 state with the D∗K∗

0 final channel in the microscopic model but
also a moderate coupling is noticed with the 3P0 model.

Once the assignment of the D∗
s1(2710) is done and according to the observed decay

modes, the possible spin-parity quantum numbers of the D∗
sJ(2860) are J

P = 1−, 2+

and 3−. The 2+ assignment is disfavored because it would be the excitation of the
D∗
s2(2573) meson and our model predicts a mass about 3.1GeV. In Table 4.21 we show

the open-flavor strong decays of the D∗
sJ(2860) as the third excitation of the 1− meson

and as the ground state of 3− meson. The comparison between experimental data and
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D∗
sJ(2860) as nJ

P = 31− D∗
sJ(2860) as nJ

P = 13−

Channel Γ3P0
B3P0

ΓMic. BMic. Γ3P0
B3P0

ΓMic. BMic.

D0K+ 26.28 17.15 0.19 0.15 19.60 23.03 1.79 18.38
D+K0 27.06 17.66 0.20 0.16 18.97 22.29 1.65 16.94
D∗0K+ 19.28 12.58 3.67 2.92 13.38 15.71 0.19 1.92
D∗+K0 19.15 12.50 3.58 2.84 12.79 15.03 0.16 1.64
Dsη 12.12 7.92 0.42 0.33 1.06 1.24 0.03 0.31
D∗
sη 5.06 3.30 0.06 0.05 0.35 0.41 0.0036 0.03

D∗K∗
0 7.15 4.67 117.55 93.36 16.16 18.99 5.92 60.78

DK∗ 37.10 24.22 0.24 0.19 2.81 3.30 0.0007 0.00
total 153.19 125.91 85.12 9.74

Table 4.21. Open-flavor strong decay widths, in MeV, and branchings, in %, of the D∗
sJ (2860) meson with

quantum numbers nJP = 31− or 1 3−.

DsJ(3040) as nJ
P = 31+ DsJ(3040) as nJ

P = 41+

Channel Γ3P0
B3P0

ΓMic. BMic. Γ3P0
B3P0

ΓMic. BMic.

D∗0K+ 12.56 4.16 12.23 10.05 26.49 6.13 10.83 3.14
D∗+K0 12.66 4.20 12.16 9.99 26.99 6.24 10.86 3.15
DK∗

0 0.76 0.25 3.51 2.88 0.30 0.07 17.61 5.10
D∗
sη 3.26 1.08 1.95 1.60 4.97 1.15 2.92 0.85

D∗K∗
0 0.02 0.01 1.08 0.89 1.10 0.25 0.70 0.20

DK∗ 44.28 14.69 0.30 0.25 100.38 23.21 8.00 2.32
D∗
s0η 0.97 0.32 0.43 0.35 1.66 0.38 0.03 0.01

D∗
0K 2.81 0.93 0.08 0.07 2.31 0.53 5.90 1.71

D∗K∗ 156.78 52.00 13.43 11.03 130.91 30.27 20.78 6.02
D1K 39.81 13.20 58.04 47.67 11.58 2.68 26.01 7.54
D′

1K 0.69 0.23 0.40 0.33 0.04 0.01 5.27 1.53
D∗

2K 11.19 3.71 12.63 10.37 123.74 28.61 235.67 68.30
Dsφ 15.54 5.15 4.73 3.88 1.97 0.45 0.15 0.04
Ds1η 0.19 0.07 0.78 0.64 0.09 0.02 0.30 0.09
total 301.52 121.75 432.54 345.03

Table 4.22. Open-flavor strong decay widths, in MeV, and branchings, in %, of the DsJ (3040) meson with
quantum numbers nJP = 31+ or 4 1+.

our predictions is as follow

Γ(D∗
sJ(2860)) =





48± 3± 6MeV Exp.[
153.19 3 1−

85.12 1 3−

]
3P0

[
125.91 3 1−

9.74 1 3−

]
Mic.
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B(D∗
sJ(2860)

+ → D∗K)

B(D∗
sJ(2860)

+ → DK)
=






1.10± 0.15± 0.19 Exp.[
0.72 3 1−

0.68 1 3−

]
3P0

[
18.58 3 1−

0.10 1 3−

]
Mic.

(4.60)

The microscopic model does not give satisfactory results. Following the 3P0 model,
the nJP = 1 3− assignment appears to be the most plausible, with reasonable values for
the total decay width and the branching ratio. The total width might not be sufficient
to discard the other possibility, moreover, the ratio is in reasonable agreement with
the experimental one. Therefore, to distinguish between the two possibilities further
experimental studies in the remaining decay modes Dsη, D

∗
sη, D

∗K∗
0 and DK∗ are

needed. The nJP = 3 1− state has traces in Dsη and D∗
sη while the 1 3− state has

none of them. Moreover, the dominant decay mode between D∗K∗
0 and DK∗ changes

depending on the assignment.
The mean 2P multiplet mass is predicted to be near the mass of the DsJ(3040)

resonance. Therefore, the possible assignments are the 0+ which only decays into DK,
the 1+ which only decays into D∗K and the 2+ which decays into DK and D∗K. The
only decay mode in which DsJ(3040) has been seen until now is the D∗K, and so the
most possible assignment is that the DsJ(3040) meson being the next excitation in the
1+ channel. Table 4.22 shows the open-flavor strong decays of the DsJ(3040) meson as
the nJP = 3 1+ or 4 1+ state. The mass of DsJ(3040) is large enough to allow decays
to (D∗

0, D
′
1)K, (D1, D

∗
2)K and D∗

s0η, with different features in the two cases. Other
allowed modes are DK∗ and Dsφ. Its total width, 239 ± 35+46

−42MeV, indicates that
this state should be very broad. The nJP = 3 1+ and 4 1+ states seem to have large
total decay widths according to the prediction of the 3P0 model, being that of the
nJP = 3 1+ state in better agreement with the experimental data.

4.5.4 Results for Υ states

Table 4.23 shows the strong decay widths predicted by the 3P0 and the microscopic
models for the 1−− bb̄ states which are well established in PDG [78]. Following
Eq. (4.52), the value of γ of the 3P0 model is 0.205. The notation B1B2 includes the
B1B̄2 and B̄1B2 combination of well defined CP quantum numbers. For the kinematics
we use experimental masses.

One can see that the general trend of the total decay widths is well reproduced in
the case of the 3P0 model. The total widths are lower in the microscopic model without
improving the agreement with the experimental data.

The Υ(4S) is the first 1−− bottomonium state above the BB threshold, 10.56GeV.
This state only decays into the BB final channel. We have incorporated the isospin
breaking via the experimental masses. In Table 4.23 we compare the theoretical
branching fractions with the experimental ones for the two possible channels B+B− and
B0B̄0. One can see that despite the mass of the Υ(4S) is very close to the thresholds,
the difference between branching fractions of both channels is negligible due to the small
difference between masses of the B± and B0. Our branching fractions are in agreement
with the experimental data in both decay models although the width predicted by the
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Meson State Channel Γ3P0
B3P0

ΓMic. BMic. BExp. [78]

Υ(4S) 43S1 B+B− 10.41 50.54 1.31 50.58 51.6 ± 0.6
B0B̄0 10.18 49.46 1.28 49.42 48.4 ± 0.6
BB 20.59 100 2.59 100 > 96

20.5 ± 2.5 total 20.59 2.59

Υ(10860) 53S1 BB 6.22 22.29 3.55 11.21 5.5± 1.0
BB∗ 11.83 42.41 13.78 43.54 13.7 ± 1.6
B∗B∗ 0.09 0.32 12.17 38.45 38.1 ± 3.4
BsBs 0.96 3.45 0.014 0.04 0.5± 0.5
BsB

∗
s 1.15 4.11 0.37 1.17 1.4± 0.6

B∗
sB

∗
s 7.65 27.42 1.77 5.59 17.4 ± 2.7

B
(∗)
s B

(∗)
s 9.76 34.98 2.15 6.80 19.3 ± 2.9

55± 28 total 27.89 31.65

Υ(11020) 63S1 BB 4.18 5.28 0.72 3.24
BB∗ 15.49 19.57 6.30 28.34
BB1 40.08 50.64 2.70 12.14
BB′

1 3.95 4.98 0.62 2.79
B∗B∗ 11.87 14.99 11.43 51.42
BsBs 0.07 0.09 0.20 0.90
BsB

∗
s 1.50 1.89 0.23 1.03

B∗
sB

∗
s 2.02 2.56 0.031 0.14

79± 16 total 79.16 22.23

Table 4.23. Open-flavor strong decay widths, in MeV, and branchings, in %, of Υ states. Experimental data
are taken from Ref. [78].

microscopic model is quite small.

The possible two-body final states of the Υ(5S) are BB, BB∗, B∗B∗, BsBs BsB
∗
s

B∗
sB

∗
s . Despite the 3P0 model predicts a total width and branching fractions in

reasonable agreement with the experimental data, there are two theoretical values
that strongly disagree with the experimental ones. On one hand, the channel B∗B∗,
being dominant according to the experimental data, appears suppressed in the 3P0

model. This is due to the small value of the overlap integral between wave functions.

On the other hand, the branching fraction B(Υ(5S) → B
(∗)
s B

(∗)
s ) is about a factor 2

higher than that measured experimentally. We have recovered a reasonable width with
the the microscopic model although the branchings are not good.

There is no data about the open-flavor strong decays of the Υ(6S) resonance. Only
its total width has been reported in the PDG. Whereas the 3P0 model predicts a total
width in good agreement with the experimental one, the microscopic model predicts
one too small. The final channels BB∗, BB1 and B∗B∗ are dominant according with
both decay models.
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4.6 Charmonium resonances in the string breaking region

The breaking of the color electric string between two static sources is a phenomenon
predicted by QCD and it is the basis of the meson decay and the hadronization process.
Although there is no analytical proof, it is a general belief that confinement merges
from the force between the gluon color charges. When two quarks are separated, due
to the non-Abelian character of the theory, the gluon fields self interact forming color
strings which brings the quarks together. In a pure gluon gauge theory the potential
energy of the qq̄ pair grows linearly with the quark-antiquark distance. However in full
QCD the presence of sea quarks may soften the linear potential, due to the screening
of the color charges, and eventually leads to the breaking of the string.

Lattice QCD calculations with dynamical fermions indicate that color screening
effects on the linear potential do exist at large distances and can be parametrized in
terms of a screening length µ−1 [201]. Recently string breaking effects have been shown
for nf = 2 lattice QCD [68].

From a phenomenological point of view the screening effects can be related to
properties of the quarkonium system. In fact, the knowledge of the properties of the
high excited quarkonium states may help to determine the form of the confinement in
this region.

The Belle Collaboration have very recently reported a measurement of the exclusive
e+e− → ΛcΛ̄c cross section [87]. A clear peak at M = 4634+8+5

−7−8MeV is observed.
Besides this significant near threshold enhancement, the cross section shows several
structures up to 5.4GeV. Similar structures has been observed in the exclusive
measurements of the e+e− → D∗±D∗∓ cross section using initial state radiation [202]
and in the analysis of the e+e− → J/ψππ data [89].

These data have been analyzed by different authors. Van Beveren et al. [203, 204]
conclude that the near threshold enhancement can be explained as a combined effect
of a normal threshold behavior and a sub-threshold zero in the amplitude at 4.5GeV.
Moreover, they found indications for four not very broad (30−60MeV) new cc̄ states at
4.79GeV, 4.87GeV, 5.13GeV and 5.29GeV. On the other hand Bugg [205] concludes
from the analysis of the same data that the near threshold enhancement may be
interpreted as the X(4660) when a proper form factor is used in the phase space.

Although data are not yet conclusive, the region above the ΛcΛ̄c threshold is of
indubitable interest to determine the behavior of the confinement interaction near the
string breaking region.

In this section we undertake the study of the JPC = 1−− cc̄ high excited states up
to the string breaking threshold. These are the accessible quantum numbers from the
e+e− entrance channel. Our aim is to characterize these states (energies, leptonic and
strong widths) to look for these properties in future experiments.

In Table 4.24 we summarize our results. Our state with a mass of 4614MeV is
identified with the X(4630) meson. The X(4660) resonance is assigned to the following
state in mass, M = 4641MeV. In addition we found 14 bound states up to 12 3S1 and
11 3D1. Some of them coincide with the ones suggested by [204] although, given the
experimental uncertainties, we do not want to stress too much this agreement. The
main feature concerning the masses is that as far as we approach to the string breaking
threshold the S and D-wave states become more and more degenerated making difficult
to separate them experimentally. Moreover the leptonic and strong widths become
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State MThe. (MeV) MExp. (MeV) Γe+e− (keV) Dominant B Γtotal (MeV)

5 3S1 4614 4634+8+5
−7−8 0.57 D∗D∗

2 0.41 206.37
4 3D1 4641 4664 ± 11 0.31 D∗D∗ 0.30 135.06
6 3S1 4791 4790 0.42 D∗D∗

2 0.33 103.86
5 3D1 4810 0.28 D∗D∗ 0.40 68.12

4870
7 3S1 4929 0.32 D∗D∗ 0.20 66.45
6 3D1 4944 0.24 D∗D∗ 0.40 55.93
8 3S1 5036 0.24 D∗D∗ 0.24 52.95
7 3D1 5048 0.20 D∗D∗ 0.33 52.35
9 3S1 5117 0.17 D∗D∗ 0.26 41.23
8 3D1 5126 5130 0.16 D∗D∗ 0.30 42.19
10 3S1 5175 0.12 D∗D∗ 0.25 30.24
9 3D1 5182 0.11 D∗D∗ 0.27 32.39
11 3S1 5214 0.07 D∗D∗ 0.24 20.21
10 3D1 5219 0.07 D∗D∗ 0.25 21.29
12 3S1 5236 0.03 D∗D∗ 0.24 10.15
11 3D1 5239 0.03 D∗D∗ 0.24 9.98

5290

Table 4.24. High excited JPC = 1−− cc̄ states. Some properties are shown.

smaller. This can be seen in panels (a) and (b) of Fig. 4.6 where, for completeness, we
have included the results obtained for the lower 1−− cc̄ states. The measured strong
widths agree reasonably well with our calculation, reaching a maximum around a mass
of M = 4.6GeV. After this maximum, the widths decrease due to the competition
between phase space and meson wave function overlaps. In almost all the resonances
the most important decay channel is the D∗D∗. The experimental data around 4.6GeV
is clearly out of the systematic, which maybe an indication of a more complex structure
for the X(4630) and X(4660) states.

The situation is similar regarding the leptonic widths shown in panel (b) of Fig. 4.6.
As in the former figure we show the results for the lower states together with our
current results. Once again the model reproduces the measured widths showing a clear
difference between S and D wave states. This behavior is an important tool to assign
quantum numbers to the resonances. In particular the measurement of the X(4360)
leptonic width will confirm our assignment. As far as we are approaching to the string
breaking threshold the widths are narrower and the difference between S and D-wave
states become smaller.

In panel (c) of Fig. 4.6 we show the quadratic mean radius for these mesons. As
expected these are extended objects with a radius that grows as one gets closer to the
string breaking threshold.

Then the scenario drawn from this calculation consists in several narrow resonances
near the string breaking threshold which include S and D-wave states. The only
possible way to resolve these two angular momentum contributions is to look to some

specific ratio, like R = Γ(X→DD∗)
Γ(X→D∗D∗)

shown in panel (d) of Fig. 4.6, which range from 1.5
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Figure 4.6. (a): Total widths, in MeV, of the 1−− cc̄ states. Solid dots are the experimental data taken
from Refs. [78, 87, 206]. Solid (open) squares are our results for the higher (lower) states. (b): Leptonic
widths, in keV, of the 1−− cc̄ states. Solid dots are the experimental data taken from Refs. [78, 97]. Solid
(open) squares are our results for higher (lower) S-wave states. Solid (open) triangles are our results for higher
(lower) D-wave states. (c): Solid squares are the theoretical mean square radius, in fm, of the resonances in

Table 4.24. (d): The ratio R = Γ(X→DD∗)
Γ(X→D∗D∗)

predicted by the model is shown by solid squares (triangles) for

S-wave (D-wave) states.

to 0.7 for S-wave states and is around 0.2 for D-wave states.
Finally, we compare our results with the e+e− → J/ψππ and e+e− → ΛcΛ̄c

data. We will use those of van Beveren et al. [203, 204] where the subtraction of
the non-resonant signal has been carried out assuming Breit Wigner forms for the
cc̄ resonances. Some of the experimental predicted structures are well reproduced.
The most significant differences are the resonance below 4.9GeV and the one around
5.3GeV. The discrepancy at 4.9GeV cannot be explained by interference effects
or modifications in the Breit-Wigner shapes because the nearby resonances are too
separated, as shown in Fig. 4.7. The discrepancy around 5.3GeV has a different origin
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Figure 4.7. Fit to the J/ψπ+π− [203] and the e+e− → Λ+
c Λ

−
c [204] data, shown by solid dots, using the

resonances from Table 4.24. The solid line shows the full result while the dashed lines show the position of
each resonance.
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Figure 4.8. Same as in Fig. 4.7 varying the confinement parameters as explained in the text.

because our threshold is below this region.

In order to show the sensitivity of the spectra to the confinement potential
parameters we have changed the ac and µc model parameters of the confining
interaction, leaving its product constant which guarantees that the slope of the
confinement remains the same. The results are shown in Fig. 4.8. With this
parametrization we clearly improve the agreement in the 5.3GeV region, although
the precision of the data is not enough to decide about the 4.9GeV region. The price
to pay is to loose part of the consistency with the whole meson spectra. These results
show the interest of this region to constrain the confinement interaction.
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4.7 Charmonium resonances in e+e− exclusive reactions

Exclusive open-charm production in e+e− annihilation provides important information
on the charm quark dynamics in the 4 − 5GeV puzzling region of the JPC = 1−−

charmonium spectrum. The heaviest well-established JPC = 1−− charmonium state,
ψ(4415), was first observed 30 years ago by the MARK I and DASP Collaborations [207,
208]. Subsequently, e+e− annihilation cross section measurements in the region of the
ψ(4415) were reported by the Crystall Ball and BES groups [209, 210]. No update of
resonance parameters was done until 2005 when an alternative fit to these last data
was performed by Seth [84]. Recently the BES Collaboration reported new values for
the ψ(3770), ψ(4040), ψ(4160) and ψ(4415) resonance parameters which are derived
from a global fit to their cross section measurements [97].

The Belle Collaboration has recently performed measurements of the exclusive
cross section for the processes e+e− → D0D−π+ [211] and e+e− → D0D∗−π+ [212]
over the center-of-mass energy range 4.0GeV to 5.0GeV. In the first reaction they
found a prominent peak in the cross section which is interpreted as the ψ(4415).
From the study of the resonant structure in the ψ(4415) decay, they conclude that
the final channel D0D−π+ is reached through the DD̄∗

2(2460) intermediate state.
Using a relativistic Breit-Wigner function parametrization they obtain the value of the
B(ψ(4415) → DD̄∗

2(2460))× B(D̄∗
2(2460) → Dπ+) product of branching fractions and

the mass and width of the ψ(4415). From the measurement of the e+e− → D0D∗−π+

exclusive cross section reported in Ref. [212], they provide upper limits on the peak
cross section for the process e+e− → X → D0D∗−π+ where X denotes X(4260),
X(4360), ψ(4415), X(4630) and X(4660). Although only the value concerning the
ψ(4415) is significant.

We have seen that our assignment of the ψ(4415) as a D-wave state leaving the
4S state for the X(4360) agrees with the last measurements of the leptonic width [97].
Now we want to perform a study of the two above reactions to test if our result is also
compatible with the measurements of Belle.

We assume the reaction e+e− → X → DD(∗)π and parametrize the cross
section using a relativistic Breit-Wigner function including Blatt-Weisskopf corrections.
The relativistic Breit-Wigner amplitude for the process e+e− → resonance →
hadronic final state f at center-of-mass energy

√
S can be written as

T f
r (

√
S) =

Mr

√
Γeer Γ

f
r

S −M2
r + iMrΓr

eiδr , (4.61)

where r indicates the resonance being studied, Mr is the nominal mass, Γr is the full
width, Γeer is the leptonic width, Γfr is the hadronic width for the decaying channel f
and δr is a relative phase.

When there are more than one resonance in the same energy range and we measure
the same decay channel, the spin-averaged cross section is a coherent sum of the Breit-
Wigner amplitudes for each resonance

σ(
√
S) =

(2J + 1)

(2S1 + 1)(2S2 + 1)

16π

S

∣∣∣∣∣∣

∑

r

Mr

√
Γeer Γ

f
r

S −M2
r + iMrΓr

eiδr

∣∣∣∣∣∣

2

. (4.62)
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Now, we introduce the energy dependence of the widths following Ref. [97]. The
angular momentum dominant partial width of a resonance decaying into one channel
is given by [213]

Γfr (
√
S) = Γ̂r

Z2L+1
f

BL
, (4.63)

with Zf defined as Zf ≡ ρPf , where Pf is the decay momentum and ρ is a free
parameter whose value is around the range of the interaction (on the order of a few
fermis), the physical results are insensitive to its precise value. The energy-dependent
partial wave functions BL(Zf) are given in Ref. [213] or [214]

B0 = 1,

B1 = 1 + Z2
f ,

B2 = 9 + 3Z2
f + Z4

f ,

B3 = 225 + 45Z2
f + 6Z4

f + Z6
f ,

(4.64)

and Γ̂r is related with the partial width at the mass of the resonance, Γ0, as

Γ̂r = Γ0
BL(P0)

Z2L+1
f (P0)

. (4.65)

Then our final expressions for the partial and total width are given by

Γfr (
√
S) = Γ0

Z2L+1
f (Pf)

Z2L+1
f (P0)

BL(P0)

BL(Pf)
,

Γr(
√
S) =

2Mr

Mr +
√
S

∑

f

Γfr (
√
S),

(4.66)

where the term 2Mr

Mr+
√
S
is a relativistic correction factor [213].

4.7.1 The process e+e− → D0D−π+

This process has been studied by Pakhlova et al. in Ref. [211]. They perform a separate
study of the e+e− → DD̄∗

2(2460) and e
+e− → D(Dπ)non−D̄∗

2(2460)
concluding that the

e+e− → D0D−π+ is dominated by X → DD̄∗
2(2460).

Assuming X ≡ ψ(4415) and a relativistic Breit-Wigner function to fit the data,
the peak cross section for the process e+e− → X → DD̄∗

2(2460) is σ(e+e− →
ψ(4415))×B(ψ(4415) → DD̄∗

2(2460))×B(D̄∗
2(2460) → Dπ+) = (0.74±0.17±0.08) nb.

Using that

σ(e+e− → X) =
12π

m2
X

Γee
Γtot

, (4.67)

the authors of Ref. [211] estimate B(ψ(4415) → DD̄∗
2(2460))×B(D̄∗

2(2460) → Dπ+) =
(10.5± 2.4± 3.8)% or (19.5± 4.5± 9.2)% depending on the different parametrization
of the ψ(4415) resonance (Refs. [78] and [97], respectively).

Furthermore, taken from Ref. [78] the branching fraction for D̄∗
2(2460) → Dπ+, one

can estimate B(ψ(4415) → DD∗
2) = 0.47 using the resonance parameters of Ref. [78]
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X(4360) ψ(4415)

The. Exp. The. Exp.

Mass (MeV) 4389 4361 ± 9± 9 4426 4415.1 ± 7.9
Γtot (MeV) 113.9 74± 15± 10 159.0 71.5± 19.0
Γee (keV) 0.78 - 0.33 0.35± 0.12

Table 4.25. Resonance parameters predicted by our constituent quark model for the X(4360) and ψ(4415).
The experimental data are taken from Ref. [78] for X(4360) and Ref. [97] for ψ(4415).

or 0.86 using those of Ref. [97]. Note that there are two final charged states in the
calculation of B(D̄∗

2(2460) → Dπ+) and we give the branching fraction of the process
ψ(4415) → DD∗

2 in function of the DD∗
2 state and not in function of the DD̄∗

2 one.
The theoretical calculation of the e+e− → D0D−π+ cross section can be divided

in three steps. The first one is the resonance production e+e− → X which can be
given in terms of the leptonic width. The second and third steps are the strong decays
ψ(4415) → DD̄∗

2(2460) and D̄
∗
2(2460) → Dπ+ which can be calculated using the 3P0

model. These two partial widths are involved in the calculation of the Γfr in Eq. (4.62)
because in the case under study we have Γfr = Γ(X ≡ ψ(4415) → DD̄∗

2(2460) →
DDπ+) which is equal to Γ(X ≡ ψ(4415) → DD̄∗

2(2460))× B(D̄∗
2(2460) → Dπ+).

We show the prediction of our model for the mass, the total width and the leptonic
width of the resonance ψ(4415) in Table 4.25. First, we calculate the branching
fractions B(D∗+

2 → D0π+) and B(D̄∗0
2 → D−π+)

B(D∗+
2 → D0π+) = 0.4295 (Exp.: 0.4368± 0.0901),

B(D̄∗0
2 → D−π+) = 0.4296 (Exp.: 0.4706± 0.0285),

(4.68)

which agree with the experimental values of Ref. [78]. Furthermore the ratios

R1 =
Γ(D∗+

2 → D0π+)

Γ(D∗+
2 → D∗0π+)

= 1.8106 (Exp.: 1.9± 1.1± 0.3),

R2 =
Γ(D̄∗0

2 → D−π+)

Γ(D̄∗0
2 → D∗−π+)

= 1.8138 (Exp.: 1.56± 0.16),

(4.69)

also agree with the experimental data of Ref. [78].
However, when in a similar way we calculate the B(ψ(4415) → DD∗

2) we obtain
for the B(ψ(4415) → DD∗

2) = 0.15 which clearly disagrees with the estimation of
Ref. [211].

Our model prediction for the cross section is shown in panel (a) of Fig. 4.9. One
can see that our result is very far from the experimental data. In order to test if this
disagreement is due to the 3D character of our resonance we repeat the calculation
using the parametrization of Ref. [98] where the ψ(4415) is described as a 4S state.
Although the result approaches the experimental data, see Fig. 4.9(b), it still does not
describe the full cross section. Certainly, the theoretical results have some uncertainties
coming either from the wave functions used in the 3P0 model or the leptonic width. To
minimized these uncertainties we have used in Fig. 4.9(b) the experimental value for
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Figure 4.9. (a): Our model prediction with only the resonance ψ(4415). (b): Model prediction of Ref. [98].
(c): Our model prediction with only the resonance X(4360). (d): Our model prediction with the interference
of the resonances X(4360) and ψ(4415).

the leptonic width [78]. Using the value Γe+e− predicted by the model of Ref. [98], the
result would be a factor ∼3 smaller.

Taken into account that the energy window around the nominal ψ(4415) mass in
the experiment of Ref. [211] is ±100MeV, we introduce in the calculation the resonance
X(4360) which appears as a 4S 1−− cc̄ meson in our model. The predicted mass, total
and leptonic widths are shown in Table 4.25. Panel (c) of Fig. 4.9 shows how this
resonance alone cannot reproduce the data but the interference between the X(4360)
and ψ(4415), panel (d) of Fig. 4.9, produces a remarkable agreement with the data.

Using the interference of the two resonances, the theoretical value for the exclusive
cross section σ(e+e− → DD̄∗

2(2460) → D0D−π+) at the ψ(4415) mass is 0.48 nb. It
is within the error bars of the experimental value (0.62+0.14

−0.13) nb. Our result indicates
that the two resonances are needed to explain the experimental data.

It is interesting to notice here that the X(4360) has the DD1 and DD∗
2 as the

dominant decay channels. Naively one would expect the D∗D∗ channel to be dominant
since its decay goes through a P -wave while the dominant channels goes through a
D-wave. The suppression of the D∗D∗ channel is due to the wave functions overlap
in the decay process. In Fig. 4.10 we show the width dependence on the mass of the
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Figure 4.10. Open-flavor strong decay widths, in MeV, of the X(4360) resonance in the D∗D∗ (solid line),
DD1 (dashed line) and DD∗

2 (dot-dashed line) channels as a function of the mass of the resonance, in GeV.

X(4360) → D∗D∗ ψ(4415) → D∗D∗

2JBC+1lJA JBC l ΓA→BC(JBC , l) (MeV) JBC l ΓA→BC(JBC , l) (MeV)

1P1 0 1 0.367 0 1 0.031
5P1 2 1 8.500 2 1 0.006
5F1 2 3 0.001 2 3 32.519

total 8.868 32.556

Table 4.26. Partial wave decomposition of the D∗D∗ decay channel for the X(4360) and the ψ(4415)
resonances.

resonance for the three dominant decay channels.
As the X(4360) and ψ(4415) resonances are separated by about 40MeV and have

a width of the order of 100MeV it might be difficult to separate them from this
experiment. Moreover in our model the decay width to the different channels for
the X(4360) and the ψ(4415) are similar.

Following Ref. [98] a possible way to distinguish the S or D-wave character of
the resonances would be to look at the angular distribution of the D∗D∗ decay. In
this decay channel there are contributions of three different amplitudes, 2JBC+1lJA, as
shown in Table 4.26. For an S-wave cc̄ state the 5P1 amplitude dominates and the
5F1 amplitude is almost zero while it dominates the decay in the D-wave case. So at
energies where the X(4360) dominates the angular distribution should be consistent
with a 5P1 partial wave and where the ψ(4415) dominates should be a 5F1.

4.7.2 The process e+e− → D0D∗−π+

Using the same philosophy we check the e+e− → D0D∗−π+ exclusive cross section
measured by the Belle Collaboration [212]. The exclusive cross section shows different
structures which can be interpreted as resonances. The experimental analysis of [212]
estimates from the amplitude of a relativistic Breit-Wigner function fitted to the data
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Figure 4.11. (a): Our model prediction with only the resonance ψ(4415). (b): Our model prediction with the
interference of the resonances X(4360) and ψ(4415).

Bee × B(X → D0D∗−π+)

X The. (×10−6) Exp. (×10−6)

X(4360) 0.25 < 0.72
ψ(4415) 0.35 < 0.99

Table 4.27. The product Bee × B(X → D0D∗−π+) of branching fractions calculated theoretically for
X ≡ X(4360) or X ≡ ψ(4415). Experimental data are taken from Ref. [212].

an upper limit of 0.76 nb for the peak cross section at Ecm =Mψ(4415).

We calculate the cross section following the same procedure as before. Again the
resonance production e+e− → X has been calculated and is given in Table 4.25. Now,
the second and third steps are the strong decays ψ(4415) → D∗−D∗+ andD∗+ → D0π+.

The theoretical result for the branching fraction B(D∗+ → D0π+) is 0.6870, in
very good agreement with the experimental value 0.677 ± 0.006 of Ref. [78]. For the
other branching fraction, B(ψ(4415) → D∗D∗), there is no experimental data. Our
theoretical result is 0.20.

The calculation of the cross section including the ψ(3D) resonance with M =
4426MeV alone does not reproduce the full strength of the resonance at Ecm =Mψ(4415)

and the result is improved when the X(4360) is added. See Fig. 4.11.

From the cross section of Fig. 4.11(b) we calculate the peak cross section for the
e+e− → D0D∗−π+ process at M(D0D∗−π+) = 4415MeV obtaining 0.45 nb which is
compatible with the experimental upper limit 0.76 nb at 90% C.L.

This result is also compatible with the upper limits measured in Ref. [212] for the
branchings Bee × B(X → D0D∗−π+) where X denotes the X(4360) and ψ(4415). In
table 4.27 we compare our result with the experimental value.

The X(4360) has been sometimes assigned as an unconventional charmonium state
since it was discovered in the e+e− → π+π−ψ(2S) decay [86] and its open-charm
decays were assumed to be suppressed. Ref. [212] gives the branching ratio B(X →
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Figure 4.12. (a): Model prediction of the reaction e+e− → D0D∗−π+ with the resonances X(4360) and
ψ(4415) (dashed line) and including ψ(5S) and ψ(4D) (solid line). (b): Model prediction of the reaction
e+e− → D0D−π+ with the resonances X(4360) and ψ(4415) (dashed line) and including ψ(5S) and ψ(4D)
(solid line).

D0D∗−π+)/B(X → π+π−ψ(2S)) < 8. Since theX → π+π−ψ(2S) is an OZI suppressed
decay the value of this upper limit means that the open-charm D∗+D∗+ where D∗+

decay into D0π+ should be small, which is actually the case in our model. We get
Γ(D0D∗−π+) = Γ(X(4360) → D∗+D∗−)B(D∗+ → D0π+) = 3.0MeV and combined
with the experimental information we obtain Γ(X(4360) → ψ(2S)π+π−) & 375 keV
which is in the same order of magnitude that other similar decays. From a theoretical
point of view, the decay (cc̄) → (cc̄)ππ is described by QCD multipole expansion
(QCDME). In this framework the ψ(2S) → ππJ/ψ can be explained [215] and give
the same order of magnitude. The following chapter is devoted to investigate if we
can explain the value of Γ(X(4360) → ψ(2S)π+π−) using QCDME and assuming our
assignment 4S 1−− cc̄ state for the meson X(4360).

Finally, data of Ref. [212] show a bump around 4.6GeV although data of Ref. [211]
do not show this bump. Our model predicts two states ψ(5S) and ψ(4D) in this energy
region. The inclusion of these two resonances improves the agreement with the cross
section in the bump region, as we can see in panel (a) of Fig 4.12. This bump should
not clearly appear in the e+e− → D0D−π+, as one can see in panel (b) of Fig. 4.12,
due to the small width of the ψ(5S) and ψ(4D) states into DD∗

2(2460) channel.

4.8 Description of the Ds1(2536)
+ decay properties

New data related with the Ds1(2536) meson has appeared recently. The BaBar
Collaboration has performed a high precision measurement of the Ds1(2536) decay
width obtaining a value of (1.03 ± 0.05 ± 0.12)MeV [198]. Furthermore, the Belle
Collaboration has reported the first observation of the Ds1(2536)

+ → D+π−K+ decay
measuring the branching fraction [216]

Ds1(2536)
+ → D+π−K+

Ds1(2536)+ → D∗+K0
= (3.27± 0.18± 0.37)%. (4.70)
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They also measured the ratio of the S-wave amplitude in the Ds1(2536)
+ → D∗+K0

decay finding a value of 0.72± 0.05± 0.01.
In this Section we study, without heavy quark approximations, the reaction

Ds1(2536)
+ → D+π−K+ as well as the angular decomposition of the Ds1(2536)

+ →
D∗+K0 decay in order to gain insight into the structure of the P -wave charmed-strange
mesons. As the D+π− pair in the final state is the only Dπ combination that cannot
come from a D∗ resonance, we will describe the reaction through a virtual D∗0 meson
since MD∗0 < MD+ +Mπ− .

In the model described in this work, a tetraquark cs̄nn̄ state has been predicted
by Vijande et al. in Ref. [217] with quantum numbers IJP = 0 1+ and mass
M = 2841MeV. If this state is present it should be coupled to the JP = 1+ cs̄
states.

Working in the HQS limit, the cs̄nn̄ tetraquark has three different spin states,
|0 1/2〉, |1 1/2〉 and |1 3/2〉 where the first index denotes the spin of the nn̄ pair and
the second the coupling with the s̄ spin. Although we use the 3P0 model to calculate
the meson decay widths, a description of the coupling between the Ds meson and the
tetraquark based on this model is beyond the scope of the present calculation. However,
we will use it here to select the dominant couplings and parametrize the vertex as a
constant CS. The model assumes that the nn̄ pair created is in a J = 0 state which
means that the Ds states will only couple with the first tetraquark component which
has spin 1/2 for the three light quarks. In the HQS limit the heavy quark is an
spectator and the angular momentum of the light quarks has to be conserved so that
the tetraquark will only couple to the cs̄ jq = 1/2 state.

For that reason we couple the tetraquark structure with the jq = 1/2 cs̄ state. This
choice differs from the one performed in Ref. [217] where the tetraquark is only coupled
to the 1P1 state and not to the 3P1. However this choice has several advantages: it has
the correct heavy quark limit, it may reproduce the narrow width of the Ds1(2536)

+

state and it is in agreement with the experimental situation which tells us that the
prediction of the heavy quark limit is reasonable for the jq = 3/2 state but not for the
jq = 1/2 one.

In this scenario we diagonalize the matrix

M =




M3P1
CSO

√
2
3
CS

CSO M1P1

√
1
3
CS√

2
3
CS

√
1
3
CS Mcs̄nn̄


 , (4.71)

where M3P1
= 2571.5MeV, M1P1

= 2576.0MeV and Mcs̄nn̄ = 2841MeV are the masses
of the states without couplings, the CSO = 19.6MeV is the coupling induced by
the antisymmetric spin-orbit interaction calculated within the model and CS is the
parameter that gives the coupling between the jq = 1/2 component of the 3P1 and
1P1 states and the tetraquark. The value of the parameter CS = 224MeV is fitted to
the mass of the Ds1(2460). We get the three eigenstates shown in Table 4.28. There
we also show the probabilities of the three components for each state and the relative
phases between different components. A 1+ state with an important component of
cs̄nn̄ tetraquark structure is found at 2973MeV.
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M (MeV) S(3P1) P (3P1) S(1P1) P (1P1) S(cs̄nn̄) P (cs̄nn̄)

2459 − 55.7 − 18.8 + 25.5
2557 + 27.7 − 72.1 + 0.2
2973 + 16.6 + 9.1 + 74.3

Table 4.28. Masses and probability distributions for the three eigenstates obtained from the coupling of the
Ds and tetraquark states. The relative sign to the tetraquark component is also shown.

M (MeV) Γ (MeV) R1 R2 R3(%)

Exp. 1.03 ± 0.05 ± 0.12 1.27 ± 0.21 0.72 ± 0.05 ± 0.01 3.27 ± 0.18± 0.37

2557 0.99 1.31 0.66 14.07

2593 190.17 1.09 1.00 13.13
2554 11.24 1.11 0.97 13.19

Table 4.29. Width and the three branching ratios defined in the text. The first row shows the experimental
data and the second shows our results for the Ds1(2536) state given in Table 4.28. For completeness we give
in the last two rows the results for the two 1+ cs̄ states predicted by the naive CQM.

We now calculate the different decay widths for the Ds1(2536)
+ state of Table 4.28.

As expected the D∗K decay width is narrow Γ = 0.99MeV. As the DK decay is
suppressed the total width would be mainly given by the D∗K channel and is in
the order of the experimental value Γexp = (1.03 ± 0.05 ± 0.12)MeV measured by
BaBar [198]. Of course the value strongly depends on the 3P0 γ strength parameter
that has been determined by a global fit of the total decay widths of mesons which
belong to charmed, charmed-strange, hidden charm and hidden bottom sectors. It also
depends on the fact that we have only coupled the 1/2 state with the tetraquark making
the remaining state a purest 3/2 which makes it narrower. If we would include an small
coupling between the 3/2 state and the tetraquark our Ds1(2536) will be broader.

There are two other experimental data that does not depend on the γ parameter,
namely the branching ratio [78]

R1 =
Γ(Ds1(2536)

+ → D∗0K+)

Γ(Ds1(2536)+ → D∗+K0)
= 1.27± 0.21, (4.72)

and the ratio of S-wave over the full width for the D∗+K0 decay [216]

R2 =
ΓS(Ds1(2536)

+ → D∗+K0)

Γ(Ds1(2536)+ → D∗+K0)
= 0.72± 0.05± 0.01. (4.73)

The first branching ratio should be 1 if the isospin symmetry was exact. However the
charge symmetry breaking in the phase space makes it different from this value. The
effect is sizable since the Ds1(2536)

+ is close to the D∗K threshold and for this reason
it also depends on the details of the Ds1 wave function. We get for this ratio the value
R1 = 1.31 in good agreement with the experimental one.

Notice that in order to get R2 different from one, we need to have a state with high
jq = 3/2 component. In our case we get a value of R2 = 0.66 close to the experimental
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one. The fact that our result is smaller than the experimental value indicates that the
probability of the jq = 3/2 state is high which is in agreement with the fact that we
get a narrow state.

Finally we calculate the branching

R3 =
Γ(Ds1(2536)

+ → D+π−K+)

Γ(Ds1(2536)+ → D∗+K0)
= (3.27± 0.18± 0.37)%. (4.74)

The reaction in the numerator goes through a virtual D∗0 as explained previously and
for that reason the branching is small. We get the value R3 = 14.1%, a factor 3 − 4
greater than the experimental one. This value seems not to depend on the details of
the Ds1 wave function.

All these results for the width and the ratios R1, R2 and R3 are summarized in
Table 4.29. We also show, for the sake of completeness, the results for the two 1+

states without coupling to the cs̄nn̄ tetraquark. None of these two states agree with
the full set of experimental values.





Chapter 5

Hadronic transitions

We call hadronic transition to the reaction

ΦI → ΦF + h, (5.1)

where ΦI , ΦF and h stand for the initial state quarkonium, the final state quarkonium
and the emitted light hadron(s), respectively. The kinematically allowed final
hadron(s), h, are dominated by single particle (π0, η, ω, . . .) or two particle (2π or
2K) states.

Hadronic transitions are one of the most important decay modes of heavy
quarkonium when they are below open-flavor threshold. For instance, the first observed
hadronic transition, ψ(2S) → J/ψππ, has a branching fraction of approximately
50% [78]. If these rates are large, they will significantly reduce the branching ratios of
photon transitions.

However, hadronic transitions do not only concern the states below open-flavor
threshold. Most of the XY Z mesons discovered recently have been found through
them [13], but also they have been used to find expected charmonium and bottomonium
states as the reported discovery of hb(1P ) and hb(2P ) produced via e+e− → hb(nP )ππ
in the Υ(5S) region [140].

In the charmonium and bottomonium systems, the typical mass difference between
initial and final mesons is around a few hundred MeV, so that the typical momentum of
the light hadron(s), h, is low. Since they are converted from the gluons emitted by the
heavy quark (antiquark) in the transition, the momentum of the emitted gluons is also
low. Therefore perturbative QCD does not work in the description of these processes
and certain nonperturbative approaches are needed for studying hadronic transitions.
QCD multipole expansion (QCDME), proposed in Ref. [218] and recently reviewed
in Ref. [215], appears as a feasible approach and has worked quite well in predicting
hadronic transition rates in the cc̄ and bb̄ systems [219–222].

We want to apply the theoretical framework of QCDME to calculate the ππ
transitions between the triplet states of cc̄ and bb̄ systems. QCDME approach requires
a model for hybrid mesons, and so we propose one coming from our constituent quark
model.

5.1 QCD multipole expansion

The multipole expansion has been widely used for studying radiation processes in
which the electromagnetic field is radiated from local sources. If the radius, a, of a
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local source is smaller than the wave length, λ, of the radiated electromagnetic field
such that a/λ ∼ ka < 1 (k stands for the momentum of the photon), ka can be a
good expansion parameter and one can, for instance, expand the electromagnetic field
in powers of ka.

The nonrelativistic nature of heavy quarkonium provides the possibility to solve the
bound state problem through the Schrödinger equation with a given potential model.
The typical root-mean-square radius, a =

√
r2, of the cc̄ and bb̄ states obtained in this

way is about 10−1 fm. The hadronic transitions are characterized by the emission of
soft gluons with a momentum k ∼ a few hundred MeV, so that ka is of the order of
10−1 and the idea of multipole radiation can be applied.

The gauge-invariant formulation of multipole expansion within QCD was given by
Tung-Mow Yan in Ref. [218]. Following Ref. [215], we introduce

Ψ(~x, t) = U−1(~x, t)ψ(x),

λa
2
Aa′µ (~x, t) = U−1(~x, t)

λa
2
Aaµ(x)U(~x, t)−

i

gs
U−1(~x, t)∂µU(~x, t),

(5.2)

where ψ(x) and Aaµ(x) are the quark and gluon fields and U(~x, t) is defined by

U(~x, t) ≡ P exp

[
igs

∫ ~x

~X

λa
2
~Aa(~x′, t) · d~x′

]
, (5.3)

in which P is the path-ordering operation, the line integral is along the straight-line
segment connecting the two ends, ~X ≡ (~x1 + ~x2)/2 is the center of mass position of Q
and Q̄, and ~x denotes ~x1 or ~x2. With the transformed fields of Eq. (5.2), the part of
the QCD Lagrangian related to the heavy quarks becomes

LQ =

∫
Ψ̄

[
γµ
(
i∂µ − gs

λa
2
Aa′µ

)
−m

]
Ψd3x

− 1

2

g2s
4π

∫ 8∑

a=0

Ψ̄(~x1, t)γ
0λa
2
Ψ(~x1, t)

1

|~x1 − ~x2|
Ψ̄(~x2, t)γ

0λa
2
Ψ(~x2, t)d

3x1 d
3x2,

(5.4)

where λ0/2 ≡ 1. Note that the transformed quark field Ψ(~x, t) is dressed with gluons
through U−1(~x, t) defined in Eq. (5.3). From Eq. (5.4) the dressed quark field, Ψ(~x, t),
is the field that interacts via the static Coulomb potential. In addition, it is the
transformed gluon field Aa′µ , not the original A

a
µ, that appears in the covariant derivative

in Eq. (5.4). Aa′µ contains non-Abelian contributions through U(~x, t).
Based on Eq. (5.4) one can write an effective Lagrangian as

Leff
Q =

∫
Ψ̄

[
γµ
(
i∂µ − gs

λa
2
Aa′µ

)
−m

]
Ψd3x

− 1

2

∫ 8∑

a=0

Ψ̄(~x1, t)γ
0λa
2
Ψ(~x1, t) [δa0V1(|~x1 − ~x2|)

+(1− δa0)V2(|~x1 − ~x2|)] Ψ̄(~x2, t)γ
0λa
2
Ψ(~x2, t)d

3x1 d
3x2,

(5.5)
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where V1(|~x1 − ~x2|) is the static potential, including the confining potential, between
Q and Q̄ in the color-singlet state, and V2(|~x1 − ~x2|) is the static potential between Q
and Q̄ in the color-octet state.

Inside the quarkonium one has that |~x − ~X| ≤ a, thus one can expand the gluon

field Aa′µ (~x, t) in Taylor series of (~x− ~X) at the center of mass position ~X . The Taylor

series is an expansion in powers of the operators (~x− ~X) · ~∇ and (~x− ~X)× ~∇ applying
to the gluon field. After operating on the gluon field with the gluon momentum k,
these operators are of the order of ka. This series is QCD multipole expansion. The
operation above leads to

Aa′0 (~x, t) = Aa′0 (
~X, t)− (~x− ~X) · ~Ea( ~X, t) + . . . ,

~Aa′(~x, t) = −1

2
(~x− ~X)× ~Ba( ~X, t) + . . . ,

(5.6)

where ~Ea and ~Ba are color-electric and color-magnetic fields, respectively.
The Hamiltonian formulation is more convenient when one wants to apply

nonrelativistic perturbation theory. The corresponding Hamiltonian derived from the
above formulation is [215]

Heff
QCD = H

(0)
QCD +H

(1)
QCD, (5.7)

where

H
(0)
QCD =

∫
Ψ†(~x1, t)Ψ(~x1, t)ĤΨ†(~x2, t)Ψ(~x2, t)d

3x1d
3x2 (5.8)

with

Ĥ ≡ − 1

2mQ

(∂21 + ∂22) + V1(|~x1 − ~x2|) +
8∑

a=1

λa
2

λ̄a
2
V2(|~x1 − ~x2|) + 2mQ, (5.9)

and

H
(1)
QCD = H1 +H2,

H1 ≡ QaA
a
0(
~X, t),

H2 ≡ −~da · ~Ea( ~X, t)− ~ma · ~Ba( ~X, t) + . . . ,

(5.10)

in which

Qa ≡ gE

∫
Ψ†(~x, t)

λa
2
Ψ(~x, t)d3x,

~da ≡ gE

∫
(~x− ~X)Ψ†(~x, t)

λa
2
Ψ(~x, t)d3x,

~ma ≡
gM
2

∫
(~x− ~X)×Ψ†(~x, t)~γ

λa
2
Ψ(~x, t)d3x,

(5.11)

are the color charge, color-electric dipole moment, and color-magnetic dipole moment of
the QQ̄ system, respectively. Considering that the heavy quark may have an anomalous
magnetic moment, we have taken in Eqs. (5.11) the symbols gE and gM to denote the
effective coupling constants for the electric and magnetic multipole gluon emissions,
respectively.
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Figure 5.1. A hadronic transition as a two-step process, emission of gluons from heavy quarks (MGE) and
the conversion of gluons into light hadrons (H).

We are going to take H
(0)
QCD as the zeroth order Hamiltonian, and take H

(1)
QCD as a

perturbation. This is different from the ordinary perturbation theory since H
(0)
QCD is not

a free field Hamiltonian. H
(0)
QCD contains strong interactions in the potentials in Ĥ , so

that the eigenstates of H
(0)
QCD are bound states rather than free field states. For a given

potential model, the zeroth order solution can be obtained by solving the Schrödinger
equation with the given potential. Moreover, we see from Eqs. (5.11) that only H2 in

H
(1)
QCD is of O((ka)1). Note that H1 is of O((ka)0), we treat H1 nonperturbatively and

keep it in the propagator.
The general formula for the S matrix element between the initial state |I〉 and the

final state |F 〉 in this expansion has been given in Ref. [221], which is

〈F |S|I〉 =− i2πδ(EF + ωF −EI)×

× 〈F |H2
1

EI −H
(0)
QCD + i∂0 −H1

H2 · · ·H2
1

EI −H
(0)
QCD + i∂0 −H1

H2 |I〉 ,

(5.12)

where ωF is the energy of the emitted gluons. This is the basic formula to study
hadronic transitions in QCDME.

5.2 Spin-nonflip hadronic transitions with two pions

These processes are dominated by double electric-dipole transitions (E1E1). The
transition amplitude can be obtained from the S matrix element presented in Eq. (5.12)
which in this case is given by [215]

ME1E1 = i
g2E
6

〈ΦFh |~x · ~E
1

EI −H
(0)
QCD − iD0

~x · ~E|ΦI〉 , (5.13)

where ~x is the separation between Q and Q̄, and (D0)bc ≡ δbc∂0 − gsfabcA
a
0. Let us

insert a complete set of intermediate states with the principal quantum number K and
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the orbital angular momentum L. Then Eq. (5.13) can be written as

ME1E1 = i
g2E
6

∑

K,L,K ′,L′

〈ΦFh|~x · ~E|KL〉 〈KL|
1

EI −H
(0)
QCD − iD0

|K ′L′〉 〈K ′L′|~x · ~E|ΦI〉 .

(5.14)
The intermediate states in the hadronic transition are the states after the emission

of the first gluon and before the emission of the second gluon, see Fig 5.1. They are
states with a gluon and a color-octet QQ̄ and thus these states are the so-called hybrid
states. It is difficult to calculate these hybrid states from first principles of QCD. So
we take a reasonable model, which will be explained below, to describe them.

With this model, the transition amplitude, Eq. (5.14), becomes

ME1E1 = i
g2E
6

∑

KL

〈ΦF |xk|KL〉 〈KL|xl|ΦI〉
EI − EKL

〈ππ|Ea
kE

a
l |0〉 , (5.15)

where EKL is the energy eigenvalue of the intermediate vibrational state |KL〉. We see
that, in this approach, the transition amplitude factorizes into the vertex of multipole
gluon emissions (MGE) from the heavy quarks and the vertex of hadronization (H)
describing the conversion of the emitted gluons into light hadron(s), see Fig 5.1. The
first factor concerns the wave functions and energy eigenvalues of the initial and final
state quarkonium and the intermediate states. These can be calculated for a given
potential model. Let us now consider the treatment of the second factor. The scale of
the H factor is the scale of light hadrons which is very low. Therefore the calculation of
this matrix element is highly nonperturbative. Therefore we take a phenomenological
approach based on an analysis of the structure of this matrix element using PCAC and
soft pion technique in Ref. [223]. In the center-of-mass frame, the two pion momenta
q1 and q2 are the only independent variables describing this matrix element. According
with Refs. [223, 218], we can write this matrix element as [215]

g2E
6

〈πα(q1)πβ(q2)|Ea
kE

a
l |0〉 =

δαβ√
(2ω1)(2ω2)

×

×
[
C1δklq

µ
1 q2µ + C2

(
q1kq2l + q1lq2k −

2

3
δkl~q1 · ~q2

)]
,

(5.16)

where C1 and C2 are two unknown constants.
Finally, the transition rate is given by [219]

Γ(ΦI(
2s+1lIJI ) → ΦF (

2s+1lF JF )ππ) =

δlI lF δJIJF (G|C1|2 −
2

3
H|C2|2)

∣∣∣∣∣
∑

L

(2L+ 1)

(
lI 1 L
0 0 0

)(
L 1 lI
0 0 0

)
fLIF

∣∣∣∣∣

2

+ (2lI + 1)(2lF + 1)(2JF + 1)
∑

k

(2k + 1)(1 + (−1)k)

{
s lF JF
k JI lI

}2

H|C2|2×

×
∣∣∣∣∣
∑

L

(2L+ 1)

(
lF 1 L
0 0 0

)(
L 1 lI
0 0 0

){
lI L 1
1 k lF

}
fLIF

∣∣∣∣∣

2

,

(5.17)
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with

fLIF =
∑

K

1

MI −MKL

[∫
drr3RF (r)RKL(r)

] [∫
dr′r′3RKL(r

′)RI(r
′)

]
, (5.18)

where RI(r), RF (r) and RKL(r) are the radial wave functions of the initial, final and
intermediate vibrational states, respectively. The initial state and the vibrational state
have masses MI and MKL.

The quantities G and H are the phase-space integrals

G =
3

4

MF

MI
π3

∫
dM2

ππK

(
1− 4m2

π

M2
ππ

)1/2

(M2
ππ − 2m2

π)
2,

H =
1

20

MF

MI
π3

∫
dM2

ππK

(
1− 4m2

π

M2
ππ

)1/2

×

×
[
(M2

ππ − 4m2
π)

2

(
1 +

2

3

K2

M2
ππ

)
+

8K4

15M4
ππ

(M4
ππ + 2m2

πM
2
ππ + 6m4

π)

]
,

(5.19)

with K given by

K =
1

2MI

[
(MI +MF )

2 −M2
ππ

]1/2 [
(MI −MF )

2 −M2
ππ

]1/2
. (5.20)

The constant C1 can be determined by the measured rate of ψ′ → J/ψππ. However,
the constant C2 enters the decay rates for transitions such as 23PJ ′ → 13PJ + ππ,
13D1 → 13S1 + ππ, etc. We use the width measured experimentally for the 13D1 →
13S1 + ππ transition to determine C2. Now we need a model which describes the
vibrational states to perform the calculation.

5.3 A model for hybrid states

Although the gross features of the meson spectrum strongly suggests a qq̄ structure
assignment for most of the states, such simplicity looks peculiar when viewed from the
perspective of QCD, in which quarks couple strongly with a self-interacting gluonic
field. From the generic properties of QCD, we might expect to have states in which
the gluonic field itself is excited and carries JPC quantum numbers. A state is called
glueball when any valence quark content is absent, the addition of a constituent quark-
antiquark to an excited gluonic field gives us what we call a hybrid meson.

The gluonic quantum numbers couple to those of the qq̄ pair. This coupling can
give rise to so-called exotic JPC mesons, but also can produce hybrid mesons with
natural quantum numbers. We do not seek exotic states, we are more interested in
those involved in the calculation of hadronic transitions within the QCDME.

Estimates of hybrid meson properties have traditionally followed from models. Two
models that address this issue are the quark confining string (QCS) model [224–226]
and the flux-tube model [227]. Both have been applied to the heavy quark sector.
Within the nonrelativistic framework, the models assume that the heavy quark and
antiquark are situated at the ends of the string and allow that the string vibrates. They
calculate the vibrational energy of the string as a function of the distance between the
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quark and the antiquark. This is then treated as an effective potential, Vn(r), inserted
into the bound state equation.

We adopt the QCS model because it was used in the early works of QCDME and it
incorporates finite quark mass corrections. The QCS model is defined by a relativistic-,
gauge- and reparametrization-invariant action describing quarks interacting with color
SU(3) gauge fields in a two dimensional world sheet. The model has no gluonic degrees
of freedom, but has instead string degrees of freedom.

The string can carry energy-momentum only in the region between the quark
and the antiquark, thus the quarks appear to be at the ends of the string. In the
nonrelativistic limit, the quark mass is larger than the gluon-quark coupling constant
(with mass dimension), and in the absence of light quarks, the longitudinal modes of
the quark-antiquark pair plus the rotational modes of the string reduce to the naive
QQ̄ model with a linear potential. It is important to realize that the linear potential
is obtained when light degrees of freedom are factored out.

The string can also vibrate and these vibrational modes provide new states beyond
the naive meson picture. The coupled equations that describe the dynamics of the
string and the quark are very nonlinear so that there is no hope of solving them
completely. We content ourselves with the following approximation scheme. First, we
solve the string equation to obtain the vibrational mode energies as functions of r, the
interquark distance. These are then inserted into the meson equation as an effective
potential, Vn(r), between the quark and the antiquark

[
− 1

mQ

∂2

∂r2
+ Vn(r) +

L(L+ 1)

mQr2
+ 2mQ

]
uKL(r) = EKLuKL(r), (5.21)

where uKL(r) is the reduced wave function of the hybrid meson and n is the vibrational
mode quantum number, for n = 0 we have the naive meson states. This approximation
is valid if the vibrational energies are bigger than the quark longitudinal-mode energies.
In the presence of both vibrational and rotational modes we will have a vibration-
rotation coupling but we ignore that.

First let us make a very crude estimate of the vibrational-mode energy as a function
of the distance r between the quark and the antiquark. We assume that the quark mass
is heavy enough so that the ends of the string are essentially fixed and separated by a
distance r. We also consider that the amplitude of the vibration is small compared with
the distance between quark-antiquark, r. Therefore, the wave equation for a string is
given by

∂2y(x, t)

∂t2
= v2

∂2y(x, t)

∂x2
, (5.22)

with v =
√
σ/ρ. The string tension is σ and the mass density is ρ. Once boundary

conditions are imposed, the solution to the wave equation can be written as

y(x, t) =
∞∑

n=1

an sin
(nπx

r

)
cos

(
nπvt

r

)
, (5.23)

where kn = nπ
r

and ωn = nπv
r
. Now, it is important to note that we are referring to a

flux of energy and thus we have dm = dE with dm = ρdx and dE = σdx. This means
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that σ = ρ and so v = 1. Then, the vibrational energy is given by

V (1)
n (r)− σr = ωn(r) =

nπ

r
, (5.24)

and can be written as
V (1)
n (r) = σr +

nπ

r
. (5.25)

This result for hybrid states is also obtained within the flux-tube model [227]. But
physically, one expects that Vn(r) remain finite and smooth when r → 0. The solution
proposed in Ref. [227] is to incorporate an ad hoc cutoff, but in the case of the QCS is
to improve the approximation.

The next stage is to introduce a simple estimation of the shape of the vibrating
string. We continue considering that the quark mass is heavy and the ends of the
string are essentially fixed. Following Ref. [226] we obtain a vibrational energy given
by

V (2)
n (r) = σr

(
1 +

2nπ

σr2

)1/2

, (5.26)

with

V (2)
n (r) =

{
σr + nπ

r
r → ∞,

(2nπσ)1/2
(
1 + σr2

4nπ

)
r → 0,

(5.27)

where now the potential is finite when r → 0.
The last stage is to incorporate corrections to the finite quark mass. The expression

of the vibrational energy is [226]

V (3)
n (r) = σr

{
1 +

2nπ

σ [(r − 2d)2 + 4d2]

}1/2

= σr(2− α2
n)

−1/2, (5.28)

with

α2
n = 1 +

2nπ

2nπ + σ [(r − 2d)2 + 4d2]
, (5.29)

a parameter related with the estimation of the shape of the vibrating string [226], it
can take values (1 ≤ α2

n ≤ 2). The correction due to the finite quark mass is

d(mQ, r, σ, n) =
σr2αn

4(2mQ + σrαn)
. (5.30)

For n = 0, α2
n = 1 and V

(3)
n (r) reduces to the naive QQ̄ one. We note that

V (3)
n (r) =

{
σr + 2nπ

r
r → ∞,

(2nπσ)1/2
(
1 + σr

2
√
2mQ

)
r → 0.

(5.31)

In our quark model, the central part of the confining potential has the following
form

V C
CON(r) =

16

3
[ac(1− e−µcr)−∆], (5.32)



CHAPTER 5. HADRONIC TRANSITIONS 135

and can be written as
V C
CON(r) = σ(r)r + cte, (5.33)

where

σ(r) =
16

3
ac

(
1− e−µcr

r

)
,

cte = −16

3
∆.

(5.34)

This means that our effective string tension, σ(r), is not a constant but depends on the
interquark distance, r. In fact, it decreases with respect r until it reaches the string
breaking region.

Following the ideas of Ref. [228], the potential for hybrid mesons derived from our
constituent quark model has the following expression

Vhyb(r) = V C
OGE(r) + V C

CON(r) + [Vn(r)− σ(r)r] + C̃, (5.35)

where we have not taken into account the spin-dependent terms. V C
OGE(r)+V C

CON(r) is
the naive quark-antiquark potential and Vn(r) is the vibrational one. We must subtract
the term σ(r)r because it appears twice, one in V C

CON(r) and the other one in Vn(r).

The constant term C̃ is a free parameter of the hybrid model and in principle can
be different depending on the flavor sector. Its particular value will depend on our
theoretical results obtained from a global fit of the spin-nonflip hadronic transitions
between triplet states of charmonium and bottomonium.

More explicitly, our different contributions are

V C
OGE(r) = −4αs

3r
,

V C
CON(r) =

16

3
[ac(1− e−µcr)−∆],

Vn(r) = V (3)
n (r) = σ(r)r

{
1 +

2nπ

σ(r) [(r − 2d)2 + 4d2]

}1/2

,

(5.36)

where

d(mQ, r, σ, n) =
σ(r)r2αn

4(2mQ + σ(r)rαn)
. (5.37)

One can realize that, just like the naive quark model, the hybrid potential has a
threshold defined by

Vhyb(r)
r→∞−−−→ 16

3
(ac −∆) + C̃, (5.38)

The naive meson potential (QQ̄) and the hybrid meson potential (QQ̄g) with respect
the interquark distance are drawn in Fig. 5.2.

5.4 Results

We are ready to calculate spin-nonflip ππ transitions between triplet states of
charmonium and bottomonium.
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Figure 5.2. Naive meson potential (QQ̄) and hybrid meson potential (QQ̄g), in GeV, with respect the
interquark distance, in fm.

Initial Meson Final Meson ΓThe. (keV) ΓExp. (keV)

ψ(2S) J/ψ 93.3± 5.4 96.1 ± 5.5 [78]
ψ(3770) J/ψ 53.8± 8.4 53.27 ± 7.96 [78]

X(4360) ψ(2S) 1770 ± 185 821.4±240.1
Γee(keV) [78]

X(4660) ψ(2S) 73± 12 105.6±54.4
Γee(keV) [78]

Υ(2S) Υ(1S) 7.77 ± 0.78 5.79± 0.49 [78]
Υ(3S) Υ(1S) 0.91 ± 0.34 0.89± 0.08 [78]

Υ(2S) 0.37 ± 0.14 0.50± 0.06 [78]
Υ(4S) Υ(1S) 4.53 ± 0.63 3.65 ± 0.67 ± 0.65 [229]

Υ(2S) 0.10 ± 0.12 2.7± 0.8 [230]

Table 5.1. Spin-nonflip π+π− transitions between triplet states of charmonium and bottomonium which have
been fitted to the experimental data to determine the free parameters. See the text for details.

Following Eq. (5.17), we need the radial wave function and the mass for the initial
and final 1−− states, but also for the intermediate vibrational states. In this case it
is more convenient to integrate the Schrödinger equation using the Numerov method
instead of the GEM one.

The calculation of hybrid charmonium and bottomonium spectrum requires fixing

the value of C̃ in Eq. (5.35). We have fitted it from the available experimental data
referred to the ππ transitions in which we are interested. Table 5.1 shows the spin-
nonflip π+π− transitions between ψ and Υ states. These transitions have been fitted
to the experimental data to determine the free parameters, which are

|C1|2 = (8.61± 0.45)× 10−5, |C2|2 = (2.97± 0.44)× 10−4,

C̃cc̄ = (3.86± 0.31)MeV, C̃bb̄ = (25.5± 3.8)MeV,
(5.39)

where the first two parameters come from the QCDME approach and, as we have seen,
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are related to our ignorance about the mechanism of the conversion of the emitted

gluons into light hadron(s). The last two are the free constant, C̃, of Eq. (5.35) which
has been considered as dependent on the flavor sector.

From Table 5.1 one can realize that we predict large widths for the processes
X(4360) → π+π−ψ(2S) and X(4660) → π+π−ψ(2S). The X(4360) and X(4660)
have been assigned in our model as conventional 1−− cc̄ states. Furthermore, we
obtain a reasonable global description of the hadronic widths for which there are
experimental data. We have taken into account the errors on the parameters to present
the theoretical values.

The PDG [78] collects two experimental values which involve the width of
X(4360) → π+π−ψ(2S). These are

R1 =
Γ(π+π−ψ(2S))× Γee

Γtot

= 11.1+1.3
−1.2 eV,

R2 =
Γ(D0D∗−π+)

Γ(π+π−ψ(2S))
< 8.

(5.40)

From the first one, we obtain the experimental value shown in Table 5.1 when the
total width reported in Ref. [78] is included. Moreover, if we use our prediction of
the X(4360) leptonic width, 0.78 keV, the estimated width for the process X(4360) →
π+π−ψ(2S) is ∼1.1MeV, which is in the order of magnitude of the theoretical result.
From the second one, we have seen before that our value of Γ(X(4360) → D0D∗−π+)
is 3MeV, and so we estimate Γ(X(4360) → π+π−ψ(2S)) > 0.4MeV that is also
compatible with our value shown in Table 5.1.

The same kind of experimental information is available for the X(4660) particle in
the PDG. In this case we have

R′
1 =

Γ(π+π−ψ(2S))× Γee
Γtot

= 2.2+0.7
−0.6 eV,

R′
2 =

Γ(D0D∗−π+)

Γ(π+π−ψ(2S))
< 10.

(5.41)

Again, from the first one, we obtain the experimental value shown in Table 5.1 when
the total width reported in Ref. [78] is included. The predicted value of the leptonic
width for X(4660) is 0.31 keV such that Γ(X(4660) → π+π−ψ(2S)) ∼ 0.3MeV is an
estimation. The theoretical prediction seems to be below the estimation. From the
second one, we estimate Γ(X(4660) → π+π−ψ(2S)) > 1.3MeV, which is also larger
than the theoretical result.

The Refs. [229] and [230] mentioned in Table 5.1 are those which have reported
the last experimental data related to the hadronic transitions shown. We obtain good
agreement for the first one, but for the second one our theoretical result is low.

Once we have fixed the value of the flavor-dependent constant, C̃, the Tables 5.2
and 5.3 show, respectively, the hybrid charmonium and bottomonium spectrum. The
mean square radius for each state is also included.

The ground state of hybrid mesons in other approaches, such as the flux-tube model,
models with a constituent gluon and Lattice QCD, is one that has a unit of angular
momentum. We predict in the L = 1 (cc̄g) sector a ground state with a mass of 4.3GeV.
It is located around the upper limit predicted by other approaches, 4.1− 4.3GeV.
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K L = 0 L = 1 L = 2

Mass (MeV) 〈r2〉1/2 (fm) Mass (MeV) 〈r2〉1/2 (fm) Mass (MeV) 〈r2〉1/2 (fm)

1 4079 0.49 4347 0.76 4533 1.00
2 4461 0.97 4635 1.22 4772 1.46
3 4724 1.43 4851 1.69 4955 1.95
4 4920 1.90 5016 2.20 5096 2.50
5 5070 2.44 5141 2.79 5201 3.16
6 5182 3.08 5234 3.53 - -

Threshold ≡ 5245MeV

Table 5.2. Hybrid mesons calculated in the cc̄ sector. The parameter αn whose range is 1 < αn <
√
2 modifies

the energy in 30MeV, we have taken αn =
√
1.5.

K L = 0 L = 1 L = 2

Mass (MeV) 〈r2〉1/2 (fm) Mass (MeV) 〈r2〉1/2 (fm) Mass (MeV) 〈r2〉1/2 (fm)

1 10545 0.32 10760 0.52 10896 0.68
2 10831 0.65 10973 0.81 11083 0.95
3 11037 0.92 11150 1.08 11241 1.21
4 11206 1.18 11299 1.34 11376 1.48
5 11349 1.45 11427 1.60 11493 1.75
6 11470 1.71 11537 1.88 11594 2.03
7 11575 2.00 11632 2.17 11680 2.34
8 11664 2.30 11713 2.49 11754 2.68
9 11741 2.63 11782 2.84 11817 3.05
10 11806 3.00 11840 3.24 11869 3.47
11 11860 3.41 11888 3.67 - -
12 11902 3.84 - - - -

Threshold ≡ 11917MeV

Table 5.3. Hybrid mesons calculated in the bb̄ sector. The parameter αn whose range is 1 < αn <
√
2 modifies

the energy in 30MeV, we have taken αn =
√
1.5.

The hybrid mesons which participate to the two-pion transitions of the JPC = 1−−

charmonium and bottomonium mesons are just those with L = 1. One can see in
Table 5.2 that the ground state and the first excitation of L = 1 hybrid charmonium
mesons are close to X(4360) and X(4660), respectively. The width calculated using
Eq. (5.17) is sensible to the position in the spectrum of the hybrid meson with respect
that of the initial meson through Eq. (5.18). This explains why we are able to describe
well established hadronic transitions and, at the same time, to have large widths for
the processes X(4360) → π+π−ψ(2S) and X(4660) → π+π−ψ(2S).

Finally, Tables 5.4, 5.5 and 5.6 show the spin-nonflip π+π− transitions between 1−−

charmonium and bottomonium states.

Within the charmonium sector, besides the results already discussed, there are
two more experimental data referred to the processes ψ(4040) → π+π−J/ψ and



CHAPTER 5. HADRONIC TRANSITIONS 139

Initial Meson Final Meson ΓThe. (keV) ΓExp. (keV)

ψ(2S) ψ(1S) 93.3 ± 5.4 96.1± 5.5 [78]

ψ(1D) ψ(1S) 53.8 ± 8.4 53.27 ± 7.96 [78]

ψ(3S) ψ(1S) 78.3 ± 4.6 < 320 [78]
ψ(2S) 7.71 ± 0.76 -

ψ(2D) ψ(1S) 129± 20 < 309 [78]
ψ(2S) 21.0 ± 3.5 -
ψ(1D) 34.2 ± 2.2 -

ψ(4S) ψ(1S) 27265 ± 3573 -
ψ(2S) 1770 ± 185 821.4±240.1

Γee(keV) [78]

ψ(1D) 59.1 ± 10.4 -
ψ(3S) 13.5 ± 1.1 -

ψ(3D) ψ(1S) 2.9 ± 1.0 -
ψ(2S) 53.6 ± 8.3 -
ψ(1D) 285± 15 -
ψ(3S) 6.8 ± 1.4 -

ψ(5S) ψ(1S) 4025 ± 609 -
ψ(2S) 334± 86 -
ψ(1D) 3.2 ± 1.7 -
ψ(3S) 909± 87 -
ψ(2D) 11.7 ± 2.4 -

ψ(4D) ψ(1S) 10.2 ± 3.8 -
ψ(2S) 73 ± 12 105.6±54.4

Γee(keV) [78]

ψ(1D) 267± 18 -
ψ(3S) 32.4 ± 5.3 -
ψ(2D) 125.3 ± 7.6 -
ψ(4S) 0.065 ± 0.098 -

Table 5.4. Spin-nonflip π+π− transitions between ψ states.

ψ(4160) → π+π−J/ψ. They are upper limits to the width and therefore they are
not taken into account in the fit. Our predictions, (78.3 ± 4.6) keV < 320 keV and
(129± 20) keV < 309 keV, are compatible with the data.

We obtain a width of about 27MeV for the processX(4360) → π+π−J/ψ. Although
our theoretical value is not very realistic, we can assert that if the X(4360) has been
seen in π+π−ψ(2S) channel, it should be also seen in π+π−J/ψ one. This is not the
case for the X(4660) if one follows our assignment of this state.

The ππ transitions of the ψ(5S), which is assigned in our model to the X(4630),
also deserves our attention. It is difficult to disentangle the structure of this particle
and to differentiate it with the X(4660), the hadronic transitions presented here can
be used to gain insight about these two particles. If the denoted X(4660) was seen in
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Initial Meson Final Meson ΓThe. (keV) ΓExp. (keV)

Υ(2S) Υ(1S) 7.77 ± 0.78 5.79± 0.49 [78]

Υ(1D) Υ(1S) 5.3 ± 1.2 -

Υ(3S) Υ(1S) 0.91 ± 0.34 0.89± 0.08 [78]
Υ(2S) 0.37 ± 0.14 0.50± 0.06 [78]

Υ(2D) Υ(1S) 0.50 ± 0.30 -
Υ(2S) 0.15 ± 0.15 -
Υ(1D) 0.03 ± 0.04 -

Υ(4S) Υ(1S) 4.53 ± 0.63




1.7± 0.2
1.8± 0.4

3.65 ± 0.67 ± 0.65






[78]
[230]
[229]




Υ(2S) 0.10 ± 0.12

[
1.8± 0.3
2.7± 0.8

] [
[78]
[230]

]

Υ(1D) 0.015 ± 0.049 -

Υ(3D) Υ(1S) 0.33 ± 0.25 -
Υ(2S) 0.06 ± 0.10 -
Υ(1D) 0.32 ± 0.19 -
Υ(3S) 0.0003 ± 0.0072 -

Υ(5S) Υ(1S) 16.2 ± 2.9 590± 40± 90 [231]
Υ(2S) 21.9 ± 2.0 850± 70± 160 [231]
Υ(1D) 1.14 ± 0.46 -

Υ(3S) 2.29 ± 0.68 520+200
−170 ± 100 [231]

Υ(2D) 0.17 ± 0.17 -
Υ(4S) 0.070 ± 0.064 -

Υ(4D) Υ(1S) 6.0 ± 2.2 -
Υ(2S) 1.91 ± 0.68 -
Υ(1D) 13.89 ± 1.90 -
Υ(3S) 0.026 ± 0.079 -
Υ(2D) 0.16 ± 0.18 -

Table 5.5. Spin-nonflip π+π− transitions between Υ states.

π+π−J/ψ and π+π−ψ(2S) channels, the best candidate would be the X(4630), but if
it was seen only in π+π−ψ(2S) channel our assignment would be correct.

Within the bottomonium sector, the predicted ππ hadronic transitions of the Υ(2S)
and Υ(3S) states agree with the experimental data.

We use for the global fit the last experimental data related with the ππ transitions
of the Υ(4S) state. Table 5.5 shows the different experimental values. Despite being
different, measurements of the widths for the transitions Υ(4S) → π+π−Υ(1S) and
Υ(4S) → π+π−Υ(2S) are in the order of keV. Our result for Υ(4S) → π+π−Υ(1S)
is in very good agreement with the experimental one. However, we find a strong
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Initial Meson Final Meson ΓThe. (keV) ΓExp. (keV)

Υ(6S) Υ(1S) 1781 ± 79 -
Υ(2S) 277 ± 13 -
Υ(1D) 9.7± 1.8 -
Υ(3S) 121.1 ± 5.8 -
Υ(2D) 4.9± 1.1 -
Υ(4S) 4.97 ± 0.52 -
Υ(3D) 0.040 ± 0.075 -

Υ(5D) Υ(1S) 4376 ± 642 -
Υ(2S) 483 ± 71 -
Υ(1D) 1274 ± 55 -
Υ(3S) 292 ± 43 -
Υ(2D) 1637 ± 71 -
Υ(4S) 1.45 ± 051 -
Υ(3D) 4.99 ± 0.52 -

Table 5.6. Spin-nonflip π+π− transitions between Υ states (Continuation).

disagreement between our prediction and the experimental data for the transition
Υ(4S) → π+π−Υ(2S). Our theoretical value lies an order of magnitude below the
data.

Anomalous large rates of e+e− → Υ(1S)π+π−, Υ(2S)π+π−, Υ(3S)π+π− near the
peak of the Υ(5S) resonance were observed by the Belle Collaboration [231]. They are
larger than the dipion-transition rates between the lower members of the Υ family
by 2 orders of magnitude. The Belle data are those shown in Table 5.5, as one
can see, our results are in strong disagreement with the experimental ones. There
are two possibilities that may offer reasonable interpretations of the anomalous large
rates. First, these anomalous production rates announced by Belle are from an exotic
resonance structure different from Υ(10860) [232–234] . The second is that there may
exist extra contributions that differ from the direct dipion emission, e.g. the study of
the Υ(10860) → Υ(1S, 2S)π+π− decays in Ref. [235].

Finally, we separate in Table 5.6 the resonances Υ(6S) and Υ(5D). The hadronic
transitions of these states suffer from large uncertainties regarding the variation of the
constant C̃bb̄ within its error range. Therefore, our theoretical results in Table 5.6 are
those without taking into account this variation, we only move the parameters |C1|2
and |C2|2 within their error ranges. These two resonances of bottomonium are where
get the larger values of the widths, in the order of MeV.





Chapter 6

Weak decays of heavy mesons

Through e+e− collisions with an energy tuned to the different bottomonium resonances,
the B-factories have become an important source of data on heavy hadrons in the last
years. The bottomonium states decay into a pair of B mesons, e.g. the Υ(4S) resonance
decays in almost 100% of cases to a BB̄ pair, and these B mesons decay subsequently
into charmed and charmless hadrons via weak interaction.

The kinematically clean environment, reached by the B-factories, of B meson decays
has given rise to a number of exciting discoveries in the c-quark sector, most of the
hadronic B decays involve b→ c transition at the quark level. To describe theoretically
the properties of these new conventional or unexpected hadrons, one must deal with
weak interaction observables which are generally concerned to the semileptonic and
nonleptonic decays of b-hadrons.

In this chapter we have performed a calculation of the semileptonic and nonleptonic
decays of B and Bs mesons into charmed and charmed-strange mesons. The final
goal is to determine the matrix elements needed to calculate explicitly processes like
“B → XY Z + anything” which are generally attached to properties of the XY Z
mesons. One of the main objectives pursued in this dissertation is the analysis of the
heavy meson decays and for that reason we also want to incorporate the study of weak
decays.

6.1 Semileptonic B (Bs) decays into D∗∗ (D∗∗
s ) mesons

Different Collaborations have recently reported semileptonic B decays into orbitally
excited charmed mesons providing detailed results of branching fractions. The
theoretical analysis of these data, which include both weak and strong decays, offers
the possibility for a stringent test of meson models.

Moreover, an accurate determination of the |Vcb| and |Vub| Cabbibo-Kobayashi-
Maskawa (CKM) matrix elements demands a detailed knowledge of semileptonic decays
of b-hadrons. Decays including orbitally excited charmed meson in the final state
provide a substantial contribution to the total semileptonic decay width. Furthermore,
a better understanding of these processes is also necessary in the analysis of signals
and backgrounds of inclusive and exclusive measurements of b-hadron decays.

The Belle Collaboration [236], using a full reconstruction tagging method to
suppress the large combinatorial background, reported data on the product of
branching fractions B(B+ → D∗∗l+νl)× B(D∗∗ → D(∗)π), where, in the usual notation,
l stands for a light e or µ lepton, the D∗

0(2400), D1(2430), D1(2420) and D∗
2(2460)

143
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Belle [236] BaBar [237, 238]
(×10−3) (×10−3)

D∗
0(2400)

B(B+ → D̄∗
0(2400)

0l+νl)B(D̄∗
0(2400)

0 → D−π+) 2.4 ± 0.4± 0.6 2.6± 0.5 ± 0.4
B(B0 → D∗

0(2400)
−l+νl)B(D∗

0(2400)
− → D̄0π−) 2.0 ± 0.7± 0.5 4.4± 0.8 ± 0.6

D1(2430)

B(B+ → D̄1(2430)
0l+νl)B(D̄1(2430)

0 → D∗−π+) < 0.7 2.7± 0.4 ± 0.5
B(B0 → D1(2430)

−l+νl)B(D1(2430)
− → D̄∗0π−) < 5 3.1± 0.7 ± 0.5

D1(2420)

B(B+ → D̄1(2420)
0l+νl)B(D̄1(2420)

0 → D∗−π+) 4.2 ± 0.7± 0.7 2.97 ± 0.17± 0.17
B(B0 → D1(2420)

−l+νl)B(D1(2420)
− → D̄∗0π−) 5.4 ± 1.9± 0.9 2.78 ± 0.24± 0.25

D∗
2(2460)

B(B+ → D̄∗
2(2460)

0l+νl)B(D̄∗
2(2460)

0 → D−π+) 2.2 ± 0.3± 0.4 1.4± 0.2± 0.2(∗)

B(B+ → D̄∗
2(2460)

0l+νl)B(D̄∗
2(2460)

0 → D∗−π+) 1.8 ± 0.6± 0.3 0.9± 0.2± 0.2(∗)

B(B+ → D̄∗
2(2460)

0l+νl)B(D̄∗
2(2460)

0 → D(∗)−π+) 4.0 ± 0.7± 0.5 2.3± 0.2 ± 0.2

B(B0 → D∗
2(2460)

−l+νl)B(D∗
2(2460)

− → D̄0π−) 2.2 ± 0.4± 0.4 1.1± 0.2± 0.1(∗)

B(B0 → D∗
2(2460)

−l+νl)B(D∗
2(2460)

− → D̄∗0π−) < 3 0.7± 0.2± 0.1(∗)

B(B0 → D∗
2(2460)

−l+νl)B(D∗
2(2460)

− → D̄(∗)0π−) < 5.2 1.8± 0.3 ± 0.1

BD/D(∗) 0.55± 0.03 0.62 ± 0.03± 0.02

Table 6.1. Most recent experimental measurements reported by the Belle and BaBar Collaborations. l stands
for a light e or µ lepton. The symbol (∗) indicates results estimated from the original data by using BD/D(∗) .

mesons are denoted generically as D∗∗, and the D∗ and D mesons as D(∗).
D∗∗ decays are reconstructed in the decay chains D∗∗ → D∗π± and D∗∗ → Dπ±.

In particular, the D∗
0(2400) meson decays only through the Dπ channel, while the

D1(2430) and D1(2420) mesons decay only via D∗π. Both Dπ and D∗π channels are
opened in the case of D∗

2(2460).
In the case of BaBar data [237, 238] the branching fractions B(D∗

2(2460) → D(∗)π)
include both the D∗ and D contributions. As they also provide the ratio BD/D(∗) we
estimate the D∗ and D contributions separately. The experimental results of both
Collaborations are given in Table 6.1.

A similar analysis can be done in the strange sector for the Bs meson semileptonic
decays. Here the intermediate states are the orbitally charmed-strange mesons, D∗∗

s ,
and the available final channels are DK and D∗K. The PDG reports a value
B(B0

s → Ds1(2536)
−µ+νµ)× B(Ds1(2536)

− → D∗−K̄0) = 2.4 ± 0.7 [78] based on
their best value for B(b̄ → B0

s ) and the experimental data for B(b̄ → B0
s )B(B0

s →
Ds1(2536)

−µ+νµ)B(Ds1(2536)
− → D∗−K̄0) measured by the D0 Collaboration [239].

All these magnitudes can be consistently calculated in the framework of constituent
quark models because they can simultaneously account for the hadronic part of the
weak process and the strong meson decays. In this context, meson strong decay will be
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D∗
0(2400) D1(2420) D1(2430) D∗

2(2460)
3P0 +, 1.0000 - - -
1P1 - −, 0.5903 −, 0.4097 -
3P1 - +, 0.4097 −, 0.5903 -
3P2 - - - +, 0.99993

1/2, 0+ +, 1.0000 - - -
1/2, 1+ - +, 0.0063 −, 0.9937 -
3/2, 1+ - +, 0.9937 +, 0.0063 -
3/2, 2+ - - - +, 0.99993

D∗
s0(2317) Ds1(2536) Ds1(2460) D∗

s2(2573)
3P0 +, 1.0000 - - -
1P1 - −, 0.7210 −, 0.1880 -
3P1 - +, 0.2770 −, 0.5570 -
3P2 - - - +, 0.99991

1/2, 0+ +, 1.0000 - - -
1/2, 1+ - −, 0.0038 −, 0.7390 -
3/2, 1+ - +, 0.9942 −, 0.0060 -
3/2, 2+ - - - +, 0.99991

Table 6.2. Probability distributions and their relative phases for the four states predicted by CQM. In the
1+ strange sector the effects of non-qq̄ components are included; see text for details.

described through the 3P0 and the microscopic decay models presented before. As for
the weak process the matrix elements factorize into a leptonic and a hadronic part. It
is the hadronic part that contains the nonperturbative strong interaction effects and we
will evaluate it within our constituent quark model. Further details on the semileptonic
decay calculation based on Refs. [240, 241] can be seen in Appendix F.

The semileptonic decays of the B meson into orbitally excited charmed mesons have
been studied before within Heavy Quark Effective Theory (HQET) in Refs. [242, 243].
There, only relative branching ratios could be predicted and their results depended
on the approximation used and on two unknown functions, τ1 and τ2, that describe
corrections of order ΛQCD/mQ. Only the ratio Γλ=0

D∗∗/ΓD∗∗, semileptonic decay rate with
a helicity 0 D∗∗ final meson over total semileptonic decay rate to that meson, seemed
to be stable in the different approximations. We will comment on this below.

The description of the mesons involved in the reactions is given by our quark
model. Focusing on the D∗∗ (D∗∗

s ) low-lying positive parity excitations, our CQM
model predicts the mixed states shown in Table 6.2. We have studied in a previous
section the JP = 1+ charmed-strange mesons finding that the JP = 1+ Ds1(2460) has
an important non-qq̄ contribution whereas the JP = 1+ Ds1(2536) is almost a pure
qq̄ state. The presence of non-qq̄ degrees of freedom in the JP = 1+ charmed-strange
meson sector enhances the jq = 3/2 component of the Ds1(2536). This wave function
explains most of the experimental data and it is the one we will use here. For this
sector only the qq̄ probabilities are given in Table 6.2.
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B+ → D̄∗
0(2400)

0l+νl B0 → D∗
0(2400)

−l+νl

ΓU 0.00 0.00

Γ̃U 0.00 0.00
ΓL 1.30 1.16

Γ̃L 6.83 × 10−7 6.45 × 10−7

Γ̃S 2.05 × 10−6 1.93 × 10−6

Γ 1.30 1.16

Table 6.3. Helicity contributions and total decay width, in units of 10−15 GeV, for the D∗
0(2400) meson.
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Figure 6.1. Form factors and differential decay width for the B+ → D̄∗
0(2400)

0l+νl decay as a function of q2.
Very similar results are obtained for the B0 → D∗

0(2400)
−l+νl decay. (a): Form factors predicted by CQM.

(b): Differential decay width predicted by CQM.

6.1.1 Semileptonic B decays into D∗∗ mesons

Semileptonic B → D∗
0(2400)lνl decay

The measured branching fractions are B(B+ → D̄∗
0(2400)

0l+νl) B(D̄∗
0(2400)

0 → D−π+)
and B(B0 → D∗

0(2400)
−l+νl)B(D∗

0(2400)
− → D̄0π−). The meson D∗

0(2400) has
JP = 0+ quantum numbers and, therefore, due to parity conservation, it decays only
into Dπ, so that we have B(D̄∗

0(2400)
0 → D−π+) = B(D∗

0(2400)
− → D̄0π−) = 2/3

coming from isospin symmetry.

Table 6.3 shows the different helicity contributions to the semileptonic width. In
both cases the dominant contribution is given by ΓL while the rest are negligible. The
difference between the semileptonic width of the charged and neutral B meson is due
to the large mass difference between the D∗

0(2400)
0 and D∗

0(2400)
± mesons for which

we take the masses reported in Ref. [78].

Figure 6.1 shows the q2 dependence in the form factors and in the differential decay
width for B(B+ → D̄∗

0(2400)
0l+νl), panels (a) and (b), respectively. Similar results

(not shown) are obtained for the B(B0 → D∗
0(2400)

−l+νl) case.
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B+ → D̄1(2430)
0l+νl B0 → D1(2430)

−l+νl

ΓU 0.23 0.23

Γ̃U 1.35 × 10−8 1.35 × 10−8

ΓL 0.56 0.56

Γ̃L 4.12 × 10−7 4.12 × 10−7

Γ̃S 1.27 × 10−6 1.27 × 10−6

Γ 0.79 0.80

Table 6.4. Helicity contributions and total decay width, in units of 10−15 GeV, for the D1(2430) meson.

The final results for the product of branching fractions are

B(B+ → D̄∗
0(2400)

0l+νl)B(D̄∗
0(2400)

0 → D−π+) = 2.15× 10−3,

B(B0 → D∗
0(2400)

−l+νl)B(D∗
0(2400)

− → D̄0π−) = 1.80× 10−3,
(6.1)

which compare very well with Belle data [236], (2.4±0.4±0.6)×10−3 and (2.0±0.7±
0.5)× 10−3, respectively.

Semileptonic B → D1(2430)lνl decay

The only Okubo-Zweig-Iizuka (OZI)-allowed decay channel for the D1(2430) meson
is the D1(2430) → D∗π so that isospin symmetry predicts a branching fraction
B(D1(2430) → D∗π±) = 2/3.

Table 6.4 shows the different helicity contributions to the semileptonic width of
B+ → D̄1(2430)

0l+νl and B0 → D1(2430)
−l+νl calculated in the framework of the

CQM. In this case, ΓU and ΓL are of the same order of magnitude and give the total
semileptonic decay rate.

Panels (a) and (b) of Fig. 6.2 show the q2 dependence of the form factors and the
differential decay width for the neutral D1(2430) channel. A very similar result is
obtained for the D1(2430)

− case.
We have in this case the product of branching fractions

B(B+ → D̄1(2430)
0l+νl)B(D̄1(2430)

0 → D∗−π+) = 1.32× 10−3,

B(B0 → D1(2430)
−l+νl)B(D1(2430)

− → D̄∗0π−) = 1.23× 10−3,
(6.2)

which are a rough factor of 2 smaller than the results from the BaBar Collabora-
tion [237], (2.7± 0.4± 0.5)× 10−3 and (3.1± 0.7± 0.5)× 10−3, respectively.

Semileptonic B → D1(2420)lνl decay

As in the previous case, the branching fraction B(D1(2420) → D∗π±) is again 2/3 in
our model because D1(2420) → D∗π is the only OZI-allowed decay channel.

Table 6.5 shows the different helicity contributions to the semileptonic width of
the reactions B+ → D̄1(2420)

0l+νl and B0 → D1(2420)
−l+νl. The most important

contribution is given by ΓL. The ratio ΓL/Γ = 0.75 gives the probability for the
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Figure 6.2. Form factors and differential decay width for the B+ → D̄1(2430)
0l+νl decay as a function of q2.

Very similar results are obtained for the B0 → D1(2430)
−l+νl decay. (a): Form factors predicted by CQM.

(b): Differential decay width predicted by CQM.

B+ → D̄1(2420)
0l+νl B0 → D1(2420)

−l+νl

ΓU 0.38 0.38

Γ̃U 1.94 × 10−8 1.93× 10−8

ΓL 1.17 1.16

Γ̃L 7.16 × 10−7 7.15× 10−7

Γ̃S 2.17 × 10−6 2.17× 10−6

Γ 1.55 1.54

Table 6.5. Helicity contributions and total decay width, in units of 10−15 GeV, for the D1(2420) meson.

final D1(2420) meson to have helicity 0. This result is in agreement with the values
0.72− 0.81 obtained in the HQET calculation of Ref. [243].

Fig. 6.3 shows the q2 dependence of the form factors and the differential decay width
for neutral D1(2420) channel, in panels (a) and (b), respectively. Again, a very similar
result is obtained for the charged case.

The product of branching fractions are

B(B+ → D̄1(2420)
0l+νl)B(D̄1(2420)

0 → D∗−π+) = 2.57× 10−3,

B(B0 → D1(2420)
−l+νl)B(D1(2420)

− → D̄∗0π−) = 2.39× 10−3,
(6.3)

which in this case compare very well with the latest BaBar data [238], (2.97 ± 0.17 ±
0.17)× 10−3 and (2.78± 0.24± 0.25)× 10−3, respectively.

Semileptonic B → D∗
2(2460)lνl decay

The semileptonic decay is studied by reconstructing the decay channel D∗
2(2460) →

D(∗)π−, using the decay chain D∗ → D0π for D∗ meson and D0 → K−π+ or
D+ → K−π+π+ for D meson. What is actually measured is the product of
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Figure 6.3. Form factors and differential decay width for the B+ → D̄1(2420)
0l+νl decay as a function of q2.

The differences with respect B0 → D1(2420)
−l+νl are negligible. (a): Form factors predicted by CQM. (b):

Differential decay width predicted by CQM.

B+ → D̄∗
2(2460)

0l+νl B0 → D∗
2(2460)

−l+νl

ΓU 0.44 0.44

Γ̃U 2.56 × 10−8 2.57 × 10−8

ΓL 0.90 0.91

Γ̃L 5.27 × 10−7 5.29 × 10−7

Γ̃S 1.54 × 10−6 1.55 × 10−6

Γ 1.34 1.35

Table 6.6. Helicity contributions and total decay width, in units of 10−15 GeV, for the D∗
2(2460) meson.

branching fractions B(B+ → D̄∗
2(2460)

0l+νl)B(D̄∗
2(2460)

0 → D−π+) and B(B+ →
D̄∗

2(2460)
0l+νl)B(D̄∗

2(2460)
0 → D∗−π+).

In Table 6.6 we show the different helicity contributions to the total width. The
main contribution is ΓL in both neutral and charged D∗

2(2460) channels, providing
almost 2/3 of the total width. The following one is ΓU , the rest of the contributions
being negligible. Again our ratio ΓL/Γ = 0.67 is in agreement with the values 0.63−0.64
obtained in Ref. [243] using HQET.

Figure 6.4 shows the q2 dependence in the form factors and in the differential decay
width, panels (a) and (b), respectively, for the B+ → D̄∗

2(2460)
0l+νl decay. Very similar

results (not shown) are obtained for the B0 → D∗
2(2460)

−l+νl case.

The subsequent strong decays which appear areD∗
2(2460) → D∗π− andD∗

2(2460) →
Dπ−. In Table 6.7 we show the strong decay branching ratios obtained with the 3P0

and the microscopic models. They are in good agreement with experimental data [78].

Finally, we obtain the products of branching fractions for both decay chains
considering that the total width of the D∗

2(2460) meson is the sum of the partial widths
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Figure 6.4. Form factors and differential decay width for the B+ → D̄∗
2(2460)

0l+νl decay as a function of q2.
Very similar results are obtained for the B0 → D∗

2(2460)
−l+νl decay. (a): Form factors predicted by CQM.

(b): Differential decay width predicted by CQM.

Branching ratio Exp. 3P0 Mic.

Γ(D∗+
2 → D0π+)/Γ(D∗+

2 → D∗0π+) 1.9± 1.1 ± 0.3 1.80 1.97
Γ(D∗0

2 → D+π−)/Γ(D∗0
2 → D∗+π−) 1.56 ± 0.16 1.82 1.97

Γ(D∗
2 → Dπ)/Γ(D∗

2 → D(∗)π) 0.62 ± 0.03± 0.02 0.65 0.66

Table 6.7. Open-flavor strong branching ratios for D∗
2(2460) collected by the PDG [78] and our theoretical

results calculated through the 3P0 and the microscopic models.

of D∗π and Dπ channels since these are the only OZI-allowed processes

B(B+ → D̄∗
2(2460)

0l+νl)B(D̄∗
2(2460)

0 → D−π+) =

{
1.44× 10−3

1.48× 10−3

B(B+ → D̄∗
2(2460)

0l+νl)B(D̄∗
2(2460)

0 → D∗−π+) =

{
0.79× 10−3

0.75× 10−3

B(B0 → D∗
2(2460)

−l+νl)B(D∗
2(2460)

− → D̄0π−) =

{
1.34× 10−3

1.38× 10−3

B(B0 → D∗
2(2460)

−l+νl)B(D∗
2(2460)

− → D̄∗0π−) =

{
0.74× 10−3

0.70× 10−3

(6.4)

where the first one refers to the calculation using the 3P0 model and the second one
comes from the microscopic model. These results are in very good agreement with
BaBar data [238], (1.4±0.2±0.2)×10−3 and (0.9±0.2±0.2)×10−3 for the D̄∗

2(2460)
0

meson, and (1.1 ± 0.2 ± 0.1) × 10−3 and (0.7 ± 0.2 ± 0.1) × 10−3 for the D∗
2(2460)

−

meson.

Summary of the results

Final results and their comparison with the experimental data are given in Table 6.8.
Except for the D1(2430), the predictions are in very good agreement with the latest
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Belle [236] BaBar [237, 238] 3P0 Mic.
(×10−3) (×10−3) (×10−3) (×10−3)

D∗
0(2400)

B(B+ → D̄∗
0(2400)

0l+νl)B(D̄∗
0(2400)

0 → D−π+) 2.4± 0.4± 0.6 2.6 ± 0.5 ± 0.4 2.15 2.15
B(B0 → D∗

0(2400)
−l+νl)B(D∗

0(2400)
− → D̄0π−) 2.0± 0.7± 0.5 4.4 ± 0.8 ± 0.6 1.80 1.80

D1(2430)

B(B+ → D̄1(2430)
0l+νl)B(D̄1(2430)

0 → D∗−π+) < 0.7 2.7 ± 0.4 ± 0.5 1.32 1.32
B(B0 → D1(2430)

−l+νl)B(D1(2430)
− → D̄∗0π−) < 5 3.1 ± 0.7 ± 0.5 1.23 1.23

D1(2420)

B(B+ → D̄1(2420)
0l+νl)B(D̄1(2420)

0 → D∗−π+) 4.2± 0.7± 0.7 2.97 ± 0.17 ± 0.17 2.57 2.57
B(B0 → D1(2420)

−l+νl)B(D1(2420)
− → D̄∗0π−) 5.4± 1.9± 0.9 2.78 ± 0.24 ± 0.25 2.39 2.39

D∗
2(2460)

B(B+ → D̄∗
2(2460)

0l+νl)B(D̄∗
2(2460)

0 → D−π+) 2.2± 0.3± 0.4 1.4± 0.2 ± 0.2(∗) 1.43 1.47

B(B+ → D̄∗
2(2460)

0l+νl)B(D̄∗
2(2460)

0 → D∗−π+) 1.8± 0.6± 0.3 0.9± 0.2 ± 0.2(∗) 0.79 0.75

B(B+ → D̄∗
2(2460)

0l+νl)B(D̄∗
2(2460)

0 → D(∗)−π+) 4.0± 0.7± 0.5 2.3 ± 0.2 ± 0.2 2.22 2.22

B(B0 → D∗
2(2460)

−l+νl)B(D∗
2(2460)

− → D̄0π−) 2.2± 0.4± 0.4 1.1± 0.2 ± 0.1(∗) 1.34 1.38

B(B0 → D∗
2(2460)

−l+νl)B(D∗
2(2460)

− → D̄∗0π−) < 3 0.7± 0.2 ± 0.1(∗) 0.74 0.70

B(B0 → D∗
2(2460)

−l+νl)B(D∗
2(2460)

− → D̄(∗)0π−) < 5.2 1.8 ± 0.3 ± 0.1 2.08 2.08

BD/D(∗) 0.55 ± 0.03 0.62 ± 0.03 ± 0.02 0.65 0.66

Table 6.8. Most recent experimental measurements reported by the Belle and BaBar Collaborations and their
comparison with our results. l stands for a light e or µ lepton. The symbol (∗) indicates the estimated results
from the original data using BD/D(∗) .

experimental measurements, Belle forD∗
0(2400) and BaBar forD1(2420) andD

∗
2(2460).

For the D1(2430) there is also a strong disagreement between experimental data in the
neutral case.

6.1.2 Semileptonic Bs decays into D∗∗
s mesons

The semileptonic decays of Bs meson into orbitally excited charmed-strange mesons
(D∗∗

s ) provides an extra opportunity to get more insight into this system.
We have mentioned that the jq = 1/2 doublet, D∗

s0(2317) and Ds1(2460), shows
surprisingly light masses which are below the DK and D∗K thresholds, respectively.
These unexpected properties have triggered many theoretical interpretations, including
four quark states, molecules, and the coupling of the qq̄ components with different
structures. In this work, we have seen that while the D∗

s0(2317) meson can be explained
as a qq̄ structure, the Ds1(2460) meson has an important non-qq̄ contribution.

We have calculated the semileptonic Bs decays assuming that the D∗∗
s mesons are

pure qq̄ systems. For the D∗
s0(2317) and Ds1(2460), which are below the corresponding

D(∗)K thresholds, we only quote the weak decay branching fractions. Concerning the
Ds1(2460), the

1P1 and
3P1 probabilities change with the coupling to non-qq̄ degrees of

freedom. What we do here is to vary these probabilities (including the phase) in order
to obtain the limits of the decay width in the case of the Ds1(2460) being a pure qq̄
state, see Fig. 6.5. Assuming that non-qq̄ components will give a small contribution to
the weak decay, experimental results lower than these limits will be an indication of a
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Experiment Theory
(×10−3) (×10−3)

D∗
s0(2317)

B(B0
s → D∗

s0(2318)
−µ+νµ) - 4.43

Ds1(2460)

B(B0
s → Ds1(2460)

−µ+νµ) - 1.74 − 5.70

Ds1(2536)
3P0 Mic.

B(B0
s → Ds1(2536)

−µ+νµ)B(Ds1(2536)
− → D∗−K̄0) 2.4± 0.7 [78, 239] 2.05 2.24

D∗
s2(2573)

3P0 Mic.

B(B0
s → D∗

s2(2573)
−µ+νµ)B(D∗

s2(2573)
− → D−K̄0) - 1.70 1.77

B(B0
s → D∗

s2(2573)
−µ+νµ)B(D∗

s2(2573)
− → D∗−K̄0) - 0.18 0.11

B(B0
s → D∗

s2(2573)
−µ+νµ)B(D∗

s2(2573)
− → D(∗)−K̄0) - 1.88 1.88

Table 6.9. Our predictions and their comparison with the available experimental data for semileptonic Bs
decays into orbitally excited charmed-strange mesons.

more complex structure for this meson.

For the decay into Ds1(2536), our model predicts the weak decay branching
fraction B(B0

s → Ds1(2536)µ
+νµ) = 4.77 × 10−3 and the strong branching fraction

B(Ds1(2536)
− → D∗−K̄0) = 0.43 (0.47) for the 3P0 (microscopic) model. The final

result appears in Table 6.9. It is compatible with the existing experimental data [78],
which to us is a confirmation of our result about the qq̄ nature of this state.

In the case of the D∗
s2(2573) meson the open strong decays are DK and D∗K,

so the experimental measurements must be referred to B(B0
s → D∗

s2(2573)
−µ+νµ)

B(D∗
s2(2573)

− → D−K̄0) and B(B0
s → D∗

s2(2573)
−µ+νµ)B(D∗

s2(2573)
− → D∗−K̄0).

For the weak branching fraction we get in this case B(B0
s → D∗

s2(2573)
−µ+νµ) =
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3.76× 10−3. For the strong decay part of the reaction, we obtain in our model

B(D∗−
s2 → D−K̄0) =

{
0.45

0.47

B(D∗−
s2 → D∗−K̄0) =

{
0.047

0.030

(6.5)

where the first one refers to the calculation using the 3P0 model and the second one
comes from the microscopic model. Besides we predict the ratio

Γ(D∗
s2 → DK)

Γ(D∗
s2 → DK) + Γ(D∗

s2 → D∗K)
=

{
0.91 3P0

0.94 Mic.
(6.6)

Our final results can be seen in Table. 6.9.

6.2 Nonleptonic B decays into D(∗)DsJ final states

The nonleptonic decays of B mesons, described at the quark level by an effective
four-quark interaction b̄ → c̄cs̄, have been used to search for new charmonium and
charmed-strange mesons and to study their properties in detail. Within the charmed-
strange sector, the BaBar Collaboration found, in the inclusive D+

s π
0 invariant mass

distribution from e+e− annihilation data, the narrow state D∗
s0(2317) [37]. The CLEO

Collaboration, aiming to confirm the previous state, observed its doublet partner
Ds1(2460) in the D∗+

s π0 final state [38]. However, the properties of these states
were not well known until the Belle Collaboration observed the B → D̄D∗

s0(2317)
and B → D̄Ds1(2460) decays [244].

First observations of the B → D̄(∗)Ds1(2536) decay modes have been reported by
BaBar [245, 246] and an upper limit on the decay B0 → D∗−Ds1(2536)

+ was also
obtained by Belle [247]. The most recent analysis of the production of Ds1(2536)

+

in double charmed B meson decays has been reported by the Belle Collaboration in
Ref. [248]. Using the latest measurements of the B → D(∗)DsJ branching fractions [78]
they calculate the ratios

RD0 =
B(B → DD∗

s0(2317))

B(B → DDs)
= 0.10± 0.03,

RD∗0 =
B(B → D∗D∗

s0(2317))

B(B → D∗Ds)
= 0.15± 0.06,

RD1 =
B(B → DDs1(2460))

B(B → DD∗
s)

= 0.44± 0.11,

RD∗1 =
B(B → D∗Ds1(2460))

B(B → D∗D∗
s)

= 0.58± 0.12.

(6.7)

In addition, the same ratios are calculated for B → D(∗)Ds1(2536)
+ decays using
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combined results by the BaBar [246] and Belle [248] Collaborations

RD1′ =
B(B → DDs1(2536))

B(B → DD∗
s)

= 0.049± 0.010,

RD∗1′ =
B(B → D∗Ds1(2536))

B(B → D∗D∗
s)

= 0.044± 0.010.

(6.8)

The branching fraction measurements of the decays B → D(∗)DsJ provide valuable
information that makes possible to check the structure of the D∗

s0(2317), Ds1(2460)
and Ds1(2536) mesons [249, 250].

From a theoretical point of view, this kind of decays can be described using the
factorization approximation [241]. This amounts to evaluate the matrix element which
describes the B → D(∗)DsJ weak decay process as a product of two matrix elements,
the first one to describe the B weak transition into the D(∗) meson and the second one
for the weak creation of the cs̄ pair which makes the DsJ meson. The latter matrix
element is proportional to the corresponding DsJ meson decay constant.

The DsJ meson decay constants are not known experimentally except for the ground
state, Ds, which has been measured by different Collaborations. Another way to study
DsJ mesons that does not rely on the knowledge of their decay constants is through
the decays Bs → DsJM where M is a meson with a well known decay constant.
However, the experimental study of these processes is currently difficult for several
reasons. First, B-factories would need to collect data at the Υ(5S) resonance. Second,
the kinematically clean environment of B meson decays does not hold in Bs decays.
And finally, the fraction of events with a pair of Bs mesons over the total number
of events with a pair of b-flavored hadrons has been measured to be relatively small,
fs[Υ(5S)] = 0.193±0.029. These difficulties leave, for the time being, the B → D(∗)DsJ

decay processes as our best option to study DsJ meson properties.
According to Refs. [249, 250], within the factorization approximation and in the

heavy quark limit, the ratios in Eqs. (6.7) and (6.8) can be written as

RD0 = RD∗0 =

∣∣∣∣
fD∗

s0(2317)

fDs

∣∣∣∣
2

,

RD1 = RD∗1 =

∣∣∣∣
fDs1(2460)
fD∗

s

∣∣∣∣
2

,

RD1′ = RD∗1′ =

∣∣∣∣
fDs1(2536)
fD∗

s

∣∣∣∣
2

,

(6.9)

where the phase space effects are neglected because they are subleading in the heavy
quark expansion. Now, in the heavy quark limit one has fD∗

s0(2317)
= fDs1(2460),

fDs = fD∗
s
and fDs1(2536) = 0. Moreover, there are several estimates of the decay

constants, always in the heavy quark limit [251–253], that predict for P -wave, jq = 1/2
states similar decay constants as for the ground state mesons (i.e. fD∗

s0(2317)
= fDs and

fDs1(2460) = fD∗
s
), and very small decay constants for P -wave, jq = 3/2 states. These

approximations lead to ratios of order one for the D∗
s0(2317) and Ds1(2460) mesons,

and very small for Ds1(2536). While the decay into Ds1(2536) follows the expectations,
this is not the case for the D∗

s0(2317) and Ds1(2460) mesons. This fact has motivated
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the authors of Ref. [250] to argue that either those two states are not canonical cs̄
mesons or that the factorization approximation does not hold for decays involving
those particles.

Leaving aside that the factorization approximation has been recently analyzed in
Refs. [254–256] finding that it works well in these kind of processes, we will concentrate
in the influence of the the effect of the finite c-quark mass in the theoretical predictions.
As found in Ref. [257], 1/mQ contributions give large corrections to various quantities
describing B → D∗∗ transitions and we expect they also play an important role in this
case. It is possible that taking into account the finite mass of the charmed quark one
can distinguish better between qq̄ and non-qq̄ structures for the DsJ mesons.

The mesons involved in the reactions, particularly the charmed-strange ones, have
been discussed extensively in previous sections of this work. The most relevant features
to take into account here are: we have reached a good description of the ground state
B and the singlet and triplet S-wave charmed mesons, D and D∗. We have seen
that the interpretation of the D∗

s0(2317) as a canonical cs̄ state is plausible since its
mass goes down to the experimental value when the one-loop QCD corrections to the
OGE potential are taken into account. The presence of non-qq̄ degrees of freedom in
the JP = 1+ cs̄ sector makes that the JP = 1+ Ds1(2460) has an important non-qq̄
contribution whereas the JP = 1+ Ds1(2536) is almost a pure qq̄ state.

The nonleptonic decay width for B → D(∗)DsJ processes in the factorization
approximation and using helicity formalism [240, 241] is given in Appendix F. The
final expression of the decay rate reads

Γ =
G2
F

16πm2
B

|Vcb|2|Vcs|2a21
λ1/2(m2

B, m
2
D(∗), m

2
DsJ

)

2mB
m2
DsJ

f 2
DsJ

HB→D(∗)

tt (m2
DsJ

), (6.10)

for DsJ a pseudoscalar or scalar meson, and

Γ =
G2
F

16πm2
B

|Vcb|2|Vcs|2a21
λ1/2(m2

B, m
2
D(∗), m

2
DsJ

)

2mB
m2
DsJ

f 2
DsJ

×

×
[
HB→D(∗)

+1+1 (m2
DsJ

) +HB→D(∗)

−1−1 (m2
DsJ

) +HB→D(∗)

00 (m2
DsJ

)
]
,

(6.11)

for DsJ a vector or axial-vector meson. GF = 1.16637(1) × 10−5GeV−2 is the Fermi
constant [78], λ(a, b, c) = (a+ b− c)2 − 4ab. Vcb and Vcs are the cb and cs elements of
the CKM matrix for which we use Vcb = 0.0413 and Vcs = 0.974. Hrs are the helicity
components of the hadron tensor evaluated at q2 = m2

DsJ
and we use a1 = 1.14. The

expressions of the decay constants needed are given in the Appendix F.
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From Eqs. (6.10) and (6.11) we arrive at

RD0 =
λ1/2

(
m2
B, m

2
D, m

2
D∗
s0(2317)

)
m2
D∗
s0(2317)

f 2
D∗
s0(2317)

HB→D
tt

(
m2
D∗
s0(2317)

)

λ1/2(m2
B, m

2
D, m

2
Ds
)m2

Ds
f 2
Ds
HB→D
tt (m2

Ds
)

,

RD1 =
λ1/2

(
m2
B, m

2
D, m

2
Ds1(2460)

)
m2
Ds1(2460)

f 2
Ds1(2460)

λ1/2(m2
B, m

2
D, m

2
D∗
s
)m2

D∗
s
f 2
D∗
s

×

×

[
HB→D

+1+1

(
m2
Ds1(2460)

)
+HB→D

−1−1

(
m2
Ds1(2460)

)
+HB→D

00

(
m2
Ds1(2460)

)]

[
HB→D

+1+1 (m
2
D∗
s
) +HB→D

−1−1 (m
2
D∗
s
) +HB→D

00 (m2
D∗
s
)
] ,

RD1′ =
λ1/2

(
m2
B, m

2
D, m

2
Ds1(2536)

)
m2
Ds1(2536)

f 2
Ds1(2536)

λ1/2(m2
B, m

2
D, m

2
D∗
s
)m2

D∗
s
f 2
D∗
s

×

×

[
HB→D

+1+1

(
m2
Ds1(2536)

)
+HB→D

−1−1

(
m2
Ds1(2536)

)
+HB→D

00

(
m2
Ds1(2536)

)]

[
HB→D

+1+1 (m
2
D∗
s
) +HB→D

−1−1 (m
2
D∗
s
) +HB→D

00 (m2
D∗
s
)
] ,

(6.12)

and the same for RD∗0, RD∗1 and RD∗1′ but replacing the meson D by the meson D∗.
Using experimental masses we obtain the ratios

RD0 = 0.9008×
∣∣∣∣
fD∗

s0(2317)

fDs

∣∣∣∣
2

,

RD∗0 = 0.7166×
∣∣∣∣
fD∗

s0(2317)

fDs

∣∣∣∣
2

.

(6.13)

The double ratio RD∗0/RD0 does not depend on decay constants, and in our model
we obtain RD∗0/RD0 = 0.7955. The experimental value is given by RD∗0/RD0 =
1.50± 0.75. Our result is small compared to the central experimental value but we are
compatible within 1σ. In the case of the meson Ds1(2460) we obtain

RD1 = 0.7040×
∣∣∣∣
fDs1(2460)
fD∗

s

∣∣∣∣
2

,

RD∗1 = 1.0039×
∣∣∣∣
fDs1(2460)
fD∗

s

∣∣∣∣
2

,

(6.14)

and for the double ratio RD∗1/RD1 we get 1.4260, which agrees well with the
experimental result RD∗1/RD1 = 1.32 ± 0.43. Finally, for the meson Ds1(2536) we
obtain

RD1′ = 0.6370×
∣∣∣∣
fDs1(2536)
fD∗

s

∣∣∣∣
2

,

RD∗1′ = 0.9923×
∣∣∣∣
fDs1(2536)
fD∗

s

∣∣∣∣
2

,

(6.15)

and for the double ratio RD∗1′/RD1′, our value is 1.5578 which in this case is 2σ above
the experimental one, 0.90± 0.27.
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Approach fD (MeV) fDs (MeV) fDs/fD

Ours 297.019(†) 416.827(†) 1.40(†)

214.613(‡) 286.382(‡) 1.33(‡)

Experiment 206.7 ± 8.9 257.5 ± 6.1 1.25 ± 0.06
Lattice (HPQCD+UKQCD) 208 ± 4 241 ± 3 1.162 ± 0.009
Lattice (FNAL+MILC+HPQCD) 217 ± 10 260 ± 10 1.20 ± 0.02
PQL 197 ± 9 244 ± 8 1.24 ± 0.03
QL (QCDSF) 206 ± 6± 3± 22 220 ± 6± 5± 11 1.07 ± 0.02 ± 0.02
QL (Taiwan) 235 ± 8± 14 266 ± 10± 18 1.13 ± 0.03 ± 0.05

QL (UKQCD) 210 ± 10+17
−16 236 ± 8+17

−14 1.13 ± 0.02+0.04
−0.02

QL 211 ± 14+2
−12 231 ± 12+6

−1 1.10 ± 0.02
QCD Sum Rules 177 ± 21 205 ± 22 1.16 ± 0.01 ± 0.03
QCD Sum Rules 203 ± 20 235 ± 24 1.15 ± 0.04
Field Correlators 210 ± 10 260 ± 10 1.24 ± 0.03
Light Front 206 268.3 ± 19.1 1.30 ± 0.04

Approach fD∗ (MeV) fD∗
s
(MeV) fD∗

s
/fD∗

Ours 247.865(†) 329.441(†) 1.33(†)

RBS 340 ± 22 375 ± 24 1.10 ± 0.06
RQM 315 335 1.06

QL (Italy) 234 254 1.04 ± 0.01+2
−4

QL (UKQCD) 245 ± 20+0
−2 272 ± 16+0

−20 1.11 ± 0.03
BS 237 242 1.02
RM 262 ± 10 298 ± 11 1.14 ± 0.09

Table 6.10. Theoretical predictions of decay constants for pseudoscalar and vector charmed mesons.
The data have been taken from Ref. [78] for pseudoscalar mesons and from Ref. [258] for vector mesons.
PQL≡Partially-Quenched Lattice calculation, QL≡Quenched Lattice calculations, RBS≡Relativistic Bethe-
Salpeter, RQM≡Relativistic Quark Model, BS≡Bethe-Salpeter Method and RM≡Relativistic Mock meson
model.

The quality of the experimental numbers does not allow to be very conclusive as to
the goodness of the factorization approximation. But one thing that can be concluded
from Eqs. (6.13), (6.14) and (6.15) is that one cannot ignore, as done when using the
infinite heavy quark mass limit, phase space and weak matrix element corrections even
if they are subleading in the heavy quark mass expansion.

The decay constants of pseudoscalar and vector mesons in charmed and charmed-
strange sectors are given in Table 6.10. We compare our results with the experimental
data and those predicted by different approaches and collected in Refs. [78, 258].
Our original values are those with the symbol (†). The decay constants of vector
mesons agree with other approaches. In the case of the pseudoscalar mesons, the
decay constants are simply too large. The reason for that is the following: Our CQM
presents an OGE potential which has a spin-spin contact hyperfine interaction that
is proportional to a Dirac delta function, conveniently regularized, at the origin. The
corresponding regularization parameter was fitted to determine the hyperfine splittings
between the n1S0 and n3S1 states in the different flavor sectors, achieving a good
agreement in all of them. While most of the physical observables are insensitive to the
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Meson fD (MeV)
√
MDfD (GeV3/2)

D∗
s0(2317) 118.706 0.181

Ds1(2460) 165.097 0.259
Ds1(2536) 59.176 0.094

Table 6.11. Decay constants calculated within the CQM including one-loop QCD corrections to the OGE
potential and a non-qq̄ structure in channel 1+.

regularization of this delta term, those related with annihilation processes are affected
as shown in Section 3.7.1. The effect is very small in the 3S1 channel as the delta term
is repulsive in this case. It is negligible for higher partial waves due to the shielding
by the centrifugal barrier. However, it is sizable in the 1S0 channel for which the delta
term is attractive.

One expects that the wave functions of the 11S0 and 13S1 states are very
similar [259]. In fact, they are equal if the Dirac delta term is ignored. The values
with the symbol (‡) in Table 6.10 are referred to the pseudoscalar decay constants
which have been calculated using the wave function of the corresponding 3S1 state.
We recover the agreement with experiment and also with the predictions of different
theoretical approaches. The fDs/fD and fD∗

s
/fD∗ ratios are also shown in the last

column of Table 6.10. They are not very sensitive to the delta term and our values
agree nicely with experiment and the values obtained in other approaches.

Table 6.11 summarizes the remaining decay constants needed for the calculation
we are interested in. There, we show the results from the constituent quark model in
which the 1-loop QCD corrections to the OGE potential and the presence of non-qq̄
degrees of freedom in JP = 1+ charmed-strange meson sector are included. If one
compares fDs (fD∗

s
) to fD∗

s0(2317)
(fDs1(2460)), one finds that the latter is suppressed.

Refs. [260] and [261] calculate the lower bounds of the decay constants of D∗
s0(2317)

and Ds1(2460) analyzing experimental data related to B → DDsJ . Ref. [260] provides
the following lower limits

|a1| fD∗
s0(2317)

=

{
58− 83MeV from B− decays,

63− 86MeV from B̄0 decays,

|a1| fDs1(2460) =
{
188+40

−54MeV from B− decays,

152+43
−62MeV from B̄0 decays,

(6.16)

and the authors of Ref. [261] get

|a1| fD∗
s0(2317)

= 74± 11,

|a1| fDs1(2460) = 166± 20,
(6.17)

where the parameter |a1| ∼ 1. Our results are compatible with these lower limits.
Our results for the decay constants clearly deviate from the ones obtained in the

infinite heavy quark mass limit. In that limit one gets fD∗
s0(2317)

= fDs, fDs1(2460) = fD∗
s

and fDs1(2536) = 0, results that lead to a strong disagreement with experiment for the
decay width ratios in Eqs. (6.7) and (6.8). That was already noticed in Ref. [250],
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X ≡ D∗
s0(2317) X ≡ Ds1(2460) X ≡ Ds1(2536)

The. Exp. The. Exp. The. Exp.

B(B → DX)/B(B → DDs) 0.19(∗) 0.10 ± 0.03 - - - -

B(B → D∗X)/B(B → D∗Ds) 0.15(∗) 0.15 ± 0.06 - - - -

B(B → DX)/B(B → DD∗
s) - -

[
0.176(1)

0.177(2)

]
0.44 ± 0.11

[
0.071(1)

0.021(2)

]
0.049 ± 0.010

B(B → D∗X)/B(B → D∗D∗
s) - -

[
0.251(1)

0.252(2)

]
0.58 ± 0.12

[
0.110(1)

0.032(2)

]
0.044 ± 0.010

Table 6.12. Ratios of branching fractions for nonleptonic decays B → D(∗)DsJ . The symbol (∗) indicates
that the ratios have been calculated using the experimental pseudoscalar decay constant in Table 6.10. For
the Ds1(2460) and Ds1(2536) mesons, the ratios have been calculated without (1) and with (2) taking into
account the non-qq̄ degrees of freedom in the JP = 1+ channel.

where the authors, using the experimental ratios, estimated that fD∗
s0(2317)

∼ 1
3
fDs

and fD∗
s0(2317)

∼ fDs1(2460) instead. We obtain fD∗
s0(2317)

/fDs = 0.36, fD∗
s0(2317)

∼
0.72fDs1(2460) and fDs1(2536) = 59.176MeV, the latter being small compared to the
others but certainly not zero.

Finally, we show in Table 6.12 our results for the ratios written in Eqs. (6.7)
and (6.8). The symbol (∗) indicates that the ratios have been calculated using the
experimental pseudoscalar decay constant in Table 6.10. We get results close to or
within the experimental error bars for the D∗

s0(2317) meson, which to us is an indication
that this meson could be a canonical cs̄ state. The incorporation of the non-qq̄ degrees
of freedom in the JP = 1+ channel, enhances the jq = 3/2 component of the Ds1(2536)
meson and it gives rise to ratios in better agreement with experiment. Note that this
state is still an almost pure qq̄ state in our description.

The situation is more complicated for the Ds1(2460) meson. The probability
distributions of its 1P1 and 3P1 components are corrected by the inclusion of non-qq̄
degrees of freedom, the latter making a ∼ 25% of the wave function. In our calculation,
only the pure qq̄ component of the Ds1(2460) meson has been used to evaluate the
Γ(B → D(∗)Ds1(2460)) decay width. The values we get for the corresponding ratios in
Eqs. (6.7) are lower than the experimental data.





Chapter 7

Conclusions

An exhaustive study of heavy meson properties within a nonrelativistic constituent
quark model, which successfully describes hadron phenomenology and hadronic
reactions, has been presented in this dissertation. Within the heavy quark sector, we
have focused on the spectroscopy and on the electromagnetic, strong and weak decays.
One of the main objectives pursued in this work is the analysis of the heavy meson
decays. The description of the approaches used and the discussion of our results,
comparing them with the experimental data and also with the results coming from
different theoretical approaches, can be followed along the work. As it is demonstrated,
it is possible to perform fine studies in the heavy quark sector using the simple and, at
the same time, powerful quark model picture.

A review of the main properties of QCD and how these are incorporated in the quark
model has been presented. The constituent quark model incorporates perturbative
effects through the one-gluon exchange and nonperturbative effects as the spontaneous
chiral symmetry breaking and confinement.

To find new physics it is very important to test the theoretical model with as
many as possible known states. It allows us to clearly understand the strengths
and weaknesses of the model and to extract later reliable predictions. Moreover,
it is widely believed that confinement is flavor independent, and so the interactions
which largely determine the high energy quarkonium spectrum should be constraint
by the light quark sector. Based on the above two cornerstones, we have performed
a fine tune of the model parameters to describe the spectrum of light mesons up to
the recent higher excited states reported by Crystal Barrel Collaboration. We have
shown that the large degeneracy observed in the excited part of the meson spectra
can be explained as an effect of the flattening of the confinement potential due to the
color screening. This confinement behavior produces similar effects to chiral symmetry
restoration although predicts different results for observables like the leptonic decay
widths. The measurement of these observables may be very interesting to understand
the confinement properties and the chiral symmetry restoration.

The chiral symmetry is explicitly broken in the heavy quark sector and so its
consequences, the dynamically generated light quark mass and the interaction through
Goldstone bosons, are not present. An exhaustive study of heavy meson spectra in
terms of qq̄ components has been performed. The model can be used as a template
against which to compare the new XY Z mesons, whose nature is still unknown
and some of them are in conflict with standard quarkonium interpretations. The
electromagnetic decays has been included in this part of the work. The study of these
processes could provide us with valuable information on the meson structure since the
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operator of electromagnetic transitions is very well known.

A quite reasonable global description of the heavy meson spectra has been reached.
Some tentative assignments of the XY Z mesons has been done. Throughout the
work we have tried to explain other properties of the XY Z mesons to give a reliable
confirmation of our interpretations. For those mesons which we suspect more complex
structures than qq̄, we have given some explanation when possible.

Besides the well established ψ states, we have assigned as qq̄ structures theX(4360),
X(4630) and X(4660) mesons. However, the G(3900), X(4008) and X(4260) states
can not be accommodated in the spectrum and probably its structure is more complex
than a simple cc̄ pair.

The experimental measurement of the hyperfine mass splitting in the charmonium
and bottomonium sectors gives valuable information about the spin-spin interaction. In
both sectors, different Collaborations have observed that the hyperfine mass splitting
is compatible with zero. Our theoretical results are in perfect agreement.

In general, the experimental data and our theoretical results are in good agreement
in the bottomonium sector. In the last years, the Belle, BaBar and even ATLAS
Collaborations have reported discoveries like the ηb(1S), the hb(1P ) and hb(2P ), and
the χb(3P ) multiplet. All of them agrees well with our theoretical predictions. The
description of the open-bottommesons has been given since they participate in the weak
decays studied here, in general our results are in good agreement with the experimental
data.

Certain modifications to the model have been suggested. We have studied the
influence of the Lorentz structure of the confinement in the spectra, to do that we
have focused on some physical observables which are more sensible to this effect. We
conclude that the confinement interaction is dominantly scalar and the inclusion of the
tensor and spin-spin terms coming from the vector nature of the confinement does not
affect the global description of the spectrum in the different sectors.

The spectra of charmed and charmed-strange mesons contain a number of long
known and well established states, all of them are low-lying states. We have succeeded
describing them except the doublet jPq = 1

2

+
. In the last years several new resonances

have been observed, we have discussed their quantum numbers attending mainly their
strong decays. The spin-dependence of the model is based on the Fermi-Breit reduction
of the one-gluon exchange interaction supplemented with the spin-orbit term of the
scalar-vector Lorentz confinement. The inclusion of one-loop QCD corrections to
the spin-dependent terms of the OGE has served to explain the lower mass of the
D∗
s0(2317) meson as a canonical cs̄ structure. This effect does not solve the puzzle of

the 1+ mesons. We have studied the JP = 1+ charmed-strange mesons, finding that
the JP = 1+ Ds1(2460) has an important non-qq̄ contribution whereas the JP = 1+

Ds1(2536) is almost a pure qq̄ state. The presence of non-qq̄ degrees of freedom in
the JP = 1+ charmed-strange meson sector enhances the jq = 3/2 component of the
Ds1(2536). This wave function explains most of the experimental data.

The renormalization with boundary conditions applied to the constituent quark
model allows us to disentangle the physics of the ground state to that of the excited
states. Moreover, this has led to remove the ad hoc cutoffs of the model and,
subsequently, to develop a clear study of some properties of mesons as functions of
parameters with physical meaning.



CHAPTER 7. CONCLUSIONS 163

We have performed a calculation of the strong decay widths of the mesons which
belong to charmed, charmed-strange, hidden charm and hidden bottom sectors. We
have used two different decay models, the 3P0 model and a microscopic one, to deal
with this issue.

The 3P0 model has a free parameter, the strength γ of the decay interaction, which
is fitted to the data. We propose a scale-dependent strength, γ, as a function of the
reduced mass of the qq̄ pair of the decaying meson to achieve a global description of
the meson strong decays. The dependence of γ is logarithmically in the reduced mass.
The results predicted by the 3P0 model with the suggested running of the γ parameter
are in a global agreement with the experimental data, being remarkable in most of the
studied cases.

The development of a microscopic model that describes the meson strong decays
through the same interquark Hamiltonian which determines the spectrum has been one
of the main objectives in the study of strong decays. In general, the total widths are
lower in the microscopic model than in the 3P0 model without improving the agreement
with the experimental data. The comparison with other microscopic decay models has
been done. Despite of the difficulty of comparing our results with those of other
similar calculations, we discuss about the Lorentz structure of the confinement, mainly
responsible of the meson decays. We can conclude that a pure scalar linear confining
interaction, which is generally accepted, predicts large widths. A static vector linear
confining interaction predicts reasonable widths. Using a mixture of scalar-vector linear
screened confining interaction, we also obtain the correct order of magnitude.

The QCD multipole expansion appears as a feasible approach to determine hadronic
transition rates in the cc̄ and bb̄ systems. This has been used to calculate spin-nonflip
transitions between vector charmonium and bottomonium states with two pions in the
final state. QCD multipole expansion requires a model for hybrid mesons and so we
have proposed one coming from our constituent quark model. The model assumes that
the heavy quark and antiquark are connected by a string and they are situated at the
ends of the string. We allow that the string vibrates and calculate the vibrational energy
of the string as a function of the distance between the quark and the antiquark. This is
then treated as an effective potential inserted into the bound state equation. The width
calculated through QCD multipole expansion is sensible to the position in the spectrum
of the hybrid meson with respect to the decaying meson. We have predicted hybrid
mesons, which participate in the decay amplitude, close to the X(4360) and X(4660)
mesons. This explains why we are able to describe well established hadronic transitions
and, at the same time, to have large widths for the processes X(4360) → π+π−ψ(2S)
and X(4660) → π+π−ψ(2S).

The B-factories have become a fundamental tool to investigate experimentally
heavy hadrons in the last years. They have led to the discovery of many new states
in the open-charm and charmonium sectors. The experimental data concerning these
new states are usually accompanied by information about weak decays of b-hadrons.
The theoretical study of semileptonic and nonleptonic decays of B mesons has allowed
us to implement the usually approaches used in this field.

We have performed a calculation of the branching fractions for the semileptonic
decays of B and Bs mesons into final states containing orbitally excited charmed
and charmed-strange mesons, respectively. Our results for B semileptonic decays into



164

D∗
0(2400), D1(2420) and D

∗
2(2460) are in good agreement with the latest experimental

measurements. In the case of the D1(2430) meson, the prediction lies a factor of 2
below BaBar data although the disagreement between BaBar and Belle data for the
neutral case is evident. In the case of Bs semileptonic decays, our prediction for the
B(B0

s → Ds1(2536)
−µ+νµ)B(Ds1(2536)

− → D∗−K̄0) product of branching fractions
is in agreement with the experimental data. This, together with the strong decay
properties studied for the Ds1(2536) meson, is to us evidence of a dominant qq̄ structure
for the Ds1(2536) meson. We have given also predictions for decays into other D∗∗

s

mesons which can be useful to test the qq̄ nature of these states.
Since the nonleptonic B meson decays into D(∗)DsJ provide valuable information

about the structure of the D∗
s0(2317), Ds1(2460) and Ds1(2536) mesons, an analysis

of these decays is also included. The strong disagreement found between the heavy
quark limit predictions and the experimental data has motivated the introduction
of the finite c-quark mass effects, which has been done easily in the context of the
constituent quark model. We have got results close to or within the experimental error
bars for the D∗

s0(2317) meson, which is again an indication that this meson could be a
canonical cs̄ state. The description of the Ds1(2536) meson as an almost 1+, jq = 3/2 cs̄
state provides theoretical ratios in better agreement with experiment. The Ds1(2460)
has a sizable non-qq̄ component which contributes to the decays under study. This
contribution has not been calculated. We have computed the ratios considering only
the contribution coming from the qq̄ structure of the Ds1(2460) meson. The ratios are
a factor 2 below the experimental ones.

One striking feature of our model is the new assignment of the ψ(4415) as a D-wave
state leaving the 4S state for the X(4360). This agrees with the last measurements
of its leptonic and total decay widths. We test if our result is also compatible with
the measurement of the exclusive cross section for the processes e+e− → D0D−π+ and
e+e− → D0D∗−π+. Including both resonances our model is able to explain, despite
the theoretical uncertainties, the data within the experimental accuracy. We have also
explained the large value of Γ(X(4360) → ψ(2S)π+π−) using QCDME and assuming
our assignment 4S 1−− cc̄ state for the meson X(4360).

We have calculated the total strong decay widths of the heavy mesons using the
3P0 model. The global fit to the experimental data has elucidated the dependence on
the scale of the 3P0 free parameter γ. It depends logarithmically on the reduced mass
of the qq̄ pair of the decaying meson. Our results are in a global agreement with the
experimental data, being remarkable in most of the cases studied.

Finally, we have assumed the presence of non-qq̄ degrees of freedom in the JP = 1+

charmed-strange meson sector to enhance the jq = 3/2 component of the Ds1(2536)
meson. Independently of the mechanism that produces this effect, it has become clear
that the description of the Ds1(2536) meson as a jq = 3/2 cs̄ state is necessary to get a
simultaneously explanation of its decay properties. We test this fact in both strong and
weak decay observables and in all of them an almost pure jq = 3/2 cs̄ wave function
has led to the description of the experimental data.



Appendix A

Useful formulas within GEM

The complex-range Gaussian basis functions have been written as
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where n = 1, . . . , nmax, N
GC
nl and NGS

nl are normalization constants, ηn = (1+ iα)νn and
η∗n = (1− iα)νn are the complex size parameters, and νn are in geometric progression.
These functions can be expressed as a linear combination of more simple functions
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and with Nnl a normalization constant given by
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Therefore, NGC
nl and NGS

nl can be written as
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Then, for any linear operator, O, the matrix elements in the complex-range
Gaussian basis functions can be written as a linear combination of matrix elements
in function of the more simple basis
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Some examples of the matrix elements in the simple basis are

• Overlap

〈φn′l (r, ηn′) |φnl (r, ηn)〉 = Nn′lNnlI (2l, η
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• Powers of radial coordinate, rγ
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• Nonrelativistic kinetic energy, p2
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• Yukawa potential, V (r) = −C e−µr
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where In(A, b) is
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Appendix B

Tables of light meson masses

We discuss the experimental situation and remark the most important aspects of our
theoretical results as we go along the light meson spectrum. The tables are organized
in the following form: we separate the I = 0 and I = 1 sectors. In both sectors
there is a first table that shows the well established states in the Particle Data Group
(PDG) [78] up to the lower limit (1.9GeV) of the experiment performed by the Crystal
Barrel Collaboration. The successive tables show the states that appear in Ref. [77]
which is a summary of the data analysis.

In Ref. [77] resonances have a “star rating” up to 4∗. The highest class requires
observation of 3 or more strong, unmistakable peaks and a good mass determination
(with error δM ≤ 40MeV). Such states are equivalent to those in the summary table
of the Particle Data Group. The 3∗ resonances are reasonable well established, usually
in two strong channels with error for masses ≤ 40MeV; some are established in 3
channels but with δM in the range 40− 70MeV. The 2∗ resonances need confirmation
elsewhere, they are observed either in one strong channel with δM < 40MeV or in 2
channels with sizable error in the mass. Finally, 1∗ states are tentative, weak channels
and poor mass determination.

Most resonances from the Crystal Barrel in-flight analysis are listed by the Particle
Data Group in a section called “Other Light Unflavored Mesons”. The reason is that
the Particle Data Group requires confirmation from a separate experiment, rather than
from different channels of data in one experiment. There is very little other coverage
of this mass range from other experiments and Ref. [77] is the only one that gives an
idea about the status of the different resonances. That is why we follow the procedure
described above.

B.1 Lower energy region of the I = 0 meson spectrum

Table B.1 shows the well established resonances in the PDG [78] up to the lower limit
(1.9GeV) of the experiment performed by the Crystal Barrel Collaboration.

Our constituent quark model gives a theoretical mass of 547MeV for η that is in
good agreement with the experimental data. The η′ is 100MeV below the experimental
mass. However, η′ could have a structure more complex than a naive qq̄. It may have
a gluonic component or be a hybrid meson that explains our lower result. We only
obtain one 0−+ state in the 1.5GeV energy region although PDG gives three states
η(1290), η(1405) and η(1475). The first one decays exclusively into a0π

0, the second
one into a0π

0 and K∗K̄ and the last one exclusively into K∗K̄. The theoretical mass

169
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JPC State The. (MeV) Exp. (MeV) [78]

0−+ η 547 547.853 ± 0.024
0−+ η′ 862 957.78 ± 0.06
0−+ η(1295) - 1294 ± 4

0−+

[
η(1405)
η(1475)

]
1493

[
1409.8 ± 2.5
1476 ± 4

]

0−+ η(1760) 1668 1756 ± 9
0++ f0(600) 720 400− 1200
0++ f0(980) - 980 ± 10
0++ f0(1370) 1325 1200 − 1500
0++ f0(1500) 1616 1505 ± 6
0++ f0(1710) - 1720 ± 6
1+− h1(1170) 1292 1170 ± 20
1+− h1(1380) 1517 1386 ± 19

1+− h1(1595) 1826 1594 ± 15+10
−60

1−− ω(782) 569 782.65 ± 0.12
1−− φ(1020) 985 1019.455 ± 0.020
1−− ω(1420) 1484 1400 − 1450
1−− ω(1650) 1619 1670 ± 30
1−− φ(1680) 1750 1680 ± 20
1++ f1(1285) 1338 1281.8 ± 0.6

1++

[
f1(1420)
f1(1510)

]
1525

[
1426.4 ± 0.9
1518 ± 5

]

2−+ η2(1645) 1685 1617 ± 5
2++ f2(1270) 1306 1275.1 ± 1.2
2++ f2(1430) - ∼ 1430
2++ f ′2(1525) 1552 1525 ± 5
2++ f2(1565) - 1562 ± 13
2++ f2(1640) - 1639 ± 6
2++ f2(1810) 1832 1815 ± 12
3−− ω3 1696 1667 ± 4

Table B.1. I = 0 light meson spectrum, in MeV. We show the states below the lower limit of the experiment
performed by the Crystal Barrel Collaboration (1.9GeV).

is 1493MeV and so its assignment would be for η(1475). However, the predominant
channel nn̄ makes difficult to explain its decay into K∗K̄.

The isoscalar scalar mesons deserve a special mention because the quark model does
not implement structures more complex than a qq̄ one. It is known that tetraquarks
may have a great influence in this sector [52], hence it is reasonable that the theoretical
results differ from the experimental data.

There is a discrepancy between the experimental and predicted mass for the ω(782).
The model was originally developed for the description of the NN sector being the
pseudoscalar interaction a basic piece. When transformed to the quark-antiquark
sector, the additional sign given by G-parity is the responsible for the decreasing
in energy of the ω mass with respect to its isospin spin partner, the ρ meson. The
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ω − ρ splitting was solved in Ref. [263] where the authors realized that the model do
not implement the full octet of the scalar mesons, only the σ-exchange, loosing an
isospin-dependent scalar interaction which is important in the study of baryon-baryon
interaction. Looking at the excitations of the ω meson, we get a good agreement with
the experimental data indicating also that maybe the pseudoscalar interaction is not
described correctly at short distances but it is adequate at large distances.

The two lowest states with quantum numbers JPC = 3−− are the ω3(1670) and
φ3(1850) resonances with dominant flavor content nn̄ and ss̄, respectively. The model
prediction is 1696MeV for the first particle and 1908MeV for the last one, in very
good agreement with the experimental data.

There are three states with quantum numbers JPC = 1++ around 1.3GeV, the
f1(1285), f1(1420) and f1(1510) states. However, there are many experiments, as
those of the Refs. [264] and [265], that have been developed to measure the axial vector
particle and they distinguish only two states, f1(1285) and f1(1420), although the mass
splitting between f1(1420) and f1(1510) is sufficiently large respect the resolution of
the experiments. All these observations express skepticism regarding the existence of
the f1(1510) [266]. Our model gives two states with masses 1338MeV and 1525MeV
and dominant flavor component nn̄ and ss̄, respectively.

The first two states predicted by our model with quantum numbers JPC = 1+− are
h1(1170) = 1292MeV and h1(1380) = 1517MeV. The first state is predominantly nn̄
but the second one is ss̄. Although the prediction of our model for the second state
is higher than the experimental data, the more recent measurement for this state is
1440± 60MeV [267], rather close to the theoretical result.

Experimentally there is a proliferation of isoscalar 2++ states in an energy region
that has been suggested as coexisting with 2++ glueballs. Our model prediction
confirms f2(1270), f

′
2(1525) and f2(1810) as naive qq̄ states but have not results for

f2(1430), f2(1565) and f2(1640) of which structure seems more complex than qq̄.
Finally, our model gives a good global description of the lowest part of the spectrum

with I = 0 in spite of the discrepancies or comments that we have done above.

B.2 Higher energy region of the I = 0 meson spectrum

Higher excited light states with I = 0, C = +1 and I = 0, C = −1 are shown in
Tables B.2 and B.3, respectively.

The OGE potential has a Coulomb-like term at short distances which is the result
of the computation of QCD at its perturbative regime, ultraviolet momenta. However,
in QCD, self-interactions generate a momentum-dependent mass for the gluon, which
is large at infrared momenta but vanishes in the ultraviolet [270]. This means that the
Coulomb contribution at large distances is not reliable and should be modified. Our
constituent quark model has a Coulomb-like contribution with infinite range and thus
there is an infinite number of bound states before the continuum. These states have not
physical meaning and are not considered. The typical bounding energy of these states
in the light sector is 1

2
µα2 ∼ 20MeV and their typical radius is a = ~c/αµ = 2.5 fm.

We give the results of the I = 0, C = +1 states above 1.9GeV in Table B.2. The
resonances with JPC = 0++, 2++ and 4++ are observed in two-body channels, where
the polarization data are available, and therefore the significance of these resonances is
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JPC State The. (MeV) Exp. (MeV) [268]

0−+ η 1953 2010+35
−60 2∗

0−+ η 2131 - -
0−+ η 2206 2285 ± 20 3∗

0++ f0 1919 2020 ± 38 3∗

0++ f0 2035 2102 ± 13 4∗

0++ f0(2200) 2229 2189 ± 13 [78]
0++ f0 - 2337 ± 14 3∗

1++ f1 1851 1971 ± 15 3∗

1++ f1 - 2310 ± 60 2∗

2−+ η2 1895 1870 ± 16 4∗

2−+ η2 2050 2030 ± 16 3∗

2−+ η2 2253 2267 ± 14 4∗

2++ f2 1975 1934 ± 20 4∗

2++ f2 2063

[
2001 ± 10
2010 ± 25

] [
4∗

3∗

]

2++ f2(2150) 2133 2157 ± 12 [78]
2++ fJ(2220) 2189 2231.1 ± 3.5 [78]
2++ f2 2210 2240 ± 15 4∗

2++ f2 2288 2293 ± 13 4∗

3++ f3 2002 2048 ± 8 4∗

3++ f3 - 2303 ± 15 4∗

4−+ η4 - 2328 ± 38 2∗

4++ f4 2024 2018 ± 6 4∗

4++ f4 2228 2283 ± 17 4∗

Table B.2. I = 0, C = +1 light meson spectrum, in MeV, above 1.9GeV. The data are taken from Ref. [268]
which has a summary in this sector of the data analysis performed by the Crystal Barrel Collaboration.

higher. Resonances with JPC = 0−+, 1++, 2−+, 3++ and 4−+ appear only in three-body
channels but the statistics for ηπ0π0 is very high.

There is a good agreement between the theoretical prediction and the experimental
data. This is of a great importance because the resonances measured with quantum
numbers I = 0 and C = +1 are the best established experimentally due to the available
polarization data.

The resonances f4(2050) and f4(2300) are two of them within the highest mass
range. Our prediction agrees reasonably well.

It is necessary to discuss separately 2−+ states at 1645, 1870 and 2030MeV (the
η2(2267) is clearly seen in the analysis of the data). They appear in ηπ0π0π0 data in
the production reaction p̄p→ π0(ηππ). The lower one was initially observed decaying
purely to a2(1320)π at 1645MeV. This fits nicely as the expected partner of the well
known I = 1 π2(1670). However, the same data contained a second strong signal in
the f2(1270)η final state at 1870MeV. The second signal could not be explained as
the high mass tail of η2(1645) decaying to f2η. Both resonances were subsequently
confirmed by the WA102 Collaboration. They observed the η2(1645) in decays to ηππ
and η2(1870) in decays to both ηππ and KK̄π. The η2(1645) and η2(2030) can be
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JPC State The. (MeV) Exp. (MeV) [269]

1−− ω/φ 1860 1854 ± 7 [78]
1−− ω/φ 1943 1960 ± 25 3∗

1−− ω/φ 2012 - -

1−− ω/φ

[
2182
2205

]
2205 ± 30 1∗

1+− h1 2041 1965 ± 45 2∗

1+− h1

[
2130
2287

]
2215 ± 40 2∗

2−− ω2 1711 - -

2−− ω2

[
1901
2065

]
1975 ± 20 3∗

2−− ω2 2259 2195 ± 30 2∗

3−− ω3 1908 1945 ± 20 3∗

3−− ω3 2057 - -

3−− ω3

[
2250
2257

]
2255 ± 15 2/3∗

3−− ω3 2290 2285 ± 60 2/3∗

3+− h3 1985 2025 ± 20 2∗

3+− h3

[
2195
2217

]
2275 ± 25 3∗

4−− ω4 - 2250 ± 30 1∗

Table B.3. I = 0, C = −1 light meson spectrum, in MeV, above 1.9GeV. The data are taken from Ref. [269]
which has a summary in this sector of the data analysis performed by the Crystal Barrel Collaboration.

explained as qq̄ states in other quark models, whilst the absent of the η2(1870) state is
generally related to the possibility that this meson could be a hybrid. There are in the
literature references as [271] that predict light hybrid mesons around 1.8−1.9GeV. We
predict all the states of the η2 meson, even the η2(2267) state. In particular, our result
for the η2(1870) state indicates that it is almost a ss̄ state with quantum numbers 2−+,
which explains its observation in the final decay channel KK̄π.

The highest states in Table B.2 are not predicted theoretically due to these states
are above the string breaking threshold for us. With respect the remaining resonances,
there are predictions given by the model for all of them. We conclude that a good
description has been reached of the higher states for I = 0, C = +1 sector.

The analysis of the I = 0, C = −1 high excited states of light meson spectrum is
more involved and thus the resonances of this sector are the worse established. The
reasons, among others, are that the statistics for the ωη channel is low and there
are uncertainties in parameterizing the broad ππ S-wave amplitude above 1GeV that
introduce possible systematic errors into the physics background.

One can see in Table B.3 that the disagreement is more notable for these resonances.
However, the experimental status of them is less promising. We obtain predictions in
good agreement for all resonances whose status is at least 3∗. We have a reasonable
agreement for the states whose status is 2/3∗. The 3∗ refers to their existence, but the
2∗ refers to the imprecise identification of masses.
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JPC State The. (MeV) Exp. (MeV) [78]

0−+ π 138 138.03899 ± 0.00045
0−+ π(1300) 1341 1300 ± 100
0−+ π(1800) 1865 1816 ± 14
0++ a0(980) 1145 980± 20
0++ a0(1450) 1755 1474 ± 19
1+− b1(1235) 1264 1229.5 ± 3.2
1−− ρ(770) 772 775.49 ± 0.34
1−− ρ(1450) - 1465 ± 25
1−− ρ(1570) 1555 1570 ± 36± 62
1−− ρ(1700) 1647 1720 ± 20
1−− ρ(1900) 1977 1909 ± 17± 25
1++ a1(1260) 1270 1230 ± 40
1++ a1(1640) 1816 1647 ± 22
2−+ π2(1670) 1685 1672.4 ± 3.2
2++ a2(1320) 1341 1318.3 ± 0.6
2++ a2(1700) 1853 1732 ± 16
3−− ρ3(1690) 1705 1686 ± 4

Table B.4. I = 1 light meson spectrum, in MeV. We show the states below the lower limit of the experiment
performed by the Crystal Barrel Collaboration (1.9GeV).

The assignment of the two lowest states of the ω3 resonance is in good agreement
with the experimental data. The subsequent theoretical states agree again with those
measured experimentally, except for the 2057MeV state predicted by the model.
Therefore, it is possible that there is a new resonance about 2.1GeV.

B.3 Lower energy region of the I = 1 meson spectrum

Table B.4 shows a good agreement between theoretical results and the experimental
data for the lower states of I = 1 mesons. The rg and as model parameters were fitted
in Ref. [52] to reproduce the splitting between the a1(1260) and a2(1320) mesons. With
the fine tune of the model parameters, the theoretical result for these states is 1270MeV
and 1341MeV, respectively.

We cannot predict simultaneously the ρ(1450) and ρ(1570) states. While the
ρ(1450) was discovered earlier, the ρ(1570) has been reported in 2008 by Aubert et

al. in Ref. [272]. The scene seems to be complicated due to the uncertainty in the
measured mass and because the widths are enough large to disentangle experimentally
both resonances. We can only say that our first excitation of the ρ(770) meson has a
mass of 1555MeV.

The greatest discrepancy between theory and experiment is the prediction for a0
states. These states are isovector scalar mesons and, of course, they suffer from the
same speculations about the f0 meson. Our model does not implement exotic structures
and the discrepancy for this particle is reasonable.
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JPC State The. (MeV) Exp. (MeV) [273]

0++ a0 2092 2025 ± 30 2∗

0−+ π 2152 2070 ± 35 2∗

0−+ π 2295 2360 ± 25 2∗

1++ a1 2124 1930 ?

1++ a1 2284 2270+55
−40 2∗

2−+ π2 - 1880 4∗

2−+ π2 2049 2005 ± 15 3∗

2−+ π2 2252 2245 ± 60 2∗

2++ a2 1982

[
1950

2030 ± 30

] [
?
2∗

]

2++ a2 2145 2175 ± 40 2∗

2++ a2 2213 2255 ± 20 2∗

3++ a3 1988 2031 ± 12 3∗

3++ a3 2219 2275 ± 35 2∗

4−+ π4 - 2250 ± 15 3∗

4++ a4 1988 2005+25
−45 2∗

4++ a4 2220 2255 ± 40 3∗

Table B.5. I = 1, C = +1 light meson spectrum, in MeV, above 1.9GeV. The data are taken from Ref. [273]
which has a summary in this sector of the data analysis performed by the Crystal Barrel Collaboration.

JPC State The. (MeV) Exp. (MeV) [274]

1−− ρ 2027 2000 ± 30 3∗

1−− ρ 2210 2110 ± 35 3∗

1−− ρ 2240 2265 ± 40 2∗

1+− b1 1807 1960 ± 35 3∗

1+− b1

[
2118
2281

]
2240 ± 35 2∗

2−− ρ2 2049 1940 ± 40 2∗

2−− ρ2 2252 2225 ± 35 3∗

3−− ρ3 2062 1982 ± 14 4∗

3−− ρ3 2252 2260 ± 20 4∗

3+− b3 1987 2032 ± 12 4∗

3+− b3 2218 2245 ± 50 3∗

4−− ρ4 - 2230 ± 25 4∗

Table B.6. I = 1, C = −1 light meson spectrum, in MeV, above 1.9GeV. The data are taken from Ref. [274]
which has a summary in this sector of the data analysis performed by the Crystal Barrel Collaboration.

B.4 Higher energy region of the I = 1 meson spectrum

Higher excited states of light mesons with I = 1, C = +1 and I = 1, C = −1 are
shown in Tables B.5 and B.6, respectively.

In the case of I = 1, C = +1 the channels available are π0η, π0η′, 3π0 and ηηπ0.
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Statistics is very high for 3π0 data but do not define the partial waves cleanly. One
expects the spectrum of I = 1, C = +1 mesons to be close to that for I = 0, C = +1.
Although results are indeed similar, they are much less accurate.

Table B.5 shows our predictions and the comparison with the experimental data. In
general, there is a good agreement for all resonances. The most striking feature is that
our model predicts all states of π2 resonance except the most experimental determined
π2(1880).

Data for the family I = 1, C = −1 are available from π−π+, ωπ0 and ωηπ0 final
states. The measured masses of the different resonances together with their status and
our prediction is shown in Table B.6.

A particular feature at low momenta is the very strong ρ3(1980) signal, our model
predicts a state around this energy range but slightly higher. The ρ3(2260) also appears
as a well established resonance and our prediction is 2252MeV.

Concerning the 1−− state at 2000MeV, the best mass of this state comes from π−π+

final channel and our prediction is within the error bars.
The upper 2−− state at 2225MeV has not a 4∗ status due to the correlations with

3−− and 1−− partial waves. Our prediction is 2252MeV. The lower 2−− state at
1940MeV is one of the two most weakly established states. Our model predicts a state
which is 100MeV higher in mass.

In conclusion, we have done a fine tune of the model of Ref. [52] to describe the
degeneracy pattern observed at high energies in the light meson spectrum. Without
degrading the description of the low energy spectrum, we obtain a reasonable results
for all higher excited states of light mesons which have been established recently. One
can find that the theoretical results are better in the I = 1 than in the I = 0 sector.
This is because the I = 0 sector is more involved due to the mixing between the nn̄
and ss̄ components and the presence of exotic structures as glueballs and multiquark
states.



Appendix C

Electromagnetic transitions

For quarkonium states below open-flavor threshold, electromagnetic (EM) transitions
are often significant decay modes, giving a large contribution to their total decay width.
In fact, the first charmonium states not directly produced in e+e− collisions, the χcJ
states, were discovered in photon transitions of the ψ′ resonance [275]. Even today,
such transitions continue to be used to observe new quarkonium states and to test
internal structure.

The theory of EM transitions between these quarkonium states is familiar for
physicists because much of the terminology and techniques come from the study of
EM transitions in atomic and nuclear systems.

Within a Q1Q̄2 quarkonium system, the electromagnetic transition amplitude is
determined by the matrix element of the EM current, 〈f |jµem|i〉, between an initial
quarkonium state, i, and a final state, f . Including the emission of a photon of
momentum k and polarization ǫγ , the general form of the transition amplitude is the
sum of two terms

M(i→ f) =
[
M (1)(i→ f) +M (2)(i→ f)

]
· ǫγ(k), (C.1)

where in the term M (1) the photon is emitted off the quark Q1 with mass m1 and
charge e1, and in the corresponding term M (2) the photon is emitted off the antiquark
Q̄2 with mass m2 and charge −e2.

Within nonrelativistic potential models, a quarkonium state is characterized by
n2S+1LJ in spectroscopic notation. In the nonrelativistic limit the spin dependence
of the quarkonium wave function decouples from the spatial dependence. The spatial
part of the wave function can be expressed in terms of a radial wave function and the
spherical harmonics. The spatial dependence of the EM transition amplitudes reduces
to expectation values of various functions of quark position and momentum between
the initial and final state wave functions.

C.1 Electric transitions

Electric transition does not change the quark spin and at its lowest nonrelativistic order
is given by the electric dipole (E1) transition. The E1 transition has selection rules
∆L = ±1 and ∆S = 0. The spin-averaged electric transition rate between an initial
state i ≡ n2S+1LJ and a final state f ≡ n′ 2S′+1L′

J ′ (L = L′ ± 1) is [13]

Γ(i ≡ n2S+1LJ
E1−→ f ≡ n′ 2S′+1L′

J ′) =
4αe2Q
3

(2J ′ + 1)SEifk
3|Eif |2

Ef
Mi

, (C.2)
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where eQ = (e1m2 − e2m1)/(m1 +m2), Ef/Mi is a relativistic correction among others
as using the eigenfunctions and eigenvalues of the Breit-Fermi Hamiltonian (Siegert’s
theorem). The momentum of the final photon is

k =
(M2

i −M2
f )

2Mi
, (C.3)

and the overlap integral Eif for m1 = m2 and e1 = −e2 = eQ is given by

Eif =
3

k

∫ ∞

0

Rn′L′(r)

[
kr

2
j0

(
kr

2

)
− j1

(
kr

2

)]
RnL(r) r

2dr, (C.4)

where jn(x) are spherical Bessel functions. Finally, the statistical factor SE
if = SE

fi is

SE
if = max(L, L′)

{
J 1 J ′

L′ S L

}2

. (C.5)

Note that at leading order in the multipole expansion the electric overlap integral
Eif reduces to

Eif =
∫ ∞

0

Rn′L′(r)rRnL(r) r
2dr. (C.6)

C.2 Magnetic transitions

Magnetic transitions flip the quark spin. Transitions that do not change the
orbital angular momentum are called magnetic dipole (M1) transitions. The spin-
flip transition decay rate between an initial state i ≡ n2S+1LJ and a final state
f ≡ n′ 2S′+1LJ ′ can be written as [13]

Γ(i ≡ n2S+1LJ
M1−→ f ≡ n′ 2S′+1LJ ′) =

4αe2Q
3m2

Q

(2J ′ + 1)k3SMif |Mif |2
Ef
Mi

, (C.7)

where eQ is the electrical charge of the quark, mQ = m1 = m2 is the mass of the quark
or antiquark. The overlap integral is given by

Mfi = (1 + κQ)

∫ ∞

0

Rn′L(r) j0

(
kr

2

)
RnL(r) r

2dr. (C.8)

The anomalous magnetic moment of a quarkonium is κQ and the statistical factor
SM
if = SM

fi is

SM
if = 6(2S + 1)(2S ′ + 1)

{
J 1 J ′

S ′ L S

}2{
1 1/2 1/2
1/2 S ′ S

}2

. (C.9)

At leading order in the multipole expansion, the overlap integral reduces to
Mfi = δnn′. Transitions for which n = n′ are called allowed M1 transitions, transitions
for which n 6= n′ are called hindered transitions.
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C.3 Annihilation into electron-positron

The dominant contribution to the decay of quarkonium states into lepton pairs proceed
via a single virtual photon, as long as the mass of the initial meson state is sufficiently
small so that the contribution of a virtual Z can be ignored.

The leptonic width of n3S1 quarkonium including radiative QCD corrections is given
by [276]

Γ(n3S1 → e+e−) =
4α2e2Q|RnS(0)|2

M2
nS

(
1− 16αs

3π

)
, (C.10)

where eQ is the quark charge in units of the charge of the electron, α and αs are the
fine structure and the strong coupling constants, respectively. The mass of the meson
is MnS and RnS(0) is the radial wave function of the meson evaluated at the origin.
Similarly for 1−− D-wave quarkonium states, the leading order decay width into e+e−

is given by [44]

Γ(n3D1 → e+e−) =
25α2e2Q
2m4

QM
2
nD

|R′′
nD(0)|2. (C.11)

Momentum-dependent effects could reveal significant corrections to the theoretical
leptonic width. The expression for e+e− decay width of S-wave states in the center-of-
mass frame of the meson and taking into account those effects can be written as [277]

Γ̃(n3S1 → e+e−) =16α2e2Q
m2
Q

M4
nS

|~k|
Ee

(3E2
e − |~k|2)×

×
[∫ ∞

0

EQ +mQ

mQ

|~p |2
EQ

(
1 +

|~p |2
3(EQ +mQ)2

)
ψ(|~p |)d|~p |

]2
,

(C.12)

where the quark and lepton energies are respectively

EQ =
(
|~p |2 +m2

Q

)1/2
,

Ee =
(
|~k|2 +m2

e

)1/2
.

(C.13)

The static limit of Eq. (C.12) may be obtained by considering the nonrelativistic
limit

|~p |2
m2
Q

≪ 1, (C.14)

and in this case the integral in Eq. (C.12) reduces to

2

mQ

∫ ∞

0

ψ(|~p |)|~p |2d|~p |. (C.15)

Recalling the Fourier transform

φ(~r) =
1

(2π)3/2

∫
ei~p·~rψ(~p )d~p, (C.16)

and evaluating at the origin, we have

φ(~r = 0) =
1

(2π)3/2

∫
ψ(~p )d~p =

√
2

π

∫ ∞

0

|~p |2ψ(|~p |)d|~p |, (C.17)
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so the integral above, Eq. (C.15), becomes

2

mQ

∫ ∞

0

ψ(|~p |)|~p |2d|~p | = (2π)1/2

mQ
φ(~r = 0). (C.18)

With the kinematic relationships, the static limit of Eq. (C.12) is

Γ̃(n3S1 → e+e−)
∣∣∣
static

=
16πα2e2Q
M2

nS

|φ(~r = 0)|2 =
4α2e2Q
M2

nS

|R(r = 0)|2, (C.19)

which is the well-known van Royen-Weisskopf formula, Eq. (C.10).

C.4 Annihilation into 2γ and 3γ

States with even C-parity can annihilate into two photons [44, 278]. The amplitude of
the two-photon annihilation of the P -wave states, JPC = 0++ and 2++, is proportional
to the first derivative of the radial wave function at the origin. The decay of JPC = 1++

into two photons is forbidden. The specific expressions [278] with the first short-
distance QCD correction [279] are given by

Γ(n3P0 → γγ) =
27e4Qα

2

m4
Q

|R′

nP (0)|2
[
1 +

αs
3π

(
π2 − 28

3

)]
,

Γ(n3P2 → γγ) =
36e4Qα

2

5m4
Q

|R′

nP (0)|2
(
1− 16αs

3π

)
.

(C.20)

For the n1S0 states the amplitude is proportional to the wave function at the origin.
Including also the first short distance QCD correction [280] for the 2γ decay, one can
write

Γ(n1S0 → γγ) =
3e4Qα

2

m2
Q

|RnS(0)|2
[
1− αs

π

(
20− π2

3

)]
. (C.21)

The rate of the decay n1D2 is given as [44]

Γ(n1D2 → γγ) =
3e4Qα

2

m6
Q

|R′′

nD(0)|2. (C.22)

Finally, the annihilation of n3S1 into photons is given by the process n3S1 → 3γ due
to the C-parity conservation. These decays have very small rates proportional to α3

Γ(n3S1 → 3γ) =
4(π2 − 9)α3e6Q

3πm2
Q

|RnS(0)|2
(
1− 12.6αs

π

)
, (C.23)

where the lowest-order result is similar to the corresponding orthopositronium decay
formula [107] and the first QCD correction has been obtained [281] from the result for
the one-loop QED correction to the orthopositronium decay rate [282].
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General aspects of the

renormalization approach

D.1 Renormalization conditions and error estimates

The boundary condition allows to connect the bound state to the excited states by the
matching condition. We provide here an a priori and qualitative determination on the
short-distance cutoff error of a excited state, En(rc), when the ground state is fixed to
a given value E0 for any value of the cutoff rc.

We start with the ground state energy, E0, which is fixed throughout and compute
the logarithmic derivative of the ground state wave function at rc which is matched to
the corresponding quantity of the excited state. Then, we perform a calculation of the
bound state energy, En(rc), which obviously depends on the cutoff radius. It is this rc
dependence the one we want to determine. Let us denote by un(r, rc) the excited wave
function where the dependence on rc is explicitly displayed. Under an infinitesimal
change, rc → rc +∆rc we get

−∆u′′n + U∆un = ∆Enun + En∆un, (D.1)

Note that the variation is defined for a fixed value of r,

∆un(r, rc) = un(r, rc +∆rc)− un(r, rc), (D.2)

and hence

∆u′n(r, rc) = u′n(r, rc +∆rc)− u′n(r, rc), (D.3)

where here, the prime denotes derivative with respect to the r variable. Therefore, if
we use the boundary condition

u′n(rc, rc) = Ln(rc)un(rc, rc), (D.4)

we get

∆u′n(r, rc)
∣∣∣
r=rc

= ∆(Ln(rc)un(rc, rc))−
∂u′n(r, rc)

∂rc

∣∣∣
r=rc

∆rc. (D.5)

From here we obtain

(L′
n + L2

n − U + En)un = −∂u
′
n

∂rc
+ Ln

∂un
∂rc

, (D.6)
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and multiplying this equation by un and subtracting the original equation multiplied
by ∆un we get

−∆u′′nun + u′′n∆un = ∆Enu
2
n, (D.7)

which integrating from rc and infinity and using that for a bound state un(r, rc) → 0
at large distances we get

−∆u′nun + u′n∆un = ∆En

∫ ∞

rc

u2n. (D.8)

On the other hand, since the ground state energy is fixed, ∆E0 = 0, we get

−∆u′0u0 + u′0∆u0 = 0, (D.9)

and taking into account

∆En = (L′
n + L2

n − U + En)
un(rc)

2

∫∞
rc
un(r)2dr

, (D.10)

so that using Ln = L0 we arrive at

∆(En −E0) = (En −E0)
un(rc)

2

∫∞
rc
un(r)2dr

∆rc. (D.11)

Actually, integrating we get

[En(rc)− E0]

∫ ∞

rc

dr un(r)
2 = const. (D.12)

For a normalized state we have for small rc

En(rc)− E0 = (En − E0)
[
1 + rcun(rc)

2 + . . .
]
. (D.13)

Therefore for a regular potential with a non-trivial boundary condition un(0) 6= 0
the error is at least linear. For a singular and attractive potential, 1/rn, the error

is O(r
1+n/2
c ) up to some oscillations. As we see, the convergence is from above and

proportional to the energy difference as well. This means that the effect of putting a
finite cutoff fixing the ground state energy is repulsive and increases with the excitation
energy.

D.2 Short-distance analysis of wave functions

In the renormalization scheme, the singular structure of the problem at short distances
requires a specific analysis of the uncoupled and coupled equations. We summarize in
this section a few interesting facts concerning the short distance behaviour of the wave
functions.
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D.2.1 Single channel case

In the case of nS states, an attractive OGE Coulomb-like behaviour holds, so that at
short distances the reduced potential reads

U(r) ≡ 2µV (r) → − 1

Rr
, (D.14)

where R represents the relevant length scale in the reduced potential. Thus we have
short-distance behaviour

un(r) → An

[
1− 3r

2R
− r

R
log
( r
R

)]
+Bnr, (D.15)

which is a linear combination of the regular wave function and the irregular one. On
the other hand, the orthogonality condition, Eq. (3.23), implies An/Bn = A0/B0 so
that

un(rc)

u0(rc)
→ An

A0

, (D.16)

which shows that the ratio between wave functions becomes finite as the cutoff is
removed, as can be seen at the left panel in Fig. 3.9.

For a power-like short-distance singular potential we may keep the strongest
singularity

V (r) → −Cn
rn
. (D.17)

The solution of the Schrödinger equation requires the reduced potential

U(r) ≡ 2µV (r) → − 1

R2

(
R

r

)n
, (D.18)

where for convenience the variable R = (2µCn)
1/4 with length scale dimensions has

been introduced. At short distances the reduced de Broglie wavelength is given by

λ(r) ≡ 1√
−U(r)

= R
( r
R

)n
2
, (D.19)

which fulfills
dλ(r)

dr
=
n

2

( r
R

)n
2
−1

≪ 1, (D.20)

for r ≪ R. In such a case the WKB method can be applied [283] yielding

u(r) → uWKB(r) =
A

[−U(r)]1/4 sin
[∫

dr
√
−U(r) + ϕ

]
, (D.21)

where A and ϕ are undetermined amplitude and phase which may be obtained by
matching to the exact solution in the region r ∼ R. In the case of the singular
potential given by Eq. (D.17) we have for the m-state

um(r) → Am

( r
R

)n
4

sin

[
2

2− n

(
R

r

)n
2
−1

+ ϕm

]
. (D.22)
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However, the orthogonality condition, Eq. (3.23), imply ϕm = ϕ0. Thus we obtain

um(rc)

u0(rc)
→ Am

A0

. (D.23)

For n = 3 this is seen in the left panel in Fig. 3.9.

D.2.2 Coupled channel case

Now we undertake the short-distance analysis of the spin-orbit and tensor interactions.
At short distances one may neglect all terms and just keep the 1/r3 singular
contribution yielding

(
−u′′(r)
−w′′(r)

)
+
R

r3

(
0 2

√
2

3
2
√
2

3
−20

3

)(
u(r)
w(r)

)
= 0. (D.24)

This system can be diagonalized by going to the rotated basis
(
v1(r)
v2(r)

)
=

(
cosα sinα
− sinα cosα

)(
u(r)
w(r)

)
, (D.25)

where the new functions satisfy

−v′′1(r) +
R1

r3
v1(r) = 0,

−v′′2 (r)−
R2

r3
v2(r) = 0,

(D.26)

and the R1 and −R2 are the corresponding eigenvalues

R1 = R

(
−10

3
+ 2

√
3

)
> 0,

−R2 = R

(
−10

3
− 2

√
3

)
< 0,

(D.27)

and the mixing angle is α = 1.10, a rather small value. At short distances the
solutions of Eq. (D.26) could be analyzed via the WKB method as we have done
in the previous section, but for this case we can undertake the analysis in terms of
Bessel functions, whose short distance is analytically known. Actually, the solutions of
−y′′(x)− y(x)/x3 = 0 are

√
x J1

(
2√
x

)
= − x

3
4

√
π
cos

(
π

4
+

2√
x

)
+ . . . ,

√
xY1

(
2√
x

)
= − x

3
4

√
π
cos

(
π

4
− 2√

x

)
+ . . . ,

whereas the solutions of −y′′(x) + y(x)/x3 = 0 are

√
xK1

(
2√
x

)
=

1

2

√
π x

3
4 e−2/

√
x + . . . ,

√
x I1

(
2√
x

)
=

1

2
√
π
x

3
4 e2/

√
x + . . . ,

(D.28)
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All this amounts to write the solutions in the suitable form

v1(r) →
(
r

R1

) 3
4
[
C1R e

+2
√

R1
r + C2R e

−2
√

R1
r

]
,

v2(r) → CA

(
r

R2

) 3
4

sin

(
2

√
R2

r
+ ϕ

)
. (D.29)

The four constants appearing here, C1R, C2R, CA and ϕ reflect that the total order of
the system is four. The last equation also shows that generally solutions will diverge

as e2
√
R1/r at the origin, hence preventing the bound state normalization condition,

unless C1R = 0. In such a case the normalizable solution may be written as

u(r) →− sinαCA

(
r

R2

) 3
4

sin

(
2

√
R2

r
+ ϕ

)
+ cosαC2R

(
r

R1

) 3
4

e−2
√

R1
r ,

w(r) →+ cosαCA

(
r

R2

) 3
4

sin

(
2

√
R2

r
+ ϕ

)
+ sinαC2R

(
r

R1

) 3
4

e−2
√

R1
r .

(D.30)

The three independent constants appearing here for the regular solution CA, C2R

and ϕ correspond to fix the energy MJ/ψ, the asymptotic D/S ratio η, and the
normalization condition. Note that when integrating from large distances to short
distances with a given bound state energy and an arbitrary η we would always have
a contribution from the exponentially diverging solution since C1R 6= 0. Thus, the
condition C1R = 0 predicts η from the bound state energy. The foregoing analysis
shows that for the 1/r3 singularity appearing here the solution is ambiguous and the
bound state energy for a given state has to be treated as an input. Of course, the
orthogonality requirement between different states implies that if one state, (un, wn),
has a short-distance phase ϕn and another state, (um, wm), has a short-distance phase
ϕm, one has

0 = 2µ(Mn −Mm)

∫ ∞

0

dr (unum + wnwm)

= [u′num − unu
′
m + w′

nwm − wnw
′
m]
∣∣∣
∞

0

=
1

R2
CA,nCA,m sin(ϕn − ϕm) (D.31)

whence ϕn = ϕm is obtained. This shows that all states are linked through the spin-
dependent splitting provided the ground state energy is given.





Appendix E

Matrix elements of strong decays

E.1 Nonrelativistic reduction of Dirac bilinears

The Dirac-Pauli and Majorana representations are the most famous ways of writing
the γµ Dirac matrices. We use the Dirac-Pauli representation of the γµ Dirac matrices.
The reason is that this representation has a simple nonrelativistic limit, and thus it is
more suitable for us because we calculate the nonrelativistic reduction of the matrix
elements. In terms of the Pauli 2× 2 spin matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (E.1)

the Dirac matrices can be written in this representation as

γ0 =

(
I 0
0 −I

)
, γk =

(
0 σk

−σk 0

)
, γ5 =

(
0 I
I 0

)
. (E.2)

A complete set of plane wave states is now easily constructed. The solutions of the
Dirac equation with energy-momentum vectors ±p = (±E~p, ~p ) are given by

ur(~p ) =

√
E~p +m

2m

(
χr

~p·~σ
E~p+m

χr

)
,

ūr(~p ) =

√
E~p +m

2m

(
χ†
r ,−χ†

r
~p·~σ

E~p+m

)
,

vr(~p ) =

√
E~p +m

2m

( ~p·~σ
E~p+m

χ′
r

χ′
r

)
,

v̄r(~p ) =

√
E~p +m

2m

(
χ′†
r

~p·~σ
E~p+m

,−χ′†
r

)
,

(E.3)

where ūr(~p ) = u†r(~p )γ
0 and vr(~p ) = v†r(~p )γ

0. The two-component nonrelativistic
spinors are defined as

χ1 ≡ χ′
2 ≡

(
1
0

)
, χ2 ≡ χ′

1 ≡
(
0
1

)
. (E.4)

In our evaluation of decay matrix elements in JKJ models, we also require spin
matrix elements, which involve the nonrelativistic O(p/m) matrix elements of Dirac

187
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bilinears with Γ = I, γ0, ~γ and Pauli spin matrix elements. These are

lim
v/c→0

[ūµ(~pµ) I vν(~pν)] =
1

2mµ
(~pν − ~pµ) · 〈µ|~σ|ν〉 = − 1

2mµ

√
25π

[
Y1

(
~pµ − ~pν

2

)
⊗
(
1

2

1

2

)
1

]

0

,

lim
v/c→0

[ūµ(~pµ) γ
0 vν(~pν)] =

1

2mµ

(~pν + ~pµ) · 〈µ|~σ|ν〉 = +
1

2mµ

√
23π

[
Y1(~pν + ~pµ)⊗

(
1

2

1

2

)
1

]

0

,

lim
v/c→0

[ūµ(~pµ)~γ vν(~pν)] = 〈µ|~σ|ν〉 ,
(E.5)

and

lim
v/c→0

[ūµ(~pµ) I uν(~pν)] = δµν ,

lim
v/c→0

[ūµ(~pµ) γ
0 uν(~pν)] = δµν ,

lim
v/c→0

[ūµ(~pµ)~γ uν(~pν)] =
1

2mν

[(~pν + ~pµ)δµν − i 〈µ|~σ|ν〉 × (~pµ − ~pν)] ,

(E.6)

where we have used the relation

~Y1 · 〈~σ〉 = −
√
3 [Y1 ⊗ 〈~σ〉]0 =

√
6

[
Y1 ⊗

(
1

2

1

2

)
1

]

0

. (E.7)

E.2 Spin-space overlap integral of sKs decay model

We begin from the Eq. (4.40) and using the expressions below one can decouple the
spin and angular momentum terms

|[(LASA)JA][(11)0]JA〉 =
∑

L,S

√
(2L+ 1)(2S + 1)(2JA + 1)






LA SA JA
1 1 0
L S JA




 | [(LA1)L] [(SA1)S] JA〉

=
∑

L,S

√
(2L+ 1)(2S + 1)(2JA + 1)

(−1)LA+S+JA+1

√
3(2JA + 1)

{
SA LA JA
L S 1

}
| [(LA1)L] [(SA1)S]JA〉 ,

〈[(LBSB)JB] [(LCSC)JC ] JBC | =
∑

LBC ,S

√
(2LBC + 1)(2S + 1)(2JB + 1)(2JC + 1)





LB SB JB
LC SC JC
LBC S JBC



 〈[(LBLC)LBC ] [(SBSC)S]JBC |,

〈[(LBCS)JBC ] [l] JT | =
∑

L

√
(2JBC + 1)(2L+ 1) (−1)S+l+JBC+L

{
S LBC JBC
l JT L

}
〈[(LBC l)L] [S]JT |,
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〈[(sαsν)SB] [(sµsβ)SC ]S| [(sαsβ)SA] [(sµsν)1]S〉 =

= (−1)−1+SC
√

(2SB + 1)(2SC + 1)(2SA + 1)3





1/2 1/2 SB
1/2 1/2 SC
SA 1 S



 ,

(E.8)

to write

IsKsspin−space =
−1√

1 + δBC

1

2mν

√
25π

∑

LBC ,L,S

J (A→ BC)E(A→ BC), (E.9)

with J (A→ BC) equal to Eq. (4.19) and

E(A→ BC) =

∫
d3KBd

3KCd
3pαd

3pβd
3pµd

3pνd
3pδ

δ(3)( ~K − ~K0)δ
(3)( ~KB − ~PB)δ

(3)( ~KC − ~PC)δ
(3)( ~PA)

δ(k − k0)

k
δ(3)(~pδ − (~pα − ~pµ − ~pν))K(|~pµ + ~pν |)

〈[[φB(~pB)φC(~pC)]LBCYl(k̂)]L| [φA(~pA)Y1

(
~pµ − ~pν

2

)
]L〉 .

(E.10)

If we integrate in d3pδ using the δ-function, we obtain

E(A→ BC) =

∫
d3KBd

3KCd
3pαd

3pβd
3pµd

3pνK(|~pµ + ~pν |)

δ(3)( ~K − ~K0)δ
(3)( ~KB − ~PB)δ

(3)( ~KC − ~PC)δ
(3)( ~PA)

δ(k − k0)

k

〈[[φB(~pB)φC(~pC)]LBCYl(k̂)]L| [φA(~pA)Y1

(
~pµ − ~pν

2

)
]L〉 .

(E.11)

It is easier to consider the involved masses in function of a reference one

ωα =
mα

m
,

ωαβ = ωα + ωβ,
(E.12)

such that the masses of quarks, antiquarks and mesons are dimensionless. We try to
write E(A → BC) in function of the total and relative momenta of meson A, created
pair (µν) and system BC

~PA = ~pα + ~pβ, ~pA =
ωβ~pα − ωα~pβ

ωαβ
,

~P = ~pµ + ~pν , ~p =
~pµ − ~pν

2
,

~K = ~KB + ~KC , ~k =
ωC ~KB − ωB ~KC

ωBC
, (E.13)



190 E.2. SPIN-SPACE OVERLAP INTEGRAL OF SKS DECAY MODEL

such that the different momenta in function of those above can be expressed as follow

~pα = ~pA +
ωα
ωαβ

~PA,

~pβ = −~pA +
ωβ
ωαβ

~PA,

~pµ = ~p+
1

2
~P ,

~pν = −~p + 1

2
~P ,

~KB = ~k +
ωB
ωBC

~K,

~KC = −~k + ωC
ωBC

~K,

~PB = ~pA +
ωα
ωαβ

~PA − ~p− 1

2
~P ,

~pB =
ων
ωαν

~pA +
ωαων
ωανωαβ

~PA +
ωα
ωαν

~p− (2ων + ωα)

2ωαν
~P ,

~PC = −~pA +
ωβ
ωαβ

~PA + ~p+
1

2
~P ,

~pC =
ωµ
ωµβ

~pA − ωµωβ
ωµβωαβ

~PA +
ωβ
ωµβ

~p+
ωβ
2ωµβ

~P .

(E.14)

Once we have integrated in some variables with the help of the δ-functions, the
expression of E(A→ BC) is

E(A→ BC) =

∫
d3kd3pd3P K(|~P |) δ(k − k0)

k

〈[[φB(~pB)φC(~pC)]LBCYl(k̂)]L| [φA(~pA)Y1(~p )]L〉 ,
(E.15)

where

~pA = ~k + ~p+
1

2
~P ,

~pB =
ων
ωαν

~k + ~p− 1

2
~P ,

~pC =
ωµ
ωµβ

~k + ~p+
1

2
~P .

(E.16)

Now the wave functions can be decomposed in the following way

φA(~pA) = fA(pA)YLA(~pA),
φB(~pB) = fB(pB)YLB(~pB),
φC(~pC) = fC(pC)YLC(~pC),

(E.17)
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where fA(pA), fB(pB) and fC(pC) are expanded in terms of Gaussian basis functions

fA(pA) =
∑

i

dAi exp

(
−Ai

2
p2A

)
,

fB(pB) =
∑

j

dBj exp

(
−Bj

2
p2B

)
,

fC(pC) =
∑

k

dCk exp

(
−Ck

2
p2C

)
,

(E.18)

arriving to

E(A→ BC) =
∑

i,j,k

dAi d
B
j d

C
k Êijk(Ai → BjCk). (E.19)

We make an abuse of notation for simplicity and consider Êijk(Ai → BjCk) as

Ê(A→ BC) with

Ê(A→ BC) =

∫
d3kd3pd3P K(P )

δ(k − k0)

kl+1
exp

[
−1

2
(Ap2A +Bp2B + Cp2C)

]

[[YLB(~pB)YLC(~pC)]LBC Yl(~k)]L [YLA(~pA)Y1(~p )]L .

(E.20)

To continue in the calculation of Ê(A→ BC), it is necessary another change of variable

~q = ~p− x~P , (E.21)

which will help us to simplify the calculation of the exponential in the equation above.
We arrive at

Ê(A→ BC) =

∫
d3kd3qd3P K(P )

δ(k − k0)

kl+1
exp

[
−1

2
(Ap2A +Bp2B + Cp2C)

]

[[YLB(~pB)YLC(~pC)]LBC Yl(~k)]L [YLA(~pA)Y1(~p )]L ,

(E.22)

with

~pA = ~k + ~q +
2x+ 1

2
~P ,

~pB =
ων
ωαν

~k + ~q +
2x− 1

2
~P ,

~pC =
ωµ
ωµβ

~k + ~q +
2x+ 1

2
~P ,

~p = ~q + x~P .

(E.23)
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Now we need the following expressions

• exp

[
−1

2

(
Ap2A +Bp2B + Cp2C

)]
= (4π)2 exp

[
−Fk2 −Dq2 −

(
D2 − R2

4D

)
P 2

]

∑

l1,l2,l3

(−i)l1+l2jl1(iGkq)jl2
[
i

(
S − GR

2D

)
kP

]
Πl3B

l3
l1,l2

P−l2k−l3q−l1
[
Yl2(~P )

[
Yl3(~k)Yl1(~q )

]
l2

]

0

,

• [YLA(~pA)Y1(~p )]L =
∑

l1,l2,l3,l4,l5,l6

(−1)1+LA+l5−l1−l3ΠLA,LA−l1,1,l4,l5,l6C
LA
l1
CLA−l1
l2

C1
l3
Bl4
l1,l3

Bl6
LA−l1−l2,1−l3

(
2x+ 1

2

)l1
xl3P l1+l3−l4q1+LA−l1−l2−l3−l6

{
LA − l1 − l2 l2 LA − l1

l5 1− l3 l6

}






l1 LA − l1 LA
l3 1− l3 1
l4 l5 L






[
Yl4(~P )

[
Yl2(~k)Yl6(~q )

]

l5

]

L

,

•
[
[YLB(~pB)YLC(~pC)]LBC Yl(~k)

]
L
=

∑

l1,l2,...,l9,l10

(−1)L+l8+l10−l5ΠLB ,LB−l1,LC ,LC−l3,LBC

Πl5,l6,l6,l7,l8,l9,l10C
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l1
CLB−l1
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CLC
l3
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l4

Bl5
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Bl7
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ωαν
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2
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L l l9
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}

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l5 l6 LBC








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l7 l8 l6





[
Yl5(~P )

[
Yl10(~k)Yl8(~q )
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l9
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L

,

(E.24)

where we have chosen x to make zero the coefficient of the term ~q · ~P , thus we get

D =
1

2
(A+B + C),

G = A+
ων
ωαν

B +
ωµ
ωµβ

C,

x = − R

2D
,

F =
1

2

[
A +

(
ων
ωαν

)2

B +

(
ωµ
ωµβ

)2

C

]
,

R =
1

2
(A− B + C),

S =
1

2

(
A− ων

ωαν
B +

ωµ
ωµβ

C

)
,

(E.25)
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and we have used the next useful formulas

e−G
~k·~π = 4π

∞∑

l=0

(−i)ljl(iGkπ)Πlπ
−lk−l[Yl(~k)Yl(~π)]0,

Ylm(a~x1 + b~x2) =

l∑

l1=0

C l
l1a

l1bl−l1 [Yl1(~x1)Yl−l1(~x2)]lm,

[Yl1(~x)Yl2(~x)]lm = Bl
l1,l2

xl1+l2−lYlm(~x),

(E.26)

with

Πl =
√
2l + 1 ,

C l
l1
=

√
4π(2l + 1)!

(2l1 + 1)!(2(l − l1) + 1)!
,

Bl
l1,l2 =(−1)l

√
(2l1 + 1)(2l2 + 1)

4π

(
l1 l2 l
0 0 0

)
.

(E.27)

After some algebra manipulation our final expression is

Ê(A→ BC) = (4π)2
∫
dkdqdP δ(k − k0)K(P )e

−Fk2−Dq2−
(

D2−R2

4D

)

P 2

∑

l1,l2...l18,l19

(−1)1+LA+l4+l5+l14+l15+l16+l18−l1−l3−l11(−i)l17+l18jl17(iGkq)jl18
[
i

(
S − GR

2D

)
kP

]

(
2x+ 1

2

)l1
xl3
(
2x− 1

2

)l7 (2x+ 1

2

)l9 ( ων
ωαν

)l8 ( ωµ
ωµβ

)l10
CLA
l1
CLA−l1
l2

C1
l3
CLB
l7
CLB−l7
l8

CLC
l9

CLC−l9
l10

Bl4
l1,l3

Bl6
LA−l1−l2,1−l3B

l11
l7,l9

Bl13
l8,l10

Bl14
LB−l7−l8,LC−l9−l10B

l16
l13,l

Bl19
l17l18

Bl4
l18,l11

Bl2
l19,l16

Bl6
l17,l14

Π1,LA,LA−l1,LB,LB−l7,LC ,LC−l9,LBC ,l2,l4,l4,l5,l5,l6,l6,l11,l12,l12,l13,l14,l15,l15,l16,l19

P 2+l1+l3+l7+l9k1+l2+l8+l10q3+LA+LB+LC−l1−l2−l3−l7−l8−l9−l10
{
LA − l1 − l2 l2 LA − l1

l5 1− l3 l6

}{
l12 l11 LBC
L l l15

}{
l13 l14 l12
l15 l l16

}{
l5 l4 L
l11 l15 l18

}





l1 LA − l1 LA
l3 1− l3 1
l4 l5 L









l7 LB − l7 LB
l9 LC − l9 LC
l11 l12 LBC









l8 LB − l7 − l8 LB − l7
l10 LC − l9 − l10 LC − l9
l13 l14 l12









l19 l17 l18
l16 l14 l15
l2 l6 l5



 ,

(E.28)

and for the radial integrals one has
∫
dkdqdPδ(k − k0)K(P )e

−Fk2−Dq2−
(

D2−R2

4D

)

P 2

(−i)l17+l18jl17(iGkq)jl18
[
i

(
S − GR

2D

)
kP

]
×

× P 2+l1+l3+l7+l9k1+l2+l8+l10q3+LA+LB+LC−l1−l2−l3−l7−l8−l9−l10 =

= k1+l2+l8+l100 e−Fk
2
0

∫ ∞

0

dq q3+LA+LB+LC−l1−l2−l3−l7−l8−l9−l10il17(Gk0q)e
−Dq2×

×
∫ ∞

0

dPK(P )P 2+l1+l3+l7+l9il18

[(
S − GR

2D

)
k0P

]
e
−
(

D2−R2

4D

)

P 2

.

(E.29)
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E.3 Spin-space overlap integral of j0Kj0 decay model

We begin from Eq. (4.41) and decouple the spin and angular momentum terms following
Eq. (E.8) to write

Ij0Kj0spin−space =
1√

1 + δBC

1

2mν

√
23π

∑

LBC ,L,S

J (A→ BC)E(A→ BC), (E.30)

with J(A→ BC) equal to Eq. (4.19) and

E(A→ BC) =

∫
d3KBd

3KCd
3pαd

3pβd
3pµd

3pνd
3pδ

δ(3)( ~K − ~K0)δ
(3)( ~KB − ~PB)δ

(3)( ~KC − ~PC)δ
(3)( ~PA)

δ(k − k0)

k
δ(3)(~pδ − (~pα − ~pµ − ~pν))K(|~pµ + ~pν |)
〈[[φB(~pB)φC(~pC)]LBCYl(k̂)]L| [φA(~pA)Y1 (~pµ + ~pν)]L〉 .

(E.31)

We proceed in the same way as in the case of the sKs decay model, the only difference

is that the term Y1

(
~pµ−~pν

2

)
is changed by Y1 (~pµ + ~pν). Therefore we have

Ê(A→ BC) =

∫
d3kd3qd3P K(P )

δ(k − k0)

kl+1
exp

[
−1

2
(Ap2A +Bp2B + Cp2C)

]

[[YLB(~pB)YLC(~pC)]LBC Yl(~k)]L [YLA(~pA)Y1(~P )]L ,

(E.32)

where the only new term is
[
YLA(~pA)Y1(~P )

]

L
=
∑

l1,l2,l3

(−1)1+l1−l3ΠLA,l3C
LA
l1
CLA−l1
l2

Bl3
l1,1

(
2x+ 1

2

)l1
P 1+l1−l3

{
l1 LA − l1 LA
L 1 l3

}[
Yl3(~P )

[
Yl2(~k)YLA−l1−l2(~q)

]

LA−l1

]

L

,

(E.33)

reaching the final expression

Ê(A→ BC) = (4π)2
∫
dkdqdPδ(k − k0)K(P )e

−Fk2−Dq2−
(

D2−R2

4D

)

P 2 ∑

l1,...,l16

(−1)1+l1+l11+l12+l13+l15−l8

(−i)l14+l15jl14(iGkq)jl15
[
i

(
S − GR

2D

)
kP

](
2x+ 1

2

)l1 (2x− 1

2

)l4 (2x+ 1

2

)l6 ( ων
ωαν

)l5 ( ωµ
ωµβ

)l7

CLA
l1
CLA−l1
l2

CLB
l4
CLB−l4
l5

CLC
l6
CLC−l6
l7

Bl3
l1,1
Bl8
l4,l6

Bl10
l5,l7

Bl11
LB−l4−l5,LC−l6−l7B

l13
l10,l

Bl16
l14,l15

BLA−l1−l2
l14,l11

Bl2
l16,l13

Bl3
l15,l8

ΠLA,LA−l1,LA−l1−l2,LB,LB−l4,LC ,LC−l6,LBC ,l2,l3,l3,l8,l9,l9,l10,l11,l12,l12,l13,l16

P 3+l1+l4+l6k1+l2+l5+l7q2+LA+LB+LC−l1−l2−l4−l5−l6−l7
{
l1 LA − l1 LA
L 1 l3

}{
l9 l8 LBC
L l l12

}{
l10 l11 l9
l12 l l13

}{
LA − l1 l3 L
l8 l12 l15

}





l4 LB − l4 LB
l6 LC − l6 LC
l8 l9 LBC









l5 LB − l4 − l5 LB − l4
l7 LC − l6 − l7 LC − l6
l10 l11 l9









l16 l14 l15
l13 l11 l12
l2 LA − l1 − l2 LA − l1



 ,

(E.34)
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and for the radial integrals one has
∫
dkdqdPδ(k − k0)K(P )e

−Fk2−Dq2−
(

D2−R2

4D

)

P 2

(−i)l14+l15jl14(iGkq)jl15
[
i

(
S − GR

2D

)
kP

]
×

× P 3+l1+l4+l6k1+l2+l5+l7q2+LA+LB+LC−l1−l2−l4−l5−l6−l7

= k1+l2+l5+l70 e−Fk
2
0×

×
∫
dq q2+LA+LB+LC−l1−l2−l4−l5−l6−l7il14(Gk0q)e

−Dq2

×
∫
dP K(P )P 3+l1+l4+l6il15

[(
S − GR

2D

)
k0P

]
e
−
(

D2−R2

4D

)

P 2

.

(E.35)

E.4 Spin-space overlap integral of jTKjT decay model

We begin from Eq. (4.42) which has two terms if one considers the transversal
components of the virtual massless particle.

E.4.1 Term in δij

We have

IjTKjT ,δspin−space =
1√

1 + δBC

∑

m,MBC ,MB,MC

〈JBCMBC lm|JTMT 〉 〈JBMBJCMC |JBCMBC〉

∫
d3KBd

3KCd
3pδd

3pρd
3pµd

3pνd
3pαd

3pβ δ
(3)( ~K − ~K0)δ(k − k0)

Ylm(k̂)

k

δ(3)( ~KB − ~PB)δ
(3)( ~KC − ~PC)δ

(3)(~PA)φB(~pB)φC(~pC)φA(~pA)

K(|~pµ + ~pν |)δ(3)(~pδ − (~pα − ~pµ − ~pν))δρβδ
(3)(~pρ − ~pβ)

1

2mα
[(~pα + ~pδ) δδα − i 〈δ|~σ|α〉 × (~pδ − ~pα)] · 〈µν|~σ|0〉 .

(E.36)

such that this in turn has two terms.

First term

IjTKjT ,δ1spin−space =
1√

1 + δBC

∑

m,MBC ,MB,MC

〈JBCMBC lm|JTMT 〉 〈JBMBJCMC |JBCMBC〉

∫
d3KBd

3KCd
3pδd

3pρd
3pµd

3pνd
3pαd

3pβ δ
(3)( ~K − ~K0)δ(k − k0)

Ylm(k̂)

k

δ(3)( ~KB − ~PB)δ
(3)( ~KC − ~PC)δ

(3)(~PA)φB(~pB)φC(~pC)φA(~pA)

K(|~pµ + ~pν |)δ(3)(~pδ − (~pα − ~pµ − ~pν))δρβδ
(3)(~pρ − ~pβ)

1

2mα

δδα (~pα + ~pδ) · 〈µν|~σ|0〉 ,
(E.37)
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that rewriting

IjTKjT ,δ1spin−space =
1√

1 + δBC

1

2mα

√
23π

∫
d3KBd

3KCd
3pαd

3pβd
3pµd

3pνd
3pδ

δ(3)( ~K − ~K0)δ
(3)( ~KB − ~PB)δ

(3)( ~KC − ~PC)δ
(3)(~PA)

δ(k − k0)

k
δ(3)(~pδ − (~pα − ~pµ − ~pν))K(|~pµ + ~pν |)
〈
[
[[φB(~pB)(sαsν)SB] JB [φC(~pC)(sµsβ)SC ] JC ]JBCYl(k̂)

]
JT |

| [[φA(~pA)(sαsβ)SA] JA [Y1 (~pα + ~pδ) (sµsν)1] 0] JA 〉 ,

(E.38)

and decoupling the spin and angular momentum terms following Eq. (E.8) we arrive
to

IjTKjT ,δ1spin−space =
1√

1 + δBC

1

2mα

√
23π

∑

LBC ,L,S

J (A→ BC)E(A→ BC), (E.39)

with J(A→ BC) equal to Eq. (4.19) and

E(A→ BC) =

∫
d3KBd

3KCd
3pαd

3pβd
3pµd

3pνd
3pδ

δ(3)( ~K − ~K0)δ
(3)( ~KB − ~PB)δ

(3)( ~KC − ~PC)δ
(3)( ~PA)

δ(k − k0)

k

δ(3)(~pδ − (~pα − ~pµ − ~pν))K(|~pµ + ~pν |)
〈[[φB(~pB)φC(~pC)]LBCYl(k̂)]L| [φA(~pA)Y1 (~pα + ~pδ)]L〉 .

(E.40)

We proceed in the same way as in the case of the sKs decay model, the only difference

is that the term Y1

(
~pµ−~pν

2

)
is changed by Y1 (~pα + ~pδ). Therefore we have

Ê(A→ BC) =

∫
d3kd3qd3P K(P )

δ(k − k0)

kl+1
exp

[
−1

2
(Ap2A +Bp2B + Cp2C)

]

[[YLB(~pB)YLC(~pC)]LBC Yl(~k)]L [YLA(~pA)Y1(2~pA − ~P )]L ,

(E.41)

where the only new term is

[
YLA(~pA)Y1(2~pA − ~P )

]
L
=2

∑

l1,...,l8

Π1,LA,LA−l1,1−l3,l5,l6,l7,l8C
LA
l1
CLA−l1
l2

C1
l3
C1−l3
l4

Bl5
l1,l3

Bl7
l2,l4

Bl8
LA−l1−l2,1−l3−l4

(
2x+ 1

2

)l1
xl3

P l1+l3−l5kl2+l4−l7q1+LA−l1−l2−l3−l4−l8





l1 LA − l1 LA
l3 1− l3 1
l5 l6 L









l2 LA − l1 − l2 LA − l1
l4 1− l3 − l4 1− l3
l7 l8 l6





[
Yl5(~P )

[
Yl7(~k)Yl8(~q )

]
l6

]

L

,

(E.42)
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reaching the final expression

Ê(A→ BC) = 2(4π)2
∫
dkdqdPδ(k − k0)K(P )e

−Fk2−Dq2−
(

D2−R2

4D

)

P 2

∑

l1,...,l21

(−1)l5+l16+l17+l18+l20−l13(−i)l19+l20jl19(iGkq)jl20
[
i

(
S − GR

2D

)
kP

]

(
2x+ 1

2

)l1
xl3
(
2x− 1

2

)l9 ( ων
ωαν

)l10 (2x+ 1

2

)l11 ( ωµ
ωµβ

)l12
CLA
l1
CLA−l1
l2

C1
l3

C1−l3
l4

CLB
l9
CLB−l9
l10

CLC
l11
CLC−l11
l12

Bl5
l1,l3

Bl7
l2,l4

Bl8
LA−l1−l2,1−l3−l4B

l13
l9,l11

Bl15
l10,l12

Bl16
LB−l9−l10,LC−l11−l12

Bl18
l15,l

Bl21
l19,l20

Bl5
l20,l13

Bl7
l21,l18

Bl8
l19,l16

Π1,LA,LA−l1,LB,LB−l9,LC ,LC−l11,LBC ,1−l3,l5,l5,l6,l6,l7,l7,l8,l8

Πl13,l14,l14,l15,l16,l17,l17,l18,l21P
2+l1+l3+l9+l11k1+l2+l4+l10+l12q3+LA+LB+LC−l1−l2−l3−l4−l9−l10−l11−l12

{
l14 l13 LBC
L l l17

}{
l15 l16 l14
l17 l l18

}{
l6 l5 L
l13 l17 l20

}


l1 LA − l1 LA
l3 1− l3 1
l5 l6 L









l2 LA − l1 − l2 LA − l1
l4 1− l3 − l4 1− l3
l7 l8 l6










l9 LB − l9 LB
l11 LC − l11 LC
l13 l14 LBC











l10 LB − l9 − l10 LB − l9
l12 LC − l11 − l12 LC − l11
l15 l16 l14











l21 l19 l20
l18 l16 l17
l7 l8 l6




 ,

(E.43)

and for the radial integrals one has
∫
dkdqdPδ(k − k0)K(P )e

−Fk2−Dq2−
(

D2−R2

4D

)

P 2

(−i)l19+l20jl19(iGkq)jl20
[
i

(
S − GR

2D

)
kP

]
×

× P 2+l1+l3+l9+l11k1+l2+l4+l10+l12q3+LA+LB+LC−l1−l2−l3−l4−l9−l10−l11−l12

= k1+l2+l4+l10+l120 e−Fk
2
0×

×
∫
dq q3+LA+LB+LC−l1−l2−l3−l4−l9−l10−l11−l12il19(Gk0q)e

−Dq2

×
∫
dPK(P )P 2+l1+l3+l9+l11il20

[(
S − GR

2D

)
k0P

]
e
−
(

D2−R2

4D

)

P 2

.

(E.44)

Second term

IjTKjT ,δ2spin−space =
1√

1 + δBC

∑

m,MBC ,MB,MC

〈JBCMBC lm|JTMT 〉 〈JBMBJCMC |JBCMBC〉

∫
d3KBd

3KCd
3pδd

3pρd
3pµd

3pνd
3pαd

3pβ δ
(3)( ~K − ~K0)δ(k − k0)

Ylm(k̂)

k

δ(3)( ~KB − ~PB)δ
(3)( ~KC − ~PC)δ

(3)(~PA)φB(~pB)φC(~pC)φA(~pA)

K(|~pµ + ~pν |)δ(3)(~pδ − (~pα − ~pµ − ~pν))δρβδ
(3)(~pρ − ~pβ)

1

2mα

[−i 〈δ|~σ|α〉 × (~pδ − ~pα)] · 〈µν|~σ|0〉 ,
(E.45)
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which is the same that

IjTKjT ,δ2spin−space =
−1√

1 + δBC

1

2mα

√
27π

3

∑

m,MBC ,MB,MC

〈JBCMBC lm|JTMT 〉 〈JBMBJCMC |JBCMBC〉

∫
d3KBd

3KCd
3pδd

3pρd
3pµd

3pνd
3pαd

3pβ δ
(3)( ~K − ~K0)δ(k − k0)

Ylm(k̂)

k

δ(3)( ~KB − ~PB)δ
(3)( ~KC − ~PC)δ

(3)(~PA)φB(~pB)φC(~pC)φA(~pA)

K(|~pµ + ~pν |)δ(3)(~pδ − (~pα − ~pµ − ~pν))δρβδ
(3)(~pρ − ~pβ)

[Ŝ1(δα)⊗ Ŝ1(µν)]1 · Y1(~pα − ~pδ),

(E.46)

and decoupling the spin and angular momentum terms following Eq. (E.8) and

〈(LS)JT |
[
Ŝ1(δα)⊗ Ŝ1(µν)

]

1
· Y1(~pα − ~pδ)|(LASA)JA〉

= δJT JA(−1)JA+LA+S
{
L LA 1
SA S JA

}
〈L||Y1(~pα − ~pδ)||LA〉

3
√
3

2
ΠSA,SB,SC ,S(−1)1+SC

∑

x

(−1)xΠx,x

{
1 SA S
SC SB x

}{
1
2

SA
1
2

SC
1
2

x

}



1
2

1
2

x
1
2

1
2

SB
1 1 1




 ,

(E.47)

with

〈SmS|
[
Ŝ1(δα)⊗ Ŝ1(µν)

]

1
|SAmSA〉 =

3
√
3

2
ΠSA,SB,SC ,S(−1)1+SC (−1)S+mS

(
S 1 SA

−mS c mSA

)∑

x

(−1)xΠx,x

{
1 SA S
SC SB x

}{
1
2

SA
1
2

SC
1
2

x

}


1
2

1
2

x
1
2

1
2

SB
1 1 1



 ,

(E.48)

we arrive to

IjTKjT ,δ2spin−space =
−1√

1 + δBC

1

2mα

√
27π

3

∑

LBC ,L,S

J (A→ BC)E(A→ BC), (E.49)

where

J (A→ BC) =δJT JA
3
√
3

2
(−1)1+JA+LA+SC+JBC+L+lΠJB ,JC ,JBC ,LBC ,L,L,SA,SB ,SC ,S,S

{
L LA 1
SA S JA

}{
S LBC JBC
l JT L

}


LB SB JB
LC SC JC
LBC S JBC





∑

x

(−1)xΠx,x

{
1 SA S
SC SB x

}{
1
2

SA
1
2

SC
1
2

x

}


1
2

1
2

x
1
2

1
2

SB
1 1 1



 ,

(E.50)
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and

E(A→ BC) =

∫
d3KBd

3KCd
3pαd

3pβd
3pµd

3pνd
3pδ

δ(3)( ~K − ~K0)δ
(3)( ~KB − ~PB)δ

(3)( ~KC − ~PC)δ
(3)( ~PA)

δ(k − k0)

k
δ(3)(~pδ − (~pα − ~pµ − ~pν))K(|~pµ + ~pν |)
〈[[φB(~pB)φC(~pC)]LBCYl(k̂)]L| [φA(~pA)Y1 (~pα − ~pδ)]L〉 .

(E.51)

If one integrates in d3pδ the expression of E(A → BC) is the same as in the case of
j0Kj0 decay model.

E.4.2 Term in
QiQj
~Q2

We have

IjTKjT ,Q2

spin−space =
−1√

1 + δBC

∑

m,MBC ,MB,MC

〈JBCMBC lm|JTMT 〉 〈JBMBJCMC |JBCMBC〉

∫
d3KBd

3KCd
3pδd

3pρd
3pµd

3pνd
3pαd

3pβ δ
(3)( ~K − ~K0)δ(k − k0)

Ylm(k̂)

k

δ(3)( ~KB − ~PB)δ
(3)( ~KC − ~PC)δ

(3)(~PA)φB(~pB)φC(~pC)φA(~pA)

K(|~pµ + ~pν |)δ(3)(~pδ − (~pα − ~pµ − ~pν))δρβδ
(3)(~pρ − ~pβ)

1

2mα
[(~pα − ~pδ) · 〈µν|~σ|0〉] [(~pα + ~pδ) · (~pα − ~pδ)] δδα,

(E.52)

that rewriting

IjTKjT ,Q2

spin−space =
1√

1 + δBC

1

2mα

√
27π3

3

∫
d3KBd

3KCd
3pδd

3pµd
3pνd

3pαd
3pβ

δ(3)( ~K − ~K0)δ
(3)( ~KB − ~PB)δ

(3)( ~KC − ~PC)δ
(3)(~PA)

δ(k − k0)

k

δ(3)(~pδ − (~pα − ~pµ − ~pν))
K(|~pµ + ~pν |)
|~pµ + ~pν |2

〈
[
[[φB(~pB)(sαsν)SB] JB [φC(~pC)(sµsβ)SC ] JC ]JBCYl(k̂)

]
JT |

[Y1 (~pα + ~pδ)⊗Y1 (~pµ + ~pν)]0 | [[φA(~pA)(sαsβ)SA] JA [Y1 (~pµ + ~pν) (sµsν)1] 0]JA 〉 ,
(E.53)

and decoupling the spin and angular momentum terms following Eq. (E.8) we arrive
to

IjTKjT ,Q2

spin−space =
1√

1 + δBC

1

2mα

√
27π3

3

∑

LBC ,L,S

J (A→ BC)E(A→ BC), (E.54)



200 E.4. SPIN-SPACE OVERLAP INTEGRAL OF JTKJT DECAY MODEL

with J(A→ BC) equal to Eq. (4.19) and

E(A→ BC) =

∫
d3KBd

3KCd
3pαd

3pβd
3pµd

3pνd
3pδ

δ(3)( ~K − ~K0)δ
(3)( ~KB − ~PB)δ

(3)( ~KC − ~PC)δ
(3)( ~PA)

δ(k − k0)

k

δ(3)(~pδ − (~pα − ~pµ − ~pν))
K(|~pµ + ~pν |)
|~pµ + ~pν |2

〈[[φB(~pB)φC(~pC)]LBCYl(k̂)]L| [Y1 (~pα + ~pδ)Y1 (~pµ + ~pν)] 0| [φA(~pA)Y1 (~pµ + ~pν)]L〉 .
(E.55)

We proceed in the same way as in the case of the sKs decay model. However, the
terms [[Y1 (~pα + ~pδ)Y1 (~pµ + ~pν)] 0] and Y1 (~pµ + ~pν) appear in this case. Therefore we
have

Ê(A→ BC) =

∫
d3kd3qd3P

K(P )

P 2

δ(k − k0)

kl+1
exp

[
−1

2
(Ap2A +Bp2B + Cp2C)

]

[
[YLB(~pB)YLC (~pC)]LBC Yl(~k)

]
L

[
Y1(2~pA − ~P )Y1(~P )

]
0

[
YLA(~pA)Y1(~P )

]
L
,

(E.56)

where the only new term is

[
Y1(2~pA − ~P )Y1(~P )

]

0
= 2

1∑

l1=0

1−l1∑

l2=0

C1
l1C

1−l1
l2

B1−l1
l1,1

xl1P 2l1

[
Y1−l1(~P )

[
Yl2(~k)Y1−l1−l2(~q )

]

1−l1

]

0

,

(E.57)
reaching the final expression

Ê(A→ BC) = 2(4π)2
∫
dkdqdPδ(k − k0)K(P )e

−Fk2−Dq2−
(

D2−R2

4D

)

P 2

∑

l1,...,l22

(−1)LA+L+l13+l14+l15+l17−l3−l4−l10(−i)l16+l17jl16(iGkq)jl17
[
i

(
S − GR

2D

)
kP

]

(
2x+ 1

2

)l1
xl4
(
2x− 1

2

)l6 ( ων
ωαν

)l7 (2x+ 1

2

)l8 ( ωµ
ωµβ

)l9
CLA
l1
CLA−l1
l2

C1
l4C

1−l4
l5

CLB
l6
CLB−l6
l7

CLC
l8

CLC−l8
l9

Bl3
l1,1
B1−l4
l4,1

Bl10
l6,l8

Bl12
l7,l9

Bl13
LB−l6−l7,LC−l8−l9B

l15
l12,l

Bl18
l16,l17

Bl19
l17,l10

Bl21
l18,l15

Bl22
l16,l13

Bl19
1−l4,l3B

l21
l5,l2

Bl22
1−l4−l5,LA−l1−l2P

2+l1+l4+l6+l8k1+l2+l5+l7+l9q3+LA+LB+LC−l1−l2−l4−l5−l6−l7−l8−l9

ΠLA,LA−l1,LB ,LB−l6,LC ,LC−l8,LBC ,l3,l10,l11,l11,l12,l13,l14,l14,l15,l18,l19,l19,l20,l20,l21,l21,l22,l22{
l1 LA − l1 LA
L 1 l3

}{
l11 l10 LBC
L l l14

}{
l12 l13 l11
l14 l l15

}{
l20 l19 L
l10 l14 l17

}{
l20 l19 L
l3 LA − l1 1− l4

}





l6 LB − l6 LB
l8 LC − l8 LC
l10 l11 LBC









l7 LB − l6 − l7 LB − l6
l9 LC − l8 − l9 LC − l8
l12 l13 l11









l18 l16 l17
l15 l13 l14
l21 l22 l20









l5 1− l4 − l5 1− l4
l2 LA − l1 − l2 LA − l1
l21 l22 l20



 ,

(E.58)
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and for the radial integrals one has
∫
dkdqdPδ(k − k0)K(P )e

−Fk2−Dq2−
(

D2−R2

4D

)

P 2

(−i)l16+l17jl16(iGkq)jl17
[
i

(
S − GR

2D

)
kP

]
×

× P 2+l1+l4+l6+l8k1+l2+l5+l7+l9q3+LA+LB+LC−l1−l2−l4−l5−l6−l7−l8−l9

= k1+l2+l5+l7+l90 e−Fk
2
0×

×
∫
dq q3+LA+LB+LC−l1−l2−l4−l5−l6−l7−l8−l9il16(Gk0q)e

−Dq2

×
∫
dPK(P )P 2+l1+l4+l6+l8il17

[(
S − GR

2D

)
k0P

]
e
−
(

D2−R2

4D

)

P 2

.

(E.59)

E.5 Charge conjugation

The meson state is given by
∣∣p12JM ;LSf1f̄2

〉
=
∑

MLMS

〈LMLSMS|JM〉R(p12)YLML
(p̂12) |s1s2;SMS〉 a†f1(~p1)b

†
f2
(~p2) |0〉 ,

(E.60)
where p12 is the relative momentum between p1 and p2, the momentum of the quark
and antiquark, respectively. The C-parity transformation is given by

C
∣∣p12JM ;LSf1f̄2

〉
=
∑

MLMS

〈LMLSMS|JM〉R(p12)YLML
(p̂12) |s1s2;SMS〉 b†f1(~p1)a

†
f2
(~p2) |0〉 .

(E.61)
We can change the order of the particles so

YLML
(p̂12) = YLML

(−p̂21) = (−1)LYLML
(p̂21),

|s1s2;SMS〉 = (−1)S−s1−s2 |s2s1;SMS〉 ,
b†f1(~p1)a

†
f2
(~p2) |0〉 = −a†f2(~p2)b

†
f1
(~p1) |0〉 ,

(E.62)

and arrive to

C
∣∣p12JM ;LSf1f̄2

〉
=(−1)1+L+S−s1−s2

∑

MLMS

〈LMLSMS|JM〉×

× R(p21)YLML
(p̂21) |s2s1;SMS〉 b†f2(~p2)a

†
f1
(~p1) |0〉

=
∣∣p21JM ;LSf̄2f1

〉
.

(E.63)

If the two flavors are the same f1 = f̄2 = f then

C
∣∣pJM ;LSff̄

〉
= (−1)L+S

∣∣pJM ;LSf̄f
〉
, (E.64)

since 2s− 1 is even.
The two meson state can be written as follow

|AB; JTMTJABl〉 =
∑

MA,MB,MAB,ml

〈lmlJABMAB|JTMT〉 〈JAMAJBMB|JABMAB〉×

× RAB(p1234)Ylml(p̂1234)
∣∣p12JAMA;LASAf1f̄2

〉
⊗
∣∣p34JBMB;LBSBf3f̄4

〉
,

(E.65)
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where p1234 =
1
2
(p1 + p2 − p3 − p4). So C-Parity gives

C |AB; JTMTJABl〉 =
∑

MA,MB,MAB,ml

〈lmlJABMAB|JTMT〉 〈JAMAJBMB|JABMAB〉×

×RAB(p1234)Ylml(p̂1234)×
×
(
C
∣∣p12JAMA;LASAf1f̄2

〉)
⊗
(
C
∣∣p34JBMB;LBSBf3f̄4

〉)

=
∑

MA,MB,MAB,ml

〈lmlJABMAB|JTMT〉 〈JAMAJBMB|JABMAB〉×

× (−1)LA+SA+LB+SBRAB(p1234)Ylml(p̂1234)×
×
∣∣p21JAMA;LASAf2f̄1

〉
⊗
∣∣p43JBMB;LBSBf4f̄3

〉
.

(E.66)

We can exchange the meson states without an additional phase since we need four
fermion exchanges, so

C |AB; JTMTJABl〉 =
∑

MA,MB,MAB,ml

〈lmlJABMAB|JTMT〉 〈JAMAJBMB|JABMAB〉×

× (−1)LA+SA+LB+SBRAB(p1234)Ylml(p̂1234)×
×
∣∣p43JBMB;LBSBf4f̄3

〉
⊗
∣∣p21JAMA;LASAf2f̄1

〉
,

(E.67)

and now

RAB(p1234)Ylml(p̂1234) = (−1)lRBA(p4321)Ylml(p̂4321),

〈JAMAJBMB|JABMAB〉 = (−1)JAB−JA−JB 〈JBMBJAMA|JBAMBA〉 ,
(E.68)

where RAB ≡ RBA, JAB ≡ JBA and MAB ≡MBA, and so

C |AB; JTMTJABl〉 =
∑

MA,MB,MAB,ml

〈lmlJBAMBA|JTMT〉 〈JBMBJAMA|JBAMBA〉×

× (−1)LA+SA+LB+SB+JAB−JA−JB+lRBA(p4321)Ylml(p̂4321)×
×
∣∣p43JBMB;LBSBf4f̄3

〉
⊗
∣∣p21JAMA;LASAf2f̄1

〉

=(−1)LA+SA+LB+SB+JAB−JA−JB+l |BA; JTMTJBAl〉 .
(E.69)

Notice that in PDG mesons are qq̄ but anti-mesons are q̄q, so D(cn̄) and D̄(c̄n).
In this convention the phase does not include (−1)LA+SA+LB+SB . Therefore, for D and
D∗ in l = 0 we have

C
(

1√
2
(D(cn̄)D̄∗(nc̄)−D∗(cn̄)D̄(nc̄))

)
= +

1√
2

(
D(cn̄)D̄∗(nc̄)−D∗(cn̄)D̄(nc̄)

)
,

C
(

1√
2
(D(cn̄)D̄∗(c̄n) +D∗(cn̄)D̄(c̄n))

)
= − 1√

2

(
D(cn̄)D̄∗(c̄n) +D∗(cn̄)D̄(c̄n)

)
.

(E.70)



Appendix F

Matrix elements of weak decays

F.1 Semileptonic decays: B → D∗∗lνl

We are going to study the semileptonic decays of the B (B or Bs) meson into orbitally
excited charmed mesons. In the decay we have a b̄ → c̄ transition at the quark level
and we need to evaluate the hadronic matrix elements of the weak current

J bcµ (0) = ψ̄b(0)γµ(I − γ5)ψc(0). (F.1)

Following Ref. [240], the hadronic matrix elements can be parametrized in terms of
form factors as

〈D(0+), ~PD|J bcµ (0)|B(0−), ~PB〉 = PµF+(q
2) + qµF−(q

2),

〈D(1+), λ ~PD|J bcµ (0)|B(0−), ~PB〉 =
−1

mB +mD
ǫµναβǫ

ν∗
(λ)(~PD)P

αqβA(q2)

− i

{
(mB −mD)ǫ

∗
(λ)µ(

~PD)V0(q
2)−

P · ǫ∗(λ)(~PD)
mB +mD

[
PµV+(q

2) + qµV−(q
2)
]
}
,

〈D(2+), λ ~PD
∣∣J bcµ (0)

∣∣B(0−)~PB〉 = ǫµναβǫ
νδ∗
(λ) (

~PD)PδP
αqβT4(q

2)

− i
{
ǫ∗(λ)µδ(

~PD)P
δT1(q

2) + P νP δǫ∗(λ)νδ(
~PD)

[
PµT2(q

2) + qµT3(q
2)
]}
.

(F.2)

In the expressions above, P = PB +PD and q = PB −PD, PB and PD being the meson
four-momenta. The meson masses are mB and mD, λ is the spin proyection in the
meson center-of-mass, ǫµναβ is the fully antisymmetric tensor, for which the convention
ǫ0123 = +1 is taken, and ǫ(λ)µ(~P ) and ǫ(λ)µν(~P ) are the polarizations of vector and tensor
mesons, respectively. The meson states in the Lorentz decompositions of Eq. (F.2) are
normalized such that

〈M,λ′ ~P ′|M,λ~P 〉 = δλ′,λ(2π)
32EM(~P )δ(~P ′ − ~P ), (F.3)

where EM(~P ) is the energy of the M meson with three-momentum ~P .
The form factors will be evaluated in the center of mass of the 0− meson, taking

~q in the z-direction, so that ~PB = ~0 and ~PD = −~q = −|~q |~k, with ~k representing the
unit vector in the z-direction. We have taken the phases of the states such that all
form factors are real. F+, F−, A, V0, V+, V− and T1 are dimensionless, whereas T2, T3

203
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and T4 have dimension of E−2. Defining the vector V µ
λ (|~q |) and axial Aµλ(|~q |) matrix

elements such that

V µ
λ (|~q |) = 〈MF , λ− |~q |~k|J bcµV (0)|MI ,~0〉 ,
Aµλ(|~q |) = 〈MF , λ− |~q |~k|J bcµA (0)|MI ,~0〉 ,

(F.4)

we have for a 0− → 0+ decay, that the form factors are given in terms of vector and
axial matrix elements as

F+(q
2) = − 1

2mB

[
A0(|~q |) + A3(|~q |)

|~q | (ED(−~q )−mB)

]
,

F−(q
2) = − 1

2mB

[
A0(|~q |) + A3(|~q |)

|~q | (ED(−~q ) +mB)

]
.

(F.5)

In the case of a 0− → 1+ transition, the corresponding expressions for the form factors
are

A(q2) = − i√
2

mB +mD

mB|~q |
A1
λ=−1(|~q |),

V+(q
2) = + i

mB +mD

2mB

mD

|~q |mB

{
V 0
λ=0(|~q |)−

mB −ED(−~q )
|~q | V 3

λ=0(|~q |)

+
√
2
mBED(−~q )−m2

D

|~q |mD

V 1
λ=−1(|~q |)

}
,

V−(q
2) =− i

mB +mD

2mB

mD

|~q |mB

{
−V 0

λ=0(|~q |)−
mB + ED(−~q )

|~q | V 3
λ=0(|~q |)

+
√
2
mBED(−~q ) +m2

D

|~q |mD
V 1
λ=−1(|~q |)

}
,

V0(q
2) = +i

√
2

1

mB −mD
V 1
λ=−1(|~q |).

(F.6)

Finally, the form factors for a 0− → 2+ transition are given by the relations

T1(q
2) = −i 2mD

mB |~q |
A1
Tλ=+1(|~q |),

T2(q
2) = + i

1

2m3
B

{
−
√

3

2

m2
D

|~q |2A
0
Tλ=0(|~q |)−

√
3

2

m2
D

|~q |3 (ED(−~q )−mB)A
3
Tλ=0(|~q |)

+
2mD

|~q |

(
1− ED(−~q )(ED(−~q )−mB)

|~q |2
)
A1
Tλ=+1(|~q |)

}
,
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T3(q
2) = + i

1

2m3
B

{
−
√

3

2

m2
D

|~q |2A
0
Tλ=0(|~q |)−

√
3

2

m2
D

|~q |3 (ED(−~q ) +mB)A
3
Tλ=0(|~q |)

+
2mD

|~q |

(
1− ED(−~q )(ED(−~q ) +mB)

|~q |2
)
A1
Tλ=+1(|~q |)

}
,

T4(q
2) = +i

mD

m2
B|~q |2

V 1
Tλ=+1(|~q |).

(F.7)

The CQM evaluation of the vector and axial matrix elements, V µ
λ (|~q |) and Aµλ(|~q |),

can be found in the next Section.

For a B meson at rest and neglecting the neutrino mass, we have the double
differential decay width [240]

d2Γ

dq2dxl
=

G2
F

64m2
B

|Vbc|2
8π3

λ1/2(q2, m2
B, m

2
D)

2mB

q2 −m2
l

q2
Hαβ(PB, PD)Lαβ(pl, pν), (F.8)

where xl is the cosine of the angle between the final meson momentum and the
momentum of the final charged lepton measured in the lepton-neutrino center-of-mass
frame (CMF). GF = 1.16637(1) × 10−5GeV−2 is the Fermi constant [78], ml is the
charged lepton mass, λ(a, b, c) = (a + b − c)2 − 4ab and Vbc is the bc element of the
CKM matrix for which we use Vbc = 0.0413. Hαβ and Lαβ represent the hadron and
lepton tensors. PB, PD, pl and pν are the meson and lepton momenta.

The quantity Hαβ(PB, PD)Lαβ(pl, pν) is a scalar and to evaluate it we have chosen
~PD along the negative z-axis. This implies also that the CMF of the final leptons
moves in the positive z-direction. Furthermore we follow Ref. [241] and introduce
helicity components for the hadron and lepton tensors. For that purpose we rewrite

Hαβ(PB, PD)Lαβ(pl, pν) = Hσρ(PB, PD)gσαgρβLαβ(pl, pν), (F.9)

and use

gµν =
∑

r=t,±1,0

grrǫ(r)µ(q)ǫ
∗
(r)ν(q), gtt = 1, g±1,0 = −1, (F.10)

with ǫµ(t)(q) = qµ/q2 and where the ǫ(r)(q), r = ±1, 0 are the polarization vectors for

an on-shell vector particle with four-momentum q and helicity r. Defining helicity
components for the hadron and lepton tensors as

Hrs(PB, PD) = ǫ∗(r)σ(q)Hσρ(PB, PD)ǫ(s)ρ(q),

Lrs(pl, pν) = ǫ(r)α(q)Lαβ(pl, pν)ǫ∗(s)β(q),
(F.11)

we have that

Hαβ(PB, PD)Lαβ(pl, pν) =
∑

r=t,±1,0

∑

s=t,±1,0

grrgssHrs(PB, PD)Lrs(pl, pν). (F.12)
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The only helicity components of the lepton tensor that we need are the following

Ltt(pl, pν) = 4
m2
l (q

2 −m2
l )

q2
,

Lt0(pl, pν) = L0t(pl, pν) = −4xl
m2
l (q

2 −m2
l )

q2
,

L+1+1(pl, pν) = (q2 −m2
l )

(
4(1± xl)− 2(1− x2l )

q2 −m2
l

q2

)
,

L−1−1(pl, pν) = (q2 −m2
l )

(
4(1∓ xl)− 2(1− x2l )

q2 −m2
l

q2

)
,

L00(pl, pν) = 4(q2 −m2
l )

(
1− x2l

q2 −m2
l

q2

)
,

(F.13)

where ∓ signs correspond, respectively, to decays into l−ν̄l and l
+νl. As for the nonzero

helicity components, Hrs, of the hadron tensor

1. Case 0− → 0+

Htt(PB, PD) =

[
m2
B −m2

D√
q2

F+(q
2) +

√
q2 F−(q

2)

]2
,

Ht0(PB, PD) =H0t(PB, PD) = λ1/2(q2, m2
B, m

2
D)

[
m2
B −m2

D

q2
F 2
+(q

2) + F+(q
2)F−(q

2)

]
,

H00(PB, PD) =
λ(q2, m2

B, m
2
D)

q2
F 2
+(q

2).

(F.14)

2. Case 0− → 1+

Htt(PB, PD) =
λ(q2, m2

B, m
2
D)

4m2
Dq

2

[
(mB −mD)(V0(q

2)− V+(q
2))− q2

mB +mD
V−(q

2)

]2
,

Ht0(PB, PD) =H0t(PB, PD)

=
λ1/2(q2, m2

B, m
2
D)

2mD

√
q2

[
(mB −mD)(V0(q

2)− V+(q
2))− q2

mB +mD

V−(q
2)

]

×
[
(mB −mD)

m2
B − q2 −m2

D

2mD

√
q2

V0(q
2)− λ(q2, m2

B, m
2
D)

2mD

√
q2

V+(q
2)

mB +mD

]
,

H+1+1(PB, PD) =

[
λ1/2(q2, m2

B, m
2
D)

mB +mD
A(q2) + (mB −mD)V0(q

2)

]2
,

H−1−1(PB, PD) =

[
−λ

1/2(q2, m2
B, m

2
D)

mB +mD
A(q2) + (mB −mD)V0(q

2)

]2
,

H00(PB, PD) =

[
(mB −mD)

m2
B − q2 −m2

D

2mD

√
q2

V0(q
2)− λ(q2, m2

B, m
2
D)

2mD

√
q2

V+(q
2)

mB +mD

]2
.

(F.15)
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3. Case 0− → 2+

Htt(PB, PD) =
λ2(q2, m2

B, m
2
D)

24m4
Dq

2

[
T1(q

2) + (m2
B −m2

D)T2(q
2) + q2T3(q

2)
]2
,

Ht0(PB, PD) =H0t(PB, PD) =
λ3/2(q2, m2

B, m
2
D)

24m4
Dq

2

[
T1(q

2) + (m2
B −m2

D)T2(q
2) + q2T3(q

2)
]

×
[
(m2

B − q2 −m2
D)T1(q

2) + λ(q2, m2
B, m

2
D)T2(q

2)
]
,

H+1+1(PB, PD) =
λ(q2, m2

B, m
2
D)

8m2
D

[
T1(q

2)− λ1/2(q2, m2
B, m

2
D)T4(q

2)
]2
,

H−1−1(PB, PD) =
λ(q2, m2

B, m
2
D)

8m2
D

[
T1(q

2) + λ1/2(q2, m2
B, m

2
D)T4(q

2)
]2
,

H00(PB, PD) =
λ(q2, m2

B, m
2
D)

24m4
Dq

2

[
(m2

B − q2 −m2
D)T1(q

2) + λ(q2, m2
B, m

2
D)T2(q

2)
]2
.

(F.16)

We can now define the combinations [241]

HU = H+1+1 +H−1−1,

HL = H00,

HP = H+1+1 −H−1−1,

HS = 3Htt,

HSL = Ht0,

H̃J =
m2
l

2q2
HJ with J = U, L, S, SL.

(F.17)

with U , L, P , S and SL representing, respectively, unpolarized-transverse, longitudinal,
parity-odd, scalar and scalar-longitudinal interference.

Finally, the double differential decay width is written in terms of the above defined
combinations as

d2Γ

dq2dxl
=
G2
F

8π3
|Vbc|2

(q2 −m2
l )

2

12m2
Bq

2

λ1/2(q2, m2
B, m

2
D)

2mB

[
3

8
(1 + x2l )HU +

3

4
(1− x2l )HL

±3

4
xlHP +

3

4
(1− x2l )H̃U +

3

2
x2l H̃L +

1

2
H̃S + 3xlH̃SL

]
.

(F.18)

Note that for antiparticle decay HP has the opposite sign to the case of particle decay
while all other hadron tensor helicity component combinations defined in Eq. (F.17)
do not change. The sign change of HP compensates the extra sign coming from the
lepton tensor. This means that in fact the double differential decay width is the same
for l−ν̄l and l

+νl. After integration on xl we have that

dΓ

dq2
=
G2
F

8π3
|Vbc|2

(q2 −m2
l )

2

12m2
Bq

2

λ1/2(q2, m2
B, m

2
D)

2mB

(HU +HL + H̃U + H̃L + H̃S), (F.19)

and integrating over q2, we obtain the total decay width that can be written as

Γ = ΓU + ΓL + Γ̃U + Γ̃L + Γ̃S, (F.20)
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with ΓJ and Γ̃J partial helicity widths defined as

ΓJ =

∫
dq2

G2
F

8π3
|Vbc|2

(q2 −m2
l )

2

12m2
Bq

2

λ1/2(q2, m2
B, m

2
D)

2mB
HJ , (F.21)

and similarly for Γ̃J in terms of H̃J .

F.1.1 Form factor decomposition of hadronic matrix elements

Here we give general expressions valid for transitions between a pseudoscalar mesonMI

at rest with quark content q̄f1qf2 and a final MF meson with total angular momentum

and parity JP = 0+, 1+, 2+, three-momentum −|~q |~k, and quark content q̄f ′1qf2 . The
transition changes the antiquark flavour. Following Ref. [240] we evaluate V µ

λ (|~q |) and
Aµλ(|~q |) in the CQM through the relations

V µ
λ (|~q |) =

√
2mI2EF (−~q ) NR〈MF , λ− |~q |~k|J bcµV (0)|MI ,~0〉NR ,

Aµλ(|~q |) =
√

2mI2EF (−~q ) NR〈MF , λ− |~q |~k|J bcµA (0)|MI ,~0〉NR .
(F.22)

For the different cases under study we have the following

Case 0− → 0+

A0(|~q |) =
√
2mI2EF (−~q )

∫
d3p

1

4π|~p |
(
φ̂
(M(0+))
f ′1,f2

(|~p |)
)∗
φ̂
(M(0−))
f1,f2

(|~p− mf2

mf ′1
+mf2

q~k|)

×

√
Êf ′1Êf1
4Ef ′1Ef1



~p ·
(

mf2
mf ′

1
+mf2

|~q |~k − ~p

)

Êf1
+

~p ·
(
−

mf ′1
mf ′

1
+mf2

|~q |~k − ~p

)

Êf1


 ,

A3(|~q |) =
√
2mI2EF (−~q )

∫
d3p

1

4π|~p |
(
φ̂
(M(0+))

f ′1,f2
(|~p |)

)∗
φ̂
(M(0−))
f1,f2

(|~p− mf2

mf ′1
+mf2

q~k|)

×

√
Êf ′1Êf1
4Ef ′1Ef1

{
pz

[
1−

(
−

mf ′
1

mf ′
1
+mf2

|~q |~k − ~p

)
·
(

mf2
mf ′

1
+mf2

|~q |~k − ~p

)

Êf ′1Êf1

]

+
1

Êf ′1Êf1

[(
−

mf ′1

mf ′1
+mf2

|~q | − pz

)[
~p ·
(

mf2

mf ′1
+mf2

|~q |~k − ~p

)]

+

(
mf2

mf ′1
+mf2

|~q | − pz

)[
~p ·
(
−

mf ′1

mf ′1
+mf2

|~q |~k − ~p

)]]}
,

(F.23)

where Ef ′1 and Ef1 are shorthand notations for Ef ′1

(
−

mf ′1
mf ′

1
+mf2

|~q |~k − ~p

)
and

Ef1

(
mf2

mf ′1
+mf2

|~q |~k − ~p

)
respectively and Êf = Ef +mf .
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Case 0− → 1+

Here we have to distinguish two different cases that depend on the total spin S of the
quark-antiquark system.

1. Case S = 0

V
(1+,S=0)0
λ=0 (|~q |) = −i

√
3
√

2mI2EF (−~q )
∫

d3p

√
Êf ′1Êf1
4Ef ′1Ef1

1

4πp

(
φ̂
(MF (1

+,S=0))
f ′1,f2

(p)
)∗

× φ̂
(MI(0

−))
f1,f2

(|~p− mf2

mf ′1
+mf2

|~q |~k |) pz


1 +

(
−

mf ′
1

mf ′1
+mf2

|~q |~k − ~p

)
·
(

mf2
mf ′1

+mf2
|~q |~k − ~p

)

Êf ′1Êf1


 ,

V
(1+,S=0)1
λ=−1 (|~q |) = i

√
3

2

√
2mI2EF (−~q )

∫
d3p

√
Êf ′1Êf1
4Ef ′1Ef1

1

4πp

(
φ̂
(MF (1

+,S=0))

f ′1,f2
(p)
)∗

× φ̂
(MI(0

−))
f1,f2

(|~p− mf2

mf ′1
+mf2

|~q |~k |) p2x

(
1

Êf1
+

1

Êf ′1

)
,

V
(1+,S=0)3
λ=0 (|~q |) = −i

√
3
√

2mI2EF (−~q )
∫

d3p

√
Êf ′1Êf1
4Ef ′1Ef1

1

4πp

(
φ̂
(MF (1

+,S=0))
f ′1,f2

(p)
)∗

× φ̂
(MI(0

−))
f1,f2

(|~p− mf2

mf ′1
+mf2

|~q |~k |) pz




mf2
mf ′1

+mf2
|~q | − pz

Êf1
−

mf ′
1

mf ′1
+mf2

|~q |+ pz

Êf ′1


 ,

A
(1+,S=0)1
λ=−1 (|~q |) = −i

√
3

2

√
2mI2EF (−~q )

∫
d3p

√
Êf ′1Êf1
4Ef ′1Ef1

1

4πp

(
φ̂
(MF (1

+,S=0))
f ′1,f2

(p)
)∗

× φ̂
(MI(0

−))
f1,f2

(|~p− mf2

mf ′1
+mf2

|~q |~k |)
p2y|~q |
Êf1Êf ′1

. (F.24)

2. Case S = 1

V
(1+,S=1)0
λ=0 (|~q |) = i

√
3

2

√
2mI2EF (−~q )

∫
d3p

√
Êf ′1Êf1
4Ef ′1Ef1

1

4πp

(
φ̂
(MF (1

+,S=1))
f ′1,f2

(p)
)∗

× φ̂
(MI(0

−))
f1,f2

(|~p− mf2

mf ′1
+mf2

|~q |~k |) |~q |(p
2
z − p2)

Êf ′1Êf1
,
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V
(1+,S=1)1
λ=−1 (|~q |) = −i

√
3

2

√
2mI2EF (−~q )

∫
d3p

√
Êf ′1Êf1
4Ef ′1Ef1

1

4πp

(
φ̂
(MF (1

+,S=1))
f ′1,f2

(p)
)∗

× φ̂
(MI(0

−))
f1,f2

(|~p− mf2

mf ′1
+mf2

|~q |~k |)



p2y + p2z + pz|~q |

mf ′
1

mf ′
1
+mf2

Êf ′1
−
p2y + p2z − pz|~q | mf2

mf ′
1
+mf2

Êf1


 ,

V
(1+,S=1)3
λ=0 (|~q |) = i

√
3

2

√
2mI2EF (−~q )

∫
d3p

√
Êf ′1Êf1
4Ef ′1Ef1

1

4πp

(
φ̂
(MF (1

+,S=1))
f ′1,f2

(p)
)∗

× φ̂
(MI(0

−))
f1,f2

(|~p− mf2

mf ′1
+mf2

|~q |~k |) (p2x + p2y)

(
1

Êf1
− 1

Êf ′1

)
,

A
(1+,S=1)1
λ=−1 (|~q |) = i

√
3

2

√
2mI2EF (−~q )

×
∫

d3p

√
Êf ′1Êf1
4Ef ′1Ef1

1

4πp

(
φ̂
(MF (1

+,S=1))
f ′1,f2

(p)
)∗
φ̂
(MI (0

−))
f1,f2

(|~p− mf2

mf ′1
+mf2

|~q |~k |)

×




pz


1−

(
−

mf ′
1

mf ′
1
+mf2

|~q |~k − ~p

)
·
(

mf2
mf ′

1
+mf2

|~q |~k − ~p

)

Êf ′1Êf1


+

mf2 −mf ′1

mf ′1
+mf2

p2x|~q |
Êf ′1Êf1




.

(F.25)
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Case 0− → 2+

Here we have to distinguish between L = 1 and L = 3.

1. Case L = 1

V
(2+,L=1)1
λ=+1 (|~q |) = −i

√
3

2

√
2mI2EF (−~q )

∫
d3p

√
Êf ′1Êf1
4Ef ′1Ef1

1

4πp

(
φ̂
(MF (2

+,L=1))
f ′1,f2

(p)
)∗

× φ̂
(MI(0

−))
f1,f2

(|~p− mf2

mf ′1
+mf2

|~q |~k|)



p2y − p2z − pz|~q |

mf ′
1

mf ′
1
+mf2

Êf ′1
−
p2y − p2z + pz|~q | mf2

mf ′
1
+mf2

Êf1


 ,

A
(2+,L=1)0
λ=0 (|~q |) = − i√

2

√
2mI2EF (−~q )

∫
d3p

√
Êf ′1Êf1
4Ef ′1Ef1

1

4πp

(
φ̂
(MF (2

+,L=1))
f ′1,f2

(p)
)∗

× φ̂
(MI(0

−))
f1,f2

(|~p− mf2

mf ′1
+mf2

|~q |~k|)



p2x + p2y − 2p2z − 2pz|~q |

mf ′1
mf ′1

+mf2

Êf ′1

+
p2x + p2y − 2p2z + 2pz|~q | mf2

mf ′
1
+mf2

Êf1



 ,

A
(2+,L=1)1
λ=+1 (|~q |) = i

√
3

2

√
2mI2EF (−~q )

∫
d3p

√
Êf ′1Êf1
4Ef ′1Ef1

1

4πp

(
φ̂
(MF (2

+,L=1))
f ′1,f2

(p)
)∗

× φ̂
(MI(0

−))
f1,f2

(|~p− mf2

mf ′1
+mf2

|~q |~k |)




pz


1−

(
−

mf ′
1

mf ′
1
+mf2

|~q |~k − ~p

)
·
(

mf2
mf ′

1
+mf2

|~q |~k − ~p

)

Êf ′1Êf1




+
4pzp

2
x − p2x|~q |

mf2−mf ′1
mf ′1

+mf2

Êf ′1Êf1





,

A
(2+,L=1)3
λ=0 (|~q |) = −i

√
2
√

2mI2EF (−~q )
∫
d3p

√
Êf ′1Êf1
4Ef ′1Ef1

1

4πp

(
φ̂
(MF (2

+,L=1))
f ′1,f2

(p)
)∗

× φ̂
(MI(0

−))
f1,f2

(|~p− mf2

mf ′1
+mf2

|~q |~k |)
{
pz

[
1−

(
−

mf ′
1

mf ′
1
+mf2

|~q |~k − ~p

)
·
(

mf2
mf ′

1
+mf2

|~q |~k − ~p

)

Êf ′1Êf1

]

+
1

Êf ′1Êf1

[
2pz

(
−

mf ′1

mf ′1
+mf2

|~q | − pz

)(
mf2

mf ′1
+mf2

|~q | − pz

)

+(p2x + p2y)

(
−pz +

mf2 −mf ′1

2(mf ′1
+mf2)

|~q |
)]}

. (F.26)
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2. Case L = 3

V
(2+,L=3)1
λ=+1 (|~q |) = i√

8

√
2mI2EF (−~q )

∫
d3p

√
Êf ′1Êf1
4Ef ′1Ef1

1

4πp3

(
φ̂
(M(2+,L=3))
f ′1,f2

(p)
)∗

× φ̂
(M(0−))
f1,f2

(|~p− mf2

mf ′1
+mf2

|~q |~k |)
[

1

Êf1

(
p2
(
2p2y − 3pz

( mf2

mf ′1
+mf2

|~q | − pz

))

+ 5pz

(
− 2p2ypz +

( mf2

mf ′1
+mf2

|~q | − pz

)
(p2x − p2y + p2z)

))

+
1

Êf ′1

(
p2
(
− 2p2y + 3pz

(
−

mf ′1

mf ′1
+mf2

|~q | − pz

))

− 5pz

(
− 2p2ypz +

(
−

mf ′1

mf ′1
+mf2

|~q | − pz

)
(p2x − p2y + p2z)

))]
,

A
(2+,L=3)0
Tλ=0 (|~q |) = −i

√
3

4

√
2mI2EF (−~q )

∫
d3p

√
Êf ′1Êf1
4Ef ′1Ef1

1

4πp

(
φ̂
(M(2+,L=3)
f ′1,f2

(p)
)∗

× φ̂
(M(0−))
f1,f2

(|~p− mf2

mf ′1
+mf2

|~q |~k |)
[(

5p2z
p2

− 1

)(
p2x + p2y

Êf1
+
p2x + p2y

Êf ′1

)
,

− pz
p

(
5p2z
p2

− 3

)( mf2
mf ′1

+mf2
|~q | − pz

Êf1
−

mf ′1
mf ′1

+mf2
|~q |+ pz

Êf ′1

)]
,

A
(2+,L=3)3
λ=0 (|~q |) = − i

2

√
2mI2EF (−~q )

∫
d3p

√
Êf ′1Êf1
4Ef ′1Ef1

1

4πp

(
φ̂
(M(2+,L=3))
f ′1,f2

(p)
)∗

× φ̂
(M(0−))
f1,f2

(|~p− mf2

mf ′1
+mf2

|~q |~k |)


(p2x + p2y)

(
5p2z
p2

− 1

)



mf2−mf ′1
mf ′

1
+mf2

|~q | − 2pz

Êf1Êf ′1




−pz
(
5p2z
p2

− 3

)

1−

p2x + p2y −
(
−

mf ′
1

mf ′
1
+mf2

|~q | − pz

)(
mf2

mf ′
1
+mf2

|~q | − pz

)

Êf1Êf ′1





 ,
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A
(2+,L=3)1
λ=+1 (|~q |) = − i√

8

√
2mI2EF (−~q )

∫
d3p

√
Êf ′1Êf1
4Ef ′1Ef1

1

4πp

(
φ̂
(M(2+,L=3))
f ′1,f2

(p)
)∗

× φ̂
(M(0−))
f1,f2

(|~p− mf2

mf ′1
+mf2

|~q |~k |)
[
3pz

+ 3pz

p2x − p2y −
(
−

mf ′1
mf ′

1
+mf2

|~q | − pz

)(
mf2

mf ′
1
+mf2

|~q | − pz

)

Êf1Êf ′1

+ 5pz

(
p2x
p2

+
p2y
p2

− p2z
p2

)

1 +

p2x − p2y −
(
−

mf ′
1

mf ′
1
+mf2

|~q | − pz

)(
mf2

mf ′
1
+mf2

|~q | − pz

)

Êf1Êf ′1




− 2p2x

(
5p2z
p2

− 1

)



mf2−mf ′1
mf ′1

+mf2
|~q | − 2pz

Êf1Êf ′1


+ 20

pzp
2
xp

2
y

Êf1Êf ′1p
2

]
.

(F.27)
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Figure F.1. Diagrammatic representation of B− decay into D(∗)0D−
sJ .

F.2 Nonleptonic decays: B → D(∗)DsJ

Here we study the nonleptonic decays B → D(∗)DsJ with D(∗) the D or D∗ mesons,
and DsJ the mesons D∗

s0(2317), Ds1(2460) and Ds1(2536). These decay modes involve a
b→ c transition at the quark level, governed by the effective Hamiltonian [240, 241, 284]

Heff =
GF√
2

{
Vcb
[
C1(µ)Q

cb
1 + C2(µ)Q

cb
2

]
+ h.c.

}
, (F.28)

in which penguin operators have been neglected. In Eq. (F.28), C1(µ) and C2(µ) are
scale-dependent Wilson coefficients, being µ ≃ mb the appropriate energy scale in this
case. The Qcb

1 and Qcb
2 are local four-quark operators given by

Qcb
1 = V ∗

cs

[
ψ̄c(0)γµ(I − γ5)ψb(0)

] [
ψ̄s(0)γ

µ(I − γ5)ψc(0)
]
,

Qcb
2 = V ∗

cs

[
ψ̄s(0)γµ(I − γ5)ψb(0)

] [
ψ̄c(0)γ

µ(I − γ5)ψc(0)
]
.

(F.29)

We show in Fig. F.1 the schematic representation of the B− → D(∗)0D−
sJ decay given

by the two local four-quark operators, diagram d1 for Qcb
1 and diagram d2 for Qcb

2 .
Factorization approximation is implicit in diagram d1, which amounts to evaluating
the hadron matrix element of the effective Hamiltonian as a product of quark-current
matrix elements. Fierz reordering of diagram d2 leads to the same contribution but for
a color factor. The full transition amplitude can be evaluated with the Qcb

1 part of the
Hamiltonian but with an effective coupling given by

a1(µ) = C1(µ) +
1

NC
C2(µ), (F.30)

with NC = 3 the number of colors.
The decay width is given by

Γ =
G2
F

16πm2
B

|Vcb|2 |Vcs|2 a21
λ1/2(m2

B, m
2
D(∗), m

2
DsJ

)

2mB
Hαβ(PB, PD(∗)) Ĥαβ(PDsJ ), (F.31)

where PB, PD(∗) and PDsJ are the meson momenta. Hαβ(PB, PD(∗)) is the hadron

tensor for the B− → D(∗)0 transition and Ĥαβ(PDsJ ) is the hadron tensor for the
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vacuum → D−
sJ transition. The latter is

Ĥαβ(PDsJ ) =

{
P α
DsJ

P β
DsJ

f 2
DsJ

DsJ ≡ 0−, 0+

(P α
DsJ

P β
DsJ

−m2
DsJ

gαβ)f 2
DsJ

DsJ ≡ 1−, 1+
(F.32)

with fDsJ being the DsJ decay constant.

Similarly to the semileptonic case, the product Hαβ(PBc , PD(∗))Ĥαβ(PDsJ ) can be
easily written in terms of helicity amplitudes for the B− → D(∗) transition, so that the
width is given as

Γ =
G2
F

16πm2
B

|Vcb|2|Vcs|2a21
λ1/2(m2

B, m
2
D(∗), m

2
DsJ

)

2mB

m2
DsJ

f 2
DsJ

HB→D(∗)

tt (m2
DsJ

), (F.33)

for DsJ a pseudoscalar or scalar meson, and

Γ =
G2
F

16πm2
B

|Vcb|2|Vcs|2a21
λ1/2(m2

B, m
2
D(∗), m

2
DsJ

)

2mB

m2
DsJ

f 2
DsJ

×

×
[
HB→D(∗)

+1+1 (m2
DsJ

) +HB→D(∗)

−1−1 (m2
DsJ

) +HB→D(∗)

00 (m2
DsJ

)
]
,

(F.34)

for DsJ a vector or axial-vector meson. The different Hrr are defined above and
evaluated in this case at q2 = m2

DsJ
.

We are ready to calculate the decay constants that we need to know in the above
expressions. In our model, and due to the normalization of our nonrelativistic meson
states, the decay constants are given by

fM(0−) = −i
√

2

mM(0−)

〈0|Jf2f1A0 (0)|M(0−),~0〉 ,

fM(0+) = +i

√
2

mM(0+)

〈0|Jf2f1V 0 (0)|M(0+),~0〉 ,

fM(1−) = −
√

2

mM(1−)

〈0|Jf2f1V 3 (0)|M(1−), 0~0〉 ,

fM(1+) = +

√
2

mM(1+)

〈0|Jf2f1A3 (0)|M(1+), 0~0〉 ,

(F.35)

for pseudoscalar, scalar, vector and axial-vector mesons, respectively. The correspond-
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ing matrix elements are given by

〈0|Jf2f1A0 (0)|M(0−),~0〉 =i
√
3

π

∫
d|~p | |~p |2φ̂(M(0−))

f1,f2
(|~p |)

√
(Ef1(−~p ) +mf1)(Ef2(~p ) +mf2)

4Ef1(−~p )Ef2(~p )

×
[
1− |~p |2

(Ef1(−~p ) +mf1)(Ef2(~p ) +mf2)

]
,

〈0|Jf2f1V 0 (0)|M(0+),~0〉 =i
√
3

π

∫
d|~p | |~p |3φ̂(M(0+))

f1,f2
(|~p |)

√
(Ef1(−~p ) +mf1)(Ef2(~p ) +mf2)

4Ef1(−~p )Ef2(~p )

×
[

1

Ef2(~p ) +mf2

− 1

Ef1(−~p ) +mf1

]
,

〈0|Jf2f1V 3 (0)|M(1−, L = 0), 0~0〉 = −
√
3

π

∫
d|~p | |~p |2φ̂(M(1−,L=0))

f1,f2
(|~p |)

×
√

(Ef1(−~p ) +mf1)(Ef2(~p ) +mf2)

4Ef1(−~p )Ef2(~p )

(
1 +

|~p |2
3(Ef1(−~p ) +mf1)(Ef2(~p ) +mf2)

)
,

〈0|Jf2f1V 3 (0)|M(1−, L = 2, 0)~0〉 = −2

π

√
2

3

∫
d|~p | φ̂(M(1−,L=2))

f1,f2
(|~p |)

×
√

(Ef2(~p ) +mf2)(Ef1(−~p ) +mf1)

4Ef1(−~p )Ef2(~p )
|~p |4

(Ef2(~p ) +mf2)(Ef1(−~p ) +mf1)
,

〈0|Jf2f1A3 (0)|M(1+, S = 0), 0~0〉 = 1

π

∫
d|~p | |~p |3φ̂(M(1+,S=0))

f1,f2
(|~p |)

×
√

(Ef1(−~p ) +mf1)(Ef2(~p ) +mf2)

4Ef1(−~p )Ef2(~p )

[
1

Ef1(−~p ) +mf1

− 1

Ef2(~p ) +mf2

]
,

〈0|Jf2f1A3 (0)|M(1+, S = 1), 0~0〉 = −
√
2

π

∫
d|~p | |~p |3φ̂(M(1+,S=1))

f1,f2
(|~p |)

×
√

(Ef1(−~p ) +mf1)(Ef2(~p ) +mf2)

4Ef1(−~p )Ef2(~p )

[
1

Ef1(−~p ) +mf1

+
1

Ef2(~p ) +mf2

]
.

(F.36)

For 0− and 0+ we have only one possible contribution. In the case of the JP = 1−

meson we have two contributions coming from the two possible values of the relative
angular momentum. For JP = 1+ states and since C-parity is not well defined in
charmed and charmed-strange mesons the wave function is a mixture of 1P1 and 3P1

partial waves and thus there are also two contributions.
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[9] T. Appelquist, A. De Rújula, H. D. Politzer, and S. L. Glashow, Phys. Rev. Lett.
34, 365 (1975).

[10] E. Eichten, K. Gottfried, T. Kinoshita, J. Kogut, K. D. Lane, and T. M. Yan,
Phys. Rev. Lett. 34, 369 (1975), 36, 1276(E) (1976).

[11] C. Quigg, in The XVIII Rencontres de la Vallee d’Aoste Conference Proceedings

(2004), FERMILAB-conf-04/033-T, arXiv:hep-ph/0403187v2.

[12] R. Galik, in The XXIV Physics in Collisions Conference Proceedings (2004),
arXiv:hep-ph/0408190.

[13] N. Brambilla et al., The European Physical Journal C - Particles and Fields 71,
1 (2011).

[14] K. Seth, in Journal of Physics: Conference Series (2005), vol. 9, p. 32.

[15] K. Seth, in Nuclear Physics B: Proceedings Supplements (2005), vol. 140, p. 344.

[16] K. Seth et al., in Nuclear Physics B: Proceedings Supplements (2006), vol. 152,
p. 207.

[17] T. Skwarnicki, in The 40th Rencontres De Moriond On QCD And High Energy

Hadronic Interactions Conference Proceedings (2005), arXiv:hep-ex/0505050.

[18] E. J. Eichten, K. Lane, and C. Quigg, Phys. Rev. Lett. 89, 162002 (2002).

217



218 BIBLIOGRAPHY

[19] D. Boutigny et al., SLAC-R-457 (1995).

[20] J. Haba, Nuclear Instruments and Methods in Physics Research Section A:
Accelerators, Spectrometers, Detectors and Associated Equipment 368, 74
(1995).

[21] M. Ablikim et al., Nuclear Instruments and Methods in Physics Research Section
A: Accelerators, Spectrometers, Detectors and Associated Equipment 614, 345
(2010).

[22] R. Briere, G. Chen, T. Ferguson, G. Tatishvilli, and H. Vogel, CLNS 1, 1742
(2001).

[23] LHCb : Technical Proposal, Tech. Proposal (CERN, Geneva, 1998).

[24] W. Erni et al., arXiv:hep-ex/0903.3905 (2009).

[25] S.-K. Choi et al. (Belle Collaboration), Phys. Rev. Lett. 89, 102001 (2002).

[26] B. Aubert et al. (BaBar Collaboration), Phys. Rev. Lett. 92, 142002 (2004).

[27] D. M. Asner et al. (CLEO Collaboration), Phys. Rev. Lett. 92, 142001 (2004).

[28] A. Tomaradze et al., in Journal of Physics: Conference Series (2005), vol. 9, p.
119.

[29] K. Abe et al. (Belle Collaboration), Phys. Rev. Lett. 89, 142001 (2002).

[30] K. Abe et al. (Belle Collaboration), Phys. Rev. D 70, 071102 (2004).

[31] P. Pakhlov, in The 32nd International Conference on High-Energy Physics

Proceedings (2004), arXiv:hep-ex/0412041.

[32] S.-K. Choi et al. (Belle Collaboration), Phys. Rev. Lett. 91, 262001 (2003).

[33] D. Acosta et al. (CDF II Collaboration), Phys. Rev. Lett. 93, 072001 (2004).

[34] E. Eichten, K. Gottfried, T. Kinoshita, K. D. Lane, and T. M. Yan, Phys. Rev.
D 17, 3090 (1978).

[35] D. Ebert, R. N. Faustov, and V. O. Galkin, Mod. Phys. Lett. A20, 1887 (2005).

[36] B.-Q. Li, C. Meng, and K.-T. Chao, Phys. Rev. D 80, 014012 (2009).

[37] B. Aubert et al. (BaBar Collaboration), Phys. Rev. Lett. 90, 242001 (2003).

[38] D. Besson et al. (CLEO Collaboration), Phys. Rev. D 68, 032002 (2003).

[39] E. S. Swanson, Physics Letters B 582, 167 (2004).

[40] F. Halzen and A. Martin, Quarks and leptons (John Wiley and sons, 1984).
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