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A bstract

In this paper we describe the m oduli space of kinks in a class of system s of two coupled
real scalar elds in (1+ 1) M inkow skian spacetine. The maln feature of the class is the
spontaneous breaking of a discrete sym m etry of (real) G inzburg-Landau type that guarantees
the existence of kink topological defects.

Introduction
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59\ esearch into them athem atical properties and physicalm eaning of topologicaldefects in relativis—
Lric el theory has increased sharply since the m id seventies of the twentieth century. T here has
1s0 been a parallel developm ent In (non—relativistic) condensed m atter physics. Extended states
.ca;nd phase transitions —eg. type II superconductivity—are related to the appearance of such exotic
_Ephenom ena. Domain wall defects in the real world can be thought of as solitary waves propa-—
>gating In a (1 + 1)<din ensional universe that selfrepeat In the ram aining two dim ensions. Thus,
Binvest:’gatjons on kink nature and behaviour in  ( ), or sheG ordon m odels .nform us about
the properties of the sim plest type of topological defect. R ealistic theories, how ever, invoke m ore
than one scalar eld and the study of (1+ 1)-dim ensionalN —-scalar eldsm odels In this respect is
not only worthw hile but aln ost m andatory. Exam ples of theordesw ith N > 1, where onem ightbe
Interested in looking at topologicaldefects, include the linear sigm a m odel, the G inzburg-L.andau

theory of phase transitions, the supersym m etric W essZum ino m odel, SUSY QCD , etcetera.

K inks are tim e-independent nite-energy solutions of the eld equations that have been thor-
oughly investigated in the N = 1 case, see eg. []]. M uch less is known about the kink variety in
system s w ith two orm ore scalar elds (the reason for this is also clearly explained in ]). To the
best of our know ledge, how ever, there are exceptions:

A deform ation of the linear O (2)-sigm a m odel, christened In the literature as the M STB
m odel, exhibits a rich variety of kinks. T he characteristics of any of these kink defects as
wellas the structure of the variety as a whole have been elicidated in a long serdes of papers,
see References [2-12]. The m oduli space of kinks In an analogous deform ation of the linear
O (3)-slgm a m odelhas also been fully described in [[31.


http://es.arxiv.org/abs/hep-th/0201200v1

T he search for kinks is tantam ount to the solving of a m echanical problem , which is seldom
solable if N 2. In [@] we described the kinks of two N = 2 eld-theoretical m odels
associated w ith com pletely integrable m echanical system s; ie., the sam e idea that works in
theM STB modeland itsN = 3 generalization.

In[[Ip], the kinks of the W essZum ino m odelare shown to be given by certain realalgebraic
curves in the com plex plane.

A nother favorable situation occurs when the eld-theoreticalm odel is the bosonic sector of a
supersym m etric system . T his is the case of the W essZum no system and also happensihaN = 2
m odel proposed in [2]], which has been discussed and applied to describe several interesting
physical contexts in the serdes of papers [1625]. Throughout their work, Bazeia et al. dentify
only two kinds of kinks: a topologicalone, w ith only the st com ponent non-null, usually term ed
as the TK 1 kink, and a second topological kink that has both com ponents nonnull and is called
the TK 2 kink. In contrast w ith theM ST B m odel, where the TK 1 kinks are unstable, [[JHI]J, and
decay to the TK 2 kinks, [[]], in the system of Bazefa et al. there is an interesting phenom enon
of kink degeneracy: the TK 1 and TK 2 kinks have the sam e classical energy.

The m ain result to be shown in this paper is that the kink degeneracy is a continuous one
rather than the discrete degeneracy In plicit in [1625]. W e shall nd a continuous fam ily of kink
solutions to the classical eld equations, allof them degenerated in energy with the TK 1 and TK 2
kinks. The existence of this variety of kinks is possible because of the spontaneous breaking of
a discrete Intemal sym m etry group. T he quotient of the kink variety by the symm etry group is
the kink m oduli space, a structure parallel to the m oduli spaces of gauge theoretical topological
defects as vortices, 4], or m agnetic m onopolks, B1].

Identi cation of the kink variety is achieved through the solution of rstorder, rather than
second-order, eld equations. In (1+ 1)-dim ensional scalar eld theories, rstorder equations
are availbble if, m odulo a global sign, a superpotential is found. Note that the search for a
superpotential is highly non-txrivial if N 2. Bazei et al., however, proposed a continuously
di erentiable superpotential in their m odel, which in tum guarantees the stability of any nite
energy solution of the associated rstorder system of equations through the classical Bogom olny—
Prasad-Somm er ed argum ent, [g].

T he existence of the superpotential tells us that we can understand the system as the bosonic
sector ofan N = 1 (1+ 1)<din ensional supersymm etric el theory, In which the kinks play a
signi cant r®le as BPS states. W e shall analyze the supersym m etric extension of thism odel in a
future work, but we observe that the din ension of the kink m oduli space in this systam is such
that the index introduced in 9] is zero, show ing that the soliton superm ultiplets are Iong or
reducible.

A 11 the foregoing statem ents are valid for any value of the single classically relevant coupling
constant in the m odel. In this paper we shall show another new result: for certain values of the
coupling constant there exists a second superpotential. A ccordingly, a second system of rst-
order equations is available that also adm its kink solutions, although the old and new solitons
belong to di erent topological sectors of the con guration space. For the critical values where
the second superpotential is found, there are tw 0 non-equivalent supersym m etric extensions of the
sam e bosonic sector.

Form ost of the critical values the second superpotential fails to be continuously di erentiable
ata nite number of points in the R 2 intermal space. In these cases, the second B ogom olny bound



is not a topological quantity; it also depends on the values of the superpotential at the points
where it is not di erentiable. K ink orbits that cross those points are unstable and are solutions
of the rstorder equations only in one interval, not on the whole spatial Iine. N evertheless, these
kinks are solutions of the second-order equations.

A nal comment: In concordance w ith the lifting of the kink translational degeneracy, we
expect that the kink intemal degeneracy w ill be rem oved In second-order in the loop expansion
of the energy in the quantum theory.

T he paper isorganized as follow s. In sections x2 and x3 we Introduce the BNRT m odeldiscussed
in 2]]and dentify a oneparam etric fam ily of kinks, which includes the TK 1 and TK 2 kinks, as
BPS solutions. Tn sections x4 and x5 we investigate the existence of a second decom position a la
Bogom ol'nyi. W e nd that this is possible for certain values of the coupling constant, for which
we discover a second kink fam ily.

2 TheBNRT m odel

In the m odel Introduced in @]by Bazeia, Nascin ento, R beiro and Toledo, henceforth referred

to asthe BNRT m odel, the scalar eld isbuilt from two components (y )= ( 1(y ); 2(y ))and
the dynam ics is governed by the action
Z "X2 #
st1 = dy @ @ . U(1;2) (1)
a=1
1 1 1 1
U( 15 2) = 52(5 612)2+§ (f a2)§+§2§+52§§ (2)

Here, and arecoupling constantsw ith din ensions of inverse length and a® isa non-din ensional
param eter. W e use a natural systeam ofunits, ~ = c= 1. T he energy functional is

z " ’ 2 #
1 d; 1 d,

E[ ]= dyéd—y +5d—y + U (17 2) 3)
where (y)= ( 1(y); 2(y)) 2 C= fM apsR ;Rz)p=_E[ (y)]< 1 g. Introducing non-din ensional
elds, variables and param eters, = 2a p,y = %x,and = —,we obtain expressions that are
sinpler to handle. E[ ;; »]=  2a°> E[:; »]and the non-din ensional energy functional which
depends on the single classically relevant coupling constant is:

Z " 2 2 #
E[ ]= dxé% +%% + 4242 2 17416227 4)

T he Eulerd.agrange equations read:

d?
dxz

dZ
— 16, 42%+2 1+ )2 1 dx22=824(+1)§+2§ 1 (5)
Besides the spatial parity and translktional sym m etries, there is a global or intemal symm etry
In thism odel: the re ection discrete group G = 72, 7, generated by the transform ations ; :
(17 20 ( 17 2)and 5 :( 17 2)! (1; 2)isalsoa symmetry subgroup of the system .




W e shall focus our attention on the > 0 regin e, where the vacuum m anifold is:
n o

M = A= (5;0);A;= ( 3;0);B1= (0js=);B,= (0; »=)

N

The action of G on M  is summ arized as follows: {(A,)= A,, ,(B;)= B,. Therefore, M can
be seen as the union of two disppint vacuum orbits:M = A t B,A = fA,;A,g9,B = fB{;B.g.
The vacuum moduli spaceM = - isa set of two elements,M = A t B,where A = Zszeg’
and B = fegB 7 - TheG = %, 7, symmetry of the action (l]) is spontaneously broken to the
feg 7, subgroup on the elam ents in the A orbit and to the 72, feg subgroup on the vacua of
the B orbit.

Because of the degeneracy and the discreteness of the vacuum m anifold M , the con guration
Space is the union of sixteen topologically disconnected sectors. K esping in m ind the sym m etries
of them odel, we dentify the non—rivial topological sectors as the AA topological sector (form ed
by con gurations of C that pin the A; and A, vacua); the BB topological sector (con gurations
that connect the B, and B, vacua), and the AB sector (form ed by con gurations jpining one
vacuum in the A orbit w ith another vacuum in the B orbit).

W e use the trial orbit m ethod fl]] to show the previously known kink solutions to the equations

@.

1. The TK 1** kink

First, we try the curve

- - . 1 1
TK1AA — 2= 05 2 1 2

T his condition is com patible w ith equations (§) and we nd

1 P
TR (k) = ~tanh2 2(x+ a) EY x)= 0

as the onecom ponent topological kinks in the AA .

2. The TK 2** kink:
Second, we try the elliptic orbit

1 1 1
TK2AA = %"’7 gz_ r5 oy (6)

in (@) and nd in the AA topological sector the tw o-com ponent topological kinks:

TK2M2 1 P TK2MA ql— P
1 (x)= EtanhZ 2 (x+ a) 5 (x)= 2—8601’12 2 (x+ a); (7)

henceforth referred to as TK 2% kinks.

Note that the orbit (§) gives kink curves only in the 2 (0;1) range because if 1 it
becom es a hyperbole that does not connect the vacua. M oreover, ﬂ) describes fourdi erent kinks
according to the choices of the signs and one can obtain one from another by using the spatial
parity and intemal re ection sym m etries.



T he existence of one<om ponent topologicalkinks -unnoticed in the literature about them odel-
n the BB topological sectors is obvious.

3. The TK 1% kink:
Thid,we try the orbit

1 1
TK1BE = 1= 0; 19? 2 19?

in the second-order el equations (f). W e mm ediately nd that the nite energy solutions

TK1BB (x)= 0 TK1BB (x) =

1 P_
1 > 19—2_ tanh 2 (x+ a)

are the kinks that connect the B; and B, vacua.

3 Themodulispace of kinks in the AA topological sector

In [1625] the authors propose a superpotential for the m odel:
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Figure 1: The U ( ) potental (Jeft) and the superpotential W ( ) (right)

The classical BP S states satisfy the system of rstorder equations

d @w p- d @w P-
el SN 24 2+ 2 2 1) ; —2=——=42 ,, 9)
dx Q , dx @,

which are easier to solve than (ﬁ). T he superpotentialW ( 1; ,) isa snooth function ofthe elds
1 and , ateach point in R?. T herefore, according to the Bogom olnyiarrangem ent




we have that
E[1=T[ 1= (11 ); 21 )) W (1) 201))J

for all solutions of (§) and the kink energy only depends on the topological sector of the solution.

The kink solutions of (@) are the ow-lines ofgradW that start and end at elem ents of M . Tt
happensthatA and A , are respectively m axin a and m inim a of W and that there are ow —lines of
gradW starting at A; and ending at A, (or vicewversa). B, and B, , however, are saddle points of
W ,see Figure 1. T herefore, there are no ow -lines of gradW between B, and B, (or vicewversa).
N evertheless, ow-lines of gradW between one point In the A orbit and another point in the B
orbit (or vicewversa) are possible. The ow-lines of gradW thus provide kinks in the AA and the
AB sectorswith energiesE g nn = 2a° ,Eqgme = 2a°

To obtain the m ost general solution to the rstorder system (f), we rst integrate the rst-
order ODE ) )

011=41+22 1 (10)

2 4 12
which adm its the integrating factor j ,3j = Zl,jf 6 land 6 0, therby allowingusto nd all
the ow-lines as the fam ily of curves

(o}

21, ¢, ¢ (11)
1T o0 2 at g )

param etrized by the real integration constant c. T here is a critical value

CS:}—(2)+1

and the behaviour of a particular curve in the (@) fam ily is described In the follow ing item s:

Forc2 ( 1 ;8),omul (@) describes closed curves In the j1r1teJ:nalspaweR2 that connect
the vacua A, and A,, see Figure 2. Thus, they provide a kink fam ily in the topological
sector AA . Henceforth, we refer to these kinksas TK 222 (c). A xed value of c detemm ines
fourm em bers in the kink variety related am ongst one another by spatial parity and intemal
re ections. The kink m oduli space isde ned as the quotient of the kink variety by the action

of the sym m etry group:
Vk
M = = 1 ;cS ;
K=o & ( )

the real open half-ine param etrized by c. O ne sees that

TK 2% TK 2**(0) TK 1 lin TK 2** ()
c! 1

ie. the TK2** kink isthe c= O manber of the family (if < 1) and the TK 1*® kink is
not strictly included although it does appear at the boundary of M x .

In the range c 2 (&;1 ), equation (L1]) describes open curves and no vacua are connected.
ThesegradW ow-lines are in nite energy solutions that do not belong to the con guration
space C, see F igure 2.



At the other point of the boundary ofM x ,c= ¢ ,we nd the TK 2*® kinks, which are the
separatrices between bounded and unbounded m otion and the envelop of all kink orbits in
the AA topological sector, see F igure 2.

W ebrie ydiscussthe = 1lcase. The = 0 case isnot interesting because the , dependence
disappears in the potential: it isa \direct sim " ofan N = 1 “modeland an N = 1 freem odel.
Integration of [[J) when = 1 gives

2 2 L pgi,g = o (12)
1 2 5 J2] 4

where the kink trafctordes now appear n thec 2 ( 1 ;¢ Jrange, with ¢ = 1+ 2. The
description of the kink orbits is analogous to the description for € 1 above.

9,
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Figure 2: Flow-lines given by (LI]): orc2 ( 1 ;) (keft),c= & middk),and c2 (;1 ) (right).

A second step rem ains: the explicit dependence of the kinks w ith regpect to the space coordi-
nate can be obtained fwe plug (L) into the second equation in (@),

d , p—
h{ ,]= o - = = 4 2 dx: (13)
2 Z+2£j2j 21 ) %
T he kink solutions are
S
1 c P 2 p— p—

K . o 1 1 K . _ 1

X;C) = -+ — 4 2 x P 4 2 x x;0)=h (4 2 x
1 (x;0) 2 2:11 ( )J 20 )[h ( )P 5 (x;C) ( )

In general, we cannot obtain the explicit dependence on x for the kink solutionsbecause eitherwe
cannot integrate ([[3) or we cannot dentify the inverse of h( ). For certain values of the coupling

constant, however, we can nish the task. W e next show the fam ily of TK 2*#* kinks for = 2
and = 7.
= 2:
The vacuum points are the vertices of a square: M _, = fA; = (%;O);Az = ( %;O);Bl =

(0;%);B2 = (0; %)g. The quadratures ) can be solved explicitly and h 1 ,1is a known
analytical function. T hus,

¥ o1

P
o
coshd4d 2(x+ a)+ b

P_
TK 2R . 1 smhvfl 2(X+ a) TR AR
: 2coshd 2(x+ a)+ b

[N}
N
|
N



are the kink-form factors. The integration constant b is related to c as b = p&:(:m , and for
b2 (1;1 )we nd kinks in the AA topological sector.
Ifc=c = 4,b=1 we nd thekiksin the AB sector

A 1 P i 1 P_
TEZ (%) = 21 f@nh2 2(x+a) TEET = 21+ @nh2 2(x+ a)

and, replacihg x by x, its antikinks. The sgparatrices are placed on the edges of the above

m entioned square , = % 1. The kink tra pctories in the AA topological sector form a dense

fam ily of curves enveloped by the kink orbits in the AB sector. See F igure 3.

NS

@2 (X)

1
B, -5 -4 -2 2 4

Figure 3: K ink trafctories (keft), a kink in the AA sector (m iddle) and a kink in the AB sector (right)
in the case = 2.

A rotation of 45° mR?, ;= #=( 1+ ,)and 191—5( 1 »), show s that for this value of

- 14
the system jsnom:oup]eol:U:2(2 15 2)= 3—12( z %)2+ %( Z %)2.
=1,
53
The vacuum manifold is: M _. = fA; = (3;0);A, = ( 2;0);B1= (0;1);B, = (0; 1)g.By
the sam e procedure as above, we obtain
E:::KZAA (%) = 1 SJI]th 2(X+ a) gKZAA (%) = g 1 (14)

- b= P
2c0sh2 2(x+ a)+ b 1+ blosh?2 2(x+ a)

where we have introduced b= 1911:% In theb2 (0;1 ) range, the above solutions are kinks that
connect the A; and A, vacua (sse Figure 4). If = 2, ) becomes {+ 1 5= ;+ c 3,which
can bewrittenas 1+ 2 ; )1 2 ; 3)= Oforc= C® = ;. There are kinks on parabolic
tra fctordes pining points in the A and B vacuum orbits

r
1 p- 1 [
TR (%) = 2 1 tanh 2(x+ a) PR (k) = > 1+ tanh 2(x+ a)
and, replacihg x+ aby x a,we obtain their antikinks.
4 The second superpotential: = 2
For = 2,U( )= (42+ 4 % 1)+ 64 ? % doesnot change iff we svap the eld com ponents.
There is a second superpotential in themodel for = 2: W % 1; ,) = W ( »; 1). A second



B2

Figure 4: K ink curves (kft), a kink in the AA sector (m iddk) and a kink in the AB sector (right).

arrangem ent a Ja Bogom olnyiusing W % ;; ,) provides another system of rst-order di erential
equations:
d w ° P d
-1 =8 2,, ~Z_
dx @ 1 dx @ 2
The ow-lhesofgradW °connect B; and B,,which are respectively them axinum and them ini-
mum ofW %, whereasA; and A, areW ° saddle points. W e thus obtain a new fam ily of topological

kinks, now in the BB sector, with the dlesof ; and , interchanged: ifb2 (1;1 ),

p , P-
TK BB <) = 1 o2 1 TK BB B 1 smhﬁél 2(x+ a)

1 = = P= 2 x)= 3 L
2c0dh4d 2(x+ a)+ b 200sh4 2(x+ a)+ b

ew ° P
=" 204%+42 1)

are the tw o-com ponent topologicalkinks in the BB sector. Ifc! 1 (! 1),we nd theTK1®®
kink and ifc= 4 (b! 1 ) the ssparatrix kinks in the AB sector are reached at the boundary of
the com ponent of the m oduli space of kinks that belong to the BB sector. T he kink energy sum
IU.]GS&IE!ETKZAA = Ergops = 2ETK2AB = %a3

5 Them odulispace ofnonBPS kinks in the BB topolog-
1

ical sector: = >

If = 2,there isalso a second superpotential,
p_
201

w0<1;2>=7 2+ 2 42+ 2 3 (15)

that also solves the rst equation In (f). The second system of rstorder equations

o P
d, ew ° 2,4 2+33 1) d . ew ° 2 5,2
= — i

1)

(16)

+ 2+
dx (G 2+ 2 dx @, T

NN NN

rules the ows generated by gradW ° in the system . W ° is not di erentiable at the origin and

the owsof gradw °

d 22+ 2 1

_2: 2( 2]_ 22 ) (17)
d 1(4 1t 3 5>t 1)

9



are unde ned at O (0;0) 2 R?. Note that B; and B, are both m inina of W °, whereas A, and
A, areW Ysaddle points. The origin is them axinum ofW °and thus the ow-lnesofgradW °run
from O to either B; or B,. To obtain a kink orbit, wemust glue at O a ow -line of grad W °
witha ., ow-lineof gradW °anoothly. Because the ows are unde ned at O ,we expect that
an in nite num ber of lines w illm eet at the origin.

T he Bogom olny splitting m ust to take this into account and the energy of the kink solutions
of {@9)

1 19 ew? % e 14 emo?
E[ ] = dx = — + dx - — +T()+T( )
N 2 dx @ 1 2 dx @
T = T()+T( )=30°By) W03+ 3 °By) W °%0)j
E[ txe ]J= T(,)+ T( ) isnot topological; it depends on the value of the superpotential at

the origin, a sign of instability [[{, [[]]. The kink energy sum rules are: Eqyx s = 2Eqgma =

4E xne = 2a° and the TK 2°® kinksdecay to two TK 2*® plusone TK 2** kinks.

U sing parabolic variables, we have shown that the integration of ([1§) reduces to quadratures
n R eference ]. T he translation of our results to C artesian coordinates is as follow s:

The kink orbits that solve [IJ7) satisfy the equation
p- jo
lee' *° 7( 1+ N+ & *F @21 S+DR2i+ 5 1)=0 (18)

and are plotted In Figure 5. Here ¢ is a real integration constant.

Az A;

Figure 5: TK 288 (c) K ink fam ily (left) and the superpotential W ° (right)

Analytically, the vardety of TK 27 (c) kinks is given by:

p_ p_
BB sinh2 2c sinh?2 2(X+ a)
P x) = —P= P= P—= (19)
cosh“2 2(x+ a)+ 2cosh?2 2ccosh?2 2(x+ a)+ 1
'thi( +a)
B B SN X a
T )=« (20)

S P o= D _
cosh“2 2(x+ a)+ 2cosh?2 2ccosh?2 2(x+ a)+ 1

Besides the soliton center x =  a, the kink fam ily is param etrized by c.

10



Because the spatial translhations T, :x ! x+ a leads from one solution to another and

TK2BB TK2BB TK2BB TK2BB
107 (x;2); 5 (x;0))= (1 (x; <) 3 (x; <)) ;

them odulispace of TK 288 kinks —the quotient of the (1927) kink variety by the action of T, and
1—is the open halfdine: ¢ 2 (0;1 ). If, m oreover, we take quotient by P :x + a ! x a,the
antikinks are also included in the m oduli space.
T he asym ptotic behaviour

lin ?KZBB(X;C)=O ; Tim EKZBB(X;C)= 1

x! 1 x! 1

ts in w ith the boundary behaviour, quaranteeing nite energy to the TK 25® (c) kinks. They are
not stable because all of them cross the origin:

TK2BB
(

TK2BEB
7 (

a;e)=0 ; 5 a;c)=0

Thus,only ifx 2 ( 1 ; a) @3HQ) are solutions of the rst-order equations (L) w ith the + sign,
whereas they solve (1) with the —sign In thex 2 ( a;1 ) range, or viceversa. It can easily be
proved , how ever, that these solutions satisfy the second-order di erential equations (f)).

Things are di erent at the boundary of the m oduli space, the union ofthec= 0Oand c= 1
points. Looking at the formula [[§) we nd the TK 1%® kink asthec= 0 lim it of the kink variety,
whereas the TK 1** kink and two TK”*® kinks -that live on di erent parabolic branches-arem et
atc=1 .
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