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0 neJoop m ass shifts to the classical m asses of stable kinks arising in a m assive non-linear S*-
sigm am odelare com puted. U Itraviolet d vergences are controlled using the heat kemel/zeta function
regularization m ethod. A com parison between the results achieved from exact and high-tem perature
asym ptotic heat traces is analyzed in depth.

PACS numbers: 11.15Kc;11.27+d;11.10Gh

I. INTRODUCTION

Tn a sem inalpaper, O live and W itten EH linked extended supersym m etric theories to BP S solitons by show ing that
the classicalm ass of these stable lum ps agreed exactly w ith the central charge of the extended SUSY algebra. The
subsequent issue conceming BP S saturation at one-loop (rather than tree) level has proved to be extrem ely subtle,
prom pting a ram arkable am ount of work over the last twelve years. See, eg., @] and R eferences quoted therein to

nd an in-depth report on these developm ents.

A new actor entered the stage when in BJ a Stony Brook/W ien group com puted the one-Joop m ass shift of the
supersymm etric CP'kink n a N = (2;2) non-linear sigm a m odel w ith tw isted m ass. K inks of several types in
m assive non-linear sigm a m odels were, how ever, discovered earlier, see Q}, E 1, @ 1, a ]. In R eference @ ], three of us
found several fam ilies of non-topologicalkinks in another non-linear sigm a m odel: we chose S? as the target space and
considered the case when the m asses of the pseudo-N am bu-G oldstone particles were di erent. The O (2)-sym m etry of
the equalm ass case is explicitly broken to Z, Z, and the SO (2)-fam ilies of topologicalkinks of the form er system are
deform ed to the four fam ilies of non-topologicalkinks arising in the second system . T he boundary of them oduli space
of non—topological kinks in the last m odel is form ed by a pair of topological kinks of di erent energy. T he analysis
of kink stability in the m assive non-linear S?-sigm a m odel perform ed in @ Jallowed us to calculate the one-loop m ass
shifts for the topological kinks by using the CahillC om tetG lauber form ula ]. These authors showed that the
one-loop m ass shift for static solitons can be read from the eigenvalues of the bound states of the kink second-order

uctuation operator and the threshold to the continuous spectrum when this operator is a transparent Schrodinger
operator of the Posch-Teller type. This is the case of the topological kinks of the m assive non-Jinear S%-sigm a m odel
when a parallel fram e to the kink orbits is chosen to refer to the uctuations.

The ain ofthispaper is to o er another route for com puting the one-loop kink m ass shift in order to unveil som e of
the intricacies hidden in this subtle problem . W e shall follow the m ethod developed in R eferences E] and EJ based
on heat kemel/zeta function regularization of ultraviolet divergences. See also the lectures ], where fi1ll details
can be found. Because the spectrum of sm all kink uctuations in our system can be denti ed analytically, we are
able to give the exact answer for the m ass shifts. W e shall also show , however, how to reach approxim ately the sam e
result using the coe cients of the heat kemel asym ptotic expansion. T he interest of this calculation is that a form ula
belonging to the class of form ulas shown in ] w ill be derived. T he Im portance of this type of form ula lies in the
fact that it can be applied to obtain the one-doop m ass shifts of topological defects even when the spectrum of the
second-order uctuation operator is not know n; for instance, in the case of tw o-com ponent topologicalkinks: see @ 1,
E ]. S ilar form ulas work even for A belian gauge theories in (2+ 1)-din ensions and thus the m ass shifts of selfdual
N ielsen-O lesen vortices and sem Hocal strings can be calculated approxin ately, see ], ], and 1.

To end this brief Introduction we sin ply m ention that interesting calculations have recently appeared addressing
one-loop kink m ass corrections and kink m elting at nite tem peratures in the sine-G ordon, CP ! ,and % models in
a purely bosonic setting, see ].

T he organization of the paper is as follow s: In Section x.IT, we Introduce the m odel and explain our conventions.
In Section x.ITI, the perturbative sector as well as the m ass renom alization procedure are discussed. Section x.IV is
devoted to the analysis of the stable topological kinks in this system . T he second-order kink uctuation operator is
obtained, placing special em phasis on its geom etric properties. In Section xV , the one-loop m ass shift is com puted
using the heat kemel/ zeta function reqularization m ethod. Section xV Io ersa com parison of the exact result obtained
n xV with the approxim ation reached from the high—tem perature asym ptotic expansion. Finally, a sum m ary and
outlook are o ered whereas two A ppendices containing som e technicalm aterial are Included.
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II. THE (1+1)D M ENSIONAL MASSIVE NON-LINEAR S°SIGMA M ODEL

T he action governing the dynam ics of the non-linear S%-sigm a m odeland the constraint on the scalar elds are:
7 ( 5 )
1 X eat ., 2 2 2 2
S[17 27 3l= ddx =g ; I+ 5+ 5=R : 1)
2 . @x @x

a

The scalar elds are thusmaps, »(t;x)2 M aps®R'";5%),a= 1;2;3,from the (1+ 1)-din ensionalM inkow skispace-
tin e to a S?-sphere of radiisR , which is the target m anifbd of this non-linear sigm a m odel. O ur conventions HrR 1

areas ollows: x 2R, = 0;1withx’= t;x! = xandg = diag(l; 1).Then x x=g x x =t x°and
@ @ @Q? @Q? @2
- N =g — = 2 = — _—
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T he Infrared asym ptotics forbids m assless particles In (1 + 1)-dim ensionalscalar eld theordes, see ]. W e therefore
include the sin plest potential energy density that would be generated by quantum uctuations I:
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with 2 = (2 4y, 2= (¢ 4, 2 2. The masses of the pseudo-N am bu-G oldstone bosons are
respectively and
2. Interactions, how ever, com e from the geom etry:
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and R% is a non-din ensional coupling constant.

In the unit natural system , ~ = ¢ = 1, the din ensions of elds, m asses and coupling constants are respectively:

[2]1=1=R][ 1=M = [ ].Wede nenon dim ensional space-tin e coordinates and m asses:
2 2 2
X
x L= ; P2 —232-—  ; 0< ? 1
1 3
to w rite the action and the energy in term s of them :
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T here are two hom ogeneousm Inim a of the action or vacua ofourmodel: | = Y =0; Y = R,theNorth
and South Poles. Choice of one of the poles to quantize the system spontaneously breaksthe Z, Z, Z, symm etry
of theaction ), . ! ( 1)=» ,;a;b= 1;2;3,to: Z, Zo ; V(1) ;o = l;§. T%ereibr@ the

con guration spaceC = M aps(R ;S%)=E < +1 istheunin of burdisconnected sectorsC = Cyy  Css Cus  Csy
labeled by the vacua reached by each con guration at the two disconnected com ponents of the boundary of the real
line:x= 1.



III. MASSRENORMALIZATION

The eld equations

" P, @ # "p 2 Q P, @ #
2 1+ @ P:12 + 1 - > -1 3 + 1 = 0
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becom e lnhear for snall uctuations,G (x )= Y + G (x ),around the vacuum :
2 Gigx)+ Gi(gx)=0(G G ) ; 2 Go(gx)+ 2 Goy(x)=0( G G ) : (3)

W e shall need the Feynm an rules only for the fourwvalent vertices. Besides the two propagators for the (pseudo)
N am bu-G odstone bosons there are three verticesw ith four extermal legs. T he derivatives appearing in the interactions
induce dependence on them om enta In the weights. Thisalso a ects the sign and the com binatorial factors. N aturally,
there are m any m ore vertices in this m odel, but we list only the vertices that contribute to the selfenergy of the
N am bu-G oldstone bosons up to one-loop order.

Table I: Propagators

Particle Field P ropagator D iagram
i
N am bu-G odstone G 1 (x P R T
1 ( ) kg k2 14+ i" .#.
i
N am bu-6 oldstone G2 (x ) P S TR ko .

Table II: Fourth-order vertices

Vertex W eight Vertex W eight Vertex W eight
k | .k L, k >
N 4 v
K AN K g K
N
235 P 235 P g 235 P
R R?2 . R?2

2 4
7N
NN N
s N N
p q s /P q N\~ p g\

A . Plane waves and vacuum energy

T he general solution of the linearized el equations (3) governing the am all uctuations of the N am bu-G oldstone
elds is:

r
1 1% 1 . . . .
Gi(x0;x) = = = ay (k)e Horor x4 g (k)efkoxe Hx
2 1 X 214 (k)
r
1 lX 1 iqp x igx igp xo + igx
G2 (xg;x) = P 1 pP—— ax@e™"’ +a,(@e 77 ;
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whereko= !1(k)="k?+ 1, = !2(@= o+ 2,and thedispersion retionsk? k* 1=0, 2=0
hold
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W e have chosen a nom alization interval of non-din ensional \length" 1= L, I = [ El;zl}, and we In pose PBC on
the planewaves so that: k 1= 2 n,q 1= 2 nawithn;;n, 2 Z. Thus,K( acts on L? = 2:1L2(Sl),andjts
dni 0 ’ 10 ’
: ISR, _ dk _ 1
spectraldensity at the 1! 1 Imitis: ¢ (k)= 0 dn = 5 01

dg
From the classical free (quadratic) H am iltonian
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one passes via canonical quantization to the quantum free H am ilttonian:
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T he vacuum energy is:
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B . One-loop m ass renorm alization counter-term s

T here are four ultraviolet divergent graphs in one-loop order of the ~-expansion contributing to the G1(x ) and
G, (x ) Nam bu-G oldstone bosons selfenergies:

Selfenergy of G,

p p p p
. 7 5 . . 7 B .
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Selfenergy of G;
p+k, N p+k
21 ? 21 ? 5 1Y )
R 2 I(1) R 2 ) = A\ ° s +
p p p p
Z .
21 ? dk 1 21 ? dk 1




where we have com puted the kg integrations by using the residue theorem . W e only show this step explicitly
in the com putation of the selfenergy of G; because it su ces to point out how to regularize these divergent

Integrals by m eans of spectral zeta functions. The regularization jist m entioned will be perform ed Jater in
Section xV D .

The p p factor becom es constant when the mom entum is put \on shell in the extermal kegs, p p = 1,
P p = 2°.Thisprocessgives us the m ass renom alization counter-+em s. T he Lagrangian density of counter—
termm s shown In Table ITT m ust be added to cancel the above divergences exactly. W e also show the vertices

generated at one-loop level.

Table ITT: O ne-loop counter-tem s

D iagram W eight

Iv.. ISOTHERMAL COORDINATESAND TOPOLOGICAL KINKS

In this Section we shall use the isothem al coordinates in the chart S> £(0;0; R )g obtaied via stereographic

pro gction from the South Pole:

T

R
= 17 2 z - pzi : (4)

1+R—3 R+sg(3) R?Z

)
[ASRN]

2
2

T he geom etric data of the sphere in this coordinate system are:

4R * 4R *
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T he kinetic and potential energy densities read:

T(L; %)= 2R* e, e, 1+ @ 2@, 2
R2+ L1 15 2 2y t t t t

V(Y= 2R* Q. @, 1+ @ 2@ 24 11, 222
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From the action S = d?x [TV Jonederives the el equations:
i ‘ ‘ k i1 21 2 i1 2 Pl 2202
2 0+ @ e e op e fp 200 o 0 (5)
which for static con gurations reduce to:
2 i ik 11 2 2 2
a * idj_+i1+2i2 o(1 1y iy + — 0 . 6)
dx?2 * 9% dx 1 2 1 2 R2+ 1 14 2 2 .



A . TopologicalK kinks

Wetry the '= 0orbit n (@) and reduce thisODE system to the shgle ODE :

d2 2 2 2 d 2d 2 5 2 2
_— = 1 2— (7)
dx?2 R2 + 2 2 dx dx R2+ 2 2
()= 0 ; fx)= Re "y ®8)

R2 2
EK ]= dx —— =2 R? : 9)
1 cosh™( (x Xp))

In (8), x¢ is an integration constant that sets the kink center. The kink el com ponents in the original coordinates

K K R K
1 x)=0 ; 5 (x)= ml ; 5 (x)= Rtanh[ x x9)]
0

are either kink-shaped, % ,orbeltshaped, § . It is clear that the four solutions () belong to the topological sectors
Cys or Cgy of the con guration space. Lorentz nvariance tells us that

1 5 x vt
x x)=20 ; x x)= R expl (pﬁ X0 )] (10)
v

are solitary wave solutions of the fiilll eld equations (3).

B . Second-order uctuation operator

Let us consider sm allkink uctuations:

®)= x )+ (x) ; x)= ("x); *(x))
Here, ¢ (x)= ( % (x); 2 (x)) is the kink solution and (x)= *(x) @1 + 2(x) @2 2 (TS?) are vector elds along
K K @ @
the kink orbit —expressed in the orthonom albasis h@@ . ;@@j i= Y ofTS? —giving the sm all uctuations on the kink.
1 2
From the tangent vector eld to the orbit g (x) = dd;: @@1 + dd}f @@;Z,the covariant derivative, and the curvature
tensor
o i 5 * ¢ 0 0 o 5 x 1 @
ro (x)= )+ %x(x) (®) g (x) a1 ; R(gxi )x = g ®)-&x) (X)R-ljk(K)@—l ;
we obtain the geodesic deviation operator:
D 2 D ?
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W e also need the Hessian of the \m echanical" potentialU ( L, 2y= wv(1t; 9
: e’u eu n @
r gradU (x)= ~(x) W(K) ]IJ(K)F(K) gn@_l
T he second-order uctuation operator around the kink ¢ is:
2
D 0 0
K) x)= x)+R( g7 )g +r gradlU (x) : (11)

dx?



C. Small uctuations on K kinks

Application to theK kink  (x)= ( Il< (x)= 0; 12< (x)=Re *)gives:
ECEE! gl , ) . Q
K) = o2 + 2 (1 tanh x))a 1 2 °+ 2 “tanh x F
dz 2 d ? d
7 t2 (@ fanh x)——+ (1 2tanh x) ° Tz (12)

T he second-order uctuation operator in the orthonom alfram e is a second-order di erential operator that has rst-
order derivatives both in the direction of the kink orbit, @@;2 , and the orthogonaldirection to the orbit @Ll .

A fematively, we can use a parallel frame, (x)= l(x)@@l + 2(x)@@2,alongtheK kink orbit:
38
gt 294 (1 tamh) lx)=0 ) lx)=1+e 2%
+ h(xk) P k=0
dx > 2
"S-+ (1 tanh) ?(x)=0 ) x)=1+e 2 *

In this parallel fram e the vectors of the basis t(x )% point in the sam e directions as @@ + but theirm odulivary along

the kink orbit:

@ Q @ @ x
hl(X)Fi 1(X)Fl=h2(x)pi 2(X)Fl= 1+e 2%y
W ritihg the uctuations in this frame, (x)= 1 (x) l(x)@@l + 2(x) 2(x)@@;z,we nd:
d2 1 2 2 @ d2 2 2 2 @
K _ 1 1 1 - 2 2 2 _= 13
X)) (%) axZ + ( 7coshz x) A + (%) e + ( o x) @ 2 (13)

In the parallel fram e the second-order uctuation operator isa transparent (re ection coe cient equalto zero) Posch—
Teller Schrodinger operator both in the parallel and orthogonaldirections to the kink orbit.

T hisanalysis isdeceptively sin ple: acting respectively on ' (x)= (1+ e 2xyIixyand ?(x)= (1+e 2 *) 2(x) the
term sw ith rstorder derivatives .n (1) disappearand (1 + e ? *) factors out, leaving very wellknown Schrodinger
operators acting respectively on ! (x) and ?(x). The key point is that the di erential operators in (I2) and {I3)
share the eigenvalues although their eigenfiinctions di er by the (x) factors. T he spectral fiilnctions associated are
thus identical and it seem s w ise to use the best known form . W hat we have shown here is the geom etricalm eaning
ofthe *(x) factors: they provide a parallel fram e along the kink orbit.

D . The spectrum ofsm allkink wuctuations

Changing from vector to m atrix notation,
@ @
@ ! 0 @ ?

wenow use the di erential operators of form ula (13) to w rite the linearized el equations satis ed by the sn allkink
uctuations in the parallel fram e:

Mex) = p x)+ N(x) Ki(tx) ; “(tx)= § x)+ (x) Ka(tix)
@% K, @% K,
+ K Ki=0 ; + K K,=0
e 11 Ka e 22 Ko
T herefore, the eigenfunctions of the di erential operator
| |
! - . !
K = K 0 _ a2 T 1 cosh? x e 20 , 2 (14)
0 Ko 0 axz t Comn? x

provide the general solution of the Jinearized equations via the separation ansatz: Ki(5x)= g (t) 1(x), K,(t;x)=
g, (t) 2(x). The eigenvalues and eigenfunctions of K are shown in the follow ing Table:



E igenvalues E igenfunctions E igenvalues E igenfunctions
T T T T
v £ 2(x) | oo ©_ 0 _ (1)
0 0 | £o(x) cosh? x |
fl(x)= e *(tanh x ik) 0
2 2 2 2 1.2
"= g+l k)= 27+ 1) ‘
0 z ff(x)= e *(tanh x ik)

The spectrum of K 5, contains a bound state of zero eigenvalue -the transhtional m ode- and a branch of the
continuous spectrum , w ith the threshold at "§ (0)= 2. SpecK 11 also is form ed by a bound state of positive eigenvalue
and a branch of the continuous spectrum starting at "f (0) = 1. Periodic boundary conditions in the [ 51,51 ] Interval

require:
q l+1(q):21’11 ; k l+2(k):2n2 ; 1’11;1’1222 H

such that the phase shifts and the induced spectraldensities are:

1(@) = 2arctan— = (q) ; 2 (k)= 2arctan— = (k)
q
@=- e ; = = 1+ L2¢ : as)
Kllq_2 dqq ’ K22 —2 ak .

L
In sum ,K also acts in the H ibert space L? = _,L?(s%),and its spectraldensity in the lim it of very large radius
of the circle is:

dn, 1 d 10
sl)= T = Mgk
dq

V. ONE-LOOP SHIFT TO THE CLASSICAL K KINK MASSES IN THE MASSIVE NON-LINEAR
S°SIGM A M ODEL

A . Zero—point kink energy

T he general solution of the linearized eld equations governing the sm allkink uctuations is:

1 1 ipl 2x ipl 2x
Ki(Xg5x) = > 19——19:2 Ay :€ ‘+ A, e ¢ £ 2 (x)
21
r
1% 1" ©
+ = = Ag(k)e M EROEl )+ AL (k)M KXo F, Y(x)
1, 2nk)
r
1X o ©
Ka(xoix) = 5 = p=== Az(kle UE )+ A, (k)e g Ax)
2 1 2", (k)

N ote that the zero m ode is not included becausg only contribute to quantum corrections at two—-loop order. In the
orthogonal com plem ent to the kemel of K 5, In 2: 1 L? ('), the elgenfiinctions of the K operator satisfying PBC
form a com plete orthonom al system . T herefore, the classical free H am iltonian

. ( )
g @ E + g d ¥ ex ex + K K K
- <
% 2 -1 @Xo @Xo
! #
P X X2
- E + 5 1 2 A, :A; 2+A; :A; . + " kK)A kA K)+A KA (K))g



can be w ritten in term s of the nom alm odes of the system in the quadratic approxin ation. From this expression, one
passes via canonicalquantization, K (k);XY (q)]= Ko K, - ;AAB{ , 1= 1, to the quantum free H am iltonian:

H@ =g+ 1 2 &Y K, -+ > "ok) AY K (k) +
k =1
T he kink ground state is a coherent state annihilated by all the destruction operators:

K k)PKi=XK, :P;Ki= 0;8k;8 ;o L) PKi= S Pk i

T he kink ground state energy is:

R P
E+ E=h;Kjf @K i= 2 R? to 1 s " k)= 2 R2 +§Ter% : (16)

B . Zeta function regularization and C asim ir kink energy

1

Both Ty 2K and Tn,:K ? are ultraviolkt divergent quantities: one sum s over an In nite num ber of eigenvalues,
and a regularization/renom alization procedure m ust be Im plem ented to m ake sense of these form al expressions. W e
renom alize the zero-point kink energy by subtracting from it the vacuum energy to de ne the kink Casin ir energy:

h i

1

4EC =4E 4E,= 5 Tr:K? Tr:KJ

T he subtraction of these two divergent quantities is regularized by using the associated generalized zeta functions,
ie., we tem porarily assign to 4 E€ the nite value:

2 s 2 s
4 EC (S): E - TrL2K S TrL2K0 S = E - [K (S) K (S)]
at a reqular point ofboth x (s) and ,(s). Here,
X X
x (s)= S, k,(e)= o° ; 2 SpecK ; (2 SpeK, ; s2C
SpecK SpecK o

are the spectral zeta functions of K and K o, which arem erom orphic fiinctions of the com plex variable s. An auxiliary
param eter w ith din ensions of inverse length is used to keep the physical din ension right and we shall go to the
physicallinit E € = Iim . E € (s) at the end of the process.

s!

C . Partition and generalized zeta functions

Because analytical inform ation about the spectrum of K is only available at the the lim it of large 1 (bound state
energies, phase shifts and spectral densities) it is better to consider rst the partition or heat fiinctions:

Z Z
l 1 24,2 1 2 2 l 2
Tn:e K°=2— dke ¢ FTHL 4 dke ~®TFD =194:(e + e ) 2 R
1 1

N ote that here we have replaced k and g de ned in Section x3.1 by k and g for a better com parison between the
spectra ofK o and K . The PBC spectraldensity ofK o is thus obtained by replacing by . TheK -heat function is
also expressed in term s of Integrals over the continuous spectrum at the 1= 1 lin it, rather than in nite sum s. The
Integrals, how ever, m ust be weighted w ith the PBC spectral densities:
Z .
ooy 1 . dkd_he CRPr1) L o D *
2 1 dk

Tr.e © = Tp:.e “°+e @

P
Trn:e “°+e @ D EE( ) Ere( )
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T he error and com plem entary error functions of , a ctitious inverse tem perature, arise and the asterisk

= =7
m eans that we have not Included the zero m ode because zero m odes do not enter the one-loop form ula {Id).
T he generalized zeta functions are M ellin transform s of the heat fiinctions:

1 4 171 1 1 1 (s %) 1
Ko (s) = —— d 51TrLze e — dk + = p— 2 1+
(s) o 2 1 [ 2k?+ 1F [ 2k?+ Z2F 4 (s) 2s 1
Z 4 1
1 s 1 K (s+ 3) 2 1 1.3 2 1
x (8) = ) . d Tr:ze = k,(8)+ o= ® @ 2)s+%2F1[EIS+ 3i5i 77 S %

W e indeed nd m erom orphic functions of s w ith poles and residues determm ined from the poles and residues of Euler
(s) and G auss hypergeom etric ,F; [a;b;c;z ] functions ].

In the APPEND IX Iwe show that the kink Casin ir energy in the physical lin it s = % is the divergent quantity :

c _ .2 g 16 ©oa00) 1 3 §
E = 2— 'JJ!IHO;-F 2]1'1—2+ Jl’lﬁ 2+ 2F1 [E,O/E/ 1 21 7 <17)
<1 <) + 2
w here 2F1(O’1’O’O) [% ;O;%; T | is the derivative of the G auss hypergeom etric function w ith respect to the second
argum ent.
D . Zeta function regularization of the selfenergy graphs and kink m ass renorm alization

It ram ains to take the e ect ofm ass renomm alization into account. T he contrbution to the kink energy due to the

m ass renom alization counter-tem s is:
Z Z
2
AEYMR = dxLe g ( 50 §1)= I+ I )] dx ) 5re=2 M)+ I()]
In the nom alization interval of length 1 the integrals becom e In nite sum s

Z & z ®
. dk 1 1 1 1% dk 1 1 1
2 2 k2+ 1 21 _ | (2n?+ 1)z 2 2 2k2+ 22l _ . ( 2n2+ 2)z

that can be regularized by using zeta functions:

1 z (s+ 1) 1 2 s+ 1)
I(l)= — Iin (— )" t1—=" 1) ; I(%)= — Im (—)Ff"t1—=" 1) ;
( ) L i %< 2) (S) Ko11 (S+ ) ( ) L s %( 2) (S) KOZZ(S+ )
such that 231:
2 § g s+ 1 (S+ é) 1
EMR(S)z _p4:<_2) (s) 1+ 2s+ 1

In the APPEND IX I it is proved that the physical lin it s = %jsa]soapoleof E MR (s):

2

M R . 2 2
E = ImS+2h—+204 2) b : (18)

Thediergenttermsin E ¢ {Id)and E " ® (20),aswellas the -dependent tem s, cancel each other exactly and
the oneloop K kink m ass shift is:

2 p 2 P
E- — 24 F<0;1;0;0)[} OE ] m@ %) = —p S arccos 1 2] : 19)
2 2 2" 12 :
In formula (19) we have also written the result found in our derivation a la CahillkC om tetG lauber of the quantum
correction, see @]. T he heat kemel/zeta function result is —f( ) whereas the CCH formula leads to —g( ),
w here
2 p 2
£( )= 14 sp oo g3 LR ; - 2 ST
()= +52 1 [E/ i5iT 7 > ( ) H g( )= ———————arccos

D espite appearances, £ ( ) and g( ) are dentical functions of 2 [0;1], as the M athem atica plots in the Figure 1
show . T his is rem arkable: there isno m ention about the analytic dentity between the functions £ ( ) and g( ) in the
am ple Literature on special functions. N evertheless, they trace ddentical curves as functions of
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Figure 1: Graphics of £( ) (left), g( ) (center), and £( ) and g( ) plotted together (right). In the Figure, is labkeld as s in
the abscissa axis.

VI. HIGH-TEM PERATURE ASYM PTOTIC EXPANSION

T he exact heat or partition function can be w ritten in the fom :
I I

< Tn:e o 0 1 > p— e 0
TrLZG = tr 1 K = p:+ e Erf[ 1 tr 2 H
0 Tn:e 22 4 0 e

where \tr" m eans trace In the m atrix sense. T here is an altemative way of com puting this quantity by m eans of a
high-tem perature asym ptotic expansion. A Ithough we have the exact form ula in our system , we shall also perform
the approxim ate calculation, which is the only one possible in other system s In order to gain control of this second
approach in this favorable case.

In the APPEND IX IT it is shown how the coe cients of the pow er expansion of the K -heat trace

K 1 n
Tre = p— c, K) tr ) ; (20)
4 0 e
n=0
the Seeley coe cientsc, (K ), areobtained through integration ofthe Seeley densities over the w hole line. T he densities
satisfy recurrence relations tantam ount to the heat kemel equation starting from a general potentialU (x). In our
problem wem ust solve the recurrence relations betw een these densities for the potentialU (x) = cos2h—22x , essentially

the sam e potential as for the sine-G ordon kink, see E]}. W e list these coe cients up to the twentieth order in Table
v

2n 1 2n 1

njc K )= n & (K )= o1
1 a: 8| 252587 10 ° = SR ——
2| 266667 9| 297161 10 ° o lf05869 10 s
3| 1:06667 10 312801 10 ° 1? iigi; 12 14
4| 0304762 11| 297906 10 7 | s
5| 0:0677249 12| 259049 10 ° e 2:36546 10 e
6| 00123136 13| 2:072239 10 ° 22 éi;igz 18 16
7|18944 10 ° 14| 15351 10 *° :

Table IV : Seeley Coe clents

W rite now the spectral zeta functions in the fom :

Ko (s) = x,(s;b)+ Bg, (s;D) ' »
z z :
1 1 P e 0 ' sz e 0
= P tr d 2 2 + tr d 2 2
(s) 0 0 e b 0 e
" | ! #
1 1 1. 1
_ — tr [s 3ib] 0 . . s 3] 0 .
s) 4 0 = [s 3; “b] 0 = s 3; bl
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x (8) = «x (8;b)+ Bk (s;b) |
L % ‘o . e o 1 %3
= —Pp=— oK) tr a stn o2 , i d °'Th.e
(s) 4 n=0 0 0 e (s)
' z
1. 1
- 1_ oK)t [s+n  3;0] 0 o . 1 4 °lTn.e
(s) 4 0 —= [+n ;i 0] (s)

The incom plete Euler Gamm a functions [z;a]are m erom orphic functions of z whereas Bk , (s;b) and Bk (s;b) are
entire functions of s. The gplitting point of the M ellin transform is usually taken at b= 1. W e leave b as a free
param eter for reasons to be explained later.

N eglecting the entire parts, the zeropoint energy renomm alization

X 1
1 1.
x (s;b) K, (s;b)= —p— o K )tr [s+n ;b 0

(s) 4 n=1 0 ey St n %; 2b]

gets rid of the ¢y (K ) term . T he contribution of ¢ (K )

4EC = po Iim e o [s+ 1 ;0] 0
w _s' < 2 (s) 0 ]2-5 [s+ %r 2b1
is exactly canceled by the m ass renomm alization counter-temm s:
|
1 2ot 2 [s+ 2 ;0] 0
MR . 7
4 E = — Im — tr 2 1.2
sl 5 (s) =T [s+ o7 b]
W emust now subtract the contribution of the zero m ode:
1 .
g (8ib) = k (s;b) —— Ilm d °'le
(S) "o 0
1 1 N o
= x (s;b) ——Im — [s;"bl= x (s;b)
(s) "o s (s)
F inally, the high—tem perature one-loop correction to the K kink energy is:
| |
2 s »® 1 ’
) 1 1 s+ n =;b] 0 I
25! % (S) 4 e 2 0 T [S+ n 57 b} S
In practice, truncation of the series is also necessary:
n ! #
2 1 X h  1;b] 0
4 E®@Ng)= —Pp= P=+ p— G (Kt 2 5 : (21)
4 b 4 _, 0 — M 1; °b]
U sing form ula {ZIl) to calculate the one-loop kink m ass shift, we adm it an error of:
|
Xo h 1; 2b] X 1
4E 4EmNo)= - GE) b bl ——m— + GE) M 1) 1+ —
n=2 n=Ng+ 1

W eo era Figure where form ula (21) has been applied for Ny = 20 and severalvalies of . T he very good precision
of the asym ptotic form ula was achieved by adapting the param eter b to the value of . For instance, we have taken
b= 1000 for = 0d,b= 100for = 0:3,b= 50for = 05,b= 20for = 0:7,b= 10fHr = 09,and b= 10
for = 1. Physically, this m eans that the Iighter the particlemass ( ?) is, the longer the integration interval in the
M ellin transform m ust be taken to m Inin ize the error produced by the neglected entire parts. In practice, we have
chosen b in each case at the frontier near the point ¢ 2 (0;1 ], where the asym ptotic form ula of the K -heat trace
departs from its exact value.
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Figure 2: Points obtained using the asym ptotic expansions for several values of plotted on the exact curve giving the one-loop
m ass shift as a function of

VII. CONCLUSIONS AND FURTHER COMMENTS

In sum ,wemay draw the follow ing conclisions:

1.W e have obtained the one-loop m ass shift to the classicalm ass of the stable topological kink that exists in a
m assive anisotropic non-lnear S?-sigm a m odel.

2. In the isotropiccase, = 1,ourresultagreesw ith the answer provided by other authors: the one-loop correction
is tw ice (in m odulus) the correction for the sine-G ordon kink, see E] and ].

3. 0 ur procedure is based on the heat kemel/zeta function regularization m ethod. T he result is dentical to the
answ er achieved by m eans of the C ahill-C om tetG lauber form ula.

This is a rem arkable fact: the CCH formula takes into account only the bound state eigenvalues and the
thresholds to the two branches of the continuous spectrum of the Schrodinger operators that goverm the eld
an all uctuations. It is essentially nite. O ur com putation involves in nite renomm alizations. T he criterion
chosen to set nite renom alizations o m odi cation of the particle m asses at the one-doop level, equivalent to
the vanishing tadpole criterion in linear sigm a m odels-does exactly the pb.

4.W e have also derived a high-tem perature approxin ated form ula for the m ass shift, relying on the heat kemel
asym ptotic expansion. W e stress that we have In proved a form er w eakness of ourm ethod. T he approxin ation
to the exact result was poor for light m asses -non-din ensionalm ass < 1-in the m odel studied in @ ]. W e have
achieved a very good approxin ation in this paper even for light particles by enlarging the integration interval
of the M ellin transform and considering an optin um num ber of Seeley coe cients. W e believe that this is a
general procedure, w orking also in m odels w here the exact generalized zeta function is not available.

Asa nalcomment,we look forward to addressing the quantization procedure for: (a) M ultisolitons and breather
m odes of this m odel. (b) Stable topological kinks that m ay arise in other m assive non-linear sigm a m odels w ith
di erent potentials, eg., quartic, and/or di erent target m anifolds, eg., S 3.
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APPEND IX I:K ink Casim ir energy and m ass renorm alization near the pole

The Casin ir kink energy is, see Section x. V C :

c : c - 207 (s %) 2 1 1.3 2 1
E“ = S!]Jm% E “(s) = S!]Jm% = = @) FEEIEE F1l5is+ 5550 =] S %
B - P (u) 2 1. 2 1 .
B T B S S TR e L L A ST '
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but s = % isapolkof E € (s). To nd the residue, we expand this function in the neighborhood of the pole by
using the follow ing results

i ) ' —p—l + In 2+]n4 2 ; ! Lo, "4 2In ?)
2 ( %+H) 2_ " 2 ’ %+lv 2"
2 2 o000 L .3 g
ﬁzFl[%;";%;—zl' 2 2"(n@ %) LF, 5050 T3
w here 2F1(O;1;O;O) [% ;O;%; =] is the derivative of the G auss hypergeom etric function with respect to the second
argumentandwemadeuseoft'heﬁ-,ictt'hatgFl[%;O;%; T 22 1= 1.
T he physical lin it s = %jsa]soapo]eof E MR (s),see Section x. V D :
EME = p—2 1im - @) l+1f ]jm1+"]1'12 1+ 1) 1"(1) 2 "n ?%)
4_” 0 2 ( %+ n) 2" 2 "o 2 " 2
.2 ? 2
= - ';?[n07+ 2n—+ 2(n4 2) In (22)
APPEND IX II: The heat kernelexpansion
Consider the K g—and K -heat kemels:
@
@—+Ko Kg,x;yi )=20 i Kk, x;y;0)= (x v)
@
@—+ K Kx (x3y; )=0 ; Kk (x;v;0)= (x vy) ; (23)
which provide an altemative way of w riting the K o—and K -heat traces:
ZEl ZEl
Txze Ko — 1m dxKg, (X;x; ) ; Tx:e = Im dx Ky (x;x; )
1 1 1 1
Note that the form of the K -heat equation 23, @l+ Ko U®X) Kg (x;v; )= 0, suggests a solution based on

the K g-heat kemel: Kk (x;y; = Ck (X;v; Xk, (x;y; ). Thedensity Cx (x;y; ) satis es the in nite tem perature
condition Cg (x;v;0)= Iy yn and the transfer equation:

e x ye@ @?

a + % ax? Cx (x5y; )=UX)Cx x;y; ) : (24)
o)

Next we seek a power series solution, Cx (x;y; ) =

i:o c, (x;y) ™, of {24), which becom es tantam ount to the
recurrence relations:

Qe @%c,
NG, (xjy)+ (2 y)——(x;y)= > Sy + U )G 1Y) (25)
@x @x
In fact, only the densities at coincident points x = y on the lJine are needed. W e ntroduce the notation *'C,, (x) =
Imy oy @@kxck" (x;v) to write the recurrence relations for the Seeley densities (and their derivatives) In the abbreviated
form :
2 3
k .
1 Xk QU ), -
We,m)= ——4% 2, | (x) ——® Jc, 1 x)5

n+ k 0 J @x7J
§{1e (Seeley) coe cients ¢, (K ) are the Integrals over the in nite line of the densities ¢, (x;x), ie., ¢, K ) =
dxc, (X;x).
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