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1. Introduction

The concept of solitary waves was brought to light in 1834 by the Scottish civil engineer Scott
Rusell, chasing a single “wave of translation" on a horse along a channel in Edinburgh. Unlike
ordinary dispersive waves, these non-linear waves do not fade away and they preserve their shape,
size and speed even they undergo weak perturbations. A major step forward in the conceptual
understanding of this counterintuitive phenomenon was the discovery of the Korteweg-de Vries
equation in 1895 which admits solutions exhibiting the features of solitary waves. Moreover, there
are stronger relatives of solitary waves among the solutions of the KdV equation -the solitons-
which even survive collisions amongst themshelves. During the celebrated sixties of the past cen-
tury, a powerful technique was invented, the inverse scattering method, which allowed the solution
of many “integrable" non-linear partial differential equations in the class of the KdV equations. For
a recent review on the concept of soliton associated with all these non-linear equations, see, e.g.,
Reference [1].

Our theme in these Lectures, however, is the analysis of the quantum descendants of these
classical non-linear solitary waves/topological defects in one and two spatial dimensions. In 1961,
Skyrme [2] discovered that a certain extension of the non-linear sigma model, the so called Skyrme
model, has both 3D dispersive and solitary waves among their solutions. Because the model at-
tempted to describe the low-energy hadron phenomenology, and because solitary waves are formed
from a heavy classical lump of energy, the idea is natural: upon quantization, dispersive waves
become light mesons -pions- and solitary waves give rise to heavy baryons -protons, neutrons-.
This bold idea prompted the task of investigating solitary waves in the quantum domain, mainly
performed in [3], [4], and [5] as far as our Lectures are concerned. The main examples were re-
ported and the conceptual framework was extraordinarily well clarified in [6]. We insist that there
are many more authors who contributed to developing this research topic. Some of them took an-
other approach, and there are many very good reviews in the Proceedings of several Schools, and
even important old and modern books. Most of the pertinent bibliography is collected in Refer-
ence [7]. Here, we only cite the papers and reviews with an approach close to ours: theh̄/weak
coupling/semiclassical expansion.

The plan of these Lectures is to describe a method for computing one-loop fluctuations in
one-dimensional and two-dimensional topological defects based on the heat kernel/zeta function
regularization of ultraviolet divergences. The method began in Reference [8] with the calculation of
the one-loop mass shift to the masses of the paradigmatic sine-Gordon andλφ4

2 kink as a test. In the
same paper, some of us calculated the one-loop mass corrections to other two-scalar field theoretical
models with only one field but with insufficient information about the kink fluctuation spectrum to
apply the conventional Dashen-Hasslacher-Neveu approach. In References [9] and [10], the same
group generalized the method to provide one-loop mass corrections for two-component topological
kinks: i.e., the models addressed have two scalar fields and the kinks considered are such that the
two components of the scalar field are not zero for the kink solution. The kink fluctuations of
such type of kinks are determined by non-diagonal Schrödinger operators and the only possibility
for managing the spectral information needed to compute one-loop mass shifts is the heat kernel
expansion.

Prior to our work, at the end of the last century, there had been a renaissance in interest about
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the problem of the quantization of classical lumps. The new impetus came from the subtleties
arising in the quantization of supersymmetric kinks. Several groups at Stony Brook/Wien, [11],
[12], Minnesota [13], and MIT [14] addressed mixed issues in the problem by studying the im-
pact made by using different types of boundary conditions - PBC, Dirichlet, Robin-, regularization
methods -energy cutoff, mode number cutoff, high-derivatives-, and/or performed phase shift anal-
yses, in connection with possible modifications due to the quantum effects of the central charge
of the SUSY algebra. There are several valuable reviews, of different character and scope, in the
literature on these developments: e.g., [15], [16], and [17].

The stimulus to our work on the quantization of solitons came, however, from the discovery of
kinks in theories with two scalar fields living on a infinite line. In this type of model, there are often
solitary wave solutions such that the two scalar fields are space-dependent for the kink profiles, see
e.g. [19], [18], and [20]. The knowledge of the spectrum of these two-component kink fluctuations
is insufficient to profit from any type of Dashen-Hasslacher-Neveu approach. The only possibility
is to use the spectral zeta function obtained from the heat kernel asymptotic (high-temperature)
expansion. This framework was precisely chosen in the SUSY kink problem in Reference [21].

Kinks are one-dimensional topological defects, but extremely interesting two-dimensional ex-
tended structures were discovered by Abrikosov in Type II superconductors [22]. The phenomeno-
logical Ginzburg-Landau theory allowed the existence of magnetic flux lines when applied to this
type of superconducting materials. Relativistic cousins of Abrikosov strings exist in the Abelian
Higgs model and were proposed by Nielsen and Olesen in 1973, see [23], as plausible candidates
as the basic objects in the early string theory approach to hadron physics. More recently Achucarro
and Vachaspati have discovered even more complex two-dimensional topological defects in the so
called semilocal Abelian Higgs model, the bosonic sector of electro-weak theory when the weak
(Weinberg, mixing) angle isπ2 [24]. This model enjoys a symmetry group that is the direct prod-
uct of two groups:SU(2)⊗U(1). The non-Abelian groupSU(2) engenders a global symmetry
whereas the other symmetry generated by theU(1) factor is local (or gauge). Henceforth, Achu-
carro and Vachaspati christened the topological solitons of this system as semilocal strings. Given
the important r̂ole that these models play in our present understanding of the Standard model, it is
convenient to address the problem of studying the quantum behavior of these two-dimensional soli-
tons, sometimes referred to as ANO vortices or semilocal vortices because the vector (gauge) field
of these solutions is purely vorticial (rotational). This task was successfully accomplished in the
N = 2 SUSY Higgs model independently by Vassilevich, [25], and Rebhan, van Nieuwenhuizen,
and Wimmer, [26].

In the bosonic setting, however, without fermions to cancel a good deal of the bosonic fluc-
tuations, the problem is much more difficult. A good step forward towards this goal was given
in Reference [27] in which the authors calculate the energy of the fermionic ANO vortex fluctua-
tions. We profited from our experience with multi-component kinks to compute the one-loop mass
shifts of ANO vortices with a quantum of magnetic flux in a purely bosonic setting in [28]. To this
end we used the heat kernel/zeta function regularization method, jumping painfully from one to
two dimensions. In [29] our calculations were extended to superposed vortices up to four quanta
of magnetic flux and we attacked the problem of computing one-loop mass shifts to the topolog-
ical solitons of the generalized Abelian Higgs model in Reference [31]. We summarized all this
material in the Proceedings of QFEXT05 and QFEXT07 published in [30] and [32].
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One might think that this is a very narrow and highly focused subject. This way of thinking is
not completely true, for two reasons. First, knowledge of quantum field theories with topological
sectors other than vacuum sectors is not fully settled down, at least at the level of perturbation
theory around the ground state. Second, study of the quantum fluctuations around topological
defects is a problem in the kinship of very important physical phenomena, such as the cosmological
constant problem and the Casimir effect. Vacuum fluctuations (loop graphs) give rise to a non-zero
constant term in the Lagrangian of the Standard Model. Coupling of this Lagrangian to gravity
means that the constant term is a cosmological constant induced by the quantum fluctuations of the
particle fields of an order of magnitude greater than the experimental value of∼ 1060. The Casimir
effect is an even closer physical phenomenon. Vacuum fluctuations also play a central rôle. Here,
the idea is to sum the effect of the vacuum fluctuations in the presence of some set up -parallel
plates, cylinders, spheres- measured with respect to the vacuum. The outcome is the appearance of
physical forces on the plates emerging from the vacuum.

Our goal in this report is to present an analysis of the quantum corrections to the mass of
topological defects developed in different one-dimensional and two-dimensional systems in the set
of References cited above in a manner as unified as possible. The contribution is divided into two
separate parts. In the first, we deal with one-dimensional relativistic scalar fields. We explain the
problem, the method of solution chosen, and the derivation of a compact formula for one-loop
kink mass shifts in a multi-parametric family of deformed linearO(N)-sigma models. Theλφ4

model is a member of this family for only one scalar field:N = 1. Our approach is tested in this
prototypical case, and detailed computations are offered. We also describe the results achieved in
another member of this family withN = 2 scalar fields having degenerate families of topological
kinks. The first part ends with an analysis of the kink one-loop mass shifts of the topological kinks
in the massive non-linearS2-sigma model studied in Reference [33]. Again the model is embedded
in the family of linearO(N)-sigma models, taking the formalλ → ∞ in the case ofN = 3 scalar
fields, a process that ends with a non-linear field theory. Following [34], we compute the mass shift
using the Cahill-Comtet-Glauber formula, see [5].

Part two is devoted to understanding the quantum fluctuations of semilocal strings and Nielsen-
Olesen vortices. The action of the semilocal Abelian Higgs model is considered when the space-
time is the(2+ 1)-dimensional MinkowskiR2,1. The mix of local and global symmetries, the
Higgs mechanism in the ’t Hooft renormalizable gauge, and the Feynman rules are discussed.
We then go on to study the very rich moduli space of topological soliton solutions, all of them
having vorticial vector fields. Numerical solutions of the first-order field equations arising at the
critical point between Type I and Type II superconductivity are calculated in the case of circular
symmetry. These planar solitons become strings seen from(3+1) dimensions. The next task is an
analysis of the semilocal self-dual vortex fluctuations and the subsequent vortex Casimir and mass
renormalization energies. These ultraviolet divergent quantities are regularized via the spectral
zeta function of the second-order fluctuation operators as in kink cases. Unlike kink cases, the
pertinent differentials are6×6- Matrix second-order PD operators. In the background gauge there
are fluctuations corresponding to the Higgs field, a real Higgs ghost field, a complex massless
scalar field, and the two polarizations of the massive vector field. There are also fluctuations of
the Faddeev-Popov ghost field that restore unitarity by compensation of the real Higgs ghost field
fluctuations. The heat kernel expansion allows us the calculation of the one-loop vortex mass
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shift in terms of Seeley coefficients and incomplete Euler Gamma functions. Finally, we provide
numerical results that suggest the breakdown of the classical degeneracy of the semi-local vortices
in favour of the embedded Nielsen-Olesen vortices.

2. Scalar field models in a line

In this first part we report the procedure of computing the one-loop mass shifts for one-
dimensional topological defects developed in [8], [9], and [10]. Ultraviolet divergences are reg-
ularized using heat kernel/zeta function methods - comprehensive reviews of these techniques are
[35], [36], [37]- and the models considered belong to (1+1)-dimensional scalar field theory. We
shall always deal with topological kinks, but in a particular model ofN = 2 scalar fields we must
struggle with the problem of studying fluctuations of a degenerate-in-energy continuous family of
kinks.

2.1 Deformed linearO(N)-sigma models

We shall focus on a multi-parametric family of deformed linearO(N)-sigma models. The
target (isospin, internal,· · ·) space isRN. Let χa,a = 1,2, · · · ,N, denote the coordinates of a point
in RN. The (multi-component) scalar fields are maps from the(1+ 1)-dimensional Minkowski
space to the target space:χa(yµ) ∈Maps(R1,1,RN). Hereyµ , µ = 0,1, denote the coordinates of
a point in the Minkowski space-timeR1,1. We shall use the following conventions for the metric
and volume element:

yµyµ = y2
0−y2

1 = gµνyµyν , gµν = gµν = diag[1,−1]

dy2 = dy0dy1 ,
∂ χa

∂yµ ·
∂ χa

∂yµ
=

∂ χa

∂y0

∂ χa

∂y0
− ∂ χa

∂y1

∂ χa

∂y1
.

The action governing the dynamics of the deformed linearO(N)-sigma model is:

S[χ1,χ2, · · · ,χN] =
1
2

∫
dy2





N

∑
a=1

∂ χa

∂yµ ·
∂ χa

∂yµ
− λ

2

(
N

∑
a=1

χaχa− m2

λ

)2

− ∑a ∑b

a≤ b

λabχ2
aχ2

b −
N

∑
a=1

m2
aχaχa





.

We choose a system of units where the speed of light isc = 1, but we keep̄h explicit because
we shall work in the framework of̄h-expansion. In this system of units the dimension ofh̄ is
mass×length,[h̄] = ML, whereas the dimension of the fields and parameters are:

[χa] = M
1
2 L

1
2 , [λ ] = [λab] = M−1L−3 , [m] = [ma] = L−1 .

Defining non-dimensional coordinates, fields, and coupling constants

xµ =
m√
2

yµ , φa(xµ) =

√
λ

m
χa(yµ) , σab =

λab

λ
, σ2

a =
m2

a

m2

5
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the action reads:

S[φ1,φ2, · · · ,φN] =
m2

λ

∫
dx2

{
1
2

N

∑
a=1

∂φa

∂xµ ·
∂φa

∂xµ
−V(φa;σab,σ2

a)

}
(2.1)

V(φ1(xµ),φ2(xµ), · · · ,φN(xµ)) =
1
2

(
N

∑
a=1

φaφa−1

)2

+ ∑a ∑b

a≤ b

σabφ2
a φ2

b +
N

∑
a=1

σ2
aφaφa .

Besides the usualmparameter, which sets the length scale of the system, and theλ , which sets
the strength of the isotropic quartic couplings, there areN(N+1)

2 non-isotropic quartic couplingsσab

andN σ2
a parameters giving possible quadratic anisotropies1. The rationale behind the choice of

this family of models is as follows: the set of parametersσab = σ2
a = 0,∀a,b corresponds to the

linearO(N)-sigma model. In this case, there areN−1 Goldstone bosons, owing to the spontaneous
symmetry breaking of the globalO(N) symmetry. Goldstone bosons do not exist in(1+1) dimen-
sions, see [38]. Even if we were to start from the linearO(N)-sigma model, the(1+1)-dimensional
infrared asymptotics of these massless fields would generate anisotropic quartic and/or quadratic
terms, such that no globalO(N) symmetry (or any of its continuous subgroups) would remain.
Note that no cubic or linear terms in the fields are allowed because the discrete subgroupZN

2 of
O(N) generated by the internal reflectionsφa → −φa,∀a, would be explicitly broken.

2.2 Vacuum fluctuations

In the parameter range

1 > σ2
a >−∞, σab > max

(
1−σ2

a

1−σ2
b

(1+2σbb),
1−σ2

b

1−σ2
a
(1+2σaa)

)
> 0,a 6= b, 1+2σaa > 0

the constant configurations

(φV(a)

1 = 0, · · · ,φV(a)

a =±
√

1−σ2
a

1+2σaa
, · · · ,φV(a)

N = 0) , a = 1,2, · · · ,N

are stable solutions of the time-independent and static field equations

∂V
∂φa

= 2φa




N

∑
b=1

φbφb + ∑
a≤ b

σabφ2
b +σ2

a −1


 = 0 .

These non-zero constant solutions are thus the2N classical minima of the system. In the quantum
domain only the absolute minima

V(φV(c)

c ) =
σ2

c (2−σ2
c )+2σcc

2(1+2σcc)
, S(0)[φV(c)

a ] =
m2

λ

∫
d2xV(0, · · · ,±

√
1−σ2

c

1+2σcc
, · · · ,0)

are the true vacua. Tunnel effects triggered by bounces turn the relative minimaV(φV(a)

a ) >V(φV(c)

c )
into false vacua [40]. The ground states are built from at least one pair of minima (more than a pair
of absolute minima could exist) and theZN

2 symmetry is broken spontaneously (at least) toZN−1
2 .

1A warning: despite the notation, the possibility that someσ2
a might be negative will not be ruled out.
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Let us denote space-time coordinates in the formx0 = t , x1 = x and let us consider small
fluctuationsφa(t,x) = φV(c)

a +ηa(t,x) around a true vacuum. The action at the quadratic order is

S(2)[φV(c)

a ;η1, · · · ,ηN] =
m2

2λ

∫
dx2

N

∑
a=1

[
∂ηa

∂ t
∂ηa

∂ t
−ηa

(
− ∂ 2

∂x2 + µ2
a

)
ηa

]
+O(η3) (2.2)

where

µ2
a =

∂ 2V
∂φ2

a

∣∣∣∣
V(c)

= 2(
1−σ2

c

1+2σcc
(1+σac)− (1−σ2

a)) , a 6= c , µ2
c =

∂ 2V
∂φ2

c

∣∣∣∣
V(c)

= 4(1−σ2
c )

are the particle masses.
The normal modes of these system with a infinite number of degrees of freedom are determined

in terms of the eigenfunctions of the differential operator:

K0 =




− d2

dx2 + µ2
1 . . . . . . 0

0 − d2

dx2 + µ2
2 . . . 0

...
...

...
...

0 . . . . . . − d2

dx2 + µ2
N




, f a
n (x) =

1√
l
eiknx .

To avoid problems with the continuous spectrum, we choose a 1D “box" of very large but finite
lengthl = mL√

2
, and we impose periodic boundary conditions:f a(x+ l) = f a(x). K0 therefore acts

on the Hilbert spaceL2 =
⊕N

a=1 L2
a(S1) and the eigenvalues

K0 f a
n (x) = ω2

a(kn) f a
n (x) , ω2

a(kn) = k2
n + µ2

a , kn =
2π
l

n , n∈ Z

are obtained from wave numbers labeled by the integers.
Classically the system is tantamount to a infinite numerable set of uncoupled oscillators with

frequencies given by the eigenvalues ofK0 that become quantum oscillators upon canonical quan-
tization. The free quantum Hamilton

Ĥ(2) =
h̄m√

2

N

∑
a=1

∑
n∈Z

ωa(kn)
(

b̂†
a(kn)b̂a(kn)+

1
2

)
(2.3)

is given in terms of the creation and annihilation operators,[b̂†
a(kn), b̂c(km)] = δacδmn: the quantum

disguise of the Fourier coefficients. Note thatĤ(2) is proportional toh̄. In general, the operator
Ĥ(2 j) coming from the2− jth-order fluctuation term in the expansion of the classical action is
proportional tōh j . Therefore, result (2.3) is obtained in the first-order (one-loop) of theh̄-expansion
(loop expansion).

The vacuum state, annihilated by all the destruction operators, is a coherent state, and is an
eigen-state of the field operator:

b̂a(kn)|V;0〉= 0 , ∀a, ∀kn , φ̂a|V;0〉= 0,a 6= c, φ̂c|V;0〉=

√
1−σ2

c

1+2σcc
|V;0〉 .

It is clearly a ground state of the quantum system with energy:

〈0;V|Ĥ(2)|V;0〉=
h̄m

2
√

2
TrL2K

1
2
0 .
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2.2.1 Spectral zeta function regularization, theK0-heat equation kernel, and theK0-heat
trace

We usually measure the energy of any state in QFT with respect to the vacuum or ground state,

or, equivalently, we set̂H(2)|V;0〉= h̄m
2
√

2
TrL2K

1
2
0 |V;0〉 as the zero-energy level. Important physical

phenomena such as the Casimir effect or the cosmological constant problem have taught us that we
must be cautious about using this calibration. In particular, in our system there are other topological
sectors and it is convenient not to set the energy of the ground state in the vacuum sector to zero a
priori in order to allow a comparison with the energy of the ground state in the kink sector.

The problem is thath̄m
2
√

2
TrL2K

1
2
0 is a divergent quantity that, one way or another must be regu-

larized. Several regularization methods have been proposed in the literature: cut-offs in the energy
or the number of modes, high-derivatives, etcetera, see, e. g., [3], [4], [14], [15], [17]. As in Ref-
erence [21], however, we shall regularize the vacuum energy using the zeta regularization method.
Instead of computing theL2-trace of the square root of theK0 operator, we calculate the spectral
zeta function -the−s-complex power of theK0 operator:

ζK0(s) = TrL2K−s
0 =

N

∑
a=1

∞

∑
n=−∞

1

(4π2

l2 n2 + µ2
a)s

=
N

∑
a=1

E(s,µ2
a |

4π2

l2 ) , s∈ C . (2.4)

The series in (2.4) are convergent only ifRes > 1
2 although conventionally they are analytically

continued to the wholes−complexplane to find the Epstein zeta functions, all of which are mero-
morphic functions ofs, see [36]. The central idea of the zeta function regularization method is to
assign to the divergent vacuum energy the finite value

〈0;V|
(

Ĥ(2)
)−s

|V;0〉= 2s−1h̄µ
(

µ2

m2

)s

ζK0(s)

at a regular points∈C of ζK0(s). µ is a parameter of dimensionL−1 necessary to keep track of the
right dimensions.

The analysis of the associatedK0-heat equation kernel
(

∂
∂β

+K0

)
KK0(x,y;β ) = 0 , KK0(x,y;0) = δ (x−y)

will help us to unveil the structure ofζK0(s) as a meromorphic function. Hereβ = h̄m
kBT is a non-

dimensional inverse temperature because the dimension of the Boltzmann constant in our system
of units is[kB] = ML. In terms of the eigenfunctions and eigenvalues ofK0, one can express the
heat kernel in the form:

trKK0(x,y;β ) =
1
l

N

∑
a=1

e−β µ2
a ∑

n∈Z
e

2π
l in(x−y)e−β 4π2

l2
n2

=
1
l

Θ

[
0
0

]
(
x−y

l
|i 4π

l2 β )
N

∑
a=1

e−β µ2
a .

The notation used for the Jacobi Theta function, see e.g. [39], is:

Θ

[
a
b

]
(z|τ) = ∑

n∈Z
e2π i(n+a)(z+b)+ (n+a)2

2 τ) ; a,b = 0,
1
2

, z∈ C , τ ∈ C , Imτ > 0 .
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The “modular" transformationτ = i 4π
l2 β → −1

τ = i l2

4πβ allows us to write the heat kernel in the
form:

trKK0(x,y;β ) =
e−

(x−y)2
β

√
4πβ

·Θ
[

0
0

]
(−i

l(x−y)
β

|i l2

4πβ
) ·

N

∑
a=1

e−β µ2
a

because the Jacobi Theta function is a modular form of weight1
2 (alternatively, this equivalence

could be derived from the Poisson summation formula). There are thus two ways of writing the
K0-heat trace (related by the modular transformation):

TrL2e−βK0 =
∫ l

2

− l
2

dxtrKK0(x,x;β ) = Θ

[
0
0

]
(0|i 4π

l2 β ) ·
N

∑
a=1

e−β µ2
a =

N

∑
a=1

e−β µ2
a e−β 4π2

l2
n2

,

TrL2e−βK0 =
l√
4πβ

·Θ
[

0
0

]
(0|i l2

4πβ
) ·

N

∑
a=1

e−β µ2
a =

l√
4πβ

N

∑
a=1

∞

∑
n=−∞

e−µ2
aβ e−

l2
4β n2

.

The Mellin transform of the first form gives the sum of Epstein functions:

ζK0(s) =
1

Γ(s)

∫ ∞

0
dβ β s−1 TrL2e−βK0

N

∑
a=1

E(s,µ2
a |

4π2

l2 ) =
N

∑
a=1

E(s,µ2
a |

4π2

l2 ) .

However, Mellin’s transform of the Poisson inverted version

ζK0(s) =
1

Γ(s)
·
∫ ∞

0
dβ β s−1

N

∑
a=1

e−µ2
aβ

(
l√
4π

β−
1
2

∞

∑
n=−∞

e−
l2
β n2

)

=
l√

4πΓ(s)
·

N

∑
a=1

(
Γ(s− 1

2)
µ2s−1

a
+ 2 ∑

n∈Z/{0}

(
nl
µa

)s−1/2

K1/2−s(2µanl)

)
. (2.5)

identifies the spectral zeta function as a series of modified Bessel functions of the second type, see
[36]. Moreover, formula (2.5) shows that there are poles ofζK0(s) only at the poles of the Euler
Gamma functionΓ(s− 1

2),

s=
1
2
,−1

2
,−3

2
,−5

2
,−7

2
, · · · ,−2 j +1

2
, · · · , j ∈ Z+ ,

becauseK1/2−s(2µaln) are transcendental entire functions, i.e., holomorphic functions ofs in C/∞
with an essential singularity ats= ∞. The behavior of the heat trace at high-temperature is deter-
mined by the asymptotic formula up to exponentially small terms:

Θ

[
0
0

]
(0|i l2

4πβ
) = ∑

n∈Z
e−

l2
4β n2 ∼=β→0 1+O(e−

c
β ) ,

which also characterizes the behavior ofTrL2 e−βK0 for very largel .
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2.3 Kink fluctuations

2.3.1 Topological kinks

Because of the ground- state structure of the deformed linearO(N)-sigma model, there are
other static solutions that are not homogeneous. These classical lumps are “one-component topo-
logical kinks" (TK1) We shall refer to this type of kinks in this way because: 1) They are topolog-
ical. Their profiles connect one ground state with another when plotted fromx =−∞ to x = ∞. 2)
They have only one component of the iso-vector field different from zero.

In order to find their profile, one simply looks for solutions of the field equations such that all
the field components except the one accommodating the absolute minima are zero:φK(c)

a = 0, ∀a 6=
c. Under this assumption the classical energy can be written in the Bogomolny form:

E =
m3
√

2λ




∫
dx

1
2

(
dφc

dx
∓

√
2
(
V(φc)−V(φV(c)

c )
))2

±
∫ φV(c)

c

−φV(c)
c

dφc

√
2
(
V(φc)−V(φV(c)

c )
)

 .

Therefore, the solutions

φK(c)

c (x) =±φV(c)

c tanh[
µc

2
(x−x0)]

of the first-order equations

dφc

dx
=±

√
2
(
V(φc)−V(φV(c)

c )
)

are absolute minima of the energy that solve the static second-order field equations. TK1 kinks are
thus space-dependent solutions that interpolate between the two ground states, reached by the kink
in different components of the boundary of the spatial line at infinity. They have finite energy,

E[φK(c)

c ] = 2
m3
√

2λ

∫ ∞

−∞
dx

[
V(φK(c)

c )−V(φV(c)

c )
]

=
4
3

1√
1−σ2

c

m3
√

2λ
,

and their energy density is spatially distributed. Despite these features these classical lumps are
stable because of topological reasons: they belong to topological sectors disconnected from the
vacuum sectors in the configuration space.

2.3.2 Small kink fluctuations

Our goal is to study these sectors in the quantum domain. We start from the fact that the quan-
tum descendants of TK1 kinks are the ground states in the topological sectors. Small fluctuations
around TK1 kinks,

φa(t,x) = φK(c)

a (x)+ηa(t,x)

are governed by the quadratic action

S(2)[φK(c)

a (x);η1, · · · ,ηN] =
m2

2λ

∫
dx2

N

∑
a=1

[
∂ηa

∂ t
∂ηa

∂ t
−ηaKηa

]
+O(η3) ,

10
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where the second-order fluctuation operator is a diagonal matrix of Pösch-Teller Schr̈odinger oper-
ators :

K =




− d2

dx2 + µ2
1 −c1c ·sech2( µc

2 x) . . . . . . . . . 0
...

...
...

...
...

0 . . . − d2

dx2 + µ2
c − 3

2µ2
c ·sech2[ µc

2 x] . . . 0
...

...
...

. ..
...

0 . . . . . . . . . − d2

dx2 + µ2
N−cNc ·sech2[ µc

2 x]




.

The bottom of the wells with respect to the thresholdsµ2
a are respectively:−3

2µ2
c and−cac =

−2(1+σac)
(

φV(c)

c

)2
.

Like the vacuum fluctuations, the normal modes of kink fluctuations are obtained from the
eigenfunctions of theK operator:Kaa f a

n (x) = ε2
a(n) f a

n (x). We impose periodic boundary conditions
f a(x+ l) = f a(x) to escape the problems of the continuous spectrum, andK also acts on:L2 =⊕N

a=1 L2
a(S1).

The spectrum is slightly different for the operator acting on fluctuations along the TK1 kink
orbit:

Kcc =− d2

dx2 + µ2
c −

3
2

µ2
c ·sech2[

µc

2
x] ,

which is summarized in the next Table.

Eigenvalues Eigenfunctions

ε2
c (0) = 0 f c

0(x) = sech2[ µc
2 x]

ε2
c (3) = 3

4µ2
c f c

3(x) = sinh[ µc
2 x]sech2[ µc

2 x]

ε2
c (k) = k2 + µ2

c f c
k (x) = eikx(3tanh2[µc

2 x]−1− 6
µc

iktanh[µc
2 x]− 4

µ2
c
k2)

Table 1: Spectrum for the Hessian operator acting on fluctuations along the TK1 kink orbit

There are two bound states, one of zero eigenvalue due to the breaking of spatial translation
invariance by the kink, and scattering states with thresholds atε2

c (0) = µ2
c . From the scattering

eigenfunctions one reads the phase shifts:

f c
k (x)

x→±∞∼= ei(kx± 1
2δc(k)) ⇒ δc(k) =−2arctan

3µck
µ2

c −2k2 .

The periodic boundary conditions select the even ground states and force the momenta to satisfy a
transcendent equation:

kl +δc(k) = 2πn , , kn− 2π
l

n =
2
l
·arctan

3µckn

µ2
c −2k2

n
, n∈ Z .

Although the solutions form an infinite discrete set, they can only be identified graphically. The
physicist’s loophole is to work with very largel such that the information about the continuous

11
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spectrum is codified in the spectral density:

ρKcc(k) =
1

2π
(l +

dδc(k)
dk

) =−2µc

(
1

k2 + µ2
c

+
2

4k2 + µ2
c

)
.

The operators acting in the orthogonal directions to the orbit,a 6= c, are of the type:

Kaa =− d2

dx2 + µ2
a −cac ·sech2[

µc

2
x] , cac = 2(1−σ2

c )
1+σac

1+2σcc
,

again of P̈osch-Teller type, but a with non-null reflection coefficient in general. To describe the

spectrum we define the parameterA =
√

1+σac
1+2σcc

+ 1
4.

Eigenvalues Eigenfunctions

ε2
a( j) =

(
µ2

a −
µ2

c(A−( j+ 1
2))2

4

)
f a

j (x) = [sech( µc
2 x)] j+ 1

2−A
2F1[− j +2a,− j, 1

2− j +A; 1
2(1+ tanh( µc

2 x))]

ε2
a(k) = k2 + µ2

a f a
k (x) = [sech( µc

2 x)]ik2F1[1
2− ik +A, 1

2− ik +A,1− ik; 1
2(1+ tanh( µc

2 x))]

Table 2: Spectrum for the Hessian operator acting on orthogonal fluctuations to the TK1 kink orbit

The integersj = 0,1,2, · · · ; I [A− 1
2] label the eigenvalues and eigenfunctions of the integer part

of theA+ 1
2 bound states. There are also scattering eigenfunctions. Both bound states and scatter-

ing eigenfunctions are Gauss hypergeometric functions [42] times some power of the hyperbolic
secant.

From this information, we obtain the reflection and transmission coefficients, as well as the
phase shifts, the transcendent equation for momenta complying with periodic boundary conditions
(PBC), and the spectral densities:

Ta(k) =
Γ(1

2− ik +A)Γ(1
2− ik−A)

Γ(1− ik)Γ(−ik)
, Ra(k) =

Ta(k)Γ(1− ik)Γ(ik)
Γ(1

2−A)Γ(1
2 +A)

,

δa(k) = δ+
a (k)+δ−a (k) ; δ±a (k) =

1
4

arctan

(
Im(Ta(k)±Ra(k))
Re(Ta(k)±Ra(k)

)
,

knl +δa(kn) = 2πn , ρKaa(k) =
1

2π
(l +

dδa

dk
(k)) .

2.3.3 Spectral kink zeta function regularization

Let us assume, temporarily, that all the eigenvalues orthogonal to the TK1 kink orbit are posi-
tive: εa( j) > 0,∀a. This means that the TK1 kink is isolated in the configuration space and stable.
We expand the small kink fluctuations in a basis inL2 formed by the eigenfunctions ofK:

ηa(t,x) =

√
λ h̄
ml

{
Nb(a)

∑
j=0

1√
2εa( j)

(
Ba( j)∗e−iεa( j)t +Ba( j)eiεa( j)t

)
f a

j (x)

+ ∑
kn

1√
2εa(kn)

(
Ba(kn)∗e−iεa(kn)t f ∗akn

(x)+Ba(kn)eiεa(k2
n)t f a

kn
(x)

)}
.

12
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We denote here the number of even bound states in the direction of componenta asNb(a) and
remark that the zero-mode eigenfunction in the direction of the kink orbitc does not enter this
formula because zero modes only contribute at higher orders in the loop expansion.

Promoting the coefficients of the expansion to the quantum operators

[B̂†
a(kn), B̂c(km)] = δacδmn , [B̂†

a( j), B̂c(l)] = δacδ jl

one obtains the free Hamiltonian in the kink sector, assuming ortho-normality and completeness of
the chosen basis:

Ĥ(2) =
h̄m√

2

N

∑
a=1




Nb+ (a)

∑
j=1

εa( j)
(

B̂†
a( j)B̂a( j)+

1
2

)
+∑

kn

εa(kn)
(

B̂†
a(kn)B̂a(kn)+

1
2

)
 .

The ground state in this sector (no kink fluctuation at all) is also a coherent state

B̂a(kn)|K;0〉= 0, ∀a, ∀kn ; φ̂a|K;0〉= 0, a 6= c, φ̂c|K;0〉=±φV(c)

c tanh[
µc

2
(x−x0)]K;0〉 .

The kink ground-state energy is divergent

〈0;K|Ĥ(2)|K;0〉=
h̄m

2
√

2
TrL2K

1
2

but we shall regularize it by means of the zeta function prescription: let us take the value of

〈0;K|
(

Ĥ(2)
)−s

|K;0〉= 2s−1h̄µ
(

µ2

m2

)s

TrL2 K−s = 2s−1h̄µ
(

µ2

m2

)s

ζK(s)

at a regular points∈ C of ζK(s). The problem is that, since the wave numberskn are determined
by a transcendent equation, there is no way of writing theTr as any manageable series. We shall
rely on the less rigorous (physicists) formula:

ζK(s) = TrL2K−s =
N

∑
a=1

(
Nb(a)

∑
j=1

1
εs

a( j)
+

∫ ∞

−∞
dkρKaa(k)

1

(k2 + µ2
a)

s
2

)
,

where in thel = ∞ limit all the bound statesNb(a) = Nb+(a)+Nb−(a) must be accounted for and
the “sum" over the continuous spectra must be weighted with the appropriate spectral density.

As in the vacuum sector, there is theK-heat equation kernel
(

∂
∂β

+K

)
KK(x,y;β ) = 0 , KK(x,y;0) = δ (x−y)

solved for very largel by:

trKK(x,y;β ) =
N

∑
a=1

[
Nb(a)

∑
j=1

(
f a

j (x)
)∗

f a
j (y)e

−βεa( j) +
1

2π

∫ ∞

−∞

dk
Na(k)

( f a
k (x))∗ f a

k (y)e−β (k2+µ2
a)

]
,

whereNa(k) is a normalization factor that depends on the wave number. The heat trace reads:

TrL2e−βK =
∫ l

2

− l
2

dxtrKK(x,x;β ) =
N

∑
a=1

[
Nb(a)

∑
j=1

e−βεa( j) +
∫ ∞

∞
dkρKaa(k)e

−β (k2+µ2
a)

]
,

which can be used to determine the kink spectral zeta function via the Mellin transform:

ζK(s) =
1

Γ(s)

∫ ∞

0
dβ TrL2e−βK .
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2.3.4 High-temperature expansion of theK-heat kernel and truncated zeta functions

We have met two levels of information concerning the spectra of small fluctuations. The
spectrum of vacuum fluctuations is fully known and it is possible to analytically determine the
zeta function regularization of the sum over eigenfrequencies in terms of (famous) meromorphic
functions. This possibility fails dealing with fluctuations around stable and isolated TK1 kinks,
but knowledge of the scattering data, bound state eigenvalues, phase shifts and spectral densities,
allows us to obtain formulas for the spectral zeta function in the form of integrals (rather than
series).

The situation is less favourable in the following three cases:

1. There exist one or several zero modes but no negative eigenvalues in orthogonal directions
to the TK1 orbit:εa(0) = 0, a 6= c. The TK1 kink is stablebut degenerated in energy with
a k-parametric family ofk-component topological kinks (TKk), also stable.k is the number
of non-translational zero modes.

2. There exist one or several negative modes but no zero eigenvalues in directions orthogonal
to the TK1 orbit:εa(0) < 0, a 6= c. The TK1 kink is unstableand decay to some stableand
isolated two-component topological kink (TK2).

3. There exist one or several zero modes and one or several negative eigenvalues in directions
orthogonal to the TK1 orbit. Isolated or degenerated families of TKk stable kinks arise.

The outcome is the same in these three situations when multi-component stable kinks arise:K is a
non-diagonal matrix Schrödinger operatorand the spectrum is unknown.

To cope with the problem of multi-component topological kinks we write theK-heat equation
in the form (

∂
∂β

+K0−U(x)
)

KK(x,y;β ) = 0

and look for a solution based on theK0-heat kernel:

KK(x,y;β ) = CK(x,y;β )KK0(x,y;β ) ,

where the densityCK(x,y;β ) satisfies the infinite temperature conditionCK(x,y;0) = IN×N and the
transfer equation:

(
∂

∂β
+

x−y
β

∂
∂x
− ∂ 2

∂x2

)
CKab(x,y;β ) =

N

∑
c=1

Uac(x)CKcb(x,y;β )+(µ2
b−µ2

a)CKab(x,y;β ) . (2.6)

Then, we seek a power series solutionCKab(x,y;β ) = ∑∞
n=0 cab

n (x,y)β n of (2.6), which is tantamount
to the recurrence relations

ncab
n (x,y)+(x−y)

∂cab
n

∂x
(x,y) =

∂ 2cab
n−1

∂x2 (x,y)+
N

∑
c=1

Uac(x)ccb
n−1(x,y)+(µ2

b −µ2
a)cab

n−1(x,y) .

(2.7)
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In fact, only the densities at coincident pointsx = y on the line are needed. We introduce the
notation(k)Cab

n (x) = limx→y
∂ kcab

n
∂xk (x,y) to write the recurrence relations between these densities and

their derivatives in the abbreviated form

(k)Cab
n (x) =

1
n

{
(k+2)Cab

n−1(x)+
N

∑
c=1

Uac(x)(k)Ccb
n−1(x)+(µ2

b −µ2
a)(k)Cab

n−1(x)

}
,

to be solved starting from:(k)Cab
0 (x) = δ k0δab. The n-th density is determined in terms of the

(n−1)-order coefficients, their second derivatives, and the potential matrix elementsUab(x).
The solution of these recurrence relations is achieved by using a symbolic program run in

Mathematica. We list the lower densities up to the third order:

cab
1 (x) = Uab(x) , U (k)

ab (x) =
dkUab

dxk (x)

cab
2 (x) =

1
6

U (2)
ab (x)+

1
2

U2
ab(x)+

1
2
(µ2

b −µ2
a)Uab(x)

cab
3 (x) =

1
60

U (4)
ab (x)+

1
12

((
U (2)U +UU (2)

)
ab

(x)+
(
U (1)U (1)

)
ab

(x)
)

+
1
6

U3
ab(x)+

+
1
12

(µ2
b −µ2

a)
(
U (2)

ab (x)+2U2
ab(x)

)
+

1
6

(
N

∑
c=1

(µ2
b −µ2

c )Uac(x)Ucb(x)+(µ2
b −µ2

a)Uab(x)

)
.

There is an interesting point about these densities: the diagonal components are the infinite con-
served charges of some matrix KdV equation, see [41]. Consider the family of differential operators

K(β ) =− ∂ 2

∂x2 +diag(µ2
1 , · · · ,µ2

N)−U(x,β ),

where the family of potentials solve the matrix KdV equation:

∂U
∂β

+3

(
U

∂U
∂x

+
∂U
∂x

U

)
+

∂ 3U
∂x3 = 0 .

Theβ -evolution ofK(β ) can be expressed in the Lax pair form

∂K
∂β

+[K,M] = 0 , M(β ) = 4
∂ 3

∂x3 −3

(
U

∂
∂x

+
∂
∂x

U

)
+B(β )

such that it is iso-spectral. The diagonal densities codify the spectrum ofK. Ergo,caa
n (x,x) 6= f (β ).

Integration of the densities gives the asymptotic expansion of theK-heat trace:

TrL2e−βK = tr
∫ ∞

−∞
dxKK(x,x;β )=

N

∑
a=1

e−β µ2
a√

4π

∞

∑
n=0

caa
n [K]β n− 1

2 , caa
n [K] = lim

l→∞

∫ l
2

− l
2

dxcaa
n (x) .

2.3.5 Truncated zeta function

Finally, we split the Mellin transform

ζ ∗K(s) =
1

Γ(s)

∫ ∞

0
dβ β s−1

(
TrL2e−βK−n0

)
=

1
Γ(s)

∫ b

0
dβ β s−1

(
TrL2e−βK−n0

)
+BK(s;b)

=
1

Γ(s)

∫ b

0
dβ β s−1

(
N

∑
a=1

e−β µ2
a√

4π

∞

∑
n=0

caa
n [K]β n− 1

2 −n0

)
+

1
Γ(s)

∫ ∞

b
dβ β s−1

(
TrL2e−βK−n0

)
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into meromorphic and entire parts by choosing an upper limit in theβ -integration to be optimized
in each particular problem. The number of zero modes,n0, must be subtracted. Truncation of the
number of terms kept in the meromorphic part

ζ ∗K(s;b,N0) =
1√

4πΓ(s)

(
N

∑
a=1

N0

∑
n=0

caa
n [K]

γ[n+s−1/2;bµ2
a ]

(bµ2
a)s+n−1/2

− n0

bss

)

provides us with a practical formula for the spectral zeta function to be used in our computations
in terms of the incomplete Euler Gamma functions:γ[z;c] . The two free parametersb andN0 are
correlated: the largerb, the greater theN0 must be chosen to achieve good approximations.

The subtraction of zero modes that we have performed is a very tricky affair. We split the
improper integral into two parts:

I [n0] = I1[n0]+ I2[n0] = lim
ε→0

n0

Γ(s)

[∫ b

0
dβ β s−1e−εβ +

∫ ∞

b
dβ β s−1e−εβ

]
.

We neglectI2[n0] and regularize the divergent integralI1[n0] for Res≤ 0 by assigning to it the value
of the analytic continuation ofIR[n0] = n0

bssΓ(s) , valid for Res> 0, to the whole complexs-plane.

2.4 One-loop kink mass shift formula

We shall now perform the renormalizations needed to tame the ultraviolet divergences, part of
which we have already regularized using the zeta function regularization method.

2.4.1 Kink Casimir energy: zero-point renormalization

The first renormalization consists of subtracting the vacuum zero-point energy. By analogy,
we shall call this quantity the kink Casimir energy. In the Casimir effect, the vacuum fluctua-
tions are subtracted from the zero-point energy around some geometrical set-up, e.g., two infinite
impenetrable plates.

The regularized kink Casimir energy is:

4EC
K(s) =4EK(s)−4EK0(s) = 2s−1h̄

(
µ2

m2

)s

µ (ζK(s)−ζK0(s)) .

The proper kink Casimir energy is the value of this quantity at the physical points=−1
2:

4EC
K = lim

s→− 1
2

4EC
K(s) =

h̄m

2
√

2

(
ζK(−1

2
)−ζK0(−

1
2
)
)

.

Becauses= −1
2 is a pole of bothζK(s) andζK0(s), with different residua in(1+ 1)-dimensional

models, the kink Casimir energy is still a divergent quantity.

2.4.2 Kink energy engendered by mass renormalization

There are other ultraviolet divergences due to one-loop graphs that are controlled by the
normal-ordered of the quantum Hamiltonian. The contraction of two fields at the same point in
Minkowski space is the sum of a normal ordered product, all the creation operators placed to the
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left of the annihilation operators, and a divergent integral that in the normalization 1D “box" be-
comes a familiar divergent series:

φ̂2
a(xµ) =: φ̂2

a (xµ) : +δ µ2
a , δ µ2

a =
∫

dk
4π

1√
k2 + µ2

a

=
1
2l ∑

n∈Z

1

(4π2

l2 n2 + µ2
a)1/2

.

The quantum Hamiltonian

Ĥ (φ̂1(xµ), · · · , φ̂N(xµ)) =
N

∑
a=1

1
2

(
∂ φ̂a

∂ t
∂ φ̂a

∂ t
+

∂ φ̂a

∂x
∂ φ̂a

∂x

)
+V̂(φ̂1(xµ), · · · , φ̂N(xµ))

is normal-ordered by applying Wick’s theorem:

: Ĥ := Ĥ + :


1−exp

̂
[−h̄

N

∑
a=1

δ µ2
a

δ 2

δφ2
a
]V


 := Ĥ + h̄

N

∑
a=1

δ µ2
a :

δ̂ 2V
δφ2

a
: +O(h̄2) ,

a process that is equivalent, at one-loop order, to adding quadratic counter-terms to the Hamiltonian.
Regularizing the divergent coefficients of these counter-terms by means of the spectral zeta function
of K0

δ µ2
a(s) =−1

l
Γ(s+1)

Γ(s)

N

∑
a=1

ζK0aa(s+1)

we obtain at a regular point ofζK0(s+1) the regularized contribution to the kink energy due to the
mass renormalization counter-terms measured with respect to the mass renormalization vacuum
energy:

4ER
K(s) = h̄m

N

∑
a=1

δ µ2
a

∫
dx

(
〈0;K| : δ̂ 2V

δφ2
a

: |K;0〉−〈0;V| : δ̂ 2V
δφ2

a
: |V;0〉

)

= − lim
l→∞

h̄m
2l

(
2µ2

m2

)s+1/2 Γ(s+1)
Γ(s)

N

∑
a=1

ζK0aa(s+1)
∫ l

2

− l
2

dxUaa(x)

The expression in the second line of the formula is derived from the fact that normal-ordered
products of field operators acting on coherent states select the ordinary product of the field config-
uration characterizing the state, see [6]. Note also that we have regularized the divergent graphs
usingζK0(s+1) instead ofζK0(s). The reason for this is the convenience of comparing the residua
of 4EC

K(s) and4ER
K(s) at the same pole:s=−1

2.
Finally, the one-loop mass shift formula is found by seeking the physical value of thesparam-

eter:

4MK = lim
s→−1/2

(4EC
K(s)+4ER

K(s)
)

. (2.8)

2.5 N=1: theλ (φ4)2 model

We briefly describe the standardλ (φ4)2 model. There is only one real scalar field and no
deformation parameters. The action is:

S[φ ] =
m2

2λ

∫
d2x

{
∂φ
∂xµ

∂φ
∂xµ

− (φ2(t,x)−1)2
}

, σ11 = σ2
1 = 0 .
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The very well known vacua and kinks of this model, as well as the differential operators governing
the small vacuum and kink fluctuations are written below:

φV =±1 , K0 =− d2

dx2 +4 ; φK(x) =±tanh(x−x0) , K =− d2

dx2 +4− 6

cosh2x
.

1
-1

V (φ)

φ

x

-4 -2 2 4
x

-2

-1

1

2

3

4

4-U

Figure 1: (left) 3D plot ofV as a function of bothφ andx. The kink is also shown as a black line crossing
from one vacuum valley to the other. (right) Graphic of the potential well4−U(x) in the Schr̈odinger
operatorK.

2.5.1 Kink spectral heat and zeta functions

Because the spectrum ofK is fully known, both the kink heat function and all the Seeley
coefficients can be computed exactly2:

Tre−βK =
e−4β
√

4π

(
l√
β

+
√

4π(eβ Erf[
√

β ]+e4β Erf[2
√

β ])

)

=
e−4β
√

4π

∞

∑
n=0

cn(K)β n−1/2 ; c0(K) = l , cn(K) =
2n+1(1+22n−1)

(2n−1)!!
, n≥ 1 ,

whereErf[z] is the error function. The exact kink zeta function and the truncated theta functions,
with the zero mode subtracted, are respectively:

ζ ∗K(s) =
1

Γ(s)

∫ ∞

0
dβ β s−1

(
Tre−βK−1

)

=
1√

4πΓ(s)

[
l
4sΓ(s− 1

2
)+

(
2

3s+ 1
2

2F1[
1
2
,
1
2

+s,
3
2

;−1
3
]− 1

4ss

)
Γ(s+

1
2
)
]

(2.9)

ζ ∗K(s;b,N0) =
1

Γ(s)

∫ b

0
dβ β s−1

(
e−4β
√

4π

N0

∑
n=0

cn(K)β n−1/2−1

)

=
1√

4πΓ(s)

(
l
γ[s− 1

2;4b]

(4b)s− 1
2

+
N0

∑
n=1

2n+1(1+22n−1)
(2n−1)!!

γ[s+n− 1
2;4b]

(4b)s+n− 1
2

− 1
bss

)
(2.10)

γ[z;c] are incomplete Euler Gamma functions and2F1[a,b,c;z] are Gauss hypergeometric func-
tions. We follow the notation of [42].

2In [8], these coefficients are obtained by integration of the densities solving the recurrence relations.
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2.5.2 One-loopλφ4-kink mass shift

The limit s→−1
2 is very delicate: it is a pole ofζK(s). To take this limit properly we look at

the regularized formulae fors=−1
2 + ε and then allowε to go to zero:

∆EC
K =

h̄m

2
√

2π
lim
ε→0

(
2µ2

m2

)ε Γ(ε)
Γ(−1

2 + ε)

[
2
3ε 2F1[1

2,ε, 3
2,−1

3]− 1

(−1
2 + ε)4−

1
2+ε

]

=
h̄m

2
√

2π
lim
ε→0

[
−3

ε
+2+ ln

3
4
−3ln

2µ2

m2 − 2F(0,1,0,0)
1 [1

2,0, 3
2,−1

3]+o(ε)
]

= − h̄m

2
√

2π
lim
ε→0

[
3
ε

+3ln
2µ2

m2 −
π√
3

]
,

where2F(0,1,0,0)
1 [a,b,c;z] is the derivative of the hypergeometric function with respect to the second

argument. The same strategy is used with4ER
K(s) to find:

∆ER
K = − 3h̄m√

2π
lim
ε→0

(
2µ2

m2

)ε
4−εΓ(ε)

Γ(−1
2 + ε)

=
3h̄m

2
√

2π
lim
ε→0

[
1
ε

+ ln
2µ2

m2 − ln4+(ψ(1)−ψ(−1
2
))+o(ε)

]

=
h̄m

2
√

2π
lim
ε→0

[
3
ε

+3ln
2µ2

m2 −2(2+1)
]

,

whereψ(z) is the digamma function: i. e., the logarithmic derivative of the Euler Gamma Function.
Therefore, the divergences at the pole cancel exactly and we are left with the finite answer:

4MK = lim
s→−1/2

(4EC
K(s)+4ER

K(s)
)

=
(

1

2
√

6
− 3

π
√

2

)
h̄m=−0.471113̄hm

in perfect agreement with the Dashen-Hasslacher-Neveu result in [3]. We remark that the cancela-
tions above and those implicit in (2.8) set finite renormalizations, such as the large mass subtraction
scheme, by imposing the condition that tadpoles vanish, see Reference [21].

From the sign of the correction we learn a qualitative fact about the global effect of the scalar
boson fluctuations on the kink. The kink energy density is the square of the derivative with respect
to x of the kink profile, whereas the kink energy is the area enclosed by this curve. The decrease
in kink energy due to kink fluctuations is tantamount to a small decrease in the area. Therefore,
the net effect is equivalent to a force from the right and another from the left exerted by the scalar
bosons on the kink in such a way that the kink profile shrinks slightly. Exactly as in the ideal
Casimir effect with two plates of infinite area.

As a test to prove the quality of the high-temperature approximation, we now write the result
for N0 = 10andb = 1. See [8] and [7] for full details:

4MK
∼=−

(
0.19947+

10

∑
n=2

cn(K)
γ[n−1,4]
8π
√

2 4n−1

)
h̄m=−0.471371̄hm .

The answer departs from the right result in the four-decimal figure; a reasonably acceptable ap-
proximation. There are two elements, however, in formula (2.10) to play with: namely, the length
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b of the integration interval in the Mellin transform and the numberN0 of terms in the series re-
maining. Figure 2 shows that these two variables are not independent. For a given value ofN0,
there is an optimum choice ofb after which the approximate result (it comes from an asymptotic
series) rapidly departs from the exact result. There is no point in enlarging the integration interval.
Conversely, takingb longer forces us to increaseN0 to achieve an acceptable approximation. These
remarks are particularly important for light-mass (less than one) particles. The reason is that in
such cases we needb to be large because, if not, too much would be neglected in the entire parts.

0.5 1.0 1.5 2.0
Β

-1.0

-0.5

0.5

1.0
Tr E-Β K-1

0.5 1.0 1.5 2.0
Β

-1.0

-0.5

0.5

1.0

E-4 Β

4 Pi

â
n=0

N

c_nHKLΒ^n-1

Figure 2: (left) Plot of the exact heat trace as a function ofβ with the zero mode subtracted. (right) Graphics
of the approximated formula, keepingN0 = 2, N0 = 3, · · ·, N0 = 11 terms.

2.6 N=2: the BNRT model

Next, we address a model with two real scalar fields. This field theoretical system can be seen
as the bosonic sector of anN = 1 supersymmetric Wess-Zumino model of two chiral super-fields
dimensionally reduced to(1+ 1)-dimensions (plus a reality condition in the fields), see [19]. In-
teractions are derived from the simplest polynomial holomorphic super-potential accommodating
the second super-field. In fact, the super-potential was discovered independently by Bazeia, Nasci-
mento, Ribeiro, and Toledo (BNRT) [18] directly in the(1+1)-dimensional field theoretical model
that we shall describe.

The following choice of parameters in the general linearO(2)-sigma model

σ2
1 = 0 , σ2

2 = 1− σ
2

, σ11 =
3
2

, σ22 =
σ2−1

2
, 1+σ12 = 2σ(σ +1)

leads to the one-parametric family of actions:

S[φ1,φ2] =
m2

λ

∫
d2x

{
1
2

(
∂φ1

∂xµ
∂φ1

∂xµ
+

∂φ1

∂xµ
∂φ1

∂xµ

)
− 1

2
(φ2

1(t,x)+φ2
2(t,x)−1)2

− 3
2

φ4
1 +

1−σ2

2
φ4

2 +(1−2σ(σ +1))φ2
1 φ2

2 +
σ −2

2
φ2

2

}
.

Quartic and quadratic anisotropies are induced by the positive real parameterσ ∈ R+.

2.6.1 Vacua and TK1 topological kinks

The four classical minima are degenerated in energy for anyσ ∈ R+. Henceforth, all the
classical minima are ground states, and there are “two points" in the vacuum moduli space.
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1. Vertical vacua:

φV(2)

1 = 0 , φV(2)

2 =± 1√
2σ

, V(0,± 1√
2σ

) =
3
8

,

such that the particle masses are

µ2
1 = 2

(
1−σ2

2

1+2σ22
(1+σ12)− (1−σ2

1)
)

= 2σ , µ2
2 = 4(1−σ2

2) = 2σ .

2. Horizontal vacua

φV(1)

1 =±1
2

, φV(1)

2 = 0 , V(±1
2
,0) =

3
8

such that the particle masses are

µ2
1 = 4(1−σ2

1) = 4 , µ2
2 = 2

(
1−σ2

1

1+2σ11
(1+σ12)− (1−σ2

2)
)

= σ2 .

Therefore, there are also two kinds of one-component topological kinks, see Figure 5.
1. “Vertical" topological kinks:

φK
1 (x) = 0 , φK

2 (x) =± 1√
2σ

tanh[
√

σ
2

(x−x0)] .

The vacuum and kink fluctuation operators are:

K0 =

(
− d2

dx2 +2σ 0

0 − d2

dx2 +2σ

)
, K =



− d2

dx2 +2σ − 2(1+σ)
cosh2[

√
σ
2 x]

0

0 − d2

dx2 +2σ − 3σ
cosh2[

√
σ
2 x]


 .

2. “Horizontal" topological kinks:

φK
1 (x) =±1

2
tanh(x−x0) , φK

2 (x) = 0 .

The vacuum and kink fluctuation operators are:

K0 =

(
− d2

dx2 +4 0

0 − d2

dx2 +σ2

)
, K =

(
− d2

dx2 +4− 6
cosh2x

0

0 − d2

dx2 +σ2− σ(σ+1)
cosh2x

)
.

2.6.2 Fluctuation spectrum of horizontal TK1 kinks

We shall not discuss the vertical sector here; the main results can be found in [10]. And
it is more instructive to explain the horizontal sector. In the kink orbit direction, we meet the
Schr̈odinger operator of theλφ4-kink. There is no need of re-compute again the effect of the
fluctuations parallel to the orbit; we simply use the results of the previous model.

Fluctuations orthogonal to the orbit, however, are governed by the Schrödinger operator shown
above. We shall focus for a while on the case in whichσ = J∈Z+ is a positive integer. The reason
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for this is that in this discrete set of models transparent (reflection coefficient equal to zero) Pösch-
Teller potentials arise:

K22 =− d2

dx2 +J2− J(J+1)
cosh2x

.

The previously defined parameterA determining the number of bound states becomesA = J+ 1
2,

and the threshold of the continuous spectrum is:4µ2
a

µ2
c

= J2. The spectrum ofK22 is summarized as
follows:

1. The eigenvalues and eigenfunctions of the discrete spectrum are:

ε2
2( j) = (2J− j) j , j = 0,1,2, · · · ,J

f 2
0 (x) =

1

coshJx
, f 2

j (x) = Π j−1
r=0

(
− d

dx
+(J− r)tanhx

)
1

coshJ− jx
, j ≥ 1 .

There areJ bound states with eigenvalues below the threshold starting from a zero mode.
The highest eigenvalue bound state sits immediately at the threshold of the continuous spec-
trum. These eigenfunctions are termed half-bound states and they always accompany zero
reflection coefficients. In the remarkable array of numbers that follows we have collected the
bound state and half-bound state eigenvalues up toJ = 10.

J = 1 J = 2 J = 3 J = 4 J = 5 J = 6 J = 7 J = 8 J = 9 J = 10
0 0 0 0 0 0 0 0 0 0
1 3 5 7 9 11 13 15 17 19

4 8 12 16 20 24 28 32 36
9 15 21 27 33 39 45 51

16 24 32 40 48 56 64
25 35 45 55 65 75

36 48 60 72 84
49 63 77 91

64 80 96
81 99

100

2. The scattering states are also known and are listed below together with the pase shifts and
spectral densities.

ε2
2(k) = k2 +J2 , f 2

k (x) = ΠJ
p=1

(
− d

dx
+ p tanhx

)
eikx

δ2(k) = 2arctan

[
Im(ΠJ

p=1(p− ik))

Re(ΠJ
p=1(p− ik))

]
, ρ2(k) =

l
2π
− 1

π

J

∑
p=1

p
p2 +k2 .

From this information, one derives the exact heat function:

22



P
o
S
(
I
S
F
T
G
)
0
1
3

Quantum topological defects Juan Mateos Guilarte

TrL2e−βK =
J

∑
j=0

e−β (2J− j) +
l

2π

∫ ∞

−∞
dke−β (k2+J2)

[
1− 2

l

J

∑
p=1

p
p2 +k2

]

=
e−βN2

√
4π

(
l√
β

+
√

4π
J

∑
p=1

eβ p2
Erf[p

√
β ]

)

as a sum of error functions. The coefficients of the heat function expansion are also easily calcu-
lated:

TrL2e−βK =
e−βJ2

√
4π

∞

∑
n=0

cn(K)β n− 1
2 , c0(K) = l

cn(K) =
2n+1

(2n−1)!!
·

J

∑
p=1

p2n−1 =
2n+1

(2n−1)!!

(
J2n−1 +

B2n(J)−B2n

2n

)
, n≥ 1 .

They can be expressed in terms of Bernouilli numbersB2n and polynomialsB2n(J).
These systems can be useful as patterns for other systems where no analytical information

about the spectrum is available and there is no hope of finding the exact heat function. The coeffi-
cients of the heat function must be similar for potentials with similar thresholds and areas (number
of bound states). Thus, it is important to know the behavior of the heat kernel coefficients in these
“integrable" cases. Consideringn as a continuous variableu, the function

fN(u) =
2u+1

(2u−1)!!

J

∑
p=0

p2u−1

is plotted in Figure 3 for three values ofJ. The peaks, as they should be, correspond to integer
valuesu = n, and the coefficients pass to zero whenn = 12 for J = 2, n = 20, if J = 3, n = 30 for
J = 4, etcetera. These are the orders at which the double factorial in the denominator dominates the
numerator, ensuring the convergence of the series despite the fact that the coefficients grow really
large before these orders forJ≥ 4.
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Figure 3: Plots of the functionfJ(u): (left) J = 2 (middle)J = 3 (right) J = 4.

2.6.3 Cancelation of divergences: one-loop mass shifts of horizontal TK1 kinks

The consequences of the previous analyses can be seen in the magnitude of the one-loop mass
shifts. The spectral zeta function

ζ ∗K(s) =
1

Γ(s)

∫ ∞

0
dβ β s−1

(
TrL2e−βK−1

)

=
1√
π

[
l
2

Γ(s− 1
2)

J2s−1Γ(s)
+

(
J−1

∑
j=1

2 j

(J2− j2)s+ 1
2

· 2F1[
1
2
,
1
2

+s,
3
2

;
− j2

J2− j2
]− 1

J2ss

)
Γ(s+ 1

2)
Γ(s)

]
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is essentially a sum of Gauss hypergeometric functions. For instance, in the caseJ = 3

ζ ∗K(s) =
1√
π

[
l
2

Γ(s− 1
2)

32s−1Γ(s)

+
(

2

8s+ 1
2

· 2F1[
1
2
,
1
2

+s,
3
2

;−1
8
]+

4

5s+ 1
2

· 2F1[
1
2
,
1
2

+s,
3
2

;−4
5
]− 1

9ss

)
Γ(s+ 1

2)
Γ(s)

]

one can envisage the general behavior from the array of bound-state energies. The ingredients are
the bound-state eigenvalues, the difference in the eigenvalues with respect to the thresholds, and
the thresholds themselves (in the subtraction of the zero modes). It is amazing how cleanly the
maths capture these fine physical data!

The kink Casimir energy in the direction orthogonal to the orbit for genericJ is:

4EC
K = lim

s→− 1
2

2s−1h̄

(
µ2

m2

)s

µ
(
ζ ∗K22

(s)−ζK022(s)
)

=
h̄m

2
√

2
lim
ε→0

(
2µ2

m2

)ε (
ζ ∗K22

(−1
2

+ ε)−ζK022(−
1
2

+ ε)
)

=
h̄m

2
√

2π
lim
ε→0

(
2µ2

m2

)ε Γ(ε)
Γ(−1

2 + ε)

(
J−1

∑
j=1

2 j
(J2− j2)ε · 2F1[

1
2
,ε,

3
2

;
− j2

J2− j2
]− J

J2ε(−1
2 + ε

)
.

Simili modo, the kink energy due to the mass renormalization counter-terms of the second particle
reads:

4ER
K22

= − h̄m√
2

lim
l→∞

1
2l

lim
s→− 1

2

(
µ2

m2

)s+ 1
2 l√

4π
· Γ(s+ 1

2)
J2s+1Γ(s)

·
∫ l

2

− l
2

dx
J(J+1)
cosh2x

= − h̄m

2
√

2π
lim
ε→0

(
2µ2

m2

)ε
J(J+1)

J2ε · Γ(ε)
Γ(−1

2 + ε)
.

For instance applying these formulae to theJ = 3 case, we find:

4EC
K22

= − h̄m√
2π

(
lim
ε→0

3
ε

+3log
2µ2

m2 +
1
2

(
2F(0,1,0,0)

1 [1
2,0, 3

2,−1
8]− log

8
4

)
+

+ 2F(0,1,0,0)
1 [1

2,0, 3
2,−4

5]− log
5
4
−3− 3

2
log

9
4

)

4ER
K22

=
3h̄m√

2π

(
lim
ε→0

1
ε

+ log
2µ2

m2 − log
9
4
−2

)
.

The divergent terms, as well as the terms depending on the auxiliary parameterµ cancel each other
exactly , to give:

4MK22 =− h̄m√
2π

[
1
2

(
2F(0,1,0,0)

1 [1
2,0, 3

2,−1
8]+ log

9
8

)
+ 2F(0,1,0,0)

1 [1
2,0, 3

2,−4
5]+ log

9
5

+3

]
.

(2.11)
Using this result and the analogous one forJ = 4, we obtain the exact answer for theJ = 3, and
J = 4 systems:

4MJ=3
K =−(0.47113+0.766861)h̄m , 4MJ=4

K =−(0.47113+1.11725)h̄m .

(2.12)
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Figure 4: Potential wells forJ = 2, J = 3, andJ = 4 plotted together.

The higher the threshold and the broader the area, see Figure 4, the more negative is the
correction, because the attraction of the well on the scattered and bound mesons is more intense.
The high-temperature asymptotic formula also provides very good approximations to these exact
results. We find:

4MJ=3
K =−(0.47137+0.76675)h̄m , 4MJ=4

K =−(0.47137+1.11723)h̄m,

takingN0 = 20 coefficients forJ = 3 andN0 = 40 coefficients ifJ = 4 in the asymptotic formulae
of4MJ=3

K22
and4MJ=4

K22
. The (optimal) truncations in the series have been suggested by the plots in

Figure 3. For the same reason, we considerN0 = 10 in the truncated series of4MKJ=2
11

.
Even if σ is not an integer the one-loop mass shift is still known. The spectrum is more com-

plex but the main differences passing throughJ are the lack of the (half) bound state, sitting at the
threshold, one more bound state and a different spectral density. Because the vacuum half-bound
state, (the constant function) is not compensated by a kink half-bound state it must be accounted
for in the vacuum spectral function. The half-bound state weight is1

2 (hence the name) owing to
the one-dimensional Levinson theorem [43], [44]. The jump in the number of bound states mirac-
ulously conspires with the change in spectral density to produce a quantum correction that is a
continuous function ofσ . Interested readers can find full details about this problem in [10].

2.6.4 TK2 topological kinks

The zero-mode fluctuation orthogonal to the kink orbit is a sign of the existence of other
topological kinks degenerated in energy with the TK1 kink, which must have the two components
of the field different from zero, thus being TK2 kinks. Fortunately, a fair knowledge of the main
features and the structure of the TK2 kinks in this model is available. The reason is that the potential
energy density can be written in terms of a polynomial “superpotential":

W(φ1,φ2) = 2

(
1
3

φ3
1 −

1
4

φ1 +
σ
2

φ1φ2
2

)
, V(φ1,φ2)− 3

8
=

1
2

2

∑
a=1

∂W
∂φa

· ∂W
∂φa

.

The energy, arranged à la Bogomolny,

E =
4m3

λ
√

2

∫
dx

1
2

[
2

∑
a=1

(
dφa

dx
∓ ∂W

∂φa

)(
dφa

dx
∓ ∂W

∂φa

)]
± 4m3

λ
√

2
· {W(φa(+∞))−W(φa(−∞))}

(2.13)
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shows that the solutions of the first-order ODE system

dφa

dx
=±∂W

∂φa
≡





dφ1

dx
= (−1)α(2φ2

1 +σφ2
2 −

1
2
)

dφ2

dx
= (−1)β 2σφ1φ2

, α,β = 0,1 (2.14)

are absolute minima of the energy.
In [19], the kink orbits solving this system of equations were identified for the first time. We

found the flow lines ofgradW between the top and the bottom ofW, the kink orbits, in [20] simply
by taking the quotient of the first equation by the second in (2.14) to find:

(−1)α dφ1

2φ2
1 +σφ2

2 − 1
2

+(−1)β dφ2

2σφ1φ2
= 0 .

Integration of this first-order equation is achieved using the integrating factor|φ2|− 2
σ . The kink

orbits are:

φ2
1 +

σ
2(1−σ)

φ2
2 =

1
4

+
c

2σ
|φ2|

2
σ , σ 6= 1, c∈ (−∞,cs =

1
4

σ
1−σ

(2σ)
1+σ

σ ) .

Note that the integration constantc must be lower than the critical integration functioncs. The
reason for this is easy to understand just by looking at Figure 5. Thecs kink orbit joins one
horizontal vacuum with the other two vertical vacua. Beyond that value the orbits escape to infinity
giving infinite energy to the associated static-field theoretical solutions.

Φ1

Φ2

-UHΦL φ1

φ
2

φ1

φ
2

φ1

φ2

Figure 5: 3D graph of−V(φ1,φ2) as a function ofφ1 andφ2 (left) Flow-lines: in the rangesc∈ (−∞,cs)
(middle left),c = cs (middle right), andc∈ (cs,∞) (right)

The energy of all these TK2 kink orbits is the same:

E(φK
1 ,φK

2 ) =
4m3

λ
√

2
|W(±2

2
,0)−W(∓1

2
,0)|= 4m3

3λ
√

2
.

The zero-energy fluctuations orthogonal to the TK1 kink orbit obeys this fact: there is no cost in
energy fluctuating from one kink in this family to another.

For genericσ , it is not possible go further than this: i.e., knowledge of the TK2 kink orbits and
their energy. There are two exceptions, however. Ifc =−∞, we again find the TK1 kink profile:

φ1K
1 (x) = (−1)α 1

2
tanh(x−x0) , φ1K

2 (x) = 0 , α = 0,1 .
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Forc = 0, the profiles of the corresponding TK2 kinks are also known analytically:

φ2K
1 (x)= (−1)α1

1
2

tanh[2(1−σ)(x−x0)] , φ2K
2 (x)= (−1)α2

√
1−σ

σ
sech[2(1−σ)(x−x0)] ,

whereα1,α2 = 0,1. The two kink orbits are half-ellipses.
The generic form of the kink profiles can be inferred from theσ = 1

2 case. Equations (2.14)
are separable in parabolic coordinates ifσ = 1

2, and we can give the analytic expressions of the
kink profiles [20]:

φ2K(d)
1 [x;x0,d] = (−1)α1

(
1
2

sinh((x−x0))
cosh((x−x0))+d2

)

φ2K(d)
2 [x;x0,d] = (−1)α2

(
d√

d2 +cosh((x−x0))

)
, d =±

√
1√

1−4c
.

There are two integration constants that are the parameters of this TK2 family with a clear physical
meaning:x0 sets the kink center as in TK1 kinks. The parameterd, related to the kink orbit label
c, can be loosely interpreted as the relative coordinate between two basic kinks.
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Figure 6: Kink profiles corresponding to:(a) d = 0, (b) d =
√

0.5, (c) d = 1 and(d) d =
√

30.

In Figure 6, the kink profiles for four values ofd are shown. Ifd = 0 only one component is
kink-shaped and non-null. Ford > 0, all the profiles are two-component; one of the components
is kink-shaped and the other bell-shaped up tod = 1. If d > 1 one component has the shape of
two kinks and the other one tends to show two lumps. This Figure is correlated with Figure 7,

-4 -2 2 4

1

2
ΕHxL

x
-4 -2 2 4

1

2
ΕHxL

x
-4 -2 2 4

1

2
ΕHxL

x
-4 -2 2 4

1

2
ΕHxL

x

Figure 7: Energy densityE K [x;0,d] for (a) d = 0, (b) d =
√

0.5, (c) d = 1 and(d) d =
√

30.

where the energy density is plotted for the same values ofd. It is possible to prove analytically
that the energy density as a function ofx has only one maximum ifd ≤ 1 and two maxima if
d > 1. Thus, ford > 1 this parameter is a relative coordinate between the two peaks, although the
distance between maxima is a transcendent function ofd. The meaning of the peaks is also clear:
these values ofd correspond to orbits close to the critical orbit where two TK2 kinks joining the
horizontal vacuum with different vertical vacua live. These are the basic kinks. All this is explained
in detail in Reference [20].
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For generic values ofσ , one must rely on numerical integration methods to find the profiles of
the kink solutions. We do this by solving the first-order equations by standard numerical methods
with the “initial" conditions:

φ1(0) = 0 ,
σ

2(1−σ)
φ2

2(0)− c
2σ
|φ2(0)| 2

σ =
1
4

.

The reasons for this choice are two fold: (1) For any kink solution,φ1(x) always has a zero.
Translational invariance allows us to set the zero atx= 0; (2) To ensure that we will find a numerical
kink solution, we fixφ2(0) on a kink orbit for a given value ofσ and arbitrary choices ofc.

The numerical method provides us with a succession of points of the kink solution generated
by an interpolation polynomial. The plots of the numerical results show that the behavior derived
analytically for the kink profiles whenσ = 1

2 is generic. For any value ofσ , the kink profiles are
composed of two kinks. The parameterc giving the orbit is related to the separation between basic
kinks. In some range ofc, the two basic kinks completely melt into a composite kink. The precise
value ofc at which this happens depends on the value ofσ . σ = 1

2 is singled out, because in this
casec = 0 is the value where two kinks fuse into a composite kink or, viceversa, a composite kink
splits into two basic kinks.

2.6.5 TK2 kink small fluctuations

We consider now small fluctuations of TK2 kinks:φa(x) = φ̄a(x;c)+ηa(x), where we denote
the TK2 kink profiles in the formφTK2(c)

a (x) = φ̄a(x;c). The second-order kink fluctuation operator
is a non-diagonal Schrödinger operator:

K(c) =

(
− d2

dx2 +4−U11(x;c) U12(x;c)
U21(x;c) − d2

dx2 +4−U22(x;c)

)
,

U11(x;c) = −(24φ̄2
1(x;c)+4σ(σ +1)φ̄2

2(x;c)−6)

U12(x;c) = U21(x;c) =−8σ(σ +1)φ̄1(x;c)φ̄2(x;c)

U22(x;c) = −(4σ(σ +1)φ̄2
1 (x;c)+6σ2φ̄2

2(x;c)−σ(σ +1)) .

In Figure 8 the potential wells (or barriers) in the diagonal components ofK are shown for the
integrable caseσ = 1

2 for several values ofc. The correlation with the kink profiles is clear. There-
fore, the non-integrable cases have similar wells because the kink profiles obtained numerically are
similar to the analytic ones.

The one-loop mass shifts can be computed using the high-temperature formula. We use the
first-order equations to express field derivatives as functions of the fields (avoiding problems with
the discreteness of space required in numerical methods) and write the Seeley densities. Then, we
plug the numerically generated kink profiles into these densities and perform numerical integration
over the real line, to finally find the coefficients that enter the formula.

The results are shown in the following Tables for three values ofσ : 1.5, 2, and2.5, and
represented in Figure 9.
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Figure 8: Diagonal components−U11(x) (red) and−U22(x) (green) of theσ = 1
2 potential forc=−30,c=

−1,c = 0.1,c = 0.245andc = 0.249.

σ = 1.5
c ∆M
−30 −1.16009
−27.5 −1.16017
−25 −1.16128
−22.5 −1.16042
−20 −1.16061
−17.5 −1.16088
−15 −1.16128
−12.5 −1.16193
−10 −1.16313
−7.5 −1.16597
−5 −1.18205

−4.6801886 −1.24345
−4.68018860186678332 −1.25103

σ = 2.0
c ∆M
−30 −1.33281
−27.5 −1.33281
−25 −1.33281
−22.5 −1.33281
−20 −1.33281
−17.5 −1.33281
−15 −1.33281
−12.5 −1.33281
−10 −1.33281
−7.5 −1.33281
−5 −1.33280

−4.001 −1.33280
−4.00001 −1.33280

σ = 2.5
c ∆M
−30 −1.52784
−27.5 −1.52782
−25 −1.52780
−22.5 −1.52778
−20 −1.52774
−17.5 −1.52769
−15 −1.52760
−12.5 −1.52744
−10 −1.52711
−7.5 −1.52626
−5 −1.52285
−4 −1.52168
−3.97 −1.52915

−3.96594571 −1.55402
−3.96594570565808127 −1.56127

Table 3: Quantum Mass Corrections to the TK2 family in the BNRT model withσ = 1.5,2, and2.5

-30 -25 -20 -15 -10
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-0.9
c

∆M

σ=1.5

σ=2.0

σ=2.5

Figure 9: The one-loop mass correction in the casesσ = 1.5, σ = 2.0, andσ = 2.5

In theσ = 1.5 andσ = 2.5 cases, the pattern is similar. The one-loop correction is equal in the
zone where the two basic kinks are fused into a single kink and the degeneracy is not broken at one-
loop level. For values ofc in the zone where the two basic kinks are split, the one-loop corrections
become more and more negative. The classical degeneracy is broken by quantum fluctuations that
press the two basic kinks apart from each other. This conclusion could be reached by arguing
qualitatively from Figure 8. For smallc, the potential wells both in the parallel and orthogonal
directions to the kink orbit are attractive. Afterc = 1 the orthogonal wells start to become weakly
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repulsive. For largerc, the parallel wells develop two peaks whereas the orthogonal wells become
strongly repulsive. This is the explanation of the repulsion between the two basic kinks and the
reason why the less energetic TK2 kink corresponds to maximum separation of the basic kinks,
even though the classical energy is independent of the distance between centers. The caseσ = 2 is
special. The classical degeneracy does not disappear because a simple change of variables shows
that this case is equivalent to two independentλφ4 models, such that the one-loop correction is
twice the correction of theλφ4 kink.

2.7 N=3: the massive non-linearS2-sigma model

The last scalar field theoretical model that we shall discuss is the massive non-linearS2-sigma
model studied in Reference [33]. This is the formalλ →∞ limit of the deformed linearO(3)-sigma
model, a limit that is only meaningful if the fields satisfy the constraint

χ2
1(t,x)+ χ2

2(t,x)+ χ3
3(t,x) = R2 , R2 =

m2

λ

such that the target space is aS2-sphere of radiusR. The action becomes

S[χ1,χ2,χ3] =
1
2

∫
dx2

{
3

∑
a=1

∂ χa

∂xµ
· ∂ χa

∂xµ −α2
1χ2

1(t,x)−α2
2χ2

2(t,x)−α2
3χ2

3(t,x)

}
,

whereα2
1 = 2σ2

1 , α2
2 = 2σ2

2 , α2
3 = 2σ2

3 .
Despite appearances this is a highly non-linear system due to the constraint between the fields.

This statement is made evident by solvingχ3 in terms ofχ1 andχ2. The action becomes:

S=
1
2

∫
dtdx

{
∂µ χ1∂ µ χ1 +∂µ χ2∂ µ χ2 +

(χ1∂µ χ1 + χ2∂µ χ2)2

R2−χ2
1 −χ2

2

−χ2
1(t,x)−σ2 ·χ2

2(t,x)
}

.

The vacua are the North and South poles:χ3 = ±1. The parameter0 < σ2 = σ2
2−σ2

3
σ2

1−σ2
3

< 1 is the
mass of the pseudo-Nambu-Goldstone boson, the quantum of theχ2-field. The mass of the other
pseudo-Nambu-Goldstone boson is 1.

Interactions, however, come from the geometry:

(χ1∂µ χ1 + χ2∂µ χ2)(χ1∂ µ χ1 + χ2∂ µ χ2)
R2−χ2

1 −χ2
2

'

' 1
R2

(
1+

1
R2(χ2

1 + χ2
2)+

1
R4(χ2

1 + χ2)2 + · · ·
)
·(χ1∂µ χ1 + χ2∂µ χ2

)
(χ1∂ µ χ1 + χ2∂ µ χ2)

which shows that1R2 is a non-dimensional coupling constant.

2.7.1 TK1 topologicalS2-kinks

Using spherical coordinates in the target space

χ1(t,x)= Rsinθ(t,x)cosϕ(t,x) , χ2(t,x)= Rsinθ(t,x)sinϕ(t,x) , χ3(t,x)= Rcosθ(t,x) ,

the field equations become:

¤θ − 1
2

sin2θ
(
∂ µϕ∂µϕ−cos2 ϕ−σ2sin2 ϕ

)
= 0 , ∂ µ(sin2 θ∂µϕ)− 1

2
σ̄2sin2 θ sin2ϕ = 0 .
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On the half-meridiansϕ = π
2 , ϕ = 3π

2 andϕ = 0, ϕ = π the field equations reduce to the sine-
Gordon equation. Therefore, there are two types of two-component topological kinks joining the
North and South poles:

1. K1 kinks

ϕK1(x) =
π
2

, ϕK∗1 (x) =
3π
2

; θK1(x) = 2arctane±σ(x−x0)

χK1
1 (x) = 0 , χK1

2 (x) =± R
cosh[σ(x−x0)]

, χK1
3 (x) =±R tanh[σ(x−x0)]

2. K2 kinks

ϕK2(x) = 0 , ϕK∗1 (x) = π ; θK2(x) = 2arctane±(x−x0)

χK2
1 (x) = ± R

cosh[(x−x0)]
, χK2

2 (x) = 0 , χK2
3 (x) =±R tanh[(x−x0)]

Φ2

Φ1

Φ3

-10 -5 5 10

0.2

0.4

0.6

0.8

1.0

Figure 10: a)K1 andK2 (σ2 = 1
2) kink orbits. b)K1 (blue) andK2 (red) kink energy densities

In Figure 10 the topological kink orbits are plotted, together with the corresponding Kink energy
densities. The classical kink energies are:

EC
K1

= m
√

2R2σ , EC
K2

= m
√

2R2

and theK2 kinks are heavier than theK1-kinks.

2.7.2 Kink fluctuations and one-loop mass shifts

The geodesic deviation from theK1 kink orbit plus the Hessian of the potential for theK1 kink
(in a parallel frame to the kink orbit) reads, see [34]:

K =

(
− d2

dx2 +σ2− 2σ2

cosh2σx
0

0 − d2

dx2 +1− 2σ2

cosh2σx

)
.

As might be expected, for parallel fluctuations to the orbit we find the same Schrödinger operator
as for the sine-Gordon kink. What comes as a surprise is that the orthogonal fluctuations are also
governed by an operator, which is of the transparent Pösch-Teller type of theN = 1 class with
slightly different threshold.
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The one-loopK1 mass shift is immediately obtained from the Cahill-Comtet-Glauber formula:

EOL
K1

(σ) = EK1(σ)+∆MK1(σ)+O(
h̄2

R2)

=
√

2mR2σ − h̄mσ√
2π

[sinν1 +
1
σ

sinν2−ν1cosν1− 1
σ

ν2cosν2]+O(
h̄2

R2) .

Here,ν1 = arccos( 0
σ ) = π

2 andν2 = arccos( σ̄
1 ). The arguments are the square root of the value of

the bound state eigenvaluēσ2 = 1−σ2 divided by the threshold of the continuous spectrum. For
instance, as a function ofσ the correction reads:

EOL
K1

(σ) =
√

2mR2σ − h̄mσ√
2π

[
2− σ̄

σ
arccos(σ̄)

]
+O(

h̄2

R2)

whereas forσ = 1
2 we obtain :

EOL
K1

(
1
2
) =

m√
2

R2− 3h̄m

2
√

2π

(
2
3
− π

6
√

3

)
+O(

h̄2

R2) .

The second-order fluctuation operator for theK2 kink (in a parallel frame to the kink orbit) is:

K =

(
− d2

dx2 +1− 2
cosh2x

0

0 − d2

dx2 +σ2− 2
cosh2x

)
.

The bound state eigenvalue−σ̄2 in the orthogonal direction to the orbit is negative, telling us
that theK2 kinks are unstable. The CCG formula applied to calculate the one-loopK2 mass shift
captures this fact, becauseν2 ceases to be an angle and becomesarccosh̄σ :

EOL
K2

(σ) = EK2(σ)+∆MK2(σ)+O(
h̄2

R2) ; ν1 = arccos(0) =
π
2

, ν2 = arccos(iσ̄)

=
√

2mR2− h̄mσ√
2π

[sinν1 +
1
σ

sinν2−ν1cosν1− 1
σ

ν2cosν2]+O(
h̄
R2) .

Therefore,

EOL
K2

(σ) =
√

2mR2− h̄mσ√
2π

[
1
σ

+
√

2−σ2− i
π
2

σ̄ + σ̄ log
(√

2−σ2− σ̄
)]

+O(
h̄2

R2)

has an imaginary part, as corresponds to the energy of a resonant state in quantum physics. We end
this first part by computing:

EOL
K2

(
1
2
) =

m√
2

R2− h̄m

4
√

2π

(
4+

√
7+

√
3log

(√
7−√3

2

)
− i

π
√

3
2

)
+O(

h̄2

R2) .
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3. Abelian Higgs models in a plane

The second part will be devoted to discussing the quantum fluctuations of the topological
solitons that arise in gauge theoretical models in(2+1)-dimensions with spontaneous breaking of
the gauge symmetry. The prototype of these solitons is the Abrikosov-Nielsen-Olesen vortex, see
[22], [23]. Because the spatial components of the gauge field form a purely vorticial vector field, the
planar soliton is made from lumps of magnetic field. By extending these objects to the third spatial
dimension magnetic flux lines arise like those existing in Type II superconductors, predicted by the
phenomenological Ginzburg-Landau theory. In the relativistic Abelian Higgs model the Nielsen-
Olesen vortices form strings that might confine magnetic monopoles. The one-loop mass shift due
to quantum fluctuations of ANO vortices has been computed at the critical point between Type I
and Type II superconductors in [28], [29], and [30] using heat kernernel/zeta function regularization
methods.

It was discovered in [24] that a generalization of the Higgs model, the so called semi-local
Abelian Higgs model containing a doublet of complex scalar fields, also admits planar topological
solitons similar to the ANO vortices. The moduli space of these solitons is, however, richer, en-
compassing bothCP1-lumps and ANO vortices as limiting cases with very complicated mixtures
of these two classes in between, see [46]. The one-loop fluctuations of self-dual semi-local topo-
logical solitons have been analyzed in [31] and [32], with some surprising results. Our aim in this
part is the description of these results. We remark that the semi-local Abelian Higgs model is the
bosonic sector of the electro-weak theory when the Weinberg angle isπ

2 and theZ, W± gauge fields
decouple.

3.1 The planar semi-local Abelian Higgs model

3.1.1 Action and field equations

In the semi-local Abelian Higgs model there is a Higgs doublet

Φ(xµ) =

(
Φ1(xµ)
Φ2(xµ)

)
=

(
φ1(xµ)+ iφ2(xµ)
φ3(xµ)+ iφ4(xµ)

)
: R1,2 −→ C2

and an Abelian gauge field:

Aµ(xµ)
∂

∂xµ : TR1,2 −→ LieU(1) .

The action is built from the electromagnetic tensor, and interactions between the gauge and scalar
fields determined from a minimal coupling principle by means of the covariant derivative and self-
interactions of the scalar field are induced by a quartic potential energy density:

Fµν = ∂µAν −∂νAµ , DµΦ = ∂µΦ− iAµΦ , U(Φ) =
λ

8e2(Φ†Φ−1)2 .

The action governing the dynamics of the system is:

S=
v
e

∫
dx3

{
−1

4
FµνFµν +

1
2
(DµΦ)†DµΦ− κ

8
(Φ†Φ−1)2

}
.
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There are the following (dimensional) parameters:[v2] = M, the vacuum expectation value of the
Higgs field, the scalar-vector and scalar-scalar couplings,[e2] = [λ ] = M−1L−2, and the Higgs
and vector particle masses:m2 = e2v2, µ2 = λv2. The ratio between massesκ2 = λ

e2 is a very
important parameter that determines whether we are in a Type I or Type II superconductivity-like
regime. Needless to say, we continue working with non-dimensional fields,Φ, Aµ , and Minkowski
coordinatesxµ , µ = 0,1,2. The metric and volume integration are chosen such that:

gµν = diag(1,−1,−1) , dx3 = dx0dx1dx2

xµxµ = gµνxµxν = x2
0−x2

1−x2
2 , ∂µ∂ µ = gµν∂ µ∂ ν =

∂ 2

∂x2
0

− ∂ 2

∂x2
1

− ∂ 2

∂x2
2

.

The field equations are:

∂µFµν = i
[
(DνΦ)†Φ−Φ†DνΦ

]
, DµDµΦ =

κ2

4
Φ(1−Φ†Φ) .

3.1.2 Global and local symmetries: vacuum orbit structure

TheSU(2) global weak iso-spin transformations

Φ(xµ)−→Φ′(xµ) = exp(− i
2
~θ ·~σ)Φ(xµ)

as well as theU(1)-gauge local transformations

Φ(xµ)−→Φ′(xµ) = eiα(xµ )Φ(xµ) , Aµ(xµ)−→ A′µ(xµ) = Aµ(xµ)+
∂α
∂xµ (xµ)

are symmetries of this system suggesting the slightly deceptive name for this model. The vacuum
orbit has a very subtle structure due to the combined action of these two symmetries.

The manifold of zero energy configurations,ΦV(xµ) = ΦV , AV
µ(xµ) = 0µ , is:

(ΦV)†ΦV = (ΦV
1 )∗ΦV

1 +(ΦV
2 )∗ΦV

2 = 1 = (φV
1 )2 +(φV

2 )2 +(φV
3 )2 +(φV

4 )2

The Higgs vacuum orbit is theS3 unit sphere inC2: the orbit of the pointΦV
0 =

(
1
0

)
, the north

pole of theS3 sphere, under the globalSU(2) action, i.e., the Hopf fibre bundle:

S1 −→ S3 −→ S2

given by the action of aU(1) subgroup on each point of theS2 sphere.
Use of the Hopf coordinatesθ1,θ2 ∈ [0,2π], ψ ∈ [0, π

2 ] in theS3 sphere allows us to write the
SU(2) action in the form:

GΦV
0 =

(
eiθ1sinψ eiθ2cosψ

−e−iθ2cosψ e−iθ1sinψ

)(
1
0

)
=

(
eiθ1sinψ

−e−iθ2cosψ

)

such that the Higgs vacuum orbit is parametrized as follows:

φV
1 = cosθ1sinψ , φV

2 = sinθ1sinψ , φV
3 =−cosθ2cosψ , φV

4 = sinθ2cosψ .
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Let us consider the one formω = 1
π

(
φV

1 dφV
2 +φV

3 dφV
4

) ∈ Ω1(S3). The Hopf index, labeling the
homotopy class of the third homotopy group of the 2-sphereΠ3(S2) = Z, is:

h =
1

π2

∫

S3
ω ∧dω =

2
π2

∫

S3
φV

1 dφV
2 ∧dφV

3 ∧dφV
4 .

Thus,
φV

1 dφV
2 ∧dφV

3 ∧dφV
4 =−cos2θ1sin3ψcosψdψ ∧dθ1∧dθ2

and the Hopf index of the vacuum orbit is:

h =
2

π2

[
2π ·

∫ 2π

0
dθ1cos2θ1 ·

∫ π
2

0
dψ sin3ψcosψ

]
=

2
π2

[
2π ·π · 1

4

]
= 1 .

3.1.3 Higgs mechanism and Feynman rules

The choice of a point in the vacuum orbitS3 spontaneously breaks theSU(2)-global symmetry
and one would expect three Goldstone bosons. One of the three Goldstone bosons, however, will
undergo the Higgs mechanism. We shift the scalar field away from the vacuum inH(xµ) -real
Higgs-,G(xµ) -real Higgs ghost-, andϕ(xµ) -complex Goldstone- fields:

Φ(xµ) =

(
1+H(xµ)+ iG(xµ)√

2ϕ(xµ)

)
.

The choice of the Feynman-’t Hooft R-gauge

R(Aµ ,G) = ∂µAµ(xµ)+G(xµ) , Sg.f. =−1
2

∫
d3x

(
∂µAµ(xµ)+G(xµ)

)2

needs a Faddeev-Popov determinant to restore unitarity which amounts to introducing a complex
ghost field:

R(A′µ ,G′)' R(Aµ ,G)+(¤−1−H(xµ)) ·δα(xµ)

Det
δR
δα

=
∫

[dχ∗(xµ)][dχ(xµ)]exp

{
i
∫

dx3χ∗(xµ)(¤−1−H(xµ))χ(xµ)
}

.

The action becomes:

S =
v
e

∫
d3x

[
−1

2
Aµ [−gµν(¤+1)]Aν +∂µ χ∗∂ µ χ−χ∗χ

+
1
2

∂µG∂ µG− 1
2

G2 +
1
2

∂µH∂ µH− κ2

2
H2 +∂µϕ∗∂ µϕ

− κ2

2
H(H2 +G2)+Aµ(∂ µHG−∂ µGH)+H(AµAµ −χ∗χ)+ iAµ(ϕ∗∂ µϕ−ϕ∂ µϕ∗)

+ AµAµ |ϕ|2− κ2

8
(H2 +G2)2 +

1
2
(G2 +H2)AµAµ − κ2

2
|ϕ|2(|ϕ|2 +H2 +G2 +2H)

]
.(3.1)

The Feynman rules are summarized in the next two Tables. Table 4 gives the propagators in the
R-gauge. There is a Higgs field propagating with massκ2, a Higgs ghost of mass1, and a vector
particle with mass also1. A Faddeev-Popov (anti-commuting) ghost of mass1 must be included to
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Particle Field Propagator Diagram

Higgs H(x)
ieh̄

v(k2−κ2 + iε)
�

Higgs Ghost G(x)
ieh̄

v(k2−1+ iε)
�

Complex Goldstone ϕ(x)
ieh̄

v(k2 + iε)

Ghost χ(x)
ieh̄

v(k2−1+ iε)
�

Vector Boson Aµ(x)
−ieh̄gµν

v(k2−1+iε)

�

�� ��

Table 4: Propagators

Vertex Weight Vertex Weight Vertex Weight Vertex Weight

−3iκ2 v
h̄e −3iκ2 v

h̄e eµ

i(kµ +qµ) v
h̄e 2igµν v

h̄e

−iκ2 v
h̄e −3iκ2 v

h̄e

���

��
���

���

(kµ −qµ) v
h̄e

�
�

�
�

2i v
h̄eg

µν

�
�

�
�

2i v
h̄eg

µν −iκ2 v
h̄e −2iκ2 v

h̄e −iκ2 v
h̄e

−i v
h̄e

�
�

�
�

2i v
h̄eg

µν −iκ2 v
h̄e −iκ2 v

h̄e

Table 5: Third- and fourth-valent vertices

compensate the non-physical Higgs ghost. Finally, there is a complex Goldstone boson, as expected
from this partial Higgs mechanism. The vertices are read from the cubic and quartic terms in action
(3.1) and shown in Table 5. There are accordingly three-valent and four-valent vertices. The cubic
terms with derivatives in (3.1) provide weights proportional not only to the coupling constants but
also dependent on the momenta.
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3.2 Topological solitons

The search for time-independent finite energy solutions requires the use of the Weyl gauge:
A0(x) = 0; otherwise, time-dependent gauge transformations would spoil the time independence.
We thus look for solutions of

1) −∂ 2
0 Ai +∂iFi j =

i
2

(
Φ†DiΦ− (DiΦ)† Φ

)
, 2) − 1

2
∂ 2

0 Φ+
1
2

DiDiΦ =
κ
4

Φ(Φ†Φ−1) (3.2)

such that their energy

E(Φ,Ai) =
∫

d2x

{
1
4

Fi j Fi j +
1
2
(DiΦ)†DiΦ+

κ
8

(Φ†Φ−1)2
}

(3.3)

is finite.

3.2.1 Topology of the configuration space

The configuration space

C =
{

Φ(~x) ∈Maps(R2,C2),Ai(~x) ∈Maps(R2,TR2)/E(Φ,Ai) < +∞
}

is the set of all the field configurations of finite energy. Consider polar coordinates in the plane:

r = +
√

x2
1 +x2

2, θ = arctanx2
x1

. The equations

1) Φ†Φ|S1
∞

= 1 , 2) DiΦ|S1
∞

= (∂iΦ− iAiΦ)|S1
∞

= 0 (3.4)

are the necessary conditions to be satisfied by finite energy static field configurations at the bound-
ary of R2 at infinity: S1

∞ ≡
{

x1,x2/ limr→∞(x2
1 +x2

2 = r2)
} ≡ ∂R2. Therefore, equation (3.4(1))

determines a map fromS1
∞ in S3. If Φ2|S1

∞
= 0

Φ|S1
∞

=

(
Φ1|S1

∞

Φ2|S1
∞

)
=

(
φ1|S1

∞
+ iφ2|S1

∞

φ3|S1
∞
+ iφ4|S1

∞

)
=

(
eil θ

0

)
= ΦV

l , l ∈ Z

are all the single-valued maps complying with (3.4(1)). Acting with theSU(2) matrices parametrized
by Hopf coordinates we obtain the general solution by changing the base point inS2 at whichS1 is
fibred:

GΦV
l =

(
eiθ1sinψ eiθ2cosψ

−e−iθ2cosψ e−iθ1sinψ

)(
eil θ

0

)
=

(
ei(θ1+lθ)sinψ

−e−i(θ2−lθ)cosψ

)
.

Equation (3.4(2)) is consequently solved by:

Ai |S1
∞

= −iΦ†∂iΦ|S1
∞

= l
∂θ
∂xi

(3.5)

= φ1(~x)
∂φ2

∂xi
(~x)

∣∣S1
∞
−φ2(~x)

∂φ1

∂xi
(~x)

∣∣S1
∞

+φ3(~x)
∂φ4

∂xi
(~x)

∣∣S1
∞
−φ4(~x)

∂φ3

∂xi
(~x)

∣∣S1
∞

,

showing that the vector fieldAi(x1,x2) is asymptotically vorticial. The integer numberl has corre-
lated mathematical and physical meanings:
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1. It is the winding number of the map provided by the Higgs field at infinity:

S1
∞ −→ S1

1 , C = tl∈ZCl ,

whereS1
1 is the fiber at the north pole ofS2.

2. It is the magnetic flux of the field configuration:

g =
∮

S1
∞

(
A1(~x)dx1 +A2(~x)dx2) = l

∮

S1
∞

(
∂θ
∂x1

dx1 +
∂θ
∂x2

dx2
)

= l
∫ 2π

0
dθ = 2π l .

Because the first homotopy group of a circle is non-trivial,Π1(S1
1) = Z, the configuration space is

the union of numerable infinite disconnected sectors distinguished by the integerl : C =
⊔

l Cl .

3.2.2 Self-dual semi-local topological solitons

At the critical point between Type II and Type I superconductivity where the masses of Higgs
and vector particles are equal,κ2 = 1, it is possible to write the energy, up to a total derivative, as
a Bogomolny splitting:

E =
∫

d2x
2

(
(D1Φ± iD2Φ)†(D1Φ± iD2Φ)+ [F12± 1

2(Φ†Φ−1)]2
)
+

1
2
|g| .

The solutions of the first-order system of partial differential equations (3.6)

D1Φ± iD2Φ = 0 , F12± 1
2
(Φ†Φ−1) = 0 (3.6)

are absolute minima of the energy and saturate the topological bound proportional to the quantized
magnetic flux in each topological sector. Because the first-order vortex equations can be obtained
as a dimensional reduction of the self-duality equations of Euclidean Yang-Mills theory in four
dimensions, solutions of the PDE system (3.6) -that also solve the second order PDE system (3.2)-
are usually called self-dual.

The structure of the moduli space of solutions of (3.6) has been completely unveiled in [46],
see also [45]. The parameters underlying the4l dimensional moduli space of topological solitons
are the coordinates of thel zeroes ofΦ1, the coordinates of thel −1 zeroes ofΦ2, and the scale
and phase ofΦ2. Full details can also be found in [31].

3.2.3 Self-dual semi-local topological solitons with mixed circle-symmetry

We shall restrict ourselves to study solutions enjoying symmetry with respect to combined
circle transformations in theR2 plane and the internal spaceC2. This symmetry is materialized by
means of the ansatz:

Φ(x1,x2) =

(
f (r)eil θ

|h(r)|ei(ω+mθ)

)
, l ,m∈ Z+ , ω ∈ R , Ai(x1,x2) =−lεi j

α(r)
r2 x j .

Note that by taking some care with the behavior ofα at the origin the vector fieldAi(x1,x2) is
divergence-free (purely rotational) in the whole plane. The PDE system (3.6) reduces to another
first-order non-linear ODE system linkingf (r), α(r), andh(r):

1
r

dα
dr

=− 1
2l

( f 2(r)+ |h(r)|2−1) ,
d f
dr

=
l
r

f (r)[1−α(r)] ,
d|h|
dr

=
l
r
|h|(r)(m

l
−α(r)) .

(3.7)
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Finite energy solutions, regular at the origin where the (multi) vortex sits, require us to solve (3.7)
with asymptotic and core behavior:

lim
r→∞

f (r) = 1 , lim
r→∞

h(r) = 0 , lim
r→∞

α(r) = 1 (3.8)

f (0) = 0 , |h(0)|= |h0|δm,0 , α(0) = 0 , m< l (3.9)

We stress that the contribution to the vorticity of theΦ2 field m must be always smaller than the
vorticity l of the Φ1 for the topological solution to have finite energy. For later use, we give the
magnetic fieldB(r) = l

2r
dα
dr and the energy density of these circle configurations:

E (r) =
1
8
(

1
l2 +1)(1− f 2(r)−|h(r)|2)2 +

l2 f 2(r)
r2 (1−α(r))2 +

l2|h(r)|2
r2 (

m
l
−α(r))2 .

3.2.4 Topological solutions of one quantum of magnetic flux

We now go on to the most elementary solutions that carry a quantum of magnetic flux, or,
l = 1 = m+ 1 . We are guided by the procedure developed in [47] to solve the non-linear ODE
system (3.7) with boundary conditions (3.8)-(3.9). First, we consider small values ofr and in the
first-order differential equations we test the power series

f (r) ≡ f1 · r + f2 · r2 + f3 · r3 + f4r4 + · · · (3.10)

α(r) ≡ α1 · r +α2 · r2 +α3 · r3 +α4 · r4 + · · · (3.11)

h(r) ≡ h0 +h1 · r +h2 · r2 +h3 · r3 +h4 · r4 + · · · , (3.12)

where f j andα j , j = 1,2,3, · · ·, are real, whereash j , j = 0,1,2, · · ·, are complex coefficients. The
coupled first-order ODE’s are solved at this limit by (3.10)-(3.11)-(3.12) if

f (r) ' f1 · r +
f1
8

(|h0|2−1) · r3 +
f1

128

[
(|h0|2−1)(2|h0|2−1)+4 f 2

1

] · r5 + . . .

α(r) ' 1
4
(1−|h0|2) · r2−

[
1
32
|h0|2(|h0|2−1)+

1
8

f 2
1

]
· r4−

−
[

1
768

|h0|2(|h0|2−1)(3|h0|2−2)+
1

192
f 2
1 (5|h0|2−4)

]
· r6 + . . .

h(r) ' h0 +
h0

8
(|h0|2−1) · r2 +

h0

128

[
(|h0|2−1)(2|h0|2−1)+4 f 2

1

] · r4 + . . . .

We stress thath0 ∈ [0,1] is determined by the behavior of the solution at the origin such that only
a free parameter,f1, is left. Second, a numerical scheme is implemented by setting a boundary
condition at a non-singular point of the ODE system, which is obtained from the power series for a
small value ofr (r = 0.001in our case). This scheme prompts a shooting procedure by varyingf1,
where the correct asymptotic behavior of the solutions is obtained setting a optimal value forf1 for
a given value ofh0. Finally, the first-order ODE system is solved for longr by means of a power
series in1

r :

f (r) = ∑
j=0

f j · r− j α(r) = ∑
j=0

α j · r− j h(r) = ∑
j=1

h j · r− j
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with the result that

f (r) ' 1− |h
1|2
2

· r−2 +(−2|h1|2 +
3
8
|h1|4) · r−4 + |h1|2(−32+5|h1|2− 5

16
|h1|4) · r−6 +

+ |h1|2(−1152+158|h1|2− 35
4
|h1|4 +

35
128

|h1|6) · r−8 + . . .

α(r) ' 1−|h1|2 · r−2 + |h1|2(−8+ |h1|2) · r−4 + |h1|2(−192+24|h1|2−|h1|4) · r−6

+|h1|2(9216+1120|h1|2−48|h1|4 + |h1|6) · r−8 + . . .

|h(r)| ' |h|1 · r−1 +−|h
1|3
2

· r−3 + |h1|3(−2+
3
8
|h1|2) · r−5 +

+ |h1|3(−32+5|h1|2− 5
16
|h1|4) · r−7 + . . . .

Again, only one free parameterh1 is left. The value ofh1 is fixed by demanding the continuity of
the solution at intermediate distances (r = 15 in our case) obtained by gluing the short-r and long-
r approximations. In particular, this has the important implication that|h0| = 0 ⇒ |h1| = 0
linking the null value of|h0|, which gives the embedded ANO vortex, with the null value of the
constant|h1| setting the behavior of the solution for very longr. Another important remark is that
the longr behavior of self-dual semi-local defects differs from the longr behavior of self-dual
ANO vortices that decay exponentially.

The following Figures show the results obtained with this procedure for several values of
h0. Note thath0 = 0 for the ANO vortices, andh0 = 1 for the CP1-lumps. It may be observed
in the graphics that the field profiles reach their vacuum values at distances of the order ofr =
15. Consequently, practically identical numerical solutions would be generated by sewing the
numerical to the asymptotic solution atr greater than15.
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Figure 11: Field Profiles and Energy Densities for Semi-local Topological Defects

3.2.5 Deformation of the first-order equations

It is interesting at this point to consider small deformations of the solutions of the (3.6) system

Φ(~x) = S(~x)+δS(~x) , A j(~x) = Vj(~x)+δa j(~x) ,

which are still solutions of the same PDE system. The necessary and sufficient conditions for this
are tantamount to the linear PDE system:

−∂2δa1 +∂1δa2 +
1
2
(S†δS+δS†S) = 0

(
∂

∂x1
− iV1(~x)+ i

∂
∂x2

+V2(~x))δS− i(δa1 + iδa2)S= 0 . (3.13)

Pure gauge fluctuations are discarded from the solutions of (3.13) by setting the background gauge:

∂ jδa j(~x)+
i
2
(S†δS−δS†S) = 0 .

The tangent space to the moduli space of self-dual topological solitons with a given magnetic
charge2π l is therefore the kernel of the first-order deformation operatorD :

Dξ (~x) =




−∂2 ∂1 S1
1 S2

1 S1
2 S2

2

−∂1 −∂2 −S2
1 S1

1 −S2
2 S1

2

S1
1 −S2

1 −∂2 +V1 −∂1−V2 0 0
S2

1 S1
1 ∂1 +V2 −∂2 +V1 0 0

S1
2 −S2

2 0 0 −∂2 +V1 −∂1−V2

S2
2 S1

2 0 0 ∂1 +V2 −∂2 +V1







δa1(~x)
δa2(~x)
δS1

1(~x)
δS2

1(~x)
δS1

2(~x)
δS2

2(~x)




= 0 .
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Accordingly,4+ = D†D is the following6×6 matrix partial differential operator:

4+ =




A 0 −2∇1S2
1 2∇1S1

1 −2∇1S2
2 2∇1S1

2
0 A −2∇2S2

1 2∇2S1
1 −2∇2S2

2 2∇2S1
2

−2∇1S2
1 −2∇2S2

1 B −2Vk∂k S1
1S1

2 +S2
1S2

2 S1
1S2

2−S2
1S1

2
2∇1S1

1 2∇2S1
1 2Vk∂k B −S1

1S2
2 +S2

1S1
2 S1

1S1
2 +S2

1S2
2

−2∇1S2
2 −2∇2S2

2 S1
1S1

2 +S2
1S2

2 −S1
1S2

2 +S2
1S1

2 C −2Vk∂k

2∇1S1
2 2∇2S1

2 S1
1S2

2−S2
1S1

2 S1
1S1

2 +S2
1S2

2 2Vk∂k C




A =−∂k∂k + |S1|2 + |S2|2 , j,k = 1,2 , ∂k∂k =
∂ 2

∂x2
1

+
∂ 2

∂x2
2

, Vk(~x)Vk(~x) = V2
1 (~x)+V2

2 (~x)

B =−∂k∂k +
1
2
(3|S1|2 + |S2|2 +2VkVk−1) , C =−∂k∂k +

1
2
(|S1|2 +3|S2|2 +2VkVk−1)

∇ jS
A
M = ∂ jS

A
M + εABVjS

B
M , M = 1,2 , A,B = 1,2 , ε12 =−ε21 = 1 , ε11 = ε22 = 0.

One easily checks that4+ has a supersymmetric partner3: 4− = DD†:

4− =




A 0 0 0 0 0
0 A 0 0 0 0
0 0 B− −2Vk∂k S1

1S1
2 +S2

1S2
2 S1

1S2
2−S2

1S1
2

0 0 2Vk∂k B− −S1
1S2

2 +S2
1S1

2 S1
1S1

2 +S2
1S2

2
0 0 S1

1S1
2 +S2

1S2
2 −S1

1S2
2 +S2

1S1
2 C− −2Vk∂k

0 0 S1
1S2

2−S2
1S1

2 S1
1S1

2 +S2
1S2

2 2Vk∂k C−




, Vk∂k = V1(~x)
∂

∂x1
+V1(~x)

∂
∂x1

B− =−∂k∂k +
1
2
(|S1|2−|S2|2 +2VkVk +1) , C− =−∂k∂k +

1
2
(−|S1|2 + |S2|2 +2VkVk +1) .

The index of the deformation operator -indD = dimKerD −dimKerD† - is in this case equal to
the dimension ofKer4+ becausedimKerD† = 0,4− being definite positive.

Because4+ and4− are iso-spectral up to zero modes the index ofD can be regularized in
the following form:

indexD = lim
β→0

[
TrL2e−β4+ −TrL2e−β4−

]
.

Let us use the heat trace expansion:TrL2e−β4± = TrL2e−β4∑∞
n=0 cn[4±]β n,

4=




−∂k∂k +1 0 0 0 0 0
0 −∂k∂k +1 0 0 0 0
0 0 −∂k∂k +1 0 0 0
0 0 0 −∂k∂k +1 0 0
0 0 0 0 −∂k∂k 0
0 0 0 0 0 −∂k∂k




.

Because

TrL2e−β4 =
e−β

π
+

1
2πβ

, c0[4±] = 6l2, , c1[4±] =
∫

dx2 tr(4±(~x)−4)

3This is an example of hidden bosonic supersymmetry [48].
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we obtain:

indD =− 1
π

∫
dx2 tr(4+(~x)−4−(~x)) =

2
π

∫
dx2 (|S1|2 + |S2|2−1

)
=

2
π

∫
dx2F12 = 4l .

(3.14)
In the derivation of (3.14) we have used the vortex equation (3.6) andtr means trace in the matrix
sense. We find that the number of zero modes is twice the magnetic flux (modπ), in perfect
agreement with the number of parameters of the self-dual topological solitons.

3.3 One-loop correction to the masses of semi-local self-dual topological solitons (SSTS)

3.3.1 SSTS fluctuations

Let us now consider time-dependent small fluctuations of the self-dual topological solitons:

Φ(~x) = S(~x)+δS(x0,~x) , A j(~x) = Vj(~x)+δa j(x0,~x) , χ(~x) = δ χ(~x) .

In order to discard pure gauge fluctuations we impose the Weyl/background gauge condition (the
R gauge in the topological sector of magnetic flux 1):

A0(x0,~x) = 0 , ∂ jδa j(x0,~x)+
i
2
(S†(~x)δS(x0,~x)−δS†(x0,~x)S(~x)) = 0 .

The classical energy up toO(δ 3) order (one-loop) of the SSTS fluctuations is:

H(2) = H(2)
B +H(2)

F =
v2

2

∫
d2x

{
∂δξ T

∂x0

∂δξ
∂x0

+δξ TKδξ +δ χ∗KGδ χ
}

,

where

δξ T(x0,~x) =
(
δa1(x0,~x) δa2(x0,~x) δS1

1(x0,~x) δS2
1(x0,~x) δS1

2(x0,~x) δS2
2(x0,~x)

)

is a file vector assembling the fluctuations of the two polarizations of vector particles, the Higgs
and Higgs ghost fluctuations, and Goldstone fluctuations around the topological soliton solution,
i.e., the bosonic fluctuations and the second-order operator determining the small fluctuations of
these extended objects is preciselyK =4+.

We shall impose periodic boundary conditions on the fluctuationsδξa(x1,x2) = δξa(x1 +
l ,x2 + l), a = 1,2, · · · ,6, l = mL. Therefore,K acts on the Hilbert spaceL2 =

⊕6
a=1 L2

a(S1⊗
S1).

Assuming the ortho-normality and completeness of the eigenfunctions ofK, Kξn(~x) = ε2
nξn(~x), in

the sub-space orthogonal to its kernel, one finds the quantum Hamiltonian of the one-loop bosonic
fluctuations:

Ĥ(2)
B = h̄m ∑

Spec+ K

εn(B̂†
nB̂n +

1
2
) , (3.15)

where[B̂†
n, B̂m] = δnm are the expansion coefficients promoted to creation and annihilation opera-

tors. The index theorem argument in the previous Section shows that the number of normalizable
zero modes is:dimKerD = 4l whereD is the partial differential operator arising in the deforma-
tion of the first-order equation. BecauseK = D†D , standard supersymmetry strategies allow us to
conclude that the spectrum ofK is formed by4l zero modes and positive eigenvalues giving rise to
Spec+K.
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The topological soliton ground state is a coherent state annihilated by all destruction operators:

B̂n|0;TS〉= 0, ∀n ⇒ Φ̂(x0,~x)|0;TS〉= S(~x)|0;TS〉
Âi(x0,~x)|0;TS〉= Vi(~x)|0;TS〉 .

Therefore, the bosonic energy of the ground state in a topological sector of magnetic chargel 6= 0
is:

〈0;TS|Ĥ(2)
B |TS;0〉=

h̄m
2

TrL2 K
1
2 . (3.16)

In the Figure 12 we show the diagonal potential wells/barriers in the differential operatorK
for magnetic flux2π. The vector bosons “essentially" feel -there are also non-diagonal terms- the
potentialA; Higgs bosons and Higgs ghosts feel the potentialB, and the Goldstone bosons move
along the potentialC. Leaving apart the non-diagonal exchange interactions, all three types of
particles move through attractive potentials, exponentially decaying to their vacuum values if the
background is the ANO vortex,h0 = 0. If the background is ah0 = 0.3 topological soliton, both
vector and Goldstone bosons move in less attractive potential wells that, moreover, only decay as
some negative power ofr near infinity. Forh0 = 0.9, a value giving almost aCP1-lump, the vector
bosons pass through the background feeling a extremely weak attraction, the Higgs boson and ghost
note a considerably weaker attraction as compared to the attraction of the previous backgrounds,
and the Goldstone bosons are repelled by the topological soliton. The decay at infinity is extremely
slow. The analysis of these physical features will give qualitative support to our results on the
one-loop corrections to be presented later.
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Figure 12: Potential wells forl = 1 VA(r), VB(r), VC(r): a)h0 = 0.0, b) h0 = 0.3, c) h0 = 0.9

It remains to get rid off the contribution of the Higgs ghosts by considering the ground state
energy of the (fermionic) Faddeev-Popov ghosts. The FP ghost fluctuations (with PBC) are deter-
mined by the Scḧodinger operator:

KG =−∂k∂k + |S1|2 + |S2|2 , δ χ(x1,x2) = δ χ(x1 + l ,x2 + l) ,

such thatKG acts onL2
G = L2(S1⊗

S1). Again assuming the ortho-normality and completeness of
the eigenfunctions ofKG, KGχn(~x) = ε2

nχn(~x), in the sub-space orthogonal to its kernel, one finds
the quantum Hamiltonian of the one-loop fermionic fluctuations:

Ĥ(2)
F = h̄m ∑

Spec+ KG

εn(Ĉ†
nĈn− 1

2
) , (3.17)

where{Ĉ†
n,Ĉm}= δnm are the expansion coefficients promoted to fermionic creation and annihila-

tion operators. There are no fermionic ghosts in the topological soliton ground state. Henceforth,
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Ĉn|0;TS〉= 0,∀n and the ground state energy of the topological soliton is:

〈0;TS|Ĥ(2)
B |0;TS〉+ 〈0;TS|Ĥ(2)

F |0;TS〉=
h̄m
2

(
TrL2 K

1
2 −TrL2 (KG)

1
2

)
=

h̄m
2

STrL2 K
1
2 .

(3.18)

3.3.2 Vacuum fluctuations

It is instructive to specify this analysis for the vacuum fluctuations:

SV(~x) =

(
1
0

)
, VV

i (~x) = 0i .

In this case the second-order operator fluctuations areK0 =4 andKG
0 = −∂k∂k +1 such that the

spectrum is completely known. In a normalization square of areal2, periodic boundary conditions
on the fluctuations plus canonical quantization produce the following bosonic and fermionic free
Hamiltonians:

Ĥ(2)
B = h̄m

6

∑
a=1

∑
n1∈Z

∑
n2∈Z

ωa(n1,n2)
(
b̂a†

n1
b̂a

n1
+ b̂a†

n2
b̂a

n2
+1

)
, [b̂a†

nα , b̂c
mβ

] = δ acδnα mβ

Ĥ(2)
F = h̄m ∑

n1∈Z
∑

n2∈Z
ω(n1,n2)

(
ĉ†

n1
ĉn1 + ĉ†

n2
ĉn2−1

)
, {ĉ†

nα , ĉmβ }= δnα mβ

ω(n1,n2) = ωa(n1,n2) =
4π2

l2 (n2
1 +n2

2)+1, a = 1,2,3,4

ωa(n2
1,n

2
2) =

4π2

l2 (n2
1 +n2

2) , a = 5,6 .

Therefore, the ground state in the vacuum sector is also a coherent state:

b̂a
nα |V;0〉= ĉnα |V;0〉= 0 , ∀a , ∀nα ≡





Φ̂(t,~x)|V;0〉=

(
|V;0〉

0

)

Âi(t,~x)|V;0〉= 0i

such that the ground state energy follows immediately:

〈0;V|
(

Ĥ(2)
B + Ĥ(2)

F

)
|V;0〉= TrL2K

1
2
0 −TrL2

(
KG

0

) 1
2 = STrL2 (K0)

1
2 .

It is clear that the ghosts cancel the contribution to the vacuum energy of the non-physical Higgs
ghosts and render the theory unitary.

3.4 Zero point energy and mass renormalizations

3.4.1 Topological soliton Casimir energy

Subtracting the ground state vacuum energy from the ground state energy of the topological
solitons

4EC
TS = 〈0;TS|

(
Ĥ(2)

B + Ĥ(2)
F

)
|TS;0|〉−〈0;V|

(
Ĥ(2)

B + Ĥ(2)
F

)
|V;0|〉

= 4ETS−4E0 =
h̄m
2

(
STrK

1
2 −STrK

1
2
0

)
(3.19)

one formally measures the semi-local self-dual topological soliton Casimir energy.
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3.4.2 Mass renormalization counter-terms

In (2+ 1)-dimensions, the semi-local Abelian Higgs model is super-renormalizable. This
means that there are a finite number of divergent graphs. We list the one-loop graphs that diverge.

1. Higgs boson tadpole:

+ + + + =

=−2i(κ2 +1) · I(1)− iκ2 · I(0)+finite part

2. Higgs boson self-energy:

+ + + + =

=−2i(κ2 +1) · I(1)− iκ2 · I(0)+finite part

3. Higgs ghost self-energy:

+ + + + =

=−2i(κ2 +1) · I(1)− iκ2 · I(0)+finite part

4. Goldstone boson self-energy:

+ + + + =

=−4i(κ2 +1) · I(1)−2iκ2 · I(0)+finite part

5. Vector boson self-energy:

+ + + + =

= 2i · [I(1)+ I(0)]gµν +finite part .

Note that the ultraviolet divergences come from integrals of the form:

I(c2) =
∫

d3k
(2π)3 ·

i
k2−c2 + iε

,

and that, unlike in(1+1)-dimensional scalar field theory, normal ordering is not enough.
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Diagram Weight

i[2(κ2 +1)I(1)+κ2I(0)]
i[2(κ2 +1)I(1)+κ2I(0)]
i[2(κ2 +1)I(1)+κ2I(0)]
i[4(κ2 +1)I(1)+2κ2I(0)]
−2i[I(1)+ I(0)]gµν

Table 6: Counter-term vertices

We add the following counter-terms to cancel these divergences:

L S
c.t. =

h̄
2

[
2(κ2 +1) · I(1)+κ2 · I(0)

] · [Φ∗
1(x

µ)Φ1(xµ)+Φ∗
2(x

µ)Φ2(xµ)−1]

L A
c.t. = −h̄[I(1)+ I(0)] · Aµ(xµ)Aµ(xµ)

We have used a minimal subtraction prescription and the main criteria to set finite renormal-
izations have been: 1) The divergence due to the tadpole graph is exactly canceled in the self-dual
limit κ2 = 1. 2) The globalSU(2) symmetry remains unbroken after one-loop renormalizations.
Interested readers can find a fully detailed description of our renormalization conventions in [32].

3.4.3 Mass renormalization counter-term energies

Therefore, the topological soliton energy due to mass renormalization counter-terms in the
self-dual limitκ2 = 1 receives the following contribution from the scalar and vector fields:

∆ES
CT =

h̄m
2

[4I(1)+ I(0)]
∫

d2x(1−|S1|2−|S2|2) , ∆EA
CT =−h̄m[I(1)+ I(0)]

∫
d2xVkVk .

We reshuffle the sum of these two quantities into two pieces4EI(1)
CT = h̄m

2 I(1)Σ(1)(S,Vk) and

4EI(0)
CT = h̄m

2 I(0)Σ(0)(S,Vk), respectively proportional toI(1) andI(0):

Σ(1)(S,Vk) = 4
∫

d2x(1−|S1|2−|S2|2− 1
2

VkVk) , Σ(0)(S,Vk) =
∫

d2x
(
1−|S1|2−|S2|2−2VkVk

)
.

As in the zero point renormalization one must subtract the energy induced by the counter-terms in
the vacuum from the same quantity for the topological soliton:

4ER
TS=4EI(1)

CT (TS)−4EI(1)
CT (V)+4EI(0)

CT (TS)−4EI(0)
CT (V) . (3.20)

3.5 High-temperature one-loop mass shift formula for self-dual semilocal topological
solitons

3.5.1 Spectral zeta-function regularization

Both4EC
TS and4ER

TS are divergent quantities that we shall regularize by means of the zeta
function procedure before being added. We recall that the spectral zeta functions of elliptic op-
eratorsA (with positive definite and discrete spectrum) are formally defined as infinite sums of
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complex powers of their eigenvalues:

ζA(s) = ∑
SpecA

λ−s
n , s∈ C .

These sums are usually convergent forRes> s0 > 0, wheres0 is a positive real constant, but are
susceptible to being analytically continued to the complexs-plane. In many favorable cases, their
analytic continuations are meromorphic functions ofs and we shall regularize: 1) the ground state
energy in topological sectors, 2) the ground state energy in the vacuum sector, and 3) the SSTS
Casimir energy, by assigning to these quantities the values

∆ETS(s) =
h̄µ
2

(
µ2

m2

)s

{ζK(s)−ζKG(s)} , ∆E0(s) =
h̄µ
2

(
µ2

m2

)s{
ζK0(s)−ζKG

0
(s)

}

∆EC
TS(s) = ∆ETS(s)−∆E0(s) , ∆EC

TS= lim
s→− 1

2

∆MC
TS(s)

at a regular point of the spectral zeta functions in the complexs-plane. The spectral zeta functions
of K0 andKG

0 with periodic boundary conditions on the edges of a square of areal2 are given by
meromorphic Euler Gamma functions:

ζK0(s) =
l2

π
· Γ[s−1]

Γ(s)
+

l2

2π
· 1
(s−1)Γ(s)

, ζKG
0
(s) =

l2

4π
· Γ[s−1]

Γ(s)
.

∆ER
TS can be regularized in a similar vein. On a square of areal2 I(1) and I(0) become infinite

sums over discrete momenta:

I(c) =
1
2

∫
d2k

(2π)2

1√
~k ·~k+c2

=
1
2

1
l2 ∑

~k∈Z2

1√
~k ·~k+c2

.

Therefore, we regularize∆ER
TS in the same form:

∆ER
TS(s) =

h̄
2l2

(
µ2

m2

)s(
ζ−4+1(s)Σ(1)(S,Vk)+ζ−4(s)Σ(0)(S,Vk)

)
, ∆ER

TS= lim
s→ 1

2

∆ER
TS(s) ,

knowing that:

I(1) =
1

2l2 ζ−4+1(
1
2
) =

1
8π

Γ(−1
2)

Γ(1
2)

=− 1
4π

, I(0) =
1

2l2 ζ−4(
1
2
) =− 1

4π
√

π
.

3.5.2 The heat kernel expansion of elliptic differential operators

Because theSSTSsolutions are not known analytically, it is not possible to compute the spec-
tral functions ofζK(s) andζKG(s). One possible loophole is to rely on the high-temperature asymp-
totic expansion of the heat traces and to build approximations to the spectral zeta functions from
the Mellin transform of these approximated heat traces.

This construction is particularly complicated for the second-order fluctuation operatorK. The
Hessian is of the general form:

K = K0 +Qk(~x)∂k +V(~x) .
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The logical sequence is as follows: theK-heat equation kernel is the solution of theK-heat equation
complying with the delta function infinite temperature condition:

(
∂

∂β
I+K

)
KK(~x,~y;β ) = 0 , KK(~x,~y;0) = I ·δ (2)(~x−~y) . (3.21)

In our problemI is thesix×six unit matrix. TheK-heat trace, orK-partition function, is the integral
over the wholeR2-plane of theK-heat equation kernel at the diagonal ofR2⊗

R2, whereas the
spectralK-zeta function is the Mellin transform of theK-heat trace:

Tre−βK = tr
∫

R2
d2~xKK(~x,~x;β ) , ζK(s) =

1
Γ(s)

·
∫ ∞

0
dβ β s−1Tre−βK .

Given the structure ofK,
KK(~x,~y;β ) = CK(~x,~y;β )KK0(~x,~y;β )

is a good ansatz to solve (3.21). Plugging the ansatz in (3.21), one finds the transfer PDE and the
high-temperature condition thatC(~x,~y;β ) must satisfy:

{
∂

∂β
I+

xk−yk

β
(∂kI− 1

2
Qk)−4I+Qk∂k +V

}
CK(~x,~y;β ) = 0 , CK(~x,~y;0) = I .

(3.22)
The solution of (3.22) by means of a high-temperature power series expansion

CK(~x,~y;β ) =
∞

∑
n=0

cn(~x,~y;K)β n , c0(~x,~y;K) = I

is tantamount to the solving of the recurrence relations:

[nI+(xk−yk)(∂kI− 1
2

Qk)]cn(~x,~y;K) = [4I−Qk∂k−V]cn−1(~x,~y;K) . (3.23)

It is easy to find the first Seeley density,c1(~x,~x;K) =−V(~x), a result used in the subsection above
addressing the index theorem. Higher-order Seeley densities are harder to find. It is convenient to
introduce the notation

(α1,α2)Cab
n (~x) = lim

~y→~x

∂ α1+α2[cn]ab(~x,~y;K)
∂xα1

1 ∂xα2
2

, [cn]ab(~x,~x;K) = (0,0)Cab
n (~x)

because the recurrence relations between derivatives of the Seeley densities can be written in the
compact form
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(k+α1 +α2 +1)(α1,α2)Cab
k+1(~x) = (α1+2,α2)Cab

k (~x)+ (α1,α2+2)Cab
k (~x)−

−
6

∑
d=1

α1

∑
r=0

α2

∑
t=0

(
α1

r

)(
α2

t

)[
∂ r+tQad

1

∂xr
1∂xt

2

(α1−r+1,α2−t)Cdb
k (~x) +

+
∂ r+tQad

2

∂xr
1∂xt

2

(α1−r,α2−t+1)Cdb
k (~x)

]
+

+
1
2

6

∑
d=1

α1−1

∑
r=0

α2

∑
t=0

α1

(
α1−1

r

)(
α2

t

)
∂ r+tQad

1

∂xr
1∂xt

2

(α1−1−r,α2−t)Cdb
k+1(~x)+

+
1
2

6

∑
d=1

α2−1

∑
r=0

α1

∑
t=0

α2

(
α2−1

r

)(
α1

t

)
∂ r+tQad

2

∂xt
1∂xr

2

(α1−t,α2−1−r)Cdb
k+1(~x)−

−
6

∑
d=1

α2

∑
r=0

α1

∑
t=0

(
α1

t

)(
α2

r

)
∂ r+tVad

∂xt
1∂xr

2

(α1−t,α2−r)Cdb
k (~x)

c0(~x,~x;K) = I⇒
{

(α,β )Cab
0 (~x) = 0, if α 6= 0,and/orβ 6= 0

(0,0)Caa
0 (~x) = 1, a = 1,2, · · · ,6

susceptible to being solved with the help of a symbolic programm implemented in Mathematica.

3.5.3 Mellin transform of the heat trace asymptotic expansion

The spectral zeta functions of of bothK andKG are obtained from the high-temperature ex-
pansion of the heat traces via the Mellin transform:

ζK(s) =
1

Γ(s)

∫ 1

0
dβ β s−1

{
1

4πβ

∞

∑
n=0

β n ·
(

e−β
4

∑
a=1

[cI
n(K)]aa+

6

∑
a=5

[cO
n (K)]aa

)}

+
1

Γ(s)

∫ ∞

1
dβ β s−1Tre−βK

ζKG(s) =
1

Γ(s)

∫ 1

0
dβ β s−1

{
e−β

4πβ

∞

∑
n=0

β ncn(KG)

}
+

1
Γ(s)

∫ ∞

1
dβ β s−1Tre−βKG

.

Here the Seeley coefficients[cI
n(K)]aa, [cO

n (K)]aa, andcn(KG) are obtained through integration over
the wholeR2-plane of the Seeley densities:

[cI
n(K)]aa =

∫
d2x[cn]aa(~x,~x;K) , a = 1,2,3,4

[cO
n (K)]aa =

∫
d2x[cn]aa(~x,~x;K) , a = 5,6 , [cn(KG)] =

∫
d2x[cn](~x,~x;KG) .

Finally, we find the spectral zeta functions as sums of meromorphic and entire parts:

ζK(s) =
∞

∑
n=0

{
4

∑
a=1

[cI
n(K)]aa

γ [s+n−1,1]
4πΓ(s)

+
6

∑
a=5

[cO
n (K)]aa

1
4πΓ(s)(s+n−1)

}
+

1
Γ(s)

BK(s)

ζKG(s) =
∞

∑
n=0

cn(KG)
γ [s+n−1,1]

4πΓ(s)
+

1
Γ(s)

BKG(s) . (3.24)
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An important warning: the physical points = −1
2 is a regular point -not a pole- ofζK(s),

ζKG(s), ζK0(s), andζKG
0
(s). Unlike in kink cases, after zeta function regularization is performed

only finite renormalizations are left in(2+1)-dimensional field theories.

3.5.4 High-temperature one-loop mass shift formula for self-dual semi-local topological
solitons

Neglecting the entire parts and truncating the zeta functions at a finite number of summands
N0, the high-temperature one-loop formula giving the semi-classical shift to the masses of semi-
local self-dual topological solitons is obtained:

∆MTS = 4EC
TS+4ER

Ts =

= − h̄m

16π
√

π

[
N0

∑
n=2

{
[

4

∑
a=1

[cn(K)]aa−cn(KG)] · γ[n− 3
2
,1]+

6

∑
a=5

[cn(K)]aa

n− 3
2

}
+4l ·8π

]

− h̄m

8π
√

π
·
∫

d2x |S2|2(x1,x2) ·
(

γ[−1
2
,1]−2

)
. (3.25)

The following remarks are meaningful:

1. The factor−2l h̄m√
π is due to the subtraction of the4l zero modes by exactly the same proce-

dure as the regularization method used for kinks.

2. Unlike in theories with only massive particles, the criterion of the exact cancelation of tadpole
graphs is not completely equivalent to the cancelation of the contributions of the first-order
diagonal Seeley coefficient. The term in the second row of formula (3.25) is the mismatch
between these two criteria due to the massless particles in the semi-local Abelian Higgs
model.

3. The ANO vortices correspond to the SSTS solitons withS2(~x) = 0. Freezing theδS2(x0,~x)
fluctuations and dropping away the associated2l zero modes, the one-loop mass shifts for
ANO vortices are attained.

3.6 Mathematica calculations

In this last Section we shall solve the recurrence relations to find the Seeley densities and their
associated Seeley coefficients by a mixture of symbolic and numerical Programs implemented in
Mathematica. We shall focus on circle symmetric SSTS solutions,

S1
1(x1,x2) = f (r)cosθ S2

1(x1,x2) = f (r)sinθ
S1

2(x1,x2) = h(r) S2
2(x1,x2) = 0

V1(x1,x2) = −α(r)
r

sinθ V2(x1,x2) =
α(r)

r
cosθ ,

the only ones at our disposal, althoughf (r), h(r), andα(r) have been found numerically.
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3.6.1 Seeley densities for circle symmetric semi-local vortices

The first step is to use the first-order rotationally symmetric ODE (3.7) to write the field deriva-
tives in terms of the field profiles themselves:

∂S1
1

∂x1
=

f (r)
r

[
1−α(r)cos2 θ

] ∂S2
1

∂x2
=

f (r)
r

[
1−α(r)sin2 θ

] ∂S1
2

∂x2
=−h(r)

r
α(r)cosθ

∂S1
1

∂x2
= − f (r)

r
α(r)cosθ sinθ

∂S2
1

∂x1
=− f (r)

r
α(r))sinθ cosθ

∂S1
2

∂x1
=−h(r)

r
α(r))sinθ

∂V1

∂x1
=

cos2θ
2

[
2 f (r)α(r)

r
+

f 2(r)+h2(r)−1
2

]
∂V1

∂x2
=−cos2θ

α(r)
r2 +

sin2 θ
2

( f 2(r)+h2(r)−1)

∂V2

∂x1
= −cos2θ

α(r)
r2 − cos2 θ

2
( f 2(r)+h2(r)−1)

∂V2

∂x2
=−cos2θ

2

[
2 f (r)α(r)

r
+

f 2(r)+h2(r)−1
2

]
.

This step is important because numerical calculations on field derivatives cause considerable er-
rors. The next step is the Mathematica solution of the rotationally symmetric recurrence relations.
Below we list the three first-order circle symmetric Seeley densities:

trcI
1(r) = 5− 2α(r)2

r2 −5 f (r)2−3h(r)2

trcI
2(r) =

1
12r4

[
4α(r)4 +27r4 f (r)4−8r2 α(r)

(
−1+14 f (r)2 +h(r)2

)
+

+8α(r)2
(
−2−3r2 +9r2 f (r)2 +3r2h(r)2

)
+

+ f (r)2
(

56r2−64r4 +34r4h(r)2
)

+ r4
(

37−32h(r)2 +7h(r)4
)]

trcI
3(r) =

1
120r6

{
−4α(r)6−4r2 α(r)3

(
14+35 f (r)2−36h(r)2

)
+

+4α(r)4
(

20+9r2 +32r2 f (r)2 +26r2h(r)2
)
−

−2r2 α(r)
[
57r2 f (r)4 + f (r)2

(
32+331r2−75r2h(r)2

)
−4

(
−1+h(r)2

) (
−16−9r2 + r2h(r)2

)]
+

+α(r)2
[
−256−144r2−117r4 +99r4 f (r)4−16r2h(r)2 +94r4h(r)2−61r4h(r)4+

+ 2r2 f (r)2
(

56+183r2 +19r2h(r)2
)]

+

+r4
[
−16+151r2−29r2 f (r)6 +

(
32−135r2

)
h(r)2 +

(
−16+23r2

)
h(r)4 + r2h(r)6+

+ f (r)4
(
−20+199r2−57r2h(r)2

)
+ f (r)2

(
392−321r2 +2

(
−68+111r2

)
h(r)2−27r2h(r)4

)]}
.

Here,tr means that we have summed up to the fourth diagonal density.

trcO
1 (r) = 1− 2α(r)2

r2 − f (r)2−3h(r)2

trcO
2 (r) =

1
12r4 [4α(r)4− r4 f (r)4 +8r2 α(r)

(
1+2 f (r)2−h(r)2

)
−

−8α(r)2
(

2+ r2 + r2 f (r)2−5r2h(r)2
)

+2r2 f (r)2
(
−4+9r2h(r)2

)
+

+r4
(

1−8h(r)2 +19h(r)4
)
]
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trcO
3 (r) =

−1
120r6

{
4α(r)6−4r2 α(r)3

(
−14+9 f (r)2 +84h(r)2

)
−

−4α(r)4
(

20+3r2 +2r2
(

f (r)2 +4h(r)2
))

+

+α(r)2
[
256+48r2−3r4 +45r4 f (r)4 +2r2

(
−40+89r2

)
h(r)2−115r4h(r)4+

+ 2r2 f (r)2
(

8+5r2−35r2h(r)2
)]
−

−2r2 α(r)
[
53r2 f (r)4 +4

(
−1+h(r)2

) (
−16−3r2 +7r2h(r)2

)
− f (r)2

(
32+17r2 +47r2h(r)2

)]
+

+r4
[
16+3r2 +3r2 f (r)6−

(
32+19r2

)
h(r)2 +

(
16+23r2

)
h(r)4 +33r2h(r)6+

+ f (r)4
(

52− r2 +39r2h(r)2
)

+ f (r)2
(
−24−5r2 +

(
−72+22r2

)
h(r)2 +69r2h(r)4

)]}
.

tr now means that we have summed[cO
n ]55 and[cO

n ]66.

cG
1 (r) = 1− f (r)2−h(r)2

cG
2 (r) =

1
6r2

[
3r2 +2r2 f (r)4−

(
5r2 +4α(r)2

)
h(r)2 +2r2h(r)4+

+ f (r)2
(
−4−5r2 +8α(r)−4α(r)2 +4r2h(r)2

)]

cG
3 (r) =

−1
60r4

{
−10r4 +4r4 f (r)6 +

[
23r4−8r2 α(r)+16

(
1+ r2

)
α(r)2 +32α(r)3 +16α(r)4

]
h(r)2+

+r2
[
−17r2 +8α(r)−16α(r)2

]
h(r)4 +4r4h(r)6 +

+r2 f (r)4
[
−24−17r2 +40α(r)−16α(r)2 +12r2h(r)2

]
+

+ f (r)2
[
−32α(r)3 +16α(r)4 +8r2 α(r)

(
−5+6h(r)2

)
+16α(r)2

(
1+ r2−2r2h(r)2

)
+

+ r2
(

24+23r2−2
(

10+17r2
)

h(r)2 +12r2h(r)4
)]}

.

3.6.2 One-loop SSTS mass shifts

In this sub Section we offer some Tables with Mathematica calculations of the one-loop cor-
rections to the masses of topological solitons in the semi-local Abelian Higgs model. We denote
the Seeley coefficients, calculated by means of numerical integration of the circle symmetric Seeley
densities evaluated at the numerical solutions for the field profiles, in the form:

trcI
n = 2π

∫ ∞

0
dr rtrcI

n(r) , trcO
n = 2π

∫ ∞

0
dr rtrcO

n (r) , cG
n = 2π

∫ ∞

0
dr rcG

n (r) .

First, we focus on the embedded ANO vortices, theh0 topological solitons. Second, we give results
for several values ofh0 up to a value ofh0 close toh0 = 1, which corresponds to theCP1-lumps.
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1. One-loop vortex mass shifts in units ofh̄m:

Because the ANO vortex solutions were generated numerically, integration over the whole
plane of the Seeley densities can also only be performed numerically. Therefore, we are forced
to put a cut-off in the area and replace the infinite plane by a discus of radiusR, which in the
calculations shown below was chosen to beR= 10.000

h0 = 0.0

n trcI
n trcO

n cG
n

1 -41.4469 -91.8429 12.599

2 30.3736 0.96286 2.61518

3 12.9447 -0.0592415 0.32005

4 4.22603 0.001512548 0.0230445

5 1.05059 0.000758663 0.0013023

6 0.20900 -0.00023912 0.0000698185

N0 ∆MV(N0)
l = 1

2 -1.61536
3 -1.66862
4 -1.67809
5 -1.67966
6 -1.67989

Table 7: Seeley coefficients for the (left) and Quantum Mass Correction (right) to the soliton in the semi-
local Abelian Higgs model withh0 = 0.0.

In the Table on the left, the first six Seeley coefficients are given. The next coefficients are
very small and one expects that the approximation to the exact value of the one-loop mass shift
is quite good, as shown in the Table on the right: the mass shift obtained by counting five or six
coefficients agrees up to the third decimal figure. In fact, the thresholds in the wells are≤ 1. 1 is the
expectation value of the scalar field at the vacuum, and we find a similar situation to sine-Gordon
kinks (see the first Part), where keeping six coefficients provides a fairly good approximation.

From the same Table one can read the one-loop mass shifts of ANO vortices withl = 1 in the
Abelian Higgs model: just taketrcO

n (K) equal to zero and subtract two zero modes, not 4. The ratio
is:

∆MSLAHM
V

∆MAHM
V

=
1.67989
1.09449

= 1.53486 .

A similar proportion exists between the ratios of kink mass shifts in theλ (φ)4
2 model and the BNRT

model, both treated in the first Part:

∆MBNRTM
K

∆MλΦM
K

=
0.693943
0.471113

= 1.47299, σ = 0.99 ,
∆MBNRTM

K

∆MλΦM
K

=
0.698445
0.471113

= 1.48254, σ = 1.01 .

2. SSTS one-loop mass shifts

Whereas the one-loop mass shift of ANO embedded vortices is always negative and varies
extremely slowly as the area increases towards more negative values, one-loop mass shifts of gen-
uine semilocal topological solitons with|h0|> 0 become less negative, and even positive, for larger
areas, as is shown in the following Table.

The classical degeneracy in energy between semi-local topological defects seems to be broken
by one-loop fluctuations, the ANO embedded vortices becoming the ground states in the topolog-
ical sector of one quantum of magnetic flux. It is remarkable how strong this effect becomes for
topological solitons close toCP1-lumps,|h0| ' 1.
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R ∆MV(N0 = 6,R) ∆MV(N0 = 6,R) ∆MV(N0 = 6,R) ∆MV(N0 = 6,R) ∆MV(N0 = 6,R)
h0 = 0.0 h0 = 0.1 h0 = 0.3 h0 = 0.6 h0 = 0.9

102 -1.67955 -1.61672 -1.05000 2.10142 24.6066
103 -1.67971 -1.58311 -0.626167 4.5485 42.7747
104 -1.67989 -1.55133 -0.252586 6.41655 60.9433
105 -1.68005 -1.51957 0.12086 8.5741 79.1116
106 -1.68026 -1.48779 0.49433 10.7203 97.2798

Table 8: One-loop mass shifts for semi-local topological solitons: Five values ofh0, five values ofR, and
fixedN0 = 6.

3.6.3 Infrared divergences: quantum fate of semi-local topological solitons

The origin of the degeneracy breaking is the slow decay (non-exponential) to their vacuum
values of genuine semilocal topological solitons as compared with ANO vortices. Plugging the
asymptotic form of the circle symmetric topological soliton solutions in the Seeley densities, we
find the following behavior at infinity in terms of the parameter|h1| (which sets the longr behavior
of the solutions):

2πrtrcI
1(r)

r→∞' −4π
r

(1−|h1|2)+
4π
r3 (12|h1|2−|h1|4)+O(

1
r5 )

2πrtrcO
1 (r)

r→∞' −4π
r

(1+ |h1|2)+
4π
r3 (4|h1|2 + |h1|4)+O(

1
r5 )

2πrcG
1 (r)

r→∞' 8π
r3 |h1|2 +O(

1
r5 )

2πrtrcI
2(r)

r→∞' 2π
r
|h1|2 +

2π
r3 (−1+4|h1|2−|h1|4)+O(

1
r5 )

2πrtrcO
2 (r)

r→∞' 2π
r
|h1|2 +

2π
r3 (−1+4|h1|2−|h1|4)+O(

1
r5 )

2πrcG
2 (r)

r→∞' 64π
3r5 |h1|2 +

π
r7 (768|h1|2−80|h1|4)+O(

1
r9 )

2πrtrcI
3(r)

r→∞' 2π
3r
|h1|2 +

2π
3r3 (3|h1|2−|h1|4)+O(

1
r5 )

2πrtrcO
3 (r)

r→∞' −2π2

3r
|h1|2 +

2π
3r3 (−4|h1|2 + |h1|4)+O(

1
r5 )

2πrcG
3 (r)

r→∞' 384π
5r7 |h1|2 +O(

1
r8 )

2πrtrcI
4(r)

r→∞' π
6r
|h1|2 +

π
6r3 (

12
5
|h1|2−|h1|4)+O(

1
r5 )

2πrtrcO
4 (r)

r→∞' − π
6r
|h1|2 +

π
6r3 (4|h1|2−|h1|4)+O(

1
r5 )

2πrcG
4 (r)

r→∞' 832π
21r9 |h1|4− 43π

30r9 |h1|6 +
π

48r9 |h1|8 +
π

768r9 |h1|10+O(
1

r11)

2πrtrcI
5(r)

r→∞' π
30r

|h1|2 +
π

30r3 (2|h1|2−|h1|4)+O(
1
r5 )
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2πrtrcO
5 (r)

r→∞' − π
30r

|h1|2 +
π

30r3 (−4|h1|2 + |h1|4)+O(
1
r5 )

2πrcG
5 (r)

r→∞' − π
r9

(
2048
105

|h1|2− 416
189

|h1|4 +
43
540

|h1|6− 1
864

|h1|8 +
1

138240
|h1|10

)
+O(

1
r11)

2πrtrcI
6(r)

r→∞' π
180r

|h1|2 +
π

15r3 (
1
7
|h1|2− 1

12
|h1|4)+O(

1
r5 )

2πrtrcO
6 (r)

r→∞' π
180r

|h1|2 +
π

45r3 (|h1|2− 1
4
|h1|4)+O(

1
r5 )

The key observation is the appearance of infrared logarithmic divergences in the Seeley coefficients
trcI

n(K) andtrcO
n (K) for all n. The ghost coefficientscG

n (KG), however, are infrared convergent. The
combination of the signs that we have seen in the previous sub-sections with the longr behavior
shows that one-loop mass shifts of semi-local topological solitons tend to+∞ in the infinite area
limit. Semi-local topological defects grow infinitely massive due to the infrared effects of one-loop
fluctuations. This phenomenon seems to be amazingly close to the non-existence of Goldstone
bosons in (1+1)-dimensions.

There is a very important exception: for ANO vortices,|h1| = 0 and only the first-order co-
efficients are infrared divergent. However, the contribution of these coefficients is totally canceled
by mass renormalization counter-terms. Our results suggest that only the ANO vortices between
all the semi-local topological solitons survive one-loop quantum fluctuations. It would be very
interesting to try a more analytic approach to this problem in order to fully elucidate this delicate
issue.

3.6.4 Circle symmetric self-dual Abrikosov-Nielsen-Olesen vortices: one-loop mass shifts up
to l = 4

Finally, we consider the problem of computing the one-loop mass shifts for superimposed
ANO vortices at theκ = 1 limit up to four quanta -8π- of magnetic flux in the Abelian Higgs
model (no fluctuations in thea = 5,6 directions and2l zero modes). The Figure 13 shows the
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Figure 13: Plots of the field profilesα(r) (a) andf (r) (b), the magnetic fieldB(r) (c), and the energy density
ε(r) for self-dual vortices withl = 1 (solid line), l = 2 (broken line),l = 3 (broken-dotted line) andl = 4
(dotted line).

field profiles, the magnetic field, and the energy density for the numerically generated solutions for
l = 1, l = 2, l = 3, andl = 4 in [29]. The Figure 14, however, encompass the 3D plots of these
solutions.

The Seeley coefficients for the different values ofl as well as the one-loop mass shifts are
displayed in the Tables below4
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Figure 14: 3D graphics of the energy density forl = 1, l = 2, l = 3 and l = 4 self-dual symmetric ANO
vortices.

l = 1 l = 2
n trcn(K) cn(KG) trcn(K) cn(KG)
2 30.36316 2.60773 61.06679 6.81760
3 12.94926 0.31851 25.61572 1.34209
4 4.22814 0.022887 8.21053 0.20481
5 1.05116 0.0011928 2.02107 0.023714
6 0.20094 0.00008803 0.40233 0.002212

l = 3 l = 4
n trcn(K) cn(KG) trcn(K) cn(KG)
2 90.20440 11.51035 118.67540 16.46895
3 36.68235 2.60898 46.01141 4.00762
4 11.69979 0.46721 14.64761 0.77193
5 2.86756 0.067279 3.58906 0.11747
6 0.566227 0.0079269 0.667202 0.01620

Table 9: Seeley Coefficients forl = 1, l = 2, l = 3 andl = 4 self-dual symmetric ANO vortices.

N0 ∆MV(N0) ∆MV(N0) ∆MV(N0) ∆MV(N0)
l = 1 l = 2 l = 3 l = 4

2 -1.02951 -2.03787 -3.01187 -3.97025
3 -1.08323 -2.14111 -3.15680 -4.14891
4 -1.09270 -2.15913 -3.18208 -4.18014
5 -1.09427 -2.16212 -3.18628 -4.18534
6 -1.09449 -2.16257 -3.18690 -4.18606

Table 10: One-loop mass shift forl = 1, l = 2, l = 3 andl = 4 self-dual symmetric ANO vortices.

and the last Table provides the one-loop mass shifts of circle symmetric self-dual ANO vortices up
to four quanta of magnetic flux taking into accountN0 = 6 Seeley coefficients.

4The Seeley densities corresponding to self-dual ANO vortices superposed at the origin up to four quanta of mag-
netic flux are given in [29].
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l ∆MV/h̄m

1 -1.09449
2 -2.16257
3 -3.18690
4 -4.18606

1 2 3 4

-4

-3

-2

-1

lDM

It is remarkable that the one-loop mass shift seems to be linear inl . We have found that the one-
loop correction to the mass of a circle symmetric vortex of magnetic flux8π is extremely close
to four times the one-loop mass shift of a similar vortex of magnetic flux2π. This result strongly
supports our method: after extremely sophisticated calculations we end with the natural answer.

4. Prospects on the future of the subject

We finish by offering a summary of other possible approaches to this subject as well as pointing
to other playgrounds where similar methods may work and should be applied.

1. In [49], and [50] Blas and Carrion explored a generalized sine-Gordon model containing
as many scalar fields as the rank of theSL(N,C) Lie group. The potential energy density
is determined from the simple roots in such a way that the integrability of the sine-Gordon
model is enjoyed by the generalized model. Clearly, there is a correspondence between this
model and the ordinary sine-Gordon model that is analogous to the correspondence between
the deformed linearO(N)-sigma model and theλφ4 model. There are several types of
kinks in this system, which have also been dealt with by the authors in a quantum setting.
Nevertheless, it seems to us that the generalized sine-Gordon models offer another excellent
arena for applying and improving the quantization method described in this report.

2. In our Lectures we have addressed a massive non-linearS2-sigma model having a rich kink
manifold, see [33]. In fact, we also computed the one-loop correction to the classical mass
of the topological kinks using the Cahill-Comtet-Glauber formula in [34]. We look forward
to attacking this problem by means of the heat kernel/zeta function approach, not only in this
system but also in other similar non-linear sigma models where we vary the potential energy
density; e.g., adding quartic terms, and/or we change the target space, e.g., toS3.

3. In a very interesting paper [51] Vafa et al. analyzedN = 2 supersymmetric Landau-
Ginzburg models that are integrable deformations of theN = 2 supersymmetricAk minimal
series. The BPS states of these integrable(1+1)-dimensional field theories were identified
by these authors as “holomorphic" kinks with very noticeable properties. Almost ten years
later several of us went through the same set of kinks in [52]. We focused only upon the
bosonic sector of the model and chose a real analytic point of view. We believe that the
techniques developed in these Lectures provide a procedure for computing the one-loop kink
mass shifts due only to bosonic fluctuations.k2 is the threshold of the wells and hence we
expect to need at leastN0 = 20 coefficients in order to reach a good approximation. In the
N = 2 supersymmetric version of this model, the one-loop correction including bosonic and
fermionic fluctuations is zero. Therefore, there is no need to compute the effect of fermionic
fluctuations: bosons and fermions created in the kink background cancel each other exactly.
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4. Another strategy may be fruitful. The heat trace, or partition function, which is basic in
our approach, admits another conceptual understanding as a path integral over closed world
lines:

SE[z1, · · · ,zN] =
∫ 1

0
dτ

[
1
2

N

∑
a=1

dza

dτ
· dza

dτ
+U [z1(τ), · · ·zN(τ)]

]

Z(β , l) = TrL2e−βK = ΠN
a=1

∫ l
2

− l
2

dxa

∫ za(1)=xa

za(0)=xa

Dz(τ)e−βSE[z1,···,zN] . (4.1)

Here,τ = it is imaginary time,SE is the Euclidean action for a particle moving in a cube
IN with varying positionsza(τ). The path integral is over all the closed paths, and ordinary
integration over all the base points of the loops is necessary. It is well known that the Feyn-
man treatment of these path integrals in the high-temperature regime [53] reproduces the heat
kernel expansion. What seems more promising is the numerical computation of these world
line path integrals using Montecarlo methods, see e.g [54]. Applied to the ANO vortices and
semilocal strings this should provide reliable results to be contrasted against our calculations.

5. The Lagrangian density

L =
1
2

{
∂µφ∂ µφ −

[
λ−
l

δ (z+
l
2
)+

λ+

l
δ (z− l

2
)+4σ2− 6σ2

cosh2σz

]
φ2(xµ)

}
(4.2)

describes the dynamics of arara avisscalar quantum field theory. The mesons do not move
freely even though they do not interact because they are constrained by a background. If
σ = 0, the background in (4.2) is formed by two parallel plates located at a distancel from
each other in two planes orthogonal to thez-axis. The effect of the plates is mimicked by two
δ -function potentials of strengthλ±. Whenl = ∞ andσ = 1, the background corresponds
to a kink living in thez-axis, or to a solitonic/thick domain wall orthogonal to thez-axis.
Other choices of the couplings provide more complex backgrounds built from these two
basic backgrounds.

In Reference [55] Milton wrote the Green’s function for the two-plate setup (using Dirichlet
boundary conditions). This leads to the energy momentum tensor encoding the Casimir
energy -essentially theT00 component- and the Casimir force -essentially theTzzcomponent-.
It is tempting to perform the same calculation for the kink background. This should provide
not only information about the one-loop kink mass shift but should also shed light on the
qualitative nature of the forces exerted by the scalar fluctuations on the kink profiles.

6. Over the last year, an interesting paper by Baacke and Kevlishvili was published [56] in
which the one-loop shifts to the classical masses of Nielsen-Olesen vortices were obtained
by using Green’s function methods. The remarkable fact is that the authors gave the quantum
corrections with no restriction in the ratio of Higgs and particle masses.

It seems that the time is ready to tackle the problem of the quantum corrections ofZ-
electroweak strings. These topological defects are embedded NO vortices in the neutral
Zµ massive vector field of electroweak theory, and the calculation may will be of experi-
mental interest (even though some imaginary contribution to the energy will arise, because
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electroweak strings are unstable). In fact, there is an interesting paper on this subject, see
[57], at the non-physical value of the weak angle equal to zero, and even a status report [58].

7. In a longer perspective, one might think of studying the quantum fluctuations of BPS mag-
netic monopoles. The work in [59] suggests that the bosonic sector ofN = 2 supersymmet-
ric Yang-Mills is the right model to look into this problem. Even though van Nieuwenhuizen
et al. succeeded in computing the one-loop mass shift toN = 2 SUSY monopoles, the diffi-
culties in a purely bosonic framework seem insurmountable. First, the second-order operator
governing the fluctuations is (for theSU(2) group) a21×21 matrix-Schr̈odinger operator
in three dimensions. Second, the theory is renormalizable, not super-renormalizable. The
coupling constant also receives one-loop divergent contributions that must be canceled by
the secod-order Seeley coefficient. So who is afraid of this big bad wolf?

References

[1] T. Tao,“Why are solitons stable?", Bull. Amer. Math. Soc.46 (2009) 1, [arXiv:0712.1295]

[2] T. H. R. Skyrme,“Particle states of a quantized meson theory", Proc. Roy. Soc.A262 (1961) 233

[3] R. Dashen, B. Hasslacher and A. Neveu,“Non-perturbative methods and extended hadron models in
field theory: 1, semiclassical functional methods; 2, two-dimensional models and extended hadrons;
3, four-dimensional non-Abelian models", Phys. Rev.D10 (1974) 4130.

[4] L. D. Faddeev and V. E. Korepin,“Quantum theory of solitons", Phys. Rept.42C (1978) 1-87.

[5] K. Cahill, A. Comtet, and R. Glauber,“Mass fomulas for static solitons", Phys. Lett.64B (1976)
283-285.

[6] S. F. Coleman,“Aspects of symmetry", Cambridge University Press, Cambridge, 1985. Chapter 6:
“Classical lumps and their quantum descendants".

[7] A. Alonso-Izquierdo, W. Garcia Fuertes, M. A. Gonzalez Leon, J. Mateos Guilarte, J. M. Muñoz
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