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Abstract: The domain wall solutions of a Ginzburg-Landau non-linear S2-sigma hybrid

model are unveiled. There are three types of basic topological walls and two types of

degenerate families of composite - one topological, the other non-topological- walls. The

domain wall solutions are identified as the finite action trajectories (in infinite time) of a

related mechanical system that is Hamilton-Jacobi separable in sphero-conical coordinates.

The physical and mathematical features of these domain walls are thoroughly discussed.

Keywords: Domain walls, Non-linear sigma model, Ginzburg-Landau theory, Integrable

dynamical systems .

ar
X

iv
:1

00
9.

06
17

v1
  [

he
p-

th
] 

 3
 S

ep
 2

01
0

http://jhep.sissa.it/stdsearch
http://jhep.sissa.it/stdsearch


Contents

1. Introduction 1

2. The Ginzburg-Landau non-linear S2-sigma model 4

2.1 Solving the constraint: particle masses 5

2.2 Solitonic domain walls 6

2.3 Trial orbits and two basic walls 7

3. Hamilton-Jacobi separability 10

3.1 Sphero-conical coordinates 10

3.2 The analogous mechanical system 12

3.3 One more basic wall: Trial orbit in P2 14

4. Composite non-topological and topological domain walls 17

4.1 Degenerate families of polar zone non-topological domain walls 17

4.2 Degenerate families of tropical zone topological domain walls 21

5. Further comments 23

6. ACKNOWLEDGEMENTS 24

1. Introduction

Domain walls are two-dimensional membranes that form when a discrete symmetry is

broken at a phase transition, e.g., the interfaces (Bloch, Ising walls) between magnetic

domains in ferromagnetic materials. In Cosmological models of the early Universe domain

walls form according to a pattern known as the (second) Kibble mechanism; see [1]. The

impact of domain wall defects and of other topological defects in Cosmology has been

studied in depth in the monograph [2]. The evolution of domain wall networks is a problem

of particular interest in this context, see e.g. [3]. This problem is usually studied in

computer simulations, although an analytic approach has been developed in [4] and [5].

By identifying the moduli space of domain wall networks in a U(NC) gauge theory with

Nf scalar fields in the adjoint representation, the authors of [4] and [5] implemented the

low-energy dynamics of the network by studying the geodesic motion in the domain wall

network moduli space. It is also interesting to consider domain walls as the seed of Randall-

Sundrum scenarios [6], in which space-time is five-dimensional and the 3-brane is wrapped

around some background four-dimensional gravitational field, while the particle dynamics

is concentrated inside the wall; see [7]-[8]-[9]-[10]-[11]. In this framework some authors have
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considered the possibility that the Big Bang of the standard (3+1) dimensional cosmology

was originated from the collision of two branes within a higher dimensional spacetime,

leading to the production of a large amount of entropy [12].

Our purpose here is to investigate the very rich moduli space of domain walls in a

hybrid of the non-linear sigma model and the Ginzburg-Landau theory of phase transitions.

The linear O(N)-sigma model is the key to our present understanding about the origin of

mass: see [13] and [14]. The non-linear SN -model version only describes the dynamics of

Goldstone bosons. In [15], we addressed an especially simple case of massive non-linear

sigma model: we chose S2 as the target manifold; assigned different masses to the two

pseudo-Goldstone bosons, and were able to identify all the domain walls of the system

Regarding [15], topological defects 1 in massive non-linear sigma models have been

known for some time and have been profusely studied in different supersymmetric models

under the circumstance that all masses of the pseudo-Nambu-Goldstone particles are equal.

The study started with two papers by Abraham and Townsend [16], [17], in which the

authors discovered a family of Q-kinks in a (1+1)-dimensional N = (4, 4) supersymmetric

non-linear sigma model with a hyper-Kahler Gibbons-Hawking instanton as the target

space and mass terms obtained from dimensional reduction. In [18], however, these kinks

were re-considered by constructing the dimensionally reduced supersymmetric model by

means of the mathematically elegant technique of hyper-Kahler quotients. By doing so,

the authors dealt with massive CPN or HPN models: a playground closer to our simpler

massive S2-sigma model. Similar N = 2 BPS walls in the CP 1-model with twisted mass

were described in [19]. In a parallel development in the (2+1)-dimensional version of these

models, two-dimensional Q-lumps were discovered in [20] and [21]. Within this field, the

most interesting result is the demonstration in [22] and [23] that composite solitons in

d = 3 + 1 of Q-strings and domain walls are exact BPS solutions that preserve 1
4 of the

supersymmetries: ( See also the review [24], where a summary of these supersymmetric

topological solitons is offered.)

Our research differed from the above works in two important aspects: 1) We stuck

to a purely bosonic framework. 2) We studied the case when the masses of the pseudo

Nambu-Goldstone bosons are different, a property that forbids extended supersymmetries.

The search for domain walls in the d = 3 + 1-model is tantamount to the search for

finite action trajectories in the repulsive Neumann system [25]: a particle moving in an

S2-sphere under the action of non-isotropic repulsive elastic forces. It is well known that

this dynamical system is completely integrable [26], [27]. We showed, however, that the

problem is Hamilton-Jacobi separable by using elliptic coordinates in the sphere. Use of this

property allowed us to find four families of homoclinic trajectories starting and ending at

one of the poles which are unstable points of the mechanical system. In the field-theoretical

model, the poles become ground states, whereas the homoclinic trajectories correspond to

four families of non-topological domain walls. Each member in a family is formed by a

non-linear combination of two basic topological domain walls (of different type), with their

centers located at any relative distance with respect each other.

1Of varying character, depending on the spatial dimension and the charge: kinks, Q-kinks, lumps,

strings, walls, etcetera .
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Here we shall address a Ginzburg-Landau non-linear S2-sigma model; i.e., we will keep

the target space but we add a quartic, rather than quadratic, independent of field gradients,

contribution to the potential energy density; see [28] for a mathematical definition of these

models. Because of the constraint, the GL function must be non-isotropic and we shall

consider non-equal quadratic and quartic couplings in such a way that the anisotropy is

maximal. The consequence is the existence of a spontaneously broken discrete symmetry:

a necessary condition for the existence of domain walls.

We shall further restrict (but not too much) the space of parameters of the model, the

quadratic and quartic couplings besides the radius of the S2-sphere, bearing in mind that

we have to deal with an integrable analogous mechanical problem. Instead of the Neum-

mann system we must solve the problem of a particle moving on the S2-sphere under the

action of non-isotropic inelastic (non-harmonic) forces. Fortunately, this mechanical sys-

tem is also Hamilton-Jacobi separable, and we shall apply the Hamilton-Jacobi procedure

to find all the finite mechanical action trajectories by using sphero-conical coordinates.

There are four unstable points -four ground states in the field theory-; three types of basic

heteroclinic trajectories -topological domain walls- joining unstable points; four families of

heteroclinic trajectories joining antipodal unstable points -topological domain walls- with

the same mechanical action -wall tension-, and four families of homoclinic trajectories -

non-topological domain walls- also with the same mechanical action2. We remark that the

basic domain walls are usual walls, concentrated at a point. Domain walls belonging to

any of the degenerate families are composite domain walls in the sense that, generically,

the walls are centered at two points, resembling a non-linear superposition of two basic

walls.

In order to describe all this, we shall organize the paper as follows: In Section §.
2 we introduce the model, explain the physical content, and describe the basic domain

walls that can be found by applying the trial orbit method. Section §. 3 is devoted

to addressing the analogous mechanical problem. Sphero-conical coordinates are used to

show the Hamilton-Jacobi separability. A new basic wall is easily guessed, and the other

two, previously known, are also expressed in these coordinates. In Section §. 4 we apply

the Hamilton-Jacobi procedure in full generality. We find the families of non-topological

and topological domain walls in an explicit analytic form. This is remarkable: the solution

for the orbit and time-schedule equations provided by the HJ prescription is frequently

expressed in an implicit form that is difficult to invert. We have succeeded, however, in

performing the inversion in this problem. We offer a last Section §. 5 with further comments

and some suggestions for future lines of enquiry.

Finally we have complemented this paper with a MATHEMATICA file, which can be

found at http://campus.usal.es/∼mpg/General/Mathematicatools.htm. This file includes

animated figures which display the behaviour of the domain wall families depending on the

different coupling constants and family parameters.

2The wall tensions of the topological and non-topological families are different.
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2. The Ginzburg-Landau non-linear S2-sigma model

The action and the constraint governing the dynamics of this hybrid of Ginzburg-Landau

and non-linear Sigma models are respectively:

S[~χ] =

∫
d4y

1

2

∂~χ

∂yµ
· ∂~χ
∂yµ
− 1

2

(
3∑

a=1

α2
aχ

2
a −m2

)2

− 1

2

3∑
b=1

β2
bχ

2
b


~χ(yµ) · ~χ(yµ) = χ2

1(yµ) + χ2
2(yµ) + χ2

3(yµ) = m2R2 .

Owing to the constraint, the fields take values in the S2-sphere of radius mR embedded in

R3. Setting an ortho-normal frame, ~ea · ~eb = δab, a, b = 1, 2, 3, in R3, we write the fields in

the form:

~χ : R1,3 −→ S2 ; ~χ(yµ) =
3∑

a=1

χa(y
µ)~ea .

~χ(yµ) are maps from the Minkowski space R1,3 into S2 ⊂ R3. The contra-variant tetra-

vector yµ, µ = 0, 1, 2, 3, provides local coordinates for a point in R1,3: the Minkowski space

equipped with the metric tensor gµν = diag(1,−1,−1,−1). Thus, yµyµ = y2
0−y2

1−y2
2−y2

3,
∂
∂yµ

∂
∂yµ

= ∂2

∂y20
− ∂2

∂y21
− ∂2

∂y22
− ∂2

∂y23
, etcetera.

Throughout the paper we shall use the natural system of units, in which the Planck

constant and the speed of light in vacuum are in the units: ~ = c = 1. Therefore, the

physical dimensions of the fields and the parameters m and βa are those of inverse length,

[χa] = [βa] = [m] = L−1, whereas αa and R are non-dimensional couplings. In terms

of non-dimensional fields φa = 1
mχa, space-time coordinates xµ = myµ, and quadratic

couplings η2
a = 1

m2β
2
a, the action and the constraint read3:

S[~φ] =

∫
d4x

{
1

2
∂µ~φ · ∂µ~φ− V (φ1, φ2, φ3)

}
, φ2

1(xµ) + φ2
2(xµ) + φ2

3(xµ) = R2

V (φ1, φ2, φ3) =
1

2

(
3∑

a=1

α2
aφ

2
a − 1

)2

+
1

2

3∑
b=1

η2
bφ

2
b .

We shall address the maximally anisotropic model and, with no loss of generality, choose:

α2
1 > α2

2 > α2
3 > 0.

The static homogeneous configurations for which the action is extremal are the critical

points of V complying with the constraint:

∂V

∂φa
+ 2λφa = 0 , (2.1)

where λ is the Lagrange multiplier forcing the constraint. There is an important parameter

in the system:

δ2 =
1

R2

(
1− α2

3R
2

α2
1 − α2

3

+
η2

3 − η2
1

2(α2
1 − α2

3)2

)
.

3In V (φ1, φ2, φ3) we have dropped the irrelevant constant: R2
(
η23−η

2
1

2
+ (1− α2

3R
2)(α2

1 − α2
3)
)
− η23R

2

2
.
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If δ2 ∈ (0, 1), equation (2.1) is solved by 18 critical points, but the following four points:

φ̄2
1 = R2δ2 , φ̄2

2 = 0 , φ̄2
3 = R2(1− δ2) = R2δ̄2 (2.2)

are the absolute minima of V in S2. The rest of the critical points are maxima or saddle

points. In fact, we will choose δ in the 0 < δ < 1 range, because the number of minima

is maximized and this circumstance provides a richer structure for the domain wall space.

The Lagrange multiplier at the four minima (2.2) can be easily computed:

λ =
α2

3η
2
1 − α2

1η
2
3

2(α2
1 − α2

3)
.

2.1 Solving the constraint: particle masses

In order to show explicitly the physical content of the model -symmetry breaking pattern,

particle masses, interaction terms (with and without derivatives) as well as the physical

characteristics of the parameters- it is convenient to solve the constraint by choosing, e.g.,

φ1 and φ2 as independent fields: φ2
3 = R2 − φ2

1 − φ2
2. On S2, the unconstrained action

becomes:

SS2 [φ1, φ2] =
1

(α2
1 − α2

3)2

∫
dx3 dt {DS2(∂µφ1, ∂µφ2, φ1, φ2)− VS2(φ1, φ2)}

DS2(∂µφ, φ) =
1

2

(
∂µφ1∂

µφ1 + ∂µφ2∂
µφ2 +

(φ1∂µφ1 + φ2∂µφ2)(φ1∂
µφ1 + φ2∂

µφ2)

R2 − φ2
1 − φ2

2

)
VS2(φ1, φ2) =

1

2

(
φ2

1 + σ2φ2
2 − α

)2
+
γ

2
φ2

1 +
β

2
φ2

2 (2.3)

Again, here we have dropped an irrelevant constant and redefined: xµ → 1
α2
1−α2

3
xµ. The

new parameters are defined in terms of the old ones:

0 < σ2 =
α2

2 − α2
3

α2
1 − α2

3

< 1 , α =
1− α2

3R
2

α2
1 − α2

3

, γ =
η2

1 − η2
3

(α2
1 − α2

3)2
, β =

η2
2 − η2

3

(α2
1 − α2

3)2
.

The range of σ is due to the inequalities between the αa’s.

We also restrict the number of independent parameters, for reasons to be explained

later, and set4: β = σ2(γ + σ̄2R2). In a last move, we reshuffle the forgotten additive

constants in such a way that the function VS2 takes the value of zero at its minima. The

potential depends only on σ, δ and R ( we shall denote always σ̄2 = 1− σ2 )

VS2(φ1, φ2) =
1

2

(
φ2

1 + σ2φ2
2 − δ2R2

)2
+

1

2
R2σ2σ̄2φ2

2 . (2.4)

The set M of zeroes of VS2 , see Figure 1,

M =
{
v1 ≡ (Rδ , 0, Rδ̄), v2 ≡ (−Rδ , 0, Rδ̄), v3 ≡ (−Rδ , 0,−Rδ̄), v4 ≡ (Rδ , 0,−Rδ̄)

}
,

encompasses the four ground states of the model (centered at the constant classical solu-

tions) at the four degenerate absolute minima of VS2(φ1, φ2).

4Alternatively: (α2
1 − α2

3)(η22 − η23) = R2(α2
1 − α2

2) +
α2
2−α

2
3

α2
1−α

2
3
(η21 − η23) .
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Expanding VS2 around any of the vacuum points

Figure 1: Ground states plotted for

δ =
√
3
2 , and R = 1. These values

for R and δ will be maintained in all

figures throughout the paper.

VS2(Rδ + φ1, φ2) = 2δ2R2φ2
1 +

1

2
R2σ2σ̄2φ2

2 +

+ 2δRφ1(φ2
1 + σ2φ2

2) +
1

2
(φ2

1 + σ2φ2
2)2

we see that: (a) The particle masses are: µ2
1 = 4δ2R2,

µ2
2 = σ2σ̄2R2. (b) The Z2×Z2 symmetry engendered

by φ1 → −φ1 and φ2 → −φ2 is spontaneously broken

to the last Z2 subgroup by the choice of vacuum. (c)

There are two trivalent vertices with couplings 2δR

and 2δRσ2. (d) There are three tetravalent vertices

with couplings 1
2 , σ2, and σ4

2 .

The rôle of 1
R2 as a coupling constant comes from

the following expansion of the ∂µφ3∂
µφ3 term in the

Lagrangian:

(φ1∂µφ1 + φ2∂µφ2)√
R2 − φ2

1 − φ2
2

· (φ1∂
µφ1 + φ2∂

µφ2)√
R2 − φ2

1 − φ2
2

' 1

R2

(
φ1
∂φ1

∂xµ
+ φ2

∂φ2

∂xµ

)(
φ1
∂φ1

∂xµ
+ φ2

∂φ2

∂xµ

)
+

+
1

R4
(φ2

1 + φ2
2)

(
φ1
∂φ1

∂xµ
+ φ2

∂φ2

∂xµ

)(
φ1
∂φ1

∂xµ
+ φ2

∂φ2

∂xµ

)
+ · · · ,

i.e., an infinite number of vertices with two field derivatives arise proportional to powers

of 1
R2 due to the geometry of the system.

2.2 Solitonic domain walls

The non-linear field equations of the system are:

∂2
0 φa −∇2φa = −2α2

aφa

(
3∑
b=1

α2
bφ

2
b − 1

)
− η2

aφa + λφa , a = 1, 2, 3. (2.5)

We temporarily return to keep φ3 explicit. λ is again the Lagrange multiplier in the

equation (2.5). For any solution of (2.5) it can be shown to be5:

λ =
1

R2

3∑
a=1

(
−(∂0φa)

2 + ~∇φa · ~∇φa + φa ·
δV

δφa

)
, ~∇ =

∂

∂x1
~i1 +

∂

∂x2
~i2 +

∂

∂x3
~i3 ,

(2.6)

where ~∇ is the gradient in the spatial subspace of Minkowski space.

Our main goal in this paper is to investigate the domain wall solutions in this model.

Domain walls are non-singular solutions of the field equations (2.5) such that their energy

density has a space-time dependence of the form: E(x0, x1, x2, x3) = E(x1 − vx0), where v

5Multiply (2.5) by φa and sum the three equations. Also use that:
∑3
a=1 φa∂µφa = 0 to perform a

partial integration.

– 6 –



is some velocity vector in the x1 direction, and their energy functional:

E[~φ] = lim
L→∞

L2

α2
1 − α2

3

∫
dx1

(
1

2
∂0
~φ · ∂0

~φ+
1

2
∂1
~φ · ∂1

~φ+ V (φ1, φ2, φ3)

)
= lim

L→∞

L2

α2
1 − α2

3

∫
dx1 E(x0, x1) ,

is proportional to the area L2 of a normalizing square in the x2 − x3 plane. Therefore,

these solutions will be domain walls or solitonic (thick) 2-branes orthogonal to the x1-axis.

The Lorentz invariance of the model implies that it suffices to know the x0-independent

solutions ~φ(x1) in order to obtain the domain walls of the model: ~φ(x0, x1) = ~φ(x1 − vx0).

For static and x2-, x3- independent configurations the PDE system (2.5) becomes the

following system of three ordinary differential equations:

d2φa
d(x1)2

= −2α2
aφa

(
3∑
b=1

α2
bφ

2
b − 1

)2

− η2
aφa + λφa , a = 1, 2, 3 (2.7)

and the tension of the wall (2-brane) reduces to:

Ω(~φ) = lim
L→∞

E[~φ]

L2
=

1

α2
1 − α2

3

∫
dx1

(
1

2

d~φ

dx1
· d

~φ

dx1
+ V (~φ)

)
=

1

α2
1 − α2

3

∫
dx1 E(x1) .

The ODE system (2.7) can be interpreted as the Newton equations of a mechanical

system, which we shall refer to as the analogous mechanical system to our field theoretical

problem. Thus, the x1 coordinate in R3 will be identified with τ : the mechanical time. The

field configurations φa(x
1) will give the paths in S2, Xa(τ). The V (φ1, φ2, φ3) function of

the field theory will be minus the mechanical potential V (X1, X2, X3). Finally, the domain

wall tension Ω will be interpreted as the mechanical action functional. We shall always

use, however, the field theoretical notation, although the interpretation should be clear. It

should be stressed that the mechanical potential is minus the function V .

The finite wall tension (finite mechanical action) requirement is fulfilled if and only if

the asymptotic conditions hold:

lim
x1→±∞

d~φ

dx1
= 0 , lim

x1→±∞
~φ ∈M . (2.8)

Thus, the space of finite wall tension configurations

C =
{
φ ∈ Maps(R× R2,S2)/Maps(R2, point) : Ω[φ] < +∞

}
=

4⋃
i,j=1

Cij

is the union of sixteen disconnected sectors: Cij , labeled by the element of M reached by

each configuration at x1 → −∞ and x1 → ∞. If i 6= j, the finite tension walls will be

termed as topological walls, whereas non-topological walls will be the solutions belonging

to the Cii sectors.

2.3 Trial orbits and two basic walls

Before searching for general domain wall solutions of the ODE system (2.7), we shall show

two particular ones by sticking to Rajaraman’s trial orbit method [29].
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In the meridian φ2 = 0, which we choose

Figure 2: Graphics of VS1(θ).

as a trial orbit, the constraint becomes φ2
1 +

φ2
3 = R2. The polar angle in this maximal

circle solves the constraint

φ1(x) = R sin θ(x) , φ3(x) = R cos θ(x) .

We have written x ≡ x1 for simplicity and will

maintain this convention in the rest of the pa-

per. The ODE system (2.7) reduces to the sin-

gle second-order OD equation:

d2θ(x)

dx2
= R2 sin 2θ(x)

(
sin2 θ(x)− δ2

)
. (2.9)

The mechanical potential on the orbit is:

U(θ) = −VS1(θ) = −R
4

2

(
sin2θ(x)− δ2

)2
.

The mechanical energy I provides a first-integral for (2.9):

I =
1

2

(
dθ

dx

)2

+
1

R2
U(θ) =

1

2

(
dθ

dx

)2

− R2

2

(
sin2θ(x)− δ2

)2
.

The critical points of U are: (1) minima: θ0 = 0, the North pole, and θπ = π, the South

pole and θπ
2

= π
2 and θ 3π

2
= 3π

2 antipodal points in the equator. (2) maxima: θ+0 = arcsinδ,

θ−0 = −arcsinδ, θ+π = arcsinδ + π, θ−π = −arcsinδ + π, respectively, the v1, v2, v3, and

v4 minima of the field theory. The mechanical energy for all these maxima is I = 0,

which must therefore be the value of the integration constant of (2.9) required to obtain

solutions with finite wall tension. Therefore, the topological wall solutions correspond to

the quadratures of
dθ

dx
= ±R

(
sin2θ − δ2

)
,

which produce two types of analytical outcomes:

1.- Polar Meridian Domain Walls (PMW): We shall denote this kind of solutions as

θPMW
12 (x), θPMW

21 (x), θPMW
34 (x) and θPMW

43 (x), where the indexes stand for the asymptoti-

cally connected vacua via the domain wall. For example, the orbit of the solution θPMW
12

corresponds to the piece of the φ2 = 0 meridian joining the v1 and v2 vacua, which crosses

the North Pole. θPMW
21 is the anti-wall of the previous solution while θPMW

34 and θPMW
43 are

similar domain walls confined to the South Polar Region. We find that

θPMW
12 (x) = arcsin

 δ sinh[Rδδ̄(x− x0)]√
cosh2[Rδδ̄(x− x0)]− δ2

 , θPMW
12 (x) ∈ (θ−0, θ+0) ,
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and therefore θPMW
21 (x) = θPMW

12 (−x), θPMW
34 (x) = θPMW

12 +π ∈ (θ−π, θ+π), and θPMW
43 (x) =

θPMW
34 (−x). These topological walls live in the topological sectors C12, C34, C21, and C43.

All of them have the same tension, Ω(PMW) = Ω(θ12) = Ω(θ21) = Ω(θ34) = Ω(θ43), where

Ω(PMW) =
R3

α2
1 − α2

3

[
δδ̄ − (1− 2δ2) arccos δ̄

]
.

We write all these topological walls in a unified way in the original field variables

φPMW
1 (x; ε1) =

(−1)ε1Rδ sinh
[
Rδδ̄(x− x0)

]√
cosh2

[
Rδδ̄(x− x0)

]
− δ2

, φPMW
2 (x) = 0

φPMW
3 (x; ε3) =

(−1)ε3Rδ̄ cosh
[
Rδδ̄(x− x0)

]√
cosh2

[
Rδδ̄(x− x0)

]
− δ2

, ε1, ε3 = 0, 1 . (2.10)

For ε3 = 0 the walls belong to C12 (ε1 = 1) and C21 (ε1 = 0). For ε3 = 1 the walls belong

to C34 (ε1 = 1) and C43 (ε1 = 0). The φ1-component has the form of a kink and the

φ3-component is bell shaped.

Figure 3: Field profiles (2.10) for ε1 = 0 = ε3, x0 = 0 (left). Orbits (red curves) in C21, C12 and

C43, C34 (right).

2.- Tropical Meridian Domain Walls (TMW): We shall now denote these solutions

as θTMW
14 (x), θTMW

41 (x), θTMW
23 (x) and θTMW

32 (x). For example, θTMW
14 (x) connects from the

vacuum v1 to the v4 vacuum crossing the equator of the sphere. We find that

θTMW
41 (x) = arccos

 δ̄ sinh[Rδδ̄(x− x0)]√
cosh2[Rδδ̄(x− x0)]− δ̄2

 , θTMW
41 (x) ∈ (θ−π, θ+0)

and therefore θTMW
14 (x) = θTMW

41 (−x), θTMW
32 (x) = θTMW

41 (x)+π ∈ (θ+π, θ−0) and θTMW
23 (x) =

θTMW
32 (−x). These topological walls belong to the C41, C32, C14, and C23 sectors and their

tension is Ω(TMW) = Ω(θTMW
14 ) = Ω(θTMW

41 ) = Ω(θTMW
23 ) = Ω(θTMW

32 ) where

Ω(TMW) =
R3

α2
1 − α2

2

[
δδ̄ + (1− 2δ2) arccos δ

]
.

In the original field coordinates the analytical expressions are:

φTMW
1 (x;κ1) =

(−1)κ1Rδ cosh
[
Rδδ̄(x− x0)

]√
cosh2

[
Rδδ̄(x− x0)

]
− δ̄2

, φTMW
2 (x) = 0
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φTMW
3 (x;κ3) =

(−1)κ3Rδ̄ sinh
[
Rδδ̄(x− x0)

]√
cosh2

[
Rδδ̄(x− x0)

]
− δ̄2

, κ1, κ3 = 0, 1 . (2.11)

If κ3 = 0, the domain walls live in C41 (κ1 = 0) and C14 (κ1 = 1). If κ3 = 1 the domain

walls live in C32 (κ1 = 0) and C23 (κ1 = 1). The φ1 component is bell shaped and the φ3

now has the form of a kink.

Figure 4: Field profiles (2.11) for κ1 = 0 = κ3, x0 = 0 (left). Orbits (red curves) in C41, C14 and

C23, C32 (right).

To end this subsection we show ( Figure 5 ) the tension densities of these two kinds of

topological wall.

Figure 5: Cross-sections of energy densities: (left) PMW walls in C12 and C21. (right) TMW walls

in C23 and C14.

3. Hamilton-Jacobi separability

3.1 Sphero-conical coordinates

In order to search for all the domain wall solutions of the model, we introduce sphero-conical

coordinates (λ0, λ1, λ2) in R3, see, e.g., [25]-[26]:

φ2
1 = λ0

(a1 − λ1)(a1 − λ2)

(a1 − a2)(a1 − a3)
, φ2

2 = λ0
(a2 − λ1)(a2 − λ2)

(a2 − a1)(a2 − a3)
, φ2

3 = λ0
(a3 − λ1)(a3 − λ2)

(a3 − a1)(a3 − a2)

with separation constants related to the σ-parameter:

a1 = 0 , a2 = σ̄2 , a3 = 1 ⇔ 0 < λ1 < σ̄2 < λ2 < 1

– 10 –



In this system of coordinates, the constraint is simply λ0 = φ2
1 + φ2

2 + φ2
3 = R2, such that

the field components restricted to S2 in terms of sphero-conical coordinates read:

φ2
1 =

R2

σ̄2
λ1 λ2 , φ2

2 =
R2

σ2σ̄2
(σ̄2 − λ1)(λ2 − σ̄2) , φ2

3 =
R2

σ2
(1− λ1)(1− λ2) . (3.1)

The map induced by the change of coordinates (3.1) is eight-to-one; i.e., each octant of the

S2 sphere is mapped onto the rectangle P2 in the (λ1, λ2)-plane. See Figure 6 for σ = 1√
2
,

a selection of σ maintained in all the graphics below.

Figure 6: The S2 sphere in R3 (left). The P2 rectangle in the (λ1, λ2)-plane (right). The dotted

green line of P2 is mapped to the equator while the dashed blue line of P2 is mapped to the meridian

which crosses the foci. The red solid line in P2 corresponds to the other meridian displayed in the

sphere. The λ1 = constant and λ2 = constant iso-curves are shown back in S2.

The sphero-conical coordinates distinguish four special points in S2: the foci F1, F2,

F3 and F4, all of them mapped onto the corner (λ1, λ2) = (σ̄2, σ̄2) of P2. There is a

direct relation between these coordinates and the elliptical coordinates on a sphere used in

[15]-[30]. Choosing two non-antipodal foci, for instance F1 and F2, we have that:

λ1 = sin2

(
r1 − r2

2R

)
, λ2 = sin2

(
r1 + r2

2R

)

where r1 and r2 are the geodesic distances from

Figure 7: The ground states and the foci

in sphero-conical coordinates.

a given point in S2 to F1 and F2 respectively.

v = r1−r2
2 and u = r1+r2

2 are the spherical-elliptic

coordinates in S2. Thus the iso-curves depicted

in Figure 6 (left) represent “ellipses” and “hyper-

bolas” on S2.

The eight-to-one correspondence between S2

and P2 maps all the Cij sectors onto only one;

also, the four points v1, v2, v3 and v4 are mapped

onto the point v ≡ (σ̄2, δ2) in P2. See Figure 7.

We are assuming that σ̄2 < δ2. The choice

σ̄2 > δ2 is equivalent to this modulo a π
2 rotation

around the φ2-axis.
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It is easy to check that the non-derivative part of the field theoretical energy density,

the VS2-function (2.3), in sphero-conical coordinates reads:

VS2(λ1, λ2) =
R4

2(λ2 − λ1)

(
(σ̄2 − λ1)(δ2 − λ1)2 + (λ2 − σ̄2)(λ2 − δ2)2

)
if and only if β = σ2 (γ + σ̄2R2).

The action in sphero-conical coordinates is

S =

∫
d4xL =

∫
d4x

{
1

2
g11(λ1, λ2)∂µλ1∂

µλ1 +
1

2
g22(λ1, λ2)∂µλ2∂

µλ2 − VS2(λ1, λ2)

}
,

where the components of the metric tensor induced in P2 by the change of coordinates are:

g11(λ1, λ2) = g−1
11 =

4λ1(σ̄2 − λ1)(1− λ1)

R2(λ2 − λ1)
, g22(λ1, λ2) = g−1

22 =
4λ2(λ2 − σ̄2)(1− λ2)

R2(λ2 − λ1)
.

Defining

πµ1 =
δL

δ∂µλ1
= g11(λ1, λ2)∂µλ1 , πµ2 =

δL
δ∂µλ2

= g22(λ1, λ2)∂µλ2 ,

one sees that the energy-momentum tensor Tµν = πµ1 ∂
νλ1 + πµ2 ∂

νλ2 − gµνL of the wall

solutions of (2.7) is diagonal, in the form:

T νµ (x) =

(
g11

∂λ1

∂x

∂λ1

∂x
+ g22

∂λ2

∂x

∂λ2

∂x

)
diag(1, 0, 1, 1) .

T 1
1 (x) = 0 is due to the continuity equation ∂xT

1
1 (x) = 0 and the remaining components

are of the form T νµ (x) ∝ δνµ because of the parallel unbroken Lorentz invariance (in the x2-,

x3-directions) of the wall.

3.2 The analogous mechanical system

The mechanical momenta are: π1 = g11(λ1, λ2)dλ1dx , π2 = g11(λ1, λ2)dλ2dx . The mechanical

Hamiltonian

H =
2λ1(σ̄2 − λ1)(1− λ1)

R2(λ2 − λ1)
π2

1 +
2λ2(λ2 − σ̄2)(1− λ2)

R2(λ2 − λ1)
π2

2 + U(λ1, λ2) ,

U(λ1, λ2) = −VS2(λ1, λ2), is of the Stäckel form and the mechanical system is Hamilton-

Jacobi separable in the variables λ1, λ2. This is the reason of our choice of β: to cope

with a new, previously unknown, integrable mechanical system belonging to the class of

the Neumann problem [25].

The solutions of this mechanical system complying with the asymptotic conditions

lim
x→±∞

dλ1(x)

dx
= lim

x→±∞

dλ2(x)

dx
= 0 , lim

x→±∞
(λ1(x), λ2(x)) = (σ̄2, δ2) . (3.2)

forced by (2.8), will provide all the domain wall solutions with finite tension of the field

theoretical model.
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In sphero-conical coordinates the wall tension is:

Ω(λ1, λ2) =
1

α2
1 − α2

3

∫
dx

[
1

2
g11(λ1, λ2)

(
dλ1

dx

)2

+
1

2
g22(λ1, λ2)

(
dλ2

dx

)2

+ VS2(λ1, λ2)

]
If a solution, W (λ1, λ2), of the PDE:

VS2(λ1, λ2) =
1

2

(
g11

(
∂W

∂λ1

)2

+ g22

(
∂W

∂λ2

)2
)

(3.3)

is known, the Bogomolnyi arrangement [31] of the wall tension:

Ω(λ1, λ2) =
1

α2
1 − α2

3

∫
dx

1

2

2∑
i=1

gii

(
dλi
dx
− gii∂W

∂λi

)2

+
1

α2
1 − α2

3

∫
dx

2∑
i=1

∂W

∂λi

dλi
dx

shows that the absolute minima of the wall tension functional are the solutions of the

first-order ODE system

dλ1

dx
= g11(λ1, λ2)

∂W

∂λ1
,

dλ2

dx
= g22(λ1, λ2)

∂W

∂λ2
, (3.4)

complying with the asymptotic conditions (3.2).

However, the PDE (3.3) is no more than the time-independent Hamilton-Jacobi equa-

tion of the analogous mechanical problem (for zero mechanical energy), such that W (λ1, λ2)

is the Hamilton’s characteristic function. Separability implies the existence of solutions of

the form:

W (λ1, λ2) = W1(λ1) +W2(λ2)

Integration of the Hamilton-Jacobi equation in general involves hyper-elliptical integrals,

but the quadratures reduce to simple irrational integrals for the solutions of finite (me-

chanical) action in infinite (mechanical) time that provide finite tension domain walls.

The mechanical system is completely integrable in the Arnold-Liouville sense, admit-

ting two integrals of motion in involution:

I1 =
1

2
g11 π2

1 +
1

2
g22 π2

2 −
R4

2(λ2 − λ1)

(
(σ̄2 − λ1)(δ2 − λ1)2 + (λ2 − σ̄2)(λ2 − δ2)2

)
I2 =

1

2
g11λ2 π

2
1 +

1

2
g22 λ1 π

2
2 −

R4

2

(
λ1λ2

(
λ1 + λ2 − σ̄2 − 2δ2

)
− σ̄2δ4

)
.

The finite tension conditions (3.2) require that I1 = I2 = 0 and the first-order PDE (3.3)

becomes the ODE system:

dW1

dλ1
= (−1)ε1

R3

2

(δ2 − λ1)√
λ1(1− λ1)

,
dW2

dλ2
= (−1)ε2

R3

2

(δ2 − λ2)√
λ2(1− λ2)

. (3.5)

The solution of (3.5)

W (λ1, λ2) =
(−1)ε1R3

2

(√
λ1(1− λ1) + (1− 2δ2) arctan

√
1− λ1

λ1

)

+
(−1)ε2R3

2

(√
λ2(1− λ2) + (1− 2δ2) arctan

√
1− λ2

λ2

)
, ε1, ε2 = 0, 1
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is the complete integral of the HJ equation (3.3) such that the ODE system (3.4) reads

dλ1

dx
= −R(−1)ε1

2(σ̄2 − λ1)(δ2 − λ1)
√
λ1(1− λ1)

λ1 − λ2
(3.6)

dλ2

dx
= −R(−1)ε2

2(σ̄2 − λ2)(δ2 − λ2)
√
λ2(1− λ2)

λ2 − λ1
, (3.7)

encoding all the domain wall solutions as the separatrix trajectories between bounded and

unbounded motions in the analogous mechanical system. Note that the flow induced by

the gradient of W is:

dλ2

dλ1
= (−1)ε1−ε2

(σ̄2 − λ2)(δ2 − λ2)
√
λ2(1− λ2)

(σ̄2 − λ1)(δ2 − λ1)
√
λ1(1− λ1)

;

i.e., the flow is only undefined at the vacuum (λ1 = σ̄2, λ2 = δ2), and the focus (λ1 =

σ̄2, λ2 = σ̄2), points where infinite orbits meet or cross.

To end this subsection we remark that we must bear in mind two different zones in

the (λ1, λ2)-plane in order to search for the most general wall solutions. The two zones

are delimited by the straight line λ2 = δ2. In the original variables this line is given

by the intersection between the conical surface
φ21
δ2

+
φ22

δ2−σ̄2 −
φ23

1−δ2 = 0 and the sphere

φ2
1 + φ2

2 + φ2
3 = R2, which determines two ellipses described on each of the hemispheres.

We shall refer to these curves as tropical ellipses, using a geographical analogy in the

sphero-conical coordinates. These so-called tropical ellipses divide the sphere into three

regions, the intertropical zone (characterized by λ2 > δ2 in the sphero-conical plane) and

the North Polar zone, or “arctic” region, and the South Polar zone, or “ant-arctic” region,

(characterized by λ2 < δ2 in the sphero-conical plane).

3.3 One more basic wall: Trial orbit in P2

The orbit λ2 = δ2, see Figure 8 (left), solves the equation (3.7) and the equation (3.6) on

this orbit can readily be integrated. We find domain walls that live on the tropical ellipses

λTW
1 (x) =

σ̄2 sinh2 [Rσσ̄(x− x0)]

cosh2 [Rσσ̄(x− x0)]− σ̄2
λTW

2 = δ2 , (3.8)

which we will refer to as Tropical Domain Walls (TW). It should be understood that

(3.8) solves (3.6) with ε1 = 1 between x = −∞ and x = x0, where λ1 is decreasing down

the λ1 = 0 axis, whereas it is the solution of (3.6) with ε1 = 0 between x = x0 and x =∞,

where λ1 increases up the vacuum value σ̄2. This kind of domain wall asymptotically

connects the v1 and v2 vacua on the Northern Hemisphere and the v3 and v4 vacua on the

Southern Hemisphere.

The tension of these domain walls, however, saturates the Bogomolnyi bound 6:

Ω(TW) =
2

α2
1 − α2

3

∣∣W (σ̄2, δ2)−W (0, δ2)
∣∣ =

R3

α2
1 − α2

3

(
σσ̄ − (1− 2δ2) arccosσ

)
. (3.9)

6Although it seems that the tension of these walls depends not only on the value of W at the vacuum

but also on the value of W (0, δ2) at x0, (3.9) is a topological bound. The wall orbit flow is not undefined

at (λ1 = 0, λ2 = δ2). This point will be clarified further in Section §. 5 .
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Figure 8: The TW orbit in the P2 rectangle displayed as a solid red line (left) and the TW tension

density (right)

The inverse image of (3.8) in S2

φTW
1 (x;κ1) =

(−1)κ1Rδ sinh [Rσσ̄(x− x0)]√
cosh2 [Rσσ̄(x− x0)]− σ̄2

, φTW
2 (x;κ2) =

(−1)κ2R
√
δ2 − σ̄2√

cosh2 [Rσσ̄(x− x0)]− σ̄2

φTW
3 (x;κ3) =

(−1)κ3Rδ̄ cosh [Rσσ̄(x− x0)]√
cosh2 [Rσσ̄(x− x0)]− σ̄2

, κ1, κ2, κ3 = 0, 1 (3.10)

helps to elucidate the character of these eight new topological walls, see Figure 9. We stress

that: (1) The three field components are different from zero. (2) If κ3 = 0, the topological

wall belongs to C12 (κ1 = 1) or to C21 (κ1 = 0). (3) If κ3 = 1, the topological wall belongs

to C43 (κ1 = 1) or to C34 (κ1 = 0). (4) The sign of (−1)κ2 determines the face in S2 chosen

by the wall orbit.

Figure 9: Topological wall profiles (3.10) (left) The orbits (right).

One can check that Ω(PMW) > Ω(TW) if δ > σ̄. Therefore, the stable topological

walls in these sectors are these latter ones (with φ2 6= 0). This statement is also clear if

one compares the tension density shown in Figure 8 (right) with the density of the other

walls living in the same sector, see Figure 10.

A better understanding of this point comes from the consideration of the wall orbits in

the meridian φ2 = 0 in sphero-conical coordinates. The walls in the tropical zone λ2 > δ2(in
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the C14 and C23 sectors) correspond to the orbit: λ1 = σ̄2. The analytic solution of (3.7) is:

λTMW
1 (x) = σ̄2 , λTMW

2 (x) =
δ2 cosh2

[
Rδδ̄(x− x0)

]
cosh2

[
Rδδ̄(x− x0)

]
− δ̄2

. (3.11)

Again, (3.11) is the solution of (3.7) if ε2 = 0

Figure 10: Comparison between the ten-

sion densities of the two types of walls in

the same topological sector.

between x = −∞ and x = x0, when λ2 increases.

Between x = x0 and x = ∞ the choice in (3.7)

must be ε2 = 1 because, then, λ2 decreases.

The orbit starts at the vacuum, reaches the

equator vertically and bounces back to the vac-

uum in the sphero-conical plane, see Figure 11(left).

The inverse image of this orbit gives the four topo-

logical walls in C14, C41, C32, C23, Figure 11(right).

The wall tension (already given in sub-Section §.
3.1) for this kind of solution can be computed in

this context as follows:

Ω(TMW) =
2

α2
1 − α2

3

∣∣W ((σ̄2, δ2)−W (σ̄2, 1)
∣∣ =

R3

α2
1 − α2

3

[
δδ̄ + (1− 2δ2) arccos δ

]
,

(3.12)

and the same cautionary remarks concerning (3.9) are applicable to (3.12).

In the polar zone λ2 < δ2 we can reproduce the PMW domain wall as a piecewise

solution in the sphero-conical plane as follows. There is a solution of (3.7) on the orbit

λ1 = σ̄2 (which is solution of (3.6)):

λPMWVF
1 = σ̄2 , λPMWVF

2 (x) =
δ2 sinh2

[
Rδδ̄(x− x0)

]
cosh2

[
Rδδ̄(x− x0)

]
− δ2

. (3.13)

The orbit also starts from the vacuum and reaches the focus F at the point xf determined

by:

xf = x0 +
1

Rδδ̄
arcsinh

σ̄δ̄√
δ2 − σ̄2

Figure 11: The orbits of the TMW (2.11) domain walls (left) and the two-stage orbit of the PMW

(2.10) domain walls (right) displayed in P2 as a solid red line.
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Thus, (3.13) is the solution of (3.7), with ε2 = 1 between x = −∞ and x = −(xf − x0),

whereas ε2 = 0 must be chosen between x = xf − x0 and x = +∞. After hitting the

focus for the first time, the orbit changes to proceed along the λ2 = σ̄2 axis. The analytic

solution of (3.6)

λPMWFP
1 (x) =

δ2 sinh2
[
Rδδ̄(x− x0)

]
cosh2

[
Rδδ̄(x− x0)

]
− δ2

, λPMWFP
2 (x) = σ̄2 (3.14)

departs from the focus at x = −(xf − x0), solving (3.6) with ε1 = 1, rebounds at the pole

P when x = x0, and travels back with ε1 = 0 to reach the focus at x = xf − x0. There is

accordingly a continuous sewing of the two stages of the orbit at the focal point, see Figure

11 (left).

The inverse map from (3.13)-(3.14) to the original field variables produces the four

topological walls shown in Figure 11 (right) that belong to the sectors C12, C21, C34, and

C43 of the configuration space. This continuous gluing of two solutions of two different

first-order equation at a point where the flow is undefined is the bona fide solution of the

second-order equations, already found in the sub-Section §. 2.2 by direct integration. The

tension of these walls must be computed in two steps (confirming the result in §2.2):

Ω(PMW) = Ω(PMWVF) + Ω(PMWFP) =

=
2

α2
1 − α2

3

(∣∣W (σ̄2, δ2)−W (σ̄2, σ̄2)
∣∣+
∣∣W (σ̄2, σ̄2)−W (0, σ̄2)

∣∣)
=

R3

α2
1 − α2

3

(
δδ̄ − (1− 2δ2) arccos δ̄

)
.

4. Composite non-topological and topological domain walls

4.1 Degenerate families of polar zone non-topological domain walls

In order to search for more general domain wall solutions we first consider the polar zone:

λ2 ∈ (σ̄2, δ2). The first-order equations (3.6)-(3.7) written in differential form:

(−1)ε1dλ1

2R(σ̄2 − λ1)(δ2 − λ1)
√
λ1(1− λ1)

+
(−1)ε2dλ2

2R(σ̄2 − λ2)(δ2 − λ2)
√
λ2(1− λ2)

= 0 (4.1)

(−1)ε1λ1dλ1

2R(σ̄2 − λ1)(δ2 − λ1)
√
λ1(1− λ1)

+
(−1)ε2λ2dλ2

2R(σ̄2 − λ2)(δ2 − λ2)
√
λ2(1− λ2)

= −dx(4.2)

lead to the equation for the mechanical orbit -integrating (4.1)- and the rule for the me-

chanical time schedule -integrating (4.2)- . Therefore, we obtain a two-parametric (the two

integration constants C0, C1 ∈ R) family of domain wall solutions in the implicit form:∫
(−1)ε1dλ1

(σ̄2 − λ1)(δ2 − λ1)
√
λ1(1− λ1)

+

∫
(−1)ε2dλ2

(σ̄2 − λ2)(δ2 − λ2)
√
λ2(1− λ2)

= 2RC1∫
(−1)ε1λ1dλ1

(σ̄2 − λ1)(δ2 − λ1)
√
λ1(1− λ1)

+

∫
(−1)ε2λ2dλ2

(σ̄2 − λ2)(δ2 − λ2)
√
λ2(1− λ2)

= −2R(x− C0) .
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To achieve explicit expressions we instead perform the Euler change of variables:

s1 =

√
1− λ1

λ1
, s2 =

√
1− λ2

λ2
; 0 < σ2

2 =
δ̄2

δ2
< s2

2 < σ2
1 =

σ2

σ̄2
< s2

1 < +∞

Note the inequalities bounding the new variables si, i = 1, 2, in terms of the old param-

eters σ̄ and δ as separation constants. A cosmetic change of notation in favor of σ1, σ2

is also introduced to make the formulas more symmetric. The quadratures (4.1)-(4.2) are

rationalized:

1

δ2σ̄2R

2∑
i=1

∫
(−1)εi(1 + s2

i ) dsi
(σ2

1 − s2
i )(σ

2
2 − s2

i )
= C1 ,

1

δ2σ̄2R

2∑
i=1

∫
(−1)εidsi

(σ2
1 − s2

i )(σ
2
2 − s2

i )
= x− C0 .

(4.3)

Plugging the simple fraction decompositions

1

(σ2
1 − s2

i )(σ
2
2 − s2

i )
=

δ2σ̄2

σ̄2 − δ2

(
1

σ2
1 − s2

i

− 1

σ2
2 − s2

i

)
1 + s2

i

(σ2
1 − s2

i )(σ
2
2 − s2

i )
=

1

σ̄2 − δ2

(
δ2

σ2
1 − s2

i

− σ̄2

σ2
2 − s2

i

)
in (4.3) further simplifies the quadratures:

2∑
i=1

∫
(−1)εidsi
σ2

2 − s2
i

= δ2R (x− C0 − σ̄2C1) ,

2∑
i=1

∫
(−1)εidsi
σ2

1 − s2
i

= σ̄2R (x− C0 − δ2C1) .

(4.4)

Integration of the ODE’s (4.4) provides the two-parametric family of domain wall solutions:

arccoth
s1

σ2
+arccoth

s2

σ2
= Rδ δ̄ (x−x0) , arccoth

s1

σ1
+arctanh

s2

σ1
= Rσ σ̄ (x−x0 +ζ) ,

(4.5)

now in terms of other two integration constants: x0 = C0 + σ̄2C1, ζ = (σ̄2 − δ2)C1,

x0, ζ ∈ R. Setting the value of the integration constant x0 fixes the “center of mass” of the

wall, whereas different values of ζ determine the different wall orbits uniquely. We have

re-defined the si variables in the form s1 → (−1)ε1s1, s2 → (−1)ε2s2, taking advantage of

the parity properties of the inverse hyperbolic functions.

The addition formulas for the hyperbolic functions:

tanh (arccoth p+ arccoth q) =
p+ q

1 + pq
=

1

tanh (arccoth p+ arctanh q)

allow us to invert (4.5) and we find:

σ2
2(s1 + s2)

σ2(σ2
2 + s1s2)

= tanh
[
Rδ δ̄(x− x0)

]
≡ t1 ,

σ1(σ2
1 + s1s2)

σ2
1(s1 + s2)

= tanh [Rσ σ̄(x− x0 + ζ)] ≡ t2 .

(4.6)

This is an algebraic linear system in the “Vieta variables” A = s1 + s2 , B = s1s2:

σ2A− t1B = t1σ
2
2 , σ1t2A−B = σ2

1 ,
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solvable by means of Cramer’s rule:

A(x;x0, ζ) =
(δ2 − σ̄2)t1

δσ̄
(
σδt1t2 − σ̄δ̄

) , B(x;x0, ζ) =
σδ̄
(
σδ − δ̄σ̄t1t2

)
σ̄δ
(
σδt1t2 − σ̄δ̄

) .

s1, s2 are by definition the roots of the quadratic equation s2 −As+B = 0:

s1(x) =
A(x) +

√
A2(x)− 4B(x)

2
, s2(x) =

A(x)−
√
A(x)2 − 4B(x)

2
,

and thus we find explicit expressions for the family of domain wall solutions of (3.6) and

(3.7) in the polar zones:

λPZW
1 (x;x0, ζ) =

1

1 + s2
1(x;x0, ζ)

, λPZW
2 (x;x0, ζ) =

1

1 + s2
2(x;x0, ζ)

, (4.7)

Figure 12: Graphics of the domain wall components (4.8, 4.9, 4.10) for: (left) x0 = ζ = 0, and

(right) x0 = 1, ζ = 3.

although we stress that in the formula (4.7) the signs of (3.6) and (3.7) must be chosen to

fit with the stages where λ1 and λ2 are respectively increasing or decreasing.

We return to Cartesian coordinates in R3 using formula (3.1). φ2
1, φ2

2 and φ2
3 are given

in terms of s2
1 + s2

2 and s2
1s

2
2. The analytic expressions depending on the spatial coordinate

x, and the integration constants γ1 and γ2, are:

φPZW
1 (x;x0, ζ) =

(−1)κ1Rδ
(
δ̄σ̄ − δσt1t2

)√
(δ2 − σ̄2)2 t21 + σ2σ̄2t21t

2
2 − 2δδ̄σσ̄t1t2 + δ2δ̄2

(4.8)

φPZW
2 (x;x0, ζ) =

(−1)κ2R(δ2 − σ̄2)t1
√

1− t22√
(δ2 − σ̄2)2 t21 + σ2σ̄2t21t

2
2 − 2δδ̄σσ̄t1t2 + δ2δ̄2

(4.9)

φPZW
3 (x;x0, ζ) =

(−1)κ3Rδ̄(δσ − δ̄σ̄t1t2)√
(δ2 − σ̄2)2 t21 + σ2σ̄2t21t

2
2 − 2δδ̄σσ̄t1t2 + δ2δ̄2

. (4.10)

The meaning of the integration constants x0, ζ is now clear:

1. Besides fixing the center of mass of the composite wall, x0 sets the point xf = x0, where

the field profiles touch the foci. At this point t1 = 0 and :

(φPZW
1 )2(x0;x0, ζ) = R2σ̄2 , (φPZW

2 )2(x0;x0, ζ) = 0 , (φPZW
3 )2(x0;x0, ζ) = R2σ2 .

2. ζ determines the orbit of the non-topological wall and fixes the relative coordinate

between the two centers of these composite walls.
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In Figure 12 the graphics of the three components

Figure 13: Orbits in S2 for three

PZW domain wall solutions: (1)

(γ1 = 0, γ2 = 0), red. (2) (γ1 =

−1, γ2 = 1), brown. (3) (γ1 =

1, γ2 = 6), blue. (right).

of the non-topological domain wall field profiles for two

sets of values of (x0, ζ) are shown: φPZW
1 (blue lines)

tend to −δ, φPZW
2 (red lines) tend to 0, and φPZW

3

(brown lines) tend to δ̄ at x → +∞ and x → −∞;

i.e., the wall solutions go to the same vacuum at both

ends of the straight line,which determines the non-

topological character of these solutions that belong to

the C11, C22, C33, and C44 sectors. In the plots of the

wall orbits in S2 drawn in Figure 13, it is seen that

all the orbits start and end at the same vacuum and

cross through the opposite focus. More interestingly,

the tension densities of these walls depicted in Figure

14 unveil their character as composite extended ob-

jects: they are non-linear superpositions of the PMW

and TW basic walls.

Figure 14: Non-topological wall tension densities for:(1) (x0 = 0, ζ = 0), red. (2) (x0 = 1, ζ = 2),

brown. (3) (x0 = −1, ζ = 5), blue.

To further explain these statements, we discuss the orbits in the P2 rectangle. In

Figure 15 (left), the plots of three of these wall orbits are shown. The (x0 = 0, ζ = 0) orbit

(green line) starts at the vacuum, hits the λ1 = 0-axis at the mid-point between λ2 = δ2

and λ2 = σ̄2, and runs to the focus F . Then, the orbit returns back to the vacuum through

the same path in reversed sense.

The (x0 = 1, ζ = 2) orbit (brown line) starts at the vacuum point, hits the λ1 = 0-axis

at a point below λ2 = δ2−σ̄2

2 , and run to the focus. Then, the orbit runs again to intersect

the λ1 = 0-axis at the symmetric point over λ2 = δ2−σ̄2

2 , and travels back to reach the

vacuum.

The (x0 = −1, ζ = 5) orbit (black line) follows a similar pattern in an extreme way.

The trajectory starts from the vacuum, running almost parallel to the λ2 = δ2 orbit, hits

the λ1 = 0-axis, and returns slightly departing from the same way until, close again to the

vacuum, it turns down toward the focus, almost parallel to the λ1 = σ̄2-axis. Just at the

focus, the orbit turns to the left, again hitting the λ1 = 0-axis at a point extremely close

to the North Pole where it turns back almost parallel to the λ1 = σ̄2-axis.

Again approaching the focus, the orbit finally turns up almost vertically to end at the

vacuum. Needless to say, the follow-up of the orbits described here can be interpreted in
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the inverse sense due to the symmetry x → −x of the system. A very important point to

emphasize is that the focus F is a conjugate point with respect to the vacuum V : a point

where all the orbits of a congruence starting in V pass through. This will have consequences

in the stability of these domain walls, an issue to be analyzed in a forthcoming publication.

The (x0 = −1, ζ = 5)-orbit is particularly interesting: it is very close to the gluing

of the two trial orbits in the C12 and C34 sectors of the system. This confirms that these

new domain wall solutions are nonlinear superposition of two basic walls. The Bogomolnyi

trick provides the tension of any wall in this family :

Ω(PZW) =
2

α2
1 − α2

3

∣∣W (σ̄2, δ2)−W (0, δ2)
∣∣+

+
2

α2
1 − α2

3

(∣∣W (σ̄2, σ̄2)−W (0, σ̄2)
∣∣+
∣∣W (σ̄2, δ2)−W (σ̄2, σ̄2)

∣∣)
=

R3

α2
1 − α2

3

(
σσ̄ + δδ̄ + (1− 2δ2)(arcsinσ − π

2
− arcsinδ)

)
(4.11)

= Ω(PMW) + Ω(TW) .

The formula (4.11) is a remarkably result. First, it means that the tension of all the walls

in the family is the same. Second, the tension is equal to the sum of the tensions of the two

basic walls that live in the same topological sectors. This wall tension sum rule is another

confirmation that the polar domain walls are composed of two basic domain walls.

Figure 15: Graphics of the domain wall orbits in P2 displayed as solid lines: Polar zone non-

topological domain walls (left) and Tropical zone topological walls (right).

4.2 Degenerate families of tropical zone topological domain walls

If δ2 < λ2 < 1, the tropical zone, the inequalities satisfied by the si variables are:

σ2
2 < σ2

1 < s2
1 < +∞ , 0 < s2

2 < σ2
2 .

Integration of the ODE’s (4.4) gives the domain wall solutions in this zone

arccoth
s1

σ2
+arctanh

s2

σ2
= Rδ δ̄ (x−x0) , arccoth

s1

σ1
+arctanh

s2

σ1
= Rσ σ̄ (x−x0 +ζ) .

(4.12)

– 21 –



The only difference with respect to (4.5) is that, s2
2 also being smaller than σ2

1, there are

two arcth functions entering the solution. The subsequent linear system in Vieta variables

becomes

σ2t2A−B = σ2
2 , σ1t1A−B = σ2

1 .

Cramer’s rule dictates the solutions:

A(x;x0, ζ) =
(δ2 − σ̄2)

δ
(
σσ̄δt1 − δ̄σ̄2t2

) , B(x;x0, ζ) =
σ
(
σδδ̄t2 − σ̄δ̄2t1

)
δ
(
σσ̄δt1 − δ̄σ̄2t2

) ,

s1(x) =
A(x) +

√
A2(x)− 4B(x)

2
, s2(x) =

A(x)−
√
A(x)2 − 4B(x)

2
,

and we have a new two-parametric family of tropical domain walls of equations (3.6) and

(3.7) with the appropriate signs:

λTZW
1 (x;x0, ζ) =

1

1 + s2
1(x;x0, ζ)

, λTZW
2 (x;x0, ζ) =

1

1 + s2
2(x;x0, ζ)

. (4.13)

Figure 16: Graphics of the tropical zone topological wall components (4.14, 4.15, 4.16) for: (left)

x0 = 0, ζ = 0, and (right) x0 = 1, ζ = 3.

Back in Cartesian coordinates in field space, we find the new family of domain wall

solutions:

φTZW
1 (x;x0, ζ) =

(−1)κ1Rδ
(
δσ t1 − σ̄δ̄ t2

)√(
σσ̄t1 − δδ̄t2

)2
+ (δ2 − σ̄2)2

(4.14)

φTZW
2 (x;x0, ζ) =

(−1)κ2R(δ2 − σ̄2)
√

1− t21√(
σσ̄t1 − δδ̄t2

)2
+ (δ2 − σ̄2)2

(4.15)

φTZW
3 (x;x0, ζ) =

(−1)κ3Rδ̄
(
δσ t2 − σ̄δ̄ t1

)√(
σσ̄t1 − δδ̄t2

)2
+ (δ2 − σ̄2)2

. (4.16)

Figure 16 plots the field profiles of two domain walls in this family. They run asymptotically

into different vacua and are thus topological solutions living in topological sectors of the

configuration space. In general, the topological wall solutions (4.14, 4.15, 4.16) belong to

the topological sectors: C24/C42 and C13/C31. Their wall tension densities have the form

– 22 –



Figure 17: Topological wall tension densities for:(1) (x0 = 0, ζ = 0), red. (2) (x0 = −1, ζ = −2),

brown. (3) (x0 = −1, ζ = −7), blue.

shown in Figure 17, again suggesting the composition of two basic walls: TMW and TW

in this case.

The integration constants x0 and ζ determine the center of mass and relative coordi-

nates of the composite walls, just as in the non-topological polar walls.

The orbits in S2 of three topological walls

Figure 18: Orbits in S2 of three topological

domain wall solutions: (1) (x0 = 0, ζ = 0),

red. (2) (x0 = −1, ζ = −2), brown. (3)

(x0 = −1, ζ = −7), blue.

are plotted in Figure 18. They join anti-podal

vacua and there are no conjugate points in these

congruences, a fact that offers a strong hint

of stability from the Morse index theorem, see

[32].

Finally, we describe the topological wall or-

bits in the P2-rectangle in Figure 15 (right).

Unlike the non-topological wall orbits that are

formed by six, their orbits are composed of four

stages. The change of stage takes place when

the orbit hits either the λ2 = 1 (the equator)

or the λ1 = 0 (the φ1 = 0 meridian) edges.

The topological wall orbits do not pass through

the foci, the points where the flow is undefined,

and therefore their tension is a true Bogomolny

bound, depending only on the values of the fields at the vacua:

Ω (TZW) =
2

α2
1 − α2

3

(∣∣W (σ̄2, δ2)−W (0, δ2)
∣∣+
∣∣W (σ̄2, δ2)−W (σ̄2, 1)

∣∣)
=

R3

α2
1 − α2

3

(
σσ̄ + δδ̄ + (1− 2δ2)(arcsinσ − arcsinδ)

)
(4.17)

= Ω(TMW) + Ω(TW) .

Accordingly, the topological walls (4.14, 4.15, 4.16) form a degenerate family of BPS walls

in tension, confirming the stability of these topological defects.

5. Further comments

In [30], we discussed the stability properties and quantum features of the domain walls
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discovered in [15]. We plan a similar analysis of the domain walls described in this paper

in future research. Nevertheless, we shall briefly comment on these points in this last

Section:

1. Stability. It is compelling to wonder about the stability of these domain walls. The

answer is as follows:

• The topological basic walls TMW as well as the topological TW (and their anti’s)

are stable.

• The topological basic walls PMW (and their anti’s) are unstable.

• The composite non-topological walls are unstable.

• The composite topological walls are stable.

The arguments to support these claims are based on: 1) The saturation of Bogomolny

bounds, see [31]. 2) The application of the Morse index theorem, see [32]-[33]. 3) The

computation of Jacobi fields, ( not given in this paper), see [34].

2. One-loop wall tension shift. Following the work in [35] on the supersymmetric kink we

computed the one-loop mass shift to the only stable kink found in [15] in Reference [36].

This work has been extended to the massive model with target space S3 in [37]. In this case

there are two stable topological kinks but the strategy used was the spectral zeta function

regularization developed in the papers [38]-[39]-[40] on linear sigma models with several

scalar fields.

Finally, a quick remark about what happen if the parameter δ took other values.

First, if δ > 1 the four ground states become imaginary but the maxima at the intersection

between the Equator and the φ2 = 0-meridian become minima. There would be only two

vacua on these two points and the structure of the moduli space of domain walls would

be very similar to the structure described in [15], although the analytic expressions of the

domain wall solutions would differ. Second, if δ = σ̄ the ground state and the foci would

coincide and the two types of wall orbits -connecting either antipodal or non-antipodal

pairs of vacuum points- would be topological. All the domain defects would be stable

composite topological walls in this case, whereas the basic topological walls would all be

stable.

6. ACKNOWLEDGEMENTS

We thank to the Spanish Ministerio de Educacion y Ciencia and Junta de Castilla y Leon

for partial financial support under grants FIS2009-10546 and GR224.

References

[1] T. W. B. Kibble, Topology of cosmic domains and strings, Jour. Phys. A: Math. Gen. 9

(1976) 1387.

– 24 –



[2] A. Vilenkin, E. P. S. Shellard, Cosmic strings and other topological defects, Cambridge

University Press, Cambridge UK, 1994.

[3] J. C. R. E. Oliveira, C. J. A. P. Martins, P. P. Avelino, The cosmological evolution of

domain wall networks, Phys. Rev. D71 (2005)083509, [arXiv: hep-ph/0410356]

[4] M. Eto, T. Fujimori, T. Nagashima, M. Nitta, K. Oshashi, N. Sakai, Effective action of

domain wall networks, Phys. Rev. D75: 045010, 2007, [arXiv: hep-th/0612003].

[5] M. Eto, T. Fujimori, T. Nagashima, M. Nitta, K. Oshashi, N. Sakai, Dynamics of domain

wall networks, Phys. Rev. D76: 125025, 2007, [arXiv:0707.3267].

[6] L. Randall, R. Sundrum, An alternative to compactification, Phys. Rev. Lett. 83, 4690

(1999); [arXiv:hep-th/9906064].

[7] H. J. K. Boonstra, K. Skenderis, P. K. Townsend, The domain-wall/QFT correspondence,

JHEP 01 (1999) 003; [arXiv:hep-th/9807137]

[8] G. L. Cardoso, G. Dall’Agata, D. Lust, Curved BPS domain walls and RG flow in five

dimensions, JHEP 03 (2002) 044; [arXiv: hep-th/0201270]

[9] D. Bazeia, and A. R. Gomes, Bloch brane, JHEP 05(2004) 012; [arXiv: hep-th/0403141]

[10] D. Bazeia, F. A. Brito, L. Losano, Scalar fields, bent branes, and RG flow, JHEP 11 (2006)

064; [arXiv:hep-th/0610233].

[11] A. de Souza Dutra, A. C. Amaro de Faria, and M. Holt, Degenerate and critical Bloch

branes, Phys. Rev. D78(2008) 043526; [arXiv:0807.0586].

[12] J.J. Blanco-Pillado, M. Bucher, S. Ghassemi, F. Glanois, When do colliding bubbles

produce an expanding universe? Phys.Rev. D69 (2004) 103515, [arXiv:hep-th/0306151]
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