arXiv:hep-th/0603006v1 1 Mar 2006

TWODIM ENSIONAL SUPERSYMM ETRY :FROM SUSY QUANTUM
MECHANICS TO INTEGRABLE CLASSICAL M ODELS

M .V .Io e'?2,J.M ateos G uilarte®®, P. A .Valinevich!'®

! D epartm ent of T heoretical Physics, Sankt-Petersourg State U niversity,
198504 SanktPetersburg, R ussia
2 D epartam ento de Fisica Teorica, Atom ica y O ptica, U niversidad de Valladolid, 47071
Valladold, Spain
3D epartam ento de F isica Fundam entaland TWFFyM , Facultad de Sciencias, U niversidad
de Salam anca, 37008 Salam anca, Spain

Two known 2-din SUSY quantum m echanical constructions —the direct gen—
eralization of SUSY with rstorder supercharges and H igher order SUSY
w ith second order supercharges —are com bined for a class of 2-dim quantum
m odels, which are not am enablk to separation of variables. T he appropriate
classical lim it of quantum system s allow s us to construct SU SY -extensions
of original classical scalar H am iltonians. Special em phasis is placed on the
sym m etry properties of them odels thus obtained —the explicit expressions of
quantum sym m etry operators and of classical integrals of m otion are given
for all (scalar and m atrix) com ponents of SU SY -extensions. U sing G rass-
m anian variables, the sym m etry operators and classical integrals of m otion
are written in a unique form for the whole Superham ittonian. T he links of
the approach to the classical H am ilton-Jacobim ethod for related " ipped”
potentials are established.

PACS numbers: 0365w ,0365Fd, 1130Pb

1. Introduction

Supersym m etric Q uantum M echanics (SUSY QM ) [1]is a new fram ework for analyzing
non-relativistic quantum problem s. In particular, it helps to investigate the spectral prop—
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erties of di erent quantum m odels as well as to generate new system s w ith given spectral
characteristics (quantum design).

M uch Jess attention has been paid to SUSY QM as a tool to study individual hidden
sym m etries of the superpartner Ham ittonians. This problem is reasonable for considering
either one-din ensional quantum system s w ith intemal degrees of freedom  (w ith m atrix po—
tentials) or system s of higher spatial din ensionality. O nly for these classes of system s m ay
the sym m etry operators, which are in involution w ith the H am iltonian (and are independent
of it), exist. Thus, the quantum m odels In onedin ensional SUSY QM w ith m atrix poten—
tials and the higher-dim ensional (in particular, two-din ensional) m odels w ith scalar and/or
m atrix potentials are extrem ely attractive.

Regarding SUSY QM system s w ith m atrix potentials, we refer to papers [4]. The SUSY
QM system s w ith an arbitrary (d > 1) din ensionality of space” were constructed and in—
vestigated in 4], 5]. Such m odels include both the scalar and m atrix com ponents of the
Superham ittonian. The latter are interesting either for a description of interacting non-
relativistic particles w ith spin [@], [4], or for developing supersym m etric quantum eld the-
ory on a spatial lattice [8]. The appearance both of scalar and m atrix Ham iltonians in a
unigue Superham iltonian provides an opportunity to consider (starting from a given scalar
Schrodinger operator) SU SY extensions that correspond to the system sw ith intermaldegrees
of freedom . Som e SU SY extensions of this type were considered in [9] (C alogero-like m odels
of N particles on a line) and in [10] (Coulom b potential in d din ensions).

Among multidim ensional SUSY QM models, those most developed are the two—
din ensionalones. N am ely, precisely for these systam s second-order superchargesw ere used to
build the higherorder deform ation of SUSY algebra [111], (12], [13]. In the fram ework of this
HSUSY QM generalization of conventionalW itten’s superalgebra® one can avoid the appear—
ance of any m atrix com ponents of the Superham iltonian, so that two scalar two-dim ensional
Schrodinger operators are Intertw ined by second-order supercharges. A s a by-product of this
construction , each of the intertw ined H am iltonians obeys the hidden symm etry: thedi eren-
tial operators of fourth order In derivatives exist, which are not reducible to the H am iltonian
and comm ute w ith the H am ittonian, [111], [14], [16], [L3]. In the two-din ensional context this

dTnstead of din ensionality of the space d can be also interpreted as a num ber of particles, for exam ple i

C alogero-like m odels of interacting N particles on a line [3].
*Onedim ensionalH SUSY QM was Investigated in detail in [14], [15].



m eans the com plete Integrability of the system .

Another direction In which to Investigate SUSY QM m odels involves their connections
w ith classical counterparts. Initially, the arbitrary-space-dim ensionality generalization [H]of
SUSY QM ,m entioned above, was obtained by canonical quantization of a suitably chosen
m ultidin ensional systeam of C Jassical M echanics. Then the quasiclassical lim it of som e su—
persym m etrical quantum m odels investigated a orded new insight into the properties of the
classicalm odels obtained. In the onedim ensional case, this Iim it led to a new SW KB quan-—
tization rule [17], which tumed out to be m ore usefiil than the standard W KB rule. In the
two-din ensional case, the quasiclassical 1in it provided an altemative e ective m ethod [18]
for the construction of integralble system s in C Jassical M echanics, which essentially enlarges
the list of such m odels. The SUSY QM approach also provides new interesting links w ith
the wellknown Ham ilton-Jacobiequation in C Jassical M echanics [19].

In the present paper we shall com bine both known two-din ensional SUSY QM construc-
tions — the direct generalization of SUSY with rstorder supercharges and HSUSY w ith
second-order supercharges — in order to nvestigate the sym m etry properties of the m odels
obtained, both at quantum and classical level. T he paper is organized as follows. In Sec—
tion 2, known results about two-din ensional SUSY QM m odels and their connections w ith
classical m odels, necessary for the original part of the paper, are brie y summ arized. Tn
Section 3, the particular case of two-din ensionalm odels for second-order supercharges w ith
Intermm ediate tw ists are studied : the particularm odels ofgeneralized M orse and Posch T eller
potentials are presented w ithin this comm on fram ework. In Section 4, the integrability of
these m odels is extended onto theirm atrix —both quantum and classical - superpartners. In
Section 5, the links w ith classical H am ilton-Jacobi equation are considered.

2. Two-dimn ensional SU SY Quantum M echanics

2.1. The representation of SUSY algebra w ith rst-order super—

charges

In the two-din ensional case x = (X1;X,), the direct (ie. of rst order In derivatives)



generalization of SUSY QM satis es [4], (8] the conventional W itten’s [20]SUSY algebra

16" 6 9= ~H; 16" 6" g-£0 i g-0; [ 1= o0 1)
by the 4 4 m atrix operators:
0
° ! 0O 0 0 O
. H(O)(X) 0 0 %
) i St o B 4 0O 0 0
H:E 0 Hjll)(X) 0 §; ik=1;2; ¢t = y=~1728 *
Bae 0 00
0 0 H®(x)
0 s s, O
(2)

where two scalar Ham ittonians H @;H ®) and one 2 2 matrix Ham ittonian Hj;l) of the

Schrodinger type take on a quasi-factorized fomm :

2

1 ) _ qqu — Nz@f.l,_ ’\/(O)(x)z ~2@f+ @ (%) N@f (=); @f @f—‘r @5’.

2
H® = sfs, = ~2+vVP@x)= ~@7+ @ (x) +~6 (x); (3)
Hj(kl) = qqg + 5SS = ~ jk@lz"' x @ (%) ? N@lz (x) + 2~Cily  (x);

the com ponents of the supercharges being of rst order in derivatives:

q ~@+ (@ (®)); s x9 (4)

where @ @=@x; and summ ation over repeated indices is assum ed. The Planck constant
was restored in ormulas (@) - {d), and the (nom alizabk or unnomm alizabk) zero-energy
wave functions of the scalar Ham iltonians H ©7?) are now written asexp ( =~).

T he quasi-factorization in (@) ensures that the last equation in {) holds, and lads to
the ollow Ing intertw ining relations for the com ponents of the Superham iltonian {@):

() (1) (1) ()
i Hyg=qH; Hy's, =sH®; HYs{ =sgH 't ()

0) + _ +
H" g =qH ki

These relations play them ain role in the SUSY QM approach and, in particular, they lead
to the connections between the spectrum of the m atrix H am iltonian and the spectra of two
scalar ones. W e ram ark that H ¥ and H ) are not intertw ined w ith each other and are not

(In general) isospectralsinceq, s 0.



2.2. Second-order supercharges

An altemative opportunity to include two-dim ensional scalar H am iltonians in the SU SY
QM fram ework is based on the supercharges of second order in derivatives [11], [14], 131:

0" = (@ V= gu®)?Qi@ + C;(x)~C;+ B () 6)

where gy ;C ;B are arbitrary real functions. In this case, two scalar Ham iltoniansH ©), i ©
are Intertw ined directly w ithout any (m atrix) interm ediary:

BY®0"=0"HY%x); HP®m0Q =0 BYx): (7)

A Tthough no m ethod to nd the general solution of the intertw ning relations (@) has been
proposad, a certain num ber of m odels obeying these relations have been found for the cases
ofhyperbolic (Lorentz) and degeneratem etric gy : O ne very In portant speci ¢ property ofall
these m odels, which follow s from the intertw ining relations (1), is their integrability. Indesd,
both Ham iltonians possess the symm etry operators R ;8 ) of fourth order in derivatives
A, 1A

ROHI=0; ©;8%1=0; RP=00"; ®%=0"0; (8)

which are not, .n genera¥, polynom ials of H ) ;1 @),
For the case of Lorentz (hyperbolic) m etric gy = diag(l; 1) [L1]- (18], the Intertw Ining
relations (4) can be rew ritten In a reduced fomm :

@ C F)= @ (C.F); 9)

P- P
wherex = (x; x;)= 2;functionsC;, were found to satisfy C C, C, C ( 2x);
and F (x) = F1(2%;)+ F,(2%,). Thus, the potentials V (°)*1) and the supercharges Q are

P
expressad In term s of the functionsC ( 2x ) and F1(2%x1);F,(2x5):

1 o P 1 p— p—
v Oe@ = > Col( 2 )+ CP%(C 2x ) + C2( 2%, )+ C?( 2x ) +
1
+Zl Fo(2x,) Fi1(2x1) ; (10)
Q" = ~*(@ @)+ Ci~@ + Co~@+ B (11)
1 P p—
B = — C,( 2x,)C ( 2x )+ F1(2x1)+ Fy2(2x5) ; (12)

4
Tt has been proved [1J] that only for Laplacian (elliptic) m etric gy = g can the symm etry operators

be reduced to second-order operators, and the corresponding H am iltonians H (92 ©©) allow the separation

of variables.



w here the prin e denotes the derivative of function w ith respect to its argum ent. A set of
particular solutions of (3) was obtained in [12], 18], 2.

3. Two-dim ensionalm odels w ith tw isted reducibility of

supercharges

In the previous Section it was shown that two di erent constructions w ith very di erent
properties exist in two-din ensional SUSY QM . The st one (Subsection 2.1.) includes

two scalar Ham iltoniansH ©); H @ (only one of than has nom alizabk’ zero-energy ground

state wave function (x) = exp( (Nx) )) and their 2 2 m atrix partner H j3{1):The second
one (Subsection 22.) contains only the scalar Ham ittonians H ©; £ © w ith no inform ation
about their ground-state energy in advance, and both H () and # ©) a priori (by construction )
obey the in portant property of integrability w ith the sym m etry operatorsR ;) of fourth
order in derivatives (see (8)). The natural dea is to unite all the above tem pting properties
by com bining these two constructions, ie. by dentifying the origihalHam iltonian H © as
the sam e in both approaches. M ore precisely: et H ) of the form (@) have the superpartners
H{'and H @ in the rstorder scheme, and at the sam e tin e the superpartner i ©) in the
second-order scham e. Tt isknown [12]that the sim plest, reducible or quasi-factorizablk, form

of the second order superchargesQ* = (Q Y = g @, ,which is suitable for the construction
described, leads to the R sgparation of variables, and therefore it is not considered here.
A llotherm odels (excluding the case ofellipticmetric gy = % I Q ) have been proved [14]
not to be am enable to separation of variables; they have nontrivial fourth-order sym m etry
operators {@). Themain dea to achieve the denti cation of H ¥ in the two approaches is
to consider a class of m odels w ith second-order supercharges, which are quasi-factorizable,

but with an Intermm ediate tw ist transform ation (see also 211]):
Q = Q")V=qUxqg; (13)
where Uy, is a constant unitary matrix,q werede ned in (@), and

% ~@ + (G ~(x))

9For the case of supersym m etry not broken spontaneously.



with som e new superpotential ~: Such a generalization of the notion of reducihbility (we
shall call it twisted reducibility) is som ehow rem iniscent of the "gluing with shift" recipe in
one-din ensional scalar [14]and m atrix [A]HSUSY QM . The ntertw ining relations (@) w ith

supercharges (I3) and the general expression form atrix Uy, :

g 2 [
U= o+ 1 ;oo =1; o i2R;

( i are the Paulim atrdces and ¢ is the unit m atrix) give the system of four linear and one

nonlinear equations for two functions = %( ~) e
3 +2 ,4,@, = 0; 1+ 2 3@4@ . =05 (14)
2+ 2 0@ =0; 0 + 2 ,8@ . =0; (15)
@ )@ )= 0; (16)
where @f @§ . Precisely the Jast equation (Id) is cbviously m ost di cult to solve. Both

the solutions of linear partial di erential equations (I4)-(I3) and the form of (I8) depend
crucially on the values of ; chosen. For them ost setsof ’s, ncluding the general case w ith
all ;6 0aswellasalmost alldegenerate cases with some ; vanishing, the corresponding
potentials allow the separation of variables and are ignored here.

T he only exception to the above rule, and therefore them ost Interesting quantum m odels,
corresponds to the cass® when (= 1= ,= 0; 36 0,1e.U = 3. Then, them etric
of supercharges Q is hyperbolic, ie. Q belong to the class discussed In Subsection 2 2.
For thesem odels (due to {I4) - (IJ) only), the supercharges are represented In term s of four
arbitrary real functions 1,

= s =)+ x); = o)+ 2(x2); 17

Hence, the last equation {IA) rew ritten via 0 takes the form of the fiinctional equation :
X)Ly X))+ X )+ x4 (x) (x )= 0: (18)

BThe system with ¢ = 2, = 3 = 0; 1 6 0,1ie. U = 1 lads to analogous results w ith the

substitution S



It is reasonable to form ulate here the im portant speci ¢ property of solution (I1). The

superpotential
=)= .+ = 1(xX)+ 2+ 4 (x)H+ x ) (19)

Jeads to an expression for the quantum potentialV ) (x) (see the rst ofEq.@)), which also

has the form of the sum :
vOx)= @ (x) ~RT ()= () V() v (%) V(X ) (20)

withvip= %5 ~ v = % ~ ®:Itmay beseen thatboth tem s in quantum potential

(20) separately have the form of the sum s as in {Id). T herefore, at the quasiclassical lim it
2

(0)
cl

isalso represented in a form sin ibr to (20) butw ith truncated vy 5, ; . Both In the quantum

v (see Sections 4 and 5 below ),whereonly the rsttem @ (x) survives, the potential
and classical contexts, form (20) seem s to be typical for a wide class of ntegrable two—
din ensionalm odels, considered w ithin very di erent approaches in the literature (see [24],
18], as exam ples). This is why the follow iIng statem ent m ight be useful (at least, in the
classical fram ew ork). T hus, if the general solution for the superpotential (%) in relation
2

Vo @)= @ x) =wvix)+ X))+ v, X)+v (x) (21)
isof the form of (I9), precisely the functional equation {I8) must be ful lled. T his equation
ensures the m utual cancellation of crossed term s in (Z1]) and is therefore very im portant for
this class of m odel. T he general solution of (I8) was und by D N ishnianidze' (see 211)):

Z dq .

2
+bi,+ ¢ X = P —; a;b;c= const; (22)
a;+tbi+tc

@ _ 4
12— a 1,2

and explicit expressions for  can be obtained from (I8). Am ong the functions that satisfy
conditions (ZA) there exists a set of solutions of Eq.(I8) possessing the periodicity property.
For exam ple,

sn(axk)cn(axk) . dn(axk)

dn(axk) k?sn(axk)cn(axk)

P_
1(x)= ,2(x)= B dn( 2ax¥k);

where A ;B ;a are real constantsand sn( k),cn( %k)and dn( %) are Jacobielliptic functions
231 with m odulus k. They are doubly periodic on the com plex plane of argum ent x, but

P rivate com m unication.



In the case k = 1 the real perdiod becom es in nite and the elliptic functions tum into the
hyperbolic functions sinh and cosh. R estricting ourselves in {Z2) to non-periodic functions
on a whole plane (x; ;x,) satisfying (22), which do not happens In systan s w ith separation
of variables, two fam ilies of m odels exist (see [211]). One of them is represented by the

p
two-din ensionalM orse potential,with ;= ,=Be *; , =2A; = 2Acoth( x= 2):
VP = (B?e?®+~B e *)+ (Be?¥ 4+ ~B e *)
+ 2R (28 + ~»=) sih (*72) 4+ 8A?: (24)
and the second by the two-din ensional P oschlTeller potential with 4 = 5 =
P 1
A sinh( 2 x) ;oL = = B tanh ( x):
o) _ 2 BB+~ ) 2 BB+~ )
\ - B cosh? (P—E(X1+X2)) + cosh? (P_E(Xl x2)) +
+AhA sz cg_‘sh(pz X1) n A+~p5 cg_‘sh(pi xz)l. (25)
sinh? ( 2 x1) sinh? ( 2 x2) .

O ther m em bers of these fam ilies can be obtained by using two discrete sym m etries of solu—
tions of Eq.(I8):

Syt 1(X1); 2(%X2); + xe); (x) ! +(X1); (X)) 1 (X)) o(x )

Syt 1x1); 2(%2); 4 (% )5 (X)) ! 1) o) Lt ); Tx)(26)

and di erent com binations thereof.

4. Supersym m etric extensions of scalar H am iltonians

and their integrability

In the previous Section we presented the explicit form s (24), £3) of the term s in Eq.(20)
for a certain class of quantum integrable Ham iltonians. In this Section we shall build their
classical and quantum SUSY extensions and we shall also dem onstrate their integrability

properties.

41. The classical lim it for H @

First, we chall consider for H ) its classical lin thc(S);ﬁerhjch the integral of m otion

R exists: fH C(f) R g)gp = 0 (f ; pgdenotes standard Poisson brackets). T his can be done



by the sin ple Iim it procedure ~ ! 0 In Eq.@Q). T he practical recipe is as follow s. O ne has
to replace all operators  i~@; by mom enta p; and skip all derivatives of functions, which
inclide ~ as a m ultiplier. O ne thus obtains’:

0) _ 2 .
Hcl_pjpj+ L . ’

Qu=0F © i2(,+ o i o2(, o+ : S22

The integral of m otion has the fom Rﬁ) = Q1,0 Its nvolution with the Ham iltonian
can be checked either by direct calculation or by a sin pler two-step procedure, proposed in
general form in [24]. Tt is instructive to perform it in the context of the m odels considered
here. First, one has to prove the Interm ediate relations:

fH 00 00 = 2i( 0+ C)0g: (27)

From the de nition of Poisson brackets

0 .
fH c(l);Q ad%e = 2i( { +

21 2( (1% oD+ (1 %+ 2 n: (28)

Substituting this into 8), we prove ). Then, 1) kads to the involution of R 3 w ith

),

H_':

(0) (0) (0)
fH 7000 4% = fH 70500+ QLFH ;770 19 = O:

Tt is easy to check that the sam e classical 1im it procedure for the second scalar H am iltonian
H @) and for the com ponents of the m atrix Hj;l) in @) leads to the sin ple results: Héf) =

H ere and below we will om it the argum ents of 1, and , which in plies that 1, 12 (X1;2) and
(x )=

10



(0 (1)

H Cl) and H ., = «H C(f): Naturally, the corresponding integrals of m otion coincide too:
Rﬁ) = Rg) and Rl.(if,cl = xR g) : In the next Subsection we shall construct another classical

lim it of H that will also include G rasam anian dynam ical variables in addition to p; and x;;
and this can be interpreted as a SUSY -extension of H c(f) .

4.2. The SUSY extension of classical scalar H am iltonians

Tt is wellknown [B], 8] that the 2D representation of SUSY algebra, reviewed in Sec-
tion 2, can be obtained by the canonical quantization from the classical system with the

Ham iltonian:

Ha=ppi+ @ &)@ &)+ 2@e &) : 7; (29)
where | and ]Z-areGrasananjan anticommuting variables: £ ;; ;9= 0 (= 1;:u5d;
; = 1;2). One can de ne the Poisson bracket on the phase space of the system w ith

classical bosonic and ferm ionic variables 25] as follow s:

QF QG QF G @ @
- iF——G;

FRiGge = —— ——+
o @p; @xI  @xI @p; @ e

such that the canonicalbracketsare fp; ;x40 = 355 £ ;9% = i 5:Thus, theHam iltonian
is Involved in the SUSY algebra:

fO ;Q g9 =1 Huj fHa;Q g =0
w ith classical supercharges
Q1= Dy ;L (@5 )32-; Q2= Dy 32'+(@j )%1

To quantize thism odel, one has to introduce the bosonic operators p; and R4 w ith canonical

A

com m utation relations, and ferm ionic ones a obeying £ Ajg = ~ i3 . At this stage,

J
it is convenient to introduce the ferm ionic operators Aj = ( 2) Y™ iAjz-) w ith anticom —
m utation re]aijonszI ;Ajg= ~ 45 and fAi ;Ajg= fAI ;A;Tg= 0. These can be treated
as creation/anniilation operators in the system ofd soin 1=2 ferm ions. T hus, the quantum

counterpart of the Ham iltonian (29) - the Superham iltonian — in temm s of these operators

takes the form :

AN /\+/\

H = "’Z@j@j+ [(@Qy )@ ) ~(@50y )]+ 2(@:@5 ) |

g e

11



A

N\ p_ A\ N\
Together with the quantum supercharges O = i( 2) Y@@' i0?)= ( B+ (@5 )
this generates the algebra (). To reproduce the m atrix form (@A) — Q) one should choose

the m atrix representation for the creation and annihilation operators ", . Ford= 2, these

J
operatorsare 4 4 m atrices, and a possible choice is as follow s [H]: AI = ~2(E,; Eug),
"= MR+ Byy)and Aj = (A;. )Y (herem atricesE, , arede nedas Eqy 5 )k minj)-
T hus, we have obtained a m atrix realization of two-din ensionalSUSY QM (@) - @) by m eans
of the canonical quantization of a certain classicalm odel 29).

One can see that in this representation H hasa block-diagonal structure. T he origin of
this feature of them odel is the conservation of the ferm ion num ber [HA ;NA 1= 0,with ferm ion
num ber operator N = Ajf Aj . T herefore, each com ponent of the Superham iltonian acts in a
Space of states w ith a xed ferm ion num ber.

In ourcased = 2, this structure is rather sin ple. Let usde ne a basis In the state space:
the vacuum 0> , which is anntilated by , , and the excited states 510> = ~ 277 90> ;
P>=~ 2 Po>;1>= ~ 17 7 P0O>  (the ~-dependent m ultipliers provide the proper
nom alization of the state vectors: <mnjun>= 1,8m ;n = 0;1). Thus H ) acts in one-
din ensional space with a ferm fon number of 0 and a single basis elem ent 0> ; or H @,
the farm don number is 2 and the basis elem ent is jl1> . The Ham iltonian Hjll) acts in
tw o-din ensional state space £P1> ;710> g; where the farm ion number is 1.

T he conclusion to bedrawn from thisderivation isas follow s. H aving the classical system
w ith H C(S) = pyps + (@5 )(@y ), one can construct its SUSY extension of the form (9). This
classical SUSY extension can be quantized canonically to obtain the quantum Superham il-
tonian (30), the original H c((f) being the classical 1im it of H ©) —the st scalar com ponent
of the quantum Superham iltonian. In our case, H C(f) was Integrable (see previous Subsec—
tion ), and we shallexplicitly nd the integralofm otion R ., for its quantum SU SY -extension
(Superham iltonian). An analogous problem was investigated by altemative m ethods in [26],

but for a much m ore narrow class of m odels (am enable to ssparation of variables).

4 3. Integrals of m otion for the quantum and classical SUSY ex-—

tensions

W e start from construction of the quantum integralofm otion R forthe Superham iltonian
30): i ;K ]1= 0; ie. of conserved operatorsR P for each com ponent of the Superham ilto—

12



nian:

BOR=0; H®R®)=0; (31)

H (1);R(l)]: O; (32)

(note that the last comm utator is the m atrix one). T he explicit expression for R ©) can be
obtained from (@) and ({I3):

RY = q Uyqg g Uniq : (33)
One can obtain R ¥ from R by the substitutionsq, ! g ande ! @ (shoeH ©
tums to H @) after the substitution (x) ! (%)):

R® = q Uyqg q Uniq : (34)

W ith respect toR ), the form of intertw ining relations (@) tellsushow tobuild this sym m etry
operator explicitly. One can check that the follow Ing m atrix operator of sixth order in
derivatives
R; =g R ; (35)

satis esEq.(G]).

It is clear from them aterdalof the previous Subsection that know ledgeofR ¥; (i= 0;1;2)
provides a sym m etry operatorRA for the whole block-diagonal Superham iltonian H : In order
to construct an allsector expression fork :

RA — R(O)P (0) + R(Z)P (2) + RE)PJ‘S); (36)

we introduce the corresponding profction operators P % (i = 0;1;2) onto subspaces w ith
de nite form jon num bers. The scalar profctors P (9 and P ) give unity when acting on
P0> and Jl1> ; respectively, and give zero otherw ise. T he com ponents ij(l) (i;k = 1;2) of
the 2 2m atrix profctor operators P ) transform the k  th com ponent of the state vector
into its i th com ponent® and are zero on other com ponents of the state vector. O ne can

check directly that an explicit form of these operators P leads to:

S 0)_, 27~ N N Nt (2), 2™ M NN M) 2™ A A N
R = R 12 1 2 R 1 2 1 2 Rll 1 2 1 2
L) 27~ M MA L _ 1M+ n L 1M N
Ry~ 1 2 1 2+tRp~ " 1 o +Ry~ 7o 1 (37)

XBy de nition, "the rst com ponent" is J.0> ; and "the second com ponent" is P1> .
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where R ¥ are given by (Z3) - (33). Naturally, (37) can be sin pli ed by em ploying anti-
com m utation relations for Ai . One should not be confused by the presence of the negative
pow ers of the P Janck constant in Eq.{31) since they disappear In allm atrix elan ents fork .

Let us prove straightforwardly that the K constructed commutes with H . The Super—

ham iltonian can be presented sin ilarly to (34):

1)

1,

H=HPp@+g@p@4g ;
ik

where H @ are given by Egs.(d). By de nition P @;p @ 1= p';p @)1= P ;p 1= 0,
and therefore, due to (Z1l), we have:

A L5 1) o L5 @)
H/R]=H5 Py RGPk
Em plying the explicit orm (34) of P ) and Eq.(3A)), one can see that the com m utator in
the rhs vanishes, com pleting our proof.
From expression (31), its classical lin it R ; can be constructed by m eans of the substi-

tution ~ 172 Aj ! ; for ferm Jonic operators. Finally, the total classical integral of m otion
reads:
o, 1 _ ) 12 12y, 1w 1) 11 2 2
Ra = Ry + E(Rllcl Royall 11 2 o) §(R21cl Ryl 2+ 1 2)+
i W\, 2 1. 1 2 3 1) ©y 1 2 1 2
+§(R12cl+ Ryad 1 2+ 1 20+ Rygg+ Ry 2Ry 1 1 5 27 (38)
w here its com ponents are:
0) 2) 2 5
Ra Ry =B B+ & 5 2. F2(.+ o ) ;
1 P
1) (0)
Rija = pf+ f+§(f+ 2)+2 2 . R,'7
1 j o
1 0
Ry, = pi+ 2+ S 22y 22, R (39)
S I 1 . 1 o),
Rigw = B+ l+19_§(++ ) 1P, + 2+19—§(+ ) R
R : 1 . 1 R ©.
2 = It 2+19—§(+ ) o + 1+19—§(++ ) Rt
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5. The ipped potentials and the classical H am ilton-

Jacobi equation

Tn this Section we shallestablish linksbetween the H am itton-Jacobiequations of C lassical
M echanics and the equation for the superpotential. Starting from Eq.{Z]l), one can see that
the condition for the classical H am iltonian

Ha=p+ V&)
to be supersym m etric w ith superpotential (x) takes the fom :
V (%)= : (40)

@Xl @Xl

O n the other hand, for the H am iltonian h = pf + U (%) w ith potentialU (%) and the classical

action functional S, the well known H am ilton-Jacobi equation [24] reads:
@s @s @s @s
T here being no explicit dependence on tim e in h;, one looks for its solutions of the form

; 1X1 X027 x 0: 41
@Xll@le @Xd, 1727 d) ( )

S (t;x1;%X0; apE W (X1;%5; 4}x Et, and the tim e-independent H am ilton-Jacobi
equation becom es:
E = (@QW )+ U (x); (42)

whereW (x1;X,; qJ3s usually referred to as the H am ilton characteristic function. Solu-
tions of () in the case E = 0 are obviously connected w ith those of {#0):

()= W (x): (43)

Eq.@), with zero energy, can altematively be thought of as a condition for the " ipped"
classical potentialV = U to be supersymm etric, ie. V should satisfy (40),with and W
related by {43). Thus,we nd

W (x1;%2)= i[ 1(x1)+ 2x2)+ 4 (x4)+ (x )]

as the Ham ilton characteristic function of the system . The system of equations of m otion

forE =0
Q@w 1 1
X, = —= 1 1+ P= .+ Pz
@x; 2 2
@w ) 1 1
X = —= 1 +P= ., P= (44)
@x, 2 2



is not am enable to ssparation of variables and in general has (non-physical) com plex soli-
tions. One may see that system (44) becom es real, and bona de solutions exist for the
speci ¢ com plexi cation of the PoschkTeller m odel (23): nam ely, w ith purely in aginary

Tn contrast to the com plexi cation of two-dim ensional M orse potential in [28], this one is
PT —-nvariant.

Analogous classical system s with " ipped"” potentials were investigated in [26] for the
case ofd = 2 Integrable m odels of the Liouville type. For these systam s the H am itton-Jacobi
equations were ssparable in elliptic, polar, parabolic and C artesian coordinates. T he struc—
ture of related supersym m etric m odels (also w ith separation of vardiables) in the quantum
dom ain hasbeen investigated in [19]via canonicalquantization. In particular, it was shown
that there are two essentially di erent supersym m etric extensions (two di erent superpoten—
tials) for a given separable classical solution of the H am ilton-Jacobiequation. In the present
paper our strategy is just the opposite. Nam ely, starting from scalar quantum d = 2 sys-
tem s which do not allow for ssgparation of variables, but do have non-trivial sym m etry
operators, we construct their quantum SU SY -extension. Then, we describe corresponding
classical SU SY —extended system s and their integrals of m otion. Finally, the link between
this kind of classical system and the Ham ilton-Jacobi approach for related system s w ith
" Ppped" potential provides the integrability of these " Ipped" systam s too. T he necessary
explicit expressions for integrals of m otion can be obtained from (38), (39) by the substi-
tution ! i , which is equivalent to [43). Tt should be rem arked that (analogously to
[19]) besides an arbitrary comm on sign in {£3) there is the additional non-unigqueness of the
superpotential for this class of m odel. Indeed, equation {40) has two independent solutions
for xed original classical potential: (x¢) and ~(x): To prove this statem ent, one has to
check that (@, > = (@~ Pr = 1+ L+ . + and ~= 1+ . (see (ID))
due to the nonlinear equation {I4).
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