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W eproposea new way to build networksofdefects.Theidea takesadvantageofthedeform ation

procedure recently em ployed to describe defect structures, which we use to construct networks,

spread from sm allrudim entary networksthatappearin sim ple m odelsofscalar�elds.

PACS num bers:11.10.Lm ,11.27.+ d,98.80.Cq

Networksareofgreatinterestin physicsin general.In

high energy physics,networksappearin diversecontexts,

usually in scenarioswhich require the presence oftopo-

logicaldefects,as junctions ofdom ain walls [1],cosm ic

strings [2],and brane tiling [3]. The presence and evo-

lution ofdom ain walls and dom ain wallnetworks have

been investigated in severalways in [4, 5,6],and the

dynam icalevolution ofdom ain wallnetworks in an ex-

panding universe hasbeen recently studied in com puter

sim ulation in Ref.[7].

In the presentLetter we focusattention on kink net-

works,thatis,we dealwith m odels described by scalar

�elds,which develop spontaneoussym m etry breaking of

discretesym m etry [1,6].W e then takeadvantageofthe

deform ation procedureintroduced in [8],and extended to

otherscenariosin [9],to deform a given m odel,described

by a potentialcontaining a rudim entary set ofm inim a,

to get to another m odel,with the potentialgiving rise

to a di�erentsetofm inim a,which m ay replicateperiod-

ically.Asa bonus,the deform ation procedurealso gives

the defectstructuresofthe deform ed m odelin term sof

the defect solutionsofthe originalm odel. Thus,in the

lattice ofm inim a ofthe deform ed m odelwe can nest a

network ofdefectsin a very naturalway.

Thisisthe m ain idea underlying thispaper,in which

we use the deform ation m ethod to investigate two im -

portantpossibilities,onedescribed by a singlerealscalar

�eld, giving rise to linear networks, and the other by

a com plex scalar �eld, giving rise to planar networks.

W efocusm ainly on thegeneration ofkink-likenetworks

described by the deform ed m odels,which are generated

from sim ple m odels, which engender rudim entary net-

works.

Theideaofconstructingnetworksofdefectsisnotnew,

butthenovelty hererelieson theuseofthedeform ation

procedure asa sim ple and naturalway to generate net-

works. The m echanism is powerfuland suggestive,and

fully m otivatesthepresentwork.To m akethereasoning

m athem atically consistentweconsideram odeldescribed

by the Lagrangedensity with a single realscalar�eld �

in the form

L =
1

2
@��@

�
� �

1

2
W

02(�) (1)

The potentialV (�)= (1=2)W 02(�) is given in term s of

the superpotentialW = W (�);with the prim e stand-

ing forthe derivative with respectto the argum ent,e.g.

W 0(�) = dW =d�: In this case, the equation of m o-

tion for static �eld � = �(x) can be reduced to the

�rst-order di�erential equation d�=dx = W 0(�). For

W = � (� � �3=3) we get the �4 m odel,which has the

setofm inim a f� 1;1g.In thiscase,the defectstructure

representskink (tanh(x))oranti-kink (� tanh(x)),with

energy m inim ized to the value E = 4=3:For sim plicity,

we are working with dim ensionless�elds,space-tim e co-

ordinates,m ass and coupling constants,with m ass and

coupling constants set to unit. In the one dim ensional

�eld space, the orbit is a straight line segm ent which

connects the two m inim a. Since the kink or anti-kink

spans the orbit in the positive or negative sense,they

m ay orientthe orbit,leading to orientablenetworks.

W enow usean extension ofthedeform ation procedure

considered in the �rstwork in [9]. The deform ed m odel

isdescribed by

LD =
1

2
@��@

�
� �

1

2
W

02(�) (2)

with the deform ed potentialU (�) given in term softhe

new superpotentialW (�)= W (f(�))=f0(�):Heref(�)is

thedeform ation function,and weconsiderf(�)= sin(�);

with inverse f� 1n (�) = (� 1)nArcsin(�)+ n�;with n =

0;� 1;� 2;:::This givesanother m odel,the sine-G ordon

m odelwith W 0(�) = cos(�):The set ofm inim a is now

given by f(2n � 1)�=2;(2n + 1)�=2g. It form s a lattice

in the entire �eld space,and n = 0 identi�es the cen-

tralsector with m inim a f� �=2;�=2g,n = 1 the sector

f�=2;3�=2g;and n = � 1 thesectorf� 3�=2;� �=2g,etc.

The orbitofthe originalm odelisnow m apped into dis-

tinct orbits ofthe new m odel,giving rise to a speci�c

network,which appearsasa spreading oftheoriginalset

oftwo pointsinto the entire �eld space,the realline in

the presentcase.Thisisillustrated in Fig.1.

The above study allowsthe construction ofa regular

lattice, in which pairs of adjacent m inim a are equally

spaced and connected by kinks and anti-kinks with the

very sam e pro�le and the sam e energy E D = 2:W e can

changeregularity ofthelatticechangingthedeform ation

function. W e take for instance fa(�)= cos(�a);with a

realand positive,a = 1 leading usto a m odelsim ilarto

the form erm odel.Itintroducesthe potential

V (�)=
1

2a2
�
2(1� a)sin2(�a) (3)
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In thiscase,thesetofm inim aisgiven by ��n = � (n�)1=a;

n = 0;1;2;:::;and thedistancebetween consecutivem in-

im a in the lattice increasesfor a < 1 and decreasesfor

a > 1;as we get away from the centralm inim um at

the origin. Thiscase givesanothertiling,forwhich the

distance between m inim a and the corresponding defect

energy vary in a niceway,controlled by theparam etera:

Theenergy fora = 2=3 in thesectorlabeled by n isnow

E
2=3

D
= (9=4)(2n + 1)�;which increaseslinearly with n:

See [10]forfurtherdetails.

Figure1:Plotofthem inim a oftheoriginaland deform ed po-

tentials,showing how thedeform ation function projectstopo-

logicalsectorsin the two m odels.

Let us now m ove to the plane, considering another

m odel, described by a single com plex �eld, �(x;t) =

�1(x;t)+ i�2(x;t);written in term softhetwo real�elds

�1(x;t) and �2(x;t):The speci�c m odelwhich we con-

siderisdescribed by the Lagrangedensity

L =
1

2
@��@

�
� �

1

2
W

0(�)W 0(�) (4)

wherethebarstandsforcom plex conjugation.W espec-

ify them odelchoosingW (�)astheholom orphicfunction

W (�)= � �
1

N + 1
�
N + 1 (5)

Thisisthe W ess-Zum ino m odel.Itwasinvestigated be-

fore in [11,12,13]. The case with N = 3 is interesting

and illustrative:thevacua m anifold hasthethreepoints

��k = exp(2�i(k � 1)=3);with k = 1;2;3;which depict

an equilateraltriangle in the �eld plane.And the static

solutionssatisfythe�rst-orderordinarydi�erentialequa-

tion

d�

dx
= e

i�
W 0(�)= e

i�(1� �
3(x)) (6)

together with the accom panying com plex conjugate,

where ei� 2 S
1 is a phase. W e can write W �(�) =

e� i�W (�) to get d(W � � W �) = 0:This im plies that

the kink orbitsarisewhen the im aginary partofthe su-

perpotentialisconstant

Im
�
e
� i�

�
�(x)� �

4(x)=4
��
= const (7)

As the kink orbits connect m inim a of the potential,

this constantm ustalso be equalto the value ofIm W �

at those m inim a, which are the roots of unity. This

m eansthatsin(2(k � 1)�=3� �)= constant:O fcourse,

this constant value should be the sam e at the two dif-

ferent m inim a connected by the orbit. Then we have

Im W � (kj)(�(k))= Im W � (kj)(�(j));and so

�
(kj) = � arcsin(cos(�(k + j� 2)=3)); k > j (8)

Notethat�(jk) = �(kj) + � ifj< k.

W e can also use the �rst-orderequationsto obtain

ds

dx
= jW

0(�(x))j
2
=
�
�(1� �

3(x))
�
�2 (9)

where s standsforthe \length" on the kink orbits(7){

see Ref.[13]. The kink pro�lesare then obtained by in-

vertingtheserelationsbetween therealpartofthesuper-

potentialand s:The energy ofthe static con�gurations

isE = (3=2)jsin((k � j)�=3)j:

W e now turn attention to the deform ation procedure.

W e follow the second work in [9]. It is interesting to

expressthedeform ed system in term sofanothercom plex

�eld,�(x;t)= �1(x;t)+ i�2(x;t);related to the original

one by m eansofa holom orphic function f = f(�) such

that

� = f(�)= f1(�1;�2)+ if2(�1;�2) (10a)

@f1

@�1
=

@f2

@�2
;

@f1

@�2
= �

@f2

@�1
(10b)

Thedeform ed Lagrangedensity hasthe form

LD =
1

2
@��@

�
� �

V (f(�);f(�))

f0(�)f0(�)
(11)

The deform ed m odelLD can be de�ned by the new su-

perpotential

W
0(�)=

W 0(f(�))

f0(�)
(12)

In thiscase,the \deform ed" �rst-orderequationsare

d�

dx
= e

i�
W 0(�);

d��

dx
= e

� i�
W

0(�) (13)

The defect solutions for this system are obtained from

the solutions of(6) by sim ply taking the inverse ofthe

deform ation function: �K (x) = f� 1(�K (x)). Thus,we

can establish thefollowingrelation between thedeform ed

and originalequations:if�K (x)isa kink-likesolution of

the originalm odel,wehavethat

Im W (�K (x))= const; ReW (�K (x))= s (14)

and then �K (x)= f� 1(�K (x))iskink-likesolution ofthe

deform ed m odel,obeying

Im W (f� 1(�K (x)))= const; ReW (f� 1(�K (x)))= �

(15)

where� isde�ned by

� =

Z

jW
0
�
f
� 1(�K (x))

�
j
2
dx (16)

Although the m ethod is general,we now specify the

deform ed m odelchoosing f(�)= W (�):Thisconstrains

the function f(�)to obey the equation

f
0(�)f0(�)=

q

2V (f(�);f(�)) (17)
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A function f satisfyingthiscondition providesapotential

U (�;�)forthe new m odelwhich is wellde�ned (�nite)

atthe criticalpointsoff(�);e.g.the zerosoff0(�).As

a bonus,theprocedureleadsto a very sim pleexpression

forthe deform ed superpotential. W e change � for f(�)

in the generalexpression (5)to getthe potential

V =
1

2
(1� f

N (�))(1� fN (�)) (18)

Asstated in (17),we can then choose

f
02(�)= (� 1)N (1� f

N (�)) (19)

Thesolution ofthisequation solvesthegeneralproblem .

W e illustrate the generalresultswith N = 3:Here we

have

f
02(�)= f

3(�)� 1 (20)

The solution is the equianharm onic case ofthe W eier-

strassP function

W (�)= f(�)= 4
1

3 P (4�
1

3 �;0;1) (21)

The W eierstrassP function isde�ned asthe solution of

the O DE

(P 0(z))2 = 4P 3(z)� g2P (z)� g3 (22)

The elliptic function which solves the di�erentialequa-

tion aboveisdoubly periodic function de�ned asthe se-

ries

P (z)=
1

z2
+
X

m ;n

�
1

(z� A(m ;n))2
�

1

A(m ;n)2

�

(23)

where A(m ;n) = 2m !1 + 2n!3; with m ;n 2 Z and

m 2 + n2 6= 0:Therefore,the deform ation function is,up

to a factor,the W eierstrass P function with invariants

g2 = 0 and g3 = 1,and we denote it by P01(z). This

function ism erom orphic,with an in�nitenum berofpoles

congruentto theirreduciblepoleofordertwo in thefun-

dam entalperiod parallelogram (FPP).

Here we getW �(�)= e� i� 4
1

3 P01(4
�

1

3 �);and so the

deform ed potentialcan be written as

U (�;�)=
1

2
P
0

01(4
�

1

3 �)P01
0(4�

1

3 �) (24)

The potentialspansthe plane replicating the triangular

structureasshown in Fig.2,and in Fig.3.

Thenew potentialisdoubly periodicwith an structure

inherited from the \half-periods" ofP . The setofzeros

ofthe potentialin the FPP has three elem ents �(1) =

!1 = !2(1=2 � i
p
3=2),�(2) = !3 = !2(1=2 + i

p
3=2),

and �(3) = !2 = 4
1

3 �3(1=3)=4�. The setofallthe zeros

ofU form a latticewhich tiletheentire�eld plane,aswe

show in Fig.3.

The potentialobtained from the deform ation proce-

dure has the sam e num ber ofzeros in the FPP as the
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Figure 2: The case N = 3;showing the potential U (�;��)

(upper panel) and its m echanicalanalogue �U (�; ��) near a
pole(lowerpanel).Notethatin thelowerpanelthezerosare

now m axim a.

originalm odelin thewhole�eld space.Besides,onepole

ofsixth order arises at the origin due to the m erom or-

phic structure ofP 0

01(4
�

1

3 �);see Fig.3. However,this

structure is in�nitely repeated in the deform ed m odel,

according to the two periods !1 and !3 determ ining

the m odular param eter � = !3=!1 = � 1=2+ i
p
3=2 of

the Riem ann surface ofgenus1 associated with this P -

W eierstrassfunction.

W e now com pare the P -kink orbitswith the orbitsof

the originalm odel.If�K (x)isa solution of(7)and (9)

then �K (x)= 4
1

3 P
� 1

01
(4�

1

3 �K (x))solves

Im e
� i� 4

1

3 P01(4
�

1

3 �
K (x)) = const

Ree� i� 4
1

3 P01(4
�

1

3 �
K (x)) = � (25)

where

� =

Z �
�
�P

0

01(4
�

1

3 �
K (x))

�
�
�

2

dx (26)

Sincethedeform ation function isaconform altransfor-

m ation,anglesare preserved,and the sam e values of�

asin the non deform ed case give the kink orbits. There

arethreetypes,and herewejustinform thatthenearest

neighbortype (12),(23)and (31)m inim a areconnected

by orbitswhich follow speci�c sequences{ see Ref.[14].

W e notice that the kink orbits go around,circum vent-

ing the singularitieswhich stand atthe centerofcircles

depicted by the orbitsthem selves. Like in the case ofa

singlerealscalar�eld,we can also break the lattice reg-

ularity in this case { see [14]for further details on this

issue.

W efurtherillustratetheproblem with N = 4:Herewe
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Figure 3:Thecase N = 3;showing them inim a (�)and poles
(o) of the potential(upper panel,left) and the kink orbits

in the FPP (upperpanel,right). The lower panelshows the

latticeofm inim a and polesofthedeform ed potentialand the

accom panying network ofkink orbits.

haveW (�)= � � �5=5:Thus,the potentialis

V (�;�)=
1

2
(1� �

4)(1� �
4) (27)

W e write� = f(�)to show thatthespecialdeform ation

function m ustsatisfy

f
0(�)f0(�)=

q

(1� f4(�))(1� f4(�)) (28)

Asbefore,wechoosethe holom orphicsolution of

f
02(�)= 1� f

4(�) (29)

The solution is the elliptic sine ofparam eter k2 = � 1,

the G auss’s sinus lem niscaticus f(�) = sn(�;� 1):The

new superpotentialis W �(�) = e� i�sn(�;� 1) and the

deform ed potentialthen reads

U (�;�)=
1

2
jcn(�;� 1)j2 � jdn(�;� 1)j2 (30)

The new potentialis doubly periodic with an structure

inherited from the\quarter-periods" K (� 1)= !1=4 and

iK (2) = !2=4 of the twelve Jacobi elliptic functions.

Here K (� 1) � 1:31103 is the com plete elliptic inte-

gral of the �rst type, a quarter of the length of the

lem niscate curve in �eld space: (�21 + �22)
2 = �21 � �22:

K (2) � 1:31103� i1:31103 is the com plem entary com -

plete elliptic integralofK (� 1).

The set of zeros of the potential in the FPP are

�(1) = !1=4;�
(2) = i!1=4;�

(3) = � !1=4;�
(4) = � i!1=4;

whereasthe setofallthe zerosofU form a quadrangu-

larlattice in the whole con�guration space. This is de-

picted in Fig.4 and willbe fully considered in Ref.[14].

Di�erently from the form er case,however,here the or-

bitsm ay connectthe m inim a in two distinctways:one,

with curved lines,in thesequence(1;2),(2;3),(3;4),and

(4;1),and the other with straightline segm ents,in the

sequence(1;3)and (2;4){ see[14]forfurtherdetailson

thisissue.

-3K -K K 3K

-3iK

-iK

iK

3iK

Figure4:ThecaseN = 4;showing thesetofm inim a (�)and
poles (o) of the deform ed potential and the accom panying

network ofkink orbits.

In sum m ary,in thiswork we haveused the procedure

developed in [8,9]to deform a given m odelin a way such

that its set ofm inim a could be replicated in the entire

�eld space. The idea wasdeveloped in the realline,for

the case ofa real�eld,and in the plane,forthe case of

a com plex �eld. Since the set ofm inim a are connected

by algebraic orbits describing defect structures in �eld

space,we have also been able to replicate the algebraic

orbits in the entire �eld space ofthe deform ed m odel,

naturally building networksofdefects,which are spread

from rudim entary networksinto the entire�eld space.

A naturalextension ofthisworkconcernstheconstruc-

tion ofirregularlatticesand networksin theplane,in the

case ofa com plex �eld,which we willstudy in ournext

work, now under preparation [14]. Another extension

concernstheuseofthreereal�elds,to investigateifitis

possible to tile the space in a way sim ilarto the case of

planarnetworkshereconsidered.

W e recallthat a kink-like defect in generalsplits the

spaceinto two distinctregions,so wecould also think as

in [1],using two spatialdim ensions,to seehow thekinks

orbits that we have just obtained could tile the plane

with regularand/orirregularpolygons,with triplejunc-

tionsfor N = 3,and with quartic junctions forN = 4.

Another interesting issue could address the sam e prob-

lem , but now em bedding the scalar �elds in a curved

space-tim e,following the lines ofRef.[4]. This would

lead usto anotherroute,in which wecould try to under-

stand how thenetworkshereintroduced would changein

a curved background. W e can also think ofm aking the

space-tim e dynam ically curved,to see how the dom ain

wallnetworkscould follow the evolution investigated in

[7]. These and other related issues are presently under

consideration,and wehopeto reporton thethem in the

nearfuture.
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