C onstructing netw orks of defects w ith scalar elds

V .I. A fonso ${ }^{\text {a }}$, D. Bazeia ${ }^{\text {a }}$, M A. G onzalez Leon ${ }^{\text {b }}$, L. Losano ${ }^{\text {a }}$, and J. M ateos G uilarte ${ }^{c}$
${ }^{a}$ D epartam ento de F sica, Universidade Federal da Para ba, B razil
${ }^{\text {b }}$ D epartam ento de M atem atica A plicada, U niversidad de Salam anca, Spain
${ }^{c}$ D epartam ento de F sica and IUFFYM , U niversidad de Salam anca, Spain

Abstract

W e propose a new way to build netw orks of defects. T he idea takes advantage of the deform ation procedure recently em ployed to describe defect structures, which we use to construct netw orks, spread from sm all rudim entary netw orks that appear in sim ple m odels of scalar elds.

PACS num bers: 11.10.Lm, 11.27.+ d, 98.80 .C q

N etw orks are of great interest in physics in general. In high energy physics, netw orks appear in diverse contexts, usually in scenarios which require the presence of topological defects, as junctions of dom ain walls [1], cosm ic strings [2], and brane tiling [3]. The presence and evolution of dom ain walls and dom ain wall netw orks have been investigated in several ways in [4, 5, 6], and the dynam ical evolution of dom ain wall netw orks in an expanding universe has been recently studied in com puter sim ulation in Ref. [7].

In the present Letter we focus attention on kink netw orks, that is, we deal w ith m odels described by scalar elds, which develop spontaneous sym m etry breaking of discrete sym m etry [1, 6]. W e then take advantage of the deform ation procedure introduced in [8], and extended to other scenarios in [9], to deform a given m odel, described by a potential containing a rudim entary set of m inim a, to get to another m odel, w ith the potential giving rise to a di erent set ofm inim a, which m ay replicate periodically. A s a bonus, the deform ation procedure also gives the defect structures of the deform ed m odel in term s of the defect solutions of the original m odel. Thus, in the lattice of m inim a of the deform ed m odel we can nest a netw ork of defects in a very naturalway.
T his is the m ain idea underlying this paper, in which we use the deform ation m ethod to investigate two im portant possibilities, one described by a single realscalar eld, giving rise to linear netw orks, and the other by a com plex scalar eld, giving rise to planar netw orks. W e focus m ainly on the generation of kink-like netw orks described by the deform ed m odels, which are generated from sim ple models, which engender rudim entary networks.

The idea of constructing netw orks ofdefects is not new, but the novelty here relies on the use of the deform ation procedure as a sim ple and naturalway to generate networks. The m echanism is powerful and suggestive, and fully m otivates the present work. To m ake the reasoning m athem atically consistent we consider a m odeldescribed by the Lagrange density w ith a single real scalar eld in the form

$$
\begin{equation*}
L=\frac{1}{2} @ \quad @ \quad \frac{1}{2} W^{\propto}(\quad) \tag{1}
\end{equation*}
$$

The potential $V()=(1=2) W^{\infty}(\quad)$ is given in term s of the supenpotential $W=W$ (); w ith the prime stand-
ing for the derivative w ith respect to the argum ent, e.g. $W^{0}()=d W=d$: In this case, the equation of $m o-$ tion for static eld $=(x)$ can be reduced to the rst-order di erential equation $d=d x=W^{0}()$. For $W=\quad\left(\quad{ }^{3}=3\right)$ we get the ${ }^{4} \mathrm{~m}$ odel, which has the set of m inim a $f 1 ; 1 g$. In this case, the defect structure represents kink (tanh $(x))$ or anti-kink ($\tanh (x))$, with energy m inim ized to the value $\mathrm{E}=4=3$: For sim plicity, we are working w ith dim ensionless elds, space-tim e coordinates, m ass and coupling constants, w ith m ass and coupling constants set to unit. In the one dim ensional eld space, the orbit is a straight line segm ent which connects the two minim a. Since the kink or anti-kink spans the onbit in the positive or negative sense, they m ay orient the orbit, leading to orientable netw orks.

W e now use an extension of the deform ation procedure considered in the rst work in [9]. The deform ed m odel is described by

$$
\begin{equation*}
L_{D}=\frac{1}{2} @ \quad @ \quad \frac{1}{2} W^{\circledR}(\quad) \tag{2}
\end{equation*}
$$

w ith the deform ed potential $U()$ given in term s of the new superpotentialW () = W ($\mathrm{f}(\mathrm{l})=\mathrm{f}^{0}(\mathrm{r})$: $\operatorname{Heref}(\mathrm{f})$ is the deform ation function, and we consider $f()=\sin ()$; with inverse $\mathrm{f}_{\mathrm{n}}{ }^{1}(\mathrm{l})=(1)^{\mathrm{n}} \mathrm{A} \operatorname{rcsin}(\mathrm{r})+\mathrm{n}$; w ith $\mathrm{n}=$ 0; 1; 2;::: This gives another m odel, the sine-G ordon m odel w ith $W^{0}()=\cos ()$: The set of m inim a is now given by $f(2 n \quad 1)=2 ;(2 n+1)=2 g$. It form s a lattice in the entire eld space, and $\mathrm{n}=0$ identi es the central sector w ith m inim a $f=2$; $=2 g, n=1$ the sector $\mathrm{f}=2 ; 3=2 \mathrm{~g}$; and $\mathrm{n}=1$ the sector $\mathrm{f} 3=2$; $=2 \mathrm{~g}$, etc. T he onbit of the originalm odel is now m apped into distinct onbits of the new m odel, giving rise to a speci c netw ork, which appears as a spreading of the original set of two points into the entire eld space, the real line in the present case. This is illustrated in Fig. 1.

T he above study allows the construction of a regular lattice, in which pairs of adjacent m inim a are equally spaced and connected by kinks and anti-kinks w ith the very sam e pro le and the sam e energy $E_{D}=2: W$ e can change regularity of the lattice changing the deform ation function. W e take for instance $f_{a}()=\cos \left({ }^{a}\right)$; w ith a real and positive, $\mathrm{a}=1$ leading us to a m odel sim ilar to the form er m odel. It introduces the potential

$$
\begin{equation*}
V(\quad)={\frac{1}{2 a^{2}}}^{2(1 \quad a)} \sin ^{2}\left({ }^{a}\right) \tag{3}
\end{equation*}
$$

In this case, the set ofm inim a is given by $n=(n \quad)^{1=a}$; $\mathrm{n}=0 ; 1 ; 2 ;:: ;$ and the distance betw een consecutive m inim a in the lattice increases for $a<1$ and decreases for a > 1; as we get aw ay from the central minim um at the origin. This case gives another tiling, for which the distance between m inim a and the corresponding defect energy vary in a nice way, controlled by the param eter a: T he energy for $a=2=3$ in the sector labeled by n is now $\mathrm{E}_{\mathrm{D}}^{2=3}=(9=4)(2 \mathrm{n}+1)$; which increases linearly w ith n : See [10] for further details.

Figure 1: P lot of them in im a of the original and deform ed potentials, show ing how the deform ation function pro jects topological sectors in the tw o m odels.

Let us now m ove to the plane, considering another model, described by a single com plex eld, ($x ; t$) $=$ $1(x ; t)+i_{2}(x ; t) ; w$ ritten in term s of the two real elds $1(x ; t)$ and $2(x ; t)$: The speci c m odel which we consider is described by the Lagrange density

$$
\begin{equation*}
L=\frac{1}{2} @ @-\frac{1}{2} W^{0}() \overline{W^{0}(\quad)} \tag{4}
\end{equation*}
$$

where the bar stands for com plex con jugation. W e specify them odelchoosing W () as the holom onphic function

$$
\begin{equation*}
W(\quad)=\frac{1}{N+1}^{N+1} \tag{5}
\end{equation*}
$$

T his is the W ess-Zum ino m odel. It was investigated before in [11, 12, 13]. The case w ith $N=3$ is interesting and illustrative: the vacua m anifold has the three points $k=\exp (2 \quad i(k \quad 1)=3) ;$ with $k=1 ; 2 ; 3$; which depict an equilateral triangle in the eld plane. A nd the static solutions satisfy the rst-order ordinary di erentialequation

$$
\begin{equation*}
\frac{d}{d x}=e^{i} \overline{W^{0}()}=e^{i}\left(1 \quad l^{-3}(x)\right) \tag{6}
\end{equation*}
$$

together w ith the accom panying com plex conjugate, where $e^{i} 2 S^{1}$ is a phase. We can write W () = $e^{i} W()$ to get $d(W \quad \bar{W})=0$: This implies that the kink onbits arise when the im aginary part of the superpotential is constant

$$
\begin{equation*}
\operatorname{Im} e^{i} \quad(x) \quad{ }^{4}(x)=4=\text { const } \tag{7}
\end{equation*}
$$

As the kink onbits connect minim a of the potential, this constant m ust also be equal to the value of Im W at those m inim a, which are the roots of unity. This m eans that $\sin \left(\begin{array}{ll}\left.\left(\begin{array}{ll}k & 1\end{array}\right)=3 \quad\right)=\text { constant: } O f \text { course, }\end{array}\right.$ this constant value should be the sam e at the two different m inim a connected by the onbit. Then we have $\operatorname{Im} W_{\left(\mathrm{kj}_{j}\right)}\left(^{(\mathrm{k})}\right)=\operatorname{Im} \mathrm{W}_{\text {(kj) }}\left(^{(\mathrm{j})}\right)$; and so

$$
\begin{equation*}
(k j)=\arcsin (\cos ((k+j 2)=3)) ; k>j \tag{8}
\end{equation*}
$$

N ote that ${ }^{(j k)}={ }^{(k j)}+\quad$ if $j<k$.
W e can also use the rst-order equations to obtain

$$
\begin{equation*}
\frac{d s}{d x}=j j^{0}((x)) j^{2}=\left(1 \quad{ }^{3}(x)\right)^{2} \tag{9}
\end{equation*}
$$

where s stands for the \backslash length" on the kink onbits 7) \{ see R ef. [13]. The kink pro les are then obtained by inverting these relations betw een the realpart of the superpotential and s: The energy of the static con gurations is $E=(3=2) \sin \left(\left(\begin{array}{ll}k & j\end{array}\right)=3\right) j$:

W e now tum attention to the deform ation procedure. We follow the second work in [9]. It is interesting to express the deform ed system in term sof another com plex eld, $(x ; t)=1(x ; t)+i_{2}(x ; t) ;$ related to the original one by m eans of a holom onphic function $f=f()$ such that

$$
\begin{align*}
&=f()=f_{1}(1 ; 2)+i f_{2}(1 ; 2) \tag{10a}\\
& \frac{@ f_{1}}{@ 1} \tag{10b}
\end{align*}=\frac{@ f_{2}}{@ 2} ; \quad \frac{@ f_{1}}{@ 2}=\frac{@ f_{2}}{@ 1} .
$$

The deform ed Lagrange density has the form

$$
\begin{equation*}
L_{D}=\frac{1}{2} @ @^{-} \frac{V(£() ; \overline{£()})}{f^{0}\left(\overline{f^{0}()}\right.} \tag{11}
\end{equation*}
$$

The deform ed model L_{D} can be de ned by the new superpotential

$$
\begin{equation*}
W^{0}(\quad)=\frac{W^{0}(f())}{\overline{£^{0}()}} \tag{12}
\end{equation*}
$$

In this case, the \deform ed" rst-order equations are

$$
\begin{equation*}
\frac{d}{d x}=e^{i} \overline{W^{0}()} ; \quad \frac{d}{d x}=e^{i} W^{0}() \tag{13}
\end{equation*}
$$

The defect solutions for this system are obtained from the solutions of (6) by sim ply taking the inverse of the deform ation function: ${ }^{k}(x)=\mathrm{f}^{1}\left({ }^{k}(x)\right)$. Thus, we can establish the follow ing relation betw een the deform ed and originalequations: if ${ }^{K}(x)$ is a kink-like solution of the originalm odel, we have that

$$
\begin{equation*}
\operatorname{Im} W\left({ }^{k}(x)\right)=\text { const; } \operatorname{ReW}\left({ }^{k}(x)\right)=s \tag{14}
\end{equation*}
$$

and then ${ }^{k}(x)=f^{1}\left({ }^{k}(x)\right)$ is kink-like solution of the deform ed m odel, obeying
$\operatorname{Im} W\left(f^{1}\left({ }^{K}(x)\right)\right)=$ const; $\operatorname{ReW}\left(f^{1}\left({ }^{K}(x)\right)\right)=$
where is de ned by

$$
\begin{equation*}
=\quad \mathrm{Z} \mathrm{~J}^{0} \mathrm{f}^{1}\left(\mathrm{~K}^{\mathrm{K}}(\mathrm{x})\right) \mathrm{J}^{\mathrm{J}} \mathrm{dx} \tag{15}
\end{equation*}
$$

A lthough the m ethod is general, we now specify the deform ed m odel choosing $f()=W()$:This constrains the function $f()$ to obey the equation

$$
\begin{equation*}
\mathrm{f}^{0}\left(\overline{) \mathrm{f}^{0}(\mathrm{l}}=\mathrm{q} \overline{2 \mathrm{~V}(\mathrm{f}() ; \overline{f(}))}\right. \tag{17}
\end{equation*}
$$

A function f satisfying this condition provides a potential $\mathrm{U}\left(\right.$ ' $\left.^{-}\right)$for the new m odel which is well de ned (nite) at the critical points of $f()$; e.g. the zeros of $f^{0}()$. A s a bonus, the procedure leads to a very sim ple expression for the deform ed superpotential. W e change for $f($) in the general expression (5) to get the potential

$$
\begin{equation*}
V=\frac{1}{2}\left(1 \quad f^{N}()\right)\left(1 \quad \overline{f^{N}()}\right) \tag{18}
\end{equation*}
$$

A s stated in 17), we can then choose

$$
\begin{equation*}
\mathrm{f}^{02}()=(1)^{\mathbb{N}}\left(1 \quad \mathrm{f}^{\mathrm{N}}(1)\right) \tag{19}
\end{equation*}
$$

T he solution of this equation solves the general problem.
W e illustrate the general results w ith $\mathrm{N}=3$: H ere we have

$$
\begin{equation*}
f^{02}()=f^{3}() \quad 1 \tag{20}
\end{equation*}
$$

The solution is the equianharm onic case of the W eierstrass P function

$$
\begin{equation*}
W()=f()=4^{\frac{1}{3}} P\left(4^{\frac{1}{3}} ; 0 ; 1\right) \tag{21}
\end{equation*}
$$

The W eierstrass P function is de ned as the solution of the ODE

$$
\begin{equation*}
\left(P^{0}(z)\right)^{2}=4 P^{3}(z) \quad g_{2} P(z) \quad g_{3} \tag{22}
\end{equation*}
$$

The elliptic function which solves the di erential equation above is doubly periodic function de ned as the series

$$
\begin{equation*}
P(z)=\frac{1}{z^{2}}+X_{m ; n}^{X} \frac{1}{(z A(m ; n))^{2}} \frac{1}{A(m ; n)^{2}} \tag{23}
\end{equation*}
$$

where $A(m ; n)=2 m!_{1}+2 n!_{3} ;$ with $m ; n 2 \quad Z$ and $m^{2}+n^{2} \boxminus 0$:Therefore, the deform ation function is, up to a factor, the W eierstrass P function w ith invariants $g_{2}=0$ and $g_{3}=1$, and we denote it by $P_{01}(z)$. This function is m erom orphic, w ith an in nite num ber of poles congruent to the irreducible pole of order tw o in the fundam ental period parallelogram (FPP).

Here we get $W \quad(\quad)=e^{i} 4^{\frac{1}{3}} P_{01}\left(4^{\frac{1}{3}}\right)$; and so the deform ed potential can be w ritten as

$$
\begin{equation*}
\mathrm{U}(;)=\frac{1}{2} \mathrm{P}_{01}^{0}\left(4^{\frac{1}{3}}\right) \overline{\mathrm{P}} 01_{0}^{0}\left(4^{\frac{1}{3}}\right) \tag{24}
\end{equation*}
$$

The potential spans the plane replicating the triangular structure as shown in F ig. 2, and in Fig. 3.

The new potential is doubly periodic w ith an structure inherited from the \backslash half-periods" of P. The set of zeros of the potential in the FPP has three elem ents $p_{-}^{(1)}=$ $!_{1}=!_{2}(1=2 \quad i \quad \overline{3}=2), \quad(2)=!_{3}=!_{2}\left(1=2+i^{p} \overline{3}=2\right)$, and ${ }^{(3)}=!_{2}=4^{\frac{1}{3}} \quad{ }^{3}(1=3)=4$. The set of all the zeros of U form a lattice which tile the entire eld plane, aswe show in Fig. 3.

The potential obtained from the deform ation procedure has the sam e num ber of zeros in the FPP as the

Figure 2: The case $N=3$; show ing the potential $U(;)$ (upper panel) and its m echanical analogue $U(;)$ near a pole (low er panel). N ote that in the low er panel the zeros are now maxima.
originalm odel in the whole eld space. Besides, one pole of sixth order arises at the origin due to the m erom orphic structure of $\mathrm{P}_{01}^{0}\left(4^{\frac{1}{3}}\right)$; see F ig. 3. H ow ever, th is structure is in nitely repeated in the deform ed m odel, according to the two periods $!_{1}$ and $!_{3}$ detepr ining the m odular param eter $\quad=!_{3}=!_{1}=1=2+i \overline{3}=2$ of the R iem ann surface of genus 1 associated w ith this P W eierstrass function.

W e now com pare the P kink onbits w ith the onbits of the originalm odel. If ${ }^{K}(x)$ is a solution of 7) and 9) then ${ }^{K}(x)=4^{\frac{1}{3}} P_{01}{ }^{1}\left(4^{\frac{1}{3}}{ }^{K}(x)\right)$ solves

$$
\begin{align*}
& \operatorname{Im} e^{i} 4^{\frac{1}{3}} P_{01}\left(4^{\frac{1}{3}} k(x)\right)=\text { const } \\
& R e e^{i} 4^{\frac{1}{3}} P_{01}\left(4^{\frac{1}{3}} k(x)\right)= \tag{25}
\end{align*}
$$

where

$$
\begin{equation*}
=P_{01}^{0}\left(4^{\frac{1}{3}} K_{(x)}\right)^{2} d x \tag{26}
\end{equation*}
$$

Since the deform ation function is a conform altransform ation, angles are preserved, and the sam e values of as in the non deform ed case give the kink onbits. There are three types, and here we just inform that the nearest neighbor type (12), (23) and (31) m in im a are connected by orbits which follow speci c sequences \{ see Ref. [14]. W e notice that the kink onbits go around, circum venting the singularities which stand at the center of circles depicted by the orbits them selves. Like in the case of a single real scalar eld, we can also break the lattice regularity in this case \{ see [14] for further details on this issue.

We further illustrate the problem w ith $N=4: H$ ere $w e$

Figure 3: The case $N=3$; show ing the m inim a () and poles (o) of the potential (upper panel, left) and the kink onbits in the FPP (upper panel, right). T he lower panel show s the lattice ofm in im a and poles of the deform ed potential and the accom panying netw ork of kink onbits.
have $W()={ }^{5}=5$: Thus, the potential is

$$
\begin{equation*}
V(;)=\frac{1}{2}\left(1 r^{4}\right)\left(1 \quad^{-4}\right) \tag{27}
\end{equation*}
$$

W ewrite $=\mathrm{f}(\mathrm{)}$ to show that the special deform ation function m ust satisfy

$$
\begin{equation*}
f^{0}\left(\overline{f^{0}()}=q \overline{\left(1 \quad f^{4}()\right)\left(1 \quad \overline{f^{4}(\quad)}\right)}\right. \tag{28}
\end{equation*}
$$

A s before, we choose the holom onphic solution of

$$
\begin{equation*}
f^{@}()=1 \quad f^{4}() \tag{29}
\end{equation*}
$$

The solution is the elliptic sine of param eter $k^{2}=1$, the G auss's sinus lem niscaticus $f()=\operatorname{sn}(; 1)$: The new superpotential is $W \quad()=e^{i} \operatorname{sn}(; 1)$ and the deform ed potential then reads

$$
\begin{equation*}
\left.\mathrm{U}(;)=\frac{1}{2} \operatorname{jen}(; 1)\right\} \quad \dot{j} \ln (; 1 \nmid j \tag{30}
\end{equation*}
$$

T he new potential is doubly periodic with an structure inherited from the \quarter-periods" $\mathrm{K}(1)=!_{1}=4$ and iK $(2)=!_{2}=4$ of the twelve Jacobi elliptic functions. Here K (1) 1:31103 is the com plete elliptic integral of the rst type, a quarter of the length of the lem niscate curve in eld space: $\left(\begin{array}{c}2 \\ 1\end{array}+\frac{2}{2}\right)^{2}={ }_{1}^{2} \quad{ }_{2}^{2}$: K (2) $\quad 1: 31103$ i1:31103 is the com plem entary com plete elliptic integral of K (1).

The set of zeros of the potential in the FPP are
${ }^{(1)}=!_{1}=4 ;{ }^{(2)}=i!{ }_{1}=4 ;{ }^{(3)}=\quad!_{1}=4 ;{ }^{(4)}=\quad i!{ }_{1}=4$; w hereas the set of all the zeros of U form a quadrangular lattice in the whole con guration space. This is depicted in F ig. 4 and w ill be fully considered in Ref. [14].

Di erently from the form er case, how ever, here the orbits m ay connect the m inim a in two distinct w ays: one, w ith curved lines, in the sequence $(1 ; 2),(2 ; 3),(3 ; 4)$, and $(4 ; 1)$, and the other w ith straight line segm ents, in the sequence $(1 ; 3)$ and $(2 ; 4)$ \{ see [14] for further details on this issue.

Figure 4: The case $N=4$; show ing the set ofm inim a () and poles (o) of the deform ed potential and the accom panying netw ork of kink onbits.

In sum m ary, in this work we have used the procedure developed in [8, [9] to deform a given m odel in a w ay such that its set of m inim a could be replicated in the entire eld space. T he idea w as developed in the real line, for the case of a real eld, and in the plane, for the case of a com plex eld. Since the set of m in im a are connected by algebraic orbits describing defect structures in eld space, we have also been able to replicate the algebraic orbits in the entire eld space of the deform ed model, naturally building netw orks of defects, which are spread from rudim entary netw orks into the entire eld space.

A naturalextension of th is w ork concems the construction of irregular lattices and netw orks in the plane, in the case of a com plex eld, which we w ill study in our next work, now under preparation [14]. A nother extension concems the use of three real elds, to investigate if it is possible to tile the space in a way sim ilar to the case of planar netw orks here considered.

W e recall that a kink-like defect in general splits the space into two distinct regions, so we could also think as in [1], using tw o spatialdim ensions, to see how the kinks onbits that we have just obtained could tile the plane w ith regular and/or irregular polygons, w ith triple junctions for $N=3$, and w ith quartic junctions for $N=4$. A nother interesting issue could address the sam e problem, but now embedding the scalar elds in a curved space-tim e, follow ing the lines of R ef. [4]. This would lead us to another route, in which we could try to understand how the netw orks here introduced would change in a curved background. W e can also think of m aking the space-tim e dynam ically curved, to see how the dom ain wall netw orks could follow the evolution investigated in [7]. These and other related issues are presently under consideration, and we hope to report on the them in the near future.

This work is part of a collaboration which has been
nanced by the B razilian and Spanish govemm ents: VIA, DB and LL thank CAPES,CLAF,CNPq and PRONEXCNPqFAPESQ, and MAGL and JM G thank M in isterio
de Educacion y C iencia, under grant F IS 2006-09417, for partial support.
[1] G .N . G ibbons and P.K. Townsend, Phys. Rev. Lett. 83,1727 (1999); P M. Sa n, Phys. Rev. Lett. 83, 4249 (1999) ; D . B azeia and F A. Brito, Phys. R ev. Lett. 84, 1094 (2000).
[2] C J A. P.M artins, J N .M oore, and E P.S. Shellard, Phys. Rev. Lett. 92, 251601 (2004); E J. C opeland, T N. B. K ibble, and D A. Steer, Phys. Rev. Lett. 97, 021602 (2006).
[3] S. Franco, A . H anany, K D. K ennaw ay, D. Vegh and B. W echt, JHEP 0601, 096 (2006); S. Franco, A. H anany, D. K re , J. Park, A M. U ranga, and D. Vegh, JH EP 0709,075 (2007).
[4] M. C vetic and H H. Soleng, Phys. Rep. 282, 159 (1997).
[5] W H. Press, B S. R yden, and D N. Spergel, A strophys. J. 347, 590 (1989); H. K ubotani, Prog. Theor. Phys. 87, 387 (1992); M . Bucher and D N. Spergel, Phys. Rev.D 60, 043505 (1999); B. C arter, Int. J. Theor. Phys. 44, 1729 (2005); R.A. B attye, B. C arter, E. C hachoua, and A.M oss, Phys. Rev.D 72, 023503 (2005); P.P.A velino, J.C R E. O liveira, and C JA.P.M artins, Phys. Lett. B 610,1 (2005); R.A. Battye and A.M oss, Phys. Rev. D 74,023528 (2006); D.Bazeia, F A.Brito, and L. Losano, Europhys. Lett. 76, 374 (2006).
[6] S M . C arroll, S. H ellem an, and M . Trodden, P hys. R ev . D 61, 065001 (2000); D. Bazeia and F A. Brito, Phys. Rev. D 61, 105019 (2000); 62, $101701(\mathrm{R})$ (2000); M. N aganum a, M. N itta, and N. Sakai, Phys. Rev. D 65, 045016 (2002); D.Tong, Phys.Rev.D 66,025013 (2002); P.Sutcli e, Phys.Rev.D 68,085004 (2003);L.Pogosian
and T.Vachaspati, Phys.Rev.D 67,065012 (2003);N D . A ntunes and T.Vachaspati, Phys. Rev. D 70, 063516 (2004) ; M . Eto, Y . Isozum i, M . N itta, K . O hashi, and N. Sakai, Phys. Rev. D 72, 085004 (2005); D. Bazeia, L.Losano, and R.M enezes, Physica D 208, 236 (2005); M . Eto, Y. Isozum i, M.N itta, K . O hashi, and N. Sakai, J. Phys. A 39, R 315 (2007); M . Eto, T. Fu jim ori, T. N agashim a, M. N itta, K. O hashi, and N. Sakai, Phys. Rev.D 75,045010 (2007).
[7] P.P.A velino, C J A P.M artins, J.M enezes, R .M enezes, and J.C.R E.O liveira, Phys. R ev.D 73, 123519 (2006); 73, 123520 (2006); Phys. Lett. B 647,63 (2007).
[8] D. B azeia, L. Losano, and J M .C. M albouisson, Phys. Rev.D 66,101701(R) (2002).
[9] C A. A Im eida, D . Bazeia, L . Losano, and J M .C. M albouisson, Phys. Rev.D 69, 067702 (2004); V .I.A fonso, D. B azeia, M A. G onzalez Leon, L. Losano, and J. M ateos G uilarte, Phys. R ev. D 76,025010 (2007).
[10] D. Bazeia, L. Losano, JM C. M albouisson, and R. M enezes, Physica D , in press, [arX iv:0708.1740].
[11] P. Fendley, S.D. M athur, C. Vafa, and N P. W amer, Phys. Lett. B 243, 257 (1990).
[12] E R.C.A braham and P K.Townsend,Nucl. Phys.B 351, 313 (1991).
[13] A. A lonso Izquierdo, M A. G onzalez Leon, and J.M ateos G uilarte, Phys. Lett. B 480,373 (2000).
[14] V .I. A fonso, D. B azeia, M A. G onzalez Leon, L . Losano, and J.M ateos G uilarte, to be published.

