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The stability of the kinks of the non-linear S2-sigma model discovered in [1] is discussed from
several points of view. After a direct estimation of the spectra of the second-order fluctuation
operators around topological kinks, first-order field equations are proposed to distinguish between
BPS and non-BPS kinks. The one-loop mass shifts caused by quantum fluctuations around the
topological kinks are computed using the Cahill-Comtet-Glauber formula [2]. The (lack of) stability
of the non-topological kinks is unveiled by application of the Morse index theorem. These kinks are
identified as non-BPS states and the interplay between instability and supersymmetry is explored.
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I. INTRODUCTION

The main theme in this paper is the analysis of the
structure of the manifold of kink solitary waves discov-
ered in [1]. In particular, we shall offer a full description
of the stability of the different type of kinks. As a bonus,
we shall gain information about the semi-classical behav-
ior of such kinks from the stability analysis, providing us
with enough data to compute the one-loop mass shifts for
the topological kinks. We shall also propose first-order
field equations that are solved by a single type of BPS
topological kinks as well as the time-dependent Q-kinks,
which arise when the masses of the fundamental quanta
are equal. The first-order equations are linked to topo-
logical bounds leading to another route to study stability.

Prior to our work [1], kinks in massive non-linear sigma
models have been known for some time and profusely
studied in different supersymmetric models under the
circumstance that all the masses of the pseudo Nambu-
Goldstone particles are equal. The study started with
two papers by Abraham and Townsend [3], [4] in which
the authors discovered a family of Q-kinks in a (1+1)-
dimensional N = (4, 4) supersymmetric non-linear sigma
model with a hyper-Kahler Gibbons-Hawking instanton
as the target space and mass terms obtained from di-
mensional reduction. In [5], however, these kinks were
re-considered by constructing the dimensionally reduced
supersymmetric model by means of the mathematically
elegant technique of hyper-Kahler quotients. By doing
this, the authors deal with massive CPN or HPN mod-
els, a playground closer to our simpler massive S2-sigma
model. Similar N = 2 BPS walls in the CP 1-model with
twisted mass were described in [6]. In a parallel develop-
ment in the (2+1)-dimensional version of these models,
two-dimensional Q-lumps were discovered in [7] and [8].
Throughout this field, the most interesting result is the
demonstration in [9] and [10] that composite solitons in
d = 3 + 1 of Q-strings and domain walls are exact BPS
solutions that preserve 1

4 of the supersymmetries: ( See
also the review [11], where a summary of these super-
symmetric topological solitons is offered.)

Our investigation differs from previous work in the area

of topological defects in non-linear sigma models in two
important aspects: 1) We remain in a purely bosonic
framework; in fact, we consider the simplest massive
non-linear sigma model. 2) We study the case when the
masses of the pseudo Nambu-Goldstone bosons are dif-
ferent. The search for kinks in the (1+1)-dimensional
model (domain walls in d = 3 + 1) is tantamount to the
search for finite action trajectories in the repulsive Neu-
mann system, a particle moving in an S2-sphere under
the action of non-isotropic repulsive elastic forces. It is
well known that this dynamical system is completely in-
tegrable [26], [28]. We show, however, that the problem is
Hamilton-Jacobi separable by using elliptic coordinates
in the sphere. Use of this allows us to find four fami-
lies of homoclinic trajectories starting and ending at one
of the poles which are unstable points of the mechanical
system. In the field-theoretical model the poles become
ground states, whereas the homoclinic trajectories cor-
respond to four families of non-topological kinks. Each
member in a family is formed by a non-linear combina-
tion of two basic topological kinks (of different type) with
their centers located at any relative distance with respect
each other.

It is remarkable that the static field equations of this
massive non-linear sigma model are (almost) the static
Landau-Lifshitz equations governing the high spin and
long wavelength limit of 1D ferromagnetic materials.
From this perspective, topological kinks can be inter-
preted respectively as Bloch and Ising walls that form
interfaces between ferromagnetic domains. The structure
of the variety of solitary spin waves, all of them formed by
one basic Bloch wall and one basic Ising wall at different
distances, is the same as the structure of the set of walls
in the XY model described in [34]. Far from this non-
relativistic context, degenerate Bloch/Ising branes have
also been studied in two-scalar field theories coupled to
gravity in [12], [13], and [14]. The brane solutions have
a similar structure to the NTK kinks in this model but
it is necessary to cope with a wrap factor because of the
coupling to the metric tensor.

The organization of the paper is as follows: In Sec-
tions §. II, II, and IV we describe the model, unveil the
topological kinks, and analyze kink stability in a direct
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approach. The semi-classical masses of topological kinks
are computed using the CCG formula [2]. In Section §.
V the topological and Q-kinks studied in the previous
Sections are tested as solution of first-order equations.
Sections §. VI and VII are devoted to identifying and
characterizing the rich moduli space of non-topological
kinks of the model by using elliptic coordinates in the
sphere. In Sections §. VIII and IX, the lack of stabil-
ity of non-topological kinks is established. Section §. X
shows how these kinks arise in a non-relativistic context
in the disguise of solitary spin waves in ferromagnetic
materials. Finally, in Section §. XI we address the ques-
tion of whether or not supersymmetric extensions of this
model are plausible.

II. THE (1+1)-DIMENSIONAL MASSIVE
NON-LINEAR S2-SIGMA MODEL

We shall focus on the non-linear S2-sigma model stud-
ied in Reference [1]. The action governing the dynamics
is:

S[φ1, φ2, φ3] =
∫

dtdx

{
1
2
gµν

3∑
a=1

∂φa

∂xµ

∂φa

∂xν
− V

}
, (1)

with V = V (φ1(t, x), φ2(t, x), φ3(t, x)). The scalar fields
are constrained to satisfy:

φ2
1 + φ2

2 + φ2
3 = R2

and thus φa(t, x) ∈ Maps(R1,1, S2) are maps from the
(1+1)-dimensional Minkowski space-time to a S2-sphere
of radius R, which is the target manifold of the model.

Our conventions for R1,1 are as follows: xµ ∈ R1,1,
µ = 0, 1, xµ · xµ = gµνxµxν , gµν = diag(1,−1). x0 = t,
x1 = x, xµ · xµ = t2 − x2;

∂

∂xµ

(
∂

∂xµ

)
= ∂µ∂µ = gµν∂2

µν = 2 =
∂2

∂t2
− ∂2

∂x2

The infrared asymptotics of (1 + 1)-dimensional scalar
field theories forbids massless particles, see [15]. We thus
choose the simplest potential energy density that would
be generated by quantum fluctuations giving mass to the
fundamental quanta:

V (φ1, φ2, φ3) =
1
2

(
α2

1 φ2
1 + α2

2 φ2
2 + α2

3 φ2
3

)
, (2)

which we set with no loss of generality such that: α2
1 ≥

α2
2 > α2

3 ≥ 0.
1. Solving φ3 in favor of φ1 and φ2, φ3 =
sg(φ3)

√
R2 − φ2

1 − φ2
2, we find:

S =
1
2

∫
dtdx {∂µφ1∂

µφ1 + ∂µφ2∂
µφ2+

(φ1∂µφ1 + φ2∂µφ2)(φ1∂
µφ1 + φ2∂

µφ2)
R2 − φ2

1 − φ2
2

− VS2(φ1, φ2)
}

VS2(φ1, φ2) =
1
2

(
(α2

1 − α2
3)φ2

1 + (α2
2 − α2

3) φ2
2 + const.

)

' λ2

2
φ2

1(t, x) +
γ2

2
φ2

2(t, x) (3)

with λ2 = (α2
1 − α2

3), γ2 = (α2
2 − α2

3), λ2 ≥ γ2.
2. Thus, the interactions come from the geometry:

(φ1∂µφ1 + φ2∂µφ2)(φ1∂
µφ1 + φ2∂

µφ2)
R2 − φ2

1 − φ2
2

'

' 1
R2

(
1 +

1
R2

(φ2
1 + φ2

2) +
1

R4
(φ2

1 + φ2)2 + · · ·
)
·

· (φ1∂µφ1 + φ2∂µφ2) (φ1∂
µφ1 + φ2∂

µφ2) ,

and 1
R2 is a non-dimensional coupling constant, whereas

the masses of the pseudo-Nambu-Goldstone bosons are
respectively λ and γ.

Taking into account that in the natural system of units
~ = c = 1 the dimensions of fields, masses and coupling
constants are [φa] = 1 = [R], [γ] = M = [λ], we define
the non-dimensional space-time coordinates and masses

xµ → xµ

λ
, σ2 =

α2
2 − α2

3

α2
1 − α2

3

=
γ2

λ2
, 0 < σ2 ≤ 1,

to write the action and the energy in terms of them:

S =
1
2

∫
dtdx {∂µφ1∂

µφ1 + ∂µφ2∂
µφ2

+
(φ1∂µφ1 + φ2∂µφ2)(φ1∂

µφ1 + φ2∂
µφ2)

R2 − φ2
1 − φ2

2

−φ2
1(t, x)− σ2 · φ2

2(t, x)
}

(4)

E =
λ

2

∫
dx

{
(∂tφ1)

2 + (∂tφ2)
2 + (∂xφ1)

2 + (∂xφ2)
2

+
(φ1∂tφ1 + φ2∂tφ2)2 + (φ1∂xφ1 + φ2∂xφ2)2

R2 − φ2
1 − φ2

2

+ φ2
1(t, x) + σ2 · φ2

2(t, x)
}

.

In the time-independent homogeneous minima of the
action or vacua of our model, φV ±

1 = φV ±
2 = 0 , φV ±

3 =
±R, the North and South Poles, the Z2 × Z2 ×
Z2 , φa → (−1)δabφb , b = 1, 2, 3 symmetry of the ac-
tion (1) is spontaneously broken to: Z2 × Z2 , φα →
(−1)δαβ φβ , α , β = 1, 2. Finite energy configurations
require:

lim
x→±∞

dφα

dx
= 0 , lim

x→±∞
φα = 0 . (5)

Therefore, the configuration space C ={
Maps(R, S2)/E < +∞}

is the union of four dis-
connected sectors C = CNN

⋃ CSS

⋃ CNS

⋃ CSN labeled
by the vacua reached by each configuration at the two
disconnected components of the boundary of the real
line.
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A. Spherical coordinates

We now solve the constraint by using spherical coordi-
nates: θ ∈ [0, π], ϕ ∈ [0, 2π)

φ1(t, x) = R sin θ(t, x) cos ϕ(t, x)
φ2(t, x) = R sin θ(t, x) sin ϕ(t, x)
φ3(t, x) = R cos θ(t, x) .

In spherical coordinates the potential energy density (we
shall denote in the sequel: σ̄ =

√
1− σ2) is

V (θ, ϕ) =
R2

2
sin2 θ(σ2 + σ̄2 cos2 ϕ) , (6)

the action becomes

S =
∫

dtdx

{
R2

2
[
∂µθ∂µθ + sin2 θ∂µϕ∂µϕ

]

−R2

2
sin2 θ(σ2 + σ̄2 cos2 ϕ)

}
,

and the field equations read:

2θ − 1
2
sin2θ

(
∂µϕ∂µϕ− cos2 ϕ− σ2 sin2 ϕ

)
= 0 (7)

∂µ(sin2 θ∂µϕ)− 1
2
σ̄2 sin2 θ sin 2ϕ = 0 . (8)

Finite energy solutions for which the space-time de-
pendence is of the form:

θ(t, x) = θ

(
x− vt√
1− v2

)
, ϕ(t, x) = ϕ

(
x− vt√
1− v2

)
,

for some velocity v, are called solitary waves. Lorentz
invariance allows us to obtain all the solitary waves in
our model from solutions of the static field equations

θ′′ − 1
2

sin 2θ (ϕ′)2 =
1
2

(
cos2 ϕ + σ2 sin2 ϕ

)
sin 2θ (9)

d

dx
(sin2 θ ϕ′) =

1
2
σ̄2 sin2 θ sin 2ϕ , (10)

where the notation is: θ′ = dθ
dx , ϕ′ = dϕ

dx . The energy of
the static configurations is:

E[θ, φ] = λ

∫
dx E(θ′(x), ϕ′(x), θ(x), ϕ(x)) ,

E =
λR2

2
(
(θ′)2 + sin2 θ(ϕ′)2 + sin2 θ(σ2 + σ̄2 cos2 ϕ)

)
.

III. TOPOLOGICAL KINKS

We start the search for solitary waves in this model by
using the Rajaraman trial orbit method [17].

Φ2
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Φ3
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Figure 1: a) K1 and K2 (σ2 = 1
2
) kink orbits. b) K1 (blue)

and K2 (red) kink energy densities

A. K1/K∗
1 kinks

Our first trial orbit is: ϕK1(x) = π
2 or ϕK∗

1
(x) = 3π

2 ,
i.e., the two halves of a single meridian, see Figure 1. The
static field equations and the kink/antikink solutions are

θ′′ =
σ2

2
sin 2θ ⇒ θK1(x) = θK∗

1
(x) = 2 arctan e±σ(x−x0)

The energy of these kinks, which belong to CNS (kinks)
or CSN (antikinks), is:

EC
K1

= EC
K∗

1
=

λR2

2

∫
dx

[(
θ′K1

)2 + σ2 sin2 θK1

]
=

= λR2σ2

∫ ∞

−∞

dx

cosh2 σx
= 2λR2σ .

In the original field variables the K1/K∗
1 kink/ antikink

solutions are:

φK1
1 (x) = φ

K∗
1

1 (x) = 0

φK1
2 (x) = −φ

K∗
1

2 (x) =
R

cosh[σ(x− x0)]
(11)

φK1
3 (x) = φ

K∗
1

3 (x) = ±R tanh[σ(x− x0)].

B. K2/K∗
2 kinks

We now try the half-meridians ϕK2(x) = 0 or
ϕK∗

2
(x) = π. The static field equations and the

kink/antikink solutions are:

θ′′ =
1
2

sin 2θ ⇒ θK2(x) = θK∗
2
(x) = 2 arctan e±(x−x0)

The energy of the K2/K∗
2 kinks, which also belong to

the CNS, CSN sectors, is greater than the energy of the
K1/K∗

1 kinks:

EC
K2

= EC
K∗

2
=

λR2

2

∫
dx

[(
θ′K2

)2 + sin2 θK2

]
=

= λR2

∫ ∞

−∞

dx

cosh2 x
= 2λR2 .
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In the original field variables the kink/antikink K2/K∗
2

profiles are:

φK2
1 (x) = −φ

K∗
2

1 (x) =
R

cosh(x− x0)

φK2
2 (x) = φ

K∗
2

2 (x) = 0 (12)

φK2
3 (x) = φ

K∗
2

3 (x) = ±R tanh(x− x0).

C. Degenerate families of Qα-kinks

When σ2 = 1, the system enjoys SO(2) internal
symmetry and the masses of the two pseudo-Nambu-
Goldstone bosons are equal, there are degenerate families
of time-dependent Q-kinks of finite energy. If σ = 1,

ϕQα(t) = ωt + α ,

where ω and α are real constants, solves (8) for any time-
independent θ(x). Moreover, by plugging ϕQα(t) into (7)
one obtains:

−θ′′ +
1
2
(1− ω2) sin 2θ = 0 ⇒

θQα(x) = 2 arctan e±
√

1−ω2(x−x0), ∀α. (13)

Therefore, if 0 < ω2 < 1, the (θQα(x), ϕQα(t)) configura-
tions form a degenerate circle of periodic in time Q-kink
solutions of energy:

EC
Qα

=
λR2

2

∫
dx

[(
dθQα

dx

)2

+ (1 + ω2) sin2 θQα(x)

]

=
2λR2

√
1− ω2

=
2λR2

ω̄
, ∀α .

In another reference frame moving with respect to the
Qα-kink CM with velocity v, the interplay between x
and t dependence is more complicated:

ϕQα(x, t) = ω

(
t− vx√
1− v2

)
+ α

θQα(x, t) = 2 arctan e
±ω̄

(
x−vt√
1−v2

−x0

)

.

In Cartesian coordinates the Qα-kinks in the CM system
are:

φQα

1 (x, t) =
R cos(ωt + α)
cosh[ω̄(x− x0)]

φQα

2 (x, t) =
R sin(ωt + α)

cosh[ω̄(x− x0)]
(14)

φQα

3 (x, t) = ±R tanh[ω̄(x− x0)] .

At the ω = 0 limit we find a circle of static topological
kinks that form a degenerate family of solitary waves of
the system.

IV. TOPOLOGICAL KINK STABILITY

A. Small fluctuations on topological kinks

The analysis of small fluctuations around topological
kinks requires us to consider both the geodesic devia-
tion operator and the Hessian of the potential energy
density. In order to set the geodesic deviations from
the kink orbits, we rewrite the arc-length, the (non-null)
Christoffel symbols and, the (non-null) components of
the Curvature tensor in the geodesic coordinate system
(θ = θ1 ∈ [0, ∂]), ϕ = θ2 ∈ [0, 2π)):

ds2 = R2dθ1dθ1 + R2 sin2 θ1dθ2dθ2

Γ1
22 = −1

2
sin 2θ1, Γ2

12 = Γ2
21 = cotan θ1

R1
212 = −R1

122 = sin2θ1, R2
121 = −R2

211 = 1 .

Note the mild change in notation. We also denote the
Kink trajectories and small deformations around them
as: θK(x) = (θ1

K(x) = θ̄, θ2
K(x) = ϕ̄), θ(x) = θK(x) +

η(x), η(x) = (η1(x), η2(x)).
Let us consider the following contra-variant vector

fields along the kink trajectory, η, θ′K ∈ Γ(TS2 |K ):
η(x) = η1(x) ∂

∂θ1 + η2(x) ∂
∂θ2 and θ′K(x) = θ̄′ ∂

∂θ1 + ϕ̄′ ∂
∂θ2 .

The covariant derivative of η(x) and the action of the
curvature tensor on η(x) are:

∇θ′K η =
(
η′i(x) + Γi

jkηj θ̄′k
) ∂

∂θi

R(θ′K , η)θ′K = θ̄′iηj(x)θ̄′kRl
ijk

∂

∂θl
.

The geodesic deviation operator is:

D2η

dx2
+ R(θ′K , η)θ′K = ∇θ′K∇θ′K η + R(θ′K , η)θ′K .

To obtain the differential operator that governs the
second-order fluctuations around the kink θK , the re-
maining ingredient is the Hessian of the potential:

∇ηgradV = ηi

(
∂2V

∂θi∂θj
− Γk

ij

∂V

∂θk

)
gjl ∂

∂θl

evaluated at θK(x). In sum, second-order kink fluctua-
tions are determined by the operator:

∆Kη = −
[
D2η

dx2
+ R(θ′K , η)θ′K +∇ηgradV

]
=

−
(

d2η1

dx2
− cos 2θ̄[ϕ̄′2 + σ2 + σ̄2 cos2 ϕ̄]η1 − sin 2θ̄ϕ̄′

dη2

dx

− [(1 + cos 2θ̄)ϕ̄′θ̄′ +
sin 2θ̄

2
(ϕ̄′′ − σ̄2 sin 2ϕ̄

2
)]η2

)
∂

∂θ1

−
(

2 cotan θ̄ϕ̄′
dη1

dx
+ (cotan θ̄ϕ̄′′ − ϕ̄′θ̄′)η1 +

d2η2

dx2
+

2 cotan θ̄θ̄′
dη2

dx
+ (cotan θ̄θ̄′′ − θ̄′2 − cos2 θ̄ϕ̄′2)

)
∂

∂θ2
(15)
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B. The spectrum of small fluctuations around
K1/K∗

1 kinks

Plugging the K1 solutions into (15), we obtain the dif-
ferential operator acting on the second-order fluctuation
operator around the K1/K∗

1 kinks:

∆K1η = ∆K∗
1
η =

[
−d2η1

dx2
+

(
σ2 − 2σ2

cosh2σx

)
η1

]
∂

∂θ1

+
[
−d2η2

dx2
+ 2σtanhσx

dη2

dx
+ σ̄2η2

]
∂

∂θ2
. (16)

The vector fields v(x) = v1(x) ∂
∂θ1 + v2(x) ∂

∂θ2 parallel
along the K1/K∗

1 kink orbits satisfy

dvi

dx
+ Γi

jkθ̄′jvk = 0 ⇒





dv1

dx = 0 , v1(x) = 1

dv2

dx + σ cotan(2arctaneσx)
coshσx v2 = 0 , v2(x) = coshσx

.

Therefore, v1 = ∂
∂θ1 , v2(x) = cosh σx ∂

∂θ2 is a frame
{v1, v2} in Γ(TS2|K1) parallel to the K1 kink orbit in
which (16) reads:

∆K1η = ∆K∗
1
η =

[
−d2η̄1

dx2
+ (σ2 − 2σ2

cosh2 σx
)η̄1

]
v1

+
[
−d2η̄2

dx2
+ (1− 2σ2

cosh2 σx
)η̄2

]
v2 , (17)

where η = η̄1 v1 + η̄2 v2. Note that: η1 = η̄1, η2 =
cosh σx η̄2.

The second-order fluctuation operator (17) is a diag-
onal matrix of transparent Pösch-Teller Schrödinger op-
erators with very well known spectra. In the v1 = ∂

∂θ1

direction there is a bound state of zero eigenvalue and a
continuous family of positive eigenfunctions:

η̄1
0(x) =

1
coshσx

, ε
(1)
0 = 0

η̄1
k(x) = eikσx(tanhσx− ik) , ε(1)(k) = σ2(k2 + 1) .

In the v2 = cosh σx ∂
∂θ2 direction the spectrum is similar

but the bound state corresponds to a positive eigenvalue:

η̄2
1−σ2(x) =

1
coshσx

, ε
(2)
1−σ2 = 1− σ2 > 0

η̄2
k(x) = eikσx(tanhσx− ik) , ε(2)(k) = σ2k2 + 1 .

Because there are no fluctuations of negative eigenvalue,
the K1/K∗

1 kinks are stable.

C. One-loop shift to classical K1/K∗
1 kink masses

The reflection coefficient of the scattering waves in the
potential wells of the Schrödinger operators in (17) be-
ing zero, it is possible to use the Cahill-Comtet-Glauber

formula [2] (see also [18] for a more detailed derivation)
to compute the quantum correction to the K1 classical
kink mass up to one-loop order:

EK1(σ) = EC
K1

(σ) + ∆EK1(σ) +O(
1

R2
) =

= 2λR2σ − λσ

π
[sin ν1 +

1
σ

sin ν2 − ν1 cos ν1

− 1
σ

ν2 cos ν2] +O(
1

R2
) (18)

In (18) the angles ν1 = arccos(0) = π
2 , ν2 = arccos σ̄,

are determined from the eigenvalues of the bound states
and the thresholds of the continuous spectra. This simple
structure of the one-loop kink mass shift occurs only for
transparent potentials. In our model, we find the elegant
formula:

EK1(σ) = 2λR2σ− λσ

π

[
2− σ̄

σ
arccos(σ̄)

]
+O(

1
R2

) (19)

For instance, for σ = 1
2 we obtain a result similar to the

mass shift of the λφ4
2-kink:

EK1(
1
2
) = λR2 − 3λ

2π

(
2
3
− π

6
√

3

)
+O(

1
R2

)

As in the λφ4
2-kink case, a zero mode and a bound eigen-

state of eigenvalue ε
(2)
3
4

= 3
4 contribute. The gaps be-

tween the bound state eigenvalues and the thresholds
ε(1)(0) = σ2, ε(2)(0) = 1 of the two branches of the con-
tinuous spectrum are the same in our model. The gaps,
however, are different from the gaps in the λφ4

2 model
between the eigenvalues of the two bound states and the
threshold of the only branch of the continuous spectrum.
Both features contribute to the slightly different result.
The σ = 1 symmetric case is more interesting. We find
exactly twice the spectrum of the sine-Gordon kink: two
zero modes and two gaps with respect to the thresholds
of the continuous spectrum equal to one. No wonder that
the one-loop mass shifts of the degenerate kinks is twice
the one-loop correction of the sine-Gordon kink:

EKα(1) = 2λ

(
R2 − 1

π

)
+O(

1
R2

), ∀α ! .

Moreover, the quantum fluctuations do not break the
SO(2)-symmetry and our result fits in perfectly well with
the one-loop shift to the mass of the N = (2, 2) SUSY
CP 1 kink computed in [19] where the authors find twice
the mass of the N = 1 SUSY sine-Gordon kink. A dif-
ferent derivation of formula (19) following the procedure
of [20], see also [21], [22], will be published elsewhere.
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D. The spectrum of small fluctuations around
K2/K∗

2 kinks

By inserting the K2 solutions in (15) the second-order
fluctuation operator around the K2/K∗

2 kinks is found:

∆K2η = ∆K∗
2
η =

[
−d2η1

dx2
+ (1− 2

cosh2x
)η1

]
∂

∂θ1

+
[
−d2η2

dx2
+ 2 tanh x

dη2

dx
− σ̄2η2

]
∂

∂θ2
. (20)

The parallel vectors fields along the K2/K∗
2 kink orbits

satisfy:

du1

dx
= 0; u1(x) = 1

du2

dx
+

cotan(2 arctan ex)
cosh x

u2 = 0; u2(x) = cosh x .

In the parallel frame {u1, u2} ∈ Γ(TS2 |K2) , u1 = ∂
∂θ1 ,

u2(x) = cosh x ∂
∂θ2 , to the K2/K∗

2 orbits (20) becomes:

∆K2η = ∆K∗
2
η =

[
−d2η̃1

dx2
+ (1− 2

cosh2 x
)η̃1

]
u1

+
[
−d2η̃2

dx2
+ (σ2 − 2

cosh2 x
)η̃2

]
u2 . (21)

with η = η̃1u1 + η̃2u2, η1 = η̃1, η2 = cosh xη̃2.
Again, the second-order fluctuation operator (20) is

a diagonal matrix of transparent Pösch-Teller operators.
In this case, there is a bound state of zero eigenvalue and
a continuous family of positive eigenfunctions starting at
the threshold ε(1)(0) = 1 in the u1 = ∂

∂θ1 direction:

η̃1
0(x) =

1
cosh x

, ε
(1)
0 = 0

η̃1
k(x) = eikx(tanh x− ik) , ε(1)(k) = (k2 + 1) .

In the u2(x) = cosh x ∂
∂θ2 direction, the spectrum is sim-

ilar but the eigenvalue of the bound state is negative,
whereas the threshold of this branch of the continuous
spectrum is ε(2)(0) = σ2:

η̃2
σ2−1(x) =

1
coshx

, ε
(2)
σ2−1 = σ2 − 1 < 0

η̃2
k(x) = eikx(tanhx− ik) , ε(2)(k) = k2 + σ2 .

Therefore, K2/K∗
2 kinks are unstable and a Jacobi field

for k = iσ arises: η̃2
J(x) = eσx(tanhx− σ), ε

(2)
J = 0.

E. One-loop shift to classical K2/K∗
2 kink masses

Once again we use the Cahill-Comtet-Glauber formula
to compute the quantum correction to the K2 classical

kink mass up to one-loop order:

EK2(σ) = EC
K2

(σ) + ∆EK2(σ) +O(
1

R2
) =

= 2λR2 − λσ

π
[
1
σ

sin ν1 + sin ν2 − 1
σ

ν1 cos ν1

−ν2 cos ν2] +O(
1

R2
) . (22)

As before, the angles ν1 = arccos(0) = π
2 , ν2 =

arccos(iσ̄), are determined from the eigenvalues of the
bound states and the thresholds of the continuous spec-
tra. The novelty is that since the bound state eigenvalue
is negative ν2 is purely imaginary. Therefore, we find:

EK2(σ) = 2λR2 − λσ

π

[
1
σ

+
√

2− σ2 − i
π

2
σ̄

+σ̄ log
[√

2− σ2 − σ̄
]]

+O(
1

R2
) . (23)

The key point is that the one-loop mass shift is a complex
quantity, the imaginary part telling us about the life-time
of this resonant state. For σ = 1

2 , the energy of the K2

kinks is:

EK2(
1
2
) = 2λR2 − λ

4π

(
4 +

√
7 +

√
3 log[

√
7−√3

2
]

−iπ

√
3

2

)
+O(

1
R2

) .

In the σ = 1 symmetric case, however, we find the ex-
pected purely real answer:

EK2(1) = 2λ

(
R2 − 1

π

)
+O(

1
R2

) .

V. BPS VERSUS NON-BPS TOPOLOGICAL
KINKS

The different natures of the K1 and K2 kinks can be
understood by relying on the “mechanical analogy”: one
thinks of the ODE system (9,10) as the Newton equa-
tions for the evolution of a particle in “time” x , with
(θ, ϕ) “position” in the S2-sphere, moving in a “poten-
tial” U(θ, ϕ) = −V (θ, ϕ), see [23]. Thus, we are dealing
with a famous integrable system -the Neumann problem
[26]- although in our case the linear force is repulsive
rather than attractive.

The four representations of the Hamilton characteristic
function

W (β1,β2)(θ, ϕ) =

(−1)β1R2
√

(1 + (−1)β2σ cos θ)2 − σ̄2 sin2 θ cos2 ϕ

(β1, β2 = 0, 1) form a complete integral of the “time”-
independent Hamilton-Jacobi equation for zero “particle
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energy”:

V (θ, ϕ) =
1

2R2

((
∂θW

(β1,β2)
)2

+
1

sin2 θ

(
∂ϕW (β1,β2)

)2
)

(24)
∀β1, β2. In terms of these, we write the static field energy
(the particle “action”) á la Bogomolny [27]:

E(θ, ϕ) =
λR2

2

∫
dx

[(
θ′ − 1

R2
∂θW

(β1,β2)

)2

+sin2 θ

(
ϕ′ − 1

R2 sin2 θ
∂ϕW (β1,β2)

)2
]

+ λ

∫
dx

{
θ′ ∂θW

(β1,β2) + ϕ′∂ϕW (β1,β2)
}

The solutions of the first-order equations:

dθ

dx
=

1
R2

∂W (β1,β2)

∂θ
= −(−1)β1 ·

σ sin θ
(
(−1)β2 + cos θ(σ + σ̄2 cos2 ϕ)

)
√

((−1)β2 + σ cos θ)2 − σ̄2 sin2 θ cos2 ϕ
(25)

dϕ

dx
=

1
R2 sin2 θ

∂W (β1,β2)

∂ϕ
= (−1)β1 ·

σ̄ cos ϕ sin ϕ√
((−1)β2 + σ cos θ)2 − σ̄2 sin2 θ cos2 ϕ

(26)

are both solutions of (9,10) and absolute minima of E in
each topological sector. The solutions of (25)-(26) are the
flow lines induced by the gradient of W (β1,β2). There are
two pairs of branching points in W (β1,β2) (depending on
the choice of β2), i.e., ϕB = 0, π;

(
1 + (−1)β2σ cos θ±B

)2
=

σ̄2 sin2 θ±B ⇒ cos θ±B = −(−1)β2σ ≡ θ±B = (1+(−1)β2)π
2±

arccos σ.
The gradient flow is undefined at these points and the

interpretation of the orbits that solve (25)-(26) and pass
through them is problematic.

A. BPS K1 topological kinks

The K1/K∗
1 orbits, ϕK1/ϕK∗

1
= π

2 / 3π
2 , do not cross the

branching points and everything is fine. In these orbits,
the Hamilton’s characteristic function and the first-order
equations reduce to: W (β1,β2)(θ, π

2 ) = W (β1,β2)(θ, 3π
2 ) =

(−1)β1R2
(
1 + (−1)β2σ cos θ

) ⇒
dθ

dx
= −(−1)β1σ sin θ . (27)

Thus, K1 kinks solve (25)-(26) and their energy, depend-
ing only on the values of W (β1,β2) at the orbit endpoints,
is a topological bound:

EC
K1

= EC
K∗

1
= λ

∣∣∣W (β1,β2)(0,±π

2
)

−W (β1,β2)(π,±π

2
)
∣∣∣ = 2λR2σ2 .

We term these solitary waves BPS kinks even in this
purely bosonic setting because they are bona fide solu-
tions of the first-order equations and saturate the Bogo-
molny bound.

B. Non-BPS K2 topological kinks

The K2/K∗
2 orbits, ϕK2/ϕK∗

2
= 0/π, cross

the branching points and things become more dif-
ficult. In these orbits the Hamilton character-
istic functions are W (β1,β2)(θ, 0) = W (β1,β2)(θ, π)
= (−1)β1R2

(
(−1)β2σ + cos θ

)
, whereas the first-order

equations become:

dθ

dx
= −(−1)β1 sin θ · (−1)β2σ + cos θ

|(−1)β2σ + cos θ| (28)

Note that we have not canceled the numerator against
the denominator in (28) because for the K2/K∗

2 kink so-
lutions there is a change of sign in the numerator after
crossing the branching point:

sign
(
(−1)β2σ + cos[2 arctan e−x]

)
=

=
{

+ if cos[2 arctan e−x] > −(−1)β2σ
− if cos[2 arctan e−x] < −(−1)β2σ

.

Thus, a solitary wave solution of the second order equa-
tions (9,10) like the K2/K∗

2 kinks with no change in the
sign of dθ

dx does not satisfy a unique first-order equation;
these kinks are built by gluing together at the branching
points one solution of the β1 = 0 (28) first-order ODE
with one solution of the β1 = 1 (28) ODE:

log tan[
θ

2
] = −x ⇔

⇔
{

β1 = 0 and sign
[
(−1)β2σ + cos θ

]
= +

β1 = 1 and sign
[
(−1)β2σ + cos θ

]
= − .

The gluing points are: 2 arctan e−xB = θ±B .
The BPS bound is not saturated because the Stokes the-
orem works piece-wise

EC
K2

= EC
K∗

2
=

λ
∣∣∣W (β1,β2)(0, 0)−W (β1,β2)(θ−B , 0)

∣∣∣

+λ
∣∣∣W (β1,β2)(θ−B , 0)−W (β1,β2)(π, 0)

∣∣∣
= λR2|1 + (−1)β2σ|+ λR2|1− (−1)β2σ| = 2λR2

and these kinks are not BPS.

C. BPS Qα-kinks as d = 1 + 1 dyons

In the σ2 = 1 case there is symmetry with respect
to the exp[α

(
0 −1 0
1 0 0
0 0 0

)
] ∈ SO(2) subgroup of the O(3)
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group. The associated Nöether charge distinguishes be-
tween different Qα-kinks :

Q =
1
2

∫
dx (φ1∂tφ2 − φ2∂tφ1) = R2

∫
dx sin2 θ∂tϕ

Q[Qα] = R2ω

∫
dx sin2 θQα = 2R2 ω

ω̄
.

For configurations such that θ is time-independent and ϕ
is space-independent, it is possible to arrange the energy
in the form:

E =
λR2

2

∫
dx

{
sin2 θ[ϕ̇− ω]2 + [θ′ ± ω̄ sin θ]2

}

+ λR2

∫
dx

{
ω sin2 θϕ̇∓ ω̄θ′ sin θ

}
, (29)

(ϕ̇ = dϕ
dt (t)), in such a way that the solutions of the first-

order equations:

ϕ̇ = ω ⇒ ϕQα(t) = ωt + α

θ′ = ∓ω̄ sin θ ⇒ θQα(x) = 2 arctan e∓ω̄(x−x0) ,

the Qα-kinks, saturate the Bogomolny bound and are
BPS:

EBPS =
2λR2

ω̄
= λ {ωQ + ω̄T} . (30)

Here, the topological charge T = |W [θ(+∞, t)] −
W [θ(−∞, t)]| coming from the superpotential W =
R2(1 ∓ cos θ) valued at the Qα-kinks gives: T [Qα] =
2R2, ∀α. This explains why “one cannot dent a dyon”
(even a one-dimensional cousin), see [24]. Conservation
of the Nöether charge forbids the decay of Qα kinks, all
of them living in the same topological sector, to others
with less energy.

D. Bohr-Sommerfeld rule: Q-kink energy and
charge quantization

The Bohr-Sommerfeld quantization rule applied to pe-
riodic in time-classical solutions in our model reads:

∫ T

0

dt

∫
dx πϕ(t, x)

∂ϕ

∂t
(t, x)

= R2

∫ T

0

dt

∫
dx sin2 θ(x, t)

∂ϕ

∂t

∂ϕ

∂t
= 2πn .

In [16] it is explained how derivation of this formula with
respect to the period T = 2π

ω leads to the ODE: λ dn
dE =

ω−1(E), or,

λ

∫ n

0

dn =
∫ En

E0

EdE√
E2 − 4λ2R4

(31)

in the Q-kink case. Integration of (31) gives:

λn =
√

E2
n − 4λ2R4 −

√
E2

0 − 4λ2R4 ,

equivalent to,

En = λ
√

n2 + 4R4 , (32)

starting from E0 = 2λR2 and assuming n to be a positive
integer. The Q-kink energy is thus quantized and the
frequencies and charges allowed by the Bohr-Sommerfeld
rule form also a numerable infinite set:

ωn =

√
1− 1

1 + n2

4R4

, Qn = n .

VI. THE MASSIVE NON-LINEAR S2-SIGMA
MODEL IN SPHERICAL ELLIPTIC

COORDINATES

The secret of this non-linear (1+1)-dimensional mas-
sive S2-sigma model is that its analogous mechanical sys-
tem is Hamilton-Jacobi separable in spherical elliptic co-
ordinates.

A. The spherical elliptic system of orthogonal
coordinates

The definition of elliptic coordinates in a sphere is as
follows: one fixes two arbitrary points (and the pair of
antipodal points) in S2. We choose these points with no
loss of generality in the form: F1 ≡ (θf , π), F2 ≡ (θf , 0),
F̄1 ≡ (π − θf , 0), F̄2 ≡ (π − θf , π), θf ∈ (0, π

2 ).
The distance between the two fixed points is d = 2f =

2Rθf < πR, see Figure 2(a). Given a point P ∈ S2, let

Θf

f

F1

F2

F2
�����

F1
�����

z

x
F2

F1

P

r2r1

-f 0 f

f

ΠR-f

v

u

F1 F2

F2
�����

F1
�����

A
�

A

Figure 2: (a) Foci and antipodal foci of the elliptic system of
coordinates on the sphere. (b) Distances from a point to the
foci. (c) Elliptic coordinates on the sphere.

us consider the distances r1 ∈ [0, πR] and r2 ∈ [0, πR]
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from P to F1 and F2.

r1 = 2R arcsin

√
1
2

(1− cos θf cos θ + sin θf sin θ cosϕ)

r2 = 2R arcsin

√
1
2

(1− cos θf cos θ − sin θf sin θ cosϕ) ,

see Figure 2(b). The spherical elliptic coordinates of P
are half the sum and half the difference of r1 and r2:

u =
r1 + r2

2
, v =

r1 − r2

2
,

u ∈ (Rθf , R(π − θf )), v ∈ (−Rθf , Rθf ), see Figure 2(c).
We remark that this version of elliptic coordinates in
a sphere is equivalent to using conical coordinates con-
strained to S2, as defined e. g. in Reference [25].

For simplicity, we shall use the abbreviated notation:

su = sin
u(t, x)

R
, sv = sin

v(t, x)
R

, sf = sin θf

su2 = sin2 u(t, x)
R

, sv2 = sin2 v(t, x)
R

, sf2 = sin2 θf

and analogously for cu, cv, and cf. To pass from elliptical
to Cartesian coordinates, or viceversa, one uses:

φ1(t, x) =
R

sf
su sv

φ2(t, x) = ± R

sf cf

√
(su2− sf2)(sf2− sv2)

φ3(t, x) =
R

cf
cu cv ,

whereas the differential arc-length in elliptic coordinates
reads:

ds2
S2 =

su2− sv2

su2− sf2
· du2 +

su2− sv2

sf2− sv2
· dv2 .

The spherical elliptic coordinates of the North and South
Poles, and the foci are respectively: (uN , vN ) = (Rθf , 0),
(uS , vS) = (R(π − θf ), 0), (uF1 , vF1) ≡ (Rθf ,−Rθf ),
(uF2 , vF2) ≡ (Rθf , Rθf ), (uF̄1

, vF̄1
) ≡ (R(π − θf ), Rθf ),

(uF̄2
, vF̄2

) ≡ (R(π − θf ),−Rθf ).

B. Static field equations and Hamilton-Jacobi
separability

We choose a system of spherical elliptic coordinates
with the foci determined by θf = arccos σ, i.e., σ2 =
cos2θf , σ̄2 = sin2θf . We stress that the foci (and their
antipodal points) are the branching points mentioned in
the previous Section. In this coordinate system the ac-
tion for the massive non-linear S2-sigma model reads:

S =
∫

dtdx

{
1
2

[
su2− sv2

su2− sf2
∂µu∂µu +

su2− sv2

sf2− sv2
∂µv∂µv

]

−V (u(t, x), v(t, x))
}

,

where:

V (u, v) =
R2

2(su2− sv2)
[
su2(su2− sf2) + sv2(sf2− sv2)

]
.

The field equations are:

∂µ

(
su2− sv2

su2− sf2
· ∂µu

)
= −δV

δu

∂µ

(
su2− sv2

sf2− sv2
· ∂µv

)
= −δV

δv

whereas the static energy reads:

E[u, v] = λ

∫
dx E(u′(x), v′(x), u(x), v(x)) ,

E =
1
2

[
su2− sv2

su2− sf2
(u′)2 +

su2− sv2

sf2− sv2
(v′)2

]
+ V (u, v) .

Let us think of E[u, v] as the action for a particle: E as
the Lagrangian, x as the time, U(u, v) = −V (u, v) as the
mechanical potential energy, and the target manifold S2

as the configuration space. The canonical momenta are:

pu =
∂E
∂u′

=
su2− sv2

su2− sf2
u′, pv =

∂E
∂v′

=
su2− sv2

sf2− sv2
v′ ,

and the static field equations can be thought of as the
Newtonian ODE’s:

d

dx
·
(

su2− sv2

su2− sf2
· u′

)
=

δV

δu

d

dx
·
(

su2− sv2

sf2− sv2
· v′

)
=

δV

δv
.

Because the mechanical energy is

U(u, v) = −V (u, v) = − 1
su2− sv2

(f(u) + g(v)) =

= −R2[su2(su2− sf2) + sv2(sf2− sv2)]
2(su2− sv2)

this mechanical system is a Liouville type I integrable
system, (see [28] to find the classification of two dimen-
sional integrable sytems of Liouville type.) The Hamilto-
nian and the Hamilton-Jacobi equation of spherical Type
I Liouville models have the form:

H =
hu + hv

su2− sv2
,

{
hu = 1

2 (su2− sf2) p2
u − f(u)

hv = 1
2 (sf2− sv2) p2

v − g(v)
∂S
∂x

+ H

(
∂S
∂u

,
∂S
∂v

, u, v

)
= 0 ,

which guarantees Hamilton-Jacobi separability in this
system of coordinates. The separation ansatz S(x, u, v)
= −i1x + Su(u) + Sv(v) reduces the Hamilton-Jacobi
equation to the two separated ODE’s:

i2
R2

= i1 su2−1
2
(su2− sf2)

(
dSu

du

)2

+ f(u)

i2
R2

= i1 sv2 +
1
2
(sf2− sv2)

(
dSv

dv

)2

− g(v) ,
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which can be easily integrated to find the complete solu-
tion S = S(x, u, v, i1, i2) of the HJ equation:

S = −i1x + sg(pu)
∫

du

√
2( i2

R2 + i1 su2 +f(u))
su2− sf2

+sg(pv)
∫

dv

√
2(− i2

R2 − i1 sv2 +g(v))
sf2− sv2

(33)

in terms of the mechanical energy I1 = i1 and a second
constant of motion: the separation constant I2 = i2

R2 .

VII. NON-TOPOLOGICAL KINKS

We now identify the families of trajectories correspond-
ing to the values i1 = i2 = 0 of the two invariants
in the mechanical system. These orbits are separatri-
ces between bounded and unbounded motion in phase
space and become solitary wave solutions in the field-
theoretical model because the i1 = i2 = 0 conditions
force the boundary behavior (5). (See [29] and [30] for
application of this idea to the search for solitary waves in
other two-scalar field models with analogous mechanical
systems which are HJ separable in elliptic coordinates.)
1. In a first step we find the Hamilton characteristic func-
tion for zero particle energy (i1 = 0 = i2) by performing
the integrations in (33):

W (β1,β2)(u, v) = Su(u, i1 = 0, i2 = 0)
+ Sv(v, i1 = 0, i2 = 0)

= F (β1)(u) + G(β2)(v)

with (−1)β1 = −sg pu, (−1)β2 = −sg pv · sg v, and:

F (β1)(u) = R2(−1)β1 cos
u

R

G(β2)(v) = R2(−1)β2 cos
v

R
.

2. The Hamilton-Jacobi procedure now provides
the kink orbits by integrating sg pu

∫
du

(su2− sf2)| su | −
sg pv

∫
dv

(sf2− sv2)| sv | = R3γ2:

eR2γ2 sf2 =




∣∣∣tan u−f
2R tan u+f

2R

∣∣∣
1

2 cf

| tan u
2R |




sgpu

·


 | tan v

2R |∣∣∣tan v−f
2R tan v+f

2R

∣∣∣
1

2 cf




sgpv

. (34)

In Figure 3(a) a Mathematica plot is offered showing sev-
eral orbits complying with (34) for several values of the

integration constant γ2. Note that all the orbits start
and end at the North Pole and pass through the foci F̄1

such that we have shown a one-parametric family of non-
topological kink orbits. In fact, there are four families
of non-topological kinks among the solutions of (34): the
orbits of a second family also start and end at the North
Pole but pass through F̄2. The orbits in the second pair
of NTK families start and end at the South Pole ant pass
through either F1 or F2.

F2

A

A
�

F1
����

-f 0 f

f

ΠR-f

KA-F-A

KA A
���

KAA

v

u

F1 F2

F2
�����

F1
�����

A
�

A

Figure 3: a) Several NTK kink orbits. b) The same NTK
kink orbits in the elliptic rectangle.

3. The Hamilton-Jacobi procedure requires similar inte-
grations in sg pu

∫ | su |du
(su2− sf2)

− sg pv

∫ | sv |dv
(sf2− sv2)

= R(x +
γ1) to find the kink profiles (or particle “time ” sched-
ules):

e2(x+γ1) cf =

∣∣∣tan u(x)−f
2R tan u(x)+f

2R

∣∣∣
sgpu

∣∣∣tan v(x)−f
2R tan v(x)+f

2R

∣∣∣
sgpv

. (35)

In Figure 4 the NTK energy densities for three values of
γ2 are plotted.

Γ2 = -3
Γ2 = 10

Γ2 = 0

-10 -5 5 10

0.2

0.4

0.6

0.8

1.0

Figure 4: NTK energy densities for three different values of
γ2: 1) γ2 = −3, highest peak on the left (blue) 2) γ2 = 0,
symmetrical peaks (green) 3) γ2 = 10 highest peak on the
right (red).

4. Reshuffling equations (34) and (35), it is possible to
find the two NTK families analytically, respectively based
on (uN , vN ) = (Rθf , 0) and (uS , vS) = (R(π − θf ), 0):
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tan
uK(x, γ1, γ2)

2R
=

±√2
√

1 + e1e2 t f
2√

e1 + e2
2 + t f

2

4
+e1e2

2 t f
2

4−
√

(e1 + e2
2 + t f

2

4
+e1e2

2 t f
2

4
)2 − 4(1 + e1)2e2

2 t f
2

4

tan
vK(x, γ1, γ2)

2R
=

±
√

e1 + e2
2 + t f

2

4
+e1e2

2 t f
2

4−
√

(e1 + e2
2 + t f

2

4
+e1e2

2 t f
2

4
)2 − 4(1 + e1)2e2

2 t f
2

4

√
2
√

1 + e1 t f
2

(36)

tan
uK(x, γ1, γ2)

2R
=

±
√

e1 + e2
2 + t f

2

4
+e1e2

2 t f
2

4
+

√
(e1 + e2

2 + t f
2

4
+e1e2

2 t f
2

4
)2 − 4(1 + e1)2e2

2 t f
2

4

√
2
√

1 + e1 t f
2

tan
vK(x, γ1, γ2)

2R
=

±
√

e1 + e2
2 + t f

2

4
+e1e2

2 t f
2

4
+

√
(e1 + e2

2 + t f
2

4
+e1e2

2 t f
2

4
)2 − 4(1 + e1)2e2

2 t f
2

4

√
2
√

1 + e1e2 t f
2

(37)

where we have used the new abbreviations: e1 = e2(x+γ1) cf , e2 = ex+γ1−R2γ2 sf2 , t f
2 = tan f

2R .

VIII. NON-TOPOLOGICAL KINK
INSTABILITY: MORSE INDEX THEOREM

To study the (lack of) stability of NTK kinks, it is
convenient to use the following notation for the elliptic
variables: u1 = u, u2 = v. The static field equations
read:

D

dx
· dui

dx
= gij d

dx

(
gjk

duk

dx

)
= gij ∂V

∂uj
. (38)

Let us consider a one-parametric family of solutions of
(38): ui

K(x; γ). The derivation of

(
−D

dx
· dui

K

dx
+ gij(u1

K , u2
K)

∂V

∂uj

)
· gik

∂uk
K

∂γ
= 0

with respect to the parameter γ implies:

D2

dx2
· ∂ui

K

∂γ
+

∂uj
K

∂x
· ∂uk

K

∂γ
· ∂ul

K

∂x
Ri

jkl +

+gik

(
∂2V

∂uj∂uk
− Γl

jk(u1
K , u2

K)
∂V

∂ul

)
∂uj

K

∂γ
= 0 .

In the last three formulas the metric tensor, the covari-
ant derivatives, the connection, the curvature tensor, and
the gradient and Hessian of the potential are valued on
(u1

K , u2
K), see [39]. Thus, ∂ui

K

∂γ is an eigenvector of the
second order fluctuation operator of zero eigenvalue. The
derivatives of the NTK solutions (36)/(37) with respect
to the parameter γ2 are accordingly eigenvectors of the
second order fluctuation operator of zero eigenvalues or-
thogonal to the NTK orbit, i.e., Jacobi fields that move
from one NTK kink to another with no cost in energy.

Obtaining the explicit Jacobi fields using this idea is,
however, extremely subtle. We first write (34) and (35)

in a new form:

e2R2 sf2 γ2 =
(

1 + cu
1− cu

)sg(pu) (
1 + cv
1− cv

)sg(pv)sgv

·

·
[(

cf − cu
cf + cu

)sg(pu) (
cv− cf
cv + cf

)sg(pv)sgv
] 1

cf

(39)

e2 cf(x+γ1) =
(

cf − cu
cf + cu

)sg(pu) (
cv− cf
cv + cf

)sg(pv)sgv

(40)

The moduli space of NTK kinks described in (39)-(40) is
formed by four disconnected sets. We choose one of these
connected pieces to perform our analysis because the ar-
gument is identical in any of the four connected pieces.
Thus, we shall focus on the v ≥ 0 semi-sphere, φ1 ≥ 0,
and on the family of NTKs “starting” and “finishing” at
the South Pole Ā. Each kink orbit in this family crosses
the F2 -(u, v) = (f, f)- focus. This behavior is achieved
by the choice of sg(pu) 6= sg(pv) in the system of equa-
tions (39), (40).

The most difficult task is the identification of the x0

“instant” when a given NTK trajectory arrives at the F2

focus. Taking the limit u → f+ (from the right) and
v → f− (from the left) in equations (39) and (40), we
find:

e2R2 sf2 γ2 = lim
(u,v)→(f+,f−)

(
cf − cu
cv− cf

) sg(pu)
cf

e2(x0+γ1) = lim
(u,v)→(f+,f−)

(
cf − cu
cv− cf

) sg(pu)
cf

.

Therefore, x0 = −γ1 + R2 sf2 γ2 is the arrival “time” in
F2 which is different for the different NTK “trajectories”
characterized by γ2. This suggests the use of a new pa-
rameter, γ̄1 = γ1 − R2 sf2 γ2, in such a way that all the
NTKs “arrive” in F2 at the same “time”: x0 = −γ̄1.
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With the help of (39), equation (40) is replaced in
terms of the new parameter by:

e−2(x+γ̄1) =
(

1 + cu
1− cu

)sg(pu) (
1 + cv
1− cv

)sg(pv)

. (41)

Use of (41) allows us to re-write (39) in the new form:

e2R2 sf2 γ2+2 cf(x+γ̄1) =
(

cf − cu
cf + cu

)sg(pu) (
cv− cf
cv + cf

)sg(pv)

(42)
With this re-shuffling of the equations, we ensure that
all the NTK trajectories that solve (41)-(42) cross the
F2 focus at the same “instant”: x0 = −γ̄1. Implicit
derivation with respect to γ2 of (41)-(42) provides the
following linear system in the variables ∂uK

∂γ2
, ∂vK

∂γ2
:

R3 sf2 =
sg(pu) su
su2− sf2

∂uK

∂γ2
− sg(pv) sv

sf2− sv2

∂vK

∂γ2
(43)

0 = sg(pu) sv
∂uK

∂γ2
+ sg(pv) su

∂vK

∂γ2
. (44)

Finally, we obtain the family of Jacobi fields:

JNTK(x; γ2) =
R3(su2− sf2)(sf2− sv2)

su2− sv2
·

·
(

sg(pu) su
∂

∂u
− sg(pv) sv

∂

∂v

)
. (45)

In Figures 5 a)-b), 6 a)-b) two Jacobi fields for two values
of γ2, as well as the corresponding NTK field profiles, are
plotted for the three φ1, φ2, φ3 original field components.
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Figure 5: a) Profiles of the field components for NTK γ2 = 0
kink. b) Plot of the Jacobi field JNTK(x; 0)
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Figure 6: a) Profiles of the field components for NTK γ2 = 1
kink. b) Plot of the Jacobi field JNTK(x; 1)

The zeroes of the Jacobi fields along a given γ2-
NTK orbit (in the four disconnected sectors) are as
follows: either A ≡ (uK(−∞; γ2) = f, vk(−∞; γ2) =

0), F̄1 ≡ (uK(γ̄1; γ2) = πR − f, vK(γ̄1; γ2) = −f),
F̄2 ≡ (uK(γ̄1; γ2) = πR − f, vK(γ̄1; γ2) = f), or,
Ā ≡ (uK(−∞; γ2) = πR − f, vk(−∞; γ2) = 0), F1 ≡
(uK(γ̄1; γ2) = f, vK(γ̄1; γ2) = −f), F2 ≡ (uK(γ̄1; γ2) =
f, vK(γ̄1; γ2) = f). Thus, the conjugate points with re-
spect to either the North or the South Poles along the
NTK orbits are listed below:

StartingPoint ConjugatePoint ConjugatePoint

NorthPole : A Antipodal Focus : F̄1 Antipodal Focus : F̄2

SouthPole : Ā Focus : F1 Focus : F2

In this two-dimensional setting, the Morse index the-
orem states that the number of negative eigenvalues of
the second order fluctuation operator around a given or-
bit is equal to the number of conjugate points crossed by
the orbit [31]. The reason is that the spectrum of the
Schrödinger operator has in this case an eigenfunction
with as many nodes as the Morse index, the Jacobi field,
whereas the ground state has no nodes. The Jacobi fields
of the NTK orbits cross one conjugate point, their Morse
index is one, and the NTK kinks are unstable.

IX. NON-BPS NON-TOPOLOGICAL KINKS

The availability of the Hamilton characteristic function
as a sum of one function of u and another function of v
allows us to write the energy of static configurations á la
Bogomolny:

E[u, v] =
λ

2

∫
dx

{
su2− sv2

su2− sf2

(
du

dx
− su2− sf2

su2− su2

dF (β1)

du

)2

+
su2− sv2

sf2− sv2

(
dv

dx
− sf2− sv2

su2− su2

dG(β2)

dv

)2
}

+ λ

∫
dx

du

dx

dF (β1)

du
+ λ

∫
dx

dv

dx

dG(β2)

dv
.

Solutions of the first-order equations

du

dx
=

su2− sf2

su2− sv2

dF (β1)

du
= −R(−1)β1

su2− sf2

su2− sv2
su(46)

dv

dx
=

sf2− sv2

su2− sv2

dG(β2)

dv
= −R(−1)β2

sf2− sv2

su2− sv2
sv(47)

are absolute minima of the energy and therefore are
stable. Note that the energy of the solutions of (46)-
(47) is positive or zero because sgu′ = sg dF (β1)

du and
sgv′ = sg dG(β1)

dv .
Even though the NTK trajectories are solutions of the

analogous mechanical system provided by the HJ proce-
dure that is closely related to the ODE system (46)-(47),
they do not strictly solve (46)-(47). Taking the quotient
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of the two equations in (46)-(47) we find the equation

du

dv
= (−1)β1−β2

su2− sf2

sf2− sv2

su
sv

, (48)

which determines the kink orbit flow. Note that this
equation is identical to the equation in the HJ proce-
dure that one must integrate to find (34). The subtle
point, however, is that this flow is undefined, 0

0 , at the
four foci: F1, F2, F̄1, F̄2, and all the NTK orbits pass
through one of these dangerous points, see Figures 3(a)
and 3(b). Like K2 topological kinks, the non-topological
kink orbits solve (46)-(47) for a given sign combination
before meeting at a focus and are solutions of (46)-(47)
with another choice of signs after leaving these orbit in-
tersections. Thus, non-topological kinks are classified as
non-BPS in the terminology of previous Sections. We
remark that in elliptic coordinates the pathology is not
in the Hamilton characteristic function, as in spherical
coordinates, but in the factors induced by the change to
elliptic coordinates. The conclusion is that the energy of
the NTK kinks must be computed piecewise along the
orbit.

EC
K(γ2)

= 2λ
∣∣∣G(β2)(0)−G(β2)(v±B)

∣∣∣ +

+2λ
∣∣∣F (β1)(u+

B)− F (β1)(u−B)
∣∣∣

= 2λR2|1− σ|+ 2λR2|2σ| = 2λR2(1 + σ) (49)

gives the kink energy as the action of the corresponding
trajectory.

A. Singular K1 and K2 kinks: kink mass sum rule

A remake of the analysis of sub Section §III C about
the BPS character of topological kinks in elliptic coordi-
nates is illuminating. The K1/K∗

1 kink orbits lie in the
v = 0 line, splitting the two-halves of the elliptic rect-
angle: vK1 = vK∗

1
= 0, see Figure 3(b). The first-order

equations (46)-(47) on the K1/K∗
1 kink orbits (β1 = 0

gives kinks and β1 = 1 anti-kinks) and the K1/K∗
1 kink

profiles in elliptic coordinates are:

du

dx
= −(−1)β1R

su2− sf2

su
uK1(x) = uK∗

1
(x) = R arccos[σ tanh((−1)β1σx)] .

The K1/K∗
1 kink energy saturates the BPS bound:

EC
K1

= λ
∣∣∣F (β1)(uK1(+∞))− F (β1)(uK1(−∞))

∣∣∣ = 2λR2σ.

The K2/K∗
2 kink orbits are the four edges of the elliptic

rectangle: uK2 = uK∗
2

= Rθf , vK2 = Rθf , vK2 = −Rθf ,
uK2 = uK∗

2
= R(π − θf ), see again Figure 3(b). The

K2/K∗
2 kinks are accordingly three-step trajectories in

the elliptic rectangle.

I. −∞ < x < log tan θf

2 and uI
K2

= uI
K∗

2
= R(π − θf ),

the first-order ODE, and the solutions are:

β2 = 1, v′ = R| sv |, vI
K2

(x) = −vI
K∗

2
(x) = 2R arctan ex .

II. log tan θf

2 < x < log tan π−θf

2 , vII
K2

= −vII
K∗

2
= Rθf ,

the first-order ODE and the solution are:

β1 = 0, u′ = −R su, uII
K2

(x) = uII
K∗

2
(x) = 2R arctan e−x .

III. log tan π−θf

2 < x < +∞, uIII
K2

= uIII
K∗

2
, the first-

order equation and the solutions are:

β2 = 0, v′ = −R| sv |, vIII
K2

(x) = −vIII
K∗

2
(x) = 2R arctan e−x .

Anti-kinks are obtained by changing the choices of β1

and β2. In any case, the K2/K∗
2 kink energy is not of the

BPS form:

EC
K2

= λ

∣∣∣∣G(1)(v(−∞))−G(1)(v(log tan
θf

2
))

∣∣∣∣

+λ

∣∣∣∣F (0)(u(log tan
θf

2
))− F (0)(u(log cotan

θf

2
))

∣∣∣∣

+λ

∣∣∣∣G(0)(v(log cotan
θf

2
))−G(0)(v(+∞))

∣∣∣∣
= λR2|1− cf |+ λR2| − 2 cf |+ λR2|1− cf +1| = 2λR2.

It is remarkable that these energies satisfy the following
“Kink mass sum rule”:

EC
K(γ2)

= 2λR2(1 + σ) = EC
K2

+ EC
K1

(50)

In fact, the |γ2| → ∞ limit of the family of Kγ2 (NTK)
kinks is compatible with equation (34) only at the edges
of the elliptic rectangle (forming the K2/K∗

2 orbits) and
the K1/K∗

1 orbit. Therefore, the K1 and K2 kinks form
the boundary of the moduli space of NTK kinks in such a
way that (50) shows this combination as one of the NTK
kinks.

X. SOLITARY SPIN WAVES

Field configurations that satisfy the Euler-Lagrange
equations:

∂Aa

∂t
(t, x) =

3∑

b=1

(
δAb

δφa
(t, x)− δAa

δφb
(t, x)

)
· ∂φb

∂t
(t, x)

=
3∑

b=1

3∑
c=1

εabcBc[Φ(t, x)] · ∂φb

∂t
(t, x)

are extremals of the “Wess-Zumino” action:

SWZ[Φ] = R2

∫
dtdx

3∑
a=1

Aa[Φ(t, x)]
∂φa

∂t
(t, x) .
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In particular a “magnetic monopole ” field Ba[Φ(t, x)] =
φa(t,x)

R3 in the R3 internal space where the S2-sphere is
embedded is obtained by the choice of singular “vector
potentials”:

A±1 [Φ(t, x)] = − φ2√
φ2

1 + φ2
2 + φ2

3(φ3 ±
√

φ2
1 + φ2

2 + φ2
3)

A±2 [Φ(t, x)] =
φ1√

φ2
1 + φ2

2 + φ2
3(φ3 ±

√
φ2

1 + φ2
2 + φ2

3)

A±3 [Φ(t, x)] = 0 .

~A+[Φ(t, x)]] is singular on the negative φ3-axis but
a gauge transformation to ~A−[Φ(t, x)]] moves the
Dirac string -henceforth a gauge artifact- to the
positive φ3-axis. The scalar fields are constrained
to live in the φ2

1(t, x) + φ2
2(t, x) + φ2

3(t, x) = R2

sphere, a surface where this magnetic flux is con-
stant. Therefore, Stoke’s theorem tells us that SWZ =
R2

∫
dx

∮ ∑3
a=1 dφa(x)Aa[Φ(x)] is the area bounded by

a closed curve in S2.
The important point is that the Euler-Lagrange equa-

tions for the sum of the two actions SWZ + S, where S is
the action of our model as defined in (4), are:

1
R

3∑

b=1

3∑
c=1

εabcφc
∂φb

∂t
+ 2φa +

α2
a

λ2
φa = 0 . (51)

At the long wavelength limit, the ODE system (51) be-
come the Landau-Lifshitz system of equations of ferro-
magnetism. The connection between the semi-classical
(high-spin) limit of the Heisenberg model and the quan-
tum non-linear S2-sigma model is well established [33].

A. Spin waves

Plugging the constraint into (51), we find the system
of two ODE’s:

−
∑
α

εαβ
sgφ3

R




√
R2 −

∑
γ

φγφγ · ∂φα

∂t

+φα

∑
γ φγ∂tφγ√

R2 −∑
γ φγφγ


 + 2φβ + m2

βφβ

+
φβ

R2 −∑
γ φγφγ

[∑
γ φγ∂µφγ +

∑
δ φδ∂µφδ

R2 −∑
γ φγφγ

−
∑

γ

(∂µφγ∂µφγ + φγ2φγ)

]
= 0 . (52)

α, β, γ = 1, 2, m2
1 = 1, m2

2 = σ2. The ground states are
the homogeneous solutions of this system: φ0

1 = φ0
2 = 0,

φ0
3 = ±R, see Figure 7.

Figure 7: a) Ground state φ0
3 = R . All the spins are aligned

pointing to the North Pole b) Ground state φ0
3 = −R. All the

spins are aligned pointing to the South Pole.

The spin fluctuations φ1(t, x) = δφ1(t, x), φ2(t, x) =
δφ2(t, x) around the ground state φ3(t, x) = R satisfy
the linearized equations:

0 =
∂δφ2

∂t
+

∂2δφ1

∂t2
− ∂2δφ1

∂x2
+ δφ1

0 = −∂δφ1

∂t
+

∂2δφ2

∂t2
− ∂2δφ2

∂x2
+ σ2δφ2

2 .

Therefore, the spin waves:

δφα(t, x) =
1√
λL

∑

k

1√
ω(k)

(
aα(k)eiωt−ikx+

+a∗α(k)e−iωt+ikx
)

(53)

satisfying periodic boundary conditions δφα(t, x) =
δφα(t, x + λL) are solutions of (53) for the frequencies
complying with the homogeneous system of algebraic
equations:
(
−ω2 + k2 + 1 iω

−iω −ω2 + k2 + σ2

)(
a1(k)
a2(k)

)
=

(
0
0

)
.

(54)
At the long wavelength limit ω2 << ω, (54) is tanta-
mount to the non-relativistic dispersion law

ω2(k2) = (k2 + 1)(k2 + σ2)

characteristic of ferromagnetic materials, although the
quadratic potential energy density prevents the standard
ω(k) = k2 form.

B. Bloch and Ising walls

One may check that the K1/K∗
1 kinks (11) solve the

static Landau-Lifshitz equations (52) on the φ1 = 0 orbit:

d2φ2

dx2
=

−φ2

R2 − φ2
2

[
(φ2

dφ2
dx )2

R2 − φ2
2

+
(

dφ2

dx

)2

+ φ2
d2φ2

dx2

]
+σ2φ2

The K1/K∗
1 kinks of the non-linear sigma model are con-

sequently solitary spin waves of this non-relativistic sys-
tem, see Figure 8.

Simili modo, the K2/K∗
2 kinks (12) solve (52) along

the φ2 = 0 kink orbit:

d2φ1

dx2
=

−φ1

R2 − φ2
1

[
(φ1

dφ1
dx )2

R2 − φ2
1

+
(

dφ1

dx

)2

+ φ1
d2φ1

dx2

]
+ φ1
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Figure 8: Graphic arrow representation of the K1 kinks: a)
K1 spin chain. b) Perspective from one component of the
boundary of S2 × R showing how the spin flip happens by
means of a π-rotation around the φ1-axis.

and are also spin solitary waves in this system, see Figure
9.

Figure 9: Graphic arrow representation of the K2 kink a)
K2 spin chain. b) Perspective from one component of the
boundary of S2 × R showing a forward spin flip.

Finally, because the system of ODE’s giving static so-
lutions of the (51) PDE system is the same as the static
field equations of the non-linear S2-sigma model, the
NTK kinks are also solitary spin waves, see Figure 10.

Figure 10: Graphic arrow representation of Kγ2 kinks: a)
Kγ2 spin chain. b) Perspective from the boundary of S2 × R
showing the 2π rotation around the φ1-axis of the spin to
come back to the initial ground state.

In sum, understood as solitary spin waves K1/K∗
1 kinks

are Bloch walls whereas K2/K∗
2 kinks are Ising walls de-

scribing interfaces between ferromagnetic domains, see
[34], [35]. In this model we have thus found a moduli
space of solitary waves with an structure almost identical
to the structure of the space of solitary waves of the XY
model described in Reference [34]. There are Bloch and
Ising walls and a one-parametric family of NTK kinks
that are non-linear superpositions of one Bloch and one
Ising wall with arbitrary separation between their cen-
ters. From the stability analysis performed in previous

Sections, it is clear that only the Bloch walls are stable
and saturate the Bogomolny bound. Things are different
at the σ = 1 limit where all the kinks are topological,
Bloch walls, and saturate the Bogomolny bound. In this
latter case the structure of the kink space is akin to the
kink space structure of the BNRT model [36], see [37],
[38], [14]. There is a one-parametric family of degenerate
Bloch walls saturating the Bogomolny bound.

XI. FURTHER COMMENTS:
SUPERSYMMETRY AND STABILITY

Finally, we briefly explore the possibility of embed-
ding our bosonic model with its moduli space of kinks
in a broader supersymmetric framework. It turns out
that the simpler N = 1, d = 1 + 1 SUSY version of
the massive non-linear S2-sigma model only exists if the
masses of the pseudo Nambu-Goldstone bosons are equal
(σ = 1). It also seems difficult to build more exotic pos-
sibilities coming from dimensional reduction of models of
Kahler or hyper-Kahler nature because the potential en-
ergy density is not compatible with complex structures
when σ 6= 1.

A. Isothermal coordinates

It is convenient to introduce isothermal coordinates in
the chart S2−{(0, 0,−R)}, which are obtained via stere-
ographic projection from the South Pole:

χ1 =
φ1

1 + φ3
R

=
Rφ1

R + sg(φ3)
√

R2 − φ2
1 − φ2

2

χ2 =
φ2

1 + φ3
R

=
Rφ2

R + sg(φ3)
√

R2 − φ2
1 − φ2

2

. (55)

Conversely,

φ1 =
2R2χ1

R2 + χ1χ1 + χ2χ2

φ2 =
2R2χ2

R2 + χ1χ1 + χ2χ2

φ3 = R
R2 − χ1χ1 − χ2χ2

R2 + χ1χ1 + χ2χ2
.
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The geometric data of the sphere in this coordinate sys-
tem are:

ds2 =
4R4

(R2 + χ1χ1 + χ2χ2)2
(dχ1dχ1 + dχ2dχ2)

Γ1
11 = −Γ1

22 = Γ2
12 = Γ2

21 =
−2χ1

R2 + χ1χ1 + χ2χ2
,

Γ2
22 = −Γ2

11 = Γ1
12 = Γ1

21 =
−2χ2

R2 + χ1χ1 + χ2χ2
,

R1
122 = R2

211 =
−4R4

(R2 + χ1χ1 + χ2χ2)2

R1
212 = R2

121 =
4R4

(R2 + χ1χ1 + χ2χ2)2
.

The action is:

S[χ1, χ2] =
∫

dx2 2R4

(R2 + χ1χ1 + χ2χ2)2
· [∂µχ1∂µχ1+

+∂µχ2∂µχ2 − (χ1χ1 + σ2χ2χ2)
]

,

whereas the K1 kinks are given by:

χ1
K1

(x) = 0 , χ2
K1

(x) = ±R exp[±σ(x− x0)] , (56)

and we rewrite the second order fluctuation operator
around the K1 kink (χ1

K1
(x) = 0, χ2

K1
(x) = Re−σx) in

the form:

∆K1η = −
(

d2η1

dx2
+ 2σ(1− tanhσx)

dη1

dx

− (
1− 2σ2 + 2σ2 tanh σx

)
η1

) ∂

∂χ1
−

(
d2η2

dx2
+

+2σ(1− tanh σx)
dη2

dx
+ σ2 (1− 2 tanh σx) η2

)
∂

∂χ2
.

In a parallel frame µ = µ1(x) ∂
∂χ1 + µ2(x) ∂

∂χ2 ∈
Γ(TS2 |K1) , dµi

dx + Γi
jk(χK)χ′jKµk = 0, along the K1 kink

orbit:

dµ1

dx
+ σ(1− tanh)µ1(x) = 0 ⇒ µ1(x) = 1 + e−2σx

dµ2

dx
+ σ(1− tanh)µ2(x) = 0 ⇒ µ2(x) = 1 + e−2σx .

we recover the Pösch-Teller operators:

∆K1η =
(
−d2η1

dx2
+ (1− 2σ2

cosh2σx
)η1

)
(1 + e−2σx)

∂

∂χ1

+
(
−d2η2

dx2
+ (σ2 − 2σ2

cosh2σx
)η2

)
(1 + e−2σx)

∂

∂χ2
(57)

Note that now the K1 orbits are the positive and negative
ordinate half-axes, the stereographic projections of the
ϕ = π

2 and ϕ = 3π
2 half-meridians, such that fluctuations

orthogonal to the orbit run in the direction of the abscissa
axis.

B. The N = 1 massive SUSY sigma model

In Reference [40] we analyzed the relationship of the
complete solution of the Hamilton-Jacobi equation for
zero energy and the superpotential of a supersymetric
associated classical mechanical system. Thus, we are
tempted to use the Hamilton characteristic function

W (β1,β2)(χ) =
(−1)β1R2

R2 + χ1χ1 + χ2χ2
· (58)

√
(σ+(β2)R2 + σ−(β2)(χ1χ1 + χ2χ2))2 − 4σ̄2R2χ1χ1,

σ±(β2) = 1± (−1)β2σ, to build the N = 1 SUSY exten-
sion of our massive non-linear S2-sigma model. On one
hand we have that:

1
2
gij ∂W (β1,β2)

∂χi
· ∂W (β1,β2)

∂χj
=

2R2(χ1χ1 + σ2χ2χ2)
(R2 + χ1χ1 + χ2χ2)2

,

∀β1, β2. On the other hand (58) is free of branch points
only for σ = 1. Supersymmetry does not allow superpo-
tentials with branch points and it seems that Hamilton-
Jacobi characteristic functions are compatible with a
weaker form called pseudo-supersymmetry in [41]. We
close our eyes to this fact for a moment and proceed to
formally build the N = 1 SUSY extension of our model
using (58).

There are also two Majorana spinor fields:

ψi(xµ) =

(
ψi

1(x
µ)

ψi
2(x

µ)

)
, (ψi

α)∗ = ψi
α, α = 1, 2 .

We choose the Majorana representation γ0 = σ2, γ1 =
iσ1, γ5 = σ3 of the Clifford algebra {γµ, γν} = 2gµν and
define the Majorana adjoints as: ψ̄i = (ψi)tγ0. The
action of the supersymmetric model is:

S =
∫

dx2

2

{
gij

(
∂µχi∂µχj + iψ̄iγµ(∂µψj + Γj

lk∂µχkψl)
)

−1
6
Rijlkψ̄iψjψ̄lψk − gij ∂W

∂χi

∂W

∂χj
− ψ̄i D∂W

∂χi∂χj
ψj

}
,

where D∂W
∂χi∂χj = ∂2

∂χi∂χj +Γk
ij

∂W
∂χk . The spinor supercharge

Q =
∫

dx gij

(
γµγ0ψi∂µχj + iγ0ψigjk ∂W

∂χk

)
(59)

acts on the configuration space and leaves the action in-
variant. Time-independent finite energy configurations
complying with

dχi

dx
= gij ∂W

∂χj
, ψi

1(x) = −ψi
2(x) (60)

annihilates the supercharge combination Q1 + Q2 and
these solutions might be interpreted as 1

2 BPS states in
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this supersymmetric framework. In particular, the SUSY
K1 kinks

χ1
K1

(x) = 0 , χ2
K1

= ±Re±σx

ψ1
K1

(x) =

(
0
0

)
, ψ2

K1
(x) = ±σRe±σx

(
1
−1

)

satisfy (60) (with appropriate choices of β1, β2). Note
that ψ2

K1
(x) is the SUSY partner of χ2

K1
(x) under the

action of the broken SUSY supercharge Q1 − Q2. We
also remark that

dχ2
K1

dx
= ±σRe±σx = ±σR(1 + e±2σx) · 1

cosh σx
,

i.e., the fermionic partner in the SUSY kink is the zero
mode of the second order fluctuation operator back from
the parallel frame to the K1 orbit.

C. Fermionic fluctuations

The Dirac equation ruling the small fermionic fluctua-
tions on the K1 kink reads:

Dδψi(t, x) = i(γ0∂0 − γ1∂1)δψi(t, x)

−iγ1Γi
jk(χK1)∂1χ

j
K1

(x)δψk(t, x)

+gij(χK1)
D∂W

∂χj∂χk
(χK1)δψ

k(t, x) .(61)

Acting on (61) with the adjoint Dirac operator, the
search for solutions of D†Dδψi(t, x) = 0 of the stationary
form δψi(t, x) = eiωtδ%i(x, ω) requires us to deal with the
following ODE system:

− d2

dx2
δ%i(x) + gij D∂W

∂χj∂χk
· gkl D∂W

∂χl∂χm
δ%m(x)

+Ri
jkl

d

dx
χj

K1

d

dx
χk

K1
δ%l(x)

−iγ1gij ∂W

∂χj
· gkl D2∂W

∂χk∂χl∂χm
δ%m(x) = ω2δ%i(x)

valued at χ = χK1 .
On eigenspinors of −iγ1 = σ1, δ%i

1(x) = ±δ%i
2(x) =

δ%i
±(x), the above spectral ODE system reduce to the

(symbolically written) pair of equations:

4±
K1

δ%± =
[
− d2

dx2
+ W ′′ ⊗W ′′ + R±W ′ ⊗W ′′′

]
δ%± .

(62)
4+

K1
is exactly equal to the second order differential op-

erator ruling the bosonic fluctuations. Therefore, in the
parallel frame to the K1 orbit we write 4+

K1
in matrix

form:

4+
K1

=

(
− d2

dx2 + 1− 2σ2

cosh2σx
0

0 − d2

dx2 + σ2 − 2σ2

cosh2σx

)
.

In the same frame 4−
K1

is the intertwined partner, see
[19]:

4−
K1

=

(
− d2

dx2 + 1 0
0 − d2

dx2 + σ2

)
.

If σ 6= 1, there is a bound state in 4+
K1

of energy
1 − σ2 unpaired with an eigenstate of the same energy
in 4−

K1
, a fact incompatible with supersymmetry as we

expected from the use of the complete solution of the
Hamilton-Jacobi equation as superpotential, closing our
eyes to the fact that, related to the instability of NTK
and K2 kinks, the Hamilton characteristic function has
branching points at the foci defining the elliptic coor-
dinate system. A similar problem arouse in [42] and
[43] where meromorphic Hamilton characteristic func-
tions have been found. It is an open problem to explore
whether or not these milder singularities allow the use of
these Hamilton characteristic functions as superpoten-
tials to extend the bosonic models dealt with in [42], [43]
to the supersymmetric framework.

If the masses are equal (σ = 1), however, the Hamilton
characteristic function is free of branching points and the
unpaired states are zero modes. The N = 1 SUSY model
is correct and we can apply the SUSY version of the
Cahill-Comtet-Glauber formula proposed in [44] to find
the same one-loop correction to the SUSY S2 kink as
given in [19]:

4ESUSY
K1

(σ = 1) = − λ

2π

2∑

i=1

(sin ν+
i − ν+

i cos ν+
i ) = −λ

π
.

Here ν+
1 = ν+

2 = arccos(0) = π
2 are the angles obtained

from the bound states of4+
K1

. There are no bound states
in the spectrum of 4−

K1
.
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