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Abstract

We investigate a peculiar supersymmetry of the pairs of reflectionless quantum mechanical
systems described by n-soliton potentials of a general form that depends on n scaling and
n translation parameters. We show that if all the discrete energy levels of the subsystems
are different, the superalgebra, being insensitive to translation parameters, is generated by
two supercharges of differential order 2n, two supercharges of order 2n + 1, and two bosonic
integrals of order 2n+1 composed from Lax integrals of the partners. The exotic supersymmetry
undergoes a reduction when r discrete energy levels of one subsystem coincide with any r
discrete levels of the partner, the total order of the two independent intertwining generators
reduces then to 4n− 2r + 1, and the nonlinear superalgebraic structure acquires a dependence
on r relative translations. For a complete pairwise coincidence of the scaling parameters which
control the energies of the bound states and the transmission scattering amplitudes, the emerging
isospectrality is detected by a transmutation of one of the Lax integrals into a bosonic central
charge. Within the isospectral class, we reveal a special case giving a new family of finite-gap
first order Bogoliubov-de Gennes systems related to the AKNS integrable hierarchy.

1 Introduction

Solitons and related topologically nontrivial objects such as kinks, instantons, vortices, monopoles
and domain walls play an important role in diverse areas of physics, engineering and biology [1,
2, 3]. Darboux and Bäcklund transformations, with their origin in the theory of the linear Sturm-
Liouville problem and classical differential geometry, proved to be very effective in their study
[4, 5]. Darboux transformations [4], on the other hand, underlie the construction of supersymmetric
quantum mechanics [6, 7]. Via the Bogomolny bound and the associated first order Bogomolny-
Prasad-Sommerfield equations [8, 9], supersymmetry, in turn, turns out to be closely related with
the topological solitons [10, 11, 12].

Solitons and their periodic analogs appear as solutions of classical nonlinear integrable field
equations, and by means of Lax representation [13] are related with reflectionless and periodic
finite-gap quantum systems [14, 15]. As both families of quantum systems are characterized by
nontrivial, higher derivative integrals of motion, one could expect that supersymmetric extensions
of them should possess some peculiar properties. This is indeed the case [16, 17, 18, 19, 20, 21],
and exotic supersymmetric structures of reflectionless and finite-gap systems found recently some
interesting physical applications [22, 23, 24, 25, 26].

The most known example of reflectionless systems is given by a hierarchy of Pöschl-Teller
potentials. The Schrödinger Hamiltonian with one-, two-, and, in general, n bound states Pöschl-
Teller reflectionless potentials controls, particularly, the stability of kinks in sine-Gordon, ϕ4 and
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other exotic (1+1)-dimensional field theory models [1, 3, 27, 28, 29, 30, 31, 32]. These systems also
appear in Gross-Neveu model [33, 34]. The indicated hierarchy represents, however, only a very
restricted case of a general family of n-soliton potentials. The latter corresponds to 2n-parametric
solutions of the Korteweg-de Vries (KdV) equation [2, 4, 35].

More explicitly, the Schrödinger operator is at the heart of the inverse scattering transform
method of solving the classical KdV equation, for which the reflectionless potentials Vn provide the
particle-like, n-soliton solutions. On the other hand, the Schrödinger Hamiltonians H = − d2

dx2 +Vn
with reflectionless potentials Vn control the stability of the above mentioned kink solutions in (1+1)-
dimensional field theories, and their certain supersymmetric quantum mechanical structure proved
particularly to be very useful in the computing of the kink mass quantum shifts, see ref. [36].

In the present paper we study the exotic supersymmetry that appears in the pairs of reflectionless
systems described by n-soliton potentials of the most general form. Namely, we investigate a
peculiar supersymmetric quantum mechanical structure of the class of one-dimensional systems
described by a matrix 2× 2 Hamiltonian

H =

(

− d2

dx2 + V+(x) 0

0 − d2

dx2 + V−(x)

)

, (1.1)

with
V+(x) = Vn(x,~κ, ~τ) and V−(x) = Vn(x,~κ

′, ~τ ′) (1.2)

to be n-soliton solutions of the KdV equation, each depending on the sets of n scaling parameters,
denoted here as ~κ and ~κ ′, and n translation parameters, ~τ and ~τ ′. One of the possible (but not
unique, see below) physical interpretations of the system (1.1), (1.2) is that it can be considered
as a Hamiltonian of non-relativistic spin-1/2 particle with spin-dependent forces of a special form
(not inducing spin flips).

A non-soliton system of a general form (1.1), with arbitrary chosen potentials V+(x) and V−(x),
has just a trivial integral given by the diagonal Pauli matrix σ3. For a special choice of potentials
V± =W 2(x)± dW

dx
, this trivial symmetry is extended for supersymmetric structure related to non-

trivial additional integrals of motion Q1 = −i d
dx
σ1 + σ2W (x), Q2 = iσ3Q1. They generate a linear

in H, Lie superalgebraic structure {Qa, Qb} = 2δabH, [H, Qa] = 0, a, b = 1, 2, with the integral
σ3 playing a role of the Z2-grading operator, [σ3,H] = 0, {σ3, Qa} = 0. It is such a linear super-
algebraic structure that appears, particularly, in the Landau problem for non-relativistic electron,
where superpotential is a linear function W (x) = ωx, and (1.1) takes a form of the superoscillator
Hamiltonian, see [7]. The existence of the linear supersymmetric structure is equivalent to the

condition that the upper and lower components of the matrix Hamiltonian, H± = − d2

dx2 + V±,
are related by the Darboux intertwining generators, H+A+ = A+H−, H−A− = A−H+, being
the first order differential operators A+ = d

dx
+W (x) and A− = A†

+ = − d
dx

+W (x). With this
observation, the construction can be generalized to nonlinear supersymmetry if the potentials V+
and V− are such that the corresponding partner Hamiltonians are connected by the intertwining
relations of the same form, but with A+ and A− = A†

+ to be differentials operators of order ℓ > 1.
If this happens, the system H possesses nilpotent supercharges Q+ = A+σ+ = 1

2 (Q2 + iQ1) and

Q− = A−σ− = Q†
+, [Q±,H] = 0, Q2

± = 0, where σ± = 1
2(σ1 ± iσ2). They generate a nonlin-

ear supersymmetry of the form {Qa, Qb} = 2δabPℓ(H), where Pℓ(H) is an order ℓ polynomial. The
simplest example of a system with nonlinear supersymmetry is provided by a generalized superoscil-
lator system H = b+b− + ℓ12(1 + σ3), for which A+ = (b−)ℓ, b± are the usual creation-annihilation

bosonic oscillator operators, and the order ℓ polynomial is Pℓ(H) =
∏ℓ−1

j=0(H − jω), see ref. [37].
The peculiarity of the system (1.1), (1.2) we study here is that the n-soliton potentials (1.2) are

reflectionless. By a known construction based on Crum-Darboux transformations, such potentials
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can be obtained from a free particle system, which possesses a momentum integral p = −i d
dx
. It

will be shown that, as a consequence, the n-soliton extended system is described by an exotic su-
persymmetric structure that includes not only one but two pairs of Z2-odd (anti-diagonal) matrix
supercharges, and two Z2-even (diagonal) additional nontrivial bosonic integrals being differential
operators of order 2n + 1. The supercharges in general case are higher order matrix differential
operators, two of which are of the even order 2r, and other two supercharges are of the odd order
2l+1 such that 2(r+ l) ≥ 2n. Corresponding superalgebra generated by four supercharges is non-
linear, and includes in its structure those additional nontrivial bosonic integrals of motion which are
nothing else as a Crum-Darboux dressed form of the free particle momentum operator. The super-
charges also have a nature of the dressed integrals of motion of the free spin-1/2 particle described
by the Hamiltonian (1.1) with V+ = V− = 0. We shall show that such a peculiar supersymmetric
structure of the extended n-soliton systems experiences radical changes in dependence on relation
between the two sets of the scaling and translation parameters of the partner potentials: the differ-
ential order of supercharges can change, and in the completely isospectral case when ~κ = ~κ ′, one of
the additional bosonic integrals transforms into the central charge of the corresponding nonlinear
superalgebra. Analyzing different faces of supersymmetry restructuring, we detect, particularly, a
special family of supersymmetric n-soliton partner potentials when one pair of supercharges reduces
to the matrix first order differential operators. These first order supercharges and H form between
themselves a linear superalgebra corresponding to the broken supersymmetry. In such a case, one
of the first order supercharges can be reinterpreted as a first order Hamiltonian of a Dirac particle.
The reinterpretation provides us then with new kink-anti-kink type solutions for the Gross-Neveu
model by means of the first order Bogoliubov-de Gennes system, in which a superpotential takes a
meaning of a condensate, an order parameter, or a gap function depending on the physical context.

The paper is organized as follows. In the next Section, we review the general construction of
soliton potentials with the help of Crum-Darboux transformations, summarize the basic properties
of the corresponding reflectionless quantum systems, and formulate precisely the problems related
to supersymmetry of soliton systems (1.1), (1.2) to be studied here. Section 3 is devoted to the
analysis of supersymmetry of non-isospectral pairs of reflectionless n = 1 systems with different
bound state energy levels given in terms of non-equal scaling parameters κ1 6= κ′1. In Section 4 we
investigate the changes this supersymmetric structure undergoes in the isospectral case κ1 = κ′1.
Section 5 generalizes the results of Section 3 for the case of n > 1-soliton pairs with completely
broken isospectrality. To clarify the supersymmetry picture in extended n > 1 systems with
partially broken and exact isospectralities, we study in detail the case of n = 2 in Section 6. In
Section 6.1 we review the properties of the generic n = 2 reflectionless systems to identify the
ingredients to be important for further analysis. Then, in Section 6.2, we discuss a generalization
of Crum-Darboux transformations that is related to alternative factorizations of the basic Crum-
Darboux generators of order n > 1. The results of Sections 6.1 and 6.2 are employed in Sections
6.3 and 6.4 for analysis of supersymmetry in extended n = 2 systems with partial isospectrality
breaking. Finally, in Sections 6.5, 6.6 and 6.7 we investigate the most tricky case of supersymmetry
in two-soliton extended systems with exact isospectrality. We do this first in Section 6.5 for a
particular case of exact isospectrality with a common virtual n = 1 subsystem. In Section 6.6 we
investigate a generic case of exact isospectrality, within which we detect yet another, very special,
particular case. The latter is studied in Section 6.7, and provides us with a new, first order finite-
gap system belonging to the AKNS hierarchy [38, 15]. In Section 7 we discuss how the results on
partially broken and exact isospectralities are generalized for the systems (1.1), (1.2) with n > 2.
In Section 8 we consider an interpretation of the system (1.1), (1.2) as a non-relativistic spin-1/2
particle with spin-dependent forces. We conclude the paper with discussion of the obtained results
and their possible developments and applications in Section 9.
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2 Family of reflectionless n-soliton systems

A Crum-Darboux transformation of order n, n = 1, 2, . . ., applied to a quantum free particle
generates a system characterized by the Hamiltonian [4]

Hn = H0 + Vn(x), Vn = −2
d2

dx2
lnWn . (2.1)

Here H0 = − d2

dx2 is a free particle Hamiltonian, and Wn = W (ψ1, . . . , ψn) is a Wronskian of its

eigenfunctions ψ1(x), . . ., ψn(x), H0ψj = E
(0)
j ψj ,

W (f1, . . . , fn) = detA, Aij =
di−1

dxi−1
fj, i, j = 1, . . . , n. (2.2)

A simple choice of ψj(x) in the form of the unidirectional plane waves eikjx, which are eingenso-
lutions of H0, produces the Wronskian of the form Wn(x) = const · ei(k1+...+kn)x, and, therefore,
Vn = 0. If we take a linear independent set of linear combinations of left- and right- moving plane
waves ψj(x) = eikjx + cje

−ikjx with cj 6= 0 for all j = 1, . . . , n, we obtain a nontrivial potential
Vn 6≡ 0, which satisfies a higher order stationary g-KdV, g = 2n + 1, (Novikov) equation being
a nonlinear ordinary differential equation with a linear highest derivative d gVn/dx

g term [39, 40].
(2.1) belongs then to a class of finite-gap, or algebro-geometric systems 1. For real kj, the emergent
‘finite-gap’ potential Vn(x) has, however, singularities on R and does not disappear at x = ±∞. An
appropriate choice of the free particle non-physical eigenfunctions (corresponding to certain linear
combinations of the left- and right- moving plane waves evaluated at imaginary momenta),

ψj =

{

coshκj(x+ τj), j = odd
sinhκj(x+ τj), j = even

, 0 < κ1 < κ2 < ... < κj−1 < κn , (2.3)

of energies E
(0)
j = −κ2j , j = 1, . . . , n, gives rise to a nodeless Wronskian Wn(x). A non-singular

2n-parametric potential
Vn = Vn(x;κ1, τ1, . . . , κn, τn) (2.4)

corresponds then to a reflectionless (Bargmann) system Hn with n + 1 non-degenerate states,

separated by n gaps, n of which, of energies E
(n)
j = −κ2j , j = 1, . . . , n, are the bound states, while the

non-degenerate state of zero energy, E = 0, lies at the bottom of the doubly degenerate continuous
spectrum with E > 0. From another perspective, reflectionless potential Vn(x;κ1, τ1, . . . , κn, τn)
describes n-soliton solutions of the KdV equation.

1Finite-gap periodic systems are given by the Its-Matveev representation of the form (2.1) but with W (x) sub-
stituted by a Riemann’s theta function [41]. If such a periodic potential is real and regular on R, the spectrum of
Schrödinger (Hill) operator is organized in valence and a conductance bands separated by gaps. (2.1) with reflec-
tionless, n-soliton potential (2.4) can be considered then as the infinite period limit of a periodic or almost periodic
finite-gap system. In the indicated limit, the valence bands shrink, some of which can merge in this process, and
transform into the non-degenerate discrete energy levels of the bound states of a resulting soliton potential; the semi-
infinite conductance band turns into the continuous part of the spectrum of a reflectionless system. Quantum systems
with periodic n-gap and non-periodic n-soliton potentials (whose discrete energy levels and continuous spectrum are
also separated by n gaps) are characterized by the existence of the differential operator of order 2n+1, related with a
higher order Novikov equation, that commutes with a Hamiltonian, see below. A free particle can be treated in this
picture as a zero-gap system (of an arbitrary period), for which the corresponding first order differential operator is
just the momentum integral p = −i d

dx
. For the theory of finite-gap and soliton systems including historical aspects,

see [14, 42].
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Eigenstates of Hn, Hnψ[n;λ] = λψ[n;λ], different from the physical bound states, are generated
from eigenfunctions ψ[0;λ] of the free particle, H0ψ[0;λ] = λψ[0;λ], λ 6= −κ2j ,

ψ[n;λ] =
W (ψ1, . . . , ψn, ψ[0;λ])

W (ψ1, . . . , ψn)
, (2.5)

where ψj are given by Eq. (2.3). Physical non-degenerate bound states of Hn with λ = −κ2j are
obtained by the same prescription (2.5) under the choice ψ[0;λ] = sinhκj(x + τj) for odd j, and
ψ[0;λ] = cosh κj(x+ τj) for even j. The lowest non-degenerate state of the continuous part of the
spectrum of Hn corresponds to the eigenstate ψ[0; 0] = 1 of H0.

Transmission scattering amplitudes a[n; k] for the continuous part of the spectrum E = k2,
k > 0, of reflectionless system Hn are defined by the scaling parameters κj [4],

a[n; k] =
n
∏

j=1

k − iκj
k + iκj

. (2.6)

The states (2.5) have an alternative but equivalent representation, ψ[n;λ] = An . . . A1ψ[0;λ],
generated by an n-sequence of the first order Darboux transformations,

ψ[j;λ] ≡ ψ[(κ, τ)(j);λ] = Ajψ[j − 1;λ] , (2.7)

where (κ, τ)(j) denotes the set of 2j parameters κ1, τ1, . . . , κj , τj, and Aj = Aj [(κ, τ)(j)] are the first
order differential operators defined recursively in terms of the states (2.3) by

A1 = ψ1
d

dx

1

ψ1
=

d

dx
− κ1 tanhκ1(x+ τ1) , (2.8)

Aj = (Aj−1 . . . A1ψj)
d

dx

1

(Aj−1 . . . A1ψj)
=

d

dx
−

(

d

dx
ln(Aj−1 . . . A1ψj)

)

. (2.9)

The first order operator Aj annihilates the state Aj−1 . . . A1ψj , that is a nonphysical eigenstate of
Hj−1 of eigenvalue −κ2j . As inverse to (2.7), there is, up to an overall multiplicative constant, a
relation

ψ[j − 1;λ] = A†
jψ[j;λ] . (2.10)

The zero mode of the first order operator A†
j is 1/(Aj−1 . . . A1ψj). It is the ground state of Hj of

the energy −κ2j .
A reflectionless j-soliton Hamiltonian Hj admits two factorization representations

Hj = A†
j+1Aj+1 − κ2j+1 = AjA

†
j − κ2j . (2.11)

In particular, the free particle 0-gap Hamiltonian H0 = − d2

dx2 has an alternative representation

H0 = A†
1A1 − κ21. From (2.11) there follow intertwining relations

AjHj−1 = HjAj , A†
jHj = Hj−1A

†
j , j = 1, . . . , n . (2.12)

Let us take now a pair of n-soliton reflectionless systems,

Hn = Hn(κ1, τ1, . . . , κn, τn) and H ′
n = Hn(κ

′
1, τ

′
1, . . . , κ

′
n, τ

′
n) , (2.13)

and consider the extended matrix 2×2 Hamiltonian of the form (1.1) with H+ = Hn and H− = H ′
n.

Two sets of parameters are supposed to be completely different, or may partially coincide. If the
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two sets of the scaling parameters κj , j = 1, . . . , n, and κ′j′ , j
′ = 1, . . . , n, do not coincide, the

two subsystems have not only different spectra of bound states, but in accordance with (2.6),
their transmission amplitudes are also different. If, moreover, κj 6= κ′j′ for all j, j′ = 1, . . . , n,
all the energy levels of bound states for two n-soliton reflectionless systems are different, and their
transmission amplitudes are given by rational functions of k with different zeroes and poles. Having
in mind that the factorization relations (2.11) and the associated intertwining relations (2.12) are
reformulated in terms of supersymmetric quantum mechanics construction, one can put a question:

• What a supersymmetric structure is associated with reflectionless pair (2.13) in a completely

non-isospectral case2 characterized by inequalities κj 6= κ′j′ for all j, j
′ = 1, . . . , n?

Such a kind of supersymmetry of the pairs of reflectionless systems was not investigated yet in the
literature, but, instead, supersymmetry of the pairs (H+ = Hj, H− = Hj+l), l ≥ 1, belonging to the
same Darboux chain (2.12) is usually considered. In particular, the pairs of reflectionless Pöschl-
Teller systems, see below, appear in the context of shape-invariance [43, 44, 7], they also emerge
in the infinite-period limit of finite-gap periodic crystal structures [22, 24]. Supersymmetry of
reflectionless Pöschl-Teller pairs (Hj , Hj+l) was studied recently from the perspective of AdS/CFT
holography and Aharonov-Bohm effect [45].

A special choice of the parameteres

κj = κ′j = jκ, τj = τ, τ ′j = τ ′, j = 1, . . . , n , (2.14)

results in two copies of the n-soliton potentials Vn = −n(n+ 1)κ2sech2κ(x + τ) and V ′
n = −n(n+

1)κ2sech2κ(x + τ ′), which describe two mutually shifted reflectionless Pöschl-Teller systems with
n bound states. Since the partner potentials under the choice (2.14) have exactly the same form,
this corresponds to a particular case of a shape-invariance, whose analog in the case of periodic
supersymmetric systems was called by Dunne and Feinberg ‘self-isospectrality ’ [17]. The exotic
nonlinear supersymmetry of the simplest isospectral pair (H+ = H1, H− = H ′

1) with κ1 = κ′1,
τ1 6= τ ′1 was investigated and applied for the description of the kink and kink-anti-kink solutions
of the Gross-Neveu model [46, 24]. One can expect that the self-isospectral pair of reflectionless
Pöschl-Teller systems with n > 1 bound states should also be described by some not studied yet
exotic nonlinear supersymmetric structure.

In a more general case of the choice κj = κ′j , j = 1, . . . , n, different from (2.14), the partners with
~τ 6= ~τ ′, ~τ = (τ1, . . . , τn), are completely isospectral, their bound states energies and transmission
amplitudes coincide, but the potentials have different form. We then arrive at the natural questions
related to that formulated above:

• How the supersymmetric structure of a general, non-isospectral case detects the coincidence
of some of the scaling parameters of two systems in (2.13)?

• Particularly, for a partial coincidence of the bound states energy levels, does the supersym-
metry distinguish the coincidence of the scaling parameters of the same level, κj = κ′j , from
that corresponding to the case when distinct levels, κj = κ′j′ with j 6= j′, coincide?

• Is the case of a complete isospectrality of the two systems, κj = κ′j , j = 1, . . . , n, detected
somehow by supersymmetric structure?

• Does the case of self-isospectrality possess some special characteristics from the viewpoint of
supersymmetry in comparison with a general case of isospectral systems with different form
of potentials?

2 Using this term we neglect the fact that the continuous (scattering) parts of the spectra of the partner systems
are the same, E ≥ 0.
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In what follows, we study a peculiar supersymmetric structure of the pair (2.13), and, particu-
larly, respond the highlighted questions.

3 Supersymmetry of n = 1 reflectionless pair with distinct scalings

We first investigate the supersymmetric structure of the extended system

H1 =

(

H1 0
0 H ′

1

)

(3.1)

described by the pair of n = 1 reflectionless Pöschl-Teller Hamiltonians H1 = H1(κ, τ) and H ′
1 =

H1(κ
′, τ ′) with κ 6= κ′ and arbitrary displacement parameters τ and τ ′. This will allow us to trace

how the restructuring of supersymmetry happens in the self-isospectral case κ = κ′, and to form a
base for further analysis for n > 1, where we will restore index 1, omitted here to simplify notations,
in the scaling and translation parameters.

The choice of a non-physical eigenstate ψ1(κ, τ) = coshκ(x+ τ), κ > 0, τ ∈ R, of H0 produces
a Hamiltonian of n = 1 reflectionless Pöschl-Teller system

H1 = −
d2

dx2
−

2κ2

cosh2 κ(x+ τ)
, (3.2)

and first order operators A1 and A
†
1 defined by Eq. (2.8). Operators A1 and A

†
1 factorize the shifted

for an additive constant Hamiltonians H0 and H1,

H1 = A1A
†
1 − κ2, H0 = A†

1A1 − κ2 , (3.3)

and intertwine them,
A†

1H1 = H0A
†
1 , A1H0 = H1A1 . (3.4)

A degenerate pair of eigenstates in the continuous part, E = k2, k > 0, of the spectrum of H1

is constructed from the free particle plane wave states,

ψ±k
1 = A1(κ, τ)e

±ikx = (±ik − κ tanhκ(x+ τ))e±ikx . (3.5)

The lowest non-degenerate state with E = 0 corresponds to a boundary case k = 0 of (3.5),

ψ0
1 = tanhκ(x+ τ) . (3.6)

Another, bound non-degenerate state

ψ−κ2

1 = κ sech κ(x+ τ) (3.7)

of energy E = −κ2 is obtained from the partner, ψ̃1(κ, τ) = sinhκ(x+τ), of non-physical eigenstate

ψ1(κ, τ) = cosh κ(x+ τ) of H0, ψ
−κ2

1 (κ, τ) = A1(κ, τ)ψ̃1(κ, τ).
Based on intertwining relations (3.4) and their analog for the system H ′

1 = H1(κ
′, τ ′), we

construct the second order operator

Y2 = Y2(κ, τ, κ
′, τ ′) = A1(κ, τ)A

†
1(κ

′, τ ′) = A1A
′
1
†
, Y †

2 = Y2(κ
′, τ ′, κ, τ) = Y ′

2 , (3.8)

that intertwines the partner Hamiltonians of the extended system (3.1), Y2H
′
1 = H1Y2. Taking into

account that H0 has an integral p = −i d
dx
, one can obtain yet another, third order intertwining

operator,

X3 = X3(κ, τ, κ
′, τ ′) = A1

d

dx
A′

1
†
, X†

3(κ, τ, κ
′, τ ′) = −X3(κ

′, τ ′, κ, τ) = −X ′
3 , (3.9)
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X3H
′
1 = H1X3, which is independent from the second order intertwiner Y2.

Intertwining relations in the reverse direction are obtained by a change κ, τ ↔ κ′, τ ′, that
corresponds to a Hermitian conjugation of the corresponding relations, Y †

2H1 = H ′
1Y

†
2 , X

†
3H1 =

H ′
1X

†
3 , see Fig. 1a.

Figure 1: a) Non-isospectral one-soliton Hamiltonians H1 (blue dot) and H ′
1 (white dot) are inter-

twined by the second, Y2 and Y †
2 , and the third, X3 and X†

3 , order Crum-Darboux operators via a
virtual translation-invariant free particle system H0 (half blue/half white dot). b) In the isospectral

case κ = κ′, a direct ‘tunneling’ channel for intertwining by the first order operators X̆1 and X̆†
1 is

opened. In both cases, Lax integrals Z3 and Z
′
3, being the dressed forms of the free particle integral

d
dx
, are the ‘self-intertwining’ generators for H1 and H ′

1.

The free particle integral p = −i d
dx

and intertwining relations (3.4) also generate a nontrivial
integral for the n = 1 reflectionless Pöschl-Teller subsystem H1(κ, τ),

Z3 = Z3(κ, τ) = A1
d

dx
A†

1 , Z†
3 = −Z3 , (3.10)

and the analogous integral, Z ′
3 = A′

1
d
dx
A′†

1 , for H1(κ
′, τ ′). Integral (3.10) is a nontrivial operator of

a Lax pair for stationary KdV equation in the non-periodic case.
Here and in what follows, the odd and even order intertwining operators are denoted by X

and Y , respectively, while the odd order integrals of the corresponding reflectionless systems are
denoted by Z; the lower index indicates the differential order of these operators.

Integral (3.10) detects both physical non-degenerate states of H1(κ, τ) by annihilating them

Z3ψ
0
1(κ, τ) = Z3ψ

−κ2

1 (κ, τ) = 0. The third state of its kernel is a non-physical eigenstate ψ̃−κ2

1 (x) =

ψ−κ2

1 (x)
∫

dx/(ψ−κ2

1 (x))2 of H1 of energy −κ2, which is a linear combination of the physical bound

state ψ−κ2

1 (x) of the same energy and of a non-physical eigenstate ψ1(κ, τ) = coshκ(x+ τ) of H0.
The extended system (3.1) has an obvious integral of motion σ3. The intertwining relations

together with integral (3.10) allow us to identify the nontrivial Hermitian integrals for the system
H1,

Q1;1 =

(

0 Y2
Y †
2 0

)

, Q1;2 = iσ3Q1;1, S1;1 =

(

0 X3

X†
3 0

)

, S1;2 = iσ3S1;1, (3.11)

P1;1 = −i

(

Z3 0
0 Z ′

3

)

, P1;2 = σ3P1;1 . (3.12)

As σ23 = 1, we can take the integral Γ = σ3 as a Z2-grading operator. It classifies then P1;a,
a = 1, 2, as bosonic integrals, [σ3,P1;a] = 0, while the integrals (3.11) are identified as fermionic
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supercharges, {σ3,Q1;a} = {σ3,S1;a} = 0, of the supersymmetric structure of the extended system
H1. There are other possibilities to choose Γ, which are based on reflection operators and classify
the nontrivial integrals of the extended system in a way different from that prescribed by the choice
Γ = σ3. The alternative choices for Γ find some interesting physical applications, see [22, 24, 46, 47],
and we return to the discussion of this point in the last Section.

Operators (3.11) and (3.12) are the Darboux-dressed integrals of the extended system described
by the Hamiltonian H0 = diag(H0,H0) composed from two copies of the free particle Hamiltonian
H0. The system H0 possesses the set of 2× 2 matrix Hermitian integrals

I0 = σa, ǫabσbp, 1p, σ3p, a = 1, 2 . (3.13)

The Darboux dressing,

I1 = D1I0D
†
1 , D1 = diag (A1(κ, τ), A1(κ

′, τ ′)) , (3.14)

transforms them into the integrals (3.11) and (3.12) of H1.
We find the superalgebraic structure of the system H1 by employing the intertwining and

factorization relations (3.4) and (3.3). It is given by the following nontrivial (anti)-commutation
relations:

{Qa,Qb} = 2δabP1(H1, κ)P1(H1, κ
′) , {Sa,Sb} = 2δabH1P1(H1, κ)P1(H1, κ

′) , (3.15)

{Sa,Qb} = 2ǫabP1(H1,K)P1 , (3.16)

[P1,Sa] = iH1P
−
0 (H1, κ, κ

′)Qa , [P1,Qa] = −iP−
0 (H1, κ, κ

′)Sa , (3.17)

[P2,Sa] = iH1P
+
1 (H1, κ, κ

′)Qa , [P2,Qa] = −iP+
1 (H1, κ, κ

′)Sa , (3.18)

where P1(H1, κ) = H1 + κ2 · 1, P1(H1,K) = H1 +K2, K = diag (κ′, κ),

P
−
0 (H1, κ, κ

′) = P1(H1, κ)− P1(H1, κ
′) = (κ2 − κ′2) · 1 , (3.19)

P
+
1 (H1, κ, κ

′) = P1(H1, κ) + P1(H1, κ
′) = 2H1 + (κ2 + κ′2) · 1, and to simplify the formulae, we

omitted the index n = 1 in the supercharges and bosonic integrals. Though in the final expression
for P

−
0 in (3.19) the dependence on H1 disappears, it is indicated here in the arguments having

in mind a further generalization for the n > 1 case, where this structure is substituted for the
polynomial of order n− 1 in Hamiltonian.

The n = 1 extended reflectionless system (3.1) is described therefore by a nonlinear superalgebra
generated by four fermionic supercharges, Q1;a and S1;a, and by two bosonic integrals 3, P1;a.
The fermionic integrals are constructed from the intertwining operators of the second and third
orders, whose composition produces nontrivial third order integrals of Lax pairs of the n = 1
non-isospectral subsystems. In this supersymmetric structure, Hamiltonian plays a role of the
multiplicative central charge. The nonlinear superalgebra depends here on the scaling parameters
κ and κ′ via the polynomials P1, P

+
1 and P

−
0 , but does not depend on the displacement parameters

τ and τ ′.

3There are four bosonic integrals if one counts the integrals H1 and σ3.
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4 Supersymmetry of the n = 1 self-isospectral pair

For the isospectral extended system H1 with κ = κ′, the partner potentials have the same form
and are mutually displaced. This n = 1 self-isospectral case is special from the viewpoint of
supersymmetric structure. As follows from (3.17) and (3.19), for κ = κ′ the integral P1;1, composed
from the third order integrals of Lax pairs of superpartner subsystems, commutes with all the
integrals, and so, transmutes into a bosonic central charge of the nonlinear superalgebra. We show
now that the supersymmetric structure in this case undergoes even more radical changes.

For κ = κ′ the following reduction takes place 4 :

X3(κ, τ, κ, τ
′) =

(

H1(κ, τ) + κ2
)

X̆1(κ, τ, τ
′)− C(κ, τ − τ ′)Y2(κ, τ, κ, τ

′) , (4.1)

where

X̆1(κ, τ, τ
′) =

d

dx
− κ tanh κ(x+ τ) + κ tanhκ(x+ τ ′) + C(κ, τ − τ ′) (4.2)

= A1(κ, τ) −A†
1(κ, τ

′) +A†
C(κ, τ − τ ′) , (4.3)

AC(κ, τ − τ ′) =
d

dx
+ C(κ, τ − τ ′) , C(κ, τ − τ ′) = κ coth κ(τ − τ ′) . (4.4)

Relation (4.1) means that for τ 6= τ ′, the first order operator X̆1 = X̆1(κ, τ, τ
′) should be taken

as a basic odd order intertwining operator instead of X3(κ, τ, κ, τ
′),

X̆1H1(κ, τ
′) = H1(κ, τ)X̆1 , X̆†

1(κ, τ, τ
′) = −X̆1(κ, τ

′, τ) = −X̆ ′
1 . (4.5)

Note that in the limit τ ′ → ±∞, we have H ′
1 → H0 and X̆1 → A1, while for τ → ±∞, H1 → H0

and X̆1 → −A′
1
†. This is coherent with the intertwining relations (3.4).

Because of (4.1), the third order integrals S1;a are reducible, S1;a = (H1 + κ2)S̆1;a −CQ1;a , and
have to be changed for the first order irreducible integrals

S̆1;1 =

(

0 X̆1

X̆†
1 0

)

, S̆1;2 = iσ3S̆1;1 . (4.6)

Integrals S̆1;a correspond, in accordance with (3.14), to the dressed form of the integrals
s̆a = ǫabσbp+Cσa, of the extended free particle system H0 = diag(H0,H0), Ds̆aD

† = S̆1;a(H1+κ
2).

Alternatively, the first order matrix operator s̆1 = σ2p+ Cσ1, or s̆2 = iσ3s̆1, can be considered as a
first order Hamiltonian of the free Dirac particle of mass |C| in (1+1) dimensions, while its dressed
form, S̆1;1, can be identified as a Bogoliubov-de Gennes Hamiltonian describing the kink-antikink so-
lution in the Gross-Neveu model [33]. Function ∆(ξ, λ) = κ (tanh (ξ − λ)− tanh (ξ + λ) + coth 2λ),
that appears in the structure of X̆1 with ξ = κ(x + τ+τ ′

2 ) and λ = −κ τ−τ ′

2 , has then a sense of a
gap function [23].

The following relations are valid:

X̆1X̆
†
1 = H1(κ, τ) + C2 , (4.7)

X̆1A1(κ, τ
′) = A1(κ, τ)AC(κ, τ − τ ′) , A†

1(κ, τ)X̆1 = AC(κ, τ − τ ′)A†
1(κ, τ

′) . (4.8)

4A reduction of the third order intertwining generators was discussed in a general form in [48], however, with
giving no special attention to a peculiar supersymmetric structure we study here; see also [49].
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The employment of (4.7), (4.8) together with (4.5) gives nontrivial nonlinear superalgebraic relations

{S̆1;a, S̆1;b} = 2δabhC , {Q1;a,Q1;b} = 2δabh
2
κ , (4.9)

{S̆1;a,Q1;b} = 2δabChκ + 2ǫabP1;1 , (4.10)

[P1;2, S̆1;a] = 2i(hCQ1;a − ChκS̆1;a) , [P1;2,Q1;a] = 2ihκ(CQ1;a − hκS̆1;a) , (4.11)

which substitute nontrivial superalgebraic relations (3.15), (3.16), (3.17) and (3.18) of the general,
non-isospectral case n = 1. Here we denoted hκ = H1+κ

2, hC = H1+C2. As C2 > κ2, the spectrum
of hC is strictly positive, and the Lie sub-superalgebra generated by the first order supercharges S̆1;a

corresponds to a broken N = 2 supersymmetry. The P1;1 commutes now with all the supercharges
in accordance with the observation made at the beginning of the Section.

While the third order intertwining operator (3.9) is well defined at κ = κ′, τ = τ ′ and reduces to
the integral Z3(κ, τ) of H1(κ, τ), the first order intertwining operator X̆1(κ, τ, τ

′) in the limit τ ′ → τ
reduces to the operator d

dx
shifted for an infinite additive constant term ±∞ in dependence on which

side the difference (τ−τ ′) tends to zero. In this case extended Hamiltonian (3.1) reduces just to the
two identical copies of the Pöschl-Teller Hamiltonians, H1(κ, τ) = diag(H1(κ, τ),H1(κ, τ)). The
integrals S̆1;a, a = 1, 2, can be renormalized multiplying them by 1/C(κ, τ − τ ′), and taking a limit
τ ′ → τ . In such a way they are reduced to the trivial integrals σa, a = 1, 2, of H1(κ, τ). The second
order intertwining operator (3.8) reduces in the limit τ ′ → τ to H1(κ, τ)+κ

2, and the second order
supercharges Q1;a are reduced to the same trivial integrals σa multiplied by a shifted for a constant
Hamiltonian, Q1;a → (H1(κ, τ)+κ

2 ·1)σa. The only nontrivial integrals we have in the limit τ ′ → τ
are the bosonic third order integrals P1;a(κ, τ).

The special case of self-isospectrality in the n = 1 extended system H1 is detected, therefore, by
a radical change of nonlinear supersymmetric structure. One of the bosonic integrals, P1;1, turns
into a central charge, and two third order supercharges are substituted for the supercharges of the
first order. The reduction of the order of the half of the supercharges at κ = κ′ originates from
relation (4.1) and is accompanied by appearance of dependence of the superalgebraic structure
on the distance between mutually shifted one-soliton partner potentials by means of a constant
C = κ coth κ(τ − τ ′). In other words, one can say that in a generic case κ 6= κ′, the H1 and H ′

1 are

intertwined by the third order operators X3 and X†
3 , side by side with the second order operators

Y2 and Y †
2 , via the free particle (zero gap) system, and the supersymmetric structure does not

feel a relative distance τ − τ ′ between the corresponding one-soliton subsystems because of the
translation invariance of H0. For κ = κ′, a kind of a ‘tunneling’ channel is opened: the one-soliton
subsystems are intertwined then directly by the first order operators X̆1 and X̆†

1 , and the modified
supersymmetric structure detects a ‘tunneling distance’ τ − τ ′, see Fig. 1b.

5 Supersymmetry of an n > 1 extended system: complete isospec-

trality breaking

The discussion of supersymmetric structure for extended system composed from two subsystems
having n ≥ 2 bound states requires to distinguish three cases:

• Complete isospectrality breaking, when κi 6= κ′j for all i, j = 1, . . . , n, with no restriction on
displacement parameters τi and τ

′
j .

• Partial isospectrality breaking, in which some, but not all, scaling parameters κi and κ′j of
the two subsystems coincide.
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• Exact isospectrality, that is characterized by the complete coincidence of the sets of the scaling
parameters, ~κ = ~κ′, accompanied by a restriction ~τ 6= ~τ ′.

The case of a complete isospectrality breaking for n > 1 is a direct generalization of that for
n = 1 case with κ1 6= κ′1, which was studied in Section 3. It is discussed in the present Section.
Other two cases are more involved. Though they generalize somehow the picture of the one-soliton
case (n = 1) with κ1 = κ′1 = κ, investigated in the previous Section, the corresponding analysis
for n > 1 requires a generalization of the described Crum-Darboux transformations scheme. New
peculiarities appear there, and those two cases deserve a separate consideration. To understand
the picture, we study the case of n = 2 in the next Section, and then in Section 7 the results will
be extended for a generic case of n ≥ 2.

With these comments in mind, let us consider an extended system

Hn =

(

Hn 0
0 H ′

n

)

, (5.1)

composed from a completely non-isospectral pair Hn = Hn(~κ, ~τ ) and H
′
n = Hn(~κ

′, ~τ ′) of the form
(2.13), where ~κ = (κ1, . . . , κn), ~τ = (τ1, . . . , τn), and we assume that there is no coincidence in the
sets of the scaling parameters of the two subsystems, κj 6= κ′j′ for all j, j

′ = 1, . . . , n, see Fig. 2a.

...

...

Figure 2: a) An n > 1 pair with complete isospectrality breaking. Each subsystem, Hn and H ′
n,

is specified by indicating the set of intermediate, virtual, systems in the plane κ− τ via which the
edge points are connected to the free particle by means of the first order Darboux generators Aj

and A†
j, not shown here. Figs. b) and c) illustrate two alternative representations for the same

n = 2 system, that is related to the two different factorizations of the second order Crum-Darboux
generator A2. In the case b) the virtual system is regular, while in the case c) it is singular. So, a
system is specified not only by indication of the set of points in the κ − τ plane, but also by the
path via these points to a free system H0.

Following the general picture described in Section 2, Hamiltonian Hn = Hn(~κ, ~τ) can be inter-
twined with a free particle Hamiltonian H0 by order n differential operators An = An(~κ, ~τ) and

A
†
n = A

†
n(~κ, ~τ ),

An(~κ, ~τ) = An((κ, τ)n)An−1((κ, τ)n−1) . . . A1 (κ1, τ1) , (5.2)

defined in terms of Darboux generators (2.8), (2.9),

AnH0 = HnAn, A
†
nHn = H0A

†
n . (5.3)
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Making use of these relations, we construct an order 2n operator

Y2n = Y2n(~κ, ~τ ;~κ
′, ~τ ′) = AnA

′
n
†
, Y †

2n = Y2n(~κ
′, ~τ ′;~κ, ~τ ) = Y ′

2n , (5.4)

where A
′
n = An(~κ

′, ~τ ′), and two operators of the order 2n + 1, X2n+1 and Z2n+1,

X2n+1(~κ, ~τ ;~κ
′, ~τ ′) = An

d

dx
A
′
n
†
, X†

2n+1 = −X2n+1(~κ
′, ~τ ′;~κ, ~τ) = −X ′

2n+1 , (5.5)

Z2n+1 = Z2n+1(~κ, ~τ) = An
d

dx
A
†
n , Z†

2n+1 = −Z2n+1 . (5.6)

Operators Y2n and X2n+1 intertwine the components of the matrix Hamiltonian Hn
5,

Y2nH
′
n = HnY2n , X2n+1H

′
n = HnX2n+1 , (5.7)

while Z2n+1(~κ, ~τ) is an integral for Hn(~κ, ~τ),

[Z2n+1,Hn] = 0 . (5.8)

Taking into account that the coefficients of the (2n + 1) order differential operator Z2n+1 may be
expressed in terms of the potential Vn and its derivatives of the order less than 2n+1 [40], relation
(5.8) means that the potential Vn satisfies a higher stationary g-KdV equation with g = 2n + 1,
mentioned in Section 2.

In correspondence with an identity Z2
2n+1 = −Hn

∏j=n
j=1 (Hn + κ2j )

2, the integral Z2n+1 detects

all the physical non-degenerate states of Hn of energies E = 0 and Ej = −κ2j by annihilating them.

These are constructed from the free particle non-degenerate eigenstate ψ0
0 = 1, ψ0

n = An1, and non-

physical partners of the states (2.3), ψ̃1 = sinhκ1(x+ τ1), ψ̃2 = coshκ2(x+ τ2), . . . , ψ
−κ2

j
n = Anψ̃j ,

j = 1, . . . , n. Other n states of the kernel of Z2n+1 are non-physical partners of the bound states

ψ
−κ2

j
n , ψ̃

−κ2

j
n (x) = ψ

−κ2

j
n (x)

∫

dx/(ψ
−κ2

j
n (x))2.

With the described operators, we construct six matrix integrals Qn;a, Sn;a and Pn;a for the
extended system Hn in the form similar to that in (3.11) and (3.12) by changing Y2, X3 and Z3 for,
respectively, Y2n, X2n+1 and Z2n+1. As in the n = 1 case, these integrals correspond to a dressed
form of the integrals of the extended free particle system H0 obtained by means of Eq. (3.14) with
the change of D1 for Dn = diag (A(~κ, ~τ),An(~κ

′, ~τ ′)).
Applying factorization and intertwining relations, and products of corresponding generators

collected in Appendix, we find that the superalgebra (3.15), (3.16), (3.17), (3.18) of the n = 1 case
is generalized for

{Qn;a,Qn;b} = 2δabPn(Hn, ~κ)Pn(Hn, ~κ
′) , {Sn;a,Sn;b} = 2δabHnPn(Hn, ~κ)Pn(Hn, ~κ

′) , (5.9)

{Sn;a,Qn;b} = 2ǫabPn(Hn, ~K)Pn;1 , (5.10)

[Pn;1,Sn;a] = iHnP
−
n−1(Hn, ~κ,~κ

′)Qn;a , [Pn;1,Qn;a] = −iP−
n−1(Hn, ~κ,~κ

′)Sn;a , (5.11)

[Pn;2,Sn;a] = iHnP
+
n (Hn, ~κ,~κ

′)Qn;a , [Pn;2,Qn;a] = −iP+
n (Hn, ~κ,~κ

′)Sn;a , (5.12)

where Pn(Hn, ~κ) =
∏n

j=1(Hn + κ2j · 1), P
+
n (Hn, ~κ,~κ

′) = Pn(Hn, ~κ) + Pn(Hn, ~κ
′), P−

n−1(Hn, ~κ,~κ
′) =

Pn(Hn, ~κ)− Pn(Hn, ~κ
′), Pn(Hn, ~K) =

∏n
j=1(Hn +K2

j ), Kj = diag (κ′j , κj).

5Intertwining relations through multi-step ladders of linear Darboux generators and their superalgebraic reducibil-
ity have been recently reviewed in [50], but in a very general and abstract form.

13



Operator P−
n−1(Hn, ~κ,~κ

′) is a polynomial of order n − 1 in the extended Hamiltonian Hn that
vanishes for ~κ = ~κ′. Then Eq. (5.11) signals that the supersymmetric structure of the n > 1
reflectionless system Hn with exact isospectrality simplifies as in the case n = 1: the integral
Pn,1 turns into bosonic central charge of the nonlinear superalgebra. Moreover, from the form of
polynomial in Hn coefficients in superalgebra, one can expect that the supersymmetric structure
should undergo some radical changes even in the case when not all the pairs of the scaling parameters
coincide but only part of them. For instance, if κ′j′ = κj for some indexes j′ and j, which may

coincide, j′ = j, or may be different, j′ 6= j, the same factor (Hn + κ2j · 1), or its square, appears
in all the structure coefficients of the superalgebra. By analogy with the n = 1 case this indicates
that some fermionic supercharges may be substituted for supercharges of a lower differential order.
To understand what changes the supersummetric structure undergoes in the cases of a partially
broken or exact isospectrality, we investigate in detail the extended system (5.1) for the case of
n = 2 in the next Section.

6 Supersymmetry of the n = 2 extended system

Explicit form of the supersymmetric structure for extended n = 2 system with completely broken
isospectrality follows as a particular case from a generic consideration of the previous Section.
Before analyzing the partially broken and exact isospectrality cases, we first discuss some properties
of the n = 2 reflectionless system of the most general form. It is a particular case of such a system,
described by the two-soliton Pöschl-Teller Hamiltonian, that appears in ϕ4 field theoretical model
with a double well potential, where it controls the stability of the kink and anti-kink solutions.

6.1 Generic reflectionless system with two bound states

Explicit form of the Hamiltonian of an n = 2 reflectionless system of a general form is

H2 (~κ, ~τ ) = −
d2

dx2
+ V2(x;~κ, ~τ), (6.1)

V2(x;~κ, ~τ ) = −2(κ22 − κ21)
−1
(

κ22csch
2κ2(x+ τ2) + κ21sech

2κ1(x+ τ1)
)

w2(x;~κ, ~τ) , (6.2)

where
w(x;~κ, ~τ) = (κ21 − κ22) (κ2 coth κ2(x+ τ2)− κ1 tanhκ1(x+ τ1))

−1 . (6.3)

In the limit τ2 → ±∞, the two-soliton system (6.1) transforms into that of the one-soliton case,

V2 → −2κ21sech
2κ1(x+ τ1 ∓ ξ1) , (6.4)

where a shift parameter is defined by a relation sinhκ1ξ1 = κ1/
√

κ22 − κ21. In another limit, τ1 →
±∞, the two-soliton potential transforms into the one-soliton potential given by an expression of
the form (6.4) but with the index 1 in the parameters changed for 2; the shift parameter ξ2 is given
then by a relation sinhκ2ξ2 = κ2/

√

κ22 − κ21. The indicated limits correspond to a picture of a
two-soliton scattering described by the KdV equation, where the n = 1 solitons of amplitudes 2κ21
and 2κ22 in such a process suffer asymptotically only temporal shifts [51].

Non-degenerate bound states of the system (6.1), ψ
−κ2

j

2 = A2ψ̃j , j = 1, 2, of energies E = −κ21
and E = −κ22 are obtained from the partners, ψ̃1 = sinhκ1(x+ τ1) and ψ̃2 = cosh κ2(x + τ2), of
non-physical eigenstates ψ1 = coshκ1(x+ τ1) and ψ2 = sinhκ2(x+ τ2) of H0 by applying to them
the second order composite operator

A2(~κ, ~τ) = A2(~κ, ~τ )A1(κ1, τ) , (6.5)
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ψ
−κ2

1

2 = κ1sechκ1(x+ τ1)w(x;~κ, ~τ ) , ψ
−κ2

2

2 = −κ2csch κ2(x+ τ2)w(x;~κ, ~τ ) . (6.6)

Here

A2(~κ, ~τ ) = (A1ψ2)
d

dx

1

(A1ψ2)
= −A†

1(κ1, τ1) + w(x;~κ, ~τ) , (6.7)

and A1 is defined by Eq. (2.8). Function (6.3) satisfies the identities

dw/dx = 1
2V2 , (6.8)

w2 + 2κ1w tanhκ1(x+ τ1) =
1
2V2 + κ22 − κ21 , (6.9)

w2 + 2κ2w coth κ2(x+ τ2) =
1
2V2 + κ21 − κ22 , (6.10)

which will play a fundamental role in what follows.
The degenerate pairs of the states of the continuous part of the spectrum with E = k2 > 0 are

obtained from the plane wave states of the free particle, ψ±k
2 = A2e

±ikx,

ψ±k
2 =

[

−(k2 + κ21) + (±ik − κ1 tanhκ1(x+ τ1))w(x;~κ, ~τ)
]

e±ikx . (6.11)

The boundary case k = 0 gives a non-degenerate, zero energy edge state ψ0
2 at the bottom of the

continuous spectrum.
The particular case of reflectionless n = 2 Pöschl-Teller system,

H2(κ, τ) = −
d2

dx2
− 6κ2sech2κ(x+ τ),

is obtained by putting κ2 = 2κ1 = 2κ and τ2 = τ1 = τ . In this case, the function (6.3) and the
operator (6.7) are reduced to w = −3κ tanhχ and A2 =

d
dx

− 2κ tanhχ, the indicated bound states

are transformed, modulo overall multiplicative constants, into ψ−κ2

2 = sinhχ sech2χ (E = −κ2)

and ψ−4κ2

2 = sech2χ (E = −4κ2), while the zero energy non-degenerate state is ψ0
2 = 1− 3 tanh2 χ,

where we use the notation χ = κ(x+ τ).

6.2 Generalized Crum-Darboux transformations scheme

We have constructed a generic n = 2 reflectionless Hamiltonian (6.1) by employing a sequence of
two Darboux transformations described in Section 2, namely, by using first the non-physical free
particle state ψ1 = cosh κ1(x+ τ1), and then the state ψ2 = sinhκ2(x+ τ2). The same final result
also can be achieved with the interchanged order of the indicated states. This corresponds to the
alternative factorization of the second order operator (6.5),

A2 = B2B1 , (6.12)

which intertwines H2 with the free particle Hamiltonian, A2H0 = H2A2, A
†
2H2 = H0A

†
2, see Fig.

2b, c. The first order operators B1 and B2 are obtained from A1 and A2 via the substitution

κ1 ↔ κ2 , τ1 → τ2 + i
π

2κ2
= τ̃2 , τ2 → τ1 + i

π

2κ1
= τ̃1 . (6.13)

This substitution leaves invariant the Hamiltonian (6.1), the second order intertwining operator
A2, and the function (6.3). It also leaves invariant the states (6.11) of the continuous spectrum,
including the non-degenerate edge state of zero energy, but interchanges the bound states (6.6),

ψ
−κ2

1

2 → iψ
−κ2

2

2 , ψ
−κ2

2

2 → iψ
−κ2

1

2 . Transformation (6.13) changes, however, the first order intertwining
operators A1 and A2, which are regular on R

1, for the singular first order operators

B1 = B1(κ2, τ2) =
d

dx
− κ2 coth κ2(x+ τ2) , B2 = B2(~κ, ~τ ) = −B†

1(κ2, τ2) + w(x;~κ, ~τ) . (6.14)
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In terms of the first order operators (6.14) we have H0 = B†
1B1−κ

2
2, H̃1 = H1(κ2, τ̃2) = B1B

†
1−κ

2
2 =

B†
2B2 − κ21, and H2 = B2B

†
2 − κ21. This means that with the alternative factorization (6.12), the

operator A2 intertwines Hamiltonian (6.1) with H0 via the n = 1 system described by a singular

Hamiltonian

H̃1 = H1(κ2, τ̃2) = −
d2

dx2
+

2κ22
sinh2 κ2(x+ τ2)

. (6.15)

In what follows, singular Hamiltonian (6.15) will appear only as a virtual, or intermediate system,
and the described generalization of the Crum-Darboux scheme will allow us to identify nontrivial
intertwining operators for n = 2 extended system with partially broken and exact isospectrality.
The picture with the alternative factorizations generalizes for the case n > 2. In this context
it is worth to note that the change of the order of the free particle non-physical states (2.3) in
the construction of a reflectionless system Hn, in comparison with that described in Section 2,
corresponds to a certain permutation of the columns of the Wronskian (2.2). This produces no
effect for potential in equation (2.1).

To conclude the discussion of the generalized Crum-Darboux transformations scheme, we present
here the relations which are helpful for computation of the corresponding superalgebraic structures,

X̆1 (κ, τ̃ , τ̃
′)B′

1 = B1AC(κ, τ − τ ′) , B†
1X̆1 (κ, τ̃ , τ̃

′) = AC(κ, τ − τ ′)B′†
1 , (6.16)

X̆1 (κ, τ̃ , τ
′)A′

1 = B1AC(κ, τ̃ − τ ′) , B†
1X̆1 (κ, τ̃ , τ

′) = AC(κ, τ̃ − τ ′)A′†
1 , (6.17)

AC(κ, τ − τ̃ ′)B′†
1 = A†

1X̆1(κ, τ, τ̃
′) , (6.18)

where A1 = A1(κ, τ), A
′
1 = A1(κ, τ

′), B1 = B1(κ, τ), B
′
1 = B1(κ, τ

′), τ̃ = τ + i π
2κ , and τ̃

′ = τ ′+ i π
2κ .

These identities can be obtained from (4.8) via the substitution (6.13).

6.3 Generic case of partial isospectrality breaking

Now we are in position to discuss the supersymmetric structure of the extended n = 2 systems with
partially broken and exact isospectralities. We first consider three cases of partial isospectrality
breaking, in which one discrete energy level −κ2j of the subsystem H2 coincides with any of the

two discrete energy levels −κ2j′ of the partner Hamiltonian H ′
2, but the corresponding translation

parameters are different, τj 6= τ ′j′ . All these cases are described by a similar supersymmetric
structure. Then, in the next subsection, we analyze the superalgebraic structure of the same three
cases but with coinciding associated translation parameters, τj = τ ′j′ .

We start with the case of partial isospectrality breaking characterized by the conditions

• κ1 = κ′1, τ1 6= τ ′1, κ2 6= κ′2, no restrictions on τ2, τ
′
2 , (6.19)

see Fig. 3a.
The subsystems H2 = H2(κ1, τ1, κ2, τ2) and H ′

2 = H2(κ1, τ
′
1, κ

′
2, τ

′
2) of the extended matrix

Hamiltonian H2 are related by irreducible intertwining operators of orders 4 and 3, Y4H
′
2 = H2Y4,

Y †
4H2 = H ′

2Y
†
4 , X̆

A
3 H

′
2 = H2X̆

A
3 , X̆

A
3
†H2 = H ′

2X̆
A
3
†. Y4 is given, in correspondence with the generic

form (5.4), by Y4 = A2A
′†
2 , while

X̆A
3 = A2(κ1, κ2; τ1, τ2)X̆1(κ1; τ1, τ

′
1)A

†
2(κ1, κ

′
2; τ

′
1, τ

′
2) = A2X̆1A

′
2
†

(6.20)

appears instead of the fifth order intertwining operator X5 = A2
d
dx
A
′†
2 because of the reduction

X5 = (H2 + κ21)X̆
A
3 − C(κ1, τ1 − τ ′1)Y4 . (6.21)
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Figure 3: The n = 2 pairs with partially broken isospectrality.

As follows from (6.20), the reduction (6.21) is related to the opening of a ‘tunneling channel’ via
the virtual isospectral pair of n = 1 systems H1(κ1, τ1) and H1(κ1, τ

′
1).

Taking the products of the described intertwining operators and Lax integrals of order 5,
Z5 = A2

d
dx
A
†
2, Z

′
5 = A

′
2

d
dx
A
′†
2 , [Z5,H2] = 0, [Z ′

5,H
′
2] = 0, presented in Appendix, we find the

superalgebraic structure of the system H2 with partially broken isospectrality (6.19). It is dis-
played below in the form that unifies (6.19) with two other similar cases.

A partial isospectrality breaking with coinciding ground state energy levels,

• κ2 = κ′2, τ2 6= τ ′2, κ1 6= κ′1, no restrictions on τ1, τ
′
1 , (6.22)

is similar to the previous case, see Fig. 3b. Intertwining operator Y4 and integrals Z5 and Z ′
5 are

given by generic formulae with restriction (6.22). The third order irreducible intertwining operator
can be obtained from (6.20) via the substitution (6.13),

X̆B
3 = B2X̆1(κ2; τ̃2, τ̃

′
2)B

′
2
†
, (6.23)

where B2 and B′
2 are given by Eq. (6.14) with κ′2 = κ2, while

X̆1(κ2; τ̃2, τ̃
′
2) =

d

dx
− κ2 coth κ2(x+ τ2) + κ2 coth κ2(x+ τ ′2) + C(κ2, τ2 − τ ′2)

= B1(κ2, τ2)−B†
1(κ2, τ

′
2) +A†

C(κ2, τ2 − τ ′2) . (6.24)

Though all the three first order operators that appear in factorization of X̆3 in (6.23) are singular,
the third order intertwining operator itself is regular on R

1. This follows just from the reduction
relation for the fifth order intertwining operator for the case (6.22) under consideration,

X5 = (H2 + κ22)X̆
B
3 − C(κ2, τ2 − τ ′2)Y4 . (6.25)

The third order intertwining operator (6.23) realizes the intertwining between H2 and H
′
2 by means

of a ‘tunneling channel’ via a pair of singular n = 1 Hamiltonians H1(κ2, τ̃2) and H1(κ2, τ̃
′
2) of the

form (6.15) 6.
The supersymmetric structure for partial isospectrality breaking

• κ1 = κ′2, κ2 6= κ′1, no restrictions on τ1,2, τ
′
1,2 , (6.26)

6By shifting the argument x → x + iδ, where δ is a real constant, one can translate all the consideration for the
case of PT -symmetric quantum systems [52] with H̃1 and H̃ ′

1 to be regular isospectral Hamiltonians, see [53].
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see Fig. 3c, is generated in a similar way. Here, the third order irreducible intertwining operator is

X̆AB
3 = A2X̆1(κ1; τ1, τ̃

′
2)B

′
2
†
, (6.27)

where B′
2 = B2(κ

′
1, κ2, τ

′
1, τ

′
2) is given by Eq. (6.14), and τ̃ ′2 = τ ′2 + i π

2κ1
. In this case, we have a

reduction relation
X5 = (H2 + κ21)X̆

AB
3 − C(κ1, τ1 − τ̃ ′2)Y4 . (6.28)

Unlike the two previous cases, C(κ1, τ1 − τ̃ ′2) = κ1 tanhκ1(τ1 − τ ′2) is regular for any values of τ1
and τ ′2 associated with coinciding scaling parameters 7.

The superalgebra for the described three cases of partial isospectrality breaking can be presented
in a unified form

{S̆a, S̆b} = 2δabhdhd′hCl , {Qa, Qb} = 2δabh
2
i hdhd′ , (6.29)

{S̆a, Qb} = 2δabClhihdhd′ + 2ǫabhd′,dP1 , (6.30)

[P1, S̆a] = i(κ2d − κ′2d )(hClQa − ClhiS̆a) , [P1, Qa] = i(κ2d − κ′2d )hi(ClQa − hiS̆a), (6.31)

[P2, S̆a] = i(hd + hd′)(hClQa − ClhiS̆a) , [P2, Qa] = i(hd + hd′)hi(ClQa − hiS̆a) . (6.32)

Here hi = H2+κ
2
i , hd = H2+κ

2
d, hd′ = H2+κ

′2
d , hd′,d = H2+diag(κ′2d , κ

2
d), hCl = H2+C2

l , l = 1, 2, 3,
κi denotes the coinciding scaling parameter of the pair, κd and κ

′
d correspond to other, not coinciding

scaling parameters of the subsystems H2 and H ′
2, respectively, while C1 = C(κ1, τ1 − τ ′1) for (6.19),

C2 = C(κ2, τ2 − τ ′2) for (6.22), and C3 = C(κ1, τ1 − τ̃ ′2) for the case (6.26). Notation S̆a reflects the

reduction S2;a = (H2 + κ2i )S̆a − ClQa of the supercharges constructed in terms of X5 and X†
5 , and

to simplify notations, we do not supply the supercharges with index l, and omitted the index n = 2
in all the integrals.

The fact of a partial isospectrality breaking is reflected here in the superalgebraic structure.
On the one hand, relations (6.29), (6.30) and (6.32) are similar to superalgebraic structure (4.9),
(4.10) and (4.11) of the n = 1 isospectral case. At the same time, the commutators in (6.31), being
of the nature of those in (3.17) for the n = 1 non-isospectral family of the systems, show that a
‘non-centrality’ character of the Lax matrix integral P2;1 is measured by the scale of isospectrality
breaking, κ2d − κ′2d .

6.4 Partial isospectrality breaking with coinciding associated translation pa-

rameters

Let us discuss now the supersymmetry of the systems with partial isospectrality breaking, in which
one discrete energy level, κj = κ′j′ , and the associated translation parameters, τj = τ ′j′, coincide,
see Fig. 4a, b, c. The two cases corresponding to either κ1 = κ′1 or κ2 = κ′2 are similar. For them,
supersymmetry undergoes restructuring, and is generated by intertwining operators of the second,
Y̆2, and fifth, X5, orders, and by the fifth order integrals Z5 and Z ′

5. The fifth order operators, X5

and Z5, in this case include in their structure the third order integral of the corresponding common
virtual n = 1 system.

For the sake of definiteness, consider the case κ1 = κ′1, τ1 = τ ′1, κ2 6= κ′2. We haveX5 = A2Z3A
′
2
†,

Z5 = A2Z3A2
†, and Z ′

5 = A′
2Z3A

′
2
†, where Z3 = Z3(κ1, τ1) = A1(κ1, τ1)

d
dx
A†

1(κ1, τ1) is the third
order Lax integral for the common Pöschl-Teller virtual system H1(κ1, τ1). The second order

7The operator (6.27) intertwines H ′

2 and H2 via the virtual n = 1 systems H̃ ′

1 and H1 of different, singular and
regular, nature. After the imaginary shift mentioned in the previous footnote, the latter pair will transform into
regular n = 1 reflectionless Pöschl-Teller PT -symmetric Hamiltonians.
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Figure 4: The pairs with partially broken isospectrality, in which the translation parameters as-
sociated with the equal scaling parameters do coincide. In the case a), a common virtual system
corresponds to a regular n = 1 reflectionless Pöschl-Teller system. In the case b) such a common
virtual system is singular. In the case c), the partners can be intertwined via a pair of n = 1 virtual
systems, one of which is singular.

intertwining operator has a form Y̆ A
2 = A2A

′†
2 , with A2 = A2(κ1, κ2, τ1, τ2) and A

′
2 = (κ1, κ

′
2, τ1, τ

′
2),

and the fourth order intertwining operator Y4 = A2A
′
2
† of a generic case reduces as

Y4 = (H2 + κ21)Y̆
A
2 . (6.33)

The second order operator Y̆ A
2 can be obtained also from the third order operator (6.20) of the

case (6.19) considered above. Indeed, multiplying (6.20) by −C−1(κ1, τ1 − τ ′1), and taking a limit
τ ′1 → τ1, we get Y̆

A
2 . So, the change of supersymmetric structure is related here to a singular nature

of C(κ1, τ1 − τ ′1) in the limit τ ′1 → τ1. Another case, with κ2 = κ′2, τ2 = τ ′2, κ1 6= κ′1 is treated in a
similar way, and superalgebraic structure for these two cases can be presented in a unified form:

{Sa, Sb} = 2δabH2h
2
i hdhd′ , {Q̆a, Q̆b} = 2δabhdhd′ , (6.34)

{Sa, Q̆b} = 2ǫabhd′,dP1 , (6.35)

[P1, Sa] = i(κ2d − κ′2d )H2h
2
i Q̆a , [P1, Q̆a] = −i(κ2d − κ′2d )Sa , (6.36)

[P2, Sa] = iH2h
2
i (hd + hd′)Q̆a , [P2, Q̆a] = −i(hd + hd′)Sa . (6.37)

Notation Q̆a reflects here the reduction Q2;a = (H2 + κ2i )Q̆a, and, again, we omitted the index
n = 2 in the specification of nontrivial integrals.

The case κ1 = κ′2, τ1 = τ ′2, κ1 6= κ′2 is different from the two previous ones because the
corresponding parameter-dependent function C(κ1, τ1− τ̃

′
2) = κ1 tanhκ1(τ1− τ

′
2) is non-singular for

any values of τ1 − τ ′2, and, moreover, turns into zero at τ1 = τ ′2. Here, the intertwining operators
are Y4, and X̆AB

3 given by Eq. (6.27) with τ1 = τ ′2. A non-singular nature of the latter is seen
from (6.28). The superalgebra for this case is obtained directly from (6.29)–(6.32) just by putting
there C3 = 0. Though here the irreducible intertwining generators are different in comparison
with the previous two cases, the resulting superalgebra (6.29)–(6.32) with C3 = 0 has a similar
form to (6.34)–(6.37). Notice also a remarkable similarity of (6.34)–(6.37) with the superalgebra
(3.15)–(3.17) of the n = 1 non-isospectral case.

We see that in all the three cases of partial breaking of isospectrality with corresponding coin-
ciding translation parameters (associated with coinciding discrete energy levels), the superalgebraic
structure does not depend on the two remaining translation parameters associated with the second,
different discrete energy levels.
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In all the cases of partial isospectrality breaking described in this and previous subsections, the
total order of the two basic intertwining operators is the same, 3 + 4 = 2 + 5 = 7, being less in 2
in comparison with the complete isospectrality breaking case.

6.5 Exact isospectrality with a common virtual n = 1 system

The supersymmetric structure of the systems with exact isospectrality, κ1 = κ′1 and κ2 = κ′2,
depends on whether the corresponding translation parameters are different, τj 6= τ ′j, j = 1, 2,

or they coincide in one of the pairs 8. The analysis of the second case, see Fig. 5a, b, is more
simple, and we first consider it supposing, for the sake of definiteness, that τ1 = τ ′1, τ2 6= τ ′2. The

Figure 5: The n = 2 isospectral pairs with a common regular, (a), or singular, (b), virtual system.
A general case of the n = 2 isospectral pair with τj 6= τ ′j, j = 1, 2, is illustrated by c).

intertwining operators for such an isospectral system with a common regular virtual n = 1 system
H1(κ1, τ1) are

Y̆ A
2 = A2A

′†
2 , X̆B

3 = B2X̆1(κ2, τ̃2, τ̃
′
2)B

′†
2 , (6.38)

where in A′
2 and B′

2 we assume that κ′j = κj , j = 1, 2, and τ ′1 = τ1, τ
′
2 6= τ2. They can be obtained

here via the reduction relations of generic intertwining operators,

X5 = (H2 + κ22)X̆
B
3 − C(κ2, τ2 − τ ′2)Y4 , Y4 = (H2 + κ21)Y̆

A
2 . (6.39)

The intertwining generators Y̆ B
2 and X̆A

3 , and the corresponding reduction relations for the exact
isospectrality case κj = κ′j , j = 1, 2, τ ′2 = τ2, τ

′
1 6= τ1 are obtained from (6.38) and (6.39) by

changing κ1 ↔ κ2, τ1 ↔ τ2, τ
′
1 ↔ τ ′2, and A2 ↔ B2.

The nontrivial relations of superalgebraic structure for the isospectral case with τ1 = τ ′1, τ2 6= τ ′2
are

{S̆a, S̆b} = 2δabhC2h
2
1, {Q̆a, Q̆b} = 2δabh

2
2, (6.40)

{S̆a, Q̆b} = 2δabC2h1h2 + 2ǫabP1, (6.41)

[P2, S̆a] = 2ih1(hC2h1Q̆a − C2h2S̆a), [P2, Q̆a] = 2ih2(C2h1Q̆a − h2S̆a), (6.42)

where C2 = κ2 cothκ2(τ2 − τ ′2), hi = H2 + κ2i , i = 1, 2, and hC2 = H2 + C2
2 . The superalgebra for

the isospectral case with τ2 = τ ′2, τ1 6= τ ′1 is obtained from the displayed one by changing C2 → C1,
h1 ↔ h2 in the right hand side expressions. The supersymmetry (6.40), (6.41), (6.42) has the
structure similar to that for the n = 1 isospectral case.

8The case when both pairs of translation parameters coincide corresponds to H2 composed from the two copies
of the same Hamiltonian H2 . Such a system H2 is described by a trivial supersymmetric structure to be similar to
that discussed for n = 1 case in Section 4, with integral Z3 changed for Z5.
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As it is expected, the integral P2;1 transmutes here into the bosonic central charge of nonlinear
superalgebra. The total order of the basic irreducible intertwining generators reduces in two in
comparison with the partially broken isospectrality case and equals the order 5 of Lax integrals Z5

and Z ′
5. In correspondence with this, the anticommutator of the second order, Q̆2;a, and the third

order, S̆2;a, supercharges taken with different values of indexes a and b is equal to the central charge
P2;1 up to a numerical, Hamiltonian-independent, coefficient, see Eq. (6.41). The superalgebraic
structure also detects the difference of the non-coinciding translation parameters.

6.6 Generic case of n = 2 exact isospectrality

Consider a generic case of exact isospectrality characterized by the relations κ1 = κ′1, κ2 = κ′2,
τ1 6= τ ′1, τ2 6= τ ′2, see Fig. 5c. The second order intertwining operator X5 possesses then two
distinct reductions, (6.21) and (6.25), in which it is necessary to put in addition, respectively,
κ2 = κ′2 and κ1 = κ′1. The existence of the two third order intertwining operators means that a
generic isospectral case is described by the basic intertwining operators of the orders 2 and 3, to
which the intertwining operators X5 and Y4 are reduced. To see this, we note that X̆A

3 and X̆B
3 are

the third order operators with the same coefficient −1 before the leading derivative term. Then
the difference of these two operators has to be an intertwining differential operator of the second
order. This implies that the coefficient before the leading second order derivative term in the latter
should be a constant. Taking into account that A2 = −A†

1 +w and B2 = −B†
1 +w, and employing

relations (4.8) and (6.16), we find

X̆A
3 − X̆B

3 = (C1 − C2)G2 + (κ22 − κ21)X̂1 , (6.43)

where C1 = κ1 coth κ1(τ1 − τ ′1), and C2 = κ2 coth κ2(τ2 − τ ′2),

G2 = −
d2

dx2
+ (w′ −w)

d

dx
+
dw′

dx
+ww′ +wκ2 coth κ2(x+ τ2) +w′κ2 coth κ2(x+ τ ′2) + κ22 , (6.44)

X̂1 =
d

dx
+ (w − w′) + C1 . (6.45)

In (6.44) and (6.45) w corresponds to the function (6.3), and w′ is the same function but with τj
changed for τ ′j, j = 1, 2. From (6.43) it follows immediately that the case C1 = C2 is special, and
we shall consider it in the next subsection. So, till the end of this subsection we suppose that

C1 6= C2 . (6.46)

We obtain then the second order intertwining operator

Ŷ2 =
X̆A

3 − X̆B
3

C1 − C2
= G2 +

κ22 − κ21
C1 − C2

X̂1 . (6.47)

The operator (6.47) intertwines H ′
2 and H2, Ŷ2H

′
2 = H2Ŷ2, and satisfies the relation Ŷ †

2 = Ŷ ′
2 ,

where Ŷ ′
2 corresponds to Ŷ2 with the interchanged translation parameters τj and τ ′j, j = 1, 2. Ŷ †

2

generates the intertwining relation in the reverse direction. Operator Ŷ2, and any of two third
order operators, X̆A

3 or X̆B
3 , play now a role of independent intertwining generators. It is more

convenient, however, to take a linear combination

X̂3 =
C2X̆

A
3 − C1X̆

B
3

C2 − C1
, (6.48)
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different from that in (6.43), as a third order intertwining generator to be independent from Ŷ2.
Using Eqs. (6.21) and (6.25), we find that the generic intertwining operators X5 and Y4 are reduced
here as follows,

(C1 − C2)X5 =
(

(C1 − C2)H2 + C1κ
2
2 − C2κ

2
1

)

X̂3 + (κ22 − κ21)C1C2Ŷ2 , (6.49)

(C1 − C2)Y4 = (κ22 − κ21)X̂3 +
(

(C1 − C2)H2 + C1κ
2
1 − C2κ

2
2

)

Ŷ2 . (6.50)

Proceeding from the relations (6.49), (6.50) and the relations, presented in the Appendix, which
correspond to the products of operators X5, Y4 and Z5 with the imposed isospectrality relations
κj = κ′j , j = 1, 2, one can find all the products of the irreducible intertwining operators Ŷ2, X̂3, Ŷ

†
2 ,

X̂†
3 , and Lax operators Z5 and Z ′

5. With these, one can compute the superalgebra generated by the
second order, Q̆2;a, and third order, S̆2;a, supercharges constructed in terms of Ŷ2 and X̂3 following
the same rules as we used before, and by the fifth order bosonic integrals P2;a. There is another,
more simple way to compute the superalgebra. Having in mind that fermionic supercharges are
matrix differentials operators of orders 2 and 3, the alternative form of superalgebra is generated
by taking a linear combination of them, FA

a = C1Q̆2;a + S̆2;a and FB
a = C2Q̆2;a + S̆2;a, constructed

from X̆A
3 and X̆B

3 in correspondence with relations (6.43) and (6.48),

FA,B
1 =

(

0 X̆A,B
3

X̆A,B†
3 0

)

, FA,B
2 = iσ3F

A,B
1 . (6.51)

Modifying further the notations, F
(1)
a = FA

a , F
(2)
a = FB

a , and using the product relations of the
operators X̆A,B

3 , their conjugate, X̆A,B†
3 , and Lax operators Z5 and Z ′

5, see Appendix, we present
nonzero superalgebraic relations in a compact form,

{F (i)
a , F

(j)
b } = 2δabhijhihj + 2ǫabǫ

ij∆C P1, (6.52)

[P2, F
(j)
a ] =

2i

∆C

(

(−1)jh1h2h12F
(j)
a + ǫjkhjjh

2
kF

(k)
a

)

. (6.53)

Here hi = H2 + κ2i , hij = H2 + CiCj, i, j = 1, 2, ∆C = C2 − C1, and no summation in the indexes i
and j is implied in the right hand sides.

Again, the integral P1 = P2;1 transmutes here into the bosonic central charge, and the structure
coefficients depend on both relative translation parameters via C1 and C2.

The nonzero superalgebraic relations for the third, S̆2;a, and second, Q̆2;a, order supercharges
and bosonic integrals P2;2 can now easily be obtained from (6.52) and (6.53) by employing the

relations Q̆2;a = (F
(2)
a − F

(1)
a )/∆C, S̆2;a = (C2F

(1)
a − C1F

(2)
a )/∆C. The superalgebra has the same

structure (4.9), (4.10), (4.11) as for the n = 1 isospectral case, but with Hamiltonian-dependent
coefficients of a more complicated form.

6.7 Special case of isospectrality with C1 = C2

Let us consider the special case of isospectrality characterized by the relation

C1 = C2 . (6.54)

Equation (6.54) means that there is a special correlation between relative displacements τ1−τ
′
1 and

τ2− τ
′
2 and scaling parameters, κ1 coth κ1(τ − τ

′
1) = κ2 coth κ2(τ2− τ

′
2). In correspondence with this

relation, we may take an n = 2 system H2 defined by arbitrary parameters κ2 > κ1, and arbitrary,
but finite, τ1 and τ2. Particularly, we can choose the n = 2 Pöschl-Teller system defined by the
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relations κ2 = 2κ1 and τ1 = τ2. The partner Hamiltonian H ′
2 is given then by the same scaling

parameters, the finite parameter τ ′2 may be chosen in an arbitrary way with the only restriction
τ ′2 6= τ2, while τ

′
1 is fixed uniquely, τ ′1 = τ1 −

1
κ1
arccoth (κ2

κ1
coth κ2(τ2 − τ ′2)).

As a consequence of relation (6.43), here a difference X̆A
3 − X̆B

3 reduces to the first order inter-

twining operator (6.45), which satisfies a relation X̂†
1(~κ, ~τ , ~τ

′) = −X̂1(~κ, ~τ
′, ~τ) = −X̂ ′

1. Moreover,
we will show below that each of the third order intertwining operators X̆A

3 and X̆B
3 is reducible,

and so, here the irreducible intertwining operators are X̂1 and Y4.
As the intertwining generator X̂1 is the first order differential operator, let us define a superpo-

tential W by means of

X̂1 =
d

dx
+W , W = w −w′ + C1 . (6.55)

In accordance with relations (6.8), (6.9), (6.10), we have W 2 +W ′ = V2 + C2
1 , W

2 −W ′ = V ′
2 + C2

1 ,
and then

X̂1X̂
†
1 = H2 + C2

1 , X̂†X̂1 = H ′
2 + C2

1 , (6.56)

and X̂1H
′
2 = H2X̂1, X̂

†
1H2 = H ′

2X̂
†
1 . The first order intertwining operator X̂1 has a form similar to

that of the operator X̆1 in the n = 1 isospectral case. The superpotential W (x) plays here a role
of the gap function ∆ mentioned there in the context of its relation to the Bogoliubov-de Gennes
system.

Operator X̂1 together with the first order operators X̆A
1 = X̆1(κ1, τ1, τ

′
1), X̆

B
1 = X̆1(κ2, τ2, τ

′
2)

satisfies in addition the identities

X̆A
1 A

′†
2 = A†

2X̂1 , A2X̆
A
1 = X̂1A

′
2 , X̆B

1 B
′†
2 = B†

2X̂1 , B2X̆
A
1 = X̂1B

′
2 . (6.57)

Let us stress that like (6.56), these relations are valid only in the special isospectral case (6.54).
Employing them, we find that the third order intertwining generators X̆A

3 and X̆B
3 are reducible,

X̆A
3 = (H2 + κ22)X̂1 , X̆B

3 = (H2 + κ21)X̂1 . (6.58)

As a consequence, the fifth order generic intertwining operator also is reducible, X5 = (H2 +
κ21)(H2 + κ22)X̂1 − C1Y4.

Applying the product relations (A.32)-(A.35) collected in Appendix, we can compute the su-

peralgebra generated by the fermionic supercharges Ŝ2;a constructed from X̂1 and X̂†
1 , by the

supercharges Q2;a composed from Y4 and Y †
4 , and by the bosonic integrals P2;a constructed from

Lax operators Z5 and Z ′
5. The nontrivial (anti) commutations relations are

{Ŝa, Ŝb} = 2δabhC1 , {Qa,Qb} = 2δabh
2
1h

2
2 , (6.59)

{Ŝa,Qb} = 2δabC1h1h2 + 2ǫabP1 , (6.60)

[P2, Ŝa] = 2i(hC1Qa − C1h1h2Ŝa) , [P2,Qa] = 2ih1h2(C1Qa − h1h2Ŝa) , (6.61)

where hi = H2 + κ2i , i = 1, 2, hC1 = H2 + C2
1 , and we omitted the index n = 2 in the integrals.

Supercharges Ŝ2;a, a = 1, 2, generate a Lie sub-superalgebra of N = 2 supersymmetry. Since
C2
1 = C2

2 > κ22, it corresponds to the spontaneously broken phase. However, a peculiarity of the
extended systemH2 is that it has a structure of centrally extendedN = 4 nonlinear superasymmetry
with the two additional fourth order supercharges Q2;a, and two bosonic integrals P2;a. Again, the
integral P2;1 plays here the role of the central charge. As in a generic isospectral case from the
previous subsection, the sum of differential orders of the basic irreducible intertwining operators
equals 5 and coincides with the order of Lax operators. Again, the superalgebra (6.59), (6.60),
(6.61) has a remarkable similarity with that for the n = 1 isospectral case.
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We conclude that with a chosen subsystem H2, Eq. (6.54) defines a one-parametric family, in
which τ ′2, , τ

′
2 6= τ2, is a free parameter of the exactly isospectral system H ′

2. Such a family of the
Schrödinger pairs is described by the supersymmetry with the two first order supercharges, two
supercharges of order four, and two bosonic integrals of differential order five, one of which is a
central charge. This generalizes the n = 1 self-isospectral case discussed in Section 4 for the case
of n = 2 isospectral, but not self-isospectral, pairs.

7 Partially broken and exact isospectralities in n > 2 systems

The analysis of partially broken and exact isospectralities can be generalized for n-soliton extended
systems with n > 2. The case n = 2 considered in the previous Section shows that the concrete
structure of supersymmetry, namely its irreducible generators and coefficients in the superalgebra,
depends not only on how many scaling parameters coincide, but also on whether they correspond
to the same or different ordinal numbers of discrete energy levels of subsystems. It also depends
on relative translation parameters associated with the corresponding coinciding discrete energy
levels, and may change in the cases when such relative translation parameters turn into zero, or are
correlated via equalities of the form (6.54). Correspondingly, a concrete form of supersymmetric
structure is rather variable, but the general picture can be summarized as follows. The n > 2 pair is
characterized by two irreducible basic intertwining operators, one of which is a differential operator
of odd order, while another is of even order. Each n-soliton subsystem also is characterized by
a nontrivial integral to be a differential Lax operator of order 2n + 1. The orders of irreducible
intertwining operators satisfy the following rules. As we saw, the case of complete isospectrality
breaking, when all the scaling parameters of one subsystem are different from those of the second
subsystem, the supersymmetric pair is characterized by intertwining operators, X2n+1 and Y2n,
of differential orders |X2n+1| = 2n + 1 and |Y2n| = 2n. The sum of their differential orders,
4n+1, coincides with the order of the composite differential operator of the form (Hn)

nZn. When
any pair of the scaling parameters of the subsystems coincides, the total order of the two basic
irreducible intertwining operators decreases in such a way that |XY †| = |(Hn)

n−1P | = 4n−1. Any
new coincidence of some new pair of scaling parameters decreases the total order of XY † in two.
Finally, in the case of exact isospectrality, when all the n pairs of the scaling parameters coincide,
we have |XY †| = |Zn| = (4n+ 1)− 2n = 2n + 1.

As an example, consider a generic case of exact isospectrality for the pair of the reflectionless
soliton systems, each having three bound states. In this case, the composite operator A3 has 6
different factorizations in dependence on the order of the free particle non-physical states ψj , j =

1, 2, 3, which are used to generate a 3-soliton system. For instance, factorization A3 = A
(3)
3 A

(2)
2 A

(1)
1

corresponds to that described in Section 5, while A3 = A
(3)
3 A

(1)
2 A

(2)
1 corresponds to alternative

factorization like that described in Section 6.2, with A
(2)
1 constructed in terms of the state ψ2,

A
(1)
2 constructed recursively in terms of A

(2)
1 and ψ1, and finally, A

(3)
3 is constructed recursively

by employing A
(2)
1 , A

(1)
2 and ψ3. In other words, the upper index indicates here the index of a

state ψj we use to construct the first order Darboux operator of the generation marked by the

lower index. The factorizations different from the standard one A3 = A
(3)
3 A

(2)
2 A

(1)
1 correspond

to permutations of columns in the Wronskian (2.2), and in accordance with Eq. (2.1), do not
produce any effect on the final form of the three-soliton potential V3. Employing the information
on intertwining operators of the n = 2 case, we construct three intertwining operators of order

5, X̆
(1)
5 = A

(3)
3 X̆

(12)
3 A

′(3)†
3 , X̆

(2)
5 = A

(1)
3 X̆

(23)
3 A

′(1)†
3 , and X̆

(3)
5 = A

(2)
3 X̆

(31)
3 A

′(2)†
3 , where X̆

(12)
3 =

A2X̆
(1)
1 A

′(2)†
2 and X̆

(1)
1 = A

(1)
1 − A

′(1)†
1 − AC1 is the first order operator constructed in accordance

with Eq. (4.2), and Cr = κr coth κr(τr − τ ′r), r = 1, 2, 3. The generic intertwining operator of order
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7 reduces as
X7 = (H3 + κ2r)X̆

(r)
5 − CrY6 , r = 1, 2, 3 . (7.1)

Taking (X̆
(1)
5 − X̆

(2)
5 ) and (X̆

(2)
5 − X̆

(3)
5 ), we get two intertwining operators of order 4, Y̆ (12) and

Y̆ (23), in which the coefficients before leading derivative term d4/dx4 will be constants. Presenting
Y̆ (12) and Y̆ (23) in a normal form, with leading coefficients to be equal to 1, and taking a difference
of the resulting fourth order differential operators, we get irreducible intertwining operator of order
3. Taking any one of the obtained two fourth order operators, we identify finally a pair of the
basic irreducible intertwining operators X̂3 and Ŷ4 of orders 3 and 4. Three identities in (7.1)
allow us then, on the one hand, to express the generic intertwining operators X7 and Y6, which
are reducible here, in terms of X̂3 and Ŷ4 multiplied by certain polynomials in H3. On the other
hand, the same identities (7.1) indicate that the cases with C1 = C2 and/or C2 = C3 are peculiar.
Coherently with the analysis of the previous Section, one can expect that in the special case
C1 = C2 = C3 the basic irreducible intertwining operators are of orders 1 and 6. The analysis of
this special case requires a separate consideration and we do not present it here, but only note
that a corresponding isospectral pair is constructed similarly to the case of the n = 2. Namely, the
scaling, κ3 > κ2 > κ1, and translation, τ1, τ2 and τ3, parameters of the subsystem H3 are taken
arbitrarily, the scaling parameters of the partner system H ′

3 are the same, and parameter τ ′3 can
take any finite value restricted by the condition τ ′3 6= τ3. The relation C2 = C3 defines τ

′
2 uniquely in

terms of the already chosen parameters, and then the equality C1 = C2 fixes uniquely the remaining
displacement parameter τ ′1.

8 Spin-1/2 particle interpretation

In this section, following ref. [22], we discuss shortly a spin-1/2 particle interpretation of the studied
class of the soliton systems (1.1), (1.2). This, particularly, will shed a new light on a peculiarity of
the special family of isospectral n-soliton systems characterized by the first order supercharges.

Consider a non-relativist particle (electron) of mass m = 1
2 , charge e = −1 and gyromagnetic

ratio g = 2 confined to a plane in the presence of electric field described by a scalar potential φ(x, y)
and perpendicular magnetic field Bz(x, y). The system is described by the Pauli Hamiltonian

H = (−i d
dx

+Ax)
2 + (−i d

dy
+Ay)

2 + σ3Bz − φ . (8.1)

Let us assume that electric and magnetic fields are homogeneous in the direction y, φ = φ(x),
Bz = Bz(x), and choose Ax = 0, Ay = a(x). Then Bz = da

dx
, and the spinor wave function can be

taken in the form Ψ(x, y) = eikyψ(x). The action of the Hamiltonian (8.1) on a spinor ψ(x) reduces
to the matrix Hamiltonian of the form (1.1) with V±(x) = (k + a(x))2 − φ± da

dx
. Our system (1.1),

(1.2) corresponds to the scalar electric potential and magnetic field of a special form

φ(x) = (a(x) + k)2 −
1

2
(Vn + V ′

n), Bz(x) =
da

dx
=

1

2
(Vn − V ′

n) , (8.2)

given by the n-soliton, reflectionless potentials Vn and V ′
n. Taking into account Eq. (2.1), the

potentials φ(x) and a(x) can be written in terms of the corresponding Wronskians as

φ(x) = (a(x) + k)2 + d2

dx2 ln (WnW
′
n) , a(x) = d

dx
ln
(

W ′

n

Wn

)

+ c0 , (8.3)

where c0 is an integration constant. Therefore, a spin-1/2 particle in the plane subjected to ho-
mogeneous in y direction electric and magnetic fields of the special form (8.2) is described by an
exotic supersymmetry that was investigated and described in the previous sections.

25



Let us show now that the systems (1.1), (1.2) constructed from the special isospectral pairs of
the n-soliton potentials, which are characterized by the first first order supercharges (alongside with
the supercharges of order 2n and bosonic integrals Pn,a, a = 1, 2, being differential operators of
order 2n+1), correspond to a case of a zero electric field, i. e. a constant scalar potential φ. First,
consider a one-soliton case for which V1 = −2 sech2κ(x+τ) and V ′

1 = −2 sech2κ(x+τ ′). For it,W1 =
coshκ(x+ τ) and W ′

1 = cosh κ(x+ τ ′). Putting the integration constant c0 = κ coth κ(τ − τ ′)− k,
we obtain

a(x) = −∆(x)− k, ∆(x) = κ(tanh κ(x+ τ)− tanhκ(x+ τ ′)− coth κ(τ − τ ′)), (8.4)

that, up to the constant term −k, coincides exactly with the superpotential that appears in the
first order intertwining operator (4.2). The trigonometric identity

1− tanhα tanh β − coth(α− β)(tanhα− tanh β) = 0 (8.5)

gives then φ = κ2 coth2 κ(τ − τ ′), that is a square of the constant C defined in Eq. (4.4).
In the same way, for the special n = 2 case discussed in Section 6.7, we find a(x) = W (x)− k,

where W (x) is the superpotential appearing in the first order intertwining operator (6.55), and the
scalar electric potential reduces to the square of the constant C1 = κ1 coth κ1(τ − τ ′), φ = C2

1 . This
picture with disappearing electric field is also valid for special isospectral n-soliton systems with
n > 2, which were briefly discussed in the previous section.

It is interesting to note that electric field can also be eliminated in the self-isospectral case
of reflectionless Pöschl-Teller systems having n > 1 bound states, that corresponds to the pair of
mutually shifted soliton potentials Vn = −n(n+1)κ2 sech2κ(x+τ) and V ′

n = −n(n+1)κ2 sech2κ(x+
τ ′) with n > 1. This, however, can be done by the price of changing the gyromagnetic ratio g = 2
corresponding to the Pauli Hamiltonian (8.1), to the value gn =

√

2n(n + 1). Indeed, changing the
magnetic term in (8.1) for 1

2gnσ3Bz, analogous analysis with employing the identity (8.5) results in
a(x) = −1

2gn∆(x)−k, where ∆(x) is the same as in Eq. (8.4), and φ = 1
2n(n+1)κ2 coth2 κ(τ − τ ′).

According to the discussion in Sections 6.6 and 7, a matrix system (1.1), (1.2) with mutually
shifted reflectionless Pöschl-Teller potentials is characterized by the pairs of the supercharges to
be differential operators of orders n and n + 1. This picture can be contrasted with a nonlinear
supersymmetric structure appearing in the Landau problem for a charged spin-1/2 particle with
special values of the gyromagnetic ratio g = 2n, see ref. [54], where supersymmetry is generated
by a pair of the supercharges to be differential operators of order n.

9 Discussion and outlook

A generic supersymmetric quantum mechanical system with a 2 × 2 matrix Hamiltonian, whose
components are intertwined either by first order Darboux or higher order Crum-Darboux differential
operators, is described by two fermionic supercharges constructed from the intertwining generators.
The supercharges together with the matrix Hamiltonian generate, respectively, either linear or
nonlinear N = 2 superalgebra. For the linear supersymmetry (in the sense of superalgebra), the
system has one non-degenerate zero energy level corresponding to the ground state in the case of
the non-broken supersymmetry, or only degenerate energy levels if the supersymmetry is broken.
For nonlinear supersymmetry case the picture is more complicated, and the system can possess
0 ≤ ℓ ≤ n non-degenerate states if nonlinear supersymmetry is of order n, see [37], [50] and
references therein.

We studied a special class of reflectionless systems with super-partners having the same number
n of discrete energy levels in their spectra. Each of super-partner potentials describes an n-soliton
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solution of a nonlinear KdV equation that depends on n scaling and n translation parameters, and
satisfies corresponding higher stationary equation of the KdV hierarchy. Because of the peculiar,
soliton nature of the composite matrix Hamiltonians, their supersymmetric structure, on the one
hand, turns out to be more rich in comparison with a generic case, and, on the other hand, it
experiences essential changes depending on relation between the two sets of 2n parameters that
characterize the partner n-soliton potentials.

It is worth to stress here that according to the terminology we used, the complete isospec-
trality breaking for a pair of n-soliton potentials Vn = Vn(κ1, . . . , κn, τ1, . . . , τn) and V ′

n =
Vn(κ

′
1, . . . , κ

′
n, τ

′
1, . . . , τ

′
n) means that κj 6= κ′j′ for all j, j′ = 1, . . . , n, and so, the energies of their

bound states, Ej = −κ2j and E′
j = −κ′j

2, have no coincidence, i.e. the extended system (1.1), (1.2)
in this case has 2n discrete non-degenerate levels. At the same time, the lowest, zero energy level
at the bottom of the continuous part of the spectrum of the extended system is doubly degenerate,
while all the energy levels with E > 0 inside the continuous spectrum are four-fold degenerate.

There are four supercharges in the system (1.1), (1.2), two of which are composed from inter-

twining generators X2k+1 and X†
2k+1 to be differential operators of the odd order 2k + 1 ≤ 2n+ 1,

while two other fermionic integrals are constructed from intertwining generators Y2l and Y
†
2l of the

even order 2l ≤ 2n, such that in general case the total order, |X2k+1| + |Y2l|, of the basic irre-
ducible intertwining operators satisfies a relation 2n + 1 ≤ (2k + 1) + 2l ≤ 4n + 1. The system
also possesses two bosonic diagonal matrix integrals composed from nontrivial Lax operators of the
n-soliton subsystems, Z2n+1 and Z ′

2n+1, which are differential operators of order 2n + 1 being the

Crum-Darboux dressed form of the free particle momentum p = −i d
dx
. Operator Z2n+1 (Z ′

2n+1)
detects all the physical non-degenerate states of the subsystem Hn (H ′

n) by annihilating them.
When the two sets of the scaling parameters are completely different, we have a complete

isospectrality breaking, and the irreducible intertwining generators are of the orders 2n + 1 and
2n. In this case X2n+1 and Y2n intertwine the partner Hamiltonians Hn and H ′

n via a virtual free
particle system. Operator Y2n detects all the bound states of the H ′

n subsystem, by annihilating
them, while X2n+1 makes the same job and, additionally, annihilates the non-degenerate state of the
zero energy at the bottom of the continuous spectrum. The eigenstates of the H ′

n not annihilated
by these intertwining operators are transformed by them into the corresponding eigenstates of the
Hn. The operators X†

2n+1 and Y †
2n do the same with the eigenstates of Hn. The anticommutator

between the supercharges of differential orders 2n + 1 and 2n generates the diagonal Lax integral
Pn;1 = −idiag (Z2n+1, Z

′
2n+1) multiplied by the order n polynomial of the matrix Hamiltonian.

Both bosonic integrals, Pn;1 and Pn;2 = σ3Pn;1, commute nontrivially with the supercharges. The
Hamiltonian Hn of the system plays a role of the multiplicative central charge of the nonlinear
superalgebra, whose structure is insensible to the translation parameters of the potentials.

In the simplest case of n = 1, when the scaling parameters κ1 and κ′1 of the partner potentials
coincide, a kind of a channel for a direct ‘tunneling’ between the partners is opened, the third
order operator X3 is substituted for the operator X1 of the first order, that intertwines H1 and
H ′

1 directly, without communication via the virtual free particle system, and bosonic integral P1;1

transmutes into the central charge of the superalgebra, whose structure starts to depend on the
‘tunneling distance’ τ1 − τ ′1. Operator X1 transforms now all the physical eigenstates of the H ′

1

subsystem into the corresponding eigenstates of the H1. In the case n > 1, each time when any two
discrete energy levels of the partner subsystems coincide, the basic intertwining operators X and Y
undergo a reduction, decreasing their total differential order in two, and a dependence on a relative
translation parameter associated with a pair of coinciding scaling parameters appears in the super-
algebraic structure. The details of restructuring of supersymmetry generators depend on whether
the discrete energy levels of the partners of the same or different ordinal numbers do coincide. A
structure of supersymmetry also suffers abrupt changes in the orders of the basic irreducible inter-
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twining operators, leaving invariant their total sum, when the coincidence of translation parameters,
associated with the coinciding scaling parameters, happens. The supersymmetry also experiences
a restructuring for another kind of correlation, κj coth κj(τj − τ ′j) = κj′ coth κj′(τj′ − τ ′j′), j 6= j′,
between the translation parameters associated with the coinciding pairs of discrete energy levels of
the different ordinal numbers, j 6= j′.

Only in the case of the exact isospectrality of the partners, when all their discrete energy levels
coincide pairwise, and as a consequence, their transmission scattering amplitudes also coincide,
the bosonic integral Pn;1 transmutes into the central charge of the superalgebra. In this case the
total order 2n + 1 of the two basic irreducible intertwining operators X and Y coincides with
the differential order of bosonic integrals. A particular case of such a situation corresponds to a
self-isospectral pair of Pöschl-Teller systems.

From the viewpoint of supersymmetric structure we investigated, the self-isospectral Pöschl-
Teller pairs possess, however, no special properties when n > 1, though the special subfamily of the
extended systems with exact isospectrality that we detected corresponds to a generalization of the
n = 1 self-isospectral case. For n > 1, those special isospectral pairs with the scaling and translation
parameters correlated by means of (n − 1) equalities κ1 coth κ1(τ1 − τ ′1) = κj coth κj(τj − τ ′j),
j = 2, . . . , n, are described by the basic irreducible intertwining generators X1 and Y2n. For n > 1,
the corresponding isospectral partner potentials have a form different from each other, and if one of
them is chosen to be a reflectionless Pöschl-Teller potential with n > 1 bound states, an isospectral
partner does not belong to the Pöschl-Teller hierarchy of potentials. More precisely, we identified
and investigated in detail supersymmetric structure of such a special pair in the case n = 2, while
we provided here only general indications that the same happens for n > 2. The special family of
the completely isospectral pairs of n-soliton systems with n > 2 requires a separate consideration
and will be presented elsewhere. The property |X1| = 1 means that any of the two hermitian

supercharges composed from the irreducible intertwining generators X1 and X†
1 may be identified

as a first order, Dirac type, Bogoliubov-de Gennes finite-gap Hamiltonian that belongs to the
AKNS integrable hierarchy. From another perspective, we also observed the peculiarity of the
special family of completely isospectral pairs with |X1| = 1 from the viewpoint of interpretation of
the matrix Hamiltonian (1.1), (1.2) in terms of the non-relativistic spin-1/2 particle system. In this
context, we showed that all the family of self-isospectral reflectionless Pöschl-Teller systems also is
special.

Analyzing the changes of supersymmetric structure associated with a coincidence of the scaling
parameters, or, that is the same, of the bound states energies, we referred to the opening of tunneling
channels conventionally. This might correspond nevertheless to real tunneling processes in some
applications of the exotic supersymmetry, particularly, related to instantons.

We discussed the exotic supersymmetric structure from the standpoint of a usual Shrödinger
equation that corresponds to a potential problem for a particle with a constant mass. It would be
interesting to reinterpret the results from a perspective of a quantum problem for a particle with a
position-dependent mass [55] having in mind possible applications for condensed matter physics.

As it was noted, by displacing the coordinate x for a pure imaginary constant, x → x + iδ,
our analysis can be generalized for the case of PT -symmetric quantum systems [52]. Such a
generalization seems to deserve a special attention as it was proved to be useful for a particular
case of supersymmetric extensions of reflectionless Pöschl-Teller and related systems, that helped
recently to clarify some peculiarities in the PT -symmetric quantum mechanics [53]. Particularly,
PT -symmetric generalization might be useful for applications in quantum optics.

As we mentioned, n = 1 and n = 2 reflectionless Pöschl-Teller systems control the stability
of the kink solutions in the sine-Gordon, ϕ4, and other exotic (1+1)-dimensional field theoretical
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models 9. By considering the doublets of these fields with equal or different masses [56, 57], one
could expect that the studied supersymmetric structure may reveal itself somehow at the level of
the symmetries of the corresponding kink solutions.

We investigated exotic supersymmetry of soliton systems with the primary focus on its quantum
mechanical aspects. The intriguing open question is whether it can be related somehow to a space-
time symmetry of relativistic field systems having topological solitons. The developments in the
Section IV of [36] seems to point towards a positive answer to this conjecture.

We discussed supersymmetric structure by choosing the diagonal Pauli matrix as a grading
operator Γ. Alternative choices for Γ related to reflection operators are also possible. They provide
the identification of the nontrivial integrals of motion as fermionic and bosonic generators in a
way different from that described here. Particularly, the treatment of Pn;a as odd supercharges is
possible, see [24, 37, 46, 47, 49, 58]. Supersymmetric structures for alternative choices of Γ can
be computed by employing the product relations of the intertwining generators and Lax operators
collected in Appendix. The alternative choices were useful for identification of the hidden super-
symmetric structure in the systems described by the first order Bogoliubov-de Gennes Hamiltonian,
particularly, in those associated with the Schrödinger n = 1 isospectral pair considered here [46, 24].
In this direction, it seems to be interesting to apply the results on a special case of the two-soliton
pairs with exact isospectrality studied in Section 6.7 to the physics related to the Gross-Neveu
model.

Finally, it would be interesting to generalize our analysis for finite-gap periodic systems, which
also find many interesting applications in physics [23, 24, 26, 59, 60]. In that case it seems to be
natural to restrict the considerations to the isospectral pairs.
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Appendix

Here we collect the products of the intertwining operators and Lax operators to be necessary for
computing the concrete superalgebraic relations.

In the n = 1 non-isospectral case, κ1 6= κ′1, the basic products of intertwining operators and
Lax integrals are

X3X
†
3 = H1(H1 + κ21)(H1 + κ′21 ), X†

3X3 = H ′
1(H

′
1 + κ21)(H

′
1 + κ′21 ), (A.1)

Y2Y
†
2 = (H1 + κ21)(H1 + κ′21 ), Y †

2 Y2 = (H ′
1 + κ21)(H

′
1 + κ′21 ), (A.2)

X3Y
†
2 = −Y2X

†
3 = (H1 + κ′21 )Z3, Y †

2X3 = −X†
3Y2 = (H ′

1 + κ21)Z
′
3, (A.3)

Z3X3 = −H1(H1 + κ21)Y2, X3Z
′
3 = −H1(H1 + κ′21 )Y2, (A.4)

Z3Y2 = (H1 + κ21)X3, Y2Z
′
3 = (H1 + κ′21 )X3 , (A.5)

Z3Z
†
3 = −Z2

3 = H1(H1 + κ21)
2, Z ′

3Z
′†
3 = −Z ′2

3 = H ′
1(H

′
1 + κ′21 )

2. (A.6)

The products X†
3Z3, Z

′
3X

†
3 , Y

†
2 Z3 and Z ′

3Y
†
2 are obtained by Hermitian conjugation of (A.4) and

(A.5). They are given by expressions of the same form but multiplied by −1 because of the property

9Reflectionless n-soliton potentials of a general form like that analyzed in Section 6 for n = 2 also appear in
stability equations for kink solutions in certain (1+1)-dimensional nonlinear field models, see [36].
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Z†
3 = −Z3, and with substitutions H1 → H ′

1, X3 → X†
3 and Y2 → Y †

2 . Relations (A.6) are needed
for computing of the superalgebraic structures in the case of alternative choices of the grading
operator.

In the n = 1 isospectral case κ1 = κ′1, because of reduction (4.1), some relations are changed
for

X̆1X̆
†
1 = H1 + C2, X̆†

1X̆1 = H ′
1 + C2, (A.7)

X̆1Y
†
2 = Z3 + C(H1 + κ21), Y2X̆

†
1 = −Z3 + C(H1 + κ21), (A.8)

Z3X̆1 = X̆1Z
′
3 = C(H1 + κ21)X̆1 − (H1 + C2)Y2 , (A.9)

Z3Y2 = Y2Z
′
3 = (H1 + κ21)((H1 + κ21)X̆1 − CY2) . (A.10)

The products X̆†
1Z3 = Z ′

3X̆
†
1 and Y †

2 Z3 = Z ′
3Y

†
2 are obtained by Hermtian conjugation of (A.9) and

(A.10) as in the non-isospectral case.
For a pair of n-soliton systems with complete isospectrality breaking the basic products are

Y2nY
†
2n = PnP

′
n , X2n+1X

†
2n+1 = HnPnP

′
n , (A.11)

X2n+1Y
†
2n = −Y2nX

†
2n+1 = P

′
nZ2n+1 , (A.12)

Z2n+1Y2n = PnX2n+1 , Y2nZ
′
2n+1 = P

′
nX2n+1 , (A.13)

Z2n+1X2n+1 = −HnPnY2n , X2n+1Z
′
2n+1 = −HnP

′
nY2n , (A.14)

Z2
2n+1 = −HnPn , (A.15)

where Pn =
∏n

l=1(Hn + κ2l ), P
′
n =

∏n
l=1(Hn + κ′2l ). Other products of the type X†

2n+1Y2n etc.
are obtained from these ones via the change κj ↔ κ′j , τj ↔ τ ′j with taking into account that

X†
2n+1 = −X ′

2n+1, Y
†
2n = Y ′

2n and Z†
2n+1 = −Z2n+1.

For three cases (6.19), (6.22), and (6.22) of n = 2 pairs with partial isospectrality breaking,
the basic product relations are obtained from (A.11)–(A.15) by taking into account the reduction
relations (6.21), (6.25) and (6.28). The latter are presented in the unified form X5 = hκi

X̆ l
3 −ClY4,

and then for each of three cases, distinguished by the index l = 1, 2, 3 for (6.19), (6.22), (6.26),
respectively, we have

X̆ l
3X̆

l†
3 = hClhκd

hκ′

d
, Y4Y

†
4 = h2κi

hκd
hκ′

d
, (A.16)

X̆ l
3Y

†
4 = hκ′

d
(Z5 + Clhκi

hκd
), Y4X̆

l†
3 = hκ′

d
(−Z5 + Clhκi

hκd
), (A.17)

Z5Y4 = hκi
hκd

(hκi
X̆ l

3 − ClY4), Y4Z
′
5 = hκi

hκ′

d
(hκi

X̆ l
3 − ClY4), (A.18)

Z5X̆
l
3 = hκd

(Clhκi
X̆ l

3 − hClY4), X̆ l
3Z

′
5 = hκ′

d
(Clhκi

X̆ l
3 − hClY4), (A.19)

where hα = H2 + α2, α = κi, κd, κ
′
d, Cl.

The n = 2 partial isospectrality breaking case κ1 = κ′1, κ2 6= κ′2, τ1 = τ ′1, shown on Fig. 4a, is
characterized by the following basic products of the intertwining and Lax operators,

Y̆ A
2 Y̆

A†
2 = hκ2

hκ′

2
, X5X

†
5 = H2h

2
κ1
hκ2

hκ′

2
, (A.20)

X5Y̆
A†
2 = −Y̆ A

2 X
†
5 = hk′

2
Z5 , Y̆ A†

2 X5 = −X†
5Y̆

A
2 = hκ′

2
Z ′
5 , (A.21)

Z5X5 = −H2h
2
κ1
hκ2

Y̆ A
2 , X5Z

′
5 = −H2h

2
κ1
hκ′

2
Y̆ A
2 , (A.22)

Z5Y̆
A
2 = hκ2

X5 , Y̆ A
2 Z

′
5 = hκ′

2
X5 . (A.23)

For the n = 2 isospectral case with a common n = 1 virtual system, when κ1 = κ′1, κ2 = κ′2,
τ1 = τ ′1, τ2 6= τ ′2, the basic products are

Y̆ A
2 Y̆

A†
2 = h2κ2

, Y̆ A†
2 Y̆ A

2 = h′2κ2
, X̆B

3 X̆
B†
3 = hC2h

2
κ1
, X̆B†

3 X̆B
3 = h′C2h

′2
κ1
, (A.24)
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X̆B
3 Y̆

A†
2 = Z5 + C2hκ1

hκ2
, Y̆ A

2 X̆
B†
3 = −Z5 + C2hκ1

hκ2
, (A.25)

X̆B†
3 Y̆ A

2 = −Z ′
5 + C2h

′
κ1
h′κ2

, Y̆ A†
2 X̆B

3 = Z ′
5 + C2h

′
κ1
h′κ2

, (A.26)

Z5Y̆
A
2 = Y̆ A

2 Z
′
5 = h2κ2

X̆B
3 − C2hκ1

hκ2
Y̆ A
2 , Y̆ A†

2 Z5 = Z ′
5Y̆

A†
2 = C2h

′
κ1
h′κ2

Y̆ A†
2 − h′2κ2

X̆B†
3 , (A.27)

Z5X̆
B
3 = X̆B

3 Z
′
5 = C2hκ1

hκ2
X̆B

3 − hC2h
2
κ1
Y̆ A
2 , X̆

B†
3 Z5 = Z ′

5X̆
B†
3 = h′C2h

′2
κ1
Y̆ A†
2 − C2h

′
κ1
h′κ2

X̆B†
3 .
(A.28)

Here hκi
= H2+κ

2
i , h

′
κi

= H ′
2+κ

2
i i = 1, 2, hC2 = H2+C2

2 , h
′
C2

= H ′
2+C2

2 , and C2 = κ2 coth κ2(τ2−τ
′
2).

Relations for the same isospectral case but with τ2 = τ ′2, τ1 6= τ ′1 are obtained from these ones by
interchanging A↔ B, κ1 ↔ κ2, τ1 ↔ τ2, τ

′
1 ↔ τ ′2 and by, correspondingly, changing C2 → C1.

In generic n = 2 isospectral case, κ1 = κ′1, κ2 = κ′2, τ1 6= τ ′1, τ2 6= τ ′2, denoting X̆
(1)
3 = X̆A

3 and

X̆
(2)
3 = X̆B

3 , we have

X̆
(i)
3 X̆

(j)†
3 = hihjhij − (Ci − Cj)Z5 , X̆

(i)†
3 X̆

(j)
3 = h′ih

′
jh

′
ij + (Ci − Cj)Z

′
5 , (A.29)

Z5X̆
(i)
3 = X̆

(i)
3 Z ′

5 = − 1
∆C

(

(−1)ih1h2h12X̆
(i)
3 + ǫijhiih

2
j X̆

(j)
3

)

, (A.30)

X̆
(i)†
3 Z5 = Z ′

5X̆
(i)†
3 = 1

∆C

(

(−1)ih′1h
′
2h

′
12X̆

(i)†
3 + ǫijh′iih

′2
j X̆

(j)†
3

)

, (A.31)

where hi = H2 + κ2i , h
′
i = H ′

2 + κ2i , hij = H2 + CiCj , h
′
ij = H ′

2 + CiCj, ∆C = C2 − C1, and no
summation in i, j = 1, 2 is implied on the right hand sides.

For the n = 2 special isospectral case C1 = C2,

X̂1X̂
†
1 = hC1 , X̂†

1X̂
=
1 h

′
C1
, Y4Y

†
4 = h2κ1

h2κ2
, Y †

4 Y4 = h′2κ1
h′2κ2

, (A.32)

X̂1Y
†
4 = Z5 + C1hκ1

hκ2
, Y4X̂

†
1 = −Z5 + C1hκ1

hκ2
, (A.33)

Z5X̂1 = X̂1Z
′
5 = C1hκ1

hκ2
X̂1 − hC1Y4 , X̂†

1Z5 = Z ′
5X̂

†
1 = h′C1Y

†
4 − C1h

′
κ1
h′κ2

X̂†
1 , (A.34)

Y4Z
′
5 = Z5Y4 = hκ1

hκ2
(hκ1

hκ2
X̂1 − C1Y4) , Z

′
5Y

†
4 = Y †

4 Z5 = h′κ1
h′κ2

(C1Y
†
4 − h′κ1

h′κ2
X̂†

1) , (A.35)

where hκi
= H2 + κ2i , h

′
κi

= H ′
2 + κ2i i = 1, 2, hC1 = H2 + C2

1 , h
′
C1

= H ′
2 + C2

1 .
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