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Abstract 

The work described in this thesis discusses both the implementation of a 

simulation micromagnetic code that harnesses the power of parallel computing and 

the study of different phenomena in micromagnetic devices via simulations. 

 The implementation of the simulation code is performed by first studying the 

theoretical formalism of Micromagnetism and the numeric techniques that allow for 

the simulation of different devices, under that formalism. An existing sequential 

Fortran code is used as a basis to develop the parallel code, which is written in a 

recently developed language by NVIDIA named CUDA. This uses graphic processing 

units (GPUs) to perform highly parallel computations instead of the usual central 

processing units (CPUs), which allowed for speed-ups of up two orders of magnitude 

at a tenth of the cost of an equivalent super-computer CPU cluster. The developed 

parallel-GPU code includes the usual micromagnetic field contributions (exchange, 

anisotropy, magnetostatic, Zeeman, Oersted) as well as the thermal field and the spin-

torque interaction on both, current perpendicular to plane (CPP) and current in-plane 

(CIP) devices. In particular for CPP devices the magnetization dynamics of both the 

usually pinned and free layers of a spin-vale or tunnel junction (MTJ) is considered, 

accounting for the spin-torque of both layers on each other (back-torque).  

Different micromagnetic studies are presented, which involve the study of the 

magnetization switching in magnetic tunnel junctions, with and without the effect of 

temperature, which also show some of the limitations of sequential programming that 

lead to the will of developing a faster and more efficient parallel micromagnetic code. 

The developed parallel code, being able to tackle large temporal and/or large spatial 

simulations is used to rigorously study vortex oscillation frequencies in spin-valves 

(simulation times of 10-5 s), and to study the domain wall dynamics in long 

ferromagnetic stripes (in the order of 106 computational cells). 

 
KEYWORDS – Micromagnetics, spin-torque, MTJ, spin-valve, domain wall, parallel programming, 

GPU. 
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Resumen 
En el trabajo descrito por esta tesis se incluye tanto la implementación de un 

código de simulación micromagnética que aprovecha la potencia de la computación 

en paralelo, como el estudio de diferentes fenómenos en dispositivos 

micromagnéticos. 

La implementación del código de simulación se inició mediante el estudio del 

formalismo teórico del Micromagnetismo y de las técnicas numéricas que permiten la 

simulación de diferentes dispositivos. Un código secuencial de Fortran se utiliza como 

base para el desarrollo del código paralelo, escrito en un lenguaje recientemente 

desarrollado por NVIDIA (CUDA). Este sistema utiliza unidades de procesamiento 

gráfico (GPU) para realizar los cálculos en paralelo, en lugar de las habituales 

unidades centrales de procesamiento (CPU), permitiendo un incremento de la 

velocidad de simulación de hasta dos órdenes de magnitud, a una décima parte del 

costo de un sistema de supercomputación equivalente (cluster de CPUs). El código 

paralelo-GPU desarrollado incluye las contribuciones habituales micromagnéticas 

(intercambio, anisotropía, magnetostática, Zeeman, Oersted), así como el campo 

térmico y la interacción de par de espín, tanto para dispositivos con corrientes 

perpendiculares al plano (CPP) o corrientes en el plano (CIP). En particular para los 

dispositivos CPP se considera la dinámica de la magnetización de las capas fija y libre 

de una válvula de espín o unión de efecto túnel (MTJ). Se tiene en cuenta el par de 

espín de ambas capas (back-torque). 

Se presentan diferentes estudios micromagnéticos, que implican el estudio de la 

inversión de la magnetización en uniones de efecto túnel, sin y con el efecto de la 

temperatura. Estos estudios muestran algunas de las limitaciones de la programación 

secuencial que llevaron a la idea de desarrollar un código micromagnético paralelo 

más eficiente. El código paralelo desarrollado, capaz de realizar simulaciones que 

implican grandes ventanas temporales y/o grandes dimensiones espaciales se utiliza 

para estudiar rigurosamente las frecuencias de oscilación de vórtices en válvulas de 

espín (tiempos de simulación del 10-5 s), y para estudiar la dinámica de paredes de 

dominio en largas tiras ferromagnéticos (del orden de 106 células computacionales). 

	  
PALAVRAS CLAVE – Micromagnetismo, par de espín, MTJ, válvulas de espín, paredes de dominio, 

programación paralela, GPU. 
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1 Introduction 
The ongoing development in all fields of science, driven by Humanity’s 

unquenchable thirst for knowledge, has brought incredible technological 

advancements that make not only Man’s life easier and healthier but also opens the 

door to new and exciting branches of science. The work presented by this thesis tries 

to humbly leave its footstep in the never-ending marathon, which is Humanity’s 

understanding of the wonderful universe it inhabits.  

Micromagnetism is the particular branch of solid-state physics in which this work 

focuses on. It is usually defined as a mesoscopic formalism, since it uses numeric-

physical models to describe the magnetization dynamics of ferromagnetic materials at 

the micro and nano-scale. In other words, it works at a scale larger than the atomic 

one, in which quantum considerations would be needed, but low enough that one can 

see the dynamics of domains formed by thousands, if not millions, magnetic spins. As 

a result, through this medium it is possible to gain a great insight into new 

fundamental physical effects, like the spin transfer torque (STT) and its applications 

into possible new devices like spin torque oscillators, and also into the most recent 

interest into the spin-Hall and spin-Seebeck effects. Actually, the previously 

mentioned phenomena gave birth to a new branch of research, which is known as 

spintronics (neologism for devices based on spin transport electronics). 

The great driving force of this field of study is not only the insight it gives into 

fundamental physics, but also the fact that the study of those phenomena allows for 

the creation of new, more efficient and faster devices. One example of such 

applications comes directly from a strong consumer product, which is the magnetic 

hard drive. This device saw an incredible development due to the magneto-resistance 

study of magnetic materials, which allowed a memory density increase from 2,4Gb 

per sq-inch in 1997 up to 70Gb per sq-inch in 2007. Such development was driven by 

both the evolution of the miniaturization techniques and the understanding of the 

magneto-resistance phenomenon. This phenomenon is seen in thin film structures, 

such as spin-valves (Fig. 1), which are composed of alternating layers of 

ferromagnetic and non-magnetic conductor materials that “see” its electrical 

resistance change significantly under the application of an external magnetic field. 

The discovery of this phenomenon was recognized in 2007 through the Nobel Prize in 
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physics given to Albert Fert and Peter Grünberg for the Giant Magneto-Resistance 

(GMR) discovery in 1988, [1],[2]. Around the year 2006 the spin-valve read heads of 

hard drives that used the GMR effect, started to be replaced by magnetic tunnel 

junctions (MTJs) due to its tunnelling magneto-resistance (TMR) effect. Unlike spin-

valves, in a MTJ a thin insulator rather than a conductor separates the ferromagnetic 

materials. This allows for a smaller and more sensitive device to the magnetic changes 

present in hard drives, and thus lead to a further increase of the memory density. 

 
Fig. 1 – Spin-valve read head representation. When the fixed and free layer have their averaged 
magnetization in the anti-parallel configuration, as in the picture, the sensing current reads a high 
resistance state, whereas if they are in parallel it would read a low resistance state. This is the principle 
used in order to distinguish between the 0 and 1 bit logic values recorded in the memory track. 

Another interesting finding that came from the study of fundamental 

micromagnetism was the concept of spin-transfer, as a result of the works of John 

Slonczewski and Luc Berger in 1996 [3],[4]. This phenomenon states that if a current 

passes through a thick enough magnetic material, its electrons become spin-polarized 

along the direction of the magnetization of that material. Such a current then exerts a 

torque onto a subsequent magnetic thin film by the transfer of spin angular 

momentum, which in turn influences its magnetic structure. This spin transfer torque 

effect immediately lead scientists to new ideas for future devices, due to the ability of 

manipulating the magnetization directly by using currents. Up to this point, in order to 

invert the magnetization, of for example the free layer of a spin-valve, large magnetic 

fields had to be generated in its vicinity. However with the STT effect one can invert 

the magnetization by applying the current directly through the device, which brought 
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up the idea of current controlled magneto-resistive random access memory (ST-

MRAM) (Fig. 2). This solution would not only decrease the power needed for its 

operation but also reduce the read and write times, which would make it a viable non-

volatile memory that does not wear out. In fact in November of 2012, the company 

Everspin launched the first commercial ST-MRAM chips [5], bringing forth what will 

most probable be a booming new era of spin-torque memories. 

 
Fig. 2 – Magnetic tunnel junction MRAM working principle, [5] 

More devices were thought up due to the STT, which are based on the propagation 

of spin currents by either conducting electrons or spin-waves. One of which was again 

in the area of magnetic storage, in the form of the racetrack memory (Fig. 3) proposed 

by Parkin [6] that again promises to be a more efficient and fast type of memory. This 

type of memory is based on moving domain walls (DWs), which is a region where the 

magnetization gradually changes from one given direction to another, in long 

magnetic strips [6]-[9]. Spin-torque nano-oscillators (STNOs) are also another 

interesting prospect of a device, since multiple devices that depend on oscillator 

principles could be further miniaturized. The idea for such a device came from the 

now well-established knowledge that a spin-polarized electric current injected into a 

ferromagnetic layer through a nano-contact exerts a torque on the magnetization, 

which eventually leads to microwave frequency precessions detectable through the 

magneto-resistance effect [10]-[12]. Since the amplitude of such spin-waves is small, 

researchers are trying to phase-lock a number of nano-contacts in order to get a higher 

signal. Until now this is proving to be a difficult task, in part due to finding the right 

combination of ferromagnetic materials that will allow for high amplitude microwave 

oscillations using a DC current. 
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Fig. 3 – Racetrack memory working principle [6]. 

More recent phenomena have caught the eye of researches, like the spin-Hall and 

spin-Seebeck effects. It has been realized that spin-currents can be achieved through a 

magnetic insulator, like in the work reported by Kajiwara et al. [13], in which the 

spin-Hall effect is used to generate and detect spin-waves through an insulator. Also 

the temperature difference between two points in a ferromagnet, and even in non-

magnetic materials, has shown a spin-current between them, which was denominated 

as the spin-Seebeck effect, [14],[15]. Both these new ways of approaching spin-

currents may open the door to new devices besides a new look into fundamental 

physics. 

In order to study the previously mentioned phenomena, from either the 

fundamental or experimental points of view, a bridge is needed in order to link the 

theoretical mathematical-physical models with the experimental devices. That link is 

achieved through the use of numeric simulations. This last type of investigation has 

been gaining more and more relevance in the last decades, as the research into 

different physical properties gets ever more complex. In order to justify the 

investment into expensive laboratory equipment that allows the scientific community 

to make the experimental research essential to the advancements in physics and other 

sciences, simulations are used in order to predict, discover and solve physical 

phenomena before an experiment is attempted. Simulations provide a unique link 
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between the theoretical research and the experimental one, allowing both parties to 

see where they coincide and where the theories fail and need to be improved in order 

to better understand the experimental results. In the same way, micromagnetic 

simulations have gained an important role within its field because they have proved to 

be an efficient tool in the verification of the theoretical formalism [16]-[20], and 

subsequently in the interpretation and design of devices.  

Prior to the beginning of the work described by this thesis, micromagnetic 

simulations based on the Landau-Lifshitz-Gilbert dynamic equation (17), were of a 

sequential type, written in computer languages like Fortran and C. Although several 

different advancements have been made using the traditional sequential programming 

it poses both temporal and spatial limitations, due to the continuum nature and 

characteristic scale of the micromagnetic mesoscopic formalism. The spatial 

limitation comes in evidence when trying to simulate either multilayer and/or 

geometrically large devices (typically in the micrometer range in either Cartesian 

direction). In order to perform the numeric simulations the atomic spins are grouped 

into nanometer cells, however these cells cannot be larger than the characteristic 

length, like the exchange length (defined later in (62)), which is typically of 5 nm or 

less for a ferromagnet. The spatial issue is then a memory problem, because when 

wishing to simulate the dynamics of a device like a spin-valve or a MTJ, which is 

composed of several layers, the number of computational cells can reach the hundreds 

of thousand or more. The number of cells also brings with it the temporal problem, 

since if many cells are to be calculated one by one, as they are in a sequential code, 

more cells means that more time is required to solve the problem under study. Also 

some complex magnetization structures like the one’s in vortex dynamics and Bloch-

Point domain walls, require the use of smaller cell sizes in order to avoid numerical 

errors, which also leads to the use of smaller time steps per iteration due to the 

stability criteria [21]. Another time issue comes in relevance when trying to 

accurately calculate the inherent oscillating frequencies of a given device, since the 

time step sets the maximum frequency one can detect and the duration of the 

simulation sets the frequency resolution. All of these spatial and time limitations 

present in micromagnetic simulations were asking for a better solution than the one 

provided by the sequential programming. 
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Objectives of this work 

In order to try and overcome the previously mentioned limitations of the sequential 

programming, this work has focused on the development of the micromagnetic 

simulation computer tool. In particular it explores the advantages of parallel 

computation by using graphic processing units, GPUs, to solve the dynamic equation 

that governs the magnetization, by means of the finite difference method. 

Once the parallel micromagnetic code is fully functional it is intended to use it 

towards tackling physical problems that involve large spatial and temporal 

simulations. These will account for the study of spin-valve dynamics that require 

large temporal simulations in order to precisely determine the magnetization 

oscillation frequency and other phenomena. And spatially challenging simulations, 

like the ones needed to study the dynamics of domain walls in long nano-strips, will 

also be performed using the new parallel micromagnetic code. 

Thesis outline 

Chapter 2 – In this section the theoretical fundamentals inherent to the 

micromagnetism formalism are given. Subjects like the magnetization as the variable 

of state of the system, the characteristic scale of micromagnetism, the dynamic 

equation and its different energy contributions, are covered in this chapter.  

Chapter 3 – This is the most lengthy chapter, as it describes the computational 

micromagnetic basics and beyond. It starts by describing the finite difference method 

within the sequential code framework and how each energy contribution is managed 

numerically. This will show the limitations of the sequential type of programming, 

which will serve as a bridge to the second part of the chapter in which micromagnetic 

computations are approached through the use of GPU parallel computing. This section 

ends by comparing the results and efficiency between both methods of computation 

and the verification of the developed parallel code.  

Chapter 4 - In this section results are shown of physical micromagnetic studies 

performed on different devices using both the sequential CPU and the newly 

developed parallel GPU computing methods. 

Finally the thesis ends with the conclusions where the main achievements of this 

work are described. 
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2 The basics of Micromagnetism  
2.1  Introduction 

The magnetic properties of materials are of quantum nature [16]-[20]. However, in 

order to describe the magnetic properties starting from a quantum point of view, it is 

required to work from the atomic scale by considering a discrete system of spins. 

Although such formalism would be satisfactory, it is unviable due to large number of 

spins involved. Since the ferromagnetic materials that will be studied throughout this 

work are ranging from the tens of nanometers, up to the micrometer scale, a more 

practical formalism is needed. Such formalism is known as micromagnetism, and it 

has been proving to be a very useful tool in the description of the magnetization 

dynamics of ferromagnetic materials. 

Micromagnetism is the theoretical formalism [16]-[20] that allows for the 

magnetization study at a scale larger than the atomic one, but still small enough to 

allow the visualization of the internal structure dynamics between magnetic domains 

(Fig. 4). This formalism is based on the assumption that the magnetization M(r), is a 

continuous vectorial function of the position within the material, and its modulus, 

called spontaneous magnetization MS, remains constant. As a result, a ferromagnetic 

material can be idealized as a group of elements of volume dV with a constant 

magnetization per unit of volume MS (Fig. 4). The direction of said magnetization is 

given by the unit vector m(r)=M(r)/MS, which varies smoothly between each element 

of volume. Each element of volume has to be big enough so as to contain a large 

number of atoms that are responsible for the magnetic moment, i.e. much larger than 

the lattice constant a (Fig. 4). Nonetheless each element of volume has to be small in 

order to avoid the abrupt variation of the magnetization between each element of 

volume, in accordance to the continuous nature of the magnetization vectorial 

function. 

Since the type of system that is intended to study is a discrete one, the continuous 

approximation requires a justification. This is based on the fact that the exchange 

interaction is the dominant one at short distances, forcing the magnetic dipoles (or the 

elements of volume dV in the micromagnetic description) to be parallel between each 

other. With this in mind, all other forces can be seen as a small perturbation to the 

parallel orientation between first neighbors. Therefore it is reasonable to say that M(r) 
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is a continuous function of the position, since the magnetization varies slightly 

between each surrounding element. 

 
Fig. 4 – Scale in micromagnetism. a) Atomic scale representation of individual magnetic moments µ i, 
where a is the lattice constant. b) Micromagnetic scale, representing the magnetization vector M as the 
sum of all magnetic moments µ i inside the volume dV, c) Micromagnetism is in an intermediate scale 
larger than the atomic one, but small enough to “see” the transition region between magnetic domains. 

Although the exchange interaction is the main one in ferromagnetic materials, 

others are needed in order to fully describe the behavior of such materials, as the ones 

derived from Maxwell equations of electromagnetism. In the following sections the 

equation of motion and the different energy contributions relevant to this work, will 

be discussed. 

2.2 The equilibrium and dynamic equations 
In order to determine the equilibrium equation, all the energy contributions that act 

on the magnetization have to be considered. Such expression may be obtained using 

Hamilton’s variational principle [22], so as to solve the time evolution of the system,  
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where, L is the Lagrangian functional to the continuous vectorial field in a 

tridimensional space m(r,t), and lV=kV+uv is the Lagrangian density per unit of 
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volume with kV and uv being the kinetic and potential energy densities per unit of 

volume respectively. In the second part of (1) uS represent the potential energy density 

per unit of surface. After some algebra and considering the static equilibrium state, it 

is possible to reach the following equilibrium equations for both volume (2) and 

surface (3) points respectively, 
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Working in S.I. units it is possible to define a vector with the dimensions of a 

magnetic field from the functional derivative of the energy density per unit of volume 

given by (2) as, 
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where the functional derivative is given by, 
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The quantity Heff is called the effective field, whose different energy contributions 

will be determined in the next section. Thus by multiplying (2) by m×1 one can 

express the volume equilibrium condition in terms of Heff, as, 

  

€ 

m ×
δuV
δm

= 0→m × Heff = 0
     

(6) 

The last expression represents the state when the torque between the magnetization 

M and the Heff  is zero in each element of volume of the material. Equations (3) and 

(6) are known as Brown’s equations [23]. From (3) it is also possible to write a torque 

of the magnetization with a surface effective field Heff,S, however this contribution 

will not be taken into account and thus will not be discussed further.  

Suppose now a ferromagnetic sample with a magnetization M per unit of volume 

under the influence of a magnetic field Heff, in S.I. units the induction field Beff, can be 

expressed by Beff=µ0(M+Heff). Under such field each element of volume of the system 

experiments a torque τ  given by, 

                                                
1 Note that throughout the micromagnetic framework described here m≡m(r,t) or M≡M(r,t), m or M is written for 
the sake of simplicity. 
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€ 

τ = M × Beff = µ0M × Heff            (7) 

where µ0 is the vacuum magnetic permeability. From (7) it can be deduced that the 

torque τ  tends to rotate each magnetization element of volume in a given direction, set 

by the local Heff.  

The expression for the magnetization dynamics can be obtained from the magnetic 

dipole µ  equation of motion under the influence of a field Beff, by using Newton’s 

second law of motion. The torque that acts upon the magnetic dipole is equal to the 

variation of angular momentum J, of the magnetic dipole, 

  

€ 

dJ
dt

= τ = µ0µ × Heff     
 (8) 

In most ferromagnetic materials the angular momentum J, is mainly due to the 

electron’s spin and thus J=L+S≈S, [24]-[26]. The spin S and the magnetic dipole µ  

are related through the gyromagnetic ratio γ by, 
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µ = γ S        (9) 

where γ is given by, 
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< 0

           
(10) 

where, g is the so-called Landé factor, which for a free electron is approximately 

equal to 2. The other factors are the electron’s charge qe and mass me, the Bohr 

magneton µB, and the reduced Planck’s constant ħ. The magnetic dipole dynamic 

equation can then be written as, 

  

€ 

dµ
dt

= γµ0µ × Heff        
(11) 

Since in the micromagnetic formalism, as was seen in the previous section, instead 

of individual magnetic dipoles a large group of them is considered in each element of 

volume dV (Fig. 4), the dynamic equation of the magnetization can be described as, 

  

€ 

dM
dt

= −γ0M × Heff             
(12) 

where γ0 is defined as, 

  

€ 

γ0 = µ0
gµB


= −µ0γ        

(13) 

The dynamics expressed by (12) describes that in the presence of a constant 

magnetic field the magnetization M would rotate indefinitely, never achieving the 
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equilibrium state2. However, from experience after a given amount of time the 

magnetization will align itself with the field, meaning that the system will tend to an 

equilibrium state through some mechanism of dissipative nature. There are several 

processes that may contribute to the dissipation of energy, like lattice interactions, 

scattering, eddy currents, etc. All of which are really difficult to describe, thus in 

micromagnetism all of these dissipative processes are included in a phenomenological 

way, by adding a dissipative term into the dynamic equation (12). 

The simplest way to add dissipation to the dynamic equation is to modify the 

effective field Heff in order to include an Ohmic type of dissipation [16], (Fig. 5 (b)), 

  

€ 

Heff →Heff −
α

γ 0MS

dM
dt       

(14) 

where α is the dimensionless phenomenological damping parameter. Using the 

modified effective field from (14) in equation (12), the Gilbert equation is obtained, 

  

€ 

dM
dt

= −γ0M × Heff +
α
MS

M ×
dM
dt       

(15) 

From the previous equation it can be seen that the system will continuously lose 

energy until it reaches the equilibrium state, where the magnetization M is parallel to 

the effective field Heff. Also, if dM/dt=0 the stationary state of the dynamic equation 

(15), is reduced to the equilibrium equation (6). 

 
Fig. 5 – Magnetization M dynamics in the presence of a magnetic field Heff. a) Without dissipation 
α=0, the magnetization rotates around the field with frequency –γ0Heff. With damping α>0, after a 
certain amount of time the magnetization will precess until it aligns itself with the field, due to the 
dissipative term M×dM/dt. 

Working with the Gilbert equation is not a simple task, since the time derivative of 

the magnetization is present in both sides of equation (15). However, a different way 

                                                
2 In truth the rotation of M around Heff would in fact radiate energy, however this dissipative contribution is 
depreciable in this context.  
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of introducing the phenomenological dissipation term in (12) was proposed by 

Landau-Lifshitz. In this proposal the dissipative term is added in such a way that it is 

perpendicular to both the magnetization vector M and the precession of M×Heff, 

  

€ 

dM
dt

= −γ0M × Heff −
γ0α
MS

M × M × Heff( )
   

(16) 

Unlike the Gilbert equation (15), in (16) the dissipation and precession terms are 

uncoupled and thus can be easily solved numerically. It is possible to obtain an 

equation which is formally equal to the one described by Landau-Lifshitz (16), and 

that expresses the same dynamics of Gilbert’s equation (15). Multiplying both sides of 

(15) by M× and using the property a×(b×c)=(a.c)b–(a.b)c, and M.M= MS
2, one 

reaches the following expression, 

  

€ 

dM
dt

= −
γ0

1+α 2
M × Heff −

γ0
1+α 2

α
MS

M × M × Heff( )
    

(17) 

The previous equation is formally known as the Landau-Lifshitz-Gilbert (LLG) 

equation and it describes the same physical properties as (15). Equation (17) 

represents the dynamic equation used to solve the dynamics of the magnetization 

throughout this work. However it should be kept in mind that in order to take into 

account the effect of spin transfer torque, some terms need to be added to (17). These 

terms will be discussed further along this chapter. Sometimes it is also useful to 

express the previous expression in the form,  

  

€ 

(1+α 2) dm
dt

= −γ 0 m × Heff −αm × m × Heff( )[ ]
     

(18) 

with, 
  

€ 

m =
M
MS

 

 

2.3 Energy contributions and the effective field 
In the following sub-sections all of the energy contributions to the effective field 

(4) are discussed, so as to use them to calculate the LLG dynamic equation (17). 

These contributions are of both quantum nature like the exchange and anisotropy 

interactions, and of classical nature like the magnetostatic, Oersted and Zeeman 

interactions. The effects of a thermal field added to the Heff are also discussed so as to 

account for the effect of temperature.  
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2.3.1 Exchange energy 

As it was said before, the exchange energy is the dominant interaction at short 

distances and thus it is responsible for the parallel alignment between neighboring 

spins. Its origin is of quantum mechanical nature and it is due to Pauli’s exclusion 

principle. The Heisenberg Hamiltonian that describes the exchange interaction is 

usually written as [23], 

    

€ 

H exch = − 2Jij ˆ S i . ˆ S j
i, j

fN

∑
    

(19) 

The sum is among first neighbors fN, Ŝij represent the spin operators and Jij is the 

exchange integral, whose value decreases rapidly with the distance between spins and 

thus is only noticeable among first neighbors. This means that one can simply write J 

instead of Jij. 

In order to adapt the Heisenberg Hamiltonian to the continuous description used 

here, the spin operators are replaced by the vectors Si,j=Si,jsi,j, (with Si=Sj=S), and the 

dot product in (19) is rewritten so as to obtain the following exchange energy 

expression, 

  

€ 

Uexch = −JS2 cosθ ij
i, j
∑

    
(20) 

where θij is the angle between spins si and sj and j represents the first neighboring 

spins of i (Fig. 6). 

 
Fig. 6 – Exchange interaction representation between first neighbors. In the atomic Heisenberg model 
representation, a is the lattice constant and rij the position vector between the spins i and j. In the 
micromagnetic model, each magnetization M volume element is at a  Δx distance from the first 
neighbors where rij is the position vector connecting them. 

Assuming that the angle between the spins θij is very small it is possible to use the 

mathematical property cosθij ≈1–θ2
ij/2 in (20), plus considering that the sum is for 

each pair of first neighbors then, 
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€ 

Uexch = JS2 θ ij
2

j
∑

i
∑

       
(21) 

In the micromagnetic description the unit vector in the direction of the spin si of 

each dipole  µ i present in the lattice is replaced by the unit vector mi=Mi/MS, along the 

direction of the magnetization in each element of volume Mi=Σi µi /dV, (Fig. 6). Using 

the dimensionless and continuous variable of the magnetization m, it is possible to 

write for small angles that, 

  

€ 

θ ij ≈ mi −m j ≈ rij .∇( )m         
(22) 

where, rij is the position vector between i and j (Fig. 6). Thus the exchange energy can 

now be written as, 

    

€ 

Uexch = JS2 rij .∇( )m[ ]
2

rij

∑
i
∑

    
(23) 

In the continuous representation the sum in i is replaced by an integral over the 

volume V of the ferromagnetic sample under study. Thus the exchange energy takes 

the form of, 

    

€ 

Uexch = uexdV =
V
∫ A ∇m( )2dV

V
∫

        
(24) 

where A is the exchange constant in J/m, which is given by, 

€ 

A =
JS2z
a      

(25) 

where a is distance between first neighbors and z is equal to 1, 2 or 4 depending if the 

lattice is simple cubic, face-centered cubic or body-centered cubic, respectively. The 

exchange energy described by (24) can also be shown as valid for other types of 

lattice like the hexagonal one, [23]. Equation (24) is considered to be valid at any 

temperature T, and that A varies with T. 

Finally by using (4) and (24) the expression for the exchange field Hexch at each 

element of volume can be written as, 

  

€ 

Hexch (r) =
2A

µ0MS
∇2m(r)( )

   
(26) 

2.3.2 Anisotropy energy 

From different experiments it is well know that magnetic materials are in general 

not isotropic and thus have preferred directions. Such directions are called easy 

directions, they are easier to magnetize and are related to the symmetric directions of 

the crystal. The anisotropy energy is then defined as the excess energy needed to 
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magnetize a material in a certain direction in respect to an easy direction. Its origin 

comes from spin-orbit interactions at the atomic level. As a result, it is very 

complicated to obtain an expression for it starting from a microscopic model and thus 

a phenomenological approach is used [16]. 

Since throughout this work the focus was on materials with uniaxial anisotropy, 

this will be the only one described. Taking the first term of the Taylor development, 

the uniaxial magneto-crystalline energy is equal to, 

    

€ 

Uan.u = uan,udV =
V
∫ K 1− (m.uK )

2( )dV
V
∫

   
(27) 

where K (J/m3) is the anisotropy constant and uK the unit vector along the anisotropy 

direction. If K>0 the direction of uK is an easy direction, on the contrary if it K<0 it is 

a hard direction. In the first case, the uniaxial magneto-crystalline anisotropy energy 

is at a minimum when the magnetization is parallel to easy axis uK. On the other hand, 

when K<0, the anisotropy energy is at a maximum when the magnetization is parallel 

to the hard axis uK. As a result, in this case the plane perpendicular to the hard axis uK 

is called easy plane, since all the directions parallel to that plane are easy directions 

being energy minimums of the uniaxial magneto-crystalline energy. 

From the energy equation (27) and using (4), one determines the uniaxial 

anisotropy effective field Han,u for each element of volume as, 

  

€ 

Han,u (r) =
2K

µ0MS
(m.uK )uK

   
(28) 

2.3.3 Magnetostatic energy 

The magnetostatic energy is the energy associated to the magneto-static interaction 

between the lattice magnetic dipoles. The field created by the dipoles is called 

magnetostatic or sometimes demagnetizing field, since when looking from inside the 

material this field tends to demagnetize the sample, both names are used throughout. 

This is one of the classical fields derived from Maxwell equations (29)-(32), whose 

contribution is essential to the micromagnetic formalism, and it is also the most 

challenging field to compute, as it will be shown in chapter 3. 
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€ 

∇.D(r,t) = ρ(r,t)     (29) 

  

€ 

∇.B(r,t) = 0      (30) 

  

€ 

∇ × E(r,t) = −
∂B(r,t)
∂t     

(31) 

  

€ 

∇ × H(r,t) = j(r,t) − ∂D(r,t)
∂t    

(32) 

where, D(r,t) is the electrical displacement vector field, ρ(r,t) is the charge density per 

unit of volume, B(r,t) is the magnetic induction field, E(r,t) is the electrical field, 

H(r,t) is the magnetic field, and j(r,t) is the current density per unit of volume. 

It is well know that a uniformly magnetized ellipsoid along one of his axis 

experiences a magnetic field that opposes the magnetization per unit of volume, hence 

the name demagnetizing field, Hdmg
3. Naturally the same effect is seen in all 

geometries of different magnetic materials with magnetizations pointing in different 

directions.  

Considering the case in which the magnetostatic field is the only field present, i.e. 

in the absence of electrical fields, electrical currents, or any other magnetic field, the 

aforementioned Maxwell equations are reduced to, 

  

€ 

∇.B(r) = 0      (33) 

  

€ 

∇ × H(r) = 0      (34) 

Knowing that B=µ0(M+H) where now the magnetic field H represents the 

magnetostatic field Hdmg, the previous equations can be written as, 

  

€ 

∇.µ0 M (r) + Hdmg(r)( ) = 0 ⇔ ∇.Hdmg(r) =∇.M (r)   (35) 

  

€ 

∇ × Hdmg(r) = 0         (36) 

Calculating the magnetostatic field Hdmg(r) is analogous to calculating the 

electrical field E(r) created by a distribution of electrical charges ρ(r) inside a volume 

V surrounded by a surface S (Fig. 7). Therefore from equations (35) and (36), and 

keeping in mind the surface boundary conditions that Hdmg(r) must obey, it is possible 

to define fictitious volume and surface magnetic charge densities, respectively as 

ρm(r) and σm(r). Naturally magnetic charges do not exist, the previous quantities are 

thus defined in order to aid in the calculation of the field Hdmg(r), in the same way as 

the electrical field is calculated. 

                                                
3 Note that although it is named as Hdmg, this field represents the magnetostatic field generated by the sample in all 
points inside and outside the sample. The subscript dmg is used throughout to refer to the magnetostatic field. 



2 The basics of Micromagnetism 

 34 

  

€ 

ρm (r) = −∇.M (r)      (37) 

  

€ 

σm (r) = M (r).n      (38) 

Where n is the unit vector perpendicular to the surface S. From the previous equations 

it is possible to deduce the following expression for the magnetostatic field Hdmg(r) at 

each point r, of the sample,  

  

€ 

Hdmg(r) =
1
4π

r − r '( )ρm
r − r ' 3

dV '
V '
∫ +

r − r '( )σm

r − r ' 3
dS'

S '
∫

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 
  

(39) 

where |r-r’| is the distance between the point of the field being calculated (r) and all 

other field creating magnetic moments (at r’). The magnetostatic energy can now be 

written as, 

    

€ 

Udmg = udmgdV = −
1
2

µ0 Hdmg(r).
V
∫

V
∫ M (r)dV

  
(40) 

where the factor ½ is added because the source of the magnetostatic field Hdmg(r) is 

the volume magnetization distribution M(r) of the sample. 

 

Fig. 7 – Representation of the magnetostatic field Hdmg, in a rectangular prism. a) Magnetization M of 
the sample as if there were “magnetic charges”. b) The magnetization M is responsible for the creation 
of a magnetostatic field Hdmg inside the sample and it also induces a magnetostatic field Bdmg in the 
regions outside the sample c). Outside the sample M=0 and thus Bdmg=µ0Hdmg. 
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2.3.4 Zeeman energy 

The Zeeman field is referred in micromagnetism as the externally applied field, 

which might be used to magnetize the sample in any given direction. This field, for 

example, is commonly used to see the typical hysteresis curve of a given material, 

among other different applications. Within the micromagnetic formalism this field is 

usually uniform throughout the sample under study, (however it can be made to vary 

in both space and time). This is in general a good approximation since in principle, as 

in typical experiments, the micro-sized sample is immersed in an external field 

Hext(r), which is considered uniform. 

Because the Zeeman field Hext(r) is considered an external variable to the system, 

and in this formalism represents a vectorial field whose module and direction are 

known beforehand, the Zeeman energy [23] density can be written as, 

    

€ 

UZee = uZeedV = −µ0 Hext(r).
V
∫

V
∫ M (r)dV

  
(41) 

2.3.5 The Oersted field  

The Oersted field can also be regarded as an external field since its source is the 

external current density j(r) that flows through each element of volume dV. Thus the 

energy density can be described as, 

    

€ 

UOe = uOedV = −µ0 HOe(r).
V
∫

V
∫ M (r)dV

   
(42) 

and the field HOe(r)4 is determined from Maxwell equations (29)–(32) as, 

  

€ 

HOe(r) =
1
4π

j
V '
∫ (r ') × r − r '

r − r ' 3
dV '

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 
         

(43) 

2.3.6 The Thermal field  

Since it would be a very difficult task to construct a thermal theory starting from 

the particle level up to the mesoscopic scale of micromagnetism, the temperature 

effect is usually included by adding a random noise thermal field Hth, to the 

deterministic dynamic equation (17). The dynamic equation is thus converted into a 

stochastic one, which is usually referred to as the Langevin equation [27]. In 1963 

Brown applied this procedure to single domain particles, where he showed what the 

statistical properties [27],[29] had to be in order to correctly reproduce the 

equilibrium thermodynamics [28]. It is quite difficult to apply that methodology to the 

                                                
4  The current density may also vary in time, j(r,t), hence so will the Oersted field HOe(r,t). 
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continuous formalism of micromagnetism, however once it is discretized5 the problem 

is formally equivalent to an ensemble of single domain particles. Since once 

discretization is achieved each cell corresponds to a single magnetic particle, thus the 

same procedure can be used in order to include thermal fluctuations to the 

micromagnetic simulations. As a result the thermal random field Hth can be added to 

the effective field Heff (4) acting on the magnetization of each cell.  

  

€ 

Heff →Heff + Hth      (44) 

The Cartesian components of Hth are independent Gaussian distributed random 

numbers with the following statistical properties, 

  

€ 

Hth,α ,i(t) = 0          (45) 

  

€ 

Hth,α ,i(t)Hth,β , j (t') = 2Dδ ijδαβδ t − t'( )   (46) 

where i and j are the cell counters, α, β = x,y,z refer to the Cartesian components of 

the field and the brackets represent the statistical average. Each Kronecker delta has a 

different meaning; the first, δij, implies that the fluctuating term of different cells are 

independent from each other; the second one, δαβ, means that the three Cartesian 

terms are independent from each other; the Dirac delta, δ(t–t’), indicates that the noise 

is uncorrelated in time, i.e. it is a white noise. The coefficient D is obtained so as to 

satisfy Maxwell-Boltzmann statistics when thermodynamic equilibrium is reached. 

This is achieved through the stationary solution of the Fokker-Planck equation 

[27],[29], which is constructed from Langevin’s equation and governs the probability 

distribution dynamics of the magnetization, leading to, 

€ 

D =
αkBT

1+α 2( )γ 0µ0MSV     
(47) 

where kB is the Boltzmann constant, T the temperature and V is the volume of each 

individual cell. Therefore, the fluctuating thermal field that will be added to the 

effective field Heff (4), at each cell, within the micromagnetic formalism is given by, 

                                                
5 The discretization of the micromagnetism theory is executed in chapter 3, where the numerical integration that 
will allow for the simulation of the magnetization dynamics of different magnetic materials is described. 
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€ 

Hth,i(t) =ηi (t)
2αkBT

1+α 2( )γ 0µ0MSVΔt    
(48) 

where η i(t) is a stochastic vector whose components are zero-mean, standard normal-

distributed random numbers and Δt is the time step used in the micromagnetic 

simulations. 

2.3.7 The spin-transfer-torque  

As it was previously mentioned, the phenomenon of spin transfer torque (STT) 

opens the possibility to manipulate the magnetization of a material by using currents 

instead of fields. Therefore, it opens the possibility to design different new devices, 

which are not only potentially much faster but also more energy efficient.  

The STT effect arises whenever the flow of spin-angular momentum through a 

sample is not constant, but has sources or sinks. This torque transfer is “seen”, for 

example, whenever a spin-current flowing through a magnetic material whose 

magnetic moment is not collinear with that of the spin-current (Fig. 8). Changes to the 

spin-angular momentum flow also occur when spin-polarized currents pass through a 

magnetic domain wall or any other non-uniform magnetization pattern such as 

vortexes, etc. In this process, the spin conducting electrons have their spins rotate in 

the direction of the local magnetization, and thus the angular momentum spin vector 

flow changes as a function of the position. Therefore, the magnetization m of a 

ferromagnet influences the flow of spin-angular momentum of the conducting 

electrons due to the exchange interaction between them, by exerting a torque on the 

incoming spins reorienting them in the process. Due to Newton’s third law of motion, 

the flowing electrons also must exert an equal and opposite torque onto the local 

magnetization of the ferromagnet. This exerted torque by the non-equilibrium 

conduction electrons onto the ferromagnet is what is commonly known as the STT. 
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Fig. 8 – Representation of a single spin of angular momentum sin, that suffers a torque exerted by the 
magnetization M of the magnetic thin film, which in turn gets reoriented by the direction of M and is 
transmitted through the thin film with angular momentum str. The amount of spin that gets transmitted 
depends on the material properties and many are reflected with moment sref., which are mainly 
constituted by the spins of opposite polarization in regard to the transmitted ones. 

During the development of this work two types of STT were used, one for devices 

in which the Current flow is Perpendicular to Plane (CPP), like in spin-valves (Fig. 9) 

or MTJs, and the other when the Current is In-Plane (CIP), as is the case in domain 

wall (DW) dynamics along ferromagnetic strips.  

The STT contribution enters the equation describing the magnetization dynamics 

by including additional torques to the LLG dynamic equation (18). This will be shown 

for each type of torque below. 

Current Perpendicular to Plane (CPP). 

In the case where two magnetic layers are separated by a non-magnetic metal 

spacer, as in a spin-valve (Fig. 9), the STT that the thin magnetic layer experiences 

was given by Slonczewski [3] and it reads, 

    

€ 

ΓST−CPP =
dm
dt

= −
gµB jP (m.p)
2MSd qe

m × m × p( )
    

(49) 

The previous equation is written in its dimensionless form, where p=MP/MPS is the 

unit vector magnetization of the assumed thick polarizing layer with saturation 

magnetization MPS, and m=M/MS is the unit vector magnetization of the assumed thin 

free layer, j is the current density, d the thickness of the layer undergoing the STT 

effect, qe the electron’s charge, and P(m.p) is a polarization function, which depends 

on the relative orientation between the assumed thin free layer m, and the thick pinned 

layer p, magnetizations [3], 
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€ 

P (m.p) =
1

−4 + 1+η( )3
3+ (m.p)( )
4η3 2        

(50) 

where  η is the spin polarization factor of the magnetic material under study. Other 

polarization functions can also be used for spin-valves, which also take into account 

the giant-magneto resistance asymmetry χ, besides the polarization factor and it is 

given by [30], 

    

€ 

P (m.p) =
0.5η(χ +1)

2 + χ 1− (m.p)( )         (51) 

The previous expressions are valid for spin-valve devices, however if considering a 

MTJ in which an insulator spacer is used instead of a non-magnetic metal, the 

polarization function reads [31],  

    

€ 

P (m.p) =
1
2
η

1
1+η2(m.p)

          

(52) 

Adding the spin torque term (49) to the dynamic equation (18), allows for the 

writing of the LLG equation with the STT effect for CPP devices as, 

    

€ 

1+α 2( ) dm
dt

= −γ 0 m × Heff +αm × m × Heff( )[ ]
−
gµB jP (m.p)
2MSd qe

m × m × p( ) −α m × p( )[ ]
   

(53) 

Usually it is considered that the pinned layer magnetization p, does not suffer the 

effects of the spin-torque interaction since it is considered to be a pinned or fixed 

layer. Although this is a good approximation for many experiments it is not generally 

true, and in some cases the dynamics of the called pinned layer is relevant, as is the 

case of coupled device modes involving vortex oscillations in both layers (section 

4.2.1 and [32]). In such cases, both layers m and p in Fig. 9 are considered free to 

move and both polarize the conducting electrons depending on the direction of the 

current. Thus when developing a micromagnetic simulation code in which both layer 

magnetizations are considered dynamic, the names pinned and free are usually 

changed to thick and thin. (Nonetheless in Fig. 9 the usual names pinned and free 

layer were kept).  
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Fig. 9 – Representation of the STT acting on a spin-valve device. a) When the magnetizations of both 
layers are anti-parallel, the STT that acts on the free layer m, comes from the transmitted electrons that 
have been polarized by the pinned layer p. b) When magnetizations of both layers are parallel, the STT 
that acts on the free layer comes from the reflecting electrons that flow through it. c) Direction of all 
the torques being applied to the magnetization p in the presence of both the Heff and spin polarized 
current. 

When considering that both layers are dynamic the dynamic equation used (53) is 

the same but now as to be evaluated twice, once for each layer, taking the care that the 

thin layer is acting in one of the expressions as the polarizing layer and on the other as 

the one suffering the effects of the spin-torque, and vice-versa for the thick layer. 

Meaning that when evaluating, at each time step, the dynamics of the thin layer it is 

used the equation as in (53), whereas for the thick layer it would read, 

    

€ 

1+α 2( ) dp
dt

= −γ 0 p × Heff +α p × p × Heff( )[ ]
−
gµB jP ( p.m)
2MSd qe

p × p × m( ) −α p × m( )[ ]
  

(54) 

This gives rise to what is usually called back-torque due the fact that at each time 

step the STT effect of one layer over the other is evaluated.  

Current In-Plane (CIP). 

Although the nature of STT is the same in either CPP or CIP, that is due to 

exchange interaction between the non-collinear spin carrying electrons with the local 

magnetization, the torque description is different. In order to study the magnetization 
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dynamics involving in-plane currents, like in the study of DWs, two sources of torque 

are required to describe the dynamics, one adiabatic and the other non-adiabatic.  

 
Fig. 10 – Schematic representation of the electron’s spin polarization when using CIP in a long stripe 
with the presence of a domain wall. 

A current flowing through a metallic ferromagnet is naturally polarized by it (Fig. 

10), and when said current encounters a DW the relevant microscopic interaction is 

again the exchange interaction between the local magnetization m and the spin 

carrying electrons. This interaction affects the DW in two different ways. One is the 

momentum transfer, or force, and the other the spin transfer, or torque. 

 
Fig. 11 – Two possible effects when a electric current encounters a domain wall due to the exchange 
interaction between the conduction electrons and the local magnetization. a) A reflected electron has 
transferred linear momentum to the domain wall. b) An adiabatically transmitted electron has 
transferred spin angular momentum to the domain wall. 

Consider a metallic ferromagnet containing a single DW, and suppose there is an 

electron flowing from left to right (Fig. 11), if the electron is reflected by the DW its 

momentum is changed. This process acts as a force on the DW by transferring linear 

momentum from the electron to the DW (Fig. 11 (a)). On the other hand, if the 

electron is transmitted through the DW adiabatically, namely, by keeping its spin 

direction closely parallel to the local magnetization, the spin angular momentum of 

the electron is changed (Fig. 11 (b)). This process acts as a torque on the domain wall 

by transferring the spin angular momentum from the electron to the DW. In other 
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words, this change of the electron spin should be absorbed by the magnetization, 

which might lead to the translational motion of the DW. In thick DWs the reflection 

probability is very small and thus the spin-transfer effect will be the dominant driving 

mechanism. This leads to what is denominated as the adiabatic torque τadi, which is 

given by [4], 

  

€ 

τadi =
dm
dt

= −
gµBη
2MS qe

( j.∇)m
         

(55) 

where in this case  η is a spin polarization factor, which basically represents which 

percentage of the electrons is spin polarized along the direction of the local 

magnetization. The quantity vsp-drift=jgµBη/2MS|qe| is generally called the spin-drift 

velocity and is actually the maximum velocity that the DW can reach in the adiabatic 

limit. 

However since the theories developed to describe the STT in the adiabatic limit 

were not able to reproduce some experimental results (namely for thin DW), it was 

suggested that the spin transfer was more complicated and that some non-adiabatic 

contributions must be present. This non-adiabatic torque was first introduced by 

Zhang et al. [33] and Thiaville et al. [34] and it is given by, 

  

€ 

τnon−adi =
dm
dt

= −βm ×
gµBη
2MS qe

( j.∇)m
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 
     

(56) 

where β is the dimensionless non-adiabatic parameter [35],[36]. 

With the two previous torque contributions, adiabatic and non-adiabatic, it is 

possible to write the total spin-torque when applying CIP through a ferromagnetic 

material as, 

  

€ 

ΓST−CIP =
dm
dt

=
gµBη
2MS qe

−( j.∇)m + βm × ( j.∇)m[ ]
     

(57) 

Adding the spin torque term (57) to the dynamic equation (18), allows for the 

writing of the LLG equation that takes into account both adiabatic and non-adiabatic 

spin-torque terms for CIP, 
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€ 

1+α 2( ) dm
dt

= −γ 0 m × Heff +αm × m × Heff( )[ ]
−

gµBη
2MS qe

(1+ βα)( j.∇)m − (β−α)m × ( j.∇)m[ ]
 

(58) 

2.4 Recapitulation 
During this chapter all of the relevant contributions to the magnetization dynamics 

that will be treated throughout this work, were discussed. Before continuing to the 

description on how each contribution is discretized, a small recapitulation is presented 

in order to recall all of the effective field Heff components and the dynamic equation 

that is to be solved numerically. 

Effective field 

  

€ 

Heff = Hexch + Han,u + Hdmg + HExt + HOe + Hth    (59) 

were each component of the field is given by the previously seen equations. 

Since when actually performing the numeric computations it is usually more 

practical to use the dimensionless form of the LLG dynamic equation they are written 

below for both CPP and CIP devices. 

Dynamic equation for CPP devices  

    

€ 

1+α 2( ) dm
dτ

= − m × heff +αm × m × heff( )[ ]
−

1
γ 0MS

gµB jP (m.p)
2MSd qe

m × m × p( ) −α m × p( )[ ]
  

(60) 

Note that if the simulating both the assumed magnetic free thin layer m and thick 

polarizing layer p, care as to be taken while writing the dimensionless equation (60) 

since the saturation magnetization of each material MS might be different. 

Dynamic equation for CIP devices  

  

€ 

1+α 2( ) dm
dτ

= −γ 0 m × heff +αm × m × heff( )[ ]
−

1
γ 0MS

gµBη
2MS qe

(1+ βα)( j.∇)m − (β−α)m × ( j.∇)m[ ]
  

(61) 

where in both previous equations it was considered that, 

  

€ 

τ = γ 0MSt m =
M
MS

heff =
Heff

MS
p =

MP

MPS
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3  Micromagnetism numeric modelling 
3.1 Introduction 

This section is dedicated to the description on how the micromagnetism numeric 

modeling is performed, in order to study different interesting phenomena of the 

magnetization dynamics, from either the point of view of fundamental physics or 

from experimental devices.  

As it has been seen thus far, micromagnetism is a semi-classical formalism, which 

allows for the study of the behavior of magnetic materials at the nano-scale. That 

behavior is described through the use of non-lineal partial differential equations, 

which are significantly complicated to solve and in general do not have analytical 

solutions. There are some analytical solutions but these are only for very simple 

geometries at low dimensions. That said, in micromagnetism there are two 

approximations, which can be seen as having opposite nature. On one hand, the 

discrete atomic system of magnetic moments is approximated by a continuous system 

as it was described in chapter 2. On the other hand, one has to discretize the 

previously obtained continuous expressions in order to solve the problem numerically. 

The first part of this chapter is dedicated to the discretization of the geometry and 

of the dynamic equation, as well as all the different effective field contributions, using 

the finite difference method. In the second part, the numerical issues pertaining to the 

sequential type of programming are discussed, and its limitations will serve as a 

bridge to the last part of the chapter, where the spatial and temporal limitations are 

overcome by developing a parallel micromagnetic code using graphic processing units 

(GPUs). The chapter finishes by presenting comparative results that show the 

accuracy and efficiency of the developed parallel code. 

3.2 Spatial discretization  
As it was previously described, micromagnetism requires solving a set of non-

lineal integral differential equations, which involve long-range (magnetostatic, 

Oersted), short-range (exchange, spin-torque) and local (anisotropy, external fields) 

interactions. These do not have analytical solutions except for very idealized cases 

[23],[37] and thus have to be solved numerically. In order to do that, one first has to 

spatially discretize the sample of the magnetic material. By doing so, the framework 

goes from a continuous system where the variable is the vectorial field M(r)=MS m(r), 
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to a discrete system where now the variables are the values of the magnetization at 

each cell of the computational mesh, M(i,j,k)=MS m(i,j,k). There are two discretization 

approaches usually used in micromagnetics; the finite elements (FE) and finite 

difference (FD) methods. The FE approach [38] is based on interpolating the 

magnetization using linear basis functions on a non-uniform typically tetrahedral 

mesh. The FD, on the other hand, uses a uniform rectangular mesh, as it is shown in 

Fig. 12. The main disadvantage of the FD approach is that sampling curved 

boundaries with a rectangular mesh results in a staircase type approximation to the 

geometry, which introduces spurious effects. However in most simulations these 

effects are small enough to be ignored, and in the ones in which they are relevant 

some ad hoc techniques have been developed to hinder them [39]-[41]. The FD 

method is in general easier to implement, in particular when regarding the meshing of 

the sample, and it was the one adopted in this work. 

Once the spatial discretization is achieved some considerations have to be taken 

into account about the size of each cell of volume  ΔV (Fig. 12). Essentially, it has to 

be larger than the atomic scale, but not too large, so as to comply with the mesoscopic 

formalism of micromagnetics. In other words, it has to contain a sufficient number of 

magnetic spins in order to consider that the module of the magnetization MS is 

constant in each cell, but small enough so that the magnetization can be considered as 

continuous function of the position inside the material. This leads to what is called the 

characteristic length, which in micromagnetism is the scale at which the 

magnetization varies significantly. Therefore, when numerically solving a problem it 

has to be ensured that the size of each computational cell is small enough when 

compared to the characteristic length. There are at least two characteristic scale 

lengths that are usually used in micromagnetics, and although an adequate cell size 

has to be chosen depending on the problem to solve these two serve as guide. They 

are the exchange length lex and the wall width lw, and are given respectively by, 

€ 

lex =
2A

µ0MS
2

     
(62) 

and, 

€ 

lw =
A
K       

(63) 

where A is the exchange constant and K is the magneto-crystalline anisotropy 

constant. Roughly speaking the exchange length lex is the relevant scale when 
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magneto-static dipolar interaction dominants over the magneto-crystalline anisotropy, 

as is the case when working with soft magnetic materials, whereas when considering 

materials with large anisotropy, the wall width lw becomes the relevant scale. 

 
Fig. 12 – Representation of the discretization of the magnetic sample into a mesh of individual cells 

of volume  ΔV=ΔxΔyΔz. Each cell is assumed to be uniformly magnetized with its magnetization equal 
to M(i,j,k) = MSm(i,j,k), where i=1,…,Nx, j=1,…,Ny, and k=1,…,Nz with Nx, Ny, and Nz representing the 
total number of cells in each Cartesian direction. Note that the total number of cells includes non-
magnetic cells while discretizing the sample (empty cubes). These nonmagnetic cells are used in order 
to “draw” more complex structures like curvatures (in figure), notches, bumps, etc, when using the 
finite difference method. The dimensions of the sample are given by Ln=NnΔn (where n≡x,y,z). 

In the most frequently used ferromagnetic materials the scales of both lex and lw 

usually range between 4 nm and 8 nm, which sets some bounds to the cell size that is 

to be used in the simulations. Nonetheless this may vary depending on the type of 

problem to solve, since in more complex magnetic structures like Bloch-point walls 

([42] and section 4.2.2) and others, the numeric precision can force the use of smaller 

cell sizes, which in turn leads to longer simulation times. 

3.3 Discretization of the micromagnetic equations 
Once the spatial discretization is achieved, the equilibrium (6) and dynamic (18) 

equations with and without the influence of the STT ((53) or (58)), have to be 

discretized as well in order to solve them numerically. Hence, this section is dedicated 

to finding the discrete counterparts to the continuous functions that describe all the 

contributions to the local effective field Heff, in each computational cell.  

3.3.1 Exchange interaction discretization 

From the continuous exchange energy density function (24) it is possible to 

express it for each computational cell of the mesh (i,j,k) as, 
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€ 

uexch (i, j,k) = A ∇mx (i, j,k)( )2 + ∇my (i, j,k)( )2 + ∇mz (i, j,k)( )2⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥          

(64) 

where, 

€ 

∇mn( )2 =
∂mn

∂x
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

+
∂mn

∂y
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

+
∂mn

∂z
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

            
(65) 

with n=x,y,z. 

In the FD approximation the derivatives are replaced by ratios at the center of each 

cell of the mesh, thus the previous expression can be written as, 

€ 

∇mn( )2 ≡ Δxmn

Δx
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

+
Δymn

Δy
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

+
Δzmn

Δz
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

  
(66) 

where Δx, Δy and Δz are the spatial distances in the three dimensions between each 

cell of the mesh, whereas Δx, Δy and Δz are the FD operators in each respective spatial 

direction. Considering now the unit magnetization vector m(i,j,k) at the point (i,j,k) 

and the first neighbor in the +x direction, (i+1,j,k) with magnetization m(i+1,j,k), the 

first term of (66) can be written as, 

€ 

Δxmx

Δx
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

=
mx (i +1, j,k) −mx (i, j,k)

Δx
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

=

=
mx
2(i +1, j,k) − 2mx (i +1, j,k)mx (i, j,k) +mx

2(i, j,k)
Δx    

(67) 

The second and third terms of (66) can be obtained in a similar manner. Taking into 

account that |m(i,j,k)|=1 for all cells, equation (67) becomes, 

€ 

Δxmx

Δx
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2

=
1
Δx2

2 − 2mx (i +1, j,k)mx (i, j,k)[ ]
   

(68) 

An analogous process can be made in order to obtain from (66) the first neighbor 

components for the positive y and z directions.  

Naturally, the first neighbors in the negative directions of each Cartesian 

component have also to be considered, and thus from (66) (with n=x), 

€ 

∇mx( )2 =
1
Δx2

2 − 2mx (i +1, j,k)mx (i, j,k)( ) + 2 − 2mx (i −1, j,k)mx (i, j,k)( )[ ] +

+
1
Δy2

2 − 2mx (i, j +1,k)mx (i, j,k)( ) + 2 − 2mx (i, j −1,k)mx (i, j,k)( )[ ] +

+
1
Δz2

2 − 2mx (i, j,k +1)mx (i, j,k)( ) + 2 − 2mx (i, j,k −1)mx (i, j,k)( )[ ] +
   

(69) 

and similarly for (∇my)2 and (∇mz)2. From the equation (69) the exchange energy 

density at each point of the mesh (64) can be written as, 
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€ 

uexch (i, j,k) =
2A
Δx2

1−m(i, j,k).m(i', j',k ')[ ]
i' j 'k '

fN

∑ +

+
2A
Δy2

1−m(i, j,k).m(i', j',k ')[ ]
i' j 'k '

fN

∑ +

+
2A
Δz2

1−m(i, j,k).m(i', j',k ')[ ]
i' j 'k '

fN

∑
     

(70) 

where fN is the number of first neighbors in each Cartesian direction.  

The total exchange energy (24) can now be approximated by, 

  

€ 

Uexch = uexchdV
V
∫ ≈ uexch (i, j,k)ΔV

i, j ,k

N

∑
   

(71) 

where N=NxNyNz is the total number of cells within the discretized sample. 

In the discrete representation the functional derivative (δ/δm≡∂/∂m-∇.∂/∂(∇m)) is 

converted into the ordinary derivative (∂/∂m), which is valid when considering that 

the angles between the magnetization of a particular cell and its neighbors are small. 

Therefore the effective field contribution due to the exchange interaction can be 

calculated from, 

  

€ 

Hexch (i, j,k) = −
1

µ0MS

∂uex (i, j,k)
∂m(i, j,k)            

(72) 

to give,  

  

€ 

Hexch (i, j,k) =
2A

µ0MS

m(i +1, j,k) + m(i −1, j,k)
Δx2

⎡ 

⎣ ⎢ 
+

m(i, j +1,k) + m(i, j −1,k)
Δy2

+
m(i, j,k +1) + m(i, j,k −1)

Δz2
⎤ 

⎦ ⎥    

(73) 

Another important aspect arises from the variation of the exchange energy besides 

the abovementioned effective field contribution, which are the boundary conditions 

(BC) at the surface of the sample. The BC arising from the discontinuity of the 

exchange interaction at the surface is referred to as “free” BC, and it can be written as 

mentioned in the different references [23],[43],[44]. However, since throughout this 

work the surface anisotropy and interlayer exchange are not considered, the BC used 

are simply reduced to, 
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€ 

∂m
∂n

= 0             (74) 

3.3.2 Anisotropy interaction discretization 

The local interaction term of the anisotropy is trivially discretized from the 

uniaxial anisotropy energy density function (27) as, 

  

€ 

uan,u (i, j,k) = K 1− m(i, j,k).uk( )2[ ]          
(75) 

where uk is the unit vector in the direction of the anisotropy, and thus the total 

anisotropy energy is given by, 

  

€ 

Uan,u = uan,udV
V
∫ ≈ uan,u (i, j,k)ΔV

i, j ,k

N

∑
     

(76) 

As before, the effective field contribution of the anisotropy can be determined from 

the functional derivative of the uniaxial anisotropy energy density (75), 

  

€ 

Han,u (i, j,k) = −
1

µ0MS

∂uan,u (i, j,k)
∂m(i, j,k)

=
2K

µ0MS
m(i, j,k).uk( )uk

 
(77) 

3.3.3 Magnetostatic interaction discretization 

As a non-local term, in order to make the discretization of the magnetostatic field 

Hdmg(r), it is necessary to take into account that this field at the point r(i,j,k) depends 

on the magnetization m(r’) of all other points r’(i',j’,k’) within the sample’s volume. 

Assuming that the magnetization m(i,j,k) at each cell (i,j,k) of the mesh is uniform, the 

averaged magnetostatic field at each cell can be shown to be equal to [45],[46], 

    

€ 

Hdmg(i, j,k) = −MS N αβ i − i', j − j ',k − k'( ).mβ (i', j',k ')
i' j 'k '

N

∑
β

(x,y,z)

∑
        

(78) 

where the sum is over the total number of cells N, and N αβ (r–r’) is a 3×3 symmetric 

tensor usually called the demagnetizing tensor and it is given by, 

    

€ 

N αβ r − r '( ) =
1
4π

dSrdSr'

r − r 'Sr'

∫
Sr

∫
   

(79) 

where Sr and Sr’ are the surfaces of the cells at the positions r and r’, whereas Sr and 

Sr’ are the corresponding surface vectors Sr =Sr n and Sr’=Sr’ n, with n being the 

normal unit vector. As it is stated by (78) the evaluation of the magnetostatic field 

Hdmg, requires the summation of all cells within the sample, which means that it 

involves a total of N2 operations (note that this number of operations will be 

multiplied by three since each Cartesian component of the field is evaluated 
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separately). All the other terms that contribute to the dynamic equation require only N 

operations, since they are local interactions or at the most short range as is the case of 

the exchange interaction. As a result, the simulations of samples composed by a large 

number of cells become prohibitive if trying to evaluate (78) directly. However, since 

the demagnetizing tensor N αβ only depends on the relative position between the 

cells, (r–r’), and on the geometry of the sample, (78) can be recognized as a discrete 

convolution of Nαβ with m. On one hand this means that N αβ only needs to be 

calculated once at the beginning of the simulation, and on the other hand, the 

magnetostatic field can be computed more efficiently using Fast Fourier Transform 

(FFT) techniques [47],[48]. The reason why it is more efficient to use FFTs is that the 

convolution is converted into a simple product in the Fourier space, which will be 

briefly discussed below. 

Each Cartesian coordinate of the magnetostatic field (78) Hdmg,n (n≡x,y,z), has the 

form of a tridimensional discrete convolution in the coordinate space, which 

accordingly to the convolution theorem allows for the following product in the 

Fourier space, 

  

€ 

F Hdmg,x (i, j,k)[ ] ≡ ˜ H dmg,x (kx,ky ,kz ) = F N β (i, j,k)[ ]F mβ (i, j,k)[ ] =

= ˜ N αβ (kx,ky,kz ) ˜ m β (kx ,ky,kz )     
(80) 

where (kx,ky,kz) are the coordinates in the Fourier space. The components Hdmg,y and 

Hdmg,z are calculated in a similar manner. Therefore, in order to calculate the 

magnetostatic field Hdmg, it is first necessary to determine the demagnetizing tensor 

N αβ, perform its FFT and store it in memory. Once the magnetization at each point 

of the mesh is known, the FFT is also performed for it, followed by the product in 

Fourier space as described in (80). To retrieve the value of the magnetostatic field 

back into the “real” space one simply has to perform the inverse FFT of (80), 

  

€ 

Hdmg,x (i, j,k) ≡ F −1 ˜ H dmg,x (kx,ky ,kz )[ ]    (81) 

All of the previous operations amount to a total of six FFT (three direct for each 

Cartesian component of m to the Fourier space, and three inverse for each of them to 

bring the result of Hdmg back to the “real” space), plus three products for each 

component of Hdmg (80). This means that by using the FFT method the number of 

operations needed to calculate Hdmg is about Nlog2N for each FFT, which is a 

considerable improvement when compared to the N2 operations that result when 
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directly evaluating (78) (Fig. 13). Nonetheless some care has to be taken when using 

this technique, because the convolution carried by the FFT method assumes that the 

magnetization data present in the computational region repeats itself periodically in an 

infinite space. In order to avoid the artifacts derived from this, the zero-padding 

technique [50] is applied to the physical region where the magnetization data resides 

in the Fourier space. This technique consists in adding computational cells that 

surround the physical region with zero magnetization, in such a way that the total 

number of cells is at least the double of that in the physical region in each direction, 

i.e. Kx≥2Nx, Ky≥2Ny and Kz≥2Nz within the Fourier space (Fig. 14). By doing this, it is 

ensured that the periodicity of the augmented region does not affect the physical one 

when evaluating the FFTs. 

 
Fig. 13 – Comparing the number of operations needed in a small 50 cell mesh sample between: directly 
evaluating (78) to calculate Hdmg, N2 operations; using the FFT to calculate Hdmg (81) Nlog2N; and local 
terms of the Heff, N. 

The magnetostatic energy can be calculated numerically from (40) knowing that at 

each cell the energy density is, 

  

€ 

udmg(i, j,k) = −
1
2

µ0MS Hdmg(i, jk).m(i.j.k)[ ]
       

(82) 

and thus the magnetostatic energy of the entire system is given by, 

    

€ 

Udmg = udmg(r)
V
∫ dV ≈ udmg(i, j,k)

i, j ,k

N

∑ ΔV
    

(83) 
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Fig. 14 – Representation of the physical space of size N=NxNyNz where the magnetization is solved in 
contrast with the augmented Fourier space where the demagnetization field Hdmg is calculated using the 
zero-padding technique. The magnetization is zero in the augmented region. 

3.3.4 Zeeman interaction discretization  

As the anisotropy interaction, the Zeeman one due to an external magnetic field is 

local, and thus the discretization of both its energy density and effective field 

contribution are trivially obtained. Therefore the Zeeman energy density of the system 

can be calculated numerically from (41) as, 

    

€ 

UZee = uZee(r)
V
∫ dV ≈ −µ0MS HExt (i, j,k).m(i, j,k)

i, j ,k

N

∑
  

(84) 

where the modulus of the field HExt is chosen by the user and given as an initial 

parameter. 

3.3.5 Oersted interaction discretization 

Like the magnetostatic field, the Oersted field HOe generated by a certain flowing 

current density j, is also dependent of all cells and on the geometry of the magnetic 

sample. However, unlike the magnetostatic field it does not depend on the 

magnetization m, just on the value of the current density j(r,t) that runs through each 

individual cell. Therefore the expression for the Oersted field (43), can be discretized 

in a similar manner as it was done for the magnetostatic field in 3.3.3 to give, 

    

€ 

HOe(i, j,k) = −MS
β

(x,y,z)

∑ Mαβ (i − i', j − j',k − k ') × jβ (i', j ',k')
i, j ,k

N

∑
  

(85) 

 



3 Micromagnetism numeric modelling 

 53 

In this case Mαβ is an anti-symmetrical tensor that depends on the relative position 

between, the center of the cell in which the field is being calculated and the source 

cell generating the field [49]. Since equation (85) is a discrete convolution it can be 

more efficiently evaluated by using the FFT method in order to determine the value of 

HOe at each cell, in the same manner as it was discussed in section 3.3.3 for the 

magnetostatic field. 

Similarly the energy density of this field can be calculated from (42) for each cell 

as, 

  

€ 

uOe(r) = −
1
2

µ0MS HOe(i, j,k).m(i, j,k)
i, j ,k

N

∑
   

(86) 

and the total energy, 

    

€ 

UOe = uOe(r)
V
∫ dV ≈ uOe(i, j,k)

i, j ,k

N

∑ ΔV
     

(87) 

3.3.6 Thermal interaction discretization and inherent issues 

The discretization of the thermal field described by equation (48) is pretty 

straightforward, since it already represents the thermal fluctuation for an individual 

cell, as it was proposed by Brown [28]. Therefore when performing stochastic 

simulations one simply has to calculate the value of (48) for each cell, since the 

dynamic equation (53) or (58), usually referred to as the Langevin equation, already 

includes in the effective field the Hth contribution. Nonetheless, something has to be 

said about the validity of the Langevin formalism when applied to micromagnetism, 

since there might be some debate to if expanding the single domain result obtained by 

Brown to the micromagnetic formalism is adequate. 

From the theoretical point of view it bears the question of whether the correlation 

properties of the noise derived by Brown for a single magnetic moment [28], are 

applicable to a system in which the magnetic moments strongly interact with each 

other. In particular, there is the question of whether the noise should remain 

uncorrelated in space and time between the cells, and if not, how should both space 

and time correlations, as well as the strength of the noise, be determined [51],[52]. It 

has also been pointed out that the model produces errors at high temperatures, in 

particular it fails in reproducing the Curie temperature of a magnetic sample [53],[54]. 

Another shortcoming is that when thermal fluctuations are included the results 

strongly depend on the discretization of the sample, even for sizes smaller than the 
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exchange length lex (62), or the wall width lw (63) [54],[55]. All of the mentioned 

issues are not independent form each other and a model that solves all of them has yet 

to be achieved.  

However despite the shortcomings of the model it does reproduce many results 

rigorously. The fundamental issue is that as long as it reproduces Maxwell-Boltzmann 

statistics in thermodynamic equilibrium, which is the condition imposed to determine 

the strength of the thermal field (47), it is considered satisfactory. The verification of 

such properties is described in the published work [56]. 

3.4 Numerically solving the dynamic LLG equation 
In order to numerically solve the LLG equation including the spin-torque effect 

and all effective field components, (53) or (58), different ordinary differential solver 

algorithms can be implemented [50]. This section is thus dedicated to the discussion 

of some algorithms that show how to update the dynamics of the magnetization based 

on the discrete LLG equation, from the time t to t+δt. 

3.4.1 Predictor-Corrector algorithm  

The second order Predictor-Corrector uses as a basis the Euler method [50], 

€ 

yn+1 = yn + h f (xn,yn ) 

  

€ 

⇒ m(t +δt) = m(t) +δt f (t,m(t))           (88) 

where f(t,m(t))6, is equal to, 

    

€ 

f t,m(t)( ) =
dm(t)
dt

= −
γ0

1+α 2( )
m(t) × Heff (t) +αm(t) × m(t) × Heff (t)( )[ ]

−
gµB j(t)P (m(t).p(t))
1+α 2( )2MSd e

m(t) × m(t) × p(t)( ) −α m(t) × p(t)( )[ ]
   

(89) 

Equation (88) is used to predict the value of the magnetization m at the instant 

(t+δt), thus for the first step the Predictor is defined as, 

      

€ 

fPre t,m(t)( ) = −
γ0

1+α 2( )
m(t) × Heff (t)[ +αm(t) × m(t) × Heff (t)( )]

−
gµB j(t)P (m(t).p(t))
1+α 2( )2MSd e

m(t) × m(t) × p(t)( ) −α m(t) × p(t)( )[ ]

 

(90) 

The Predictor fPre(t,m(t)) is used to predict magnetization at the instant m(t+δt) as 

described in (88). Said value of the magnetization has to be normalized before the 
                                                
6 Note that the mention expression is for the CPP spin-torque term and thus should be changed to the 
CIP spin-torque (57) accordingly to what one wishes to calculate. 
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next step, since the module is not conserved in the operation, and afterwards it is used 

to calculate the effective field Heff(t+δt). Recall that the Heff is a function of the 

magnetization and thus has to be evaluated every time the magnetization changes. The 

Corrector fCor(t+δt,m(t+δt)) is then evaluated from m(t+δt), which was calculated 

from the Predictor step and Heff (t+δt) as, 

    

€ 

fCor t +δt,m(t +δt)( ) = −
γ 0

1+α 2( )
m(t +δt) × Heff (t +δt)[

+αm(t +δt) × m(t +δt) × Heff (t +δt)( )]
−
gµB j(t +δt)P (m(t +δt).p(t +δt))

1+α 2( )2MSd e
m(t +δt) × m(t +δt) × p(t +δt)( )[

−α m(t +δt) × p(t +δt)( )]  

(91) 

Once both Predictor and Corrector terms have been calculated, the final value of 

the magnetization at m(t+δt) is given by, 

    

€ 

m(t +δt) = m(t) +
δt
2

fPre(t,m(t)) + fCor (t +δt,m(t +δt))( )
  

(92) 

which again has to be renormalized since the method does not preserve the modulus 

of the magnetization.  

3.4.2 Runge-Kutta algorithm 

One of the most used algorithms to solve differential equations is the forth order 

Runge-Kutta method, which basically states that at each step the derivative is 

evaluated four times, and has the following general form [50], 

€ 

k1 = h f (xn ,yn )

k2 = h f xn +
h
2
,yn +

k1
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

k3 = h f xn +
h
2
,yn +

k2
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

k4 = h f (xn + h,yn + k3)       

€ 

yn+1 = yn +
k1
6

+
k2
3

+
k3
3

+
k4
6

+O(h5)
        

(93) 

where f(xn,yn) is the differential equation to solve, in this case (53) or (58), h is the 

size of the step that takes the function from yn to yn+1, and O(h5) is the error term. 

Therefore, and using (53) as an example for the differential equation f(xn,yn), the 

numerical algorithm (93) can be written accordingly to the micromagnetic formalism 

as, 
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€ 

k1 = δt f t,m(t)( )

k2 = δt f t +
δt
2
,m(t) +

k1
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

k3 = δt f t +
δt
2
,m(t) +

k2
2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

k4 = δt f t +δt,m(t) + k3( )      

 

  

€ 

m(t +δt) = m(t) +
k1
6

+
k2
3

+
k3
3

+
k4
6

+O(h5)
  

(94) 

where f(t,m(t)) is the same as in (89). 

Notice that the effective field Heff(t), is also a function of m(t), due to the 

exchange, anisotropy and magnetostatic field interactions, which means that at each 

step kn the Heff as to be calculated before evaluating f(t,m(t)) (89). Also it has to be 

taken into account the fact that the Runge-Kutta method does not conserve the 

modulus of the magnetization, and thus the magnetization has to be renormalized at 

each step kn. Solving equation (94) for every cell of the discretized sample will give 

the numeric solution to the dynamic equation (53) or (58) at each time step δt. 

Higher order Runge-Kutta methods can also be implemented through the general 

expression [57], 

€ 

k1 = h f (xn ,yn )

ki = h f (xn + cih, yn+ h aij k j
j=1

i−1

∑ ) i = 2, ... , s
   

€ 

yn+1 = yn + biki
i=1

s

∑            (95) 

where the term s is the order or stage number of the method, and the parameters ci, bi 

and aij, are determined according to a set of constraints [57] that depend on the order 

of the method. The sixth order method was also implemented using the general 

expression in (95) [57], and applying it to the micromagnetic formalism the same way 

as described above for the forth order method. 

3.5 A look into sequential programming 
For mainly historic reasons, the sequential language mostly used within the 

scientific media has been Fortran. IBM first developed it in the 1950s and it rapidly 

became the dominant programming language not only within the scientific 

community, but also in the engineering one. The main reason for its continued success 
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within those communities is in particular attributed to its great efficiency in array 

programming, as well as other features involving its original goal of being a Formula 

Translating system. Such properties kept this language very much alive until recent 

times, even when languages such as C, which appeared in the early 1970s, came 

offering a more efficient mapping of typical machine instructions, and a more 

general-purpose programming. Nonetheless, Fortran stayed strong due to its facility 

and efficiency when solving arrays involving different numeric equations. For those 

reasons the sequential micromagnetic code, from which this work was based on, was 

written in Fortran. 

This section is dedicated to briefly exposing how the sequential code is set in order 

to solve the magnetization dynamics ((53) or (58)), followed by the limitations 

inherent to it, which led to the will of developing a faster and more efficient parallel 

code. 

3.5.1 Stages of the sequential micromagnetic code 

As the name suggests, in a sequential micromagnetic code each of the discretized 

cells, which form the magnetic sample under study, are solved one by one 

sequentially. Therefore the dynamic equation ((53) or (58)) has to be solved at each 

time step δt once for each cell of the sample. As an example, if trying to solve the 

dynamics in a Permalloy parallelepiped with dimensions Lx=200 nm, Ly=60 nm and 

Lz=8 nm discretized in 4×4×4 nm3 cells, the dynamic equation has to be solved 1500 

times for each time step δt. The total number of evaluations of the dynamic equation 

is much larger than that since the dynamic equation is solved once for each Cartesian 

component of the magnetization m, and either solver method presented in 3.4 implies 

a much larger number of evaluations per time step. 

The working principle of the sequential programming is pretty straightforward and 

its basic running process can be seen in the simplified flow diagram of Fig. 15. It is 

clear from the diagram that once all the simulation parameters are defined it should be 

decided whether if the simulation to perform is static or dynamic.  

The static simulation is usually used to determine the equilibrium state, and it is 

governed by a final equilibrium criterion. The criterion is that the cross product 

(m×Heff)≤Er, where Er is the maximum value of misalignment between m and Heff 

allowed, so as to say that the system is in equilibrium. In this case the simulation will 

run as many iterations as it needs in order to reach that equilibrium condition or until 



3 Micromagnetism numeric modelling 

 58 

it reaches the maximum number of iterations allowed by the user. On the other hand, 

the dynamic simulation will run until the allotted time window  Δt, for it is reached by 

sequentially increasing the time step δt, at the end of each solver algorithm 

evaluation.  

 
Fig. 15 – Flux diagram for a typical micromagnetic sequential code.  
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Now a more detailed look at the stages that the sequential code runs through in an 

example of a dynamic simulation is given: 

1. Define all material parameters, sample dimensions, cell size, shape of the 

sample, initial magnetization, solver time step δt parameter and final time 

 Δt, and data output writing parameters. 

2. Start the micromagnetic simulation, by reading all of the defined 

parameters into proper simulation variables. 

3. Calculate the demagnetizing tensor Nαβ (and anti-symmetrical tensor Mαβ 

if the Oersted field is to be consider). 

4. Call the desired algorithm to solve the dynamic equation. 

5. Within the solver calculate the effective field components before each step 

of the algorithm. This has to be done because the effective field is a 

function of the magnetization due to the magnetostatic, anisotropy and 

exchange interactions.  

6. Write the output data as frequently as defined by the user in the inputs. 

7. Exit the simulation once the pre-defined time window is reached. 

Notice, for example, that in a sequential code step 5 is done for each cell of the 

discretized magnetic sample through the use of a cycle, which for a sample composed 

of many cells takes a considerable amount of time to calculate.  

3.5.2 Advantages and limitations of sequential programming 

The code from the research group where this work was developed was in 

sequential Fortran, and while it is debatable to say if it is more efficient than other 

sequential languages such as C one thing is for sure, programming sequentially is 

much simpler than in parallel. However it does bring important limitations when 

compared to the parallel one. 

The great limitation nowadays has to do with the ever-rising demand for computer 

power in order to solve not only a numerical problem faster but also with larger 

geometry. Even though the rise in computational power continues as it is suggested by 

Fig. 16, a technological foreseen limitation for central processing units (CPUs) 

became evident in the first decade of the 21st century. Until then the computational 

power of any given machine, was basically measured by the clock speed of the 

processor. This was continuously increased up to sensitively ≈4.5 GHz (larger clock 
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speeds can be achieved but using non-conventional cooling systems like water cooled 

or liquid nitrogen), by increasing the number of transistors per unit of area, driven by 

the technological advancements in the miniaturization of such crucial components, 

down to the nano-scale. Of course the problem here is the amount of heat generated 

by such densely packed transistors, which when trying to reach higher clock speeds 

basically melted the device. The way to continue, not only the computational power 

demand but also power efficiency, was to start producing multi-core processors. 

However, like PC clusters that were already being used in super-computation, native 

programming languages like Fortran or C do not naturally run in multi-cores, they 

have to be programmed that way. Thus nowadays multi-core processors as power 

efficient and computationally evolved as they are, they are more oriented for multi-

tasking not high performance computing. Also, the generation of multi-core 

processors demanded new operating systems that could take advantage of the multi-

core capabilities, which imply new compatible language compilers. Therefore in order 

to try and have higher performances in numeric computations a different approach 

should be considered. 

3.6 Mircromagnetics using Parallel programming in GPUs 

3.6.1 Why parallel computing in GPU’s and not PC clusters? 

Computer clusters have existed for some time now and they basically consist of the 

desired number of individual computer units connected by fast local networks, 

forming nodes that can be seen as a single system.  

This actually was the first idea proposed by the research group in which this work 

was developed, in order to reduce the time spent on each micromagnetic simulation. 

Although this system would have, in principle, the advantage of not having to 

significantly change the original micromagnetic code developed by the group, it had 

other important inconveniences. First and most importantly the cost, at the beginning 

of the work in 2009 the price of a computer cluster with the same computational 

power of a top of the line NVIDIA GPU [58] was more or less 10 times higher. And 

then there were the running costs and physical space issues needed to accommodate a 

computer cluster. Not to mention that although it would be theoretically possible to 

continue program in Fortran, this language is not natively prepared to run in 

concurrent nodes and thus accelerate each simulation in a true parallel way. To do that 
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it is necessary to write the code in a true parallel fashion between the cluster CPUs, 

which is something that none of the members of the research group was familiar with.  

The group thus turned its attention to NVIDIA’s GPU Compute Unified Device 

Architecture (CUDA) [59], which is a parallel computing platform and programming 

model that enables impressive increases in computing performance by harnessing the 

power of said GPUs (Fig. 16). One of the main advantages of using CUDA is of 

course the price per gigaflop of computational power and the fact that it is natively a 

general purpose parallel language, being a mere extension of the C/C++ language 

with special functions called kernels. These instruct the computer to execute the 

desired algorithms within the GPU instead of the CPU. Details on how this actually 

works will be given in the next section. Another advantage is regarding the compiler, 

since more recent versions of compilers are usually not free, but in the case of the 

CUDA language it is freely distributed by NVIDIA. 

The programming language CUDA is not without its drawbacks, among them it 

can be pointed out the fact that it is restricted to NVIDIA’s graphic cards and the 

problem to solve has to fit inside the memory of the graphic card (if needed this can 

be overcome by programming an hybrid system, although it is considerably more 

complicated for newcomers, since it implies the need to balance the CPU 

computational power with the GPU, concurrently). Nonetheless, the advantages far 

compensate the limitations in the case of micromagnetic simulations (as well as in 

many other research fields [60]), since it allowed for speed-ups roughly two orders of 

magnitude higher than a CPU-based code, as it will be shown further. 
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Fig. 16 – Floating-point operations per second evolution for the CPU and GPU over the last decade 
[61]. 

3.6.2 Some considerations prior to CUDA parallel programming 

Before going into the challenges of implementing a parallel micromagnetic code in 

CUDA, some considerations should be made about what is needed in order to develop 

it. As a first consideration, it is recommended to be familiar with the C/C++ 

programming language, since CUDA is built from it and thus will facilitate the 

transition to this new language. 

The next consideration is an essential one, which is to get a CUDA capable graphic 

card, since it is an exclusive NVIDIA technology. However, NVIDIA is mainly a chip 

manufacture and thus many other companies assemble CUDA capable graphic cards, 

especially in the GeForce line of cards. This line of cards is mostly known due to the 

original goal of this product, highly parallel computations for graphic rendering in 

video games and other applications. Although for a few years now all NVIDIA’s 

graphic cards are CUDA capable, the Tesla line is the recommended one for 

numerical computations. The reason for it is that unlike the GeForce and Quadro 

lines, which are respectively designed for consumer graphics and professional 

visualization, the Tesla line was especially designed for parallel computing and 

programming, and thus offers exclusive high performance computing features. 

Nonetheless these cards are more expensive than the GeForce line, and thus it is up to 

the user/programmer to decide if his work requires the advantages of one line over the 

other, since high performance can also be achieved using the other lines of cards. 
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3.6.3 GPU hardware 

The main reason for the recent application of GPU computing outside graphic 

applications, is that it has proven a powerful computation platform in many different 

areas such as, general signal processing, physics simulations, finance, computer 

biology, medicine, etc [60]. The reason for this tendency is that GPUs are specialized 

for compute-intensive, highly parallel computations and therefore when compared to 

a CPU, more transistors are devoted to data processing rather than caching and flow 

control, (Fig. 17). In contrast, GPU’s typically have hundreds of floating-point 

execution units and large context switch information storage space, resulting in a 

small area remaining for cache. The cache is a small, very fast memory that stores 

copies of the most frequently used data from the main memory locations. 

 
Fig. 17 – Schematic representation of a CPU and a GPU. The GPU devotes more transistors to data 
processing than the CPU, (ALU stands for Arithmetic Logic Unit) [61]. 

State-of the-art CPUs (at the writing of this thesis), such as the Intel i7-3970X, can 

only run 12 threads per core (double that if using HyperThreading), whereas one of 

the NVIDIA’s cards that was used, the Tesla C2070 GPU has 448 cores to run the 

threads (the most recent Kepler GPU family has up to 2688 cores). Moreover, 

execution of concurrent threads in a CPU is generally time consuming and 

complicated to perform, since the operating system must swap threads on and off host 

execution channels in order to provide multithreading capability. Context switches 

(when two threads are swapped) are therefore slow and expensive. In contrast, threads 

on a GPU are extremely lightweight. In a typical system, thousands of threads are 

queued up for work (in 32 thread wraps), and if the device must wait on one wrap of 

threads, it simply begins executing work on another. Because separate registers are 

allocated to all active threads, no swapping of registers or state need occur between 

device threads. Resources stay allocated to each thread until execution is completed. 
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Since going into deeper understanding of the working hardware properties of 

GPUs and CPUs starts going outside the goals of the thesis, which is focused on 

programming a parallel solution for the micromagnetic formalism, it is recommended 

to consult the manufacture references [58] for more details. Nonetheless, the main 

idea is that each instruction or thread is handled by the GPU faster that in a CPU, 

since many more cores are available in a GPU to perform said instructions 

simultaneously. 

3.6.4 CUDA programming model 

As it was said before, CUDA is NVIDIA’s parallel computing architecture that 

manages computation on its GPUs, and it does it by providing a simple interface for 

the programmer, based on the industry standard C/C++ with a few extensions. When 

programming in CUDA, the GPU is viewed as a device capable of executing a very 

large number of threads in parallel, and it operates as a coprocessor to the main CPU, 

which in turn is designated as the host. The host CPU manages the flow of the 

program by selecting the compute-intensive portions of applications that are to be 

performed in parallel, and it off-loads them from the host to the device memory. In 

other words the portion of an application that is executed many times (typically 

performed in a loop cycle in a sequential code), but is independent on different data, 

can be isolated into a function that is executed simultaneously on the device (GPU) in 

many different threads. To that effect, such a function is compiled accordingly to the 

instruction set of the device, and the resulting function, called a kernel in CUDA, is 

downloaded to the device.  
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Fig. 18 – Schematic representation of the indexation of the thread blocks inside a grid. Note that each 
block can be three-dimensional and thus indexed by the three-component vector threadIdx.x, .y, .z. In 
this case the grid is two-dimensional and thread blocks within it are addressed by the two-component 
vector, blockIdx.x, .y. 

When a kernel is called, the function is executed N times in parallel by N CUDA 

threads, which is different from a regular C function (or Fortran or any other 

sequential language) that is executed only once at a time. A kernel is defined using the 

__global__ declaration specifier (there are also others but this is the general one [61]). 

Code that is written to be executed in both the host and the device can be contained in 

a single source file with a “.cu” extension. The code compilation is executed using the 

nvcc CUDA C-compiler, in which the resulting executable file coordinates the 

execution of the host and device components accordingly to the C runtime for CUDA 

[62]. 

As shown in Fig. 18 when a kernel is called, the threads within it are organized 

into blocks, who in turn are organized into grids, whose dimensions are specified 
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when using <<<…>>>, a CUDA execution configuration syntax (see section 3.6.5 for 

more details). Each thread has a unique identification (ID), which is only accessible 

within a kernel through the threadIdx variable, which is a three-component vector 

(Fig. 18). Therefore, threads can be identified using either one-dimensional, two-

dimensional, or three-dimensional thread indexes, which in turn may form one-

dimensional, two-dimensional or three-dimensional thread blocks (Fig. 18). There is a 

limit to the number of threads per block, since all threads within one block are 

executed in the same processor core and must share the limited memory resources. 

This limit depends on the GPU architecture being used [61]. 

Blocks are organized into a grid of thread blocks, (Fig. 18, Fig.19). This grid may 

also be one-dimensional, two-dimensional or three-dimensional. The number of 

thread blocks within a grid is usually indicated by the size of the data being processed 

or by the number of processors in the system (if there is a lot of data to be processed 

there would be one block per processor core). Each block within the grid can also be 

identified by a one-dimensional, two-dimensional or three-dimensional index 

accessible within the kernel through the blockIdx variable. The dimensions of the 

thread block are accessible within the kernel through the blockDim variable [61].  
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Fig. 19 – Schematic representation of the CUDA programming model, serial code executes on the host 
while parallel code executes on the device. The host issues a succession of kernel invocations to the 
device. Each kernel is executed as a batch of threads organized as a grid of thread blocks. In this case, 
both the blocks and grids are two-dimensional [61]. 

The CUDA memory hierarchy is depicted in Fig. 20. Unlike in the host, where the 

random access memory (RAM) is generally equally accessible to all code (within the 

limitations enforced by the operating system), on the device RAM is divided virtually 

and physically into different types, each of which has a special purpose. These 

memory spaces include global, local, shared, constant, texture and registers [61]. 

Among these memory spaces, the global and texture memories are the most abundant. 

Global, local and texture memory have the greatest latency, followed by constant 

memory, registers and shared memory. Because it is on-chip, shared memory is much 

faster than the local and global memories, so it is often used as a scratch pad to store 
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intermediate results of computations, buffering reads and writes in order to achieve 

optimal memory access patterns and to provide inter-thread communication within a 

block. Local memory is so named because its scope is local to the thread, not because 

of its physical location. In fact, local memory is off-chip and access to it is as 

expensive as the global memory [63]. 

 
Fig. 20 – CUDA memory model. A thread has access to the device’s DRAM and on-chip memory 
through a set of memory spaces of various scopes [61]. 

As in any other programming language, memory optimization is a very important 

aspect for performance increase, and particularly in CUDA a lot of care has to be 

given to the essential memory transfers between host and device. The maximum off-

chip memory bandwidth (depends on the graphic card; 144 GB/s for the C2070 GPU 

[58]) inside the graphic card is much higher than the maximum bandwidth between 

the host memory and the device memory (8 GB/s on PCIe x16 Gen2 [63]). 

Consequently in order to achieve the best overall application performance, it is critical 

to minimize data transfer between the host and the device, even if that means running 

kernels on the device that do not demonstrate any speed-up compared with running 

them on the host [63]. These data transfers depend on the nature of the code to 

parallelize, or in other words on the granularity of the problem. In parallel computing, 

granularity is a qualitative measure of the ratio between the computation and 
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communication. For a coarse (fine) granularity problem, relatively large (small) 

amounts of computational work are performed between communication events.  

3.6.5 Some examples of CUDA programming 

After the previous section it is possible that the reader, even if being familiar with 

typical programming architectures, to be a little confused on how exactly the CUDA 

language works when actually trying to parallelize a code. Therefore, this section is 

dedicated to explaining a few examples involving typical operations between arrays, 

emphasizing as much as possible the differences between typical sequential C 

language and parallel CUDA. 

⇒ Example 1: Adding two arrays and saving the result into a different array  

This example shows how different are the steps to take between the C and CUDA 

languages, in order to make a simple add operation between the corresponding 

elements of two arrays a[n] and b[n], where in this example the number of elements is 

n=5. The example will be divided in distinctive sections so as to better show the 

differences between the two languages (Check Appendix A for full code). 

The first part of any code is usually the declaration of variables and, if necessary, 

their memory reservation and initialization. As can be seen in Fig. 21 in C it is only 

needed to declare the variables to use once, whereas in CUDA besides the variables 

one would create in C, the host variables defined has h_a, h_b, etc, it is also needed to 

create those same variables within the memory of graphic card, that is the device 

variables dev_a, dev_b, etc. In the CUDA case, the host variables are usually where 

the variables are initialized, and then they are uploaded to the device memory, to be 

changed accordingly to a certain function that is to be performed in parallel. A good 

example for a host variable within the micromagnetic formalism is the initial 

magnetization of the sample, which after it is read or initialized is sent to the 

corresponding variable that was created within the device memory. Once the 

magnetization information is in a device variable it is possible to solve the dynamics 

of the individual magnetic spins of the sample in parallel, using the discretized LLG 

equation, which is also solved within the device memory. 

 

 

 

 



3 Micromagnetism numeric modelling 

 70 

{	  
...	  
//Creating	  all	  the	  needed	  host	  variables	  and	  initializing	  them	  

int	  ndim=5;	  
float	  *a;	   //	  
float	  *b;	   //Creating	  the	  arrays	  
float	  *c;	   //	  
a	  =	  new	  float[ndim];	  	   	   	  	  //Defining	  the	  dimensions	  of	  the	  array	  
memset(a,0,sizeof(float)*ndim);	  //Initializing	  the	  array	  at	  0	  
b	  =	  new	  float[ndim];	  	   	   	  	  //	  
memset(b,0,sizeof(float)*ndim);	  //	  
c	  =	  new	  float[ndim];	   	   	  	  //	  
memset(c,0,sizeof(float)*ndim);	  // 

...	  

}	   	   	   	   	   	   	   	   	   	   	  IN C 
{	   	   	   	   	   	   	   	   	   	   	  IN CUDA	  
...	  
/*Creating	  the	  variables	  on	  the	  host*/ 

int	  ndim=5;	  
float	  *h_a;	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
float	  *h_b;	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
float	  *h_c;	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
h_a	  =	  new	  float[ndim];	  	   	   	  	  	  	  //Defining	  the	  dimensions	  of	  the	  array	  
memset(h_a,0,sizeof(float)*ndim);	  //Setting	  the	  array’s	  memory	  at	  0	  	  
h_b	  =	  new	  float[ndim];	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
memset(h_b,0,sizeof(float)*ndim);	  	  	  	  
h_c	  =	  new	  float[ndim];	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
memset(h_c,0,sizeof(float)*ndim);	  	  	  

	  
/*Creating	  the	  variables	  on	  the	  device*/	  

float	  *dev_a;	  
float	  *dev_b;	  
float	  *dev_c;	  	  	  	  	  
//Reserving	  the	  array’s	  memory	  within	  the	  device	  
cudaMalloc((void**)&dev_a,sizeof(float)*ndim);	  	  
//Setting	  the	  array’s	  memory	  within	  the	  device	  at	  0	  
cudaMemset(dev_a,0,sizeof(float)*ndim);	  
	  
cudaMalloc((void**)&dev_b,sizeof(float)*ndim);	  
cudaMemset(dev_b,0,sizeof(float)*ndim);	  
cudaMalloc((void**)&dev_c,sizeof(float)*ndim);	  
cudaMemset(dev_c,0,sizeof(float)*ndim);	  
	  

/*Defining	  the	  size	  of	  the	  block	  and	  grid*/	  
dim3	  dimBlock(5);	   	   	   	  //Number	  of	  threads	  per	  block	  
dim3	  dimGrid(ndim/dimBlock.x);	  //Number	  of	  blocks	  within	  the	  grid	  

...	  
}	  

Fig. 21 – Creation of variables needed to perform an add operation between the element of two arrays 
of 5 elements a[] and b[], in both C language and CUDA. In CUDA more variables are required since 
the same variables need to be created inside the device memory in order to perform the calculation in 
parallel. 

Also shown in Fig. 21, is the initialization of the variables that define the number 

of threads in each block, dimBlock in this example, and how many blocks are inside 

the grid, dimGrid. These two variables can also be defined at the moment of the kernel 

call the following way <<<dimGrid,dimBlock>>>. However, it is a good practice to 

define it before, keeping in mind that these are dim3 type variables, i.e. they have x, y 
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and z integer dimensions. If only one of those dimensions is defined, as it is shown in 

Fig. 21, all the others are initialized at 1 by default [61]. 
{	  
...	  
//Loop	  to	  set	  the	  values	  within	  each	  array	  and	  to	  perform	  the	  add	  operation	  
	  for(int	  i=0	  ;i<ndim;	  i++){	  
	  	  	  	  	  	  	  	  a[i]=1+i;	  
	  	  	  	  	  	  	  	  b[i]=3;	  
	  	  	  	  	  	  	  	  c[i]=a[i]+b[i];	  
	  }	  
//Loop	  to	  print	  the	  results	  on	  the	  screen	  
	  for(int	  i=0	  ;i<ndim;	  i++){	  
	  	  	  	  	  	  	  	  printf("a[%d]=%1.1f	  	  	  b[%d]=%1.1f	  	  	  	  c[%d]=%1.1f\n",	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  i,a[i],i,b[i],i,c[i]);	  
	  }	  
...	  

}	   	   	   	   	   	   	   	   	   	   	  IN C	  

{	   	   	   	   	   	   	   	   	   	   	  IN CUDA	  
...	  
/*Loop	  to	  set	  the	  values	  of	  each	  array	  within	  the	  host	  memory*/	  
	  	  	  	  for(int	  i=0	  ;i<ndim;	  i++){	  
	  	  	  	  	  	  	  	  h_a[i]=1+i;	  
	  	  	  	  	  	  	  	  h_b[i]=3;	  
	  	  	  	  }	  
/*Copying	  both	  arrays	  to	  the	  GPU	  device	  variables	  dev_a	  and	  dev_b*/	  
	  	  	  	  cudaMemcpy(dev_a,	  h_a,	  sizeof(float)*ndim,	  cudaMemcpyHostToDevice);	  
	  	  	  	  cudaMemcpy(dev_b,	  h_b,	  sizeof(float)*ndim,	  cudaMemcpyHostToDevice);	  
	  	  	  	  	  	  	  	  
/*	  Kernel	  call	  –	  this	  function	  is	  performed	  within	  the	  device*/	  
	  	  	  	  KernelName<<<dimGrid,dimBlock>>>(dev_a,dev_b,dev_c,ndim);	  
	  	  	  	  	  
/*Returning	  the	  result	  of	  the	  kernel	  operation	  back	  to	  a	  host	  variable*/	  
	  	  	  	  cudaMemcpy(h_c,	  dev_c,	  sizeof(float)*ndim,	  cudaMemcpyDeviceToHost);	  
	  
//Loop	  to	  print	  the	  results	  on	  the	  screen	  
	  	  	  	  for(int	  i=0	  ;i<ndim;	  i++){	  
	  	  	  	  	  	  	  	  printf("a[%d]=%1.1f	  	  	  b[%d]=%1.1f	  	  	  c[%d]=%1.1f\n",	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  i,h_a[i],i,h_b[i],i,h_c[i]);	  
	  	  	  	  }	  
...	  
}	  

Fig. 22 – In the C part, it is shown how to make the simple add operation between the arrays a[] and b[] 
within the same cycle for in which they are defined, followed by the print on screen instruction in order 
to verify the results. In the CUDA part, it is shown that first it is required to initialize the arrays with 
the desired values (host memory), and then they are copied to the device variables. Then the kernel 
function call can be made to perform the add operation using the device variables. When the kernel 
finishes it is necessary to bring the result from the device variable dev_c back to the host one h_c, and 
then perform the print on screen instruction so as to validate the result. 

In C, after the declaration of variables it is possible to immediately perform the add 

operation using a for cycle. In this example, as it is shown in Fig. 22, it was chosen a 

cycle from 0 to 4 accounting for the 5 elements of the array, and the add operation 

saved into array c[] within the same for cycle in which the values of a[] and b[] are 

defined, for the sake of brevity. After the add operation in C the results can simply be 

printed on screen with the corresponding instruction in order to verify them. However, 
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in CUDA more steps are required (Fig. 22), first as in C the host arrays are set with 

the desired values, afterwards those values have to be copied from the host to device 

memory, in order to perform the add operation in parallel. This is done by using the 

cudaMemcpy(...,cudaMemcpyHostToDevice); instruction shown in Fig. 22. To perform 

the device calculation the CUDA kernel function can now be called through the 

instruction KernelName<<<...>>>(...);	   (Fig. 22), which indicates the host to make 

the device function call described in Fig. 23, and also assigns the needed variables to 

perform such operation. The add operation is then calculated in parallel by assigning 

to each thread of the block an index (Fig. 23), which in the case of this example 

corresponds exactly to each coordinate of the array. The if() instruction in Fig. 23, is 

not actually necessary for this example, it is put there in order to not calculate more 

threads per block than the necessary ones, and to show that all the typical C language 

operators are valid inside a kernel. 
/*Kernel	  function	  of	  type	  global	  with	  the	  corresponding	  variables	  declaration*/	  
__global__	  void	  KernelName(float	  *dev_a,float	  *dev_b,float	  *dev_c,	  int	  ndim){	  
	  
//Thread	  index	  variable	  used	  to	  address	  each	  element	  of	  the	  array	  to	  a	  thread	  
	  	  	  	  int	  index	  =	  blockIdx.x	  *	  blockDim.x	  +	  threadIdx.x;	  
//Performing	  the	  add	  operation	  in	  parallel	  
	  	  	  	  if(index	  <	  ndim){	  
	  	  	  	  	  	  	  	  dev_c[index]	  =	  dev_a[index]	  +	  dev_b[index];	  
	  	  	  	  }	  
//Instruction	  to	  guarantee	  the	  synchronization	  of	  threads	  within	  a	  block	  
	  __syncthreads();	  

}	   	   	   	   	   	   	   	   	   	   IN CUDA	  

Fig. 23 – Kernel function with the __global__ qualifier that is executed on the device, which is 
callable from the host, and showing the declaration of the thread variable and the add operation 
between each coordinate of the arrays a[] and b[]. Also shown is the __syncthreads() instruction, 
which is used to coordinate communication between the threads of a same block that help in avoiding 
read-after-write, write-after-read, or write-after-write hazards, when some of the threads within a block 
access the same addresses in a shared or global memory. 

Once the kernel finishes, in order to print the results of the performed operation it 

is needed to first transfer the results from the device back to the host memory as it is 

shown in Fig. 22 with the cudaMemcpy(...,cudaMemcpyDeviceToHost); instruction. 

Since it is a good practice to free the allocated memory of the variables that are no 

longer being used in Fig. 24 it is shown how to do it in both the C and CUDA 

examples. 

From the previous example one can already have an idea on how the 

implementation of the dynamic equation ((53) or (58)) can be achieved in order to 

take advantage of the parallel computation capabilities of the NVIDIA’s GPUs. 

Basically every time a parallelizable part of the micromagnetic code is identified 
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(calculation of Heff components, spin-torque, LLG equation, etc.), adequate host and 

device variables are created. Then a kernel function is associated to each calculation 

that is to be performed in parallel in the same way as it was shown in the example 

above (or see Appendix A for full code). 

Other explicit examples could be given with more complex calculations between 

arrays, however this one already focuses the essential part on how to work with the 

parallel scheme of a kernel function in CUDA. Therefore, for more details on the 

programming techniques and syntax, it is recommended to consult the CUDA 

programming guide [61] and best practices guide [63], as well as a C/C++ guide. 

{	  
...	  
	  	  	  	  delete	  a;	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  //	  
	  	  	  	  delete	  b;	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  //	  freeing	  the	  allocated	  memory	  of	  the	  arrays	  
	  	  	  	  delete	  c;	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  //	  
...	  

}	   	   	   	   	   	   	   	   	   	   IN C	  

{	   	   	   	   	   	   	   	   	   	   IN CUDA	  
...	  
/*Freeing	  the	  allocated	  host	  memory	  of	  the	  arrays*/	  
	  	  	  	  delete	  h_a;	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
	  	  	  	  delete	  h_b;	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
	  	  	  	  delete	  h_c;	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
/*Freeing	  the	  allocated	  device	  memory	  of	  the	  arrays*/	  
	  	  	  	  cudaFree(dev_a);	  
	  	  	  	  cudaFree(dev_b);	  
	  	  	  	  cudaFree(dev_c);	  
...	  
}	  

Fig. 24 – Freeing the allocated memory. In CUDA you should not only free the memory of the host 
variables but also the ones on the device. 

⇒ Example 2: Using the CUDA Fast Fourier Transform library CUFFT 

The parallel programming language CUDA offers a FFT library called CUFFT, 

which is modeled after one of the most popular and efficient CPU-based FFT libraries 

the FFTW [64]. The CUFFT provides a configuration mechanism called a plan, which 

pre-configures internal building blocks such that the execution time of the transform 

is as low as possible for the given configuration and particular GPU hardware 

selected. Therefore, when the execution function is called the actual transform takes 

place following the plan of execution. Accordingly to NVIDIA, this approach brings 

the advantage that once the user creates a plan the library retains whatever state is 

needed to execute it multiple times without recalculating the configuration. There are 

three types of FFTs supported by the CUFFT library in either single or double 
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precision and they are: complex-to-complex, real-to-complex and complex to real 

[64]. 

From the results obtained during the development of the parallel code it was 

verified that the CUFFT is very effective, especially if compared to the sequential 

Fortran-based code, as can be asserted in section 3.7. However, in order to get the 

most out of it the developer should try to restrict the size along all dimensions, while 

performing the FFT, so that size can be factored as 2a
 *3b*5c*7d, (where a,b,c,d= 

0,1,2,3,…) [64], since accordingly to the Cooley-Tukey algorithm used by the CUFFT 

library those are the sizes for which the transform is highly optimized, (this can be 

verified in Fig. 33). Ideally the size along any dimension should be a multiple of 2, 3, 

5 or 7, since for example a transform of size 3n will likely be faster than one of size 

2a
 *3b, even if the latter is slightly smaller [64]. 

The following description details how to perform a FFT using the CUFFT parallel 

library, in either the forward or inverse direction of a given array. 

The simplest example is in computing a certain number (batch) of one-dimensional 

discrete transforms of size nSize, which using the CUFFT typically looks like the 

description in Fig. 25. There, it is shown that the first step needed is the creation of a 

plan variable using the cufftHandle declaration, which is followed by the definition 

of the plan using the cufftPlan1d() instruction that has the following configuration: 
cufftPlan1d(cufftHandle	  *plan,	  int	  nSize,	  cufftType	  type,	  int	  batch); 

where: 

⇒ plan is a pointer to the cufftHandle object 
⇒ nSize	   is the transform size, i.e. number of elements of the array to 

  transform 
⇒ type	   is the transform data type, which is described in Table 1. 
⇒ batch	   is the number of transforms of size nSize. 

Table 1 – Fast Fourier transform types within the CUFFT library 

Types of FFTs, cufftType Description of the type of transform 
CUFFT_R2C Real to complex 
CUFFT_C2R Complex to real 
CUFFT_C2C Complex to complex 
CUFFT_D2Z Double to double-complex 
CUFFT_Z2D Double-complex to real 
CUFFT_Z2Z Double-complex to double-complex 
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{	  
...	  
//	  Define	  the	  handle	  variable	  that	  allows	  access	  to	  CUFFT	  plans.	  
	  	  	  	  cufftHandle	  plan;	  
	  
//	  Create	  a	  1-‐dimensional	  CUFFT	  plan	  of	  a	  float	  Complex	  to	  float	  Complex.	  	  
	  	  	  	  cufftPlan1d(&plan,	  nSize,	  CUFFT_C2C,batch);	  	  
	  	  	  	  	  	  	  	  
//	  Transform	  the	  data	  to	  the	  inArray	  to	  the	  outArray	  in	  the	  forward	  	  
//	  direction	  by	  execution	  the	  previously	  defined	  plan.	  
	  	  	  	  cufftExecC2C(plan,	  inArray,	  outArray,	  CUFFT_FORWARD);	  
	  
//	  Destroy	  the	  CUFFT	  plan.	  
	  	  	  	  cufftDestroy(plan);	  
...	  
}	  

Fig. 25 – Typical steps when using the CUFFT library in order to perform a batch of one-dimensional 
transforms. 

Once the plan is set, it can be executed to perform the desired transform using the 

cufftExecC2C() instruction (note that this instruction depends on the type of 

transform [64]), which has the following configuration: 
cufftExecC2C(cufftHandle	  *plan,	  cufftComplex	  *indata,	  cufftComplex	  

*outdata,	  int	  direction); 

where: 

⇒ plan is the cufftHandle object for the plan to update 
⇒ indata	   is the pointer to the single-precision complex input data, in the 

  GPU memory, to transform 
⇒ outdata	   is the pointer to the single-precision complex output data, in the 

  GPU memory, to transform 
⇒ direction	   is the transform direction: CUFFT_FORWARD or CUFFT_INVERSE. 

The last step of the transform execution should be to destroy the plan, so as to 

release the allocated resources of the plan using the cufftDestroy() instruction.  

Different return values can be used in order to check if each command was 

successfully performed. However, since these are more advanced options of CUDA 

and although some of them were used in the developed code, for the sake of 

simplicity these were left out and the reader should consult the CUDA references 

[61]-[65] for more information and examples. 

Since all the arrays that are used to compute the previously mentioned 

contributions to the dynamic equation ((53) or (58)), which are more efficiently 

calculated using FFTs, are three-dimensional arrays a more practical example is given 

next. (The full code of the example is shown in Appendix B). 
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{	  
...	  
/*Initializing	  the	  arrays*/	  
	   for(int	  i=0	  ;i<ndim;	  i++){	  
	  	  	  	  	  	  	  	  h_a[i]=	  1+i;	  
	  	  	  	  	  	  	  	  h_b[i]=	  3;	   	   	  
	  	  	  }	  
/*Copying	  the	  values	  of	  h_a	  and	  h_b	  to	  the	  GPU	  device	  variables	  dev_a	  and	  dev_b*/	  
	  	  	  	  cudaMemcpy(dev_a,	  h_a,	  sizeof(float)*ndim,	  cudaMemcpyHostToDevice);	  
	  	  	  	  cudaMemcpy(dev_b,	  h_b,	  (sizeof(float)*ndim),	  cudaMemcpyHostToDevice);	  
/*Kernel	  call*/	  
	  	  	  	  KernelName<<<dimGrid,dimBlock>>>(dev_a,dev_b,dev_c,nx,ny,nz);	  
...	  
}	  
...	  
{	  
...	  
__global__	  void	  KernelName(float	  *dev_a,	  float	  *dev_b,	  cuFloatComplex	  *dev_c,	  
	  	   	   	   	   int	  nx,	  int	  ny,	  int	  nz){	  
	  	  	  	  int	  index	  =	  blockIdx.x	  *	  blockDim.x	  +	  threadIdx.x;	  
	  
	  	  	  	  	  if(index	  <	  (2*nx*2*ny*2*nz)){	  
	  	  	  	  	  	  	  if(index	  <	  (nx*ny*nz)){	  
	  	  	  	  	  	  	  	  	  	  dev_c[index]	  =	  make_cuFloatComplex(dev_a[index]	  +	  dev_b[index],	  0.0e0);	  
	  	  	  	  	  	  	  }else{	  
	  	  	  	  	  	  	  	  	  	  dev_c[index]	  =	  make_cuFloatComplex(0.0e0,	  0.0e0);	  	  	  
	  	  	  	  	  	  	  }	  
	  	  	  	  	  }	  __syncthreads();	  
...	  
}	  

Fig. 26 – Reusing example 1 with the idea of performing the CUFFT on array dev_c[], which contains 
the result of the add operation of arrays h_a[] and h_b[]. Note that since the transform to perform is of 
complex-to-complex dev_c[], is declared as a float complex and inside the kernel the add operation in 
realized inside the real part of the make_cuFloatComplex(real,imaginary) instruction, so as to adapt 
the complex dev_c[], using the floats h_a[] and h_b[]. Also note that the first if runs 8 times more 
than the total dimension of the problem nx*ny*nz. This is done in order to zero-pad the dev_c[] array 
as it is described in the figure. 

As in example 1, in this example a simple add operation is also done between each 

coordinate of the arrays h_a[] and h_b[]. However in this case the array in which the 

operation is saved, array dev_c[], is of float complex type (see Appendix B) in order 

to subsequently perform the Fourier transform. Therefore and since arrays h_a[] and 

h_b[] are of type float, inside the kernel besides the add operation, the adaptation to 

the complex type variable of array dev_c[] is also performed, as described in Fig. 26. 

Also note that inside the kernel shown in Fig. 26 the array dev_c[] is also being zero-

padded in the regions outside the problem’s data as described in section 3.3.3, in order 

to avoid the numeric artifacts of using FFTs. Once the array that is to be transformed 

using the CUFFT library is set with the wished values, it is possible to start creating 

the aforementioned plan of the transform. To do that it is useful to create a function 

that when called from the host code simply takes the dimensions, of the in-array to 



3 Micromagnetism numeric modelling 

 77 

transform and of the out-array where the results of the transform are saved, as is 

described in Fig. 27.  

As suggested by Fig. 27 the function prototype created, cuFFT3DF(), can be called 

multiple times to make the transform without having to create a new handle plan. 

This is very useful since several FFT calls are made during a micromagnetic 

simulation. When the function cuFFT3DF() is called, a plan is created for the three-

dimensional complex-to-complex transform through the instruction cufftPlan3d(), 

followed by its execution with the cufftExecC2C()	   instruction in the forward 

direction (Fig. 27). Once that is done the cufftDestroy(plan) is executed in order to 

release the allocated resources. When finally exiting the cuFFT3DF()	   function, the 

desired values in Fourier space within the outArray (fftdev_c	  array in Appendix B) 

are ready to be used in further calculations within the GPU memory. 
//	  Function	  prototype	  for	  the	  3-‐dimensional	  FFT	  
void	  cuFFT3DF	  (int	  xSize,	  int	  ySize,	  int	  zSize,	  cuFloatComplex	  *inArray,	  
	  	  	  	  	  	  	  	  cuFloatComplex	  *outArray);	  
{	  
...	  
//	  Calling	  the	  function	  to	  perform	  the	  FFT	  on	  array	  dev_c	  and	  	  
//save	  it	  to	  array	  fftdev_c	  
	  cuFFT3DF	  (2*nx,2*ny,2*nz,	  dev_c,	  fftdev_c);	  
...	  
}	  
...	  
void	  cuFFT3DF	  (int	  xSize,	  int	  ySize,	  int	  zSize,	  cuFloatComplex	  *inArray,	  
	  	  	  	  	  	  	  	  cuFloatComplex	  *outArray){	  
//	  Define	  the	  handle	  variable	  that	  allows	  access	  to	  CUFFT	  plans	  
	  	  	  	  cufftHandle	  plan;	  
//	  Create	  a	  3-‐dimensional	  CUFFT	  plan	  of	  a	  float	  Complex	  to	  float	  Complex	  array	  
	  	  	  	  cufftPlan3d(&plan,	  xSize,	  ySize,	  zSize,	  CUFFT_C2C);	  	  	  	  	  	  	  
//	  Transform	  the	  data	  in	  the	  inArray	  to	  the	  outArray	  in	  the	  forward	  direction	  
	  	  	  	  cufftExecC2C(plan,	  inArray,	  outArray,	  CUFFT_FORWARD);	  
//	  Destroy	  the	  CUFFT	  plan	  
	  	  	  	  cufftDestroy(plan);	  
}	  

Fig. 27 – Steps needed to perform a three-dimensional FFT using the CUFFT library. The cuFFT3DF() 
function prototype shown defines the order in which each Cartesian variable should be placed as well 
as the in and out arrays. When the function is called the three-dimensional FFT is performed 
accordingly to the defined plan, which in this case is a complex-to-complex forward transform. 

⇒ Example 3: Using the independently developed CUDA library CUDPP  

As it was said before in order to parallelize a certain part of a code, said part 

cannot depend on other data. So how can an operation like a summation between each 

element of an array, be made without having to resource to a cycle? This would 

effectively mean one operation per element of the array and thus be in a sequential 

way. Operations like the mentioned summation are possible to perform in a more 
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parallel, or in other words less sequential way, by the use of an independently 

developed library. 

The CUDA Data Parallel Primitives Library (CUDPP) [65] is defined as a library 

of data-parallel algorithm primitives such as parallel prefix-sum (“scan”), parallel sort 

and parallel reduction. Primitives such as these are important building blocks for a 

wide variety of data-parallel algorithms, including sorting, stream compacting, and 

building data structures such as trees and summed-area tables. Although this library 

was independently developed by different contributors [66], and was initially 

developed to test the algorithms developed in C for CUDA, it is now freely available 

to anyone who whishes to use it with the CUDA runtime application interface. In 

order to use it however, care has to be taken between the versions of the CUDDP 

library and the CUDA version, since they may not be compatible. 

The CUDPP library was used on one hand, to determine the average between the 

elements of an array, and on the other hand to determine the element of an array 

whose value is maximum. 

In order to determine the summation of the elements within an array it is useful to 

create a function that will return the value of the sum by simply taking the array 

whose elements one wishes to sum and its dimensions. Since the magnetization 

variable to which this was applied is of type float, the function type created was of the 

same type, as it is shown in Fig. 28. 

The first steps to take when using the CUDPP library is to set the configuration of 

the task to perform using the structure reference CUDPPConfiguration and giving it a 

name (config in Fig. 28). This structure is used to specify the algorithm, data type, 

operator and options of the task. Obviously depending on the configuration chosen it 

is possible to perform other operations with this library. Each component of the 

configuration is as follows [66]; 

⇒ CUDPPAlgorithm	   algorithm; is the algorithm to be used. 

⇒ CUDPPOperator	   op;	   	   is the numerical operator to be applied. 

⇒ CUDPPDatatype	   datatype;	   is the data type of the input arrays. 

⇒ Unsigned	  int	   options;	   are the options to configure the algorithm. 
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//	  Function	  that	  returns	  the	  sum	  value	  of	  all	  the	  float	  elements	  
//within	  the	  array	  inArray	  
float	  Sum(float	  *inArray,	  size_t	  xSize,	  size_t	  ySize,	  size_t	  zSize){	  
	  
//	  Setting	  up	  the	  configuration	  of	  the	  task	  to	  perform	  using	  the	  CUDPP	  library	  
	  	  	  	  CUDPPConfiguration	  config;	   	  
	  	  	  	  config.algorithm	  =	  CUDPP_SCAN;	  	  	  	  
	  	  	  	  config.op	  =	  CUDPP_ADD;	  
	  	  	  	  config.datatype	  =	  CUDPP_FLOAT;	  
	  	  	  	  config.options	  =	  CUDPP_OPTION_BACKWARD	  |	  CUDPP_OPTION_INCLUSIVE;	  
//	  Since	  the	  successive	  summations	  have	  to	  be	  saved	  in	  a	  different	  array,	  a	  new	  
//array	  has	  to	  be	  created	  within	  the	  device	  memory	  
	  	  	  	  static	  float	  *outArray;	  
	  	  	  	  cudaMalloc((void**)&outArray,sizeof(float)*xSize*ySize*zSize);	  
	  	  	  	  cudaMemset(outArray,0,sizeof(float)*xSize*ySize*zSize);	  
//	  Creating	  the	  handle	  variables	  needed	  to	  set	  up	  the	  plan	  
	  	  	  	  CUDPPHandle	  cudppLibrary;	  
	  	  	  	  cudppCreate(&cudppLibrary);	  
	  	  	  	  CUDPPHandle	  scanPlan;	  
//	  Defining	  and	  executing	  the	  plan	  accordingly	  to	  the	  configuration	  set	  
	  	  	  	  cudppPlan(cudppLibrary,&scanPlan,config,xSize*ySize*zSize,1,0);	  
	  	  	  	  cudppScan(scanPlan,outArray,inArray,xSize*ySize*zSize);	  
//	  Destroy	  the	  plan	  of	  the	  handle	  variable	  scanPlan	  and	  all	  associated	  internal	  
//storage	  
	  	  	  	  cudppDestroyPlan(scanPlan);	  
//	  Destroys	  the	  CUDPP	  library	  instance	  releasing	  allocated	  memory	  
	  	  	  	  cudppDestroy(cudppLibrary);	  	  
	  
	  	  	  	  float	  sum;	  
//	  Copy	  the	  value	  of	  the	  summation	  stored	  in	  the	  first	  element	  of	  outArray	  to	  the	  
//host	  variable	  sum	  
	  	  	  	  cudaMemcpy(&sum,&outArry[0],sizeof(float),cudaMemcpyDeviceToHost);	  
	  	  	  	  cudaFree(outArray);	   //	  Freeing	  the	  device	  memory	  allocated	  to	  outArray	  
//	  Return	  the	  value	  of	  the	  float	  function	  value	  sum	  	  	  	  	  	  
	  	  	  	  return	  sum;	  
}	  

Fig. 28 – Defining a function that sums all of the elements of inArray and returns that value. The 
summation is done between two elements in a prefix-sum or cumulative sum as y0=x0, y1=x0+x1, 
y2=x0+x1+x2,… and each yn saved in a outArray in such a way that the first element of the array as the 
summation of all elements of inArray. 

Following the description in Fig. 28, the algorithm chosen was the CUDPP_SCAN, 

which allows the scan of the elements of the array or to make a cumulative-sum as 

y0=x0, y1=x0+x1, y2=x0+x1+x2, etc. The operator chosen was the CUDPP_ADD, which adds 

two operands and the data type CUDPP_FLOAT, since the array is of type float in this 

example. Finally the chosen options of the algorithm were, CUDPP_OPTION_BACKWARD 

that instructs the algorithm to operate backwards from the end to the start of the array, 

and CUDPP_OPTION_INCLUSIVE, which makes the scan include all the elements up to 

and including the current element. The option backwards was chosen so as to save the 

cumulative sum of the inArray components onto the first element of the outArray. 

Since an out array is needed to save the result of the operation defined in the 

configuration, the outArray is created within the memory of the device, as indicated 

in Fig. 28 after the configuration. Then two CUDPPHandle variables have to be created, 



3 Micromagnetism numeric modelling 

 80 

the first one defined is followed by the cudppCreate() instruction, in order to create 

an instance of the CUDPP library which in turn returns a handle type, and this must 

be called before any other CUDPP function [65]. The second CUDPPHandle variable is 

used to set up the plan of the operation to perform. Once that is done, the plan can be 

defined in order to perform the sum, as it was set in the configuration, by using the 

cudppPlan() instruction, which has the following configuration [65]: 
cudppPlan(const	  CUDPPHandle	  cudppHandle,	  CUDPPHandle	  *planHandle,	  

CUDPPConfiguration	  config,	  size_t	  numElements,	  size_t	  numRows,	  size_t	  

rowPitch);	  

where, 

⇒ cudppHandle	   is a handle to an instance of the CUDPP library used for  
   resource management. 

⇒ planHandle	   is a pointer to an opaque handle to the internal plan. 
⇒ config	  	   is the configuration structure specifying the algorithm and  

   options. 
⇒ numElements	   is the maximum number of elements to be processed. 
⇒ numRows	  	   is the number of rows (2D operations) to be processed 
⇒ rowPitch	   is the pitch of the rows of input data, in elements 

After this scan plan is defined it can be executed by using the cudppScan() 

instruction with the configuration [65]: 
cudppScan(const	  CUDPPHandle	  planHandle,	  void*	  outArray,	  void*	  inArray,	  

size_t	  numElements);	  

where, 

⇒ planHandle	   is a handle to plan for this scan. 
⇒ outArray	   is where the output scan is saved in GPU memory. 
⇒ inArray	   is the input to scan in GPU memory. 
⇒ numElements	   is the number of elements to scan. 

Once the cudppScan() is completed both CUDPPHandle variables should be 

destroyed in order to properly release the resources allocated for each of them, as 

indicated in Fig. 28. The final part of the function is devoted to retrieving the desired 

sum of all the elements within inArray, which was saved to the first element of the 

outArray as defined in the configuration set up. This retrieval is described in the last 

part of Fig. 28 followed by the release of the no longer used memory, and then ending 

with the return of the value sum back to where the function was originally called. 

The CUDPP library was also used to determine the element of an array whose 

value is maximum. This is useful, for example, to compare the cell within a sample 
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with the maximum m×Heff with the error parameter Er, in equilibrium simulations, as 

mention in section 3.5.1. 

The process to determine the maximum element of an array using the parallel 

CUDPP library is practically the same as the sum operation seen previously in Fig. 

28. The only difference is in the configuration setup in which instead of defining an 

add operation (config.op=CUDPP_ADD) a search for the maximum between two 

operands (config.op=CUDPP_MAX) is defined, as shown in Fig. 29. 
{	  
...	  
//	  Setting	  up	  the	  configuration	  of	  scan	  for	  maximum	  using	  the	  CUDPP	  library	  
	  	  	  	  CUDPPConfiguration	  config;	   	  
	  	  	  	  config.algorithm	  =	  CUDPP_SCAN;	  	  	  	  
	  	  	  	  config.op	  =	  CUDPP_MAX;	  
	  	  	  	  config.datatype	  =	  CUDPP_FLOAT;	  
	  	  	  	  config.options	  =	  CUDPP_OPTION_BACKWARD	  |	  CUDPP_OPTION_INCLUSIVE;	  
...	  
}	  

Fig. 29 – Setting up the configuration in order to find the maximum element of an array, using the 
CUDPP library. 

The next section is dedicated to the description of the micromagnetic parallel code 

implementation using the seen CUDA GPU programming language. Since the 

fundamentals of the language were already mentioned in this section there will be 

several references to these examples in the following section. 

3.6.6 Making the parallel micromagnetic code 

Here it is given a detailed explanation on how each part of the micromagnetic code 

is achieved when writing it in the CUDA parallel language, which was briefly 

introduced in the previous section. The description includes the difference between 

both spin-torques, meaning for when the excitation is with either CPP or CIP. The 

main differences between the torques are in the calculation of the spin-torque 

components, where the calculation of the CIP is pretty straightforward using (57) 

since just one material is involved. However, in the case of CPP devices more care 

has to be taken, since it has to be considered the dynamics of possibly two different 

magnetic materials, plus the back-torque interaction (section 2.3.7) between them.  

The first thing to do when making a parallel code is to identify which parts of it 

can be done in parallel. In the case of the micromagnetic code developed this can be 

asserted by looking at the flux diagram in Fig. 30. There it can be seen that the 

sequential part controlled by the CPU, usually designated as the host in CUDA, 

manages the flow of the program by reading the input data and exporting it to the 
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device accordingly to the parts of the code that are to be performed in parallel, as 

suggested in Fig. 19. (Note: Once the data is loaded into the device memory it stays 

there until freed). In micromagnetics the parts that naturally come to mind to 

parallelize are all of the calculations performed for each cell of the discretized 

magnetic sample. In other words all of the discretized expressions seen in 3.3 (in short 

all of the components of the Heff) and the dynamic equation using either of the 

algorithms seen in 3.4 with or without the spin-torque effect (2.3.7). 

 
Fig. 30 – Flux diagram for the parallel CUDA code (dynamic simulation case), illustrating that all of 
the operations that are done for each cell of the sample are calculated in parallel within the device, and 
followed by the host, as it is suggested in Fig. 19.  
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Following the flow of the code described in Fig. 30, after the host reads all of the 

input data, without forgetting to properly allocate the host and device variables, the 

first calculations performed are the calculations of the components of the 

demagnetizing tensor (79) and/or the anti-symmetric tensor needed for the HOe (85). 

As it was previously mentioned, these tensors only depend on the relative position 

between the cells ri-rj and thus need only to be calculated once at the beginning of the 

simulation. Once the tensors are calculated they are saved in the Fourier space by 

using the parallel CUFFT library, as described in example 2 of section 3.6.5, and thus 

stored within the device memory for further calculations. The next step will be to 

“tell” the host to instruct the device to start running the chosen solver algorithm, 

where the first part of it is the determination of all the contributions to the effective 

field Heff. Each field contributing to the Heff is calculated through the use of a kernel, 

as the one described in example 1 of section 3.6.5, in order to calculate in parallel the 

value of the field in each computational cell by using the corresponding discrete field 

equation seen in 3.3. Once each individual field is calculated, the total Heff is 

determined by the use of another kernel that calculates the total field sum in each cell 

in parallel. 

Since the calculation of the magnetostatic field Hdmg is the most time consuming 

aspect of micromagnetic simulations a more detailed look will be given to this 

particular field. As it was seen in 3.3.3 the calculation of this field is a simple 

multiplication between the demagnetizing tensor and the magnetization in the Fourier 

space, given by (80). Since the demagnetizing tensor in Fourier space has already 

been previously saved within the device memory, the magnetization m also has to be 

transferred to Fourier space in a similar manner as in example 2 of section 3.6.5. First 

the kernel call kernel_M_Calc<<<…>>> is done so as to transform the float variable m 

into complex-float type, followed by the CUFFT3F() function calls that transform the 

data to the Fourier space (Fig. 31). Now that both the tensor and magnetization are in 

Fourier space, equation (80) can be solved in parallel by using the kernel call 

kernel_H_Calc<<<…>>>, where each corresponding cell of the tensor array 

demagTensor.cuSDnn (where nn=xx, yy, zz, xy, xz or yz) is multiplied with each 

corresponding cell of the array hdmg.cuMn	   (where n=x, y or z) and saved to array 

hdmg.cuHn	  (where n=x, y or z).  
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{	  
...	  
//	  Defining	  the	  block	  and	  grid	  sizes	  	  	  
	  	  	  	  dim3	  dimBlock(BLOCK_SIZE);	  
	  	  	  	  dim3	  dimGrid((Dim.Kx*Dim.Ky*Dim.Kz)/dimBlock.x	  +	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  ((Dim.Kx*Dim.Ky*Dim.Kz)%dimBlock.x	  ==	  0?0:1));	  
	  
//	  Kernel	  used	  to	  convert	  the	  magnetization	  from	  float	  to	  Complex	  float	  
	  	  	  	  Kernel_M_Calc<<<dimGrid,dimBlock>>>(hdmg.cuMx,hdmg.cuMy,hdmg.cuMz,Dim.Kx,	  
	  	  	  	  	  	  	  	  	  	  	  	  Dim.Ky,Dim.Kz,m.cuma,m.cumb,m.cumc,m.sizeX,m.sizeY,m.sizeZ);	  
	  
//	  Functions	  that	  send	  the	  zero-‐padded	  dimensions	  and	  arrays	  to	  perform	  the	  forward	  
//CUFFT	  of	  the	  magnetization	  for	  each	  Cartesian	  component	  
	  	  	  	  cuDFFT3F	  (Dim.Kx,	  Dim.Ky,	  Dim.Kz,	  hdmg.cuMx);	  
	  	  	  	  cuDFFT3F	  (Dim.Kx,	  Dim.Ky,	  Dim.Kz,	  hdmg.cuMy);	  
	  	  	  	  cuDFFT3F	  (Dim.Kx,	  Dim.Ky,	  Dim.Kz,	  hdmg.cuMz);	  
	  
//	  Kernel	  where	  the	  magnetostatic	  field	  Hdmg	  is	  calculated	  in	  the	  Fourier	  space	  
	  	  	  	  Kernel_H_Calc<<<dimGrid,dimBlock>>>(hdmg.cuHx,hdmg.cuHy,hdmg.cuHz,hdmg.cuMx,	  
	  	  	  	  	  	  	  	  	  	  	  	  hdmg.cuMy,hdmg.cuMz,Dim.Kx,Dim.Ky,Dim.Kz,demagTensor.cuSDxx,	  
	  	  	  	  	  	  	  	  	  	  	  	  demagTensor.cuSDyy,demagTensor.cuSDzz,demagTensor.cuSDxy,	  
	  	  	  	  	  	  	  	  	  	  	  	  demagTensor.cuSDxz,demagTensor.cuSDyz);	  
	  
//Functions	  that	  send	  the	  zero-‐padded	  dimensions	  and	  arrays	  to	  perform	  the	  inverse	  
CUFFT	  of	  the	  magnetostatic	  field	  for	  each	  Cartesian	  component	  
	  	  	  	  cuDFFT3B	  (Dim.Kx,	  Dim.Ky,	  Dim.Kz,	  hdmg.cuHx);	  
	  	  	  	  cuDFFT3B	  (Dim.Kx,	  Dim.Ky,	  Dim.Kz,	  hdmg.cuHy);	  
	  	  	  	  cuDFFT3B	  (Dim.Kx,	  Dim.Ky,	  Dim.Kz,	  hdmg.cuHz);	  
	  
//Kernel	  where	  the	  real	  part	  of	  the	  field	  is	  obtained	  
	  	  	  	  Kernel_hdmg_Calc<<<dimGrid,dimBlock>>>(hdmg.cuhdmga,hdmg.cuhdmgb,hdmg.cuhdmgc,	  
	  	  	  	  	  	  	  	  	  	  	  	  hdmg.sizeX,hdmg.sizeY,hdmg.sizeZ,hdmg.cuHx,hdmg.cuHy,hdmg.cuHz,	  
	  	  	  	  	  	  	  	  	  	  	  	  Dim.Kx,Dim.Ky,Dim.Kz,inv.Kxyz);	  
...	  
}	  

Fig. 31 – Steps needed to calculate the Hdmg in parallel within the GPU. First the sizes of the block and 
grid are defined. Note that here the data is zero-padded as described in 3.3.3. Then the kernel 
kernel_M_Calc<<<…>>> is called to convert the magnetization from a float to a complex value. Once that 
is done the forward transform is performed by use a function created by the programmer that sends all 
of the information needed to perform the FFT as described in example 2 of section 3.6.5. This is 
followed by the kernel, kernel_H_Calc<<<…>>>, where the magnetization and demagnetizing tensor in 
Fourier space are multiplied component by component in parallel to give Hdmg in Fourier space. The 
last part is to perform the inverse transform of the calculated value followed by a kernel that extracts 
only the real part of Hdmg. 

Once the value of the magnetostatic field Hdmg is calculated in Fourier space the 

inverse transform of each component is performed by again using the CUFFT library 

(as described in example 2 in section 3.6.5). This is followed by the kernel call 

kernel_hdmg_Calc<<<…>>> function in which the field is converted from complex to 

float, and back to the real dimensions of the sample. The calculation of the 

coefficients of the demagnetizing tensor is performed in double precision and then the 

result of the field Hdmg truncated to single-precision. This is done on one hand to 

avoid the loss of precision due to the numerical behavior of the analytical formulas 

used to calculate said coefficients [67], and on the other hand to keep using, for the 

most part, single-precision variables since the CUDA code runs significantly faster 
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with them, as suggested in Fig. 16. In terms of numerical “correctness” it was found 

sufficient enough to only calculate the demagnetizing tensor coefficients in double 

precision when performing the micromagnetic simulations. This can be asserted in the 

code validation section 3.7 where the developed CUDA parallel code is compared to 

the full double-precision sequential Fortran-based code. 

When developing the code for CPP devices in which the dynamics of two different 

ferromagnetic materials has to be solved, (one viewed as the thick and the other as the 

thin layer of the device), the steps taken to calculate the Hdmg are the same. The 

difference here is that care has to be taken about the kernel’s index reference, in order 

to properly normalize the magnetization m being used in the calculation of the field in 

each layer, since the saturation magnetization MS of each material might be different. 

Naturally the magnetostatic field interaction of one layer over the other is also being 

taken into account here, when calculating the magnetostatic field in each layer at each 

time step. 

Continuing with the description of the flow diagram present in Fig. 30, if applying 

a certain current density through the sample the next step is to calculate the spin-

torque effect. In either case of spin-torque, CPP or CIP, a kernel function is created in 

order to first calculate the spin-torque dependent parts of the dynamics equations (53) 

or (58). In the case of CPP device geometry some care has again to be taken with the 

kernel’s index reference, in order to multiply each ferromagnetic layer by the 

appropriate material parameters, and most importantly to avoid non-coalesced access 

to the device global memory when addressing the indexes to each layer of different 

material. One of the most single important performance considerations in CUDA 

architecture is to ensure that global memory accesses are coalesced whenever possible 

[61],[63]. Another important aspect to take into account regards to the range of the 

STT interaction, which is considered to be limited only to the adjacent layers of the 

ferromagnets with the spacer. Therefore more care is needed with the addressing of 

the indexes, since only the spacer adjacent layer of each ferromagnet is under the STT 

effect. (As an example if the thick layer is of 16 nm and the cell discretization is 4 nm 

in the z-axis direction, then the thick layer has 4 layers. The STT contribution is only 

considered for the layer adjacent to the spacer and not the other 3). Two kernels are 

used for the CPP device, one to calculate the STT on the thick ferromagnet and 

another for the thin ferromagnet. This allows for more configuration options when 
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running a simulation since it is possible to have only the thick or the thin 

ferromagnets being solved dynamically as well as both of them. 

In the case of the CIP device geometry, since there is only one ferromagnetic 

material whose dynamics has to be solved, the spin-torque contribution is simply 

calculated within the designated kernel by solving (57). 

Once the spin-torque is calculated for each cell the dynamic equation (53) or (58) 

can be evaluated. Naturally this is done accordingly to either of the numeric 

algorithms described in section 3.4, where each stage of the algorithm progression is 

handled by a corresponding kernel function so as to perform it in parallel.  

The full process is repeated until the total time window designated for the 

simulation is reached, writing the desired output data like the averaged magnetization 

m, as often as decided by the user. Note that writing the output data involves 

retrieving data from the device memory back to the host memory, which as was 

mentioned previously is the most time consuming aspect of the CUDA parallel 

programming language. Therefore this process should only be done at these desired 

points of the simulation, avoiding as much as possible unnecessary memory transfers. 

In the next section the validation of the developed parallel micromagnetic code 

using NVIDIA’s CUDA is presented, in order to test its accuracy and efficiency by 

comparing it to CPU-based sequential solvers like OOMMF [68] and the Fortran code 

from which it was based on. 

3.7 Parallel GPU micromagnetic code validation and performance 
With the aim of testing the accuracy and efficiency of the developed GPU parallel 

code the Micromagnetic Modeling Activity Group (µMAG) [69] standard problem #4 

will be presented, as well as a general performance test. 

3.7.1 Standard problem #4 

This standard problem focuses on the dynamic aspects of micromagnetic 

simulations. Accordingly to the information posted in µMAG website, about the 

standard problem #4, a rectangular elongated ferromagnetic sample of length 

L=500nm, width w=125nm and thickness t=3nm of typical Permalloy material 

parameters (A=1.3×10-11 Jm-1, MS=8.0×105 Am-1, K=0 Jm-3) is considered. The initial 

magnetization used is an s-state obtained by saturating the sample along the [1, 1, 1] 

direction and then slowly removing the field. The interactions involved in this 
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simulation are the magnetostatic, exchange and external fields, where a damping 

parameter of α=0.02 is considered. Two different external fields are applied, a field 1 

of 25 mT oriented 170º counter-clockwise from the positive x-axis, and a field 2 of 36 

mT directed 190º also counter-clockwise from the positive x-axis. The results are 

shown in Fig. 32 for the developed GPU parallel micromagnetic code. When 

comparing the solutions reported by the different groups [69], (one of which is from 

the research group in which this work was developed), with the results obtained using 

the developed parallel GPU code, the verdict is that it is completely satisfactory. 

 
Fig. 32 – Standard problem #4 computed using the developed GPU parallel micromagnetic code: a) 
Comparing the time evolution of the averaged magnetization along the y-axis under the influence of 
field 1 (25mT, 170º counter-clockwise of +x-axis) between Oommf, Fortran and CUDA. b) time 
evolution of the averaged magnetization along the y-axis under the influence of field 1 for four 
different discretizations. c) Comparing the time evolution of the averaged magnetization along the y-
axis under the influence of field 2 (36mT, 190º counter-clockwise of +x-axis) between Oommf, Fortran 
and CUDA. d) time evolution of the average magnetization along the y-axis under the influence of field 
2 for four different discretizations. 

Although the solutions reported by the different groups were all obtained using cell 

sizes smaller than the exchange length (lex=5.69 nm), the presented results in Fig. 32 

show an even smaller discretization in order to also check the robustness of the 

solution as the cell size goes down. For each field, four discretizations in the xy plane 

Δx=Δy= 5.0, 2.5, 1.25 and 1 nm were considered, all of them computed using the same 
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time step of δt = 50 fs (in the z direction, Δz=3 nm was used in all). As can be seen in 

Fig. 32, for the case of field 1 the solution is virtually independent of the 

discretization whereas in field 2 some discrepancies appear roughly after 0.35 ns. This 

divergence of results is expected due to the physical nature of the problem under field 

2 and is also seen for other simulations, as reported in the µMAG website [69]. 

However the solutions clearly converge as the cell size decreases. 

Besides concluding that the developed GPU parallel code accurately reproduces 

the expected results of standard problem #4, of note is the fact that more general 

simulations with a mesh size of Δx=Δy=1.0 nm are hardly feasible with a standard 

CPU sequential code, in particular of longer time windows, whereas with the GPU 

parallel solver such problems are easily tackled. Since the validity has been checked, 

the next section is dedicated to the performance of the developed GPU parallel code.  

3.7.2 Performance test 

Now that the accuracy of the developed parallel code has been verified in the 

previous section, a performance test is shown by comparing it to the Fortran 

sequential code in which it was based on. The hardware used for the test was; for the 

Fortran CPU simulation an Intel Core 2 Quad Q9300 processor (2.5 GHz and 6 MB of 

L2 cache memory), whereas for the developed GPU parallel code a NVIDIA Tesla 

2070 GPU (1.15 GHz and 6GB of RAM memory). 

The comparison is made in terms of the time required to perform a single time step 

when using a second order predictor-corrector method, which at least involves the 

calculation of all the components of the effective field twice, as was previously 

discussed in 3.4.1. The results are shown in Fig. 33 for a two-dimensional problem of 

N×N cells, where N was systematically increased up to 2000×2000 cells. (Note: in 

Fortran it was not possible to go much over 500×500 cells, without crashing). From 

those results it can be asserted that the developed code is considerably faster than the 

sequential Fortran code from which it was based on, being of up two orders of 

magnitude faster for meshes with a larger number of cells. Also shown in Fig. 33 is 

the difference of using or not the optimal size of the sample in the Fourier space when 

performing the FFT using the CUFFT library, as it was discussed in example 2 of 

section 3.6.5. By carefully zero-padding the sample in Fourier space it is possible to 

reduce the simulation time of less favorable geometries, as it is shown in Fig. 33 from 

the CUDA-1 to the CUDA-2 case.  
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Fig. 33 – Time required performing one time step using the 2nd order predictor-corrector solver 
algorithm for a two-dimensional problem of N×N cells. The time it takes for the sequential Fortran 
code to perform each time step becomes significantly larger than the CUDA GPU parallel code, as the 
number of cells increases. The difference between CUDA-2 and CUDA-1 comes, respectively, from 
using or not a zero-padding technique to round up to the optimal dimensions in Fourier space, as 
discussed in example 2 of section 3.6.5.  

The results discussed in section 3.7, among others, were published in the paper 

titled “Micromagnetic simulations using Graphic Processing Units” [56], in which 

the version of the developed code used was the commercial tailored one developed in 

conjunction with GoParallel S. L. [70]. 
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4 Different investigations using both sequential-
CPU and parallel-GPU micromagnetic codes 

This section presents the published works that resulted from the PhD period that 

this thesis describes. These investigations involve the study of different phenomena 

on distinct devices such as MTJs, spin-valves and long ferromagnetic stripes, using 

both sequential-CPU and parallel-GPU codes that were used and developed during the 

period of this work. 

The first part is dedicated to the investigations done using the Fortran sequential 

code. These were the very first studies done by the author during the initial period of 

learning and experience gaining on micromagnetics, from both the theoretical and 

computational points of view. These works put in evidence some of the already 

discussed limitations (3.5.2) of sequential simulations, which lead to the development 

of the parallel code. The second part of this chapter is then dedicated to the studies 

done using the CUDA parallel code, which allowed for a more efficient study of large 

temporal simulations, as vortex oscillations, and large spatial simulations involving 

long ferromagnetic strips. 

4.1 Studies made using the sequential-CPU micromagnetic code 
Both studies shown here are focused on the magnetization dynamics in MTJs. The 

first investigates the STT induced magnetization switching [71] when using a non-

uniform current density distribution (NUCD) based on the fact that the resistance 

throughout the MTJ is not the same, and compare it to the usual uniform current 

distribution (UCD) model. The second one studies the influence of thermal activation 

on STT induced magnetization switching [72]. 

4.1.1 Magnetization switching driven by spin-transfer-torque in high-TMR 
magnetic tunnel junctions 

Introduction 
As it was said in the introduction of this thesis the study of STT devices opens the 

possibility of different and new device designs, in particular the use of MTJs as ST-

MRAMs. With that in mind a micromagnetic study of the magnetization switching in 

high-TMR (Tunnelling magneto-resistance) MTJs that takes into account the non-

uniform current density (NUCD) distribution was performed. This NUCD is 

implemented by employing a parallel resistance channel model, under the hypothesis 
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that the current flows perpendicularly to the sample plane. In standard studies the 

current distribution is considered uniform throughout the device. However, this is not 

a realistic approximation, in particular in high-TMR MTJs. This can be visualized by 

considering a spatial magnetization configuration that possesses domains in which the 

magnetization orientation differs by 180º. In the region where the magnetization is 

parallel (P) to the reference magnetization of the pinned layer, the resistance (current 

density) is smaller (larger) when compared to that of the anti-parallel (AP) region. 

The voltage dependence of the TMR was not considered in these simulations, 

which in principle overestimates the NUCD effect. However, comparing the results 

with numeric computations using the uniform current density (UCD) distribution, 

gives the possibility to fix a working limit to the model application. 

The studied device was a CoFe(8nm)/MgO(0.8nm)/Py(4nm) nanopillar of elliptical 

90 nm × 35 nm cross-section. The CoFe is exchange biased and acts as the pinned 

layer (PL), whereas the Permalloy, represents the free-layer (FL). 

Simulation details 
Here the particularity of the previously non-discussed variable current density is 

described and shown how it is taken into account in the dynamic equation (53). 

The magnetoresistance R of the MTJ depends on the relative orientation of the 

normalized magnetization vector of both the FL (m) and the PL (p) and can be 

approximated within the macro-spin approach [20] by, 

  

€ 

R = RP +
ΔR
2
1−m.p[ ]      (96) 

where  ΔR=RAP–RP, with RAP and RP representing resistances of the AP and P state 

respectively (note, it is considered throughout this study that the magnetization of the 

PL p, is fixed and points along the +x direction). Assuming that the current flows 

perpendicular to the sample plane j=jz(x,y)uz and since it depends on the value of R 

(96) when making the 2D numerical discretization, the jz(x,y) is computed for each 

cell becoming a state-dependent function jz(x,y,m). In other words it is a nonlocal 

term, since it depends on the spatial configuration of the FL magnetization. The FL is 

discretized in 2.5×2.5×4 nm3 cells (area ΔS =6.25 nm2). Let N be the total number of 

cells, the total current I0 is then given by, 
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€ 

I0 = ΔS jz (i, j,m)
i, j

N

∑ = S jz (i, j,m)
i, j

N

∑    (97) 

where S is the total area of the FL, and the indexes (i, j) are the cell coordinates of the 

2D discretization of the FL. Considering N parallel channels (Fig. 34), one for each 

cell, and the macro-spin approximation (96), it is possible to say that the resistance of 

each channel is then given by r(i,j)=RP+(ΔR/2)[1-m(i,j).p(i,j)], plus considering that 

J0=I0/S, the current density distribution for each channel can be computed using 

simple circuit theory considerations as,  

  

€ 

jz (i, j,m) =
J0

r(i, j) 1
r(i, j)i, j

N

∑
       (98) 

 

Fig. 34 – Sketch of the simulated MTJ showing the parallel channel resistance model, as well as the 
conductivity symbols for each layer. 

With expression (98) it is now possible to represent the time dependent NUCD 

method implemented in the micromagnetic framework, which is no more than 

replacing j in the dynamic equation (53) by the one expressed in (98). 

In the effective field Heff, it was taken into account the standard micromagnetic 

contributions (external, anisotropy, magnetostatic and exchange fields), the 

magnetostatic coupling between the PL and FL and the Oersted field, which 

differently from previous studies [73],[75], depends on the magnetization state since 
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HOe[jz(m)]. In the performed simulations the polarization function considered was the 

one described by (52), and the other parameters used were the following: external 

field µ0H=50 mT (applied along the positive easy axis direction so as to compensate 

the magnetostatic coupling with the PL), MS=6.44×105 Am-1; MPS= 1.15×106 Am-1; 

 α=0.01; η=0.7 [76], A=1.3×1011Jm-1, RP=100 Ω; RAP=200 Ω, which are typical 

experimental parameters [77],[79]. The time step used was of 28 fs.  

In order to check the validity of the hypothesis (current perpendicular to the sample 

plane), a finite element commercial software (MagNet [80]) was used to calculate the 

spatial current density distribution. This software uses a 3D worksheet that allows for 

the drawing of the desired three-dimensional MTJ geometry, from which the software 

automatically generates the finite element mesh. The following conductivities of each 

layer were introduced in order to perform the computation, (Fig. 34 and Fig. 35; 

σCu=5.77×107 Sm-1; σAF=σPL=σMgObarrier=1.111×103 Sm-1; σCoFe(-16%)=1.029×103 Sm-1; 

σCoFe(+8%)=1.322×103 Sm-1). The variation to the conductivity of the FL is introduced 

so as to view the current density behavior, and assert if the tangential component of 

the current density is of significance, especially in the zone where conductivity 

changes. The conductivity in the central area was decreased by 16% and increased in 

the outer regions by 8% of the nominal value. This is done so as to resemble a 

magnetic domain with higher magneto-resistance in the central region and lower on 

the outer regions. The spatial distribution of the conductivity can be visualized in Fig. 

35, in which the lighter central area represents where the conductivity was decreased 

by 16%, and the darker lateral regions increased by 8%. After performing the 

computation, the spatial distribution of the current density was evaluated. 

Analyzing the results of the MagNet simulation (Fig. 35), it was observed that the 

current density j mainly lays in the normal direction (z), representing in the worst case 

95% of the total j. Looking at the variation of the normal component of j (Fig. 35 (a)), 

there are two distinct zones in the FL, each corresponding to the different values of 

the conductivity, where the most significant variations of j normal are observed at the 

border of these two regions. It is possible to crosscheck this result with the tangential 

component of j shown in Fig. 35 (b), which yields a gradient of current density 

towards the border of the conductivity variation (equivalent to a domain wall). The 

tangential component of j is always less than 2% of J normal, which confirms the 

hypothesis made for the micromangetic simulations using the parallel resistance 
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model (Fig. 34) that j is mainly perpendicular to the sample plane, as can also be seen 

in Fig. 35 (c). 

 

Fig. 35 – Results of the current density j computed using MagNet to check which percentage of j flows 
perpendicularly to the sample plane within the FL, (color gradient: j in Am-2). a) Spatial distribution of 
the normal component of j. b) Spatial distribution of the tangential component of j. c) Horizontal cross-
section of the FL in which the arrows represent the vector j with zoom in. In the worst case the normal 
component of j accounts for 95% of the total current density. 

Results and discussion 

Earlier micromagnetic studies of some aspects of the magnetization switching [81] 

and persistent dynamics [79],[82] in MTJs have been performed using an UCD 

distribution model. Here the NUCD model is introduced and its results compared to 

the previous one. Considering the resistance in each state as RAP=200 Ω and RP=100 

Ω for the NUCD model (simulations performed considering RAP =250 Ω gave 

qualitatively the same results), the switching dynamics were studied in two different 

regimes for both transitions (P-AP and AP-P). The first performed by applying 

current pulses through the sample, whereas the second was done with an increasing 

ramp-like current. 

 i) Magnetization switching with a current pulse: modal analysis and phase diagrams 

This section presents a detailed study of the magnetization switching when 

applying current pulses in MTJs for both current distribution models. This kind of 

study is important from both technological (writing mechanism in MRAM) and 

fundamental points of view, since it provides information about the stability of 

intermediate states and the way in which energy is pumped into the system. 
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Fig. 36 – AP to P transition. a) Normalized ‘x’ component of the magnetization vs. time for the UCD 
(gray) and NUCD model (red). The height of the current density pulse applied was of 4.5×106 Acm-2, in 
a 14 ns pulse duration with rising and descending times of 100 ps. b) Frequency spectrum for the UCD 
(gray thin line) and NUCD model (red thick line) of the pre-switching oscillations from 0 to 12.8 ns. 
Insets: 2D power density plots produced by each computational cell at the FL with the corresponding 
frequency mode indicated for each model, (darker means larger power).  

An example of a magnetization switch is shown in Fig. 36 (a), where the x-

component of the normalized averaged magnetization (<mx>) is displayed. A pulse of 

amplitude J0=4.5×106 Acm-2 is applied during 14 ns with rising and descending times 

of 100 ps. Comparing the results of both models, it is observed that the NUCD 

promotes the AP-P transition and the switching process begins by means of 

preliminary oscillations, on both models. In order to study how these pre-switching 

oscillations might influence the magnetization spatial distribution, a detailed analysis 

within the frequency domain was performed by applying a micromagnetic spectral 

mapping technique (MSMT) [83],[85]. The technique consists on first individually 

calculating the Fourier transform for each cell within the computational mesh and 

then extracting the corresponding frequency. This assures that the off-phase 

oscillations in different parts of the sample do not cancel, which would be the case 

when calculating the transform only for the average magnetization. 

 Using the MSMT technique, applied from the initial instant up to 12.8 ns, allows 

for the computation of the excited pre-switching oscillation modes. Looking at the 

frequency domain spectra shown in Fig. 36 (b), the main mode present (f = 6.5 GHz) 

is basically the same for both the UCD and NUCD models. However, there are 

differences in the lower frequency modes, i.e. more modes and with larger power are 

exhibited in the NUCD case. To gain a better understanding of these modes, 2D 

density plots (spatial distribution) were also computed that show the power intensity 

of the excited modes [83],[84] (insets of Fig. 36 (b) and Fig. 37 (b)). This determines 
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which parts of the sample oscillate for a given mode. Fig. 36 (b) shows two types of 

pre-switching oscillation modes during the AP-P transition. The main mode is 

localized at the lateral sides of the sample, which was defined as an ‘‘edge’’ mode, 

while the low power modes in the central area of the sample, were defined as 

‘‘central’’ modes. Comparing the spatial distribution of the oscillation modes (insets 

of Fig. 36 (b)), one concludes that both models describe the switching similarly, with 

the difference that the NUCD model presents one more central mode. The faster 

transition in the NUCD model might emerge due to both the presence of this extra 

central mode and the fact that these secondary modes are in general more intense. In 

this case the increase in power of the central modes could be explained as follows: 

when the magnetization in the central region begins to oscillate, the resistance starts to 

decrease leading to a current density increase in that area, which augments the spin-

torque and promotes the oscillations. On the other hand, the oscillations begin at the 

edges (see main mode at 6.5GHz in Fig. 36 (b), and inset (v) of Fig. 39), but before 

the switching takes place the symmetry has to be broken, implying that the central 

region has to be destabilized from its static configuration (along the easy axis). In the 

NUCD case this process happens faster (for this AP to P transition) because the 

current is initially localized at the edges of the FL, thus promoting the oscillations.  

 
Fig. 37 – P to AP transition: a) Normalized ‘x’ component of the magnetization vs. time for the UCD 
(gray) and NUCD model (red). The height of the current density pulse applied was of !1.05×107 Acm-2, 
in a 14 ns pulse duration with rising and descending times of 100 ps. b) Frequency spectrum for the 
UCD (gray thin line) and NUCD model (red thick line) of the pre-switching oscillations from 0 to 12.0 
ns. Insets: 2D power density plots produced by each computational cell at the FL with the 
corresponding frequency mode indicated for each model, (darker means larger power). 

The P to AP switching was also analyzed with the MSMT (Fig. 37 with 

J0=1.05×107 Acm-1), whose results show a main pre-switching mode (6.5GHz) equal 

to the AP to P transition and different edge modes around 5.5 and 5.8 GHz (NUCD). 
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Comparing the models with respect to this transition, the switching process was found 

to be practically the same, having both similar pre-switching oscillation modes. 

However now it is the UCD distribution that presents an extra oscillation mode and 

switches faster. This effect is due to the distribution of the current density in the 

NUCD model that for this transition gives rise to less oscillation modes. As in the 

previous transition the oscillations start at the edges but in this case it makes the 

resistance higher in those regions, thus initially localizing the current in the center of 

the FL where the oscillations are more strongly damped, retarding the switching. 

In general, it seems that the switching is triggered earlier when more low 

frequency oscillation modes are excited (since the main high frequency mode remains 

the same for both models). The number of modes appearing in the NUCD model can 

be directly linked to the way in which the current is distributed throughout the FL. 

To extend the analysis of pulsed current assisted switching, a systematic study was 

performed in order to compile comparative phase diagrams (Fig. 38) as function of 

the height (amplitude of j) and duration (time interval) of the current density pulse. 

The current density was increased linearly from zero up to its maximum value in 100 

ps, and resolution of 3×105 Acm-2 was considered for the current density between 

different simulation points in all phase diagrams (Fig. 38). 

As a general trend it is observed (Fig. 38): for the NUCD model the boundary 

between switched and non-switched states is smoother, without much of the ‘‘teeth’’ 

behavior seen in the UCD model. However, a fully smooth frontier was not obtained. 

For example in the P to AP transition with the external field perfectly aligned along 

the easy axis and for current density pulses of 1.14×107 Acm-2, a ‘‘teeth’’ region is 

present. A detailed analysis of the switching in that region shows that the intermediate 

states of the switching are constantly changing, including cases of vortex and anti-

vortex configurations [86]. It is due to these configurations (influenced by 

intrinsically non-uniform effective fields like the Oersted field) that the system does 

not switch for certain current pulses, even though it is achieved for smaller current 

densities (black ‘‘teeth’’ in Fig. 38). 

Comparing both models according to Fig.38, it is possible to say that the NUCD 

distribution gives rise to less ‘‘teeth’’ structures. As in the particular cases of Fig. 36 

and Fig. 37, these diagrams also show that the NUCD favors the AP to P and hinders 

the P to AP transitions. In particular for the P to AP transition the current density 
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needed for switching in the NUCD model is significantly larger than in the UCD 

model. Therefore the NUCD model is more asymmetric and its current distribution 

contributes to the intrinsic asymmetry of the switching observed in real devices. 

Former works in this kind of nanostructures, both experimental [87],[88] and 

theoretical [81], demonstrated that a small misalignment of the external field in 

respect to the easy axis, gives rise to more uniform magnetization dynamics and lower 

critical currents. To evaluate this phase diagrams where the external field was tilted 

by 3º were also computed. As expected, Fig. 38 shows how the critical current 

densities decrease and the frontiers become smoother as the result of a more uniform 

behavior of the magnetization dynamics. This is due to the hard axis component of the 

external field whose torque helps in pulling the average magnetization away from the 

easy axis equilibrium position. 

 
Fig. 38 – Phase diagrams of the current density pulsed excitation switching for both the AP-P (top) and 
P-AP (bottom) transitions. From left to right, NUCD and UCD model with a 50 mT external field 
applied along the easy axis, with the last NUCD diagram where the external field applied has a 3º 
misalignment in respect to the easy axis. Color area means that the system has switched and black the 
opposite. 

Performing these phase diagrams is an extremely laborious task since it involves 

simulating a large number of different case parameters. This is an aspect, which is 

greatly improved using the developed parallel code when performing similar diagram 

analysis, due to the significant simulation speed increase discussed in the previous 

chapter. 
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ii) Ramped current hysteresis loops 

This section describes the effects of applying a linearly increasing current through 

the nano-pillar until the switching critical value. 

Depicted in Fig. 39 are the ramped current density magneto-resistance hysteresis 

loops computed using both models. Looking at the hysteresis loops, one sees that the 

NUCD model favors the switching going from the AP to P state, and on the other 

hand it hinders the reverse transition P to AP, in respect to the UCD model. These 

results are in agreement with the discussion of the previous section, but here presented 

as a function of the critical current density. 

Analyzing both switching processes (for a sweep rate (SR) of 1013 A/(cm2s)), again 

it is seen that they are preceded by initial oscillations of the FL magnetization. In 

insets (ii) for the P-AP transition and (v) for the AP-P case, it is shown that the non-

uniform oscillations start at the lateral regions (Fig. 39). As the amplitude of these 

oscillations increase, they break the magnetization symmetry and lead to several 

complex states (insets (iii) and (vi)) before the switching is achieved. 

 
Fig. 39 – Magnetization vs. critical current density hysteresis loops. In red the results using the NUCD 
and in black using UCD for a sweep rate 1013 A/(cm2s). Insets (i) and (iv) represent the spatial 
distribution of the current density (see the coordinate in the graph). Insets (ii) and (v) show a 
magnetization snapshot at the beginning of the magnetization switching, whereas (iii) and (vi) show the 
magnetization snapshot just before the switching is achieved. 

Focusing now on the introduction of the NUCD model, it is again analyzed how it 

leads to opposite effects depending on the examined transition. In the AP to P 

transition, the oscillations at the lateral regions produce a decrease of the resistance in 

those regions, thus the application of the NUCD model results in a higher current 

injection in said lateral areas (inset (iv) of Fig. 39), promoting larger oscillations and 
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triggering the switching. On the other hand, for the P-AP reversal the oscillations in 

the outer regions imply an increase of the resistance and thus less current is injected in 

those regions (inset (i) Fig. 39). The oscillations are damped and in order to achieve 

the switching more current is needed. Of course this is just a simplified description of 

the process and indeed the magnetization dynamics is rather non-linear. Plotting the 

critical current densities as a function of the SR (Fig. 40), it is seen that these curves 

are non-monotonic and as reported in other numerical studies [73],[75], the trend is 

related to a trade-off between the effective field contributions (in particular the 

Oersted field) and the STT. Although the observed behavior is not linear, the general 

trends of applying the NUCD model follow the aforementioned discussion (Fig. 39). 

 
Fig. 40 – Both AP to P, a), and P to AP, b), reversals comparing the critical current density between the 
NUCD (red line) and the UCD (black line) models in function of the sweep rate. On the right scale of 
each graph, it is represented the main pre-switching oscillation frequency mode for both models and 
transitions at each sweep rate tested, (doted line). 

Looking at Fig. 40 it also shows the frequency of the main (larger power) pre- 

switching oscillation mode as a function of the SR, for each transition and model. 

Again depending on the transition analyzed, different results are observed between the 

models. In the AP to P transition (Fig. 40 (a)), the critical current density and 

frequency of the main mode as a function of the SR are more or less independent of 

the spatial current density distribution. On the other hand, the critical current density 

and frequency of the main mode in the P to AP transition are clearly affected by the 

NUCD model. In order to better understand the physical mechanisms that give rise to 

this behavior, the MSMT (Fig. 41) was performed, similarly to the ones shown in Fig. 

36 and Fig. 37. Nevertheless, it has to be stressed that a direct comparison with the 

pulsed current case is not possible due to the different type of excitation. The current 

is applied linearly (with a slope equal to SR) implying that when the switching is 

achieved the spin-torque has been acting and pumping energy for a much longer time. 
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For example, in the AP to P case for the slowest SR (Fig. 41 (a), SR=5×1012 A/cm2s) 

when the switching is achieved the current has been pumping energy for 610 ns. For 

the same transition in the current pulsed case analyzed in Fig. 36, the current was 

applied only for 13 ns. Again this gives an idea on how long the sequential 

simulations might take in real time and how the developed parallel code benefited this 

aspect, since simulations of hundreds of nanoseconds take weeks to solve, even in a 

relatively small sample like the one studied here. In the following paragraphs the 

discussion focuses on the modes excited in both transitions. 

As it was previously stated, in the AP to P transition (Fig. 40 (a)) the critical 

current density and frequency of the main mode in function of the SR are practically 

independent of the current density spatial distribution. This occurs because the excited 

modes are the same for both the UCD and NUCD models, giving rise to practically 

identical nucleation processes of the switching (Fig. 41 (a) and (b)). 

 
Fig. 41 – Frequency spectrum for both models and transitions in respect to the lowest and highest 
sweep rates (SR) of Fig. 40: a) and b) pre-switching oscillation modes of both AP to P transitions, 
show that the modes generated are equal between models and that for lower sweep rates (lower than the 
one of minimum critical current density of Fig. 40 (a)) the main mode turns into a central one (see 
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insets). In c) and d) pre-switching oscillation modes of both P to AP transitions, show that for the UCD 
model more oscillation modes are generated being the main one central, while for the NUCD the main 
mode is an edge one, (cause of the difference in frequency seen in Fig. 40 (b)). 

For the slowest SR analyzed (Fig. 41 (a) SR=5×1012 A/cm2 s) the main mode is a 

central lower frequency one, in accord with the slower pumping of energy. On the 

other hand, for the fastest SR analyzed (Fig. 41 (b) SR=1014 A/cm2 s) the edge mode 

is the principal one, corresponding to the faster way of pumping energy. In other 

words, the difference in the excitation velocity (slope of the current density ramp, i.e. 

SR) leads to a different formation of oscillation modes within the sample. Between 

the minimum and maximum SR an intermediate behavior is found, with a minimum 

in the critical current density where both edge and central modes have similar 

importance. The jump in frequency seen in Fig. 40 (a) after the minimum in critical 

current density Jmin (SR=1.67×1013A/cm2s) reveals a transition from the edge 

predominant to the central predominant mode dynamics. Also observed is that this 

mechanism is related to a trade-off between the Oersted field and the spin-torque, 

given that when the Oersted field effect is removed from the simulations the 

minimum is not present. This happens because in the absence of Oersted field the 

predominant mode is always a central one around 4 GHz (similar to the one of Fig. 41 

(a)). This is understandable since the non-uniform Oersted field, more intense near the 
boundaries of the sample, clearly promotes the edge modes. 

Finally it is worth to comment that for the studied AP to P transitions, even though 

the NUCD model slightly diminishes both the switching time (seen in the pulsed 

cases of Fig. 36 and Fig. 37) and critical current density (seen in the ramped current 

loops of Fig. 39 to Fig. 41), the effect is in both cases very weak. Consequently it can 

be concluded that the NUCD model weakly affects the AP to P transition. 

Analyzing now the P to AP reversal (Fig. 40 (b)), it can be seen that the frequency 

of the main mode arising from both the UCD and NUCD models is clearly different, 

but pratically independent of the SR. This can be understood by looking at the modal 

analysis of Fig. 41 (c) and (d), where for the UCD model the predominant mode is a 

central one for all the SRs, whereas for the NUCD model the predominant mode in 

the dynamics is an edge one. Again, as expected due to the way in which the energy is 

pumped into the system, the central modes are more intense for slower SRs, while the 

edge modes gain intensity for faster SRs. Nevertheless, the predominance of one or 

the other does not change in the simulated SR range. It was also observed that in this 
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case the dynamics is not affected at all by the suppression of the Oersted field, 

pointing to a more spin-torque dependent excitation of modes. 

Comparing both models in terms of critical current densities for these transitions (P 

to AP), it is seen that a higher current density is needed to switch the system in the 

NUCD model, which is in agreement with discussions of the previous section of 

results and Fig. 39. 

Summing up the results of both models and transitions, it was seen that the P to AP 

transition is more affected by the use of the NUCD model. Regarding the NUCD 

model, bringing together the simple discussion of Fig. 39 and all the modal analysis 

performed, it is concluded that after the initial oscillations in the edges (due mainly to 

the magnetostatic coupling with the fixed layer) the concentration of the current in the 

central area does not significantly promote the central modes (P to AP case). Its main 

effect seems to be a frequency reduction of the edge mode with respect to the AP to P 

transition (compare Fig. 36 with Fig. 37 or Fig. 41 (a) and (b) with Fig. 41 (c) and 

(d)). 

Since the effect of the NUCD model is clearly different for AP to P and P to AP 

transitions, in real devices the effect of the NUCD distribution could therefore be 

taken as an additional source for the intrinsic asymmetry in the switching process. 

Conclusion 

In summary, it was performed a micromagnetic study of the magnetization 

switching driven by spin-polarized current in a high-TMR MTJs, studying the effects 

of uniform and non-uniform current density distributions by using current pulse 

excitations and an increasing ramp-like current density up to the transition point. The 

results show that the NUCD distribution is a source of asymmetry between both 

transitions in terms of critical current density, verified in both pulsed and ramped 

excitations. This asymmetry is highlighted in the numerical experiments using an 

increasing current density ramped excitation, which showed that the AP to P 

switching is only marginally affected by the current density distribution while its 

effect on the P to AP transition is more significant in terms of critical current density 

and generated oscillation modes. 

In the analysis within the frequency domain for current density pulsed excitations, 

it was seen that the pre-switching oscillations are characterized by ‘‘edge’’ and 

‘‘central’’ modes, coming the transition faster when more oscillation modes are 
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generated. For ramped current hysteresis loops, the modal analysis also shows effects 

on the critical current density that can be explained based on the predominance of 

these central or edge modes within the dynamics. In this respect less current is needed 

when the predominant mode is a central one. These types of modes have been 

experimentally detected [89]. 

Making an extensive study using both models in the pulsed excitation regime, the 

NUCD distribution presents smoother transitions in a current density vs. pulse 

duration diagram (Fig. 38), showing as well the aforementioned higher asymmetry 

between transitions and that a small misalignment of the external field with respect to 

the easy axis reduces the critical current density. From that phase diagrams (Fig. 38) 

and the slow SR ramped current density simulations a limitation of the sequential 

micromagnetic code becomes evident, since such graphs and simulations take a 

considerable amount of time to complete. These types of lengthily studies are greatly 

beneficiated by the use of the developed parallel GPU micromagnetic code. 



4 Different investigations using both sequential-CPU and parallel-GPU 
micromagnetic codes 

 105 

4.1.2 Thermal effects on spin-transfer-driven switching in high-tunneling-
magnetoresistance magnetic tunnel junctions 

Introduction 

As the work described in 4.1.1, here it is also discussed the STT dynamics in MTJ 

devices, however in this case the role of the thermal field to the switching process is 

investigated. A particular point of the switching process is also investigated and it 

refers to the single shot time domain measurements [77],[90],[91] in MTJs of either 

rectangular [77] 300×100 nm2 or elliptical [90] cross-section 170×60 nm2, which 

show the presence of an “incubation delay” or a “nonreactive time” during the 

reversal process of the free layer. It has been demonstrated theoretically that this 

incubation delay arises from the presence of the field-like STT term [92]. Moreover, 

highly sensitive measurements of a CoFe(0.5 nm)/CoFeB(3.4 nm) [91] free layer MTJ 

device of elliptical cross-section 130×65 nm2, indicate the existence of a temporal 

coherence of pre-switching oscillations. 

In order to add some insight into the mechanisms governing the switching 

processes, the thermal field influence on the magnetization switching dynamics in 

high-TMR MTJs was investigated by means of micromagnetic simulations. 

Simulation details 
The simulated MTJ is of 90×35 nm2 elliptical cross-section with the following 

structure, CoFe(8 nm)/MgO(0.8 nm)/Py(4 nm). The CoFe is the exchange biased 

pinned layer and the Py corresponds to the free layer. A Cartesian coordinate system 

was chosen with the x direction along the easy axis. The micromagnetic dynamic 

equation (53) was considered with j as a function of the magnetization as described in 

the previous study 4.1.1 (NUCD model). Another modification to equation (53) was 

considered by adding the dimensionless parameter ξ, so as to study the influence of 

the magnitude of the perpendicular spin-torque term (PSTT), which according to the 

works [76],[95] and [96], is larger than the one that naturally arises from (53). Thus 

the dynamic equation (53) is written as, 

    

€ 

1+α 2( ) dm
dt

= −γ 0 m × Heff +αm × m × Heff( )[ ]
−
gµB jP (m.p)
2MSd qe

m × m × p( ) − ξα m × p( )[ ]
   (99) 
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The effective field accounts for all standard micromagnetic contributions: external, 

anisotropy, magnetostatic, exchange, and Oersted fields. Additionally, thermal 

fluctuations are incorporated as a stochastic field with Gaussian distribution and zero-

mean statistical properties, as discussed in section 2.3.6. The polarization p is fixed 

along the +x direction and the other simulation parameters read as follows: µ0H=50 

mT applied along the easy axis direction so as to compensate for the magnetostatic 

coupling with the pinned layer; MS=6.44×105 Am-1; MSP=1.15×106 Am-1 pinned layer 

saturation magnetization; α=0,01 damping parameter; η=0.7 polarization factor; 

A=1.3×10−11
 Jm-1 exchange constant. The resistance in the parallel P state is 

considered to be of 100 Ω and of 200 Ω for the anti-parallel AP state. Only the 

dynamics of the free layer, discretized into a 2.5×2.5×4 nm3 mesh, is resolved using in 

the simulations a time step of 28 fs. Critical current densities at T=0 K were found to 

be of Jc=3.0×106 Acm-2 and Jc=-6.1×106 Acm-2, for the AP to P and P to AP 

transitions, respectively. The sample temperature T, was calculated using the 

following expression [93], 

€ 

T = Tbath
2 +ε I2           (100) 

where Tbath is the bath temperature in which the sample is immersed, I the applied 

current, and ε is a parameter that depends on specific material factors and sample 

geometry. It includes the Joule heating generated by the current. 

Results and discussion 

With the goal of studying the effects triggered by the thermal fluctuations, the 

switching process was first characterized in the spin-torque switching regime, [94] 

with the stochastic study of 1200 simulations for each transition (Fig. 42). Again this 

type of study shows the limitation of sequential simulations, since in order to perform 

such quantity of simulations a few months were needed using several CPUs, even 

though the discretized sample was small (504 cells).  

In Fig. 42 it is shown the switching time distribution for the AP to P and P to AP 

transitions when respectively applying a current density of J=4.5×106 Acm-2 and 

J=−1.05×107 Acm-2. Although the same sample temperature would be larger for the P 

to AP transition due to the larger applied current, the same temperature T=411 K was 

considered for both transitions so as to have the same thermal field interaction in both 

transitions. 
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Fig. 42 – Stochastic simulations at TS=411 K. Switching time distribution for a set of 1200 simulations 
using a current pulse of: tpulse=14 ns and J=4.5×106 Acm-2 for the AP to P transition (a) and of tpulse=14 
ns and J=-1.05×107 Acm-2 for the P to AP transition (b). 

The Gaussian-like distribution of switching times shown in Fig. 42, indicate that 

the most probable switching time is roughly 50% lower than at T= 0 K (deterministic 

12.3 ns and 12.5 ns for the AP to P and P to AP, respectively). The observation that 

thermal fluctuations assist the switching process is a well-known phenomenon, 

however, the exact mechanisms governing it are still not clear. Therefore, in order to 

gain some insight into the switching dynamics, it was first calculated the 

magnetization average of the x-component displayed in Fig. 43 (a) and Fig. 43 (b), for 

the AP to P and P to AP transitions, respectively. This averaging procedure only 

accounts for the results of the simulations with the most probable switching time 

shown in Fig. 42, with the maximal error between switching times of 25 ps. For these 

averages, due to the difference in oscillation phase, the pre- and post-switching 

dynamics are practically absent. Hence, it seems that the thermal field does not 

introduce any relevant dynamics and the main driving torque is due to the STT. 

However, coherent pre- and post-switching oscillations Fig. 43 (c) and Fig. 43 (d) 

do appear when each simulation is first shifted to the same switching point and then 

averaged. The resulting averages were obtained from 1100 simulations for each 

transition. These results, resembling the experimental ones reported in [77] and [91], 

indicates that a small difference in the pre- and post-switching oscillation phase 

during the average procedure can hinder the oscillation dynamics. As it will be 

discussed later, these results are quantitatively independent of the perpendicular 

torque. 
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Fig. 43 – Average magnetization of the x-component at 411 K, showing the difference between 
averaging close events in the time frame, (a) and (b), and averaging all events via numerically 
transposing each simulation to the same switching point, (c) and (d). Average of 24 events for the AP 
to P transition with switching times of 6.725 ns ± 25 ps, with a single shot transition inset; tpulse=14 ns 
and J=4.5×106 Acm-2 (a). Average of 23 events for the P→AP transition with switching time of 5.825 
ns ± 25 ps, with a single shot transition inset; tpulse=14 ns and J=−1.05×107 Acm-2 (b). Average 
magnetization extracted from 1100 simulations of equal switching time, whereby numerically 
translating the points of each simulation to the same switching point, (c) and (d). 

Unlike the macrospin simulations performed in [92], micromagnetically no 

incubation delay (absence of pre-switching oscillations, see Fig. 43 (a) and Fig. 43 

(b)) is observed, since the pre- and post-switching oscillations originate from the 

excitation of non-uniform modes, which are beyond the macrospin approximation and 

are discussed in detail below. 

The analysis of the oscillations (Fig. 43) in the frequency domain is carried out by 

the previously mentioned MSMT. [83],[85]. This spectral analysis reveals the 

existence of central and edge [71],[89] oscillation modes of similar power intensity 

Fig. 44. The interpretation can be twofold; either the thermal field promotes both 

modes in the same manner and the qualitative difference arises from the STT 

contribution, or the current density is still too high and dominates over the thermal 

effect. To determine the real origin of these modes, simulations using current densities 

below the critical current density obtained at T=0K for both transitions, were 

performed (JcAP→P=3.0×106 Acm-2  and JcP→AP=-6.1×106 Acm-2). This way the 

switching is expected to be more temperature rather than STT dependent, and 
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therefore, a division between thermally activated (|J|<|Jc|) and STT-driven switching 

(|J|>|Jc|) can be set clearly for the simulated device. 

 
Fig. 44 – Frequency analysis of the pre-switching oscillations (from Fig. 43) exhibiting both central 
and edge modes as seen in the insets. It suggests that either the thermal fluctuations excite similar 
modes for both transitions or the current density is still too high so that the STT effect is dominant. 
Oscillation modes present in the transition of Fig. 43 (a) a); Fig. 43 (b) b); Fig. 43 (c) c); Fig. 43 (d) d). 

The results of the reversal study using current densities below the 0 K critical ones, 

are plotted in Fig. 45. A transpose average of 100 distinct simulations showing pre- 

and post-switching oscillations is presented for each transition. The results of using 

the MSMT for these average time traces identify a central mode with a frequency of 

roughly 4.3 GHz to be the dominant one for both transitions. This leads to the 

conclusion that the thermal fluctuations assist the switching processes mainly by 

promoting oscillations at the center of the sample. Since the magnetization starts 

oscillating at the edges, [71] and then the oscillations slowly propagate to the entire 

sample until the switching is achieved, the role of the thermal fluctuations is to 

accelerate this propagation by destabilizing the magnetization in the central area 

sooner. 
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Fig. 45 – Reversal study at 411 K with current densities below the critical one at T=0K 
(JcAP→P=3.0×106 Acm-2; JcP→AP=-6.1×106 Acm-2). Transpose average of 100 simulations for the AP to P 
transition (J=2.9×106 Acm-2) (a), and P to AP transition (J =-6.0×106 Acm-2) (c). Frequency analysis of 
(a) and (c), show the dominant central mode at roughly 4.3 GHz, (b) and (d), respectively. 

The influence of the PSTT to the thermal oscillations observed in Fig. 45 (a) and 

(b) was also studied by increasing its magnitude up to 20% (Fig. 46 (a) and Fig. 46 

(b)) and 30% (Fig. 46 (c) and Fig. 46 (d)), of the total STT term by attributing the 

adequate value to ξ in equation (99), as proposed in [76],[95],[96]. Considering the 

switching processes and respective frequency analysis, as presented in Fig. 46, it is 

concluded that there is little change to the pre- and post-switching oscillations shown 

in Fig. 45 (a), since the main modes are still central ones of roughly the same 

frequency.
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Fig. 46 – Influence of the PSTT on the thermal oscillations observed in Fig. 45 (a). Averaged 
magnetization for the AP→P transition with a PSTT of 20% of the total STT term a) and a PSTT of 
30% of the total STT term c). Frequency analysis of a) and c) both showing the dominant modes as 
central ones between 4.0 and 4.5 GHz, b) and d), respectively. 

Conclusion 

In summary, a micromagnetic study of the reversal process in MTJs in the 

presence of thermal fluctuations has been performed. Unlike previously reported 

works [77],[92] no incubation delay is observed. Moreover, the pre- and post-

switching dynamics of non-uniform modes (edge and central modes [71],[89]) was 

found to be similar to the one reported experimentally and theoretically [91]. It was 

also found that if even a very small phase misalignment is present during the 

averaging procedure, it could result in the disappearance of these dynamics. 

Furthermore, two different switching regimes are identified for currents above 

(|J|>|Jc|) and below (|J|<|Jc|) the critical current at 0 K. In the thermally assisted 

switching regime (|J|>|Jc|), the main effect of the thermal field is the reduction of the 

switching time, with the STT being the main driving force for the reversal process. In 

the thermally induced switching regime (|J|<|Jc|) however, the thermal field becomes 

the main driving force for the switching through the promotion of central modes. 

Also from this study it is patent the necessity of having a faster simulation code, 

like the parallel GPU one that was developed during the work discussed in this thesis, 
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since the months long stochastic simulations although feasible for this study of a 

small sample (504 cells), becomes prohibitive for large samples or longer simulation 

times. 

4.2 Studies made using the CUDA parallel-GPU micromagnetic code 

This part is dedicated to the description of two studies made by using the 

developed parallel GPU micromagnetic code. The first study is on vortex self-

oscillations in spin-valves, where both pinned and free layer are simulated 

dynamically in the presence of STT from one layer over the other simultaneously 

(back-torque). This simulation study would be extremely difficult to perform in a 

sequential CPU-based code, not only because there are more layers that have to be 

computed dynamically, but also because it is very expensive in terms of the 

computational times that are needed to obtain high resolution in the frequency 

spectrum (10 microseconds). 

The second study focuses on different types of domain wall current-driven 

dynamics in long ferromagnetic wires with squared cross-section in the presence of 

Oersted field. The main advantage to this study, besides the very good simulation 

time performance of the developed parallel code, refers to large number of cells 

involved in these dynamic computations (in the order of 106 cells), which are 

practically impossible to perform with a sequential code. (In particular the Fortran 

code, from which the parallel developed one was based on, could not handle more 

than half a million cells without crashing). 

Both the aforementioned works are on final publishing procedures in the IEEE 

Transactions on Magnetics journal [113], at the writing of this thesis. 

4.2.1 Intrinsic and thermal linewidths of spin-transfer-driven vortex self-
oscillations 

Introduction 

In a previous work of the research group, in which this thesis was developed, [97] 

it was described by means of micromagnetic simulations the spin-transfer-driven 

vortex self-oscillations experimentally found in Py/Cu/Py elliptical spin valves [98]. 

The experimental linewidths range from 0.3 MHz to 60 MHz thus, as it was stated in 

[97], “the linewidth computed numerically cannot be compared to the experimental 

data because the 5×10-8 seconds simulation time limits the resolution to 20 MHz”. 
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In this work the developed parallel GPU micromagnetic code was used to perform 

very long micromagnetic simulations up to 10-5 seconds, which allows a spectral 

resolution of 100 kHz. The longest simulation is carried out in a standard GPU in 

more or less 60 hours. Therefore, a systematic analysis can be carried out using a 

server with several GPUs. 

Spin-Transfer Nano-Oscillators (STNOs) based on magnetic vortex self-

oscillations have demonstrated stable dynamics in the gigahertz and sub-gigahertz 

frequency range at room temperature experiments [98], and are thus promising 

candidates for viable STNOs. This detailed micromagnetic study will help gain an 

insight into the intrinsic and thermal linewidths that characterize the oscillation 

modes. 

The analysis of the spectrum of non-linear STNOs needs to be confronted with the 

introduction of thermal noise, taking into account all the difficulties inherent to the 

fitting of noisy linewidths [99]. The linewidth strongly depends on the temperature, 

going through different regimes due to the effect of the phase fluctuations and spatial 

inhomogeneities [99]-[107]. In detail, the long simulations performed at T=0 K show 

the intrinsic linewidth of the oscillation modes as function of the bias current. On the 

other hand, the computations for 0 K < T < 300 K show the influence of the thermal 

noise to such modes. 

Simulation details 
The studied device was the one experimentally measured in reference [98]: 

Py(5nm)/Cu(40nm)/Py(60nm) with elliptical cross sectional area (160 nm × 75nm, 

with cell discretization of 5×5×5 nm3) as shown in Fig. 47. The dynamic equation 

used is the one described by (53) with the polarization function given by (51), which 

in this study is calculated once for each layer (thick and thin), so as to reproduce, 

qualitatively, the experimental behavior of the torque induced by both layers on their 

counterparts (back torque; section 2.3.7 and 3.6.6). 

The magnetostatic field has been calculated by solving the magnetostatic problem 

for the entire spin-valve. A Cartesian coordinate system is considered such that the x-

axis is the easy axis of the ellipse whereas the y-axis is the hard in-plane axis. Positive 

current polarity (+z-axis) corresponds to an electron flow from the thinner to the 

thicker layer of the spin valve (Fig. 47). 

The parameters used in simulations were the same as in [96]: MS=MSP=6.5×105 Am-1; 
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 χ=1.5 and  η=0.38; A=1.3×10-11 Jm-1; α=0.01. A perpendicular field (along the z-

axis) of 160 mT is applied throughout all the presented simulations. The time window 

is extended to 10-6 seconds for most simulations and 10-5 seconds in the cases where 

more resolution is needed, and using a time step of 500 fs with the 6th order Runge-

Kutta algorithm. Note that such temporal windows cannot be studied using the 

sequential micromagnetic code in a reasonable amount of time. Magnetoresistance is 

computed over all ballistic channels and using a cosine angular dependence [97]. The 

thermal activation is introduced as it was previously discussed in section 2.3.6. 

 
Fig. 47 – Sketch of the spin-valve and linewidth (solid line) for J=10×107 Acm-2 together with 
lorentzian fitting (dotted line) at (a) T=0 K and (b) T=300 K. Representation of the initial 
magnetizations in the thin Py layer (i) and in the top (ii) and bottom (iii) slices of the thick Py layer 
showing the vortices. 

Results and discussion 

i) Intrinsic and thermal linewidths 

In Fig. 47 (a) the frequency spectrum around the main peak, for an applied current 

density of 10×107 Acm-2 at T=0 K, is displayed. The extremely narrow and clean peak 

is fitted by a lorentzian function resulting in a linewidth of about 1.1 MHz. This low 

linewidth is produced by coherent rotations of the vortex formed in the thick layer of 

the spin valve, as can be observed in the Mx versus My trajectory shown in Fig. 48 (a). 

The STT excites the vortex rotation, which from its initial state reaches a clearly 

defined stationary orbit. The thin layer presents non-uniform configurations but still 

following quasi-periodical trajectories like the one shown in Fig. 48 (b). 
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Fig. 48 – Average magnetization trajectories in each layer: <mx> versus <my> trajectories for the thick 
(a, c, e) and thin (b, d, f) Py layers. Current density is J=10×107 Acm-2 in (a-d), T= 0 K in (a-b) and T= 
300 K in (c-d). Current density is J=16×107 Acm-2 and T= 300 K in (e-f). 

In Fig. 47 (b) the spectrum computed for J=10×107 Acm-2 at T=300 K is shown. As 

expected for a non-linear STNO, the thermal noise generates a linewidth increase as 

well as a small frequency shift. Comparing Fig. 48 (a) and Fig. 48 (c), it can be 

observed that the orbits of the average magnetization are preserved in spite of the 

thermal activation so that the linewidth remains below 1.5 MHz as observed in 

experiments [98]. The vortex oscillator within the spin-valve shows itself as a robust 

oscillator against thermal noise for a certain range of current. The magnetization 

trajectory within the thin layer at T=300 K (Fig. 48 (d)) differs significantly with 

respect to the T=0 K case (Fig. 48 (b)). In particular, the averaged <mx> component 

for T=300 K expands towards positive (less negative) <mx> values due to the thermal 

activation. This aspect seems to indicate the possibility of more a complicated 
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behavior of the device, as it will be addressed later when explaining the general 

dependence on current and temperature. 

The linewidth and peak frequency dependences on the applied current and 

temperature are presented in Fig. 49. In Fig. 49 (a), when increasing the current a 

slight increase in the linewidth is observed up to currents around 16×107 Acm-2. This 

increase is due to the modification of the dynamics in a similar way to what was 

commented in regard to Fig. 48 (a-d). Hence the general characteristics of the 

dynamics are preserved, although the orbits are noisier. 

For larger currents (J ≥16×107 Acm-2), a more noticeable increase in the linewidth 

is detected (Fig. 49 (a)). Having a look at the dynamics within this range (see Fig. 48 

(e-f)) a change in their general features is detected. The vortex within the thick layer 

(Fig. 48 (e)) rotates now in a larger and noisier orbit, changing also the sense of 

rotation of the vortex. This orbit jump is motivated by a change in the thin layer 

configuration which goes from its originally “–mx” state to a “+mx” magnetization 

state (Fig. 48 (f)). This change in orientation of the magnetization within the thin layer 

implies a change to the sense of rotation of the vortex in the thick layer, since the 

torque experienced by the vortex in the different regions (+mx, –mx) changes sign. 

The polarity of the vortex remains always positive since a perpendicular applied field 

of +160 uz mT is always present. 

 
Fig. 49 – Linewidth and frequency dependence on temperature and current density. Linewidth (a) and 
frequency (b) for J ranging from 10×107 Acm-2 up to 20×107 Acm-2 at T=0 K and T=300 K. Linewidth 
(c) and frequency (d) for J=10×107 Acm-2 for a temperature range from T =0 K up to T =300 K. 
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Therefore, there are two oscillation modes present, which appear as a result of the 

complete analysis of the whole device and the use of the back-torque. They are not 

thick-layer or thin-layer isolated modes but “coupled device modes” [32]. The jump 

to the second mode depends on the thermal noise (different computational realizations 

can give rise or not to the jump) and also on the used computational time window. 

The jump time scale is the same as the one measured by Pribiag et al. [108], in 

devices at zero bias field. The temporal window used in the computations was of 10-6 

seconds for the fitting, always choosing realizations where the two modes were 

present. In a real experiment the temporal window is very large, which is why one can 

reason that both modes are always present. In any case, for J>15×107 Acm-2, an 

analysis of the thermal noise contribution to linewidth generation cannot be carried 

out in terms of analytical theories [99]-[107]. 

The frequency of the vortex oscillation is shown in Fig. 49 (b). Always the same 

mode was followed and the frequency exhibits a blue-shift (increase in frequency), 

which is in agreement with experimental observations [98]. The difference between 

the temperatures T=0 K and T=300 K diminishes with the increase in current, since 

the magnitude of the thermal noise becomes less important regarding the larger 

intensity of the STT. 

The temperature dependence on the linewidth and frequency for J=10×107 Acm-2 

is shown in Fig. 49 (c-d), with no change in mode observed for any of the 

temperatures considered. 

In a previous work performed by the research group [99] it was found that 

micromagnetic simulations gave a qualitative agreement with the theoretical work of 

Tiberkevich et al. [103] regarding STNOs. In this theoretical work, two different 

regimes can be observed depending on the temperature. The low temperature regime 

is characterized by a linear dependence of the linewidth with T, whereas the high 

temperature regime presents T1/2 dependence [103]. In the mentioned work [99], 

micromagnetic simulations on a different spin-valve system certainly found this type 

of behavior and it was ascribed to small temporal and spatial inhomogeneities of the 

uniform magnetization model [99]. Since in those spin-valves just small deviations 

from the uniform magnetization states were present, the theoretical analysis of [103] 

was proved to be adequate. 
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In the present work, however, highly non-uniform vortex configurations are being 

dealt with, so that analytical theories are not even valid to describe single mode 

dynamics, like in the case of Fig. 49 (a-b). Nevertheless, linear behavior seems to be 

present in Fig. 49 (a) for T<140 K and also a lowering in frequency with temperature 

is detected as in other linewidth temperature studies [99]-[107]. 

ii) Higher harmonics analysis 

Finally, the second and third harmonics of the frequency spectra of the vortex 

STNO was analyzed in order to check the recent study of Quinsat et al. [109]. In a 

non-linear resonator, there is a relation between the corresponding linewidth of the nth 

harmonic and the linewidth of the main mode. In particular, in a non-isochronous 

oscillator the relation for the linewidths of higher harmonics are smaller than 

predicted in isochronous oscillators. In fact, non-isochronous auto-oscillators like 

STNOs are expected to show an increase in the linewidth with the harmonic order 

[109]. This increase for the nth harmonic (Δfn) for a non-isochronous STNO is shown 

to be in the range of nΔf1 < Δf < n2Δf1, [109]. 

 
Fig. 50 – Ratio between the linewidth of second and third harmonic at T = 300 K for a J ranging from 
10×107 Acm-2 to 20×107 Acm-2. 

The obtained results of the vortex STNO for the second and third harmonic are 

shown in Fig. 50. At lower currents (J<14×107 Acm-2) it was observed an agreement 

with the theory, 2Δf1<Δf2<4Δf1 and 3Δf1<Δf3<9Δf1. At larger currents, again, not 

even a qualitative agreement is found. This fact confirms that the presence of other 

possible coupled oscillation modes inhibits a simple linewidth dependence that could 

be described by analytical theories. 
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Conclusion 

In summary, a detailed analysis of spin-valve vortex STNOs was carried out, 

showing that several device coupled modes can be present depending on the 

temperature and applied current [107]. When just one mode is excited, the STNO 

shows linear linewidth dependence at low temperatures. In these cases, the second and 

third harmonics show a linewidth compatible with recent non-isochronous auto-

oscillator theories [109]. 

The use of the developed parallel GPU micromagnetic code was fundamental in 

this study, since it allowed for large temporal window simulations that in turn give 

high resolution when analyzing the oscillations in the frequency spectrum. The used 

time window of 10-6 seconds is completely unpractical when using sequential codes, 

since a single simulation would take many months. 
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4.2.2 The role of the Oersted field on the current-driven domain wall dynamics 
along wires with square cross section 

Introduction 

As mentioned in chapter 1, a very interesting finding in recent years has been the 

behavior of domain wall dynamics in magnetic strips at the nano-scale. In these long 

structures the magnetization gradually changes from one domain to another through a 

DW structure like for example, a typical head to head or tail to tail transverse wall 

(TW) configuration, or even more complex types of DW like the Bloch-point wall 

(BPW) [7]. Domain wall dynamics in nano-wires or nano-strips, can be induced by 

either external magnetic fields or by injecting spin-polarized electrical currents 

[3],[4],[8],[110]. This discovery could have significant consequences on the 

development of new magnetic storage devices in which data is moved electronically 

rather than mechanically as it is done in today’s computer hard disk drives. A new 

type of memory based on current-driven DW dynamics, the racetrack memory, has 

been proposed by Parkin [6]. 

In this work, it was first studied the dependence of the type of DW nucleated in 

respect to the squared section size of the strip. Then, the dynamics was investigated 

for each type of wall TW and BPW (Fig. 51), under different values of in-plane spin-

polarized currents and observed if the DWs experience the Walker breakdown [7], 

with and without the influence of the Oersted field. The developed parallel GPU 

micromagnetic code was used so as to manage the large structure of the ferromagnetic 

strip, which ascends to the order of 106 cells, in a reasonable amount of time. 

Simulation details 
Since the applied current density is in-plane with the ferromagnetic strip, the 

dynamic equation used in this study was the one described by (58), thus including the 

effect of both the adiabatic and non-adiabatic spin-torques. All the usual magnetic 

fields are considered for the effective field Heff (magnetostatic, exchange), including 

also the Oersted field (2.3.5 and 3.3.5), generated by the in-plane current that runs 

along the length of the wire. No external field is applied, hence the DW dynamics is 

driven only by the in-plane spin-polarized current density j=jux. The convention used 

for the current density is that for positive values, the electrons flow along the positive 

direction of the wire x-axis (Fig. 51 (a)). The current was also considered to be DC, 

applied from the beginning to the end of the simulation and uniformly distributed 

along the nano-strip. Typical Permalloy parameters were considered: MS=8.6×105 



4 Different investigations using both sequential-CPU and parallel-GPU 
micromagnetic codes 

 121 

Am-1; exchange constant A= 1.3×10-11 Jm-1; damping parameter α=0.02; and 

polarization factor η=0.4. 

Regarding the geometry of the simulated wire, it was considered an 800 nm long 

strip, in which the squared section lateral size L was varied from 10 nm up to 100 nm 

in order to assert which type of DW is the most stable for different values of L. Also, 

in order to avoid the demagnetizing field effect of the borders upon the DW, the wire 

was made “infinite” by computational manipulation [114]. This was achieved by first 

calculating the demagnetizing field generated by the artificially imposed “magnetic 

charges”, of the first and last cells of the 800 nm long computational area, and then 

subtracting this demagnetizing field to the demagnetizing field of the entire sample. In 

all simulations the initial magnetization configuration was head-to-head, for both 

types of DW, as show in Fig. 51. The numerical solver used was the forth order 

Runge-Kutta (3.4.2), with a time step of 63 fs, and the mesh composed of 2×2×2 nm3 

cells. 

 
Fig. 51 – (a) Representation of the nano-wire showing the head to head configuration used in this work. 
(b) Transverse wall at L/2 from the z-axis viewpoint, the dotted lines represent the slice of the nano-
wire depicturing in (d) its transversal view. (c) Bloch-point wall at L/2 from the z-axis viewpoint, the 
dotted lines represent the slice of the nano-wire depicturing in (e) its transversal view. 

Results and discussion 

i) Equilibrium DW configurations 

The first part of this study was focused on investigating which DW configurations, 

either the TW or the BPW, are the most stable for different values of L. This was 
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achieved by varying L from 10 nm to 100 nm, starting from a magnetic configuration 

that favored either the TW or the BPW and then letting the system reach its 

equilibrium state. The results showed that for lateral sizes L<30 nm of the wire the 

most stable DW configuration is the TW, whereas for values of L>40 nm the BPW is 

the most energetically favored state. For values of L between the previously 

mentioned ones, the equilibrium configuration is a complex one, appearing to be a 

mixture of the two types of DW. (When current was applied to these complex DW 

structures, the wall continuously transformed into several different wall structures). 

These results are in good agreement with the ones reported in [7]. Due to the 

physical nature of each DW type and its dependence on the lateral size L, it was 

chosen to focus the study on two specific values of the squared cross-section. The 

chosen sizes for the detailed study of the dynamics were, L=16 nm for the TW and 

L=48 nm for the BPW. 

 
Fig. 52 – Transverse wall velocity versus DC current densities for a nano-wire of L=16 nm. The DW 
velocity increases linearly with the current and it is practically unaffected by the presence of the 
Oersted field or the variation of the non-adiabatic parameter β, inset: zoom of the last part of the graph. 
The dashed line represents the analytical value of the maximum DW velocity vsp-drift (see 2.3.7) 

ii) Transverse DW dynamics 

Analyzing the results of the TW dynamics in Fig. 52, it shows that the velocity of 

the DW displacement rises linearly with the different applied DC current densities. 

Also seen in the inset of Fig. 52 is the fact that the DW motion is practically 
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unaffected by the non-adiabatic parameter β or the presence of the Oersted field, 

which points to in this case, that the DW dynamics is dominated by the adiabatic spin-

torque term. The effect of the torques applied on the DW generated by the effective 

field including the Oersted field versus the spin torque is shown in Fig. 53. There, it is 

seen that for each cell along the x direction the torque caused by the effective field 

(scattered points) is in module several times smaller than the spin-torque effect (solid 

lines). This difference in torque represents why the presence of the Oersted field has 

so little effect to the TW dynamics. 

 
Fig. 53 – Comparing the torques magnitude between the effective field (with Oersted field) 
(scattered/dashed points) and the spin-torque (solid lines), in the perfect adiabatic case β=0, along x-
component of the wire and in different points of the cross-section (see inset). The spin-torque is several 
times larger than the effective field torque in the DW area. The inset shows a slice of the wire in the 
z0y plane and from which cells along the x-axis the plotted data was taken (J=1013 Am-1). 

Another result is displayed in Fig. 54, where it is shown that while the DW is 

moving along the strip it rotates clockwise for β<α (Fig. 54 (a)) and counter-

clockwise if β>α (Fig. 54 (b)). Not shown is the case when β=α in which the DW 

moves without rotating. These results are in accordance with the results obtained by 

M.Yan et.al. [9] for cylindrical wires. In that work, they adopted an analytical model 

that allowed them to understand that the linear velocity is independent of β and that 

the angular velocity responsible for the rotation of the DW depends on (β–α). This 

description of the DW dynamics, associated with the symmetry of the cylindrical wire 



4 Different investigations using both sequential-CPU and parallel-GPU 
micromagnetic codes 

 124 

permitted them to describe that the DW beats the Walker breakdown and its intrinsic 

pinning, by being massless. Döring introduced the concept of DW mass in 1948 

[111]. He discovered that the structure of a Bloch wall moving with velocity v differs 

from that of a static one, and that its energy increase is porpotinal v2. This allows for 

the definition of a kinetic energy and a mass. However, the DW does not have real 

mass, since there is no actual material displacement, what happens is that the 

translation of the DW profile contains some inertia because, in a first step the spins 

need to be rotated to the wall plane, which costs energy [18]. Moving DWs in thin 

magnetic strips have displayed particle-like behavior such as momentum and inertia 

[112]. The connection between DW mass and the Walker limit is given by the 

dynamic modification of the DW structure during its montion and the resulting energy 

density increase. This increase in energy continues until it reaches a limit where the 

micromagnetic structure collapses. Therefore the speed limit of the DWs is related to 

the kinetic energy and is inevitable for massive walls. However, if like in the results 

observed here the DW does not change its structure during the motion, thus moving 

rigidly, such DW is massless and with zero kinetic energy, which results in the 

absence of a Walker-type speed limit. The results of the simulated squared-section 

wires showed all of these same properties, like in [9], and thus it can be said that for 

DWs in wires with squared-section L<30 nm, the wall's dynamics is practically the 

same as to the ones seen for cylindrical wires where the shape anisotropy is zero. 

 
Fig. 54 – Average magnetization during the transverse wall displacement. Here it is seen that for values 
of the non-adiabatic parameter, β, smaller than the damping parameter, α, the DW rotates clockwise 
(a), whereas for values of β larger than α the wall rotates counter-clockwise (b). Not shown is when β 
equals α for which the wall moves rigidly without precessing. 

iii) Bloch-point DW dynamics 

The dynamics found for BPW in squared-section wires was substantially different. 

From Fig. 55 it can be seen that there is a threshold current that has to be overcome in 
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order to move the DW, and that it depends on the value of β. This might open the 

possibility to roughly determine the value of β in real experiments with strips where 

BPW are present. Also independently of β, the BPW always moves rigidly, unlike the 

previously seen TW, which would rotate clockwise or counter-clockwise depending 

on the value of β. Analyzing the dependence on β, it is seen that this is a main feature 

in order to get the BPW moving, since for the perfect adiabatic case β=0 there is no 

DW displacement for any value of current, and that as the value of β increases so does 

the velocity (Fig. 55). For current densities above 1013 Am-2, the DW transforms into 

complex structures that are continuously changing in a disordered way. Also seen in 

Fig. 55, for β=0.02 and β=0.04, is the existence of steps/plateaus, in which the DW 

moves for different applied current densities at practically the same velocity without 

significantly changing its structure. Further study is needed to better understand these 

different phenomena. 

 
Fig. 55 – Bloch-point wall velocity versus current density for a nano-wire of L=48 nm. No Oersted 
field applied. It can seen that there is a threshold current in order to move the DW. For this type of DW 
the velocity varies non-linearly showing fast increases or plateaus for certain values of the current 
density. The inset shows how the movement of the DW strongly depends on the value of the non-
adiabatic parameter β, for an applied current density of 1013 Am-2. 

The influence of the Oersted field on this type of wall differs from the one seen in 

TWs. Its presence contributes, in general, with an increase of the DW velocity (Fig. 

56). However, this phenomena was only seen in the β=0.04 case, since when 

including the Oersted field for β=0.02, no DW movement is seen. In Fig. 56 it is also 

shown that the DW movement is independent of the chirality of the BPW in the 
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absence of the Oersted field. (The chirality in this case refers to direction of the 

magnetization in the DW area, clockwise or counter-clockwise, as seen from +x). 

However, when applying the Oersted field the counter-clockwise chirality is favored. 

It is not totally clear why one chirality favours the DW dynamics more than the other 

in the presence of the Oersted field. 

The BPW case requires further study since there are some phenomena that are still 

not well understood. Apart from the previously mentioned existence of steps and 

chirality dependence in the presence of the Oersted field, there is also the fact that the 

DW for some positive values of the current density moves from left to right and for 

other values of J from right to left. And why is it that when applying the Oersted field 

it hinders the movement of the DW for β=0.02 and below. 

 
Fig. 56 – Bloch-point wall velocity versus current density for a nano-wire of L=48 nm for the same 
value of the non-adiabatic parameter, β, with and without Oersted field. The DW velocity varies non-
linearly and in the absence of the Oersted field the DW dynamics is practically unaffected by the 
difference in the direction of the magnetization. In the presence of the Oersted field the counter 
clockwise magnetization (as viewed from +x) of the BPW favors the wall’s movement. In the inset it is 
shown the DW position in function of the elapsed time, for an applied current density of 5.5×1012 Am-2

. 

Conclusion 

In summary, it was studied the dynamics of DWs in long squared cross-section 

Permalloy strips. It was found that the type of stable DW depends on the size of the 

cross-section L, in which for L<30 nm the stable wall is a TW, whereas for L>40 nm 

the BPW is the most stable. For TW configurations the DW velocity increases linearly 

from zero and it is practically independent of the value of β and the presence of the 
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Oersted field, which points to more spin-torque dependent dynamics. The TW 

dynamics are also the same as the ones seen in cylindrical wires and there is no 

Walker breakdown. In the BPW case, there is a threshold current in order to displace 

the DW. There is a range of current density values in which the wall moves rigidly 

without being destroyed, however the rise in velocity with the current is not linear. 

The effect of the Oersted field on the BPW requires further study but in general and 

for some values of β, it appears to increase the DW velocity and there is also a 

dependence to the DW dynamics between the Oersted field and the BPW chirality. 

The simulations of large structures as the wires studied here benefit greatly from 

the developed parallel GPU micromagnetic code, since the number of cells involved 

(in the order 106 cells), are very difficultly handled by a CPU sequential code, 

requiring months to solve a single simulation. 
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5 Conclusions 
The main goal of the work described by this thesis, was on the development of a 

new parallel GPU micromagnetic simulation code so as to overcome the temporal and 

spatial limitations of a sequential CPU-based code. These types of limitations arise 

when trying to make rigorous studies of: stochastic simulations, frequency oscillators, 

dynamic multilayer analysis, domain wall dynamics in long ferromagnetic wires, etc. 

Such limitations are resumed to the fact that they become impractical to perform in 

real time due to amount of computational cells that are needed to solve or the nature 

of the problem under study, which might lead to months of simulation time for a 

single run. 

The developed parallel GPU micromagnetic code programmed in the NVIDIA’s 

C-based CUDA language, was successfully implemented allowing for a performance 

speed up of roughly two orders of magnitude when compared to the sequential CPU 

Fortran code from which it was based on. Writing in the CUDA parallel language is 

challenging and it does have a couple of limitations, as the fact that it is restricted to 

NVIDIA chip-based graphic cards and the size of the problem to solve has to be 

limited to the card’s RAM memory. Nonetheless, even for the large memory 

demanding simulations performed in micromagnetics, memory issues are seldom a 

problem, and the price per Gflop of performance obtain far compensate the effort of 

implementation. 

Different interactions were implemented in the developed code, which include the 

magnetostatic, exchange, anisotropy, Zeeman, Oersted and thermal field contributions 

to the effective field, as well as the spin-torque effect for both current perpendicular to 

plane and in-plane devices. These were successfully tested against the well-

established Oommf and the Fortran micromagnetic code developed by the research 

group posted on the Micromagnetic Modeling Activity Group webpage. 

In order to study the dynamics of two different types of device, the developed 

parallel GPU code focused on two parts. On one hand, a two layer dynamic part was 

developed, so as to simulate the dynamic properties of both the assumed “pinned” 

layer and “free” layers. Of course in this case there is no real pinned layer since at 

each time step all the effective field contributions are calculated in both layers as well 

as the spin-torque effect of one over the other and vice-versa (back-torque). This code 
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was used to rigorously study the vortex oscillation frequencies in spin-valves. On the 

other hand, a different part of the code focused on the study of domain wall dynamics 

in long ferromagnetic strips was also developed, which also allowed for the rigorous 

study of large ferromagnetic samples composed of a great number of computational 

cells (order of 106 cells). 

Developing such a micromagnetic parallel code required not only the learning of 

the demanding CUDA parallel language, but also a profound understanding of the 

physics involved in the micromagnetic formalism. The resulting programming work 

served as a basis to a commercial parallel micromagnetic code by the name of 

GPMagnet, which was further developed in conjunction with GoParallel S.L. This is a 

spin-off company from which the author of this work is co-founder along with the 

other members of the research group.  

This new micromagnetic simulation tool can now be used to continue to perform 

systematic and massive micromagnetic simulations, like the ones studied in this work 

involving dual-layer vortex oscillations and DW dynamics in long ferromagnetic 

strips. This because it has proven to be a very efficient tool in the study of several 

physical processes related to the understanding and control of the magnetization 

dynamics at the nano-scale.  
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6 Appendix A 
In this appendix the code transcripts of the add operation between the elements of 

two different arrays used in example 1 of section 3.6.5 is presented. The first is the 

one using the sequential C code, and the second the CUDA parallel one. 
	  
/*	  
	  *	  File:	  	  main.cpp	  
	  *	  Example	  of	  adding	  the	  elements	  of	  two	  arrays	  and	  saves	  the	  result	  
	  *	  to	  a	  third	  array,	  in	  normal	  C	  
	  */	  
	  
#include	  <iostream>	  
#include	  <fstream>	  
#include	  <stdlib.h>	  
#include	  <math.h>	  
	  
using	  namespace	  std;	  
	  
int	  main(int	  argc,	  char**	  argv)	  {	  
	  
//	  Declaring	  the	  variables	  
	  	  	  	  int	  ndim=5;	  
	  	  	  	  float	  *a;	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
	  	  	  	  float	  *b;	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
	  	  	  	  float	  *c;	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
	  	  	  	  a	  =	  new	  float[ndim];	  	  	  	  	  	  	  	  	  	  	  	  	  
	  	  	  	  memset(a,0,sizeof(float)*ndim);	  	  	  
	  	  	  	  b	  =	  new	  float[ndim];	  	  	  	  	  	  	  	  	  	  	  	  	  	  
	  	  	  	  memset(b,0,sizeof(float)*ndim);	  	  	  	  
	  	  	  	  c	  =	  new	  float[ndim];	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
	  	  	  	  memset(c,0,sizeof(float)*ndim);	  	  
	  
//	  Loop	  that	  sets	  the	  array	  values	  and	  performs	  the	  add	  operation	  
	  	  	  	  for(int	  i=0	  ;i<ndim;	  i++){	  
	  	  	  	  	  	  	  	  a[i]=1+i;	  
	  	  	  	  	  	  	  	  b[i]=3;	  
	  	  	  	  	  	  	  	  	  
	  	  	  	  	  	  	  	  c[i]=a[i]+b[i];	  
	  	  	  	  }	  
//	  Loop	  that	  prints	  the	  results	  on	  screen	  
	  	  	  	  for(int	  i=0	  ;i<ndim;	  i++){	  
	  	  	  	  	  	  	  	  printf("a[%d]=%1.1f	  	  	  b[%d]=%1.1f	  	  	  	  c[%d]=%1.1f\n",	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  i,a[i],i,b[i],i,c[i]);	  
	  	  	  	  }	  
	  
	  	  	  	  delete	  a;	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  //	  
	  	  	  	  delete	  b;	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  //	  freeing	  the	  memory	  
	  	  	  	  delete	  c;	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  //	  
	  	  	  	  	  
	  	  	  	  return	  (EXIT_SUCCESS);	  
}	  
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/*	  	  
	  *	  File:	  	  	  newmain.cu	  
	  *	  Example	  of	  adding	  the	  elements	  of	  two	  arrays	  and	  saves	  the	  result	  
	  *	  to	  a	  third	  array,	  in	  parallel	  CUDA	  
	  */	  
	  
#include	  <iostream>	  
	  
using	  namespace	  std;	  
	  
/*	  Kernel	  prototype*/	  
__global__	  void	  KernelName(float	  *dev_a,float	  *dev_b,float	  *dev_c,	  int	  
ndim);	  
	  
int	  main(int	  argc,	  char**	  argv)	  {	  
	  	  
/*Creating	  the	  variables	  on	  the	  host*/	  
	  	  	  	  int	  ndim=5;	  
	  	  	  	  float	  *h_a;	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
	  	  	  	  float	  *h_b;	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
	  	  	  	  float	  *h_c;	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
	  	  	  	  h_a	  =	  new	  float[ndim];	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
	  	  	  	  memset(h_a,0,sizeof(float)*ndim);	  	  	  	  
	  	  	  	  h_b	  =	  new	  float[ndim];	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
	  	  	  	  memset(h_b,0,sizeof(float)*ndim);	  	  	  	  
	  	  	  	  h_c	  =	  new	  float[ndim];	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
	  	  	  	  memset(h_c,0,sizeof(float)*ndim);	  	  	  
	  
/*Creating	  the	  variables	  on	  the	  device*/	  
	  	  	  	  float	  *dev_a;	  
	  	  	  	  float	  *dev_b;	  
	  	  	  	  float	  *dev_c;	  	  	  	  	  
	  	  	  	  cudaMalloc((void**)&dev_a,sizeof(float)*ndim);	  
	  	  	  	  cudaMemset(dev_a,0,sizeof(float)*ndim);	  
	  	  	  	  cudaMalloc((void**)&dev_b,sizeof(float)*ndim);	  
	  	  	  	  cudaMemset(dev_b,0,sizeof(float)*ndim);	  
	  	  	  	  cudaMalloc((void**)&dev_c,sizeof(float)*ndim);	  
	  	  	  	  cudaMemset(dev_c,0,sizeof(float)*ndim);	  
	  	  	  	  	  
/*Defining	  the	  size	  of	  the	  block	  and	  grid*/	  
	  	  	  	  dim3	  dimBlock(5);	  
	  	  	  	  dim3	  dimGrid(ndim/dimBlock.x);	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
	  	  	  	  printf("block	  %d	  	  	  grid	  %d	  \n",dimBlock.x,dimGrid.x);	  
	  	  	  	  	  
/*Initializing	  the	  vectors*/	  
	  	  	  	  for(int	  i=0	  ;i<ndim;	  i++){	  
	  	  	  	  	  	  	  	  h_a[i]=1+i;	  
	  	  	  	  	  	  	  	  h_b[i]=3;	  
	  	  	  	  }	  
/*Printing	  the	  initial	  values	  before	  the	  add	  operation*/	  
	  	  	  	  	  for(int	  i=0	  ;i<ndim;	  i++){	  
	  	  	  	  	  	  	  	  printf("a[%d]=%1.1f	  	  	  b[%d]=%1.1f	  	  	  c[%d]=%1.1f\n",	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  i,h_a[i],i,h_b[i],i,h_c[i]);	  
	  	  	  	  }printf("\n");	  	  	  
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/*Copying	  the	  values	  of	  a	  and	  b	  to	  the	  GPU	  device	  variables	  dev_a	  and	  
dev_b*/	  
	  	  	  	  cudaMemcpy(dev_a,	  h_a,	  sizeof(float)*ndim,	  cudaMemcpyHostToDevice);	  
	  	  	  	  cudaMemcpy(dev_b,	  h_b,	  (sizeof(float)*ndim),	  cudaMemcpyHostToDevice);	  
	  	  	  	  	  	  	  	  
/*	  Kernel	  call*/	  
	  	  	  	  KernelName<<<dimGrid,dimBlock>>>(dev_a,dev_b,dev_c,ndim);	  
	  	  	  	  	  
/*Returning	  the	  result	  of	  the	  kernel	  operation	  to	  the	  host*/	  
	  	  	  	  cudaMemcpy(h_c,dev_c,sizeof(float)*ndim,cudaMemcpyDeviceToHost);	  
	  	  
	  	  	  	  for(int	  i=0	  ;i<ndim;	  i++){	  
	  	  	  	  	  	  	  	  printf("a[%d]=%1.1f	  	  	  b[%d]=%1.1f	  	  	  c[%d]=%1.1f\n",	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  i,h_a[i],i,h_b[i],i,h_c[i]);	  
	  	  	  	  }	  
	  
/*Freeing	  memory*/	  
	  	  	  	  delete	  h_a;	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
	  	  	  	  delete	  h_b;	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
	  	  	  	  delete	  h_c;	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
	  	  	  	  cudaFree(dev_a);	  
	  	  	  	  cudaFree(dev_b);	  
	  	  	  	  cudaFree(dev_c);	  
	  	  	  
return	  (EXIT_SUCCESS);	  
}	  
	  
/*Kernel*/	  
__global__	  void	  KernelName(float	  *dev_a,float	  *dev_b,float	  *dev_c,	  int	  
ndim){	  
	  
	  	  	  	  int	  index	  =	  blockIdx.x	  *	  blockDim.x	  +	  threadIdx.x;	  
	  	  	  	  	  
	  	  	  	  if(index	  <	  ndim){	  
	  	  	  	  	  	  	  	  dev_c[index]	  =	  dev_a[index]	  +	  dev_b[index];	  
	  	  	  	  }	  
	  	  	  	  	  
	  __syncthreads();	  
}	  
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7 Appendix B 
In this appendix it is shown the code transcript of the CUFFT library usage 

described in example 2 of section 3.6.5.  
/*	  	  
	  *	  File:	  	  	  newmain.cu	  
	  *	  Example	  of	  using	  the	  CUFFT	  library	  
	  */	  
	  
#include	  <iostream>	  
#include	  "exFFT.h"	  
	  
using	  namespace	  std;	  
	  
/*	  Kernel	  prototype*/	  
__global__	  void	  KernelName(float	  *dev_a,float	  *dev_b,cuFloatComplex	  *dev_c,	  
	  	  	  	  	  	  	  	  int	  nx,	  int	  ny,	  int	  nz);	  
	  
int	  main(int	  argc,	  char**	  argv)	  {	  
	  	  
/*Creating	  the	  variables	  on	  the	  host*/	  
	  	  	  	  
	  	  	  	  int	  nx=400;	  
	  	  	  	  int	  ny=30;	  
	  	  	  	  int	  nz=2;	  
	  	  	  	  int	  ndim=nx*ny*nz;	  
	  	  	  	  float	  *h_a;	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
	  	  	  	  float	  *h_b;	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
	  	  	  	  cuFloatComplex	  *h_c;	  	  	  
	  	  	  	  cuFloatComplex	  *ffth_c;	  
	  	  	  	  cuFloatComplex	  *Iffth_c;	  
	  	  	  	  h_a	  =	  new	  float[ndim];	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
	  	  	  	  memset(h_a,0,sizeof(float)*ndim);	  	  	  	  
	  	  	  	  h_b	  =	  new	  float[ndim];	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
	  	  	  	  memset(h_b,0,sizeof(float)*ndim);	  	  	  	  
	  	  	  	  h_c	  =	  new	  cuFloatComplex[2*nx*2*ny*2*nz];	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
	  	  	  	  memset(h_c,0,sizeof(cuFloatComplex)*2*nx*2*ny*2*nz);	  
	  	  	  	  ffth_c	  =	  new	  cuFloatComplex[2*nx*2*ny*2*nz];	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
	  	  	  	  memset(ffth_c,0,sizeof(cuFloatComplex)*2*nx*2*ny*2*nz);	  	  
	  	  	  	  Iffth_c	  =	  new	  cuFloatComplex[2*nx*2*ny*2*nz];	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
	  	  	  	  memset(Iffth_c,0,sizeof(cuFloatComplex)*2*nx*2*ny*2*nz);	  
	  
/*Creating	  the	  variables	  on	  the	  device*/	  
	  	  	  	  float	  *dev_a;	  
	  	  	  	  float	  *dev_b;	  
	  	  	  	  cuFloatComplex	  *dev_c;	  	  
	  	  	  	  cuFloatComplex	  *fftdev_c;	  
	  	  	  	  cuFloatComplex	  *Ifftdev_c;	  
	  	  	  	  cudaMalloc((void**)&dev_a,sizeof(float)*ndim);	  
	  	  	  	  cudaMemset(dev_a,0,sizeof(float)*ndim);	  
	  	  	  	  cudaMalloc((void**)&dev_b,sizeof(float)*ndim);	  
	  	  	  	  cudaMemset(dev_b,0,sizeof(float)*ndim);	  
	  	  	  	  cudaMalloc((void**)&dev_c,sizeof(cuFloatComplex)*2*nx*2*ny*2*nz);	  
	  	  	  	  cudaMemset(dev_c,0,sizeof(cuFloatComplex)*2*nx*2*ny*2*nz);	  
	  	  	  	  cudaMalloc((void**)&fftdev_c,sizeof(cuFloatComplex)*2*2*nx*2*ny*2*nz);	  
	  	  	  	  cudaMemset(fftdev_c,0,sizeof(cuFloatComplex)*2*2*nx*2*ny*2*nz);	  
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	  	  	  	  cudaMalloc((void**)&Ifftdev_c,sizeof(cuFloatComplex)*2*2*nx*2*ny*2*nz);	  
	  	  	  	  cudaMemset(Ifftdev_c,0,sizeof(cuFloatComplex)*2*2*nx*2*ny*2*nz);	  
	  
/*Defining	  the	  size	  of	  the	  block	  and	  grid*/	  
	  	  	  	  dim3	  dimBlock(512);	  
	  	  	  	  dim3	  dimGrid(ndim/dimBlock.x	  +	  (ndim%dimBlock.x==0?0:1));	  
	  	  
	  	  	  	  printf("block	  %d	  	  	  Blocks	  in	  grid	  %d	  \n",dimBlock.x,dimGrid.x);	  
	  	  	  	  	  
/*Initializing	  the	  vectors*/	  
	  	  	  	  for(int	  i=0	  ;i<ndim;	  i++){	  
	  	  	  	  	  	  	  	  h_a[i]=	  1+i;	  
	  	  	  	  	  	  	  	  h_b[i]=	  3;	  
	  	  	  	  }	  
	  	  	  	  	  	  	  	  	  
	  	  	  	  /*Copying	  the	  values	  of	  a	  and	  b	  to	  the	  GPU	  device	  variables	  dev_a	  and	  
dev_b*/	  
	  	  	  	  cudaMemcpy(dev_a,	  h_a,	  sizeof(float)*ndim,	  cudaMemcpyHostToDevice);	  
	  	  	  	  cudaMemcpy(dev_b,	  h_b,	  (sizeof(float)*ndim),	  cudaMemcpyHostToDevice);	  
	  	  	  	  	  	  	  	  
/*	  Kernel	  call*/	  
	  	  	  	  KernelName<<<dimGrid,dimBlock>>>(dev_a,dev_b,dev_c,nx,ny,nz);	  
	  
	  	  	  	  cuFFT3DF	  (2*nx,2*ny,2*nz,	  dev_c,	  fftdev_c);	  
	  	  	  	  cuFFT3DI	  (2*nx,2*ny,2*nz,	  fftdev_c,	  Ifftdev_c);	  
	  	  	  	  	  
/*Returning	  the	  result	  of	  the	  kernel	  operation	  to	  the	  host*/	  

cudaMemcpy(h_c,dev_c,sizeof(cuFloatComplex)*2*nx*2*ny*2*nz,	  
cudaMemcpyDeviceToHost);	  

cudaMemcpy(ffth_c,fftdev_c,sizeof(cuFloatComplex)*2*nx*2*ny*2*nz,	  
cudaMemcpyDeviceToHost);	  

cudaMemcpy(Iffth_c,Ifftdev_c,sizeof(cuFloatComplex)*2*nx*2*ny*2*nz,	  
cudaMemcpyDeviceToHost);	  
	  	  
/*Freeing	  memory*/	  
	  	  	  	  delete	  h_a;	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
	  	  	  	  delete	  h_b;	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
	  	  	  	  delete	  h_c;	  	  
	  	  	  	  delete	  ffth_c;	  
	  	  	  	  delete	  Iffth_c;	  
	  	  	  	  cudaFree(dev_a);	  
	  	  	  	  cudaFree(dev_b);	  
	  	  	  	  cudaFree(dev_c);	  
	  	  	  	  cudaFree(fftdev_c);	  
	  	  	  	  cudaFree(Ifftdev_c);	  
	  	  	  	  	  
return	  (EXIT_SUCCESS);	  
}	  
	  
/*Kernel*/	  
__global__	  void	  KernelName(float	  *dev_a,	  float	  *dev_b,cuFloatComplex	  
*dev_c,	  int	  nx,	  int	  ny,	  int	  nz){	  
	  
	  	  	  	  int	  index	  =	  blockIdx.x	  *	  blockDim.x	  +	  threadIdx.x;	  
	  	  	  	  	  
	  	  	  	  if(index	  <	  (2*nx*2*ny*2*nz)){	  
	  	  	  	  	  	  	  	  if(index	  <	  (nx*ny*nz)){	  
	  	  	  	  	  	  	  	  	  	  dev_c[index]	  =	  make_cuFloatComplex(dev_a[index]	  +	  dev_b[index],	  
0.0e0);	  
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	  	  	  	  	  	  	  	  }else{	  
	  	  	  	  	  	  	  	  	  	  dev_c[index]	  =	  make_cuFloatComplex(0.0e0,	  0.0e0);	  	  	  
	  	  	  	  	  	  	  	  }	  
	  	  	  	  }	  
	  __syncthreads();	  
}	  
 
 
/*	  	  
	  *	  File:	  exFFT.cu	  
	  *	  Example	  of	  using	  the	  CUFFT	  library	  
	  *	  File	  containing	  the	  CUFFT	  functions	  plan	  
	  *	  	  
	  */	  
	  
#include	  "exFFT.h"	  
	  
void	  cuFFT3DF	  (int	  xSize,	  int	  ySize,	  int	  zSize,	  cuFloatComplex	  *inArray,	  
	  	  	  	  	  	  	  	  cuFloatComplex	  *outArray){	  
//	  Define	  the	  handle	  variable	  that	  allows	  access	  to	  CUFFT	  plans	  
	  	  	  	  cufftHandle	  plan;	  
	  
//	  Create	  a	  1-‐dimensional	  CUFFT	  plan	  of	  a	  float	  Complex	  to	  float	  Complex	  
//variables	  
	  	  	  	  cufftPlan3d(&plan,	  xSize,	  ySize,	  zSize,	  CUFFT_C2C);	  	  
	  	  	  	  	  	  	  	  
//	  Transform	  the	  data	  to	  the	  same	  array	  in	  the	  forward	  direction	  
	  	  	  	  cufftExecC2C(plan,	  inArray,	  outArray,	  CUFFT_FORWARD);	  
	  
//	  Destroy	  the	  CUFFT	  plan	  
	  	  	  	  cufftDestroy(plan);	  
}	  
	  
void	  cuFFT3DI	  (int	  xSize,	  int	  ySize,	  int	  zSize,	  cuFloatComplex	  *inArray,	  
	  	  	  	  	  	  	  	  cuFloatComplex	  *outArray){	  
//	  Define	  the	  handle	  variable	  that	  allows	  access	  to	  CUFFT	  plans	  
	  	  	  	  cufftHandle	  plan;	  
	  
//	  Create	  a	  1-‐dimensional	  CUFFT	  plan	  of	  a	  float	  Complex	  to	  float	  Complex	  
//variables	  
	  	  	  	  cufftPlan3d(&plan,	  xSize,	  ySize,	  zSize,	  CUFFT_C2C);	  	  
	  	  	  	  	  	  	  	  
//	  Transform	  the	  data	  to	  the	  same	  array	  in	  the	  forward	  direction	  
	  	  	  	  cufftExecC2C(plan,	  inArray,	  outArray,	  CUFFT_INVERSE);	  
	  
//	  Destroy	  the	  CUFFT	  plan	  
	  	  	  	  cufftDestroy(plan);	  
}	  
 
 
/*	  	  
	  *	  File:	  	  	  exFFT.h	  
	  *	  Example	  of	  using	  the	  CUFFT	  library	  
	  *	  Header	  file	  containing	  the	  CUFFT	  function	  prototypes	  
	  */	  
	  
#ifndef	  EXFFT_H	  
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#define	   EXFFT_H	  
	  
#include	  <cufft.h>	  	  	  	  	  	  //	  CUDA	  library	  to	  calculate	  FFT	  
	  
void	  cuFFT3DF	  (int	  xSize,	  int	  ySize,	  int	  zSize,	  cuFloatComplex	  *inArray,	  
	  	  	  	  	  	  	  	  cuFloatComplex	  *outArray);	  
	  
void	  cuFFT3DI	  (int	  xSize,	  int	  ySize,	  int	  zSize,	  cuFloatComplex	  *inArray,	  
	  	  	  	  	  	  	  	  cuFloatComplex	  *outArray);	  
	  
#endif	  /*	  EXFFT_H	  */	  
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