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1. RESEARCH AIM



2 | RESEARCH AIM 

Pereira O. R., 2013 | CHARACTERIZATION OF PHENOLIC CONSTITUENTS OF MEDICINAL PLANTS AND 

EVALUATION OF PHARMACOLOGICAL ACTIVITIES: FOCUS IN ANTIOXIDANT AND 

ANTI-INFLAMMATORY PROPERTIES 

 

The polyphenolic profiles of the plant species Cytisus multiflorus, Lamium album L., 

Lavandula dentata L., Leonurus cardiaca L., Mentha aquatica L. and Thymus x 

citriodorus are poorly studied or even still unknown, and thus more studies are 

necessary. In a same way, several properties have been assigned to different plant 

extracts, however scientific investigations are needed to prove the beneficial properties 

in human health since, in most cases, the biological effects have been exclusively 

tested in in vitro models. 

In this context, the present Doctoral Thesis intended to improve the knowledge of the 

phenolic composition and also of the beneficial effects of six medicinal plants namely 

Cytisus multiflorus, Lamium album L., Lavandula dentata L., Leonurus cardiaca L., 

Mentha aquatica L. and Thymus x citriodorus. For that, five specific aims were defined: 

First aim: Characterize and quantify the phenolic constituents of Cytisus multiflorus, 

Lamium album L., Lavandula dentata L., Leonurus cardiaca L., Mentha aquatica L. and 

Thymus x citriodorus by high performance liquid chromatography associated with diode 

array detection (HPLC-DAD), electrospray mass spectrometry (ESI-MS and MSn) and 

nuclear magnetic resonance (NMR) techniques; 

Second aim: Determine antioxidant effects of Cytisus multiflorus, Lamium album L., 

Lavandula dentata L., Leonurus cardiaca L., Mentha aquatica L. and Thymus x 

citriodorus in chemical and cellular models; 

Third aim: Evaluate the hepatoprotective effects of Cytisus multiflorus, Lamium album 

L., Lavandula dentata L., Leonurus cardiaca L., Mentha aquatica L. and Thymus x 

citriodorus in human hepatoblastoma HepG2 cells; 

Fourth aim: Evaluate the anti-inflammatory properties of Cytisus multiflorus extract; 

Fifth aim: Evaluate the influence of Mentha aquatica L. and Leonurus cardiaca L. plant 

extracts in mitochondria bioenergetics. 
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In recent years, several beneficial activities of plants have been attributed to their 

polyphenolic composition [1]. On the other hand, Mediterranean region is rich in 

medicinal plants both in wild or cultivated forms that mainly because of their medicinal 

value, are potential candidates for exploitation by various industries, including the food 

and cosmetic industries.  

This first section of the Doctoral Thesis aimed to introduce the subject of the present 

work. For that, a general description of the six plant genus together with the target 

plants is made, followed by an overview on the methods of extraction and 

characterization of phenolic compounds, in particular those performed with the six 

target plant genus. Moreover, the phenolic compounds of these genera, as well as the 

potential biological effects reported in the literature up to this moment, are summarized.  

 

Part of the information presented in this section has been used to write the manuscript 

“Overview on Mentha and Thymus polyphenols” which is published in Current 

Analytical Chemistry: Pereira, O. R.; Cardoso, S. M., Overview on Mentha and Thymus 

Polyphenols. Current Analytical Chemistry, 2013, 9(3), 382-396. 
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Jardim Botânico da UTAD (2013), Retrieved 

from: 

<http://jb.utad.pt/especie/cytisus_multiflorus> 

2.1. GENERAL DESCRIPTION OF PLANTS 

2.1.1. Cytisus 

Cytisus Desf. (Leguminosae – Cytiseae) is a genus of flowering plants belonging to the 

Fabaceae family [2]. The species of this genus occur as unarmed shrubs with twigs 

ribbed and alternate, the leaves are persistent, trifoliolate and petiolate. The 

inflorescences are characterized by 1–3 flowers in axillary fascicles [2, 3]. 

Several species of the Cytisus genus are used in traditional medicine mainly due to 

their anxiolytic, antidiabetic, antioxidant, diuretic, hypnotic and antiparasitic properties. 

[4-10].  

 

2.1.1.1. Cytisus multiflorus 

Cytisus multiflorus (L’Hér.) Sweet (Fig. 1), 

or white Spanish broom, is one of the 

approximately 60 species from the Cytisus 

genus. This species is endemic from south-

west Mediterranean region and it is largely 

distributed in the Iberian Peninsula [3]. The 

plant frequently appears as a shrub, 

covering extensive areas of degraded and 

marginal soils. It is a large and upright 

broom with small leaves and a great 

number of white flowers with a valvular 

type pollen presentation system [11].  

C. multiflorus species is vastly used as an 

ornamental plant, as well as for animal nutrition. Other applications of the plant include 

the collection of their pollen for apiculture purposes and land fertilizing in agriculture 

[11-14]. Besides these, the plant has also been used for centuries in the form of tea for 

the treatment of metabolic and endocrine system disorders and as an anti-

inflammatory, diuretic and anti-hypertensor agent [15, 16]. 

  

 

 

 

Figure 1 – Cytisus multiflorus. 
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Arnold, W. (2013), Retrieved from: 
http://www.awl.ch/heilpflanzen/lamium_album/ 

2.1.2. Lamium 

Plants of Lamium L. (Family: Lamiaceae alt. Labiatae) genus are native of the Old 

World and distributed in Europe, Asia, and Africa. They are globally known as “dead 

nettle” due to the absence of stinging hairs, which are typically found in stinging nettles 

[17]. The Lamium genus comprises about 40 annual or perennial herb species with 

verticillasters, a whorled inflorescence dense or remote and 2 to 12 flowered. The calyx 

is cylindrical or campanulate, 5-nerved, 5-toothed and the corolla bilabiate can be 

purple, pink, cream or white. The leaves are ovate to reniform and crenate to dentate 

and the fruits can appear as trigonous nutlets, truncate at apex [17]. 

Many species of this genus have been used as famine food in starvation periods, such 

as war periods. Moreover, some Lamium species are considered as medicinal plants 

due to antioxidant, antispasmodic, anti-inflammatory and antinconceptive properties, as 

well as to their ability to treat musculoskeletal and several gynecological conditions [18, 

19].  

 

2.1.2.1. Lamium album L. 

Lamium album L. (Fig. 2), commonly 

known as white dead nettle, is 

consumed in the Mediterranean and 

surrounding areas for confection of local 

dishes [20]. In fact, the young shoots, 

leaves and flowers of this plant are 

edible and consumed raw or cooked as 

a vegetable. The plant is also commonly 

used as an ingredient in several dishes 

including omelets, stews and roasts [21]. 

Moreover, white dead nettle is the base 

ingredient for important vegetarian 

dishes such as the “White Dead Nettle Frittata”, “White Dead Nettle, Feta & 

Watermelon Salad” and the “Deadnettle soup” [22, 23]. The flowers of this plant are 

very attractive to bees and other pollinating insects and hence, these have been 

frequently used for honey production [24, 25]. The species is also used in teas and in 

food supplements preparations, which consumption is primarily associated to the plant 

health benefits. In fact, L. album is famous due to its antioxidant, antispasmodic and 

mucolytic (useful in chronic bronchitis or pharyngitis), diuretic, astringent and anti-septic 

Figure 2 – Lamium album L.. 
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activities. Additionally, the aerial parts of this plant are often used in the treatment of 

menorrhagia, uterine hemorrhage, vaginal and cervical inflammation, leucorrhoea, 

wound healing and skin problems because of its haemostatic and anti-inflammatory 

activities [26, 27]. Besides this, the consumption of food supplements enriched in L. 

album extracts are claimed to detoxify the organism, to prevent menstrual disorders, 

abdominal inflammation and musculoskeletal diseases [28], and to improve the fat 

metabolism [29].  

 

2.1.3. Lavandula 

Lavandula L. genus (Lamiaceae) comprises about 30 aromatic annual species which 

are used since ancient times for medicinal, ornamental and melliferous purposes. The 

different species appear as small shrubs or herbaceous plants and are endemic in the 

Mediterranean region, tropical Africa and southeast of India [30]. 

Lavender plants are particularly known for their essential oils, which have a high 

commercial value. As a consequence of that, several lavender species are largely 

cultivated in France, Italy and Spain [30] for oil extraction, to be used in perfumery 

industry or for producing other cosmetics, like skin lotions, colognes and soaps. More 

recent applications of lavender oils include aromatherapy and massages and food 

flavoring. Examples of the latter are its usage in the manufacture of ice cream, candy, 

chewing gum and beverages [31-36]. Besides those, several Lavandula species are 

used as medicinal plants. This includes their usage to combact painful conditions and 

digestive complaints. Moreover, they are claimed to act as antidiabetic, antidepressant, 

sedative, local anesthetic, antispasmodic, antimicrobial, and antiparasitic agents. There 

are also some evidences of possibly effectiveness in hair loss in alopecia areata 

condition [35, 37-39]. 
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dentata.htm 

2.1.3.1. Lavandula dentata L. 

Lavandula dentata L. (French lavender) is one 

of the most studied Lavandula oil-producing 

species, which is characterized by peculiar 

dentate leaves and violet spikes (Fig. 3). It 

occurs as small aromatic evergreen wide 

shrubs growing up to 1 m in height with narrow, 

greyish-green and crenately toothed leaves. The 

purple clustered flowers are small and long-

stalked spikes with bracts [40]. Plants of this 

species have been used as ornamental, 

melliferous or as aromatic plants for producing essential oil [41, 42]. Its traditional 

medicinal use in Arabian Peninsular region includes the treatment of wounds, 

rheumatism, urine retention and kidney stones. Moreover, it has also been used as 

antiseptic [43]. 

 

2.1.4. Leonurus 

Leonurus L. genus comprises about 23 perennial herbs distributed particularly in 

Europe and Asia [44, 45]. Plants belonging to this genus are characterized by stems 

square in cross section, incised or toothed leaves, verticillasters of axillary flowers and 

fruits as angled nutlets [45]. 

Distinct Leonurus species are frequently consumed as tea, or used in food flavoring, 

including soups or beverages. Alternatively, extracts obtained from Leonurus plants are 

also included in food supplements [46-49]. Besides that, several species of this genus 

have been used as ethnopharmacological agents to fight cardiocirculatory problems 

such as hypertension and tachyarrhythmia. Other health properties of Leonurus plants 

include uterotonic, diuretic and sedative [44].  

 

 

 

 

 

 

Figure 3 – Lavandula dentata L.. 
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Lee, L (2013), Retrieved from: 
http://herbarium.biol.sc.edu/herb/LL/Le
onurus_cardiaca1.jpg 

2.1.4.1. Leonurus cardiaca L. 

Leonurus cardiaca L. (motherwort) (Fig. 4), 

included in the subfamily Lamioideae (Lamiaceae), 

is native from central Europe and it is currently 

spread in different temperate countries around the 

world. This plant grows in different types of soil and 

is easily found in pastures, road edges, abandoned 

parks, waste ground, i.e., it is globally found in 

rough locations [50, 51]  

Infusions of L. cardiaca aerial parts have been used 

in traditional medicine due to its claimed beneficial 

effects, namely sedative, uterotonic, diuretic, 

cardiotonic, hypotensive activities, as well as in 

climacteric symptoms, amenorrhea and bronchial 

asthma [44]. The plant is also used in homeopathic 

pharmacy for cardiac complaints, flatulence, and 

hyperthyroidism. Furthermore, because of its claimed medicinal applications, 

motherwort has been included in the European (2008), Russian (1968) and British 

Herbal (1992) Pharmacopoeias. Its aerial parts are frequently used in infusions, 

decoctions, syrups and tinctures, or alternatively, they are included in pharmaceutical 

formulations for the treatment of cardiovascular diseases [50, 52].  The most described 

biological activities of L. cardiaca are the sedative, hypotensive and cardiotonic. This 

turns the plant a good candidate for the treatment of neuropathic and functional cardiac 

disorders, despite the unique indications approved by European Commission up to this 

moment, are those associated to nervous heart complaints and thyroid dysfunction [18, 

50, 53-56].  

 

2.1.5. Mentha 

Mentha L. (Lamiaceae) genus includes 30 perennial species that grow up to 120 cm 

tall, in particular in wet places. In general, these species are erect, branched, four-

sided or squared with growing leaves in opposite pairs and have white or purple 

flowers [57-60]. The plants belonging to this genus are mainly distributed in temperate 

regions of Europe, Asia, Australia and South Africa [61, 62]. In Mediterranean 

countries, some Mentha species are used as herbal teas, or alternatively, for food 

Figure 4 – Leonurus cardiaca L.. 
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Retrieved from: 

http://jb.utad.pt/especie/mentha_aquatica 

flavoring. Besides that, they have an important economic value due to their applications 

in food, cosmetic and pharmaceutical industries [60, 63].  

Since ancient times, several Mentha plants have been largely used as remedies in 

nasal congestion, digestive disorders and in oral hygiene. Mainly beneficial properties 

of Mentha plants are the anti-inflammatory, antiallergic, antipruritic, analgesic, 

antibacterial and anticholinesterase, which render them some applications in 

phytotherapeutic preparations [64-68]. 

 

2.1.5.1. Mentha aquatica L. 

Also known as water mint, the species Mentha 

aquatica L. (Fig. 5) grows in the shallow margins 

and channels of streams, rivers, pools, ditches 

and wet meadows. Their flowers are tiny, 

densely crowded, purple and tubular and have 

green or purple stems with square in cross 

section. The leaves are mostly green, opposite 

and toothed [69, 70]. 

Water mint has been used in beverages, salads 

or cooked foods. Some modern recipes with the 

plant includes “Water Mint Pesto”, “Carrot and 

Water Mint Soup”, “Warm Lamb & Water Mint Salad”, “Wild Greens with Ham” and 

“Orange and Mint” [71]. Besides the food applications, Mentha aquatica L. has also 

been consumed as tea and it has been used in traditional medicine for the treatment of 

external inflammation (e.g. mouth or throat problems) and in inflammation-related 

diseases, such as rheumatism. The plant is also frequently used as a vermifuge, in the 

treatment against colds and respiratory problems and to counteract mental illnesses or 

disorders of the central nervous system. Furthermore, it is commonly used to attenuate 

menstruation problems, as a stimulant and as an emetic and astringent agent [72-74]. 

 

2.1.6. Thymus 

Thymus L. genus includes about 350 aromatic and perennial species which are 

distributed around the world and are particularly abundant in the west Mediterranean 

region, where they frequently growth in association with Lavandula, Satureja, Sideritis 

or Salvia plants [75, 76].  

Figure 5 – Mentha aquatica L.. 
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http://jb.utad.pt/especie/thymus_x_citriodorus 

Thymus plants are herbaceous subshrubs or shrubs with 10 to 30 cm tall, containing 

small and simple leaves, ramified and prostrated branches and big clusters of pink, 

white, cream or violet flowers [75, 77]. Thymus species are used in cosmetic and food 

industry and are also consumed as condiments and in the tea form, as medicinal plants 

[78, 79]. The latter usage is based on their pharmacological properties, which are 

mainly attributed to their content in essential oils [80-83]. These beneficial properties 

include anti-asthmatic, bronchiolytic, expectorant, anti-septic, antimicrobial, 

antispasmodic, analgesic, antioxidant and anti-acetylcholinesterase activities [15, 83, 

84]. 

 

2.1.6.1. Thymus x citriodorus 

Thymus x citriodorus or lemon thyme (Fig. 6), 

a popular culinary herb, is a creeping plant 

that grows up to 8 inches high and 2 feet wide. 

Many short, soft, upright stems rise up from 

the runners and root at the nodes. The leaves 

are small, glossy and dark green and they 

have a wonderful lemony scent. In the 

summer, the plant produces pale lilac flowers 

[85]. It is used as tea, for making potpourris 

and in culinary for flavoring salads, fish, meat 

and vegetables dishes [81]. Besides theses 

usages, T. x citriodorus is an ingredient of dermatological preparations [86, 87] and it is 

frequently used in traditional medicine as a deodorant, antiseptic, antifungal and 

antimicrobial element, as well as in the treatment of asthma and other respiratory 

diseases [80, 88]. The essential oil of T. x citriodorus is rich in geraniol (up to 60%), 

geranial (8.2%) and neral (5.5%), being the two latter responsible for the typical lemon 

fragrance [80].   

Figure 6 – Thymus x citriodorus. 
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2.2. METHODS OF EXTRACTION, PURIFICATION AND CHARACTERIZATION 

OF PLANT PHENOLICS 

Chemically, phenolic compounds are organic compounds characterized by an aromatic 

ring with one or more hydroxyl groups, being synthesized in plants through the pentose 

phosphate, shikimate and phenylpropanoid pathways [89]. They occur in different 

chemical structures, including the phenolic acids, the phenylethanoid glycosides and 

the flavonoids [90-92], occurring from simple phenolic molecules to complex high-

molecular weight polymers [89]. 

A revision of the main entailed techniques in phenolic compounds analysis will be 

described in bellow, with emphasis on the studies focusing the plant genera Cytisus, 

Lamium, Lavandula, Leonurus, Mentha and Thymus.  

 

2.2.1. Sample preparation and extraction 

As for the majority of reported works on natural products, those focusing on Cytisus, 

Lamium, Lavandula, Leonurus, Mentha and Thymus polyphenolics involve regular 

practices to allow the improvement of the resulting analytical data. Indeed, in the 

sample preparation step, the material has been commonly dried [93-99], lyophilized 

[95, 100] or frozen ideally at -80ºC [101], thus reducing the instability of polyphenols 

and the action of several degradative enzymes. In addition, grounding is a well 

establish procedure before the extraction step [62, 95, 96, 99, 102-106], as the particle 

size reduction of the plants increases the yield of extraction. Note that authors 

occasionally defatted the plant material with apolar solvents (e.g. n-hexane) [107-110], 

for prevention of high levels of lipophilic compounds in the extracts which can interfere 

in the polyphenols analysis. Some authors have also performed acidic or enzymatic 

hydrolysis in Cytisus, Mentha and Thymus plants, either before or simultaneously with 

the extraction procedure, when only aglycones were intended to characterize [111-

113]. 

Phenolic compounds have been mainly obtained by solvent extraction. Aqueous 

mixtures of methanol or ethanol are the most used ones because the majority of 

phenolics in the studied genera occur in their glycosidic forms. Distinct species of 

Cytisus, Thymus, Lavandula, Mentha, Leonurus and Lamium have been extracted with 

hydromethanolic solutions of 50-80% (v/v) to obtain phenolic acids or phenylethanoid 

glycosides [16, 99, 102, 105], as well as these groups combined with flavones, 

flavanones and flavonols [62, 100, 104-106, 111, 114, 115]. In a similar way, 
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hydroethanolic solutions of 50 to 80% (v/v) have been preferentially used for extracting 

phenolic acids or flavonoids in Cytisus [113], Mentha [93, 104, 105, 111, 116], 

Lavandula [117, 118] or Thymus [105, 119] species. Besides the above solvents, water 

and methanol are also frequently used to extract phenolic acids, flavonoids and 

phenylethanoids from several plants. Concretely, water has been used in Mentha, 

Thymus, Lavandula plants [107, 120-123] and methanol in Cytisus [97], Lamium [26, 

124] and in different species of Leonurus plants [54, 125-127]. Acetone or aqueous 

acetone mixtures were previously used in Thymus and Mentha species analysis [101, 

109, 128], while diethyl ether has been used in Thymus species [129-131] and ethanol 

solutions were used in Lamium, Lavandula and Leonurus plants [132-134]. 

Authors have applied different techniques in the extraction process of phenolic 

compounds. Stirring [16, 104, 135], homogenization using a tissue homogenizer [94, 

101, 106], maceration [111, 117, 136] and sonication [105, 133, 137-139] are the most 

frequently applied. Commonly, these techniques have been performed at room 

temperature [93, 94, 106, 124, 128], in order to minimize the structural degradation of 

phenolic compounds [140]. The extraction by means Soxhlet apparatus [54, 97] and 

water extraction are the main exceptions, since authors frequently have applied boiling 

or refluxing solvents [107, 120, 121].  

 

2.2.2. Clean-up and fractionation 

The main extraction process can be followed by additional purification of the enriched 

phenolic extracts. This practice allows obtaining a cleaner sample for characterization 

or to be used in biological assays. Reported studies focusing on the genera herein 

studied have applied liquid-liquid extraction [125, 141] and, most commonly, solid 

phase extraction on C18 cartridges or column chromatography on Sephadex LH-20. 

The two latter usually enclose sequential solubilisation with distinct solvents, according 

to the nature of compounds that are intended to separate [54, 102, 107, 108, 119, 120, 

128, 131, 136, 142, 143].  

 

2.2.3. Detection and characterization of phenolic compounds  

From the distinct methods used to estimate the total polyphenols in plant tissues, the 

Folin Ciocalteu [144] is the most popular and it is considered a valid approach despite 

its limitations [145, 146]. Still, HPLC is the technique of choice in the analysis of plant 

phenolics, since it allows a rapid qualitative and individual quantitative screening [143]. 
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The HPLC analysis of the Cytisus, Mentha, Thymus, Lavandula, and Lamium plant 

extracts have been essentially carried out on C18 reversed-phase columns [26, 111, 

138, 147]. Additionally, in order to control the reproducibility of the method, the column 

temperature is usually maintained constant (20-35 ºC) [16, 97].  

Other important feature for achieving a good separation of phenolic constituents and 

consequently, high accuracy in the method, is the choice of the mobile phase. Distinct 

combinations of mobile and stationary phases provide different compound separation, 

since this is based on the polarity differences among phenolic compounds [148]. In 

species belonging to Cytisus, Mentha, Thymus, Lavandula, and Lamium genera, 

phenolic compounds have been preferentially analyzed in a binary system of solvents, 

that consist in mixtures of acetonitrile/water [16, 93, 97, 104, 120, 149] or 

methanol/water [111, 113, 134, 135, 138]. Some works focusing in the target plant 

genus applied acetonitrile/water or methanol/water combinations for fractionation of 

phenolic compounds [123, 134, 138, 150]. Note that acidified water (0.1% to 5% of 

formic acid, acetic acid or less commonly phosphoric acid) is preferentially used, as 

this procedure impairs analytes ionization and thus allows a better resolution and 

superior reproducibility of the retention times, as well as the minimization of peak tailing 

[143, 148, 151]. 

As commonly, the HPLC separation of phenolic compounds in the target genera has 

been achieved at constant flow rates of approximately 1 mL/min and their identification 

and quantification has been frequently done by comparison of the retention times and 

integrated peak areas of the separated compounds, to those of the corresponding 

reference compound [26, 94, 95, 101, 120, 134, 138, 147, 149, 152]. This information 

has also been combined to spectral information gathered by photodiode array detector 

(PDA) [61, 62, 94, 95, 111, 114, 129, 130, 153]. Spectral data in those studies has 

been obtained in the range of 200 to 450 nm, while the chromatograms of phenolics 

compounds have been plotted according to their maximum absorbance peaks: at 280 

nm for flavanones and hydroxybenzoic acids, at 320-330 nm for hydroxycinnamic acids 

and flavones and at 350-370 nm for flavonols [16, 95, 96, 101, 111, 123]. Alternatively, 

in case of exclusive usage of UV-Vis detector, the polyphenolic profiles are only 

recorded at a wavelength of 280 nm [97, 102, 103, 112, 154, 155].  

Due to commercial unavailability of many phenolic plant constituents, fine analytical 

techniques have also been implemented in order to improve the phenolic 

characterization. In this field, mass spectrometry has been playing a crucial role, as its 

coupling to chromatographic analysis allowed an increment on the sensitivity and 

selectivity of the method. HPLC fractionation combined with electrospray ionization-
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MS/MS analyses have been used e.g. by Krzyzanowska and colleagues [62], for 

structural determination of phenolic acids, flavones and flavanones in two species of 

Mentha [62, 156]. Since these procedures entail a long time of analysis, the present 

implementation of faster and reliable analytical methodologies, as e.g. the 

chromatographic techniques hyphenated with mass spectrometry appears as a good 

alternative. On-line LC–MS/MS analysis has been used in the identification of phenolic 

acids and distinct classes of flavonoids in M. piperita [116], as well as in several 

Thymus species [106, 114, 129, 135], Cytisus [16, 138] and Lavandula [149, 157] 

plants. In the majority of these studies, mass spectrometry analysis has been 

performed using electrospray ionization (ESI), a soft mode of ionization that is suitable 

for structural characterization of a high number of polar biomolecules, including the 

phenolic compounds. Moreover, the mass spectrometry analysis has been mainly 

carried out in the negative ion mode, due to its high sensitivity in detecting distinct 

classes of phenolic compounds [158].  

Additionally, sometimes coupled with techniques as LC or MS, nuclear magnetic 

resonance (NMR) spectroscopy has been used to achieve the exact structure of 

isolated phenolic compounds from several species of the Leonurus [125, 126, 159], 

Lamium  [124, 132, 160], Thymus [119], Lavandula [117, 161] and Mentha [107, 162]. 

As known, NMR is a powerful technique for structural characterization. Its main 

drawback is its low sensibility when compared to MS and thus, there is the need of 

getting higher amounts of sample for analysis [163]. In this sense, when using NMR 

technique, samples need to be obtained by preparative chromatography [107, 119, 

132, 164, 165]. A good alternative is the coupling of HPLC with NMR techniques (LC-

NMR) that actually appears as the most powerful method for the separation and 

structural determination of organic compounds. Regardless of its efficiency for 

identification of on the nature of the polyphenol skeletons and on their substitution 

patterns, the method is not widely used at present due the high entailed costs [148]. 
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2.3. PHENOLIC COMPOUNDS IN THE TARGET PLANT GENUS 

A detailed overview on the phenolic compounds of Cytisus, Lamium, Lavandula, 

Leonurus, Mentha and Thymus genera is described in this section. Data is summarized 

in Tables 1, 2, 3, 4, 5 and 6 and the structure of each polyphenol is depicted in Fig. 8, 

10, 13, 15, 17 and 19. 

 

2.3.1. Phenolic acids 

Phenolic acids are compounds characterized by a phenolic ring with an organic 

carboxylic acid function and can occur as hydroxybenzoic (C6-C1) (Fig. 7A) and 

hydroxycinnamic (C6-C3) acids (Fig. 7B). Following, a review of the phenolic acids 

from Cytisus, Lamium, Lavandula, Leonurus, Mentha and Thymus genera is described. 

Data is summarized in Table 1 and the structure of each compound is depicted in Fig. 

8. 

 

COOH

OH OH

COOH

 

 

Phenolic acids are largely described in Mentha, Thymus and Lavandula species being 

the most reported the hydroxycinnamic caffeic acid and its dimer rosmarinic acid. 

Despite caffeic acid (1) has been reported in a high number of Mentha species (Table 

1), this is only present in minor amounts, contrasting with rosmarinic acid (2), which is 

described to vary between 3.1 to 19.1 mg/g of dry plant in M. x piperita, M. aquatica, M. 

x dalmatica, and M. canadensis plants. These amounts represent at least 30% of the 

total phenolic compounds quantified in those plants [61, 95, 102, 111, 120, 152, 166]. 

In a similar way, caffeic acid has been largely reported in Thymus species (see Table 

1), regardless it only occurs in low amounts (0.1-0.48 mg/g of dry plant) [94, 121]. 

Instead, rosmarinic acid has been described has a major phenolic compound in several 

Thymus species (Table 1), representing about 70% of the total polyphenols quantified 

in T. vulgaris extracts [94, 95, 154]. This caffeic acid dimer is a major phenolic 

constituent of several Lavandula species with amounts ranging from 0.1 to 11.1 mg/g 

of dry plants [123, 134, 157, 167-169].  

Figure 7 – General structure of hydroxybenzoic (A) and hydroxycinnamic (B) acids. 

A B 
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Besides rosmarinic acid, Mentha, Thymus and Lavandula species have been described 

to contain other caffeic acid derivatives. In particular, T. vulgaris extracts were reported 

to have rosmarinic acid glucoside (3), 3’-O-(8’’-Z-caffeoyl)rosmarinic acid (4), 

rosmarinic acid methylester (0.6 mg/g of dry plant) (5), salvianolic acid I (6) and 

salvianolic acid K (7). Lithospermic acid (8) was described to account for 12 mg/g of 

dry T. serpyllum plant [154]. Other caffeic acid derivatives in Thymus genus include the 

glucoside of caffeic acid (9), caffeic acid ethyl ester (10) and dicaffeoylquinic (11) or 

chlorogenic acids (12) [106, 114, 135, 153]. The latter compound has been reported in 

M. x piperita [111] while nepetoidin A (13)  and nepetoidin B (14), lithospermic acid, 

lithospermic acid B (15), salvianolic acid J (16) and salvianolic acid L (17), between 

others (18-21), have been described in several Mentha species [120, 128, 164], as 

summarized in Table 1. Furthermore, several Lavandula species have been described 

to contain caffeic acid derivatives, namely the dicaffeoylquinic acid [157], the 3-O (0.7 

mg/g of dry plant), 4-O (22) (0.5 mg/g of dry plant) and 5-O caffeoylquinic acids (23) 

(0.2 mg/g of dry plant) [168] (Table 1).  

Hydroxycinnamic acids unrelated with caffeic acid plus hydroxybenzoic acids as gallic 

(24), gentisic (25), syringic acid (26), ferulic (27), ferulic-O-glucoside (28), sinapic (29) 

and protocatechuic acids (30) have been also reported in several Thymus and/or 

Lavandula species [102, 123, 149, 170]. 

Regarding the three remaining plant genera in focus in the present study (Lamium, 

Leonurus and Cytisus), we should remark that they are much poor in phenolic acids, as 

compared to the previous described ones. Indeed, to the best the author´s knowledge, 

this class of compounds has not been detected yet in Cytisus plants. Moreover,  only  

syringic acid and p-hydroxybenzoic acid (31) were reported for Leonurus plants, in 

particular for L. sibiricus extracts [127], while caffeic acid, chlorogenic acid, 

protocatechuic acid , p-coumaric acid (32), ferulic acid and vanillic acid (33) have been 

described in Lamium album extracts [17, 26, 171].  
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Table 1 – Phenolic acids of Cytisus, Lamium, Lavandula, Leonurus, Mentha and Thymus genera. 

Compound Cytisus species Lamium species Lavandula species Leonurus species Mentha species Thymus species 

Caffeic acid derivatives 
            

Caffeic acid (1)   L. album [26] L. x intermedia [149, 169]   M. x piperita [61, 93, 

102, 111, 

120, 152, 

166] 

T. vulgaris [94-96, 

102, 105, 

106, 121, 

154] 

    L. viridis [168]   M. aquatica [166] T. serpyllum [114, 121, 

137, 154] 

    L. angustifolia [157]   M. spicata [61, 105, 

137] 

T. quinquecostatus [155] 

        M. canadensis [95]   

        M. x dalmatica [61]   

        M. “Morocco” [166]   

        M. “Native Wilmet” [166]   

        M. arvensis [61, 166]   

Rosmarinic acid (2)     L. angustifolia [134, 157, 

167] 

  M. x piperita [61, 62, 93, 

102-104, 

107, 111, 

120, 152, 

166] 

T. vulgaris [93-95, 

100-102, 

105, 108, 

119, 121, 

135, 154] 

    L. officinalis [123]   M. aquatica [166] T. serpyllum [114, 121, 

137, 154] 

    L. vera [118, 170]   M. spicata [61, 105, 

137, 166] 

T. sipyleus [141] 

    L. x intermedia [149, 169]   M. canadensis [95] T. quinquecostatus [155] 

    L. viridis [168]   M. x dalmatica [61]   

        M. haplocalyx [61, 128]    

        M. “Morocco” [166]   

        M. “Native Wilmet” [166]   

        M. x verticillata [166]   

        M. arvensis [61, 166]   

        M. longifolia [62]   

Rosmarinic acid glucoside (3)           T. vulgaris [135] 

3’-O-(8’’-Z-caffeoyl)rosmarinic 

acid (4) 

          T. vulgaris [119] 
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Rosmarinic acid methylester (5) 

 

    L. x intermedia [149]     T. vulgaris [154] 

Salvianolic acid I (6)         M. x piperita [62] T. vulgaris [135] 

Salvianolic acid K (7)           T. vulgaris [135] 

Lithospermic acid (8)         M. x piperita [120] T. serpyllum [154] 

        M. haplocalyx [128]   

Caffeic acid glucoside (9)     L. angustifolia [157]     T. vulgaris [106, 135] 

    L. x intermedia [149]       

Caffeic acid ethyl ester (10)           T. serpyllum [114] 

Dicaffeoylquinic acid (11)     L. angustifolia [157]     T. vulgaris [106] 

          T.webbianus [153] 

Chlorogenic acid (12)   L. album [26, 171] L. angustifolia [157]   M. x piperita [111] T. vulgaris [106] 

    L. x intermedia [149, 169]     T. serpyllum [114] 

    L. viridis [168]     T. webbianus [153] 

Nepetoidin A (13)         M. aquatica [164]   

        M. x villosa [164]   

        M. longifolia [164]   

Nepetoidin B (14)         M. aquatica [164]   

        M. x villosa [164]   

        M. longifolia [164]   

Lithospermic acid B (15)         M. haplocalyx [128]   

Salvianolic acid J (16)         M. haplocalyx [128]   

Salvianolic acid L (17)         M. x piperita [62]   

        M. longifolia [62]   

Magnesium lithospermate B (18)         M. haplocalyx [128]   

Lithospermate B (19)         M. haplocalyx [128]   

Cis salvianolic acid J (20)         M. haplocalyx [128]   

Didehydro-salvianolic acid (21)         M. x piperita [62]   

        M. longifolia [62]   

4-O-caffeoylquinic acid (22)     L. viridis [168]       

5-O-caffeoylquinic acid (23)     L. viridis [168]       
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Other phenolic acids 
            

Gallic acid (24)           T. vulgaris [94, 95, 

102, 106] 

Gentisic acid (25)         M. x piperita [102] T. vulgaris [102] 

Syringic acid (26)       L. sibiricus [127] M. x piperita [102] T. vulgaris [102, 106, 

121] 

          T. serpyllum [114] 

Ferulic acid (27)   L. album [26] L. angustifolia [157]     T. vulgaris [96, 106] 

    L. officinalis [123]       

    L. x intermedia [169]       

Ferulic acid-O-glucoside (28)     L. angustifolia [157]       

     L. x intermedia [149]       

Sinapic acid (29)     L. vera [170]       

Protocatechuic acid (30)   L. album [26] L. x intermedia [149]   M. x piperita [102] T. vulgaris [102, 106] 

          T. quinquecostatus [155] 

          T. webbianus [153] 

p- hydroxybenzoic acid (31)       L. sibiricus [127]   T. serpyllum [114] 

          T.webbianus [153] 

          T. serpyllum [114] 

 p-coumaric acid (32)   L. album [26]       T. vulgaris [95, 102, 

106] 

          T.webbianus [153] 

          T. serpyllum [114] 

Vanillic acid (33)   L. album [26]       T. vulgaris [102, 106] 

          T. serpyllum [114] 
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Caff- Caffeoyl unit; Glc- Glucosyl unit 

 

Figure 8 – Chemical structures of the phenolic acids reported in Cytisus, Lamium, Lavandula, 

Leonurus, Mentha and Thymus plants. 
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2.3.2. Phenylethanoid glycosides 

Phenylethanoid glycosides are a group of water soluble compounds which is widely 

found in plants. Structuraly, they are cinnamic acids and hydroxyphenyl ethyl moieties 

attached to a ß-glucopyranose through ester linkages and glycosidic linkages, 

respectively (Fig. 9) [172]. Common hydroxycinnamic acids enclose the caffeic acid, 

cinnamic acid and ferulic acid, while rhamnose, apiose or arabinose are the most usual 

sugars found. 

 

 

 

 

 

 

At this moment, hundreds of phenylethanoid glycoside compounds have been 

described in plants and some of them with proved important biological activities [90]. In 

between the six plant genera herein studied, phenylethanoid glycosides are reported in 

Lamium and Leonurus genera (Table 2, Fig. 10), while to the author´s knowledge, they 

are absent from Mentha, Thymus, Lavandula and Cytisus plants.  

In more detail, verbascoside (34) has been reported in Lamium maculatum 

(approximately 2 mg/g dry extract), L. album, L. garganicum and in L. purpureum [17, 

124, 139, 173]. This compound has also been detected in L. glaucescens or L. 

cardiaca extracts, from Leonurus genus [174, 175]. Moreover, the verbascoside 

structural isomer, the isoverbascoside (35), has been found to occur in Lamium 

purpureum [124], together with other less common phenylethanoid compounds (36-40) 

(Table 2). Also, lavandulifolioside (41) has been described in Leonurus cardiaca 

extracts [176] and in L. glaucescens, which also contain other compounds as leonoside 

A (42) and leonoside B (43) [174].  
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Figure 9 – General structure of phenylethanoid glycosides.  
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Table 2 – Phenylethanoid glycosides of Lamium and Leonurus genera. 

Compound Lamium species Leonurus species 

Phenylethanoid glycosides 
    

Verbascoside (34) L. album [17] L. glaucescens [174] 

L. garganicum [17] L. cardiaca [175] 

L. album [17]   

L. maculatum [139, 173]   

L. maculatum [173]   

L. purpureum [124]   

Isoverbascoside (35) L. purpureum [124]   

Lamalboside (36) L. purpureum [17]   

L. album [171]   

Lamiuside C (37) L. purpureum [124]   

Lamiuside D (38) L. purpureum [124]   

Campneoside I (39) L. purpureum [124]   

Leucosceptoside A (40) L. purpureum [124]   

Lavandulifolioside (41)   L. cardiaca [176] 

  L. glaucescens [174] 

Leonoside A (42)   L. glaucescens [174] 

Leonoside B (43)   L. glaucescens [174] 

 

 

 

 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

Ara- Arabinosyl unit; Gal- Galactosyl unit 

 

Figure 10 – Chemical structures of phenylethanoid glycosides reported in Lamium and 

Leonurus plants. 
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2.3.3. Flavonoids 

Flavonoids are molecules characterized by a C15 structure (C6-C3-C6) with a 

heterocyclic benzopyran ring (C ring), an aromatic ring (A ring) and a phenyl 

constituent as the B ring (Fig. 11), all of them with several structural variations. 

Flavonoids are divided in six main distinct classes (flavones, isoflavones, flavonols, 

flavanones, flavanols and anthocyanidins), according to their oxidation state, the 

connection of an aromatic ring and the functional groups of the C ring. Up to this 

moment, more than 4000 flavonoids have been identified in plants, mainly occurring as 

glycosides [91].  

 

 

 

 

Overall, plants of the target genera are enriched in distinct classes of flavonoids, with 

particular emphasis on mono or di-O and C-glycosidic derivatives of the flavones 

luteolin and apigenin, of the flavanones eriodictyol and naringenin or of the flavonol 

quercetin.  

 

2.3.3.1. Flavones 

Flavones comprises a class of flavonoids characterized by the presence of a double 

bond between 2 and 3 position, containing several A- and B-rings substitutions and 

lacking oxygenation at the 3-position of the C-ring (Fig. 12). 
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Figure 11 – General structure of flavonoids. 
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For the six plant species in focus, flavones are mainly found in Mentha, Thymus and 

Lavandula plants, with the prevalence of luteolin and apigenin glycosidic derivatives, as 

described in bellow. 

Luteolin-7-O-glucoside (44) has been detected in several Lavandula species [30, 117, 

177-179]. Its amounts in L. viridis extracts [168] have been reported to be of 3.8 mg/g 

of dry plant. The same compound is also largely reported in Mentha plants (Table 3, 

Fig. 13), accounting from 0.1 to 3 mg/g of dry plant in species as M. x piperita, M. 

aquatica and M. arvensis [61, 104, 166]. Concerning the Thymus species, the luteolin-

O-derivatives have been detected in T. vulgaris, T. serpyllum, T. sipyleus and T. 

webbianus [114, 121, 153] while luteolin-acetyl-O-glycoside (45), luteolin-O-diglucoside 

(46) have been reported in T. vulgaris and luteolin-7-O-(6”-feruloyl)-ß-glucopyranoside 

(47) has been described to occur in T. sipyleus [100, 141]. 

Note that besides glucose, other sugar forms such as glucuronic acid and rutinose are 

also frequently linked to the flavone skeleton on Mentha, Thymus and Lavandula plants 

[158]. In summary, O-glucuronide derivatives of luteolin have been detected in L. x 

intermedia, L. stoechas and L. dentata [30, 149]. Significant amounts of luteolin-7-O-

glucuronide (48) have been reported in T. vulgaris and T. serpyllum plants (8 and 14 

mg/g of dry plant, respectively) [154]. Moreover, luteolin-O-glucuronide compounds 

together with luteolin-O-glucuronide-methyl (49) and luteolin-O-diglucuronide (50), 

have been described for M. x piperita and M. longifolia species [62, 93, 120].  

Regarding the 7-O-rutinoside derivative of luteolin (51), this has been vastly described 

to occur in M. x piperita [93, 103, 104, 107, 120] with a concentration of 8 mg/g of dry  

M. x piperita. Lower concentrations (about 1.4 mg/g of dry plant) were found to occur in 

Thymus plants [106, 154]. To the author´s knowledge, this compound was not 

quantified in Lavandula plants, regardless its presence has been confirmed in L. 

dentata [178]. Besides the above luteolin O-sugar derivatives, it should also be 

Figure 12 – General structure of flavones. 
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mentioned that 2’’-O-pentosyl-8-C-hexoside luteolin (52) has been described for L. 

angustifolia extracts [157]. 

Contrarily to the above luteolin derivatives, the aglycone luteolin (53) has been much 

less reported in Mentha and Thymus genera, and mostly detected as a minor phenolic 

component. It has been detected in L. dentata [178, 179], L. stoechas [30] and L. 

angustifolia (0.02 mg/g of dry plant) extracts [134]. In M. arvensis, M. haplocalyx and 

M. spicata species, its concentration was reported to be up to 0.12 mg/g of dry plant 

[61, 93, 111, 180, 181] while its amounts in T. vulgaris and T. serpyllum plants varies 

between 0.6 to 1.5 mg/g of respectively [154]. 

As described above, luteolin derivatives are not widespread in Cytisus, Lamium and 

Leonurus genus. To the author´s knowledge, 2’’-O-pentoxide-8-C-hexoside luteolin, 

luteolin-7-O-glucoside and luteolin-7-methylether (54) are the only reported phenolics 

for each of these genera, respectively [16, 127, 160]. 

Apigenin glycosides are frequently found in some Lavandula, Mentha, Thymus and 

Leonurus plants. Concretely, and as shown in Table 3, apigenin-7-O-glucoside (55) 

has been reported in several Lavandula species [30, 117, 149, 177-179] with a content 

of about 0.04 mg/g of dry in L. angustifolia [134]. More, three O-glucoside structural 

isomers have been described in L. cardiaca extracts (56, 57) [54] (Table 3), while the 

most widespread isomer (apigenin-7-O-glucoside) was detected in the T. webbianus, 

T. vulgaris and T. serpyllum plant species [94, 106, 121, 153]. To the author´s 

knowledge, the only apigenin glycoside described in Cytisus up to this moment is a di- 

glycosidic derivative of this flavone (58) [16]. 

Besides the O-glucoside derivatives of apigenin, other sugar derivatives of this 

aglycone have been already described for Lavandula, Mentha and Thymus. Namely, 

apigenin-7-O-glucuronide (59) has been described for T. webbianus, T. vulgaris and L. 

dentata [30, 93, 100, 114, 135], while apigenin-7-O-rutinoside (60) has been reported 

in L. angustifolia and L. dentata plants [157, 178] and it is largely spread in Mentha 

plants [61, 93, 100, 103, 104, 107, 120, 166]. 

Albeit less frequent, apigenin-C-glycosides have also been described in Lavandula, 

Mentha and Thymus plants. Apigenin-8-C-glucoside (61) has been detected in L. 

angustifolia [157] and L. dentata [30, 178, 179] while the 6,8-di-C-glucoside derivative 

(62) was reported in the former species [93, 178, 179] and also in T. webbianus [153] 

The apigenin aglycone (63) has been detected in several Lavandula species [30, 149, 

178, 179] (Table 3). Its content in L. angustifolia was of 0.04 mg/g of dry plant [134]. 

Apigenin has been also found in Leonurus plants, namely in L. cardiaca and in L. 
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sibiricus [127, 133]. Note also that this flavone has been exhaustively described for 

Thymus and Mentha species (Table 3). Quantification data indicate concentrations of 

0.01 and 0.03 mg/g of dry plant in M. spicata and M. arvensis species, respectively [61, 

166].  

Besides luteolin and apigenin derivatives, other flavones should also be highlighted. 

Indeed, chrysin O-glycosidic derivatives seem to be the most representative phenolics 

of C. multiflorus, accounting for more than half of its total polyphenols (35.1 mg/g of dry 

flowers) [16]. Also, isoscutellarein (64) and hypolaetin (65, 66) glycosides have been 

reported in Lavandula coronopifolia and L. pubescens extracts [161], while derivatives 

of the methylated chrysoeriol (67, 68) have been described in L. intermedia [149] and 

the genkwanin aglycone (69) has been identified in L. dentata plus in distinct Leonurus 

species [126, 182-185]. Moreover, the 6”-O acetyl derivative of the methoxyflavone 

scoparin (70) has been described to occur in C. scoparius [4]. Other less common 

aglycones derived from methylated flavones (71-82) have been found in several 

Mentha [104, 162, 181] and Thymus [131, 186, 187] species. 
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Table 3 – Flavones of Cytisus, Lamium, Lavandula, Leonurus, Mentha and Thymus genera. 

 

            

Compound Cytisus species Lamium species Lavandula species Leonurus species Mentha species Thymus species 

Flavones       

Luteolin-O-glucoside (44)   L. amplexicaule [160] L. x intermedia [149]   M. x piperita [61, 104, 

166] 

T. serpyllum [114, 121] 

    L. spica [117]   M. longifolia [181] T. sipyleus [141] 

    L. stoechas [30, 177]   M. aquatica [166] T. webbianus [153] 

    L. viridis [168]   M. spicata [61] T. vulgaris [93, 100, 

105, 106, 

108, 121] 

    L. dentata [178, 179]   M. x dalmatica [61]   

        M. haplocalyx [61]   

        M. “Morocco” [166]   

        M. “Native Wilmet” 

 

[166]   

        M. x verticillata [166]   

        M. arvensis [61, 166]   

Luteolin-acetyl-O-glycoside (45)           T. vulgaris [100] 

Luteolin-O-diglucoside (46)           T. vulgaris [100] 

Luteolin-7-O-(6”-feruloyl)-ß-

glucopyranoside (47) 

          T. sipyleus [141] 

Luteolin-O-glucuronide (48)     L. x intermedia [149]   M. x piperita [62, 93, 

120] 

T. vulgaris [94, 100, 

106, 119, 

135, 154] 

    L. stoechas [30]   M. longifolia [62] T. serpyllum [114, 154] 

    L. dentata [30]     T. sipyleus [141] 

Luteolin-O-glucuronide-methyl 

(49) 

        M. x piperita [62]   

        M. longifolia [62]   

Luteolin-O-diglucuronide (50)         M. x piperita [62]   

        M. longifolia [62]   

Luteolin-O-rutinoside (51)     L. dentata [178, 179]   M. x piperita [62, 93, 

103, 104, 

107, 120] 

T. vulgaris [106, 154] 

          T. serpyllum [154] 

2’’-O-pentosyl-8-C-hexoside 

luteolin (52) 

C. multiflorus [16]   L. angustifolia [157]       
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Luteolin (53)     L. angustifolia [134]   M. pulegium [180] T. vulgaris [93, 101, 

106, 108, 

121, 154] 

    L. dentata [178, 179]   M. x piperita [93, 111, 

120, 180] 

T. serpyllum [114, 121, 

154] 

    L. stoechas [30]   M. longifolia [181] T. sipyleus [141] 

        M. spicata [61] T. herba-barona [131] 

        M. haplocalyx [61] T. striatus [188] 

        M. arvensis [61, 166] T. webbianus [153] 

        M. aquatica [180]   

Luteolin-7-methylether 

(54) 

      L. sibiricus [127]     

Apigenin-7-O-glucoside (55)     L. angustifolia [134] L. cardiaca [54]   T. vulgaris [94, 106, 

121] 

    L. x intermedia [149] L. japonicus [126]   T. serpyllum [121] 

    L. spica [117]     T. webbianus [153] 

    L. stoechas [30, 177]       

    L. dentata [178, 179]       

Apigenin-5-O-glucoside (56)       L. cardiaca 

 

[54]     

Apigenin-4’-O-glucoside (57)       L. cardiaca 

 

[54]     

2’’-O-pentosyl-8-C-hexoside 

apigenin (58) 

C. multiflorus [16]           

Apigenin-7-O-glucuronide (59)     L. dentata [30]     T. vulgaris [93, 100, 

135] 

Apigenin-7-O-rutinoside (60)     L. angustifolia [157]   M. x piperita [61, 93, 

103, 104, 

107, 120, 

166] 

T. vulgaris [106] 

    L. dentata [178]   M. aquatica [166]   

        M. spicata [61]   

        M. x dalmatica [61]   

        M. haplocalyx [61]   

        M. “Morocco” [166]   

        M. x verticillata [166]   

        M. arvensis [61, 166]   

Vitexin (61)     L. angustifolia [157]       

    L. dentata [30, 178]       

Apigenin-6,8-di-C-glucoside 

(62) 

    L. dentata [178, 179]     T. vulgaris [93] 

          T. webbianus [153] 
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Apigenin (63)     L. angustifolia [134] L. cardiaca [133] M. x piperita [111] T. vulgaris [106, 108, 

121] 

    L. dentata [30, 178, 

179] 

L. sibiricus [127] M. spicata [61] T. serpyllum [114, 121] 

    L. x intermedia [149]   M. pulegium [180] T. herba-barona [131] 

    L. stoechas [30]   M. arvensis [61, 166] T. striatus [188] 

        M. aquatica [180] T.webbianus [153] 

        M. x piperita [180]   

Isoscutellarein-8-O-glucuronide 

(64) 

    L. coronopifolia [161]       

    L. pubescens [161]       

Hypolaetin-8-O-glucuronide (65)     L. coronopifolia [161]       

    L. pubescens [161]       

Hypolaetin-4’-methyl ether 8-O-

glucuronide (66) 

    L. coronopifolia [161]       

    L. pubescens [161]       

Chrysoeriol-O-hexoside (67)     L. x intermedia [149]       

Chrysoeriol-O-glucuronide (68)     L. x intermedia [149]       

Genkwanin (69)     L. dentata [30, 178, 

179] 

L. heterophyllus [184]     

      L. sibiricus [182, 183]     

      L. persicus [185]     

      L. japonicus [126]     

6”-O-acetyl scoparin (70) C. scoparius [4]           

Thymusin (71)         M. spicata [162] T. herba-barona [131] 

        M. x piperita [162, 180] T. striatus [188] 

Thymonin (72)         M. spicata [162, 180] T. striatus [188] 

        M. x piperita [162, 180]   

        M. suaveolens [180]   

        M. pulegium [180]   

        M. longifolia [180]   

Pebrellin (73)         M. citrata [162] T. striatus [188] 

        M. aquatica [162]   

        M. x piperita [104, 162, 

180] 

  

Gardenin B (74)         M. citrata [162] T. striatus [188] 

        M. aquatica [162]   

        M. x piperita [104, 162, 

180] 
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Desmethylnobiletin (75)         M. spicata [162] T. striatus [188] 

        M. x piperita [162, 180]   

Cirsilineol (76)         M. spicata [162] T. vulgaris [109] 

        T. herba-barona [131] 

Sorbifolin (77)         M. x piperita [180] T. herba-barona [131] 

        M. pulegium [180]   

Salvigenin (78)         M. citrata [162, 180] T. striatus [188] 

        M. aquatica [162]   

        M. x piperita [162, 180]   

Ladanein (79)         M. x piperita [162, 180] T. striatus [188] 

        M. pulegium [180]   

Cirsimaritin (80)           T. serpyllum [114] 

          T. herba-barona [131] 

          T. vulgaris [106] 

Xanthomicrol (81)         M. x piperita [180] T. striatus [188] 

          T. herba-barona [131] 

Sideritoflavone (82)         M.  spicata [162] T. herba-barona [131] 
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Ara- Arabinosyl unit; Fer- Feruloyl unit;Glc- Glucosyl unit; GlcU- Glucuronyl unit; Rut- Rutinosyl unit 

 

Figure 13 – Chemical structures of flavones reported in Cytisus, Lamium, Lavandula, Leonurus, 

Mentha and Thymus plants. 

 

 

 

Isoscutellarein derivatives 

 

64  R2 = OGlcU R1= R3 = R5= H R4 = OH  

 

Hypolaetin derivatives 

 

65  R1= R5= H R2= OGlcU R3= R4= OH 
66  R1= R5= H R2= OGlcU R3= R4= OCH3 

 

O O

OO

O

R2

R5

R1

R3

R4

R6

Apigenin derivatives 

 

55  R2= Glc R1= R3= R4= R5= R6= H 

56  R6= Glc R1= R2= R3= R4= R5 = H 

57  R5= Glc R1= R2= R3= R4= R6= H 
58  R3 =GlcAra R1= R2= R4 =R5 = R6= H 

59  R2= GlcU R1= R3= R4= R5= R6 = H 

60  R2= Rut R1= R3= R4= R5= R6= H  
61  R3=Glc R1= R2= R4= R5= R6= H 

62  R1= R3 =Glc R2= R4= R5= R6= H 

63  R1= R2= R3= R4= R5= R6= H  
 

Other flavones (OMe) 

 

71  R1= OH R2= CH3 R3= OCH3 R4= R5 = R6= H 

72  R1= OH R2= CH3 R3= R4= OCH3 R5 = R6= H 

73  R1= OH R2= R5 = CH3 R3= OCH3 R4= R6= H 
74  R1= R3= OCH3 R2= R5 = CH3 R4= R6= H  

75  R1= R3= R4 = OCH3 R2= R5 = CH3 R6= H 

76  R1= R4= OCH3 R2= CH3 R3= R5 = R6= H 

77  R1= OH R2= CH3 R3= R4= R5= R6 = H 

78  R1= OCH3 R2= R5 = CH3 R3= R4= R6= H 

79  R1= OH R2= R5 = CH3 R3= R4= R6= H  
80  R1= OCH3 R2= CH3 R3 = R4= R5= R6= H 

81  R1= R3 = OCH3 R2= CH3 R4= R5= R6= H 

82  R1= R3 = OCH3 R2= CH3 R4= OH R5= R6= H 

O O

OOH

R1

R2

R3

R4

R5

Luteolin derivatives 

 

44  R1= R3= R5 = R6= H R2 = Glc R4 = OH  

45  R1= R3= R5= R6 = H R2 = GlcAc R4 = OH  

46  R1 = R3= R5= R6= H R2= Glc R4= OGlc   
47  R1= R3= R5 = R6= H R2= GlcFer R4= OH 

48  R1= R3= R5 = R6= H R2 = GlcU R4= OH  

49  R1= R3= R5 = R6= H R2 = CH3GlcU R4= OH  
50  R1= R3= R5 = R6= H R2= GlcU R4= OGlcU  

51  R1= R3= R5 = R6= H R2 = Rut R4= OH  

52  R3=GlcAra R4= OH R1 = R2 = R5 = R6= H 
53  R4= OH R1= R2= R3= R5= R6= H  

54  R4= OH R2= CH3 R1= R3 = R5= R6= H  

Chrysoeriol derivatives 

 

67  R1= Glc R2= R3= H R4= OH R5= OCH3 

68  R1= GlcU R2= R3= H R4= OH R5= OCH3 

 
Other derivatives 

 

69  R1= CH3 R2= R3= R5= H R4= OH 

70  R2= GlcAc R1= R3= H R4= OH R5= OCH3 
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2.3.3.2. Flavonols 

Flavonols are a class of flavonoids characterized by a 3-hydroxyflavone backbone (Fig. 

14). 

O

O

OH

 

 

 

Flavonols occur as major phenolic constituents in Leonurus [54, 55, 125, 126, 133, 

189] and Lamium species [17, 26, 139, 173] and are also present in Cytisus plants [4, 

16]. From those, and as expected, quercetin and kaempferol derivatives are the most 

representative ones.  

Quercetin derivatives are the most reported flavonols in Leonurus genus. As can be 

observed in Table 4, mono and di-glycosidic derivatives of this flavonol (83-95) have 

been described for a great number of Leonurus plants [54, 126, 127, 133, 159, 182, 

190]. These are also detectable in Lamium album, L. maculatum and L. amplexicaule 

[17, 26, 139, 160, 171, 173]. Similar quercetin derivatives in Cytisus genus have been 

described for C. scoparius and C. multiflorus [4, 16]. From all the glycosidic quercetin 

derivatives, rutin is the most common. This has been reported to account for 11.9, 0.35 

and 4.1 mg/g of Leonurus sibiricus, Lamium maculatum and C. multiflorus dry plants, 

respectively [16, 139, 173, 182]. Besides these derivatives, the quercetin aglycone (95) 

has been described in all the six target plant genera, with the exception of Lavandula. 

Kaempferol derivatives are also important constituents of Cytisus, Lamium and 

Leonurus plants. The aglycone form (96) together with several glycosydic derivatives 

(97-103), have been described in C. scoparius, C. multiflorus [4, 16] and in the 

Leonurus species L. cardiaca [54, 133] and L. japonicas [125, 126]. Quantification data 

indicated that kaempferol hexosides represented approximately 15% of the total 

phenolics in C. multiflorus (5.7 mg/g of dry plant). Moreover, distinct O-kaempferol 

glycosidic derivatives have been reported in L. album [26, 171] and in L. amplexicaule 

[160]. Moreover, rhamnetin (104) has been described to occur in C. scoparius [4] and 

ishoramnetin (105) and O-glycosidic derivatives (106, 107) have been reported in T. 

vulgaris and/or L japonicus species [106, 125]. 

Figure 14 – General structure of flavonols. 

http://en.wikipedia.org/wiki/3-hydroxyflavone
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Table 4 – Flavonols of Cytisus, Lamium, Lavandula, Leonurus, Mentha and Thymus genera. 

             

Compound Cytisus species Lamium species Lavandula species Leonurus species Mentha species Thymus species 

Flavonols       

Quercetin-3-O-glucoside (83)   L. album [26] L. x intermedia [149] L. cardiaca [54]     

       L. sibiricus [127, 182]     

       L. japonicus [125, 126]     

Quercetin-7-O-glucoside (84)   L. album [17]   L. cardiaca [54]   T. vulgaris [106] 

Quercetin-3-O-galactoside (85)       L. cardiaca [54, 133]     

       L. sibiricus [182]     

Quercetin- 3-O-rhamnoside (86) C. scoparius [4] L. maculatum [17]   L. cardiaca [54]     

Quercetin dihexoside (87) C. multiflorus [16]           

Quercetin acetyldihexoside (88) C. multiflorus [16]           

3'- O-methylquercetin-3-O-

rutinoside (89) 

  L. maculatum [17, 173]         

Quercetin 

3-O-α-L-rhamnopyranosyl-

(1→6)-ß-D-galactopyranoside 

(90) 

      L. sibiricus [182]     

Quercetin-3-O-[3-(4-hydroxy-

3,5-dimethoxybenzyl)-α-L-

rhamnopyranosyl]-(1→6)- ß-D-

galactopyranoside (91) 

      L. heterophyllus [190]     

Rutin (92) C. scoparius [4] L. album [26, 171]   L. cardiaca [54, 55, 

133] 

M. x piperita [111] T. vulgaris [106] 

 C. multiflorus [16] L. maculatum [139, 173]   L. sibiricus [127, 182]     

2’’’-Syringylrutin (93)       L. japonicus [126, 159]     

Quercetin-3-O-[ß-D-

glucopyranosyl-(1→4)][ α-L-

rhamnopyranosyl-(1→ 6)]-ß-D-

glucopyranoside (94) 

  L. amplexicaule [160]         

Quercetin (95) C. scoparius [4] L. album [26, 171]   L. cardiaca [133] M. x piperita [111] T. vulgaris [106, 121] 

       L. sibiricus [182]   T. serpyllum [121] 

Kaempferol (96) C. scoparius [4]     L. cardiaca [133]     

Kaempferol-O-hexoside (97) C. multiflorus [16] L. album [171]   L. cardiaca [54]     
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Kaempferol acetylhexoside (98) C. multiflorus [16]           

Kaempferol malonyl glucoside 

(99) 

    L. angustifolia [157]       

Kaempferol-3-coumaryl 

glucoside (100) 

  L. album [26, 171] L. angustifolia [157] L. japonicus [125, 126]     

Kaempferol-7-O-rutinoside (101)   L. amplexicaule [160]   L. japonicus [126] M. x piperita [116]   

4’-methoxykaempferol-7-O-

rutinoside (102) 

        M. x piperita [116]   

Kaempferol-3-O-[ß-D-

glucopyranosyl-(1→ 4)][ α -L-

rhamnopyranosyl-(1→ 6)]-ß-D-

glucopyranoside (103) 

  L. amplexicaule [160]         

Rhamnetin (104) C. scoparius [4]           

Isorhamnetin (105)           T. vulgaris [106] 

Isorhamnetin-O-glucoside (106)           T. vulgaris [106] 

Isorhamnetin-3-O-rutinoside 

(107) 

      L. japonicus [125]     
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Ac- Acetyl unit; Cou- Coumaroyl unit; Gal- Galactosyl unit; Glc- Glucosyl unit; Mal- Mallonyl unit; Rut- Rutinosyl unit; Rha- 

Rhamnosyl unit; Syr- Syringyl unit 

 

Figure 15 – Chemical structures of flavonols reported in Cytisus, Lamium, Lavandula, 

Leonurus, Mentha and Thymus plants. 

 

 

Quercetin derivatives 

 

83  R2= OH R1= R3= H R4= Glc 

84  R1= Glc R2= OH R3= R4= H 

85  R2= OH R1= R3= H R4= Gal 
86  R2= OH R1= R3= H R4= Rha 

87  R1= R4= Glc R2= OH R3 = H 

88  R1= Glc R4= GlcAc R2= OH R3= H 
89  R1= H R2= OCH3 R3= H R4= Rut 

90  R1= H R2= OH R3= H R4= RhaGal 

91  R1= H R2= OH R3= H R4= SyrRhaGal 
92  R1= R3= H R2= OH R4= Rut 

93  R1= R3= H R2= OH R4= SyrRut 

94  R1= R3= H R2= OH R4= GlcRut 

95  R1= R3= R4= H R2= OH 

O O

OOH

O
R3

R2

O

R1

R4

Kaempferol derivatives 

 

96  R1= R2= R3= R4= H  

97  R1= R2= R3= H R4= Glc 

98  R1= R2= R3= H R4= GlcAc 
99  R1= R2= R3= H R4= GlcMal 

100 R1= R2= R3=H R4= GlcCou 

101 R1= Rut R2= R3= R4= H 
102 R1= Rut R2= R4= H R3=CH3 

103 R1= R2= R3= H R4= GlcRut  

Rhamnetin derivatives 

 

104 R1= CH3 R3= R4= H R2= OH 

105 R1= H R2= OCH3 R3= R4= H 

106 R1= H R2= OCH3 R3= H R4= Glc 
107 R1= H R2= OCH3 R3= H R4= Rut 
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2.3.3.3. Flavanones 

Flavanones are characterized by the absence of the double bond between the 2- and 

3-positions and the presence of a chiral center at the 2-position of the C-ring (Fig. 16).  

O

O  

 

 

 

In the six studied genera, flavanones (mainly eriodictyol and naringenin derivatives) are 

present in Mentha, Thymus and Lavandula plants, while, to the best of to the author´s 

knowledge, this class of compounds have never been reported in Lamium and Cytisus 

species. 

Mentha plants are enriched in O-glycosydic derivatives of eriodictyol, being the 

eriocitrin (eriodictyol-7-O-rutinoside) (108) the most widespread and the most 

abundant. Concentrations of about 16 mg/g of dry plant have been found in M. x 

piperita [61, 62, 93, 104, 107, 116, 120, 152] and amounts between 2.5 and 7.4 mg/g 

dry plant have been described for M. x dalmatica, M. spicata and M. “Native Wilmet” 

[61]. Eriocitrin was also found in T. serpyllum and in T. vulgaris (1.2 mg/g of dry plant). 

These two species also contain the O-glucuronide derivative of eriodictyol (109) [100, 

114, 135]. On the other hand, eridioctyol-O-glucoside (110) is the unique eriodictyol 

derivative described in Lavandula plants, namely in L. x intermedia. This compound, 

together with pinocembrin (111) (detected in L. viridis species), are the only flavanones 

described in Lavandula species [149, 168].  

Concerning the eriodictyol aglycone (112), this has been described to occur in Thymus 

and Mentha genus. In more detail, this form has been detected in T. serpyllum, T. 

webbianus and T. herba-barona [114, 131, 153, 154], T. vulgaris (1.5 mg/g of dry plant) 

[108, 119, 154] and in M. x piperita (0.1 to 0.5 mg/g of dry plant) [61, 120].  

Despites less frequent than eriodictyol derivatives, naringenin derived compounds also 

occur in Thymus and in Mentha plants. The aglycone form (113) has been detected in 

T. vulgaris (0.4 mg/ g of dry plant), in T. webbianus and in T. herba-barona  [131, 153, 

Figure 16 – General structure of flavanones. 



39 | INTRODUCTION 

Pereira O. R., 2013 | CHARACTERIZATION OF PHENOLIC CONSTITUENTS OF MEDICINAL PLANTS AND 

EVALUATION OF PHARMACOLOGICAL ACTIVITIES: FOCUS IN ANTIOXIDANT AND 

ANTI-INFLAMMATORY PROPERTIES 

154] and also shown to be present in low amounts in M. x piperita and M. aquatica 

species [111, 191]. Instead, the 7-O-rutinoside derivative of naringenin (114) has been 

largely reported in M. x piperita species [103, 107, 116, 120] and estimated to account 

for 0.3 mg/ g of dry T. vulgaris [154]. A second naringenin-O-derivative, the naringenin-

7-O-glucoside (115), has also been reported in the latter species (0.6 mg/ g of dry 

plant) [154], in M. x piperita, in M. arvensis (1.0 and 0.1 mg/g of dry plant in 

respectively) and in other Mentha species (Table 5) [61, 120, 152, 166]. 

Besides the most prevalent flavanones, hesperidin (hesperitin-7-O-rutinoside) (116) 

has been widely described in M. longifolia, M. x piperita (1.7 mg/g dry plant) [93, 100, 

103, 104, 116, 181] and reported to amount for 1 mg/g of dry T. vulgaris plant [154]. 

Concerning the Leonurus species, the only flavanone described in this genus is 

hesperetin (117), which has been reported to occur in L. cardiaca extracts [133].  
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Table 5 – Flavanones of Lavandula, Leonurus, Mentha and Thymus genera. 

         

Compound Lavandula species Leonurus species Mentha species Thymus species 

Flavanones 
        

Eriocitrin (108)     M. x piperita [61, 62, 93, 

104, 107, 

116, 120, 

152] 

T. vulgaris [121, 154, 

192] 

    M. aquatica [166] T. serpyllum [121, 154] 

    M. spicata [61]   

    M. x dalmatica [61]   

    M. haplocalyx [61]   

    M. “Morocco” [166]   

    M. “Native Wilmet” [61, 166]   

    M. x verticillata [166]   

    M. arvensis var. 

japanensis 

[61, 166]   

Eridioctyol-O-glucuronide (109)       T. vulgaris [100, 135] 

    T. serpyllum [114] 

Eridioctyol-O-glucoside (110) L. x intermedia [149]   M. x piperita [103, 104, 

120] 

T. vulgaris [135, 154] 

Pinocembrin (111) L. viridis [168]       

Eriodictyol (112)     M. x piperita [61, 120, 

152] 

T. vulgaris [108, 119, 

154] 
    M. “Native Wilmet” [166] T. herba-barona [131] 

      T. serpyllum [114, 154] 

      T. webbianus [153] 

Naringenin (113)     M. x piperita [111, 120] T. vulgaris [154] 

    M. aquatica [191] T. herba-barona [131] 

      T. webbianus [153] 

Naringenin-7-O-rutinoside (114)     M. x piperita [103, 107, 

116, 120] 

T. vulgaris [154] 

Naringenin-7-O-glucoside (115)     M. x piperita [120, 152] T. vulgaris [154] 

    M. haplocalyx [61]   

    M. x verticillata [166]   

    M. arvensis [61, 166]   

Hesperidin (116)     M. x piperita [93, 103, 

104, 107, 

116, 120] 

T. vulgaris [154] 

    M. longifolia [181]   

Hesperetin (117)   L. cardiaca [133]     

 

 

 

 

 

 
Glc- Glucosyl unit; GlcU- Glucuronyl unit; Rut- Rutinosyl unit 

Figure 17 – Chemical structures of flavanones reported in Lavandula, Leonurus, Mentha and 

Thymus plants. 

 

 

Flavanones 

 

108 R1= Rut R3= R2= OH 

109 R1= GlcU R2= R3= OH 
110 R1= Glc R3= R2= OH 

111 R1= R2= R3= H 

112 R1= H R2= R3= OH 

113 R1= R2= H R3= OH 

114 R1= Rut R2= H R3= OH 

115 R1= Glc R2= H R3= OH 

116 R1= Rut R2= OH R3= OCH3 

117 R1= H R2= OH R3= OCH3 

O O

OOH

R3

R1

R2
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2.3.3.4. Isoflavones 

As observed in Fig. 18, this class of flavonoids is characterized by the presence of a 

double bond between the 2 and 3 positions and the attachment of B-ring to C-3, 

instead of C-2. 

O

O

 

 

 

Isoflavone are the less representative class of flavonoids in the six genera (118-122) 

and to the author´s knowledge, up to this moment, isoflavones have only been 

detected in Cytisus species (Table 6) [4, 113, 138]. 

 

Table 6 – Isoflavones of Cytisus genera. 

   

Compound Cytisus species 

Isoflavones   

Daidzin (118) C. albus [113] 

Ononin (119) C. nigricans [138] 

C. albus [113] 

Genistein (120) C. albus [113] 

Genistin (121) C. albus [113] 

C. scoparius [4] 

Sarothamnoside (122) C. scoparius [4] 

 

 

 

 

 

 

Api- Apiosyl unit; Glc- Glucosyl unit 

 

Figure 19 – Chemical structures of isoflavones reported in Cytisus plants.  

Figure 18 – General structure of isoflavones. 

O
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OR1

R2

R3

Isoflavones 

118 R2= Glc R1= R3= H  

119 R2= Glc R1= H R3= CH3 
120 R1= OH R2= R3= H 

121 R1= OH R2= Glc R3= H 

122 R1= OH R2= R3= ApiGlc 
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2.4. BENEFICIAL EFFECTS 

Several plants belonging to Cytisus, Lamium, Lavandula, Leonurus, Mentha and 

Thymus genera are used for decades in traditional medicine due to their claimed 

beneficial effects, including antioxidant, anti-inflammatory, antimicrobial, analgesic, 

neuroprotective and anti-carcinogenic. Following, a summary of the main beneficial 

properties associated to the plant genera herein in focus is presented and summarized 

in Table 7. Particular focus will be given to the antioxidant and anti-inflammatory 

properties, since these main explored plant properties in the investigated plant genus, 

and were also investigated in the practical part of the present work. 

 

2.4.1. Antioxidant activity 

Oxidative stress is a condition characterized by an imbalance between pro-oxidants 

and antioxidant defenses. The reactive oxygen and nitrogen species (ROS e.g. O2
●−, 

OH●, ROO● and RNS, e.g. NO●, ONOO−) are generated in a variety of intracellular 

processes and their overproduction produces cell damage in lipids, proteins and DNA 

[193, 194]. The overproduction of these pro-oxidant agents is closely associated to 

aging processes and to the physiopathology of several diseases [195-197]. On the 

other hand, several compounds, namely antioxidants (e.g. polyphenols) can act 

counteracting oxidative stress through several mechanisms, e.g. free radical 

scavenging, electron or hydrogen atom donation or metal cation chelation [198]. In 

accordance to that, many of the beneficial activities of the plants (e.g. anti-

inflammatory) have been related with the antioxidant capacities of their phenolic 

compounds [199].  

Several chemical in vitro methods have been developed in order to determine the total 

antioxidant capacity of plant extracts or of their individual phenolic components and 

includes, among others, the free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH●) 

scavenging, hydroxyl radical scavenging activity, the superoxide scavenging activity, 

the NO●-scavenging activity, the reducing/antioxidant power (FRAP), the oxygen 

radical absorbance capacity (ORAC), the Trolox equivalence antioxidant capacity 

(TEAC), the ß-carotene bleaching test and the inhibition of lipid peroxidation 

(Thiobarbituric Acid test). These assays are widely used, since they can give some 

clues on the extracts/phenolics antioxidant characteristics, besides being fast and 

simple [200, 201].  
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Besides the importance of these tests, cellular in vitro and in vivo animal models are 

particularly useful for further understanding the actions of these compounds in the 

human body. Due to the ethics issues, high costs and the time-consuming of the in vivo 

studies (including those with human), the evaluation of the antioxidant activity by 

means of cellular-based assays is a good alternative. A very common method of 

evaluating cellular antioxidant activity of compounds or of extracts, is through the use 

of the redox sensor dihydrodichlorofluorescein diacetate (DCFH2), which is oxidized to 

fluorescent dichlorofluorescein (DCF) in the presence of ROO●. Another option is the 

assessment of antioxidant enzymes expression or activities (e.g. superoxide 

dismutase, glutathione peroxidase, glutathione reductase, catalases) vs inhibition of 

pro-oxidant enzymes (5-lipoxygenase, xanthine oxidase, nitric oxide synthase). The up-

regulation expression of antioxidant enzymes is a cellular strategy to reduce the 

oxidative status [202]. In accordance to that, other alternative of cellular-based assays 

is the assessment of activation (e.g. Nrf-2) vs repression of redox transcription factors 

such as Nf-kB. 

The in vivo assays using animal models and human studies aim to evaluate the levels 

of oxidative stress biomarkers and usually engage the measurement of antioxidant 

compounds or enzyme levels, oxidation products or the ratio of oxidized to reduced 

form (e.g. GSSG/GSH). Despite the increase of in vivo studies in the last decades, 

these are still scarce for establishing the exact role of antioxidants in promoting the 

human health [203]. 

As shown in Table 7, several Lavandula species have been investigated for its 

antioxidant capacities through chemical methods. EC50 values between 11.5 to 19.3 

μg/mL were reported for DPPH● radical scavenging ability of L. x intermedia 'Budrovka' 

and L. angustifolia hydroethanolic extracts, water extracts of L latifolia and methanol 

extracts of L. coronopifolia and L. multifida [169, 204, 205], thus demonstrating high 

radical scavenging capacity for these plants. Higher EC50 values (40.6 to 110.4 μg/mL) 

have been determined for ethanolic extracts of L. x intermedia Emeric ex Loiseleur, 

water extracts of L. dentata and several hydroethanolic extracts of L. hybrida and of 

subspecies of L. angustifolia [149, 206, 207]. Additionally, Lee et al. [115] reported 

strong antioxidant capacities both in DPPH● and NO●-inhibition assays, which have 

been both correlated to their high phenolic content, for acetone extracts of L. allardii 

‘Rly’ and L. stoechas. 

For hydroethanolic L. hybrida and water L. stoechas extracts, the EC50 values in ferrous 

ion chelating activity assay are 49.9 and less than 20.0 μg/mL, respectively [122, 207] 

while the radical scavenging ability of ABTS●+ in lavender extracts varies between 2.5 
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μM of Trolox equivalents, for L. vera [208] and about 1 mM of Trolox equivalents for 

ethanolic and water L. officinalis extracts [123, 209]. 

The antioxidant activity of Lamium album enriched phenolic extracts has also been 

extensively assessed by the DPPH● assay, and also through the evaluation of their 

scavenging effects on superoxide and hydroxyl radicals [210, 211]. In general, the 

authors have closely associated the phenolic content and/or composition of the 

extracts to their antioxidant properties [18, 212], as well as to their health benefits [26, 

27]. In more detail, EC50 values between 64.5 and 96.2 μg/mL have been estimated for 

the DPPH● radical scavenging ability by the methanolic extracts of L. eriocephalum 

subsp. eriocephalum, L. garganicum subsp. laevigatum and L. purpureum var. 

purpureum [213], and EC50 values of 14.1 to 63.9 μg/mL have been obtained for five of 

the isolated phenolics from L. amplexicaule [160]. The phosphomolybdenum reduction 

assay [214] showed an antioxidant potential of 131.2 and about 250 AAE mg/g for 

aqueous methanolic and methanolic L. maculatum and L. album extracts, respectively 

[18, 50]. 

Phenolic compounds in Mentha have also been associated to their beneficial 

properties, supporting their ethnopharmacological usage. The antioxidant ability of 

Mentha extracts has been shown by assessing free radical scavenging activity against 

DPPH●, as well as by evaluating the lipid peroxidation protective activity, using both the 

thiobarbituric acid, ß-carotene bleaching methods and iron(III) reduction and iron(II) 

chelation [73, 152, 204, 215]. The cultivar M. x piperita “Frantsila” has been described 

as a good source of antioxidants compounds [61] as well as the species M. spicata, M. 

aquatica and M. suaveolens. The DPPH● scavenging EC50 values for aqueous 

ethanolic or methanolic extracts of these two latter species have been estimated to be 

about 30 μg/mL [73, 204, 215]. Besides these spectrometric assays, the protective 

effects against oxidative stress of methanolic M. × piperita and M. aquatica extracts 

were proved in hydrogen-peroxide-induced toxicity in PC12 cells (Rat 

pheochromocytoma cells) [216]. An in vivo study performed with ethanolic extract of M. 

pulegium by Jain and colleagues [217] showed that at a dose of 600 mg/kg, the extract 

significantly improved the glutathione, SOD, catalase, and peroxidase levels, when 

compared to the control group.  

Water, methanolic, ethanolic or water extracts of T. vulgaris, i.e., the most investigated 

Thymus species, have been shown to have DPPH● radical EC50 values between 33.3 

and 56.1 μg/mL. Other chemical in vitro tests, including the reducing power, hydrogen 

peroxide scavenging activity, hydroxyl radical scavenging activity also have been 

shown positive results for the antioxidant capacity of this Thymus species [15, 204, 
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218, 219]. Moreover, different studies in methanolic extracts of T. leucotrichius, water 

extracts of T. camphoratus, T. carnosus, T. mastichina and T. x citriodorus have been 

proved the high antioxidant properties of the species [15, 220, 221]. 

Considering the Leonurus genus, several studies have highlighted the antioxidant 

properties of aqueous methanolic or methanolic extracts of L. cardiaca, in particular by 

demonstrating their efficient ability to chelate iron [50, 51, 53, 56, 186]. The DPPH● 

scavenging test performed with methanolic extracts of this species estimated EC50 

values varying in between 27 and 144 μg/mL. Other antioxidant species includes L. 

japonicas, in which the antioxidant property of its methanolic extract has been 

evaluated trough the ferric thiocyanate method [125]. Furthermore, an in vivo study 

performed by Lee and colleagues [222] also allowed concluding that the hydroethanolic 

extract of L. sibiricus supplementation attenuates the intracellular oxidative stress 

induced in rats with an atherogenic diet. Overall, the protective effect has been 

speculated to be mediate through the enhancement of antioxidant enzymes and by the 

free radical scavenging activities of the plant.  

From all the Cytisus species, C. scoparius is by far the most considered as an 

antioxidant agent, being this property frequently related to the high phenolic 

concentration of the plant [223]. DPPH● EC50 values of 3.0 and 65.4 μg/mL have been 

obtained for hydroethanolic and ethanolic enriched phenolic extracts of C. scoparius, 

respectively while EC50 value of 70 μg/mL was obtained in ß-carotene bleaching assay 

for an aqueous extract of the same species. Moreover, these exhibited good nitric 

oxide radical scavenging, superoxide anion radical scavenging, hydroxyl radical 

scavenging, antilipid peroxidation and high reducing power [98, 223, 224]. In good 

agreement with these results, an in vivo experiment showed the capacity of an 

hydroalcoholic extract of C. scoparius to increase the total antioxidant capacity, 

measuring by FRAP levels, to reduce thiobarbituric acid reactive substances (TBARS) 

and to increase SOD and catalase levels in liver and kidney [224], while other authors 

have concluded that the plant protects liver from oxidative stress induced by carbon 

tetrachloride in rats. In this particular case, the pretreatment with the plant extract 

lowered the serum glutamate oxaloacetate transaminases (SGOT), the serum 

glutamate oxaloacetate transaminases (SGPT), lactate dehydrogenase (LDH) and 

TBARS levels. Moreover, a significantly increase of reduced glutathione (GSH) and 

hepatic enzymes, like superoxide dismutase (SOD), catalase (CAT), glutathione 

peroxidase (GPx), glutathione reductase (GRD) and glutathione-s-transferase (GST) 

[4] was registered. 
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2.4.2. Anti-inflammatory activity 

Inflammation is a biological response of living tissues against injury or infection. Hence, 

it can be initiated by physical damage of tissue, toxic and chemical substances, as well 

as by microorganisms. The inflammatory process is characterized by a complex 

immunological process leading to a cascade activation, which includes the secretion of 

mediators as prostaglandin E2 (PGE2), the overproduction of reactive oxygen species 

(ROS) and reactive nitrogen species (RNS) such as nitric oxide (NO●), as well as the 

release of pro-inflammatory cytokines as interleukins (IL-1β, IL-6, IL-12), interferon 

(INF-γ) and tumor necrosis factor (TNF-α) [225, 226]. The release of these pro-

inflammatory mediators is in turn stimulated by the inducible enzymes cyclooxygenase-

2 (COX-2), nitric oxide synthase (iNOS) and by lipoxygenase (LOX). On the other 

hand, this phenomenon is counteracted by anti-inflammatory cytokines (IL-4, IL-10, IL-

13) and TGF-β [225-227]. Despite the protective role of inflammation, the reiterated 

inflammatory mechanisms are related to several medical disorders. Chronic 

inflammation is associated to various dysfunctions and pathologies such 

atherosclerosis, rheumatoid arthritis, asthma, obesity, diabetes, neurodegenerative 

diseases and even cancer [228].  

At present, drugs to treat inflammatory disorders are classically in corticosteroid and 

nonsteroidal, both inhibiting the enzyme COX-1 and/or COX-2. Indeed, even despite 

new biological drugs with other cellular targets are now available in the market (e.g. 

infliximab, etanercept) for the treatment of rheumatology, dermatology and 

gastroenterology inflammatory ailments, their therapeutic usage entail high costs [229]. 

This fact, together with the high incidence of side effects on classical anti-inflammatory 

agents, stimulate the search for new safe anti-inflammatory drugs [225, 230]. In this 

way, plant extracts or their bioactive compounds (e.g. polyphenols) are also frequently 

assayed for anti-inflammatory properties [227].  

As a first approach, chemical in vitro tests such NO● and HOCl scavenging are useful 

and routinely used for assessment of relevant anti-inflammatory activities. Additional 

information can be obtained from in vitro cell cultures tests after lipopolysaccharide 

stimulation of human monocytic leukemia cell line (THP-1 cells) or, more frequently, on 

monocyte/macrophage cell line RAW 264.7. Griess reaction is vastly used for 

measuring the nitrite accumulation in the culture supernatant on monocyte/macrophage 

cell line RAW 264.7. Moreover, some cellular proteins with important role in 

inflammation processes (e. g. iNOS, COX-2 and LOX) can be measured by Western 

Blot assay. Prostaglandin E2 (PGE2) and pro-inflammatory cytokines as TNF-α (tumor 

necrosis factor α) and interleukine (e.g. IL-1β, IL-2, IL-6) levels have also been 
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estimated by enzyme immunoassay in macrophage culture medium [227]. Moreover, in 

vivo models include the paw edema induced by carrageenan, histamine, dextran and 

ear edema induced by toxics as croton oil, arachidonic-acid and xylene [231-234]. 

From the six plant genera focused in the present study, Lamium is the most exploited 

regarding their anti-inflammatory capacities. An hydroalcoholic extract of L. album has 

been demonstrated to inhibit the lipoxygenase activity [211] and to stimulate human 

skin fibroblasts, which are fundamental in tissue repair [26, 27]. Besides these, distinct 

extracts from L. garganicum subsp. laevigatum, L. garganicum subsp. pulchrum and L. 

purpureum var. purpureum have demonstrated good anti-inflammatory activities in 

distinct in vivo models [19], mostly in carrageenan-induced paw edema model. The 

inhibition of the croton oil-induced ear edema in mice model was used to evaluate 

topical anti-inflammatory activity of a M. aquatica hydroethanolic extract [73]. 

Anti-inflammatory properties have also been described for methanolic extracts of 

Cytisus aeolicus and Thymus richardii, through the inhibition of leukotriene B4 

production in rat polymorphonuclear leukocytes [235]. Furthermore, Lee and 

colleagues [222] showed that an hydroethanolic extract of Leonurus sibiricus can 

suppress the activation of inflammatory mediators and this activity was confirmed in the 

carrageenan induced rat paw edema in vivo model [236]. Positive results were also 

obtained in the same model for the oil fraction of Lavandula angustifolia [237]. 

 

2.4.3. Other beneficial activities 

Cytisus, Mentha, Thymus, Lavandula and Lamium plants have also been described to 

exhibit antimicrobial, anticancer, analgesic and neuroprotective activities. Some 

examples can be pointed, as follows. 

From methanolic extracts of Lamium species, L. eriocephalum subsp. eriocephalum 

and L. tenuiflorum have been suggested as good antimicrobial agent against bacteria 

and fungi [213, 238] while Lavandula stoechas [239] and T. pallidus [239] methanolic 

extracts have antibacterial effects against Streptococcus pneumonia. Furthermore, the 

acetone extracts of the species C. aeolicus and C. capitatus exhibit synergic 

antibacterial effect when combined with typical antibiotics [240]. 

Regarding the anticancer activity, it is important to remark that L. album has been 

shown to exhibit potential anticancer effects. The cytotoxic effects of methanol and 

chloroform L. album extracts are partially caused by the retention of the cell cycle in G2 

period, as demonstrated on the lung cancer cell line A549 [241]. Additionally, M. 
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spicata, M. × piperita ethanolic or methanolic extracts, respectively, have shown 

antitumorogenic properties in human prostate (PC-3) and colon (SW-480) cancer cell 

lines [242, 243] while methanolic T. vulgaris extracts have been shown the same 

property in the last cell line [242], and their metabolites have been shown 

antimutagenic activity [244]. Other study indicated that ethyl acetate extract of T. 

quinquecostatus as an antitumor agent in human leukemia cell line [245]. 

As suggested by Akkol et al. [19], Lamium garganicum subsp. laevigatum, L. 

garganicum subsp. pulchrum and L. purpureum var. purpureum are good candidates 

for in vivo antinociceptive agents, which has been attributed to the presence of iridoids 

and phenolic compounds in the plant extracts. The effect was measured by the 

antinociceptive activity p-benzoquinone (PBQ)-induced writhing test in mice. Besides 

these plants, ethanolic extracts of T. satureioides, T. maroccanus and T. leptobotrys 

have been described to exhibit analgesic activities, thus supporting their traditional use 

in the relief of some pains [246]. The same property has been demonstrated for 

Leonurus sibiricus methanolic extract in acetic acid-induced writhing in mice [236]. 

Some species of the six genera herein in focus have been shown to be 

neuroprotective. A methanolic extract of Lavandula viridis emerged as an inhibitor of 

acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), as demonstrated by 

Ellman’s method [247], in in vitro and in vivo models [168]. Water extracts of L. 

angustifolia L. have showed efficient neuronal protection against glutamate toxicity 

[248] and positive influence in the cognitive performance, enhancing memory 

consolidation in a model of Alzheimer’s disease [249]. Besides these species, several 

Mentha species have been demonstrated to have neuroprotective effects that can 

justify their traditional usage for counteracting central nervous system disorders. In 

more detail, methanolic extracts of M. × piperita and M. aquatica and an hydroethanolic 

extract of M. aquatica exerted monoamino oxidase A (MAO-A) inhibitory activity [72, 

191, 216], an important condition of antidepressant agents. From those, M. aquatica 

has been shown to have the highest GABAA-receptor affinity, which is a crucial feature 

for sedative effects [216]. The described effects are attributed, almost in part, to its 

content in (S)-naringenin [72, 191]. 

Besides the above examples, it also should be mentioned that few examples of other 

beneficial activities (e.g. tyrosinase inhibitor, anticonvulsant, cardioprotective, anxiolytic 

and hepatoprotective) have been reported for the six plant target genera. 

In this sense, C. scoparius has been shown in vivo sedative, moderate anxiolytic and 

liver protective effects, which have been frequently associated to its antioxidant activity 
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[4, 6]. Moreover, the water and aqueous acetone extracts of L. stoechas, L. latifolia, L. 

allardii and L. dentata species have been reported to exhibit a tyrosinase-inhibitory 

activity, rendering them potential application as whitening agents [115, 206]. 

Additionally, a hydromethanolic extract of the primer species has shown anticonvulsant 

activities in an epilepsy model and also antispasmodic and sedative effects, justifying 

their ethnopharmacological uses [250]. Furthermore, cardiovascular protective effects 

have been demonstrated by distinct assays for Leonurus sibiricus and T. pulegioides. 

In the first case, the reduction of plasma cholesterol, elevation of HDL cholesterol, and 

the decrement of the atherogenic index were obtained after supplementation with the 

hydroethanolic Leonurus extract for 14 weeks the mice, using a diet-induced 

hypercholesterolemia C57BL/6 mice model [222]. An ethanolic extract of T. pulegioides 

has shown the ability to increase the release of the vasorelaxant factors nitric oxide 

(NO) and the prostacyclin, thus showing cardiovascular protective effects [251]. 
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Table 7 – Described effects in Cytisus, Lamium, Lavandula, Leonurus, Mentha and Thymus genera. 

Bioactivity 
Cytisus species Lamium species Lavandula species Leonurus species Mentha species Thymus species 

Antioxidant C. scoparius [4, 98, 

223, 224] 

L. album [18, 27, 210, 

211] 

L. stoechas [115] L. japonicas [125] M. × piperita [61] T. vulgaris 

 

[15, 204, 

218, 219] 

L. eriocephalum [213] L. allardii [115] L. cardiaca [50, 51, 53, 

56, 186] 

M. spicata [215] T. leucotrichius 

 

[221] 

L. garganicum [213] L. viridis [168] L. sibiricus [222] M. aquatica [73] T. x citriodorus [15] 

L. purpureum [18, 213] L. x intermedia [149]   M. suaveolens [204] T. pulegioides 

 

[252] 

L. amplexicaule [160] L.officinalis L. [123, 209, 

253] 

    T. mastichina [220] 

L. maculatum [50] L. latifolia [110, 204]       

  L. stoechas [122]   

  L. dentata [206]   

  L. hybrida [207]       

     L. vera [208]       

Anti-inflammatory C. aeolicus [235] L. album [26, 27, 211] L. angustifolia [237] L. sibiricus [236] M. aquatica [73] T. richardii [235] 

 L. garganicum [19] 

L. purpureum 

 

[19] 

Antimicrobial C. aeolicus [240] L. purpureum [213] L. stoechas [239]   M. longifolia [204] T. vulgaris [204] 

C. capitatus L. tenuiflorum [238, 254] M. × piperita [204] 

Anticancer   L. album [241]     M. × piperita [242] T. vulgaris [242] 

M. spicata [243] T. quinquecostatus [245] 

Analgesic   L. garganicum [19]       T. satureioides 

[246] L. purpureum 

 

[19] T. maroccanus 

  T. leptobotrys 

Neuroprotective     L. angustifolia [248, 249]   M. × piperita [216]   

L. viridis [168] M. aquatica [72, 191, 

216] 

Tyrosinase inhibitor   L. amplexicaule [160] L. stoechas [115]       

     L. latifolia [115, 206]       

     L. allardii [115]       

Anticonvulsant     L. stoechas [250]       

Cardioprotective       L. sibiricus [222]   T. pulegioides [251] 

Anxiolytic C. scoparius [6]           

Hepatoprotective C. scoparius [4, 6, 98]           

  



 

 

 
 

 

 

3. RESULTS AND DISCUSSION 
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Regardless the exponential investigation on phenolic compounds in the last decades, 

the scientific knowledge on the phenolic composition of many plants, as well as on the 

mechanisms of action associated to their health benefits, remain far from being fully 

elucidated [255, 256]. In this context, the first aim of this Doctoral Thesis was to 

investigate the phenolic composition of the ethanolic extracts of the unexploited 

species Thymus x citriodorus, Cytisus multiflorus and Lamium album L., Leonurus 

cardiaca L., Mentha aquatica L. and Lavandula dentata L., by means of the combined 

methods HPLC-DAD plus ESI-MS, MSn and NMR. Further studies aimed to evaluate 

the antioxidant capacities of the extracts, as well as other biological properties that can 

add value to these plants.  

The phenolic extracts of the six plants were obtained by extraction with an 80% 

ethanolic aqueous solution (v/v), after defatting with n-hexane. Some of the ethanolic 

extracts were also purified on Strata SPE C18-E cartridges (2 g, Waters, Milford, MA, 

USA), for phenolic enrichment. The resulting extracts were further analyzed by 

reversed phase HPLC-UV, ESI-MS in the negative ion mode and MSn combined 

techniques. Moreover, NMR experiments were performed in order to confirm the exact 

structure of the major phenolic compounds of some plant extracts. The analysis of T. x 

citriodorus extract was also validated concerning its linearity, instrumental and method 

precision (for repeatability, immediate precision and intermediate precision) and 

accuracy (absolute recovery study). 

The antioxidant activity was firstly estimated by chemical assays including 2,2-

diphenyl-2-picrylhydrazyl (DPPH•) scavenging and reducing power. The global toxicity 

of the extracts was evaluated in human hepatoblastoma HepG2 cells by the MTT test. 

In these cells, the protective effect of each extract (50 μg/mL) was evaluated through 

the measurement of the production of reactive oxygen species (ROS) in a model of 

oxidative stress with potassium dichromate (DK). Viability studies were performed in a 

similar model, after treating the cells with the extracts for 6 and 72 h, allowing to 

determine their hepatoprotective effects. The cellular assays were also performed with 

individual phenolic constituents of the most promising extracts (apigenin, chrysin, 

eriodictyol, quercetin, luteolin, naringenin, rosmarinic acid and verbascoside) or with 

mixtures simulating the phenolic composition of the extracts at 50 μg/mL. Hence, the 

individual contribution of phenolics of C. multiflorus, L. album, T. x citriodorus on the 

beneficial effects herein investigated was also discussed in this section. 

Besides these, other biological activities were investigated for C. multiflorus, M. 

aquatica and L. dentata extracts. Concretely, the scavenging activity of the C. 

multiflorus extract for two reactive species formed by immune system cells (HOCl, 
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NO●), and its inhibitory capacity on key inflammatory enzymes (5-LOX, iNOS and COX-

2) were assessed. Moreover, potential effects of M. aquatica and L. dentata extracts on 

bioenergetic functions of liver mitochondria was also evaluated through the 

measurement of respiratory parameters and transmembrane potencial. 
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3.1. SIMULTANEOUS CHARACTERIZATION AND QUANTIFICATION OF 

PHENOLIC COMPOUNDS IN THYMUS X CITRIODORUS USING A 

VALIDATED HPLC-UV AND ESI-MS COMBINED METHOD 

 

Thymus x citriodorus, also known as lemon thyme, is a plant used for several cooking 

and medicinal purposes. Despite its wide use as tea or as flavor ingredient, the 

phenolic composition of this species is yet unknown. 

The in-house validated HPLC-DAD method showed good linearity for the tested 

reference compounds as well as satisfactory repeatability and immediate precision 

values, for both instrument and method. Furthermore, the satisfactory results of 

intermediate precision analysis and recovery assays indicated that the 

chromatographic method could be used to quantify the main phenolic compounds of T. 

x citriodorus with adequate precision and accuracy. The fractionation of the ethanolic 

extract by HPLC-DAD and the analysis of the collected fractions by ESI-MSn, allowed 

to identify thirteen phenolic compounds. Structural confirmation by NMR was also 

achieved for major compounds.  

Similarly to other Thymus species, the T. x citriodorus ethanolic extract was enriched in 

rosmarinic acid (10.4±0.6 mg/g extract). However, the extract was also enriched in 

Thymus non-typical phenolics, including the luteolin-7-O--glucuronide (12±2 mg/g 

extract) and apigenin-7-β-O-glucuronide (9±2 mg/g extract). Moreover, derivatives of 

the flavones luteolin, chrysoeriol and apigenin, of the flavanones eriodictyol and 

naringenin and of the flavonol quercetagetin, were also present in the extract. 

Concretely, the combined thecniques allowed to detect, for the first time in this genus, 

one eriodictyol di-O-hexoside, one chrysoeriol-7-β-O-glucoside, one quercetagetin-

dimethyl-ether-O-hexoside and a naringenin-O-hexoside. Overall, the present study 

emerges as an important contribution emphasizing the phenolic constituents of T. x 

citriodorus species. 

 

The results obtained in this section of the Doctoral Thesis have been used to write the 

manuscript entitled "Simultaneous characterization and quantification of phenolic 

compounds in Thymus x citriodorus using a validated HPLC-UV and ESI-MS combined 

method" which is presently submitted for publication. 
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Abstract  23 

Thymus x citriodorus is a Lamiaceae plant extensively cultivated in Mediterranean region and used 24 

for centuries in culinary and in traditional medicine. The present work describes the detailed 25 

phenolic composition of T. x citriodorus for the first time, the by means of HPLC-DAD, ESI-MS 26 

and MS
n
 and nuclear magnetic resonance (NMR) analyses. The ethanolic extract of T. x citriodorus 27 

was analyzed by reversed phase HPLC. The method of analysis was also validated concerning its 28 

linearity, instrumental and method precision (for repeatability, immediate precision and intermediate 29 

precision) and accuracy (absolute recovery study). The technique was combined with electrospray 30 

mass spectrometry in order to identify the phenolic compounds and the structure of the main 31 

phenolics was also confirmed by NMR analysis. The in-house validated HPLC-DAD method 32 

showed good linearity for the tested reference compounds as well as satisfactory repeatability and 33 

immediate precision values, for both instrument and method. Furthermore, the satisfactory results of 34 

intermediate precision analysis and recovery assays indicated that the chromatographic method 35 

could be used to quantify the main phenolic compounds of T. x citriodorus with adequate precision 36 

and accuracy. The extract was rich in rosmarinic acid (10.4±0.6 mg/g extract) that is a widespread 37 

phenolic acid in Thymus plants, but also in luteolin-7-O--glucuronide (12±2 mg/g extract), that was 38 

herein reported in Thymus for the first time. Other novel compounds comprised one eriodictyol 39 

dihexoside with O-glycosidic linkages, two eriodictyol-O-monohexosides, one quercetagetin 40 

dimethyl ether-O-hexoside, one naringenin-O-hexoside and chrysoeriol-7-β-O-glucoside. Having in 41 

mind the health-promoting properties reported in literature for some of the main polyphenols found 42 

in T. x citriodorus, we suggest that this plant has a high potential for being used as a functional food. 43 

  44 
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1. Introduction 48 

In recent years, several industries have shown a great interest in edible plants and in their bioactive 49 

compounds because of their potential applications, including as functional food and nutraceuticals 50 

(Wijngaard, Hossain, Rai, & Brunton, 2012). Thymus L. is a large genus belonging to the Lamiaceae 51 

family, which comprises 300-400 endemic species widely distributed in the entire World, in 52 

particular in the Mediterranean region. These plants are perennial, herbaceous, tender and of simple 53 

small leaves with ramified and prostrated branches, forming a shrub with uncountable branches, 54 

typically reaching a height of 10 to 30 cm (Reddy, Angers, Gosselin, & Arul, 1998). 55 

Many Thymus species are known as culinary herbs and have been cultivated for usage in the 56 

confection of several dishes and in flavoring salads, soups, stews and sauces. Additionally, Thymus 57 

species are used in infusion form as medicinal plants because of their biological and 58 

pharmacological properties, which include expectorant, anti-asthmatic, bronchiolytic, anti-septic, 59 

antispasmodic, analgesic, antimicrobial, and antioxidant (Gião et al., 2007; Mata et al., 2007; Pinto 60 

et al., 2006). It is believed that some of these beneficial activities are due to their volatile 61 

constituents and thus, their essential oil composition has been the focus of many investigations 62 

(Horvath, Szabo, Hethelyi, & Lemberkovics, 2006; Omidbaigi, Sefidkon, & Hejazi, 2005). In 63 

contrast, there is only a limited number of studies focusing the composition of other bioactive 64 

phytochemicals of Thymus plants, such as their phenolic compounds. According to the few studies 65 

on this topic, the hydrophilic extracts of dried thyme plants contain caffeic acid and its oligomers 66 

[rosmarinic acid, 3’-O-(8’’-caffeoyl)rosmarinic acid, lithospermic acid and methyl rosmarinate], 67 

flavones (apigenin, luteolin, luteolin-7-O-β-glucuronide, luteolin-7-O-glucoside, 6-hydroxyluteolin 68 

glycosides, chrysoeriol and polymethoxyflavones), flavanones (naringenin, naringenin-7-O-69 

glucoside, narirutin, eriodictyol, eriodictyol-7-O-glucoside, isosakuranetin, eriocitrin and 70 
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hesperidin), and the flavanol taxifolin (Dorman, Bachmayer, Kosar, & Hiltunen, 2004; Fecka & 71 

Turek, 2008). 72 

Thymus x citriodorus, or lemon thyme, is one of the most used Thymus in culinary (The Herb 73 

Society of America, 2003). The plant is used as an ingredient for confection of several recipes of 74 

starter (Cheese-stuffed Nasturtiums), snacks, sauces (Chilli Oil, Soyer's Recipe for Goose Stuffing) 75 

and different meat (Meat Stuffing for Duck), fish (Fish Aspic Jelly) or vegetarian (Spinach Frittata 76 

with Herbs) dishes. Additionally, it is used in jellies and desserts (Lemon Thyme Jelly) for 77 

confection of soups (Cream of Porcini Soup, Thick Giblet Soup) and consumed in fresh salads as 78 

well as in marinades for grilled fish, chicken and roast duck, potatos and carrots (Celtnet, 2013). 79 

Besides its culinary usage, T. x citriodorus is also vastly consumed in the form of tea, for medicinal 80 

proposals. 81 

Despite the widespread culinary consumption of T. x citriodorus and its claimed health benefits, the 82 

detailed knowledge of its phenolic constituents remains unknown. The present work used a 83 

combination of HPLC with ESI-MS/MS
n
 and nuclear magnetic resonance (NMR) analysis, in order 84 

to contribute for the knowledge of the phenolic constituents in T. x citriodorus. 85 

  86 

87 

http://homecooking.about.com/library/archive/bljellyindex.htm
http://homecooking.about.com/library/archive/bldesindex.htm
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2. Experimental 88 

 89 

2.1. Plant material 90 

T. x citriodorus plants were purchased from ERVITAL (Castro de Aire, Portugal) as a mixture of 91 

leaves and stems. The plants have been cultivated under an organic regime and the collected aerial 92 

parts were dried at 25 - 30º C in a ventilated incubator for approximately 5 days. 93 

 94 

2.2. Solvents and reagents 95 

n-Hexane was purchased from Pronalab (Lisbon, Portugal), the analytical grade reagents formic acid 96 

and ethanol were obtained from Panreac (Barcelona, Spain), methanol and acetonitrile with HPLC 97 

purity were purchased from Lab-Scan (Lisbon, Portugal). Water was treated in a Mili-Q water 98 

purification system (TGI Pure Water Systems, USA). Eriodictyol-7-O-glucoside, luteolin-7-O-99 

glucoside, naringenin-7-O-glucoside, apigenin-7-O-glucoside, chrysoeriol and rosmarinic acid were 100 

obtained from Extrasynthese (Genay Cedex, France). 101 

 102 

2.3. Extraction of phenolic compounds 103 

The phenolic extract of the aerial parts of T. x citriodorus was obtained by extraction with an 80% 104 

ethanolic aqueous solution (v/v), after defatted with n-hexane, as previously described (Pereira, 105 

Domingues, Silva, & Cardoso, 2012) These procedures were performed in triplicate.  106 

 107 

 108 

 109 

 110 
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2.4. HPLC–DAD analyses 111 

2.4.1. HPLC apparatus and chromatographic conditions 112 

The HPLC analysis was performed on a Varian 9010 separation module equipped with PDA Varian 113 

Prostar detector. Data acquisition and remote control of the HPLC system were done by Varian Star 114 

chromatography Workstation® (Lake Forest, CA, USA) software. The column was a 250 mm× 4 115 

mm id, 5µm bead diameter, end-capped Nucleosil C18 (Macherey-Nagel) and its temperature was 116 

maintained at 30ºC.  117 

Gradient elution was carried out with a mixture of two solvents. Solvent A consisted of 0.1% (v/v) 118 

of formic acid in water and solvent B consisted of acetonitrile, which were degassed and filtrated, 119 

using a 0.2 μm nylon filter (Whatman, USA) before use. The solvent gradient consisted in a series of 120 

linear gradients: from 10 to 30% of solvent B over 20 min, from 30 to 100% of solvent B over 5 121 

min, decreasing to 10% of solvent B after 5 min followed by the return to the initial conditions. The 122 

flow rate was 1 mL/min and the injected volume was equal to 10 μL.  123 

 124 

2.4.2. Method in-house validation 125 

The HPLC method used to detect and quantify the phenolic compounds was validated for linearity, 126 

precision (assays performed for repeatability and intermediate precision) and accuracy (absolute 127 

recovery study). 128 

Linearity, limits of detection and of quantification. An external standard calibration methodology 129 

was applied. Five solutions with different concentrations of eriodictyol-7-O-glucoside (10.0–135.9 130 

μg/mL), naringenin-7-O-glucoside (5.0–67.9 μg/mL), luteolin-7-O-glucoside (45.3–300.0 μg/mL), 131 

apigenin-7-O-glucoside (2.5–160.0 μg/mL) and rosmarinic acid (14.9–120.0 μg/mL) were prepared 132 

by consecutive dilutions from a stock solution. The analyses were performed in triplicate and the 133 

results were plotted for evaluating the linear relationship between the peak areas of each phenolic 134 
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standard. ANOVA was used to assess the statistical significance of each linear regression model was 135 

being the quality of the fitted models evaluated by their R
2
 values. The statistical significances of the 136 

slope and of the intercept values were evaluated by a t-test. Finally, the regression data were 137 

subjected to a likelihood ratio test of equality (covariance analysis) to infer about inter-day 138 

variability of the calibration curves in order to avoid establishing a new calibration curve whenever 139 

a quantification procedure was needed. Statistic analyses were performed using the SPSS 17 140 

Standard Version software (SPSS INC.) at a 5% significance level. Detection (LOD) and 141 

quantification (LOQ) limits were calculated using the parameters of the calibration curves, being 142 

defined as 3.3 and 10 times the value of the regression error divided by the slope, respectively 143 

(Ermer & Miller, 2005; Snyder, Kirkland, & Dolan, 2010). 144 

Precision (repeatability and intermediate precision). Both instrumental and method precisions were 145 

evaluated to verify the repeatability of the system and of the proposed method (extraction procedure 146 

followed by chromatographic analysis). 147 

The instrumental system precision was studied using three standard solutions, containing 148 

eriodictyol-7-O-glucoside (10, 30 or 80 μg/mL), naringenin-7-O-glucoside (5, 40 or 50 μg/mL), 149 

luteolin-7-O-glucoside (45, 100 or 300 μg/mL), apigenin-7-O-glucoside (10, 80 or 160 μg/mL), and 150 

rosmarinic acid (15, 30 or 150 μg/mL), which corresponded to low, middle and high concentration 151 

levels. Each solution was injected, under the working conditions, 5 times on the same day to 152 

evaluate the repeatability of the instrumental system (i.e., intra-day variation, considering only 153 

within day variations). Further, the immediate precision of the system was evaluated by determining 154 

the variability of the responses of the injections of the three standard solutions, injected 3 times per 155 

day in three consecutive days (i.e., inter-day variation, considering within and between day 156 

variations). The instrumental precision was assessed by calculating the relative standard deviation 157 

percentage (% RSD). 158 
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The method precision was inferred based on the evaluation of repeatability and immediate precision. 159 

For that, an ethanolic extract from T. x citriodorus was obtained according to the work conditions, 160 

from a sample of T. x citriodorus (5.0010 ± 0.0001 g) resulting in 0.75 g of lyophilized extract. Part 161 

of the lyophilized extract (50.6 mg) was re-dissolved into 5 mL of methanol and then injected 5 162 

times in the same day and 3 times per day in three consecutive days for method repeatability and 163 

immediate precision assessment, respectively. 164 

The intermediate precision of the method was studied using two extracts obtained from the same 165 

plant according to the procedure previously described (extracted, stirred, filtered, re-extracted, 166 

combined, concentrated under reduced pressure, frozen and finally freeze-dried separately). Each 167 

extract was injected in triplicate in three consecutive days. Subsequently, the intermediate precision 168 

of the method was evaluated by calculating the % RDS value of each phenolic compound detected, 169 

considering within and between day variations as well as between extraction variations. 170 

Accuracy. The accuracy of the proposed method was studied by evaluating the absolute recovery, 171 

which studies the retrieval of standards added to a biological sample, that was subjected to  all steps 172 

of the extraction procedure (extraction, filtration, re-extraction, concentration and freeze-dried). Two 173 

levels of two available phenolic standards corresponding to natural phenolic constituents of the T. x 174 

citriodorus were added to 2.04±0.02 g of T. x citriodorus dry plant samples. The quantity of each 175 

substance recovered in relation to the added amount was calculated, taking into account the yield of 176 

the extraction procedure. 177 

 178 

2.4.3. Identification and quantification of the phenolic compounds 179 

The identification of the phenolic compounds of the ethanolic extracts of T. x citriodorus was based 180 

on the UV-Vis spectrum of the HPLC fractions together with their analysis by electrospray 181 

ionization mass spectrometry (ESI-MS and ESI-MS
n
). This latter was performed on a Linear Ion 182 
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trap LXQ mass spectrometer (ThermoFinnigan, San Jose, CA, USA), following the procedure 183 

previously described (Pereira, Silva, Domingues, & Cardoso et al., 2012). When standards were 184 

available, the identification of the compounds was further confirmed by comparison of their HPLC-185 

DAD retention time, UV-Vis profile and ESI-MS
n
 data to those of the phenolic standards. 186 

Moreover, the structure of some compounds (luteolin-5-β-O-glucoside, luteolin-7-α-O-glucuronide, 187 

chrysoeriol-7-β-O-glucoside, apigenin-7-β-O-glucuronide and rosmarinic acid) was further 188 

confirmed by NMR analysis. The dried HPLC-collected fractions were dissolved in DMSO-d6 and 189 

the
 1

H spectra were recorded at 298 K on a Bruker Avance 500 spectrometer operating at 500.13 190 

MHz. 2D NMR (heteronuclear single quantum coherence, using gradient pulses for selection i.e. 191 

(
1
H,

13
C) gHSQC, heteronuclear multiple quantum coherence, using gradient pulses for selection i.e. 192 

gHMBC) spectra were acquired in the same experimental conditions as previously described 193 

(Pereira, et al., 2012a). 
13

C NMR chemical shift assignments were made from the projections of the 194 

heteronuclear HSQC and HMBC experiments. 195 

The quantification of phenolic compounds was performed by peak integration using the external 196 

standard method, with the most close reference compound available to that of the major compound 197 

in each HPLC eluting peak. 198 

  199 
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3. Results and discussion 200 

 201 

3.1 Identification of the phenolic compounds of the ethanolic extract of T. x citriodorus 202 

Overall, the identified phenolic compounds of the ethanolic extract from T. x citriodorus enclosed 203 

rosmarinic acid and another less common phenolic acids, as well as derivatives of common 204 

flavonoids, including the flavones luteolin, chrysoeriol and apigenin, the flavanones eriodictyol and 205 

naringenin, and the flavonol quercetagetin (Table 1). A description of the T. x citriodorus phenolic 206 

composition and the comparison to that previous described for other Thymus plants, will be 207 

discussed in bellow in detail. 208 

 209 

3.1.1. Phenolic Acid derivatives 210 

In accordance with literature data, the rosmarinic acid, which was herein identified by its retention 211 

time, UV-Vis spectrum, ESI-MS
n
 (Table 1) and NMR (Table 2) data, represented a major HPLC 212 

fraction in the T. x citriodorus ethanolic extract (fraction 9, Fig.1). To our knowledge, this 213 

compound has been previously detected in T. serpyllum, T. sipyleus, T. quinquecostatus and T. 214 

vulgaris L., and has been shown to account between 3.4 to 22 mg/g of dry plant, in the latter species 215 

(Pereira & Cardoso, 2013). Besides this phenolic acid, the T. x citriodorus ethanolic extract also 216 

contained an uncommon caffeoyl derivative of rosmarinic acid, which was assigned based on its 217 

retention time and UV-Vis spectrum, as compared to that of rosmarinic acid, plus interpretation of 218 

its ESI-MS
n
 fragmentation pattern (Dapkevicius et al., 2002). Most probably, this compound 219 

corresponds to 3´-O-(8´´-Z-caffeoyl)rosmarinic acid, which has been previously detected in the 220 

leaves of T. vulgaris (Dapkevicius et al., 2002).  221 

 222 
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3.1.2. Flavones 223 

Flavones were also detected as major phenolic component of the T. x citriodorus ethanolic extract. 224 

In more detail, the extract contained three luteolin derivatives, which were eluted in fractions 4 and 225 

6 ([M-H]
−
 ion at m/z 447 in fraction 4 and [M-H]

−
 ions at m/z 461 and m/z 447 in fraction 6). The 226 

[M-H]
−
 ion at m/z 447 in the latter fraction was assigned to luteolin-7-O-glucoside, since the 227 

retention time and MS
n
 data matched with those of the reference compound. In turn, the [M-H]

−
 ion 228 

at m/z 447 in fraction 4 was assigned to luteolin-5-β-O-glucoside, based on the gathered 1D (Table 229 

2) and 2D NMR spectral data. From these spectra it was possible to assign the major part of the 
1
H 230 

and 
13

C resonances, mainly obtained from the connectivities found in the HMBC spectrum of this 231 

compound (the connectivity between H-1’’ and C-5 allowed us to assign the sugar position on the 232 

flavone skeleton). The coupling constant of the H-1 of the sugar moiety (J = 7.3 Hz) indicates the 233 

presence of the β-anomer. To our knowledge, for Thymus plants the latter luteolin derivative has 234 

only been previously detected in T. sipyleus and in T. praecox (Ozgen et al., 2011). 235 

Moreover, the HPLC-DAD-ESI-MS
n
 analysis allowed to assign the [M-H]

−
 ion at m/z 461 in 236 

fraction 6 to luteolin-O-hexuronyl, as the product ion at m/z 285 was obtained by the loss of 176 Da. 237 

Additional information on the sugar moiety (glucuronic acid), as well as its linkage position on the 238 

flavone skeleton (7-) was elucidated by 1D and 2D NMR analysis. These NMR spectra allowed us 239 

to assign the major part of the proton and carbon resonances, but due to the small quantity of the 240 

sample we could not found the HMBC correlation between H-1’’ from the sugar residue and the C-7 241 

of the flavone. However, the assigned chemical shifts are compatible with a 7-glucuronide (Agrawal 242 

& Bansal, 1989; Lu & Foo, 1999). H-1’’ of the sugar residue appear as a broad singlet, which is 243 

only compatible with an α–configuration. Note that despite luteolin-O-glucuronide has been 244 

previously described in several Thymus plants (Justesen, 2000; Miron, Plaza, Bahrim, Ibanez, & 245 
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Herrero, 2011), only the 7-O-β-isomer has been previously identified by NMR analysis (Fecka & 246 

Turek, 2008; Ozgen et al., 2011).  247 

Besides the luteolin derivatives, the T. x citriodorus ethanolic extract also contained another flavone 248 

hexuronyl derivative (fraction 8, [M-H]
− 

 ion at m/z 445). In this particular case, the MS
2
 spectrum 249 

showed a main ion at m/z 269, and the latter followed a fragmentation pattern consistent to that of 250 

apigenin. According to the NMR determinations (Guvenalp, Ozbek, Kuruuzum-Uz, Kazaz, & 251 

Demirezer, 2009) the [M-H]
−

 ion at m/z 445 was assigned to apigenin-7-β-O-glucuronide, which, for 252 

the Thymus genus, has only been previously reported in T. vulgaris and T. serpyllum (Justesen, 253 

2000; Miron et al., 2011). 254 

Notably our study also allowed to detect, for the first time in Thymus plants, an hexoside derivative 255 

of the methylated flavone chrysoeriol. This compound was eluted in fraction 7 and appeared in the 256 

ESI-MS spectrum as the [M-H]
−
 ion at m/z 461 that fragmented to a main product ion at m/z 299 (-257 

162 Da, loss of hexose). Moreover, the fragmentation pattern of this product ion was similar to that 258 

of chrysoeriol (Plazonic et al., 2009). This information was corroborated by the NMR analysis, 259 

which also allowed to assign the exact structure of this flavone to chrysoeriol-7-β-O-glucoside 260 

(Table 2). The β-configuration of the sugar residue is based on the coupling of the H-1’’, J = 7.3 Hz. 261 

 262 

3.1.3. Flavanones 263 

Three glycoside derivatives of eriodictyol have been previous described in the genus Thymus, 264 

namely the eriodictyol-7-O-glucoside (Fecka & Turek, 2008), the eriodictyol-7-O-rutinoside (Wang, 265 

Li, Ho, Peng, & Ho, 1998) and the eriodictyol-7-O-glucuronide (Justesen, 2000). Nevertheless, the 266 

results now obtained show that three of the four eriodictyol derivatives detected in the ethanolic 267 

extract of T. x citriodorus differ from those previously reported for the other species of Thymus. 268 

Indeed, the ESI-MS analysis of fraction 1 showed the [M-H]
−
 ion at m/z 611 and its MS

2
 and MS

3
 269 
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fragmentation data revealed the loss of two hexose molecules (product ions at m/z 449 and m/z 287). 270 

Moreover, the ESI-MS
3
 spectrum of the [M-H]

−
 ion at m/z 449 was similar to that of authentic 271 

eriodictyol-7-O-glucoside and hence, these data indicates the elution in fraction 1 of an eriodictyol 272 

dihexoside with O-glycosyl linkages. Note that, flavonoid diglycosides with O-linkages (di-O-273 

glycosides and O-diglycosides), can be distinguished by their product ion spectra (Vukics & 274 

Guttman, 2008), through the analysis of the [M–H − 162]
−
, [M–H − 180]

−
 and [M–H − 324]

−
 ions. 275 

A high relative intense product ion [M–H − 162]
−
 and the absence of [M–H − 180]

−
 at the MS

2
 276 

spectrum, as observed for the ion at m/z 611, indicates the presence of a flavonoid di-O-hexoside 277 

and thus, the present results confirm the detection, for the first time in Thymus, of an eriodictyol-di-278 

O-hexoside.  279 

Eriodictyol-O-monohexosides were detected in fractions 2 and 3. As observed in Table 1, the ESI-280 

MS spectra of both fractions showed a [M-H]
−
 ion at m/z 449, and their MS

2
 spectrum revealed the 281 

ion at m/z 287, which corresponds to the eriodictyol aglycone. The UV-Vis data of these two peaks 282 

were similar to that of the eriodictyol-7-O-glucoside standard, but fractions 2 and 3 eluted before 283 

that compound, indicating that two new eriodictyol-O-hexosides must be present in T. x citriodorus. 284 

In fact, to our knowledge, eriodictyol-7-O-glucoside is the only described glucoside derivative of 285 

eriodictyol in Lamiaceae family. Besides the above described O-hexosyl derivatives of eriodictyol, 286 

the T. x citriodorus ethanolic extract also contained an O-hexuronyl of this flavanone, but this 287 

appeared only as a minor constituent of fraction 5. Eriodictyol-O-glucuronide has been previously 288 

found in thyme and wild thyme (Justesen, 2000; Miron et al., 2011), but no quantitative information 289 

has been delivered on that compound on those plants. Besides eriodictyol derivatives, the flavavone 290 

naringenin-O-hexoside was also identified as a phenolic constituent of the T. x citriodorus ethanolic 291 

extract. Its [M-H]
−
 ion was observed in fraction 5 at m/z 433 and this fragmented to the ion at m/z 292 

271 (-162 Da). Moreover, the MS
3
 spectrum of the ion at m/z 271 (main ions at m/z 227, 151 and 293 
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107), indicated a correspondence to authentic naringenin (Fabre, Rustan, de Hoffmann, & Quetin-294 

Leclercq, 2001). Despite the detailed structure of this compound could not be accomplished in the 295 

present study, for sure, this does not corresponds to the unique naringenin glucoside described so far 296 

in Thymus, i.e. the naringenin-7-O-glucoside (Fecka & Turek, 2008), as it eluted before the 297 

naringenin-7-O-glucoside standard (10.5 min). 298 

 299 

3.1.4. Flavonols 300 

In accordance to the previous studies focusing on Thymus plants, the ethanolic extract of T. x 301 

citriodorus was very poor in flavonols. In the present study, the unique flavonol was detected as a 302 

minor component of fraction 2. Its corresponding molecular ion was observed for m/z 507 and its 303 

MS
2
 spectrum showed product ions formed by the loss of a hexose moiety (ion at m/z 345 (-162 Da) 304 

and ion at m/z 327 (simultaneous loss of 162 and 18 Da)). Considering that the ion at m/z 345 can 305 

diagnose the quercetagetin dimethyl ether (Parejo, Jauregui, Viladomat, Bastida, & Codina, 2004), 306 

the latter hypothesis also supported by its MS
3
 data that shows the ion at m/z 315 (- 30 Da, 307 

equivalent to the loss of two methyl groups), the overall data suggests the presence of the flavonol 308 

quercetagetin dimethyl ether-O-hexoside in T. x citriodorus. Methyl derivatives of quercetagetin, 309 

namely quercetagetin 3,7-dimethyl ether, have been described to occur in the Lamiaceae family 310 

(Grayer et al., 2010), however this the first time that this class of compounds has been found in the 311 

genus Thymus. 312 

 313 

3.2. HPLC method - validation and quantification of phenolic compounds by HPLC-DAD 314 

For the five used phenolic standards, the adjusted R
2
 values were around 0.999, suggesting a good 315 

linearity of the analytical method in the concentration range tested (Table 3) and showing that the 316 

HPLC method allows the quantification of the evaluated phenolic compounds, in case of their 317 
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presence in the plant samples. All the calibration linear models were significant (P<0.001) as well as 318 

their slope values (P<0.001) and the intercept values (P<0.003, except for apigenin-O-glucoside 319 

with P=0.228). Finally, the covariance analysis for each phenolic standard (data not shown) 320 

indicated that the calibration curves of one week interval were not statistically different (P≥0.330), 321 

meaning that the same calibration curve could be used during at least one week for quantification 322 

purposes. Table 3 also shows the LOD and LOQ values, which were always lower than the lowest 323 

standard concentration tested in the dynamic interval of the calibration curve, indicating a 324 

satisfactory sensitivity towards each phenolic standard. 325 

The relative standard deviation percentage (%RSD) values of repeatability and of immediate 326 

precision assays carried out with the five phenolic standards, regarding the instrumental precision 327 

evaluation. In repeatability, %RSD values varied from 2 to 5% and from 0.3 to 2%, for the retention 328 

time and the peak area, respectively. Concerning the immediate precision, the %RSD values of the 329 

retention times and peak areas were between 3–4% and 1–2%, respectively. These results are similar 330 

to those described by Du and co-workers (Du et al., 2010) and Gobbo-Neto and Lopes (2008) for 331 

phenolic compounds in Lamiaceae and Asteraceae plants, respectively. Since the %RSD values 332 

were lower than 5%, the chromatographic instrument presents a satisfactory precision (Ermer & 333 

Miller, 2005). 334 

The %RSD values for repeatability, immediate precision and intermediate precision assays of the 335 

method (extraction plus HPLC analysis) are given in Table 3. As the values for the first two 336 

parameters were lower than 12%, it can be concluded that the precision of the method was 337 

satisfactory. Regarding intermediate precision, the %RSD values varied from 6% to 41%, being in 338 

general lower than 20%. The highest values (33% and 41% for eriodictyol-7-O-glucoside and 3´-O-339 

(8´´-Z-Caffeoyl)rosmarinic acid, respectively) could be due to the low content of these compounds 340 

(Table 3), as well as to the nature of the extraction process and the complexity of the 341 
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chromatographic analysis (Aldai, Osoro, Barrón, & Nájera, 2006). In fact, depending on the samples 342 

complexity, %RSD values up to 20% are acceptable for quantitative chromatographic analysis of 343 

residual analytes (Ribani, Bottoli, Collins, Jardim, & Melo, 2004). Therefore, it can be stated that 344 

the proposed method is able to quantify the major phenolic compounds detected in T. x citriodorus 345 

samples with overall satisfactory precision. 346 

Regarding the two absolute recovery assays carried out (addition of 0.986 mg of luteolin-7-O-347 

glucoside and 0.121 mg of rosmarinic acid or 1.548 mg of luteolin-7-O-glucoside and 0.555 mg of 348 

rosmarinic acid to 2.04±0.02 g of dry plant samples, respectively) recoveries were of 120% and 60% 349 

or 121% and 79% for luteolin-7-O-glucoside and rosmarinic acid, respectively, with %RSD values 350 

between 2% and 4%. These results are acceptable as, depending on the complexity of the 351 

chromatographic method and the sample matrix, recovery values between 50% and 120% are 352 

adequate if their %RSD values are lower than 15% (Ribani et al., 2004). 353 

The mean total phenolic contents (mg/g of extract) of the T. x citriodorus plant were evaluated from 354 

the intermediate precision assays and are presented in Table 3. According to the results, the 355 

identified phenolic compounds accounted for 44 mg per g of the ethanolic extract (or 7.5mg/ g of 356 

dried plant). Similarly to other Thymus species, such as T. vulgaris and T. spicata (Dorman et al., 357 

2004; Fecka & Turek, 2008), the ethanolic extract of T. x citriodorus was mostly enriched in 358 

rosmarinic acid (10.4±0.6 mg/g extract). Still, our results also showed that in contract to the majority 359 

of the previously studied Thymus plants, the non-common isomeric form of luteolin-O-hexoside, i.e. 360 

the luteolin-7-α-O-glucuronide, as well as apigenin-7-β-O-glucuronide, were also major phenolic 361 

constituent of the extract, accounting for 12±2 mg/g extract and 9±2 mg/g extract, respectively.  362 

 363 

 364 
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4. Conclusions 365 

 366 

The phenolic composition of an ethanolic extract of T. x citriodorus was described in detail 367 

for the first time, by means of HPLC-DAD plus ESI-MS, MS
n
 and NMR analysis. The in-house 368 

validated HPLC-DAD method showed good linearity for the tested reference compounds as well as 369 

satisfactory repeatability and immediate precision values, for both instrument and method. 370 

Furthermore, the satisfactory results of intermediate precision analysis and recovery assays indicated 371 

that the chromatographic method could be used to quantify the main phenolic compounds of T. x 372 

citriodorus with adequate precision and accuracy. The fractionation of the ethanolic extract by 373 

HPLC-DAD and the analysis of the collected fractions by electrospray mass spectrometry in the 374 

negative mode allowed to identify thirteen phenolic compounds, which include the phenolic acid 375 

rosmarinic acid and one of its derivatives, as well as derivatives of the flavones luteolin, chrysoeriol 376 

and apigenin, of the flavanones eriodictyol and naringenin and of the flavonol quercetagetin.  377 

Similarly to other Thymus species, rosmarinic acid represented a major phenolic constituent of the T. 378 

x citriodorus ethanolic extract. Whilst, our results also suggest that this plant species produces high 379 

amounts of non-common Thymus phenolics, including the 7-α-O-glucuronide derivative of luteolin 380 

and apigenin-7-β-O-glucuronide. As the major of these compounds are described in literature as 381 

health-benefit compounds, we propose that this Thymus species can be used as nutraceutical agent 382 

with potential interest for food and pharmaceutical industries.  383 

 384 

 385 

 386 

 387 
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Figure Captions 497 

 498 

Fig.1. Chromatographic profile of the ethanolic extract obtained from T. x citriodorus. The numbers 499 

in the figure correspond to the fractions collected for further analysis by ESI-MS
n 

and NMR. 500 

501 
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Table 1. Identification of HPLC-eluting fractions by HPLC/DAD and ESI/MS from T. x citriodorus 502 

Fraction 

number 

RT 

(min) 
λ max [M-H]

-
 

Main 

ESI
- 
MS

n
 

(Abundance) 

Compound 

1 4.3 283, 327 611 

MS2[611]: 449(100), 287(15); MS3[449]: 

287(100), 151(<1); MS4[287]: 269(2), 

151(100); MS5[151]: 107 

Eriodictyol-di-O-hexoside 

   387 

MS2[387]: 369(15), 225(5), 207(100), 

163(10), 119(1); MS3[207]: 163; 
MS4[163]: 109 

5’-Hydroxyjasmonic acid 5’-O-hexoside 

2 6.8 283, 327 449 
MS2[449]: 287; MS3[287]: 151; 

MS4[151]: 107 
Eriodictyol-O-hexoside 

   507 

MS2 [507]:489(20), 471(10), 345(35), 

327(100), 315(5);  MS3[327]: 312(100), 

167(20); MS3[345]: 327(100), 315(15), 
309(20), 287(5) 

Quercetagetin dimethyl ether O-hexoside 

3 7.3 283, 327 449 
MS2[449]: 287(100), 269(<1), 151(1); 
MS3[287]: 269(4), 161(<1), 151(100), 

125(4), 107(1); MS4[151]: 107 

Eriodictyol-O-hexoside 

4 8.6 248, 342 447 
MS2[447]: 285(100); MS3[285]: 243(60), 
241(100), 199(100), 175(50), 151(10) 

Luteolin-5-O-β-glucoside 

5 9.1 283, 340 433 
MS2[433]: 271(100); MS3[271]: 227(1), 

177(10), 151(100), 107(2) 
Naringenin-O-hexoside 

  283, 327 463 
MS2[463]: 301(20), 287(100); MS3[287]: 

151(100), 135(<1), 125(<1) 
Eriodictyol-O-hexuronide 

6 9.6 
254,267 

345 
461 

MS2[461]: 285(100); MS3[285]: 241(95), 

217(60), 199(60), 175(60), 151(20) 
Luteolin-7-α-O-glucuronide 

   447 
MS2[447]: 285; MS3[285]: 243(50), 
241(100), 199(60), 175(50), 151(15) 

Luteolin-7-O-glucoside 

7 10.9 245,338  461 

MS2 [461]: 446(1), 341(4), 323(3), 

299(100); MS3[299]: 284(100); 
MS4[284]: 256(40), 151(5); MS5[256]: 

239(4), 227(100), 211(20), 200(10), 

122(60), 94(2) 

Chrysoeriol-7-β-O-glucoside 

8 11.3 267, 332 445 
MS2[445]: 269(100), 

175(5);MS3[269]:225(5),183(1) 
Apigenin-7-β-O-glucuronide 

9 11.5 290, 328 359 

MS2[359]: 223(15), 197(25), 179(30), 

161(100), 133(4); MS3[179]: 161(25), 

151(<1), 135(100) 

Rosmarinic acid 

10 12.5 290, 323 537 

MS2 [537]: 493; MS3 [493]: 359(100), 
357(15), 313(10), 295(3), 269(<1), 

247(<1), 179(1), 161(1); MS4 [359]: 

249(5), 223(10), 197(15), 179(25), 
161(100), 135(5) 

3´-O-(8´´-Z-Caffeoyl)rosmarinic acid 

 503 
 504 

505 
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Table 2 – Chemical shifts (δ) of phenolic compounds of T. x citriodorus ethanolic extract, which 506 

eluted in fractions 4, 6, 7, 8 and 9 (in DMSO-d6). 507 

Compound 

4 6 7 8  9 

Luteolin-5-β-O-

glucoside 

Luteolin-7-α-O-

glucuronide 

Chrysoeriol-7-β-O-

glucoside 

Apigenin-7-β-O-

glucuronide  Rosmarinic Acid 

Atom 
13C 

(ppm) 

1H 

(ppm) 

13C 

(ppm) 

1H 

(ppm) 

13C 

(ppm) 

1H 

(ppm) 

13C 

(ppm) 

1H 

(ppm) 
Atom 

13C 

(ppm) 

1H 

(ppm) 

2 161.2 - 164.5 - 160.8 - 164.3 - 1 130.4 - 

3 105.3 6.50 (s) 103.1 6.76 (s) 106.2 6.58 (s) 103.1 6.88(s) 2 114.5 6.65 (br s) 

4 176.6 - 182.0 - 176.1 - ni - 3 144.7 ni 

5 158.7 - 161.2 13.00 (s) ni 12.97 (s) ni ni 4 143.5 ni 

6 105.2 6.73 (br s) 99.5 6.45 (br s) 99.5 6.43 (br s) 104.4 
6.81 (J 2.0 

Hz) 
5 116.4 

6.59 (d, J 
7.6 Hz) 

7 ni 
OH 

8.45 (s) 
162.8 -  ni ni ni ni 6 120.0 

6.47 (br d, 

J 7.6 Hz) 

8 98.5 6.61 (br s) 94.6 6.80 (br s) 94.6 6.83 (br s) 98.1 
6.73 (J 2.0 

Hz) 
7 36.3 

3.00 (d, J 
12.4 Hz) 

2.70 (d, J 

12.4 and 
10.1 Hz) 

9 ni - 157.1 - ni - ni - 8 76.2 
4.79 (br d, 

J 10.1 Hz) 

10 107.4 - 105.4 - ni - ni - 9 ni ni 

1´ 121.1 - 121.4 - 123.2 - ni - 1´ 125.7 - 

2´ 112.9 7.34 (s) 113.6 7.43 (br d) 112.8 7.40 (br s) 128.4 
7.97 (d, J 
8.7 Hz) 

2´ 114.5 7.02 (br s) 

3´ 145.8 
OH 

5.12 (br s) 
145.8 -9.48 (br s) 146.8 - 116.0 

 6.94 (d, J 
8.7 Hz) 

3´ 148.2 ni 

4´ 149.8 
OH 

5.12 (br s) 
150.0 

10.01  

(br s) 
150.7 ni 161.5 - 4´ 145.7 ni 

5´ 115.8 
6.85 (d, J 

7.8 Hz) 
115.9 

6.90 (d, J 

8.4 Hz) 
110.5 

7.07 (d, J 

8.2 Hz) 
ni ni 5´ 115.4 

6.74 (d, J 

8.4 Hz) 

6´ 118.6 
7.35 (d, J 

7.8 Hz) 
119.2 

7.45 (d, J 

8.4 Hz) 
118.4 

7.49 (br d, 

J 8.2 Hz) 
ni ni 6´ 121.0 

6.94 (d, J 

8.4 Hz) 

Sugar         7´ 
143.5 

 

7.34 (d, J 

15.9 Hz) 

1´´ 105.1 
4.67 (d, J 

7.3 Hz) 
99.5 5.19 (br s) 103.1 

4.68 (d, J 

7.0 Hz) 
99.5 

5.03 (d, J 

7.3 Hz) 
8´ 115.1 

6.16 (d, J 

15.9 Hz) 

2´´ 73.6 * 73.0 * ni ni ni ni 9´ 166.2 - 

3´´ 75.6 * 75.2 * ni ni ni ni    

4´´ 69.8 * 72.9 * ni ni ni ni    

5´´ 77.6 * 72.8 * ni - ni -    

6´´ 60.8 * ni - ni ni ni ni    

 508 
* Under the peak of water 509 
ni – not identified 510 
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Table 3 – Linearity, LOD, LOQ and Intrumental and Method Precisions  511 

 512 

Instrumental Precision Study 

Standard 

Compound 

Range concentration 

(μg/mL) 
n

a
 

Slope 
b 

(area 

counts/mg) 

Intercept 
b 

(area counts 

/mg) 

R
2
 

LOD 

(μg/mL) 

LOQ 

(μg/mL) 

E-7O-G 10.0 – 135.9 5 144(±1). 10
6
 -43(±9). 10

4
 0.9999 2.0 6.2 

N-7O-G 5.0 – 67.9 5 1797(±6). 10
5
 -19(±2). 10

4
 0.9999 1.0 3.0 

L-7O-G 45.3 – 300.0 5 663(±7). 10
5
 -4(±1). 10

5
 0.9984 12.4 37.7 

A-7O-G 2.5 – 160.0 5 848(±8). 10
5
 -1(±6). 10

4
 0.9988 7.3 22.1 

RA 14.9 – 120.0 5 1343(±9). 10
5
 -27(±6). 10

4
 0.9995 3.3 9.9 

Instrumental Precision Study(intra- and inter-days variability of standard solutions injections) 

Standard 

Compound 

Concentration 

(μg/mL) 

% RSD 

Repeatability (n = 5) Immediate precision (n = 9) 

Retention Time (min) Peak area Retention Time (min) Peak area 

 10 1.1 1.4 4.8 2.1 

E-7O-G 30 1.3 0.9 3.1 2.1 

 80 2.5 1.5 3.6 1.7 

 5 2.3 2.1 4.3 2.6 

N-7O-G 40 3.3 0.7 3.1 1.8 

 50 1.3 0.5 3.1 1 

 45 0.6 1.0 4.4 0.9 

L-7O-G 100 1.3 0.5 3.4 1.2 

 300 3.5 0.2 3.7 1.6 

 10 0.2 1.6 3.4 2.5 

A-7O-G 80 3.4 1.1 4.3 1.6 

 160 0.9 1.1 3.9 2 

 15 2.5 0.7 3.5 3.2 

RA 30 2.1 0.7 3 0.8 

 150 1.2 0.9 3.1 1.3 

Method Precision Study (intra- and inter-days variability of extractions obtained from a Thymus sample)  

Identified compound  Standard 

Compound (used 

to quantify) 

Mean 

content
c 

(mg/g 

extract) 

% RSD for compounds concentrations  

Fraction 

nº 

Compound Name Repeatability 

(n = 5) 

Immediate 

Precision (n = 9) 

Intermediate 

Precision (n = 18)  

1 Eriodictyol-di-O-hexoside E-7O-G 0.71±0.07 5 7 11 

2 Eriodictyol-O-hexoside E-7O-G 1.3±0.4 10 12 33 

3 Eriodictyol-O-hexoside E-7O-G 3.7±0.5 4 7 12 

4 Luteolin-5-β-O-glucoside L-7O-G 3.2±0.5 2 4 16 

5 Naringenin-O-hexoside N-7O-G 1.8±0.2 6 6 9 

6 
Luteolin-7-α-O-

glucuronide 
L-7O-G 12±2 4 5 20 

8 Apigenin-7-β-O-

glucuronide 
A-7O-G 9±2 6 7 20 
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9 Rosmarinic acid RA 10.4±0.6 6 5 6 

10 3´-O-(8´´-Z-

Caffeoyl)rosmarinic acid 
RA 2.3±0.9 4 4 41 

Total --- --- 44±4 --- --- --- 

E-7O-G, eriodictyol-7-O-glucoside; N-7O-G, naringenin-7-O-glucoside; L-7O-G, luteolin-7-O-glucoside; 513 
A-7O-G, apigenin-7-O-glucoside; RA, rosmarinic acid 514 
 515 
a
 Number of points used for the regression of standard solutions. Injections were done in triplicate. 516 

b
 The standard deviation in the slope and intercept of the regression line is shown in parentheses 517 

c 
Mean values ± standard deviations 518 

 519 

520 
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Figure 1 521 
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ANTI-INFLAMMATORY PROPERTIES 

3.2. IDENTIFICATION OF PHENOLIC CONSTITUENTS OF CYTISUS 

MULTIFLORUS 

 

Cytisus multiflorus is a Fabaceae plant known because of its potential health effects, 

including anti-inflammatory, antidiabetic and diuretic. However this specie has been far 

less studied than others of the same genus and, to the author´s knowledge, its phenolic 

profile remains unknown. In this context, the present study aimed to characterize the 

phenolic composition of the C. multiflorus ethanolic extract. 

The purified ethanolic extract of C. multiflorus was mainly rich in the flavone chrysin-7-

O-β-D-glycopyranoside (49.4±7.3 mg/g extract). Besides this compound, the extract 

also contained considerable amounts of a dihydroxyflavone isomer of chrysin (21.8±3.8 

mg/g extract), rutin (14.1±1.7 mg/g extract), 2′′-O-pentosyl-6-C-hexosyl-luteolin, 2′′-O-

pentosyl-8-C-hexosyl-luteolin and 6′′-O-(3-hydroxy-3-methylglutaroyl)-2′′-O-pentosyl-C-

hexosyl-apigenin, which are not commonly found in the Fabaceae family. Other 

flavones, including the common chrysin, orientin, luteolin-5-O-glucoside, luteolin-7-O-

glucoside, apigenin and apigenin-7-O-glucoside, appeared as minor components. 

Moreover, it was possible to identify the following novel compounds in Cytisus: 2′′-O-

pentosyl-6-C-hexosyl-apigenin, 2′′-O-pentosyl-8-C-hexosyl-apigenin and 6′′-O-(3-

hydroxy-3-methylglutaroyl)-2′′-O-pentosyl-C-hexosyl-luteolin. Overall, the present work 

is a valuable contribution for the phenolic elucidation of Cytisus genus and of Fabaceae 

family. 

 

The results obtained in this section of the Doctoral Thesis have been used to write the 

manuscript entitled "Identification of phenolic constituents of Cytisus multiflorus" which 

is published in Food Chemistry. 
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a b s t r a c t

The phenolic composition of the ethanolic extract obtained from the flowers of the medicinal plant Cyti-

sus multiflorus has been elucidated by high performance liquid chromatography, electrospray mass spec-

trometry and nuclear magnetic resonance analysis. The extract was mainly composed of flavones,

including the common chrysin, orientin, luteolin-5-O-glucoside, luteolin-7-O-glucoside, apigenin and

apigenin-7-O-glucoside, which appeared as minor components. The major flavone in the extract was

chrysin-7-O-b-D-glucopyranoside, and it also contained moderate amounts of a dihydroxyflavone isomer

of chrysin, as well as of 200-O-pentosyl-6-C-hexosyl-luteolin, 200-O-pentosyl-8-C-hexosyl-luteolin and 600-

O-(3-hydroxy-3-methylglutaroyl)-200-O-pentosyl-C-hexosyl-apigenin, which are not commonly found in

the Fabaceae family. Other novel phenolic compounds found in the ethanolic extract of C. multiflorus

comprised the flavones 200-O-pentosyl-6-C-hexosyl-apigenin, 200-O-pentosyl-8-C-hexosyl-apigenin and

600-O-(3-hydroxy-3-methylglutaroyl)-200-O-pentosyl-C-hexosyl-luteolin. The assessment of the biological

activities of the main compounds of this extract are now keen, in order to determine their relevance in

the beneficial properties of the plant.

Ó 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Cytisus Desf. (Leguminosae–Cytiseae) is a large and diversified

genus including approximately 60 species, which are particularly

abundant around the Mediterranean Sea, although they are found

in distinct geographic regions such as the north and south of Africa,

the western and central Europe, the Black Sea and Turkey to the

East (Cristofolini & Conte, 2002; Cristofolini & Troia, 2006). Plants

of this genus exhibit bioactive properties, including antioxidant

(Raja et al., 2007; Sundararajan et al., 2006), diuretic, hypnotic,

anxiolytic (Nirmal, Babu, Harisudhan, & Ramanathan, 2008; Siegel,

1976), antiparasitic (Di Giorgio et al., 2008) and antidiabetic

(Castro, 1998, 2001) activities. The therapeutic properties and, in

particular, the antioxidant activity of Cytisus is related to their high

concentration of phenolic compounds (Luis, Domingues, Gil, &

Duarte, 2009). In general, plants of this genus are rich in flavonoids.

Namely, Cytisus scoparius has been described to contain the flavone

600-O-acetyl-scoparin, the flavonols kaempferol, rutin, quercetin,

quercitrin and isorhamnetin, and the isoflavones genistein and

sarothamnoside, while the species Cytisus nigrians and Cytisus albus

were shown to contain the isoflavones ononin and genistin

(Hanganu, Vlase, & Olah, 2010a, 2010b; Raja et al., 2007).

Cytisus multiflorus (L’Hér.) Sweet, also known as White Spanish

Broom, is a leguminous shrub native from Iberian Peninsula that is

distributed in the south-west Mediterranean region (Cristofolini &

Troia, 2006). This specie grows in poor and acidic soils, and fre-

quently appears in degraded or marginal areas. It has a great num-

ber of white flowers with a valvular type pollen presentation

system. The C. multiflorus is vastly used as an ornamental plant,

as well as for animal nutrition. Other applications of this plant

include the collection of their pollen for apiculture purposes and

land fertilising in agriculture (Ciudad et al., 2004; Rodriguez-Riano,

Ortega-Olivencia, & Devesa, 1999, 2004; Rodriguez-Riano, Valtue-

na, & Ortega-Olivencia, 2006).

C. multiflorus has also been used as an ethnopharmacological

agent for centuries mainly due to its diuretic, anti-inflammatory,

anti-hypertensor and antidiabetic properties (Gião et al., 2007).

However, this specie has been far less studied than other of the

same genus and, to our knowledge, its phenolic profile remains un-

known. In this context, the present study intends to characterise

the phenolic constituents of C. multiflorus, by high performance
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liquid chromatography associated with diode array detection

(HPLC-DAD), electrospray mass spectrometry (ESI-MS and MSn)

and nuclear magnetic resonance analysis (NMR) techniques.

2. Material and methods

2.1. Chemicals

The phenolic standard gallic acid was obtained from Sigma

Chemical Co. (St. Louis, MO, USA). Luteolin-8-C-glucoside (orien-

tin), luteolin-7-O-glucoside, apigenin-7-O-glucoside, rutin and

chrysin were obtained from Extrasynthese (Genay Cedex, France).

Folin–Ciocalteu reagent, Na2CO3, formic acid and ethanol were pur-

chased from Panreac (Barcelona, Spain). n-Hexane, methanol and

acetonitrile with HPLC purity were purchased from Lab-Scan (Lis-

bon, Portugal). DMSO-d6 containing 0.03% of TMS was obtained

from CortecNet (Paris, France). Water was treated in a Milli-Q

water purification system (TGI Pure Water Systems, USA).

2.2. Plant material

The dried flowers ofC. multifloruswere purchased from ERVITAL

(Castro de Aire, Portugal). The plants have been cultivated under an

organic regime and the flowers were collected in the Spring of

2009. After collection, these were dried at 25–30 °C in a ventilated

incubator for approximately 5 days.

2.3. Extraction of phenolic compounds

The flowers of C. multiflorus (5 g) were grounded and defatted

with 150 ml n-hexane, for three times. The residue was extracted

with 150 ml of an 80% ethanol solution (v/v) at room temperature,

for 1 h and the resulting mixture was filtered. The residue was ex-

tracted in the same conditions for three more times and the fil-

trated solutions were combined, concentrated, frozen at ÿ20 °C

and freeze-dried. The dried extract (ethanolic extract) of C. multif-

lorus was stored in vacuum, at a desiccator in dark, for subsequent

use. This procedure was performed in triplicate.

2.4. Purification of phenolic compounds

The ethanolic extract of C. multiflorus was purified in order to

obtain a suitable sample for NMR analyses. For that, 55 mg of this

extract were dissolved in 3 ml of water and eluted in a Strata SPE

C18-E cartridge Sephadex (2 g, Waters, Milford, MA, USA). The car-

tridge was then washed with 5 ml of water, for three times, and the

phenolic compounds were recovered by elution with 10 ml of

methanol. Following crystallization by evaporation of the solvent

to a minimum volume (approximately 1 ml), the supernatant

was removed by decantation and the precipitated material was

solubilised in DMSO-d6 for NMR analysis.

2.5. Quantification of total phenolic compounds

The total concentration of phenolic compounds in the ethanolic

extract of C. multiflorus was determined according to the adapted

Folin–Ciocalteu colorimetric method (Singleton & Rossi, 1965) de-

scribed by Ferreira et al. (2002). The results of the total phenolic

compounds were expressed as gallic acid equivalent (mg GAE)/g

dried weight of plant material using a calibration curve of gallic

acid as standard (5–37.5 lg/ml). All samples were tested in

triplicate.

2.6. HPLC apparatus and chromatographic conditions

The HPLC analysis was performed on a Varian 9010 separation

module equipped with PDA Varian Prostar detector. The data

acquisition and remote control of the HPLC systemwere conducted

by Varian Star chromatography WorkstationÒ (Lake Forest, CA,

USA) software. The column used was a 250 mm � 4 mm id, 5 lm
bead diameter, end-capped Nucleosil C18 (Macherey–Nagel), and

its temperature was maintained at 30 °C.

The flow rate used was 1 ml/min and the gradient elution was

carried out with a mixture of two solvents. Solvent A consisted of

0.1% (v/v) of formic acid in water and solvent B consisted of aceto-

nitrile, which were degassed and filtrated before use. The solvent

gradient consisted in a series of linear gradients, starting from

10% to 30% of solvent B over 20 min, from 30% to 100% of solvent

B over 5 min, decreasing to 10% of solvent B after 5 min followed

by the return to the initial conditions. For the HPLC analysis, the

samples (10 mg) were dissolved in 1 ml of methanol, filtered

through a 0.2 lm Nylon membrane (Whatman) and 10 ll of each
solution was injected. The UV–Vis spectra were recorded between

220 and 500 nm and the chromatographic profiles were recorded

at 280 nm.

2.7. Identification of the phenolic compounds

Compounds for which standards were available were first iden-

tified by comparison of the retention times and UV–Vis spectra of

the corresponding HPLC peaks. Further analysis by electrospray

ionisation mass spectrometry (ESI-MS and ESI-MSn) allowed the

confirmation of their structure (in the case of previous identifica-

tion by HPLC-DAD) or to obtain structural information on the elut-

ing compounds. In order to have enough amount of sample to carry

out this latter analysis, the peak-forming fractions from three inde-

pendent runs were collected manually according to the visualisa-

tion of the UV profile and were freeze-dried. Note that as the

NMR analysis requires an amount of sample of approximately

5 mg, this technique was not performed for the HPLC collected

fractions (the collection procedure only resulted in micrograms

quantities of sample). Still, NMR assays were performed on a puri-

fied fraction of the ethanolic extract, in order to elucidate the struc-

ture of the main compound in the extract.

2.8. Quantification of the identified phenolic compounds

Fraction 1 (200-O-pentosyl-6-C-hexosyl-luteolin), fraction 2

(200-O-pentosyl-8-C-hexosyl-luteolin) and fraction 3 (orientin),

were quantified using orientin as the reference compound as, in

accordance to their UV–Vis and MS spectra, they were mainly rich

in luteolin-glucoside derivatives. In a similar approach, fraction 4

(200-O-pentosyl-8-C-hexosyl-apigenin), fraction 5 (200-O-pentosyl-
6-C-hexosyl-apigenin), fraction 7 [600-O-(3-hydroxy-3-methylgluta-

royl)-200-O-pentosyl-C-hexosyl-apigenin, quercetin-3-O-glucoside

and luteolin-7-O-glucoside], fraction 8 (apigenin-7-O-glucoside)

and fraction 11 (apigenin) were quantified using apigenin-7-O-glu-

coside as reference. Moreover, fraction 6 [rutin, luteolin-5-O-gluco-

side and 600-O-(3-hydroxy-3-methylglutaroyl)-200-O-pentosyl-C-

hexosyl-luteolin] was quantified using rutin as reference, while

chrysin was used as the reference for the quantification of phenolic

compounds in fractions 9 (chrysin-7-O-glucoside), 10 (dihydroxyf-

lavone chrysin isomer) and 12 (chrysin). Five-points calibration

curves were used for each standard. In particular, for orientin, the

tested range was 0.013–0.1 mg/ml and the achieved equation was

y = 6E + 07x ÿ 286,681, with R2 value of 0.9995 (n = 13). The quanti-

fication limit (LQ) and detection limit (LD) of this compound were

0.0175 and 0.0058 mg/ml, respectively. For apigenin-7-O-glucoside,

the tested range was 0.003–0.04 mg/ml, the equation was

y = 8E + 07x ÿ 52,202 with R2 value of 0.9996 (n = 13). LQ and LD

were 0.0131 and 0.0043 mg/ml, respectively. The calibration curves

of the phenolic standards rutin and chrysin were performed for

ranges of 0.018–0.14 and 0.006–0.374 mg/ml, respectively. The
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respective equations were Y = 4E + 07x ÿ 401,004 (n = 13) and

Y = 1E + 08x ÿ 354,600 (n = 13),with LQ values of 0.0625 and 0.0160

mg/ml (respectively) and LD values of 0.018 and 0.0053 mg/ml,

respectively.

2.9. Mass spectrometry analysis by ESI-MS and ESI-MSn

The HPLC fractions or the phenolic standards were dissolved in

methanol and directly injected into the ESI source by means of a

syringe pump, at a flow rate of 8 ll/min. ESI-MS analyses were per-

formed in the negative ion mode within the m/z range 50–1000,

using a Linear Ion trap LXQ instrument (ThermoFinnigan, San Jose,

CA, USA) equipped with XcaliburÒ software (ThermoFinnigan, San

Jose, CA, USA). Typical ESI conditions were: nitrogen sheath gas 30

psi, spray voltage 4.7 kV, capillary temperature 275 °C, capillary

voltage ÿ37.0 V and tube lens voltage ÿ81.89 V. CID-MS/MS and

MSn experiments were performed on mass-selected precursor ions

using a standard isolation and excitation configuration. Full scan

data acquisition was performed from m/z 100 to m/z 1000 in MS

scan mode.

2.10. Nuclear magnetic resonance (NMR) studies

1H and 13C NMR spectra of the purified phenolic extract were re-

corded at 298 K on a Bruker Avance 500 spectrometer operating at

500.13 and 125.77 MHz, respectively. The phase sensitive 1H-de-

tected (1H,13C) gHSQC (heteronuclear single quantum coherence,

using gradient pulses for selection) spectrum was recorded with

216 transients over 256 increments (zero-filled to 512) and 2 K data

points with spectral widths of 4500 Hz in F2 and 20 kHz in F1. The

repetition time was 1.9 s. A cosine multiplication was applied in

both dimensions. The delays were adjusted according to a coupling

constant 1J(CH) of 147 Hz. The gHMBC (heteronuclear multiple

quantum coherence, using gradient pulses for selection) spectrum

was recorded with 240 transients over 256 increments (zero-filled

to 1 K) and 2 K data points with spectral widths of 4500 Hz in F2
and 25 kHz in F1. The repetition timewas 1.9 s. A sinemultiplication

was applied in both dimensions. The low-pass J-filter of the exper-

iment was adjusted for an average coupling constant 1J(CH) of

147 Hz and the long-range delay utilised to excite the heteronuclear

multiple quantum coherence was optimised for 7 Hz. Chrysin

(Sigma) was used as a reference compound for the structural eluci-

dation of the purified ethanolic extract. According to the interpreta-

tion of its 1H, 13C NMR, HSQC, COSY and HMBC spectra the 1H and
13C NMR chemical shifts of chrysin were assigned as follow: 1H

NMR: d = 6.22 (d, J = 2.1 Hz, H-6), 6.53 (d, J = 2.1 Hz, H-8), 6.98

(s, H-3), 7.54–7.64 (m, H-30,40,50), 8.07 (dd, J = 1.7 and 7.9 Hz,

H-20,60); 13C NMR: d = 94.1 (C-8), 99.0 (C-6), 104.0 (C-10), 105.2

(C-3), 126.4 (C-20,60), 129.2 (C-30,50), 130.7 (C-10), 132.1 (C-40),

157.5 (C-9, 161.5 (C-5), 163.2 (C-2), 164.4 (C-7), 181.9 (C-4).

3. Results and discussion

The ethanolic extract of C. multiflorus represented 32% of the

dried plant mass and its total phenolic compounds accounted for

140 ± 12 mg GAE/g of extract (data not shown). This amount corre-

sponds to a recovery of 44.7 ± 4.0 mg GAE/g dried plant and thus, it

is higher than those values reported by Gião et al. (2007)) for ex-

tracts of C. multiflorus obtained by infusion or boiling (12.9 mg/g

or 26.2 mg/g GAE/g dried plant, respectively).

3.1. Identification of the phenolic compounds of the ethanolic extract

of C. multiflorus

In order to characterise the phenolic compounds of the

ethanolic extract of C. multiflorus, this was further analysed by

HPLC-DAD. The corresponding chromatogram, at 280 nm is shown

in Fig. 1. Only four of the twelve fractions matched with the avail-

able phenolic standards, namely fractions 3, 6, 8 and 12, which cor-

responded to orientin, rutin, apigenin-7-O-glucoside and chrysin,

respectively. These four assignments, as also the identification of

the remaining phenolic components in the ethanolic extract of C.

multiflorus were elucidated considering the HPLC-DAD figures, to-

gether with electrospray ionisation mass spectrometry (ESI-MS

and MSn) data. Moreover, the NMR analysis of the purified etha-

nolic extract provided crucial information for the assignment of

the main phenolic compound in the extract (fraction 9).

Table 1 summarises the HPLC-DAD and MS data obtained for

each of the analysed fractions. MS analysis was preferentially ob-

tained in the negative mode, because of its higher sensitivity in

the detection of the distinct classes of phenolic compounds (Cuyc-

kens & Claeys, 2004) although in some cases, analysis in the posi-

tive mode was also used in order to confirm the data from the

negative mode (data not shown). Together with the NMR analysis,

it is possible to conclude that the ethanolic extract of C. multiflorus

is mainly rich in flavones. Indeed, besides this class of compounds,

only two derivatives of quercetin (flavonol) were found. The fol-

lowing sections will focus on the assignments of the structural fea-

tures of these compounds.

3.1.1. Chrysin derivatives

Besides chrysin, which appeared in the HPLC-DAD profile as a

minor component in fraction 12 (eluted at 23.7 min), the ethanolic

extract of C. multiflorus contained two other chrysin derivatives,

which were eluted in fractions 9 and 10. The analysis of these frac-

tions by ESI-MS/MS, together with the analysis of a purified frac-

tion by NMR, allowed to fully elucidate the structure of the

compound in fraction 9 and to obtain some structural features on

the chrysin derivative detected in fraction 10.

The ESI-MS spectrum of fraction 9 showed two distinct molec-

ular species (at m/z 451 and 461), which corresponded to the ion-

isation of the same compound. In fact, the ESI-MS/MS spectra of

those two molecular ions showed similar product ions, namely at

m/z 415 and 253. The formation of the product ion at m/z 415 cor-

responded to the loss of 36 Da (for the molecular specie atm/z 451)

and 46 Da (for the molecular specie at m/z 461), thus suggesting

that they respectively correspond to the chloride adduct

[M + Cl]ÿ and formic acid adduct [M + CH2O2]
ÿ of the compound

(MW 416 Da). Moreover, the presence of the product ion at m/z

253 in the ESI-MS/MS spectrum of the adducts (at m/z 451 and

m/z 461) suggested that the compound of MW 416 Da was a chry-

sin derivative. This hypothesis was supported by the MS3 spectrum

of the ion atm/z 253 and also by the UV–Vis spectrum of fraction 9,

which were similar to that of the reference compound. Moreover,

the main product ion of the MS3 spectrum of the [M + Cl ÿ HCl]ÿ

at m/z 415 is the ion at m/z 253, which was formed by the loss of

162 Da. These results suggested that the main compound in frac-

tion 9 was an hexoside derivative of chrysin.

The total structural elucidation of the phenolic compound

detected in fraction 9 (MW 416 Da) was accomplished by NMR

analysis. The assays were conducted on a purified sample, in order

to simplify the interpretation of the spectra. Still, it must be noted

that NMR experiments were also performed on the ethanolic

extract (non purified) in order to assure that its main compound

corresponded to that of the purified fraction (data not shown). As

can be concluded from Fig. 2 and Table 2, all the NMR signals

corresponded to one compound, suggesting that the purified pro-

cedure was efficient. The 1H and 13C NMR chemical shifts pre-

sented in Table 2 were assigned according to the analysis of its
1H (Fig. 2), 13C, COSY, HSQC, and HMBC NMR spectra (data not

shown) and further comparison to those of chrysin and to the lit-

erature data (El Antri et al., 2004). All the signals in the spectra
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corroborated the presence of chrysin-7-O-b-D-glucopyranoside in

the extract. Indeed, besides the characteristic signals of the chrysin

aglycone, the spectra showed typical 1H and 13C chemical shifts for

b-Glcp (dH-1 = 5.1 ppm, J = 7.5 Hz, dC-1 = 100.6 ppm). Moreover, the

long-range H-100
? C-7 correlation in the gHMBC spectrum, al-

lowed to confirm that the anomeric carbon of glucose was linked

to C-7 of the flavone skeleton. Thus, overall, the mass spectrometry

and NMR analysis allowed the conclusion that the compound

eluted in fraction 9 corresponded to the known flavonoid chry-

sin-7-O-b-D-glucopyranoside. To the best of our knowledge, this

flavone was detected for the first time in the Fabaceae family.

Concerning fraction 10, its ESI-MS spectrum showed the molec-

ular ion at m/z 253 (negative mode) or at m/z 255 (positive mode),

suggesting the presence of a chrysin isomer. This hypothesis was

Fig. 1. Chromatographic profile of ethanolic fractions of Cytisus multiflorus at 280 nm. The numbers on the figure correspond to the fractions that were collected for by ESI-MS

analysis.

Table 1

Identification of HPLC eluting fractions by HPLC-DAD and ESI-MS from the ethanolic extract of Cytisus multiflorus.

Peak RT

(min)

kmax Compound

(MW)

Main fragment ESIÿ MSn Compound

1 7.2 256,

266,

347

580 MS2 [579]: 459(50), 429(100), 357(20), 327(40), 309(5), 285(1) 200-O-pentosyl-6-C-hexosyl-luteolin

2 7.5 257,

266,

346

580 MS2 [579]: 459(75), 449(15), 429(100), 357(65), 327(100), 309(5), 297(<1), 285(<1);

MS3 [459]:327(100); MS4 [327]:299(100), 284(15), 255(2); MS5 [299]: 271(15),

255(100), 240(10), 213(25), 199(3), 175(15), 165(5), 163(1)

200-O-pentosyl-8-C-hexosyl-luteolin

3 7.9 256,

266,

345

448 MS2 [447]: 357(40), 327(100), 285(10); MS3 [357]: 339(35), 297(100), 285(90) Orientin

4 8.1 267,

338

564 MS2 [563]: 545(<1), 473(<1), 443(2), 413(100), 341(<1), 311(<1), 293(4); MS3 [413]:

293(100); MS4 [293]: 275(7), 265(30), 249(100), 175(60)

200-O-pentosyl-8-C-hexosyl-apigenin

5 8.3 267,

338

564 MS2 [563]: 443(4), 413(100), 293(8); MS3 [413]: 293; MS4 [293]: 265(40), 249(100),

175(50)

200-O-pentosyl-6-C-hexosyl-apigenin

356 MS2 [355]: 337(15), 199(5), 183(20), 179(100), 175(15), 161(15), 149(2), 143(15),

131(4), 113(10); MS3 [179]: 161(45), 143(100), 119(3), 89(50)

Unknown

6 9.3 255,

352

610 MS2 [609]: 343(7), 301(100); MS3 [301]: 273(10), 257(10),) 179(100), 151(60); MS4

[179]: 151(100); MS5 [151]: 107

Rutin

448 MS2 [447]: 285(100); MS3 [285]: 257(7), 241(100), 217 (45), 199 (75), 175 (60), 151

(12)

Luteolin-5-O-glucoside

724 MS2 [723]: 661(5), 621(15), 579(100), 459(15), 357 (15), 327 (15); MS3 [579]: 459 (80),

429(90), 357 (70), 327 (100); MS4 [459]: 327(100); MS5[327]: 299(100), 284(20),

255(2); MS5 [299]: 255

600-O-(3-hydroxy-3-

methylglutaroyl)-200-O-pentosyl-C-

hexosyl-luteolin

7 9.7 266,

342

708 MS2 [707]: 645(7), 605(10), 563(100); MS3 [563]: 443(5), 413(100), 293(10); MS4 [413]:

293; MS5 [293]: 249(100), 205(1), 175(20)

600-O-(3-hydroxy-3-

methylglutaroyl)-200-O-pentosyl-C-

hexosyl-apigenin

464 MS2 [463]: 301(100), 300(20); MS3 [301]: 283(3), 273(15), 257(15), 229(3), 193(5),

179(100), 151(65), 107(2)

Quercetin-3-O-glucoside

255,

262,

347

448 MS2 [447]: 285; MS3 [285]: 267(12), 257(20), 243(50), 241(100), 217(50), 201(15),

199(65), 197(10), 175(60), 151(15)

Luteolin-7-O- glucoside

8 11.3 266,

342

432 MS2 [431]: 269 Apigenin-7-O- glucoside

9 14.3 267,

303

462 MS2 [461]: 415 (15), 253(100); MS3 [253]: 209(100), 181(4), 153(1) Chrysin-7-O-glucoside

452 MS2 [451]: 415(5), 253(100); MS3 [253]: 209(100), 181(4), 151(1)

10 15.7 267,

303

254 MS2 [253]: 225(5), 209(100), 167(3), 165(5), 159(5), 151(4), 113(10), 107(3); MS3 [209]:

181(40), 167(5), 165(50), 153(15)

Chrysin isomer

11 16.7 ND 270 MS2 [269]: 251(40), 241(25), 227(15), 225(100), 207(20), 201(40), 197(20), 183(10),

181(35), 175(30), 169(10), 151(3), 149(5)

Apigenin

12 23.7 267,

313

254 MS2 [253]: 209 Chrysin
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further confirmed by the UV–Vis spectrum of that fraction, which

was similar to that of fractions 9 and 12. Attending to these data,

we tentatively assigned the compound in fraction 10 to a dihydr-

oxyflavone (MW 254 Da), although the position of the hydroxyl

groups in ring A could not be determined.

3.1.2. Luteolin derivatives

Luteolin derivatives in C. multiflorus were mostly O-glycosyl-C-

glycosyl-flavones, with the O-glycosylation located on the sugar

moiety of a C-hexosyl-flavone skeleton, as shown in Fig 3. Indeed,

as observed in Table 1, the interpretation of the fragmentation

pathway of the molecular ions in the HPLC-DAD fractions allowed

the identification of three of these derivatives, namely in fractions

1, 2 and 6. In more detail, the analysis of the negative ESI-MS

spectra of fractions 1 and 2 showed a [M ÿ H]ÿ ion at m/z 579,

and its MS2 spectrum revealed the ions at m/z 459, 429, 357,

327, and 285. This latter product ion, as also the UV–Vis spectra

of these two fractions, supported the occurrence of luteolin deriv-

atives. Moreover, the base peak at m/z 429 (ÿ150 Da) was formed

by the loss of a pentose sugar and is indicative of a O-pentosyl

group in those compounds (Ferreres, Gil-Izquierdo, Andrade,

Valentao, & Tomas-Barberan, 2007), while the ion at m/z 459

(ÿ120 Da) corresponds to the intramolecular breakage of the

hexose on the C-glycosyl-flavone unit (Cuyckens & Claeys, 2004) and

is characteristic of 200-substituted hexoses (Ferreres, Gil-Izquierdo,

et al., 2007). The existence of 200-O-glycosyl-C-glycosyl-flavones
in fractions 1 and 2 was also supported by the MS analysis in the

positive mode (data not shown). Indeed, the analysis of the

[M + H]+ ion at m/z 581 showed the product ions at m/z 431, 329

and 287, that correspond to some of the most abundant ions in

the negative ion analysis. Moreover, the fragmentation pathway

of the base peak at m/z 449 corroborated the hypothesis of a

luteolin-C-glucoside derivative (Ioset et al., 2007) and the loss of

132 Da from the product ion at m/z 449 confirmed the presence

of a pentose unit with a O-linkage (Cuyckens & Claeys, 2004;

Han et al., 2008; Regos, Urbanella, & Treutter, 2009; Ye, Yan, &

Guo, 2005).

Overall, the above results allowed the detection, for the first

time, of two isomers of 200-O-pentosyl-C-hexosyl-luteolin deriva-

tives in Cytisus. The presence of these two isomers in contiguous

fractions were confirmed by HPLC-MS analysis (results not shown).

Moreover, considering that in nature the C-glycosyl moieties ap-

pear almost exclusively at 6 and/or 8-positions of flavones (Cuyc-

kens & Claeys, 2004) and that the 8-C-glycosyl-luteolin isomer

elutes before the 6-C-glycosyl-luteolin under reversed phase con-

ditions (Kazuno, Yanagida, Shindo, & Murayama, 2005; Pereira,

Yariwake, & McCullagh, 2005; Piccinelli et al., 2008), the phenolic

compounds in fractions 1 and 2 were respectively assigned to 200-

O-pentosyl-6-C-hexosyl-luteolin and 200-O-pentosyl-8-C-hexosyl-

luteolin. The structures of these two compounds are depicted in

Fig. 3.

Fig. 2. 1H NMR spectrum of a purified fraction from the ethanolic extract of Cytisus

multiflorus.

Table 2

Chemical shifts (d) of chrysin-7-O-b-D-glucopyranoside obtained from purified ethanolic extract of Cytisus multiflorus (in DMSO-d6).

Atom 13C 1H Atom 13C 1H

2 164.6 – Glucose

3 106.0 6.97 100 100.6 5.10 (J = 7.5 Hz)

4 182.8 – 200 73.7 3.34 (m)

5 161.7 – 300 76.9 3.37 (dd, J = 9.6, 7.9 Hz)

6 100.3 6.89 (d, J = 2.2 Hz) 400 70.1 3.28 (t, J = 9.6 Hz)

7 163.9 – 500 77.7 3.50 (m)

8 95.5 6.51 (d, J = 2.2 Hz) 600 61.2 3.58 (dd, J = 12.0, 5.8 Hz)

3.80 (dd, J = 12.0, 1.9 Hz)

9 157.9 –

10 106.3 –

10 131.3 –

20 ,60 127.0 8.09 (dd, J = 8.2, 1.4 Hz)

30 ,50 129.7 7.54–7.64

40 132.7 7.54–7.64
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The luteolin derivative found in fraction 6 (molecular ion at m/z

723 or m/z 725, in negative or positive ion modes, respectively)

was structurally related to the previous ones. Indeed, the MS2 of

the ion at m/z 723 (negative mode) showed a base peak ion at m/

z 579, which corresponds to one of the 200-O-pentosyl-C-hexosyl-

luteolin isomers described above (fraction 1 or 2). This product

ion was formed by the loss of 144 Da, and other ions in the MS2

spectrum were formed by the loss of 62 Da (at m/z 661) and

102 Da (at m/z 621). Luteolin derivatives containing a 144 Da moi-

ety were previously described by Ferreres, Sousa, et al. (2007) in

Passiflora genus, although at that time, these authors have not pro-

posed a structural feature for that unit. Yet, the same fragmenta-

tion pattern (ÿ62 Da, ÿ102 Da and ÿ144 Da) has been previously

assigned to 3-hydroxy-3-methylglutaroyl flavonoid glycosides in

Citrus bergamia (Di Donna et al., 2009) and in Oxytropis racemosa

plant of Fabaceae family (Song et al., 2010). Thus, based on that

data, these results suggest the existence of a 3-hydroxy-3-meth-

ylglutaroyl derivative of 200-O-pentosyl-C-hexosyl-luteolin in C.

multiflorus. To our knowledge, luteolin derivative compounds con-

taining a 3-hydroxy-3-methylglutaroyl moiety have never been re-

ported in Fabaceae and thus, further studies are needed in order to

elucidate the specific linkage position of the 3-hydroxy-3-methylg-

lutaroyl moiety to the phenolic skeleton. In this context, the struc-

ture proposed in Fig. 3 should only be regarded as an example.

More common glycosyl-luteolin derivatives (MW 448 Da) oc-

curred as minor components of the ethanolic extract and were de-

tected in fractions 3, 6 and 7. The assignment of these compounds

to orientin (fraction 3) (Kazuno et al., 2005), luteolin-5-O-glucoside

(fraction 6) and luteolin-7-O-glucoside (fraction 7) (Rauter et al.,

2009), which was based on the HPLC-DAD and MSn data, will not

be discussed in detail, as they were previously described to occur

in Fabaceae.

3.1.3. Apigenin derivatives

New apigenin derivatives in C. multiflorus belonged to the same

group as those of luteolin derivatives, i.e., the 200-O-glycosyl-C-gly-

cosyl-flavones. Indeed, besides apigenin (fraction 11) and

apigenin-7-O-glucoside (fraction 8), the derivatives of this flavone

detected in fractions 4, 5 and 7 had comparable fragmentation

pathway to that described for 200-O-glycosyl-C-glycosyl-luteolin
derivatives. Namely, the MS2 of the abundant molecular ion at m/

z 563 (fractions 4 and 5) showed a base peak formed by the loss

of 150 Da (ion atm/z 413), indicating the presence of an O-pentosyl

group (Ferreres, Gil-Izquierdo, et al., 2007). Moreover, the detec-

tion of the product ion [M–H–120]ÿ (ion at m/z 443) in the MS2

spectrum, as also the ion at m/z 293 in the MS3 spectrum (repre-

senting the apigenin aglycone +41–18 Da), corroborated the pres-

ence of 200-O-pentosyl-C-hexosyl-apigenin isomers in fractions 4

and 5 (Ferreres, Gil-Izquierdo, et al., 2007). Overall, the MS data

suggested the presence of 200-O-pentosyl-8-C-hexosyl-apigenin

(200-O-pentosyl-vitexin) and 200-O-pentosyl-6-C-hexosyl-apigenin

(200-O-pentosyl-isovitexin) in those fractions (structures repre-

sented in Fig. 3). Attending that 8-C-glucosyl-apigenin elutes be-

fore 6-C-glucosyl-apigenin under HPLC reverse phase conditions

(Kazuno et al., 2005; Pereira et al., 2005; Piccinelli et al., 2008),

compounds of MW 564 Da in fractions 4 and 5 were respectively

assigned to 200-O-pentosyl-vitexin and 200-O-pentosyl-isovitexin.

To our knowledge, these compounds were here detected for the

first time in Fabaceae family.

Similarly to that described for luteolin derivatives, the ethanolic

extract ofC. multiflorus also contained one 3-hydroxy-3-methylglu-

taroyl derivative of 200-O-pentosyl-C-hexosyl-apigenin (MW

708 Da). The base peak in the MS2 spectrum in the negative mode

([M + H]ÿ at m/z 707) corresponded to one 200-O-pentosyl-C-hexo-

syl-apigenin moiety (ion at m/z 563), and this latter ion had a sim-

ilar fragmentation pattern to that of the C-glycosyl isomer. As

described before for the luteolin derivative in fraction 6 (MW

724 Da), the presence of an 3-hydroxy-3-methylglutaric acid moi-

ety was proposed based on literature data (Di Donna et al., 2009;

Song et al., 2010). Apigenin derivatives containing a 144 Da moiety

were also previously described by Ferreres, Sousa, et al. (2007) in

Passiflora genus, although no structural feature was proposed. As

for the luteolin derivative, the proposed structure of the apigenin

derivative detected in fraction 7 (Fig 3) is based on the literature

Fig. 3. Proposed structures for flavones identified in the ethanolic extract of Cytisus multiflorus.
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data reported for the Fabaceae family (Liu, Liu, Liu, Hou, & Mabry,

1994), although further studies are needed in order to confirm that

hypothesis.

3.1.4. Quercetin derivatives

Besides the above described flavones, the ethanolic extract of C.

multiflorus also contained two common derivatives of the flavonol

quercetin. According to the HPLC-DAD the ESI-MSn figures, and

also the comparison to the literature data, flavonols were assigned

to rutin (MW 610 Da in fraction 6) and quercetin-3-O-glucoside

(MW 464 Da in fraction 7), which have been previously described

in Fabaceae family (Raja et al., 2007).

3.2. Quantification of phenolic compounds by HPLC-DAD

The quantified phenolic compounds in the ethanolic extract of

C. multiflorus (Table 3) accounted for 41.8 ± 3.0 mg/g dried plant,

which is a close value to that obtained by the Folin–Ciocalteu

method (44.7 ± 4.0 mg/g dried plant). The extract was shown to

be mostly rich in chrysin derivatives, in particular the flavone chry-

sin-7-O-b-D-glucopyranoside. This latter component, together with

the dihydroxyflavone (chrysin isomer in fraction 10), accounted for

approximately 50% of the extract total phenolic content. Besides

those two compounds, the flavones 200-O-pentosyl-6-C-hexosyl-

luteolin, 200-O-pentosyl-8-C-hexosyl-luteolin and 600-O-(3-hydro-

xy-3-methylglutaroyl)-200-O-pentosyl-C-hexosyl-apigenin, as well

as flavonol rutin can also be pointed as occurring in moderate con-

centrations in the ethanolic extract of C. multiflorus.

4. Conclusions

The ethanolic extract obtained from flowers of C. multiflorus was

here described in detail for the first time, by means of HPLC-DAD,

ESI-MS and MSn analyses and NMR assays. The main compound in

the phenolic extract of the flowers of this plant was chrysin-7-O-b-D-

glucopyranoside, but it also contained considerable amounts of rutin,

a dihydroxyflavone isomer of chrysin, 200-O-pentosyl-6-C-hexosyl-

luteolin, 200-O-pentosyl-8-C-hexosyl-luteolin and 600-O-(3-hydroxy-3-

methylglutaroyl)-200-O-pentosyl-C-hexosyl-apigenin, which are not

commonly found in theFabaceae family.Moreover, otherunusualphe-

nolic compounds found inminor amounts in the ethanolic extract ofC.

multifloruswere identified as 200-O-pentosyl-6-C-hexosyl-apigenin, 200-

O-pentosyl-8-C-hexosyl-apigenin and 600-O-(3-hydroxy-3-methylglu-

taroyl)-200-O-pentosyl-C-hexosyl-luteolin. Overall, the present work is

avaluablecontribution for thephenolicelucidationof theCytisusgenus

and of the Fabaceae family.
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Pereira O. R., 2013 | CHARACTERIZATION OF PHENOLIC CONSTITUENTS OF MEDICINAL PLANTS AND 

EVALUATION OF PHARMACOLOGICAL ACTIVITIES: FOCUS IN ANTIOXIDANT AND 

ANTI-INFLAMMATORY PROPERTIES 

3.3. PHENOLIC CONSTITUENTS OF LAMIUM ALBUM: FOCUS ON 

ISOSCUTELLAREIN DERIVATIVES 

 

Lamium album L., commonly known as white dead nettle, is a Mediterranean perennial 

herb consumed as food ingredient, in food supplements and in the form of tea. Despite 

the plant has been traditionally used for the treatment of several diseases, a detailed 

knowledge of its phenolic constituents, as well as their content in the plant, is still 

missing. In this work, a detailed phenolic characterization was performed for a purified 

ethanolic extract obtained from the aerial parts of L. album. 

The extract was mainly rich in the two phenylethanoids verbascoside (233.7±13.6 mg/g 

extract) and isoverbascoside (39.2±5.6 mg/g extract), corresponding approximately to 

half of the total quantified phenolics. Besides these, the extract also contained 

uncommon bioactive phenolic compounds herein detected for the first time in the 

Lamium genus, called isoscutellarein derivatives. These compounds accounted for 

almost 30% of the total quantified phenolics in the extract. They included the 

isoscutellarein-7-O-allosyl(1→2)glucoside, its O-methyl derivative, three acetyl 

derivatives of isoscutellarein-O-allosyl glucoside and one acetylated form of O-

methylisoscutellarein-7-O-allosyl(1→2)glucoside. The main isoscutellarein derivative 

was assigned to isoscutellarein-7-O-(6-O-acetyl-β-allosyl)(1→2)-β-glucoside 

(accounting for 37.4±4.4 mg/g extract), as confirmed by NMR experiments. In turn, the 

flavones apigenin-7-O-glucoside, luteolin-7-O-glucoside, apigenin-7-O-rutinoside and 

the flavanone naringenin-7-O-rutinoside were detected as minor components of the 

extract. In conclusion, this work details the chemical characterization of the L. album, 

also suggesting that this species is an important dietary source of natural antioxidants. 

It is also expected that the herein gathered data will stimulate further search in order to 

elucidate the possible roles of L. album phenolics on the benefits of the plant. 

 

The results obtained in this section of the Doctoral Thesis have been used to write the 

manuscript entitled "Phenolic constituents of Lamium album: focus on isoscutellarein 

derivatives" which is published in Food Research International. 
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Lamium album L. is an edible plant which is consumed raw or cooked, in particular in the Mediterranean and sur-
rounding areas. It is also consumed as tea infusions and as a main component of food supplements, because of its
pharmacological effects. Despite being consumed by humans for centuries, the chemical composition of L. album L.
is far from being understood. In this study, a purified ethanolic extract (PEEL) was prepared and further analyzed
by high performance liquid chromatography and electrospraymass spectrometry. Overall, verbascoside accounted
for approximately half of the phenolic content of the extract, but this also contained other bioactive phenolic com-
pounds herein detected for the first time in the genus, namely isoscutellarein derivatives. The latter included
isoscutellarein-7-O-allosyl(1→2)glucoside, its O-methyl derivative, three acetyl derivatives of isoscutellarein-O-
allosyl glucoside and one acetylated form of O-methylisoscutellarein-7-O-allosyl(1→2)glucoside. From those,
themain isoscutellarein derivativewas assigned to isoscutellarein-7-O-(6-O-acetyl-β-allosyl)(1→2)-β-glucoside,
as confirmed by NMR. Altogether, isoscutellarein derivatives accounted for almost 30% of PEEL phenolics. Since
verbascoside and isoscutellarein derivatives aremain components of L. album L. ethanolic extract, their possible as-
sociation to the health benefits of the plant is discussed.

© 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The genus Lamium L. (Family: Lamiaceae alt. Labiatae) comprises
about 40 annual or perennial herb species native to the Old World,
distributed in Europe, Asia and Africa.

Lamium album L. is a perennial herb commonly known aswhite dead
nettle that has been used as emergency or famine food, particularly dur-
ing the specific decades of starvation as an alternative nourishment in
different countries such as Europe, China and Japan (Baranov, 1967;
Luczaj, 2008; Sturtevants, 1919; Turner et al., 2011). In modern times,
L. album L. is mainly consumed in the Mediterranean and surrounding
areas for confection of local dishes (Heinrich, Müller, & Galli, 2006). In
fact, the young shoots, leaves and flowers of this plant are edible and
consumed raw or cooked as a vegetable. The plant is also commonly
used as an ingredient in several dishes including omelets, stews and
roasts (Clifford, 2001). Moreover, white dead nettle is the base ingredi-
ent for important vegetarian dishes such as the “White Dead Nettle
Frittata”, “White Dead Nettle, Feta and Watermelon Salad” and the
“Deadnettle soup” (Celnet, 2005; Harford, 2007).
r Agrária, Instituto Politécnico
l. Tel.: +351 239 802940;

rights reserved.
L. album L. is also used in teas and in food supplement prepara-
tions, the consumption of which is primarily associated to the plant
health benefits. In particular, the consumption of food supplements
enriched in L. album L. extracts are claimed to detoxify the organism,
to prevent menstrual disorders, abdominal inflammation and mus-
culoskeletal diseases (Xu, 2008) and to improve fat metabolism
(Ninomiya et al., 2006).

Besides the above applications, the flowers of L. album L. are attrac-
tive to bees and other pollinating insects and hence, are frequently used
in honey production (Denisow & Bozek, 2008; Mihaly Cozmuta, Bretan,
Mihaly Cozmuta, Nicula, & Peter, in press).

During the last decades food health attributes have become an im-
portant issue of concern for consumers, clearly influencing their
choices. In parallel, the search for food constituents related to health
properties has incredibly raised. This provides the base knowledge to
understand the beneficial properties of a particular food product and
further stimulate consumers' interest in it. In the particular case of
L. album L., the phenolic compounds have been closely associated with
the antioxidant properties of the plant (Matkowski & Piotrowska,
2006; Valyova, Dimitrova, Ganeva, Mihova Kapchina-Toteva, & Petkova
Yordanova, 2011), as well as to its remaining health benefits (Paduch
et al., 2008; Paduch, Wójciak-Kosior, & Matysik, 2007).

In this way, several L. album L. phenolic compounds have already
been detected, which include the flavonoids quercetin, quercetin-3-O-
glucoside, rutin, isoquercitrin, kaempferol-3-O-glucoside and tiliroside,

http://dx.doi.org/10.1016/j.foodres.2012.04.009
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the phenolic acids protocatechuic, chlorogenic, vanillic and caffeic and
the phenylpropanoid glycoside ester derivatives lamalboside, acteoside
and isoacteoside (Budzianowski & Skrzypczak, 1995; Paduch et al.,
2007; Yalcin & Kaya, 2006). However despite that information, a de-
tailed knowledge of the L. album L. phenolic constituents, as well as
their content in the plant, is still missing. Hence, these two topics will
be herein described in detail.

2. Experimental

2.1. Chemicals

The phenolic standards verbascoside, apigenin-7-O-glucoside,
luteolin-7-O-glucoside and naringenin-7-O-glucoside were obtained
from Extrasynthese (Genay Cedex, France). Gallic acid was obtained
from Sigma Chemical Co (St Louis, MO, USA), while Folin–Ciocalteu
reagent, Na2CO3, formic acid and ethanol were purchased from
Panreac (Barcelona, Spain). n-Hexane, methanol and acetonitrile
with HPLC purity were purchased from Lab-Scan (Lisbon, Portugal).
Water was treated in a Milli-Q water purification system (TGI Pure
Water Systems, USA). DMSO-d6 containing 0.03% of TMS was
obtained from CortecNet (Paris, France).

2.2. Plant material

The L. album were purchased as a mixture of flowers, leaves and
stems from O SEGREDO DA PLANTA — Produtos Naturais e Biológicos,
Lda. (Seixal, Portugal). The plants have been cultivated under an organic
regime and after collection, its aerial parts (flowers, leaves and stems)
were dried in a ventilated incubator at 20 to 35 °C for 3 to 5 days.

2.3. Extraction of phenolic compounds

The aerial parts (flowers, leaves and stems) of L. album (5 g) were
ground together and defatted three times with 150 mL of n-hexane.
The residue was extracted with 150 mL of an 80% ethanol solution (v/v)
at room temperature, for 1 h and the resulting mixture was filtered. The
residue was similarly re-extracted five times and the filtrated solutions
were combined, concentrated, frozen at −20 °C and freeze-dried. The
dried extract (ethanolic extract) of L. album was stored under vacuum,
in a desiccator in dark, for subsequent use (Pereira, Silva, Domingues, &
Cardoso, 2012). This procedure was performed in triplicate.

2.4. Purification of phenolic compounds

The ethanolic extracts were further purified for phenolic enrichment.
For that, approximately 0.4 g of each ethanolic extract was dissolved in
15 mL of water and eluted in three Strata SPE C18-E cartridges (2 g,
Waters, Milford, MA, USA). The cartridges were then washed three
timeswith 30 mL ofwater, and the phenolic compoundswere recovered
by elutionwith 20 mLofmethanol. The residuewas concentrated, frozen
at−20 °C and freeze-dried to give the purified ethanolic extract (PEEL)
(Pereira et al., 2012).

2.5. Quantification of total phenolic compounds

Total concentration of phenolic compounds was determined
according to the adapted Folin–Ciocalteu colorimetric method
(Singleton & Rossi, 1965). A mixture of 250 μL of Folin–Ciocalteu
reagent and 0.5 mL plant extract solution (0.4 mg/mL) was prepared.
After 3 min, 1 mL of Na2CO3 (200 g/L) and 3.25 mL of milliQ water
were added. The mixture was homogenized and incubated for 10 min
at 70 °C, and then kept at room temperature for 30 min. The absorbance
was measured at 700 nm and the amount of total phenolic compounds
was expressed as gallic acid equivalent (mg GAE)/g dried weight of
plant material using a calibration curve of gallic acid as standard (5 to
37.5 μg/mL). This procedure was performed at least in duplicate for
the three PEEL samples.

2.6. HPLC apparatus and chromatographic conditions

The HPLC analysis was performed on a Varian 9010 separation
module equipped with a PDA Varian Prostar detector and data acquisi-
tion and remote control of the HPLC system were done by Varian Star
chromatography Workstation® (Lake Forest, CA, USA) software. The
column used was a 250 mm×4 mm id, 5 μm bead diameter, end-
capped Nucleosil C18 (Macherey-Nagel) and its temperature was
maintained at 30 °C.

Gradient elution was carried out with a mixture of 0.1% (v/v) of
formic acid in water (solvent A) and acetonitrile (solvent B), which
were degassed and filtered before use. The solvent gradient consisted
of a series of linear gradients, starting from 10 to 20% of solvent B over
6 min, 20 to 25% of solvent B over 6 min, 25 to 40% over 30 min, increas-
ing to 45% at 50 min and to 100% of solvent B over 5 min decreasing to
10% of solvent B after 5 min followed by the return to the initial condi-
tions. The flow rate used was 1 mL/min. For the HPLC analysis, the sam-
ples (10 mg) were dissolved in 2 mL of methanol, filtered through a
0.2 μm Nylon membrane (Whatman) and 10 μL of each solution was
injected. The UV–vis spectra were recorded between 220 and 500 nm
and the chromatographic profiles were recorded at 340 nm.

2.7. Identification and quantification of the phenolic compounds

Identification of the compounds was performed by HPLC–DAD and
ESI-MS analysis. The compounds were firstly identified according to
the retention time and UV–vis spectra of the HPLC eluting peaks. After
three manual collections, further characterization of the eluted
compounds was accomplished by electrospray ionization mass spec-
trometry (ESI-MS and ESI-MSn) using a Linear Ion trap LXQ mass spec-
trometer (ThermoFinnigan, San Jose, CA, USA), following the general
procedure previously described (Pereira et al., 2012). Moreover, the
most abundant isoscutellarein derivative (fraction 9) was further ana-
lyzed by NMR spectroscopy. To accomplish that, approximately 3 mg
of freeze-dried material of this HPLC fraction was dissolved in DMSO-
d6 and the 1H and 13C NMR spectra were recorded at 298 K on a Bruker
Avance 500 spectrometer operating at 500.13 MHz and 125.77 MHz,
respectively. The phase sensitive 1H-detected (1H,13C) gHSQC
(heteronuclear single quantum coherence, using gradient pulses for se-
lection) spectrum was recorded with 216 transients over 256 incre-
ments (zero-filled to 512) and 2 K data points with spectral widths of
4500 Hz in F2 and 20 kHz in F1. The repetition time was 1.9 s. A cosine
multiplication was applied in both dimensions. The delays were adjust-
ed according to a coupling constant 1J(CH) of 147 Hz. The gHMBC
(heteronuclear multiple quantum coherence, using gradient pulses for
selection) spectrum was recorded with 240 transients over 256 incre-
ments (zero-filled to 1 K) and 2 K data points with spectral widths of
4500 Hz in F2 and 25 kHz in F1. The repetition time was 1.9 s. A sine
multiplication was applied in both dimensions. The low-pass J-filter of
the experiment was adjusted for an average coupling constant 1J(CH)
of 147 Hz and the long-range delay utilized to excite the heteronuclear
multiple quantum coherence was optimized for 7 Hz.

Taking into account the nature of the phenolic compounds
(phenylethanoids and flavones), their quantification was performed at
340 nm (Galvez, Martin-Cordero, Houghton, & Ayuso, 2005) by the ex-
ternal standard method. The detection and quantification limits (LOD
and LOQ, respectively)were determined from theparameters of the cal-
ibration curves represented in Table 1, being defined as 3.3 and 10 times
the value of the regression error divided by the slope, respectively
(Ermer & Miller, 2005; Snyder, Kirkland, & Dolan, 2010).

Fractions 2 and 3 (verbascoside, isoverbascoside) were quantified
using verbascoside as a reference compound. Apigenin-7-O-glucoside
was used to quantify fractions 4 [isoscutellarein-7-O-allosyl(1→2)



Table 1
Linearity, LOD and LOQ of four standard compounds used as references.

Standard compound Range concentration
(μg/mL)

na Slope b

(area counts/mg)
Intercept b

(area counts/mg)
R2 LOD

(μg/mL)
LOQ
(μg/mL)

L-7O-G 45–473 5 763 (±1)×104 13 (±9)×104 0.9967 32.5 98.4
Verb 44–700 5 166 (±6)×104 6 (±2)×103 0.9985 31.9 96.7
A-7O-G 40–500 5 151 (±7)×105 −6 (±1)×105 0.9992 17.3 52.4
N-7O-G 5–68 5 230 (±8)×104 −2 (±6)×103 0.9990 2.7 8.2

L-7O-G, luteolin-7-O-glucoside; Verb, verbascoside; A-7O-G, apigenin-7-O-glucoside; N-7O-G, naringenin-7-O-glucoside.
a Number of points used for the regression of standard solutions. Injections were done in triplicate.
b The standard deviation in the slope and intercept of the regression line is shown in parentheses.
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glucoside], 5 [isoscutellarein-7-O-(6-O-acetylallosyl)(1→6)glucoside],
7 [isoscutellarein-7-O-(6-O-acetylallosyl)(1→2)glucoside isomer], 9
[isoscutellarein-7-O-(6-O-acetylallosyl)(1→2)glucoside], 10 [4′-O-
methylisoscutellarein-7-O-allosyl(1→2)glucoside], 11 [4′-O-meth-
ylisoscutellarein-7-O-(6-O-acetylallosyl)(1→2)glucoside], 8 (apigenin-
7-O-glucoside) and 12 (apigenin-7-O-rutinoside). Fraction 6 (luteolin-
7-O-glucoside) was quantified with luteolin-7-O-glucoside while
naringenin-7-O-glucoside was used as the reference for quantification
of phenolic compounds in fraction 13 (naringenin-7-O-rutinoside).

3. Results and discussion

The purified ethanolic extract of L. album (PEEL) represented 13% of
the dried plant mass and its total phenolic compounds accounted for
192.5±10.3 mg GAE/g of PEEL, which corresponds to a recovery of
24.24 mg GAE/g of dried plant. This result is lower than that reported
by Matkowski and Piotrowska (2006) (32.8±4.0 mg GAE/g of dried
plant) and differences can be ascribed to various factors, such as differ-
ent agronomic or extraction conditions.

3.1. Identification of phenolic compounds in PEEL

As can be observed in Fig. 1 and Table 2, the present study allowed
identification of thirteen phenolic components in PEEL, which com-
prised flavones, phenylethanoid isomers and one flavanone. From
the above compounds, derivatives of the uncommon flavone iso-
scutellarein were detected for the first time in the Lamium genus,
and thus, their identification will be described below in detail.

3.1.1. Isoscutellarein derivatives
Overall, six isoscutellarein derivatives could be detected in PEEL

(Table 2 and Fig. 2). These compounds, eluted in fractions 4, 5, 7, 9,
10 and 11, showed characteristic UV spectra with maxima at 278,
302 and 333 nm, which is in agreement with that described for iso-
scutellarein glucosides (Innocenti et al., 2007; Sahin, Ezer, & Calis,
2006; Saracoglu, Harput, & Ogihara, 2004). Notably, this is the first
study reporting this flavonoid aglycone class in the Lamium genus,
refuting previous chemotaxonomic studies of the plant (Tomás-
Barberán, Grayer-Barkmeijer, Gil, & Harborne, 1988).
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Fig. 1. Chromatographic profile at 340 nm of purified ethanolic extract of Lamium
album L.
In more detail, the phenolic compound of fraction 4 corresponded
to isoscutellarein-7-O-allosyl(1→2)glucoside. This compound was
detected in the ESI-MS spectrum as a [M−H]− ion at m/z 609, and its
main product ion (m/z 285)was formed by the loss of 324 Da,which in-
dicates an O-glycosylation on a phenolic hydroxyl with a dihexoside
(Ferreres, Llorach, & Gil-Izquierdo, 2004). Moreover, the product ion
[M−H−180]− at m/z 429 indicated the 1→2 glycosylation between
the sugars (Ferreres et al., 2004; Petreska et al., 2011). Note that this
compound has been previously described to occur in genus Stachys
and Sideritis, both belonging to the same subfamily (Lamioideae) as
Lamium (Ferreres et al., 2004; Petreska et al., 2011; Tomás-Barberán,
Francisco, Gil, Ferreres, & Tomás-Lorente, 1992).

In a similar way, the compound eluting in fraction 10 ([M−H]− ion
at m/z 623) was tentatively assigned as the 4′-O-methyl derivative of
the previous compound. Besides the characteristic base peak in MS2

spectrum at m/z 299 (−324 Da) and the product ions [M−H−162]−

(ion at m/z 461) and [M−H−180]− (ion at m/z 443), due to loss of
the hexose as residue and as unit, respectively, this compound also
showed the simultaneous loss of the disaccharide moiety and a methyl
group (ion at m/z 284), which is in agreement with the pattern frag-
mentation of 4′-O-methylisoscutellarein-7-O-allosyl(1→2)glucoside,
recently detected in Stachys and Sideritis genus (Karioti, Bolognesi,
Vincieri, & Bilia, 2010; Petreska et al., 2011)

Isoscutellarein acetyl derivatives were also found in PEEL (fractions
5, 7, 9 and 11), as confirmed by the initial loss of 42 Da in their MS2

spectra. From those, the isomeric compounds (MW 652 Da) which
eluted in the first three fractions were the acetyl derivatives of
isoscutellarein-O-allosyl(1→2)glucoside (compound of fraction 4)
and of 4′-O-methylisoscutellarein-7-O-allosyl(1→2)glucoside (com-
pound of fraction 10).

TheMS2 spectrum of themajor acetylated isomer of isoscutellarein-
O-allosyl(1→2)glucoside, eluted in fraction 9 ([M−H]− ion atm/z 651),
showed a base peak atm/z 285 ([M−H−324−42]−), which is indicative
forO-acetylglycosylation onto the phenolic hydroxyl groups (Petreska et
al., 2011). Moreover, the intermediate ion [M–H–42–180]− at m/z
429 was indicative of an acetyl group on the external sugar (Karioti
et al., 2010). Overall, the fragmentation pattern of this compound cor-
responded to that of isoscutellarein-7-O-(6-O-acetylallosyl)(1→2)
glucoside. Moreover, this assignment was confirmed by NMR spectros-
copy, as all the 1H NMR and 13C NMR signals (Table 3) were consis-
tent with that isoscutellarein derivative (Albach, Grayer, Jensen,
Ozgokce, & Veitch, 2003; Gabrieli, Kefalas, & Kokkalou, 2005; Sahin
et al., 2006).

Regarding the remaining isoscutellarein acetyl derivatives (fractions
5 and 7), they should have distinct O-acylation and/or glycosylation
with respect to the previous compound. At this point, the exact features
of those groups could not be determined. Even so, it is possible to pre-
dict that the isomer in fraction 7 also contains a 1→2 glycosylation,
as dictated by the occurrence of the product ion at m/z 429 ([M−H−
180−42]−) in its MS2 spectrum. This isomer must correspond to iso-
scutellarein 7-O-(4-O-acetylallosyl)(1→2)glucoside or to isoscutellarein
7-O-(2-O-acetylallosyl)(1→2)glucoside, since acylations of flavonoid
glycosides can also occur in 2- and 4-positions of the hexose (Cuyckens
& Claeys, 2004). On the other hand, the O-glycosylation type of the
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Table 2
Identification of HPLC eluting fractions by HPLC–DAD, ESI-MS and ESI-MSn from ethanolic extract of Lamium album L.

Peak RT
(min)

λmax [M−H]− Main fragment
ESI-MSn

Compound

1 20.0 254, 267,
345

– – Luteolin derivative

2 20.9 290, 329 623 MS2 [623]: 477 (2%), 461; MS3 [461]: 315 (100%), 297 (10%),
135 (30%)

Verbascoside

3 22.7 290, 328 623 MS2 [623]: 477 (2%), 461 (100%), 299 (5%); MS3 [461]: 315 (100%),
297 (10%), 161 (3%), 135 (30%); MS4 [315]: 135

Isoverbascoside

4 23.1 275, 302,
333

609 MS2 [609]: 489 (2%), 447 (20%), 429 (40%) 285 (100%);
MS3 [429]: 285 (100%), 284 (10%); MS4 [285]: 267 (5%),
257 (20%), 241 (100%), 213 (40%), 199 (3%), 197 (4%),
191 (10%); MS5 [241]: 213 (100%), 197 (40%), 185 (45%),
145 (10%)

Isoscutellarein-7-O-allosyl(1→2)glucoside

5 24.1 275, 302,
333

651 MS2 [651]: 609 (100%), 285 (2%); MS3 [609]: 489 (4%) 447 (85%),
285 (100%); MS4 [447]: 285; MS5 [285]: 267 (3%), 243 (60%),
241 (100%), 217 (35%), 199 (43%), 175 (40%), 151 (3%)

Isoscutellarein-7-O-(6-O-acetylallosyl)(1→6)glucoside

6 24.6 254, 267,
345

447 MS2 [447]: 285; MS3 [285]: 243 (5%), 241 (100%), 217 (60%),
199 (60%), 175 (60%)

Luteolin-7-O-glucoside

7 25.9 275, 302,
333

651 MS2 [651]: 609 (100%), 591 (10%), 447 (2%), 429 (5%), 285 (20%);
MS3 [609]: 447 (5%), 429 (30%), 285 (100%)

Isoscutellarein-7-O-(6-O-acetylallosyl)(1→2)glucoside
isomer

8 28.7 266, 342 431 MS2 [431]: 269; MS3 [269]: 227 (100%), 225 (90%), 199 (85%),
180 (95%)

Apigenin-7-O-glucoside

9 29.8 275, 302,
333

651 MS2 [651]: 609 (15%), 591 (10%), 447 (7%), 429 (45%), 285 (100%);
MS3 [429]: 285; MS4 [285]: 257 (30%), 241 (100%), 213 (30%), 191 (7%),
171 (4%)

Isoscutellarein-7-O-(6-O-acetylallosyl)(1→2)glucoside

10 33.2 275, 305,
327

623 MS2 [623]: 461 (15%), 443 (3%), 299 (100%), 284 (10%); MS3 [461]: 299;
MS4 [299]: 284 (100%), 255 (1%), 240 (4%)

4′-O-Methylisoscutellarein-7-O-allosyl(1→2)glucoside

11 40.1 275, 305,
327

665 MS2 [665]: 623 (15%), 461 (10%), 443 (5%), 299 (100%), 284 (15%);
MS3 [461]: 299; MS4 [299]: 284 (100%), 255 (1%), 256 (1%), 240 (5%),
227 (1%); MS5 [284]: 283 (100%), 256 (25%), 227 (20%), 228 (19%),
212 (8%), 200 (4%), 150 (1%), 137 (7%)

4′-O-Methylisoscutellarein-7-O-(6-O-acetylallosyl)(1→2)
glucoside

12 41.5 266, 342 577 MS2 [577]: 431 (1%), 307 (3%), 269 (100%); MS3 [269]: 227 (10%),
225 (100%), 201 (15%), 183 (2%), 151 (10%), 149 (15%)

Apigenin-7-O-rutinoside

13 44.2 – 579 MS2 [579]: 307 (75%), 271 (100%); MS3 [307]: 247 (25%), 205 (20%),
187 (25%), 175 (3%), 163 (50%), 145 (100%); MS3 [271]: 177 (10%),
151 (100%)

Naringenin-7-O-rutinoside

Peak 1 assignment was only based on UV spectra, which corresponded to that of luteolin.
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isomer eluted in fraction 5 differs from that of the other two. Prob-
ably this is a 1→6 glycosidic type ligation, since the product ion
[M−H−42−162]− (at m/z 447) was prevalent while [M−H−42−
180]− or [M−H−180]− product ion was not observed in MSn experi-
ments (Ferreres et al., 2004). To our knowledge, isoscutellarein-7-O-
(6-O-acetylallosyl)(1→2)glucoside isomers with distinct O-acylation
and/or glycosylation positions have not been described in literature so
far.

The acetylated formof 4′-O-methylisoscutellarein-7-O-allosyl(1→2)
glucoside (MW 666 Da) was found in fraction 11. Accordingly, the MS
spectrum of this fraction showed the [M−H]− at m/z 665 and its MS2

spectrum showed high relative abundance ions at m/z 299 and at m/z
623 ([M−H−42]−) (correspondent to methylisoscutellarein). More-
over, the fragmentation pattern of the latter ion was similar to that de-
scribed for the 4′-O-methylisoscutellarein-7-O-allosyl(1→2)glucoside
(fraction 10).
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Fig. 2. Main features of isoscutellarein derivatives
3.1.2. Other phenolic compounds
Besides the isoscutellarein derivatives previously described, PEEL

also contained glycosides of common flavones, namely luteolin-7-O-
glucoside (fraction 6), apigenin-7-O-glucoside (fraction 8), apigenin-
7-O-rutinoside (fraction 12), the flavanone naringenin-7-O-rutinoside
(fraction 13) and two phenylethanoid glycosides (verbascoside and iso-
verbascoside, in fractions 2 and 3, respectively). The latter showed UV
data and fragmentation pathway similar to that described in literature
(Li, Liu, Liu, Tsao, & Liu, 2009). In particular, the MS2 of their molecular
ion ([M−H]− at m/z 623) showed a base peak product ion resultant
from the loss of caffeoyl (−162 Da, ion at m/z 461) while the MS3

data of this latter ion supported the main loss of a rhamnose unit (ion
at m/z 315). Note that the phenylethanoid glycoside eluting in the
most intense HPLC peak (fraction 2) corresponded to verbascoside,
which has previously been described to occur in several Lamium spe-
cies, including in L. album (Budzianowski & Skrzypczak, 1995). Still, to
R1 R2

7-O-allosyl(1   2)glucoside H Allo-Glc

arein-7-O-(6-O-acetyl 
l)(1   2)glucoside

H Ac-Allo-Glc

ylisoscutellarein-7-O-
l(1   2)glucoside

Me Allo-Glc

soscutellarein-7-O-(6-O-
osyl)(1   2)glucoside

Me Ac-Allo-Glc

it; Glc, Glucosyl unit; Ac, Acetyl unit; Me, Methyl 

found in purified extract of Lamium album L.
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Table 3
13C and 1H NMR spectral data for the compound isoscutellarein-7-O-(6-O-acetylallosyl)
(1→2)glucoside obtained from purified phenolic extract of Lamium album L. (in DMSO-d6).

Atom 13C 1H Atom 13C 1H

Aglycone Glucosea

2 164.1 – 1'' 100.0 5.09 (d, J=7.4 Hz)
3 102.6 6.85 2'' 82.6 3.59 (‘t’, J=8.3 Hz)
4 182.4 – 3'' 75.6 –

5 152.2 12.38 4'' 69.2 –

6 100.0 6.70 5'' 77.1 –

7 150.5 – 6'' 60.5 3.74 (dd, J=10.6 and 5.3 Hz)
8 127.5 7.95 Allose
9 143.7 – 1''' 102.6 4.92 (d, J=7.9 Hz)
10 105.5 – 2''' 71.4 –

1′ 121.2 – 3''' 70.8 3.92–3.90
2′ 128.7 8.00 (d, J=8.5 Hz) 4''' 66.8 3.92–3.90
3′ 115.9 6.95 (d, J=8.5 Hz) 5''' 71.5 3.88–3.86
4′ 161.3 – 6''' 63.5 4.02 (d, J=2.7 Hz)
5′ 115.9 6.95 (d, J=8.5 Hz) OAc
6′ 128.7 8.00 (d, J=8.5 Hz) 20.5 1.88

170.3 –

a The OH groups of the sugar moiety appear at: 5.25 (d, J=5.5 Hz, 1H), 5.16
(d, J=4.2 Hz, 1H,), 5.02 (d, J=3.4 Hz, 1H), 4.83 (d, J=7.8 Hz, 1H), 4.74 (t, J=5.5 Hz, 1H).
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our knowledge, isoverbascoside (fraction 3) is herein described for the
first time in this species.

3.2. Quantification of phenolic compounds in PEEL

The quantification of the distinct phenolic compounds in PEEL ex-
tract was carried out using calibration curves of each available stan-
dard. Table 1 shows typical analytical parameters including the
limits of detection and quantification (LOD and LOQ, respectively),
the calibration curves, the linearity and the regression coefficient
(R2).

The quantified phenolic compounds in the ethanolic extract of
L. album accounted for 500.7±50.0 mg/g of extract (Table 4), that is
Table 4
Quantification of the identified compounds in ethanolic extract of Lamium album L.

Peak Compound

2 Verbascoside
3 Isoverbascoside
4 Isoscutellarein-7-O-allosyl(1→2)glucoside
5 Isoscutellarein-7-O-(6-O-acetylallosyl)(1→6)glucoside
6 Luteolin-7-O-glucoside
7 Isoscutellarein-7-O-(6-O-acetylallosyl)(1→2)glucoside isomer
8 Apigenin-7-O-glucoside
9 Isoscutellarein-7-O-(6-O-acetylallosyl)(1→2)glucoside
10 4′-O-Methylisoscutellarein-7-O-allosyl(1→2)glucoside
11 4′-O-Methylisoscutellarein-7-O-(6-O-acetylallosyl)(1→2)gluco
12 Apigenin-7-O-rutinoside
13 Naringenin-7-O-rutinoside

Mean values±standard deviations.
equivalent to 14.9 mg/g of dry plant. This extract wasmainly rich in ver-
bascoside, which, together with isoverbascoside, accounted for approx-
imately 55% of the total phenolic content of PEEL. Also important, the
glucosyl-isoscutellarein derivatives of this extract were present in ap-
preciable amounts (total of 27%), mostly in the acetylated form (18%).
Still note that accurate quantification of these compounds can be im-
paired, as optimum peak separation was not achieved for all the
compounds and apigenin-7-O-glucosidewas used as a reference for iso-
scutellarein derivative quantification, instead of the exact reference
compounds.

The high content of the phenylethanoid glycosides verbascoside
and isoverbascoside in the ethanolic extract of L. album suggests that
medicinal activities claimed to this plant can be associated with
these compounds. In fact, several studies reported important activities
for verbascoside, including antioxidant and free radical scavenging
capacity, neuroprotective, hepatoprotective, analgesic, cytotoxic, antimi-
crobial, anti-inflammatory and beneficial effects on the cardiovascular
system. Most of these activities are also ascribed to isoverbascoside
(Fu, Pang, & Wong, 2008; Isacchi et al., 2011; Korkina, 2007; Kostyuk,
Potapovich, Suhan, de Luca, & Korkina, 2011; Morikawa et al., 2010).
Moreover, it is important to highlight that despite the presence of
lower amounts of isoscutellarein derivatives as compared to those of
phenylethanoid glycosides, these can also be key components on the
ethnopharmacological effects of the plant. Indeed, for the last decades,
isoscutellarein derivatives have also been described to exert important
beneficial activities as antiviral, antioxidant, cytotoxic, antinociceptive,
anti-inflammatory and inhibitory activity against osteoclastogenesis
(Kupeli, Sahin, Yesilada, Calis, & Ezer, 2007; Nagai, Miyaichi, Tomimori,
Suzuki, & Yamada, 1992; Yang et al., 2003; Yoon, Jeong, Hwang, Ryu, &
Kim, 2007).
4. Conclusions

The phenolic composition of the purified ethanolic extract of aerial
parts of L. albumwas assessed by a combinedmethod using HPLC–DAD
and ESI-MS. The extract was mainly rich in the two phenylethanoids
verbascoside and isoverbascoside (55%), where the accounted amount
of the former was 6 fold of that of the latter. Other important phe-
nolic portions of the extract (27%) were derived from the unusual
flavone isoscutellarein. Thus, the compounds isoscutellarein-7-O-
allosyl(1→2)glucoside, isoscutellarein-7-O-(6-O-acetylallosyl)(1→6)
glucoside, isoscutellarein-7-O-(6-O-acetylallosyl)(1→2)glucoside and
its structural isomer, 4′-O-methylisoscutellarein-7-O-allosyl(1→2)glu-
coside and 4′-O-methylisoscutellarein-7-O-(6-O-acetylallosyl)(1→2)
glucoside were herein described for the first time in the genus Lamium.
Apigenin-7-O-glucoside, luteolin-7-O-glucoside, apigenin-7-O-rutinoside
and the flavanone naringenin-7-O-rutinoside were minor constituents
of this extract. Thus, overall, this work is an important contribution to
Quantified with mg/g extract

Verbascoside 233.7±13.6
Verbascoside 39.2±5.6
Apigenin-7-O-glucoside 26.8±5.3
Apigenin-7-O-glucoside 23.6±6.7
Luteolin-7-O-glucoside 29.7±2.2
Apigenin-7-O-glucoside 9.6±0.3
Apigenin-7-O-glucoside 16.1±5.8
Apigenin-7-O-glucoside 37.4±4.4
Apigenin-7-O-glucoside 16.6±6.5

side Apigenin-7-O-glucoside 19.4±5.2
Apigenin-7-O-glucoside 16.2±4.7
Naringenin-7-O-glucoside 32.6±5.6

Unlabelled image
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the chemical characterization of the L. album emphasizing that its main
phenolic constituents are important antioxidant agents (verbascoside,
isoverbascoside and isoscutellarein derivatives) which have been associ-
ated with diverse beneficial effects on human health. Further work is
now being undertaken by our group in order to evaluate the relation of
these phenolic constituents with the antioxidant capacity of L. album.
We expect that if positive relations are established, consumers' and the
food industry's interest in this plant will be raised.
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3.4. PHENOLIC CHARACTERIZATION OF LEONURUS CARDIACA L. 

EXTRACTS 

Leonurus cardiaca L. (motherwort), subfamily Lamioideae (Lamiaceae) is a plant native 

to central Europe but spread to countries of diverse climate around the world. It easily 

grows in different types of soil and is commonly found in pastures, road edges, 

abandoned parks, waste ground, i.e. globally found in rough locations [1, 2]. In 

traditional medicine, infusions of aerial parts of motherwort are used due to its 

beneficial effects in climacteric symptoms, amenorrhea and bronchial asthma. 

Additionally, the aerial parts of this plant are frequently used in decoctions, syrups and 

tinctures or, alternatively, are included in pharmaceutical formulations for the treatment 

of cardiovascular disorders [2, 5]. The plant is also used in homeopathic pharmacy for 

cardiac complaints, flatulence, and hyperthyroidism. Reported bioactivities of L. 

cardiaca include sedative, hypotensive and cardiotonic [2, 6-10] whereas the unique 

indications considered by the Committee on Herbal Medicinal Products are those of 

nervous tension and nervous heart complaints as palpitations [11]. 

Previous studies focusing the L. cardiaca plant have reported a large variety of 

compounds namely sterols, terpenes, monoterpenes, labdane diterpenes, labdane-

type diterpenes, triterpenoids, pyrrholidine alkaloids, iridoides, tannins, saponins, 

carotenoids, polyphenolcarboxilic acids, monosaccharides, polysaccharides, caffeic 

acid derivatives, phenylethanoid glycosides and flavonoids [1, 2, 6-9, 12-14]. 

Regarding the biological properties of L. cardiaca, it has been shown that its alkaloid 

leonurine has cardioprotective and antioxidant effects. This can partly explain the in 

vivo anti-apoptotic activity after chronic myocardial ischemia mediated by activating the 

PI3K/Akt signaling pathway [15]. The same compound can exert neuroprotective 

activity against ischemia/reperfusion-induced mitochondrial dysfunctions in cortex [16]. 

Still, to the author´s knowledge, the association of L. cardiaca phenolics to its health 

benefits has not been described yet. 

 

3.4.1. Materials and Methods 

 

Chemicals 

Gallic acid, BHA (butylated hydroxyanisole) and DPPH● radical (2,2-diphenyl-2-

picrylhydrazyl) were obtained from Sigma Chemical Co (St Louis, MO, USA). Folin-
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Ciocalteu reagent and solvents were purchased from Panreac (Barcelona) and Lab-

Scan (Lisbon, Portugal). The phenolic standard compounds rosmarinic acid, rutin and 

verbascoside were obtained from Extrasynthese (Genay Cedex, France). 

 

Plant material and extraction of phenolic compounds 

Aerial parts (leaves, stems and flowers) of L. cardiaca were purchased from ERVITAL 

(Castro de Aire, Portugal). The procedures of phenolic extraction and purification, were 

similar to those described in Experimental part of the section 3.3. 

 

Determination of total phenolic compounds 

The total phenolic content of L. cardiaca purified ethanolic extract (PEELc) was 

determined according to the adapted Folin-Ciocalteu colorimetric method [17], as 

previous described in the Experimental part of the section 3.2. 

 

Chromatographic conditions 

This was carried out by the combination of HPLC-DAD and ESI-MSn data following the 

general procedure described in the Experimental part of the section 3.3. [18]. The 

HPLC analysis was performed on a Knauer Smartline separation module in an end-

capped Nucleosil C18 (Macherey-Nagel) column of 250 mm × 4 mm id, 5 µm bead 

diameter, that was maintained at 30 ºC. The UV–Vis spectra were recorded between 

220 and 500 nm (PDA Varian Prostar detector) and the chromatographic profiles were 

recorded at 340 nm. Gradient elution was carried out with a mixture of 0.1% (v/v) of 

formic acid in water (solvent A) and acetonitrile (solvent B), which were degassed and 

filtrated before use. The solvent gradient consisted in a series of linear gradients, 

starting from 10 to 20% of solvent B over 6 min, from 20 to 25% of solvent B over 12 

min, from 25 to 34% over 30 min, increasing to 100% at 37 min and maintaining for 3 

min, followed by the return to the initial conditions at 40 min.  

 

Identification and quantification of phenolic compounds 

The identification of the phenolic constituents of the PEELc was carried out by the 

combination of HPLC-DAD and ESI-MS data, following the general procedure 

previously described in Experimental part of the section 3.1. As phenolic compounds 

determined in PEELc comprised mainly phenylethanoid glycosides and flavonols, their 
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quantification were performed at 340 nm [19] by peak integration using the external 

standard method. For that, fraction 1 (caffeic acid glucoside) was quantified using 

rosmarinic acid as standard, fractions 2, 5 and 6 (quercetin-3-O-sophoroside, rutin and 

quercetin-3-O-glucoside, respectively) were quantified using rutin as a reference 

compound while verbascoside was used to quantified fractions 3, 4, 7 and 8 

(lavandulifolioside, verbascoside, leucoseptoside A and leonoside B, respectively). 

Five-points calibration curves were used for each standard (n=15). In more detail, for 

rosmarinic acid, the tested range was 0.015 to 0.173 mg/mL and the achieved equation 

was y = 1E+07x - 65683, with R2 value of 0.9974. The quantification limit (LQ) and 

detection limit (LD) of this compound were 0.031 and 0.010 mg/mL, respectively. For 

rutin, the tested range was 0.013 to 0.2 mg/mL, the equation was y = 5E+06x - 3044,1, 

with R2 value of 0.9981 and LQ and LD were 0.014 and 0.043 mg/mL, respectively. 

The calibration curve of the phenolic standard verbascoside (R2=0.9985) was 

performed the range of 0.044 to 0.7 mg/mL with the equation Y= 2E+06x + 5996.8 and 

LQ and LD values of 0.097 and 0.032 mg/mL, respectively.  

 

Antioxidant capacity determination 

The potential antioxidant capacity of the PEELc was determined trough the DPPH● 

radical scavenging and reducing power assays. The scavenging capacity was carried 

out by DPPH● radical test following the Kirby & Schmidt procedure [20] with 

adaptations. Based on graphic values of % of DPPH● inhibition vs extract 

concentration, the EC50 (concentration of the extract able to inhibit the 50% of the 

DPPH● radical) of each extract was estimated. Ascorbic acid was used as a positive 

control. 

The ability of PEELc in reducing iron (III) was assessed by the adaptation of the 

method described by Barros et al. [21], performed in a 48-well plate using an ELX800 

Microplate Reader (BioTek Instruments, Inc., Winooski, VT, USA). The mean 

absorbance values were plotted against concentration, a linear regression analysis was 

carried out, and the EC50 value, corresponding to the extract concentration providing 

0.5 of absorbance, was determined. BHA was used as positive control. 

 

Statistical analysis 

All the results were obtained from at least 3 independent experiments performed in 

duplicate. Data were expressed as mean±SD 
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3.4.2. Results and Discussion 

Phenolic constituents in PEELc 

The total phenolic constituents in PEELc accounted for 174.7±6.9 mg GAE/g of extract 

(or 5.2 GAE mg/g of dry plant), as estimated by the Folin Ciocalteu method. Naturally, 

this value is higher than those reported for polar extracts of the same specie [1, 2, 7], 

since a purification step was introduced in the present work.   

It is important to highlight that despite the several studies previously focusing L. 

cardiaca polar extracts [5, 9, 22-24], an accurate estimative of their phenolic content 

has not been reported before. This point is now herein addressed, as HPLC-DAD and 

ESI-MS combined analysis allowed identifying the majority of individual phenolics in the 

PEELc and hence, the use of more appropriate reference compounds for 

quantification.  

Accordingly, phenolic compounds in PEELc accounted for 15 mg/g of dry plant 

(500.4±49.1 mg/g of extract, Table 1). Phenylethanoid glycosides were the most 

prevalent PEELc phenolics (Fig. 1, Table 1), with lavandulifolioside and verbascoside 

representing 50% and 27% of its total quantified phenolic compounds, respectively. 

 

Figure 1 – Chromatographic profile at 340 nm of L. cardiaca purified ethanolic extract.  

 

0 

25 

50 

75 

100 

0 10 20 30 

A
b

s
o

rb
a
n

c
e
 (

%
) 

Time (min) 

2 

4 

6 

7 

8 

1

  

5 

3 



61 | RESULTS AND DISCUSSION 

Pereira O. R., 2013 | CHARACTERIZATION OF PHENOLIC CONSTITUENTS OF MEDICINAL PLANTS AND EVALUATION OF PHARMACOLOGICAL ACTIVITIES: FOCUS IN ANTIOXIDANT 

AND ANTI-INFLAMMATORY PROPERTIES 

Table 1 – Identification and quantification of the phenolic compounds in HPLC eluting peaks of L. cardiaca purified ethanolic extract through HPLC-DAD and ESI-MS 

combined analysis. 

 Phenylethanoid glycosides 

 Compound 
mg/g of 

extract
a
 

RT UV (nm) 
[M-H]

−
 

(m/z)(%) 

-MS
2
 [M-H]

−
 (m/z) 

(%) 

 -MS
3
 [M-H]

−
 (m/z) 

(%) 

 -MS
4
 [M-H]

−
 (m/z) 

(%) 

      -132 -162 -294  -132 -146 Other ions  -146 -180 Other ions 

3 Lavandulifolioside 253.6±35.8 

(50.7%) 

16.7 290, 329 755 623(15) 593(100)  461(7)  461(100)  315(2)  315 

(100) 

 297(10), 

161(10), 135(40) 

4 Verbascoside 137.4±19.9 

(27.4%) 

17.5 290, 329 623  461    315 

(100) 

297(15), 

161(10), 143(3), 

135(40) 

  135(100) 179(1), 143(2) 

      -132 -176 -146  -132 -146 Other ions  -146  Other ions 

7 Leucoseptoside A 31.5±4.6 

(6.3%) 

19.4 ND 637  461(100) 491(5)   315 

(100) 

135(12)     

8 Leonoside B 25.1±4.7 

(5.0%) 

20.0 ND 783 651(45) 607(100)   475 (100) 461(5) 329(2)  329 

(100) 

 311(25),161(20) 

 
Caffeic acid derivatives 

 Compound 
mg/g of 

extract
a
 

RT UV (nm) 
[M-H]

−
 

(m/z)(%) 

-MS
2
 [M-H]

−
 (m/z) 

(%) 

-MS
3
 [M-H]

−
 (m/z) 

(%) 

-MS
4
 [M-H]

−
 (m/z) 

(%) 

-MS
5
 [M-H]

−
 (m/z) 

(%) 

      -162 Other ions    

1 Caffeic acid glucoside 3.7±0.8 

(0.7%) 

8.2 290, 329 341(80) 179(100) 281(10), 251(10), 

203(10),161(20), 

135(3) 

135   

6a Caffeic acid derivative ND 18.9 ND 507(15) 345(5) 463 (100), 323(90), 

281(17),251(5), 221(5), 

179(22), 161(45) 

323 263(30), 221(65),203(15), 

179(25),161(20), 135(10) 

MS
5
 [179]:135 
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 Flavonoids (quercetin and luteolin derivatives) 

 Compound 
mg/g of 

extract
a
 

RT UV (nm) 
[M-H]

−
 

(m/z)(%) 

-MS
2
 [M-H]

−
 (m/z) 

(%) 

 -MS
3
 [M-H]

−
 (m/z) 

(%) 

      -162 -180 -324 -308 Other ions  -308 Other ions 

1a Rutin-O-glucoside ND 8.2 ND 771(45) 609(100) 591(4)   753(35), 301(1)  301(100) 447(2), 591(3), 343(5), 

2 Quercetin-3-O-sophoroside 5.7±1.1 

(1.1%) 

13.7 ND 625 463 (25) 445(65) 301(100)  505(25),300(95), 

271(15), 255(7), 

229(2), 179(3) 

  273 (10), 179 (100), 

151 (60) 

5 Rutin 15.8±2.1 

(3.2%) 

18.0 256, 

267, 355 

609    301(100) 343(10), 300(25)   283(3), 273(15), 

257(15), 193(5), 

179(100), 151(60), 

107(2) 

6 Quercetin-3-O-glucoside 24.9±3.8 

(5.0%) 

18.9 256, 

267, 357 

463(100) 301(100)    343(3), 300(25)   283 (5), 273 (17), 

257(15), 229 (4), 193 

(7), 179 (100), 151 

(65), 121 (2), 107 (4) 

6b Luteolin-7-O-rutinoside ND 18.9 ND 593(10)    285(100) 461 (15),327(20)   267(45), 257(100), 

241(35),229(40), 

213(20), 199(10), 

197(15),151(8) 

ND, Not determined. The UV spectra have not been observed properly due the trace amounts of the compounds and hidden by others. 
a
Values in parenthesis are expressed as the 

percentage of total quantified phenolic compound.
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Note that despite not quantified, these two compounds have been previously detected 

in L. cardiaca extracts [22, 23]. The present study allowed, however, the identification 

and quantification of leucoseptoside A and leonoside B for the first time in L. cardiaca 

(6.3 and 5.0 % of extract of PEELc quantified phenolics, respectively). Since the ESI-

MS fragmentation pattern of these two compounds is scarcely described in literature, 

their structure was alternatively inferred on the basis of MSn data interpretation (Table 

1). In fact, the MS/MS spectrum of the molecular ion at m/z 637 (fraction 7) showed 

that the product ion at m/z 315, which corresponds to a (3,4 dihydroxyphenyl)-

glucopyranosyl moiety, was formed upon the loss of 176 Da (ion at m/z 461) and 146 

Da (ion at m/z 315), e.g., the release of a feruloyl and a rhamnopyranosyl unit, 

respectively. Instead, the molecular ion of the major phenolic in fraction 8 (MW 784 

Da), herein assigned to leonoside B or ß-(3-hydroxy, 4-methoxyphenyl)-ethyl-O-α-L-

arabinopyranosyl-(1→2)-α-L-rhamnopyranosyl-(1→3)-4-O-feruloyl-ß–D-

glucopyranoside, mainly fragmented by the loss of 176 Da (ion at m/z 607) and 132 Da 

(ion at m/z 651), due to the higher lability of feruloy and arabinopyranosyl linkages of 

this molecule, respectively. Moreover, the MS4 spectrum of the latter ion showed the 

loss of a rhamnopyranosyl unit, leading to the formation of the ion [M-H-146]− at m/z 

329, which correspond to the (3-hydroxy,4-methoxyphenyl)-glucopyranosyl fragment.  

Besides phenylethanoid glycosides, the PEELc also contained flavonoid compounds 

(10%) and caffeic acid derivatives, the latter only representing vestigial amounts of its 

total phenolics (Table 1). With the exception of luteolin-7-O-rutinoside (MW 594 Da), 

detected as a trace compound in fraction 6, all the remaining PEELc flavonoids were 

quercetin glycosidic derivatives. These enclosed isoquercitrin (quercetin-3-O-

glucoside), rutin (quercetin-3-O-rutinoside), a rutin-O-glucoside (MW 772 Da) [25] and 

quercetin-3-O-sophoroside (MW 626 Da) [26, 27] which were detected in fractions 6, 5, 

1 and 2, respectively. From these four derivatives, only isoquercitrin and rutin were 

previous described to occur in L. cardiaca species [5, 8, 9, 23, 24]. The two caffeic acid 

derivatives herein detected in PEELc extract have also never been cited in the 

Leonurus genus, and hence, regardless their minor abundance in the extract, it is worth 

to highlight their presence in L. cardiaca. Indeed, to the author´s knowledge, the only 

reported caffeic acid derivative in Leonurus plants up to present is the chlorogenic acid, 

which has been described as a phenolic constituent of L. japonicas and L. cardiaca 

species [23].  
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Antioxidant properties of PEELc in chemical models 

The antioxidant activity of PEELc was estimated by means of DPPH● radical 

scavenging and reducing power test. The EC50 values determined in the two assays 

were 18.3±1.5 and 94.7±7.0 μg/mL, respectively. The results indicated that PEELc had 

7 and 3-fold less antioxidant capacity comparing to the positive standards ascorbic acid 

and BHA, respectively. Literature data focusing in L. cardiaca reported EC50 values for 

DPPH● scavenging assay between 27.3 to 144 μg/mL and of 20 μg/mL for the reducing 

power [1, 2, 7].  

Overall, the gathered data suggest that PEELc has considerable antioxidant properties. 

Further biological effects of PEELc will be described in section 3.8.  
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3.5. ROS SCAVENGING AND HEPATOPROTECTIVE ACTIVITIES OF MENTHA 

AQUATICA L. AND LAVANDULA DENTATA L. 

 

Mentha aquatica L. and Lavandula dentata L. are two Lamiaceae species that are 

consumed as spices or in food and beverages manufacturing. This mint species has 

been used in traditional medicine for the treatment of external inflammation, as mouth-

wash and to gargle for treating sore throats, while the lavender species is mainly used 

in the form of tea to treat diabetes, colds and renal colics problems. The present study 

aimed to determine the exact phenolic composition of the two extracts and also 

evaluate their antioxidant and cytoprotective effects.  

The ethanolic extracts of the two plants are rich in rosmarinic acid (64±2 and 68±3 

mg/g of the purified ethanolic extract of M. aquatica and L. dentata, respectively). The 

M. aquatica extract also contained large amounts of other polyphenols, being the most 

abundant the eriodictyol-7-O-rutinoside (145±6 mg/g). Albeit with some differences, 

both purified ethanolic extracts exhibited significant antioxidant abilities, as established 

by DPPH● and reducing power assays, as well as in a model of oxidative stress 

induced by potassium dichromate in HepG2 cells. Concretely, lower EC50 values were 

found for M. aquatica purified ethanolic extract in chemical assays, while L. dentata 

purified ethanolic extract had higher capacity in counteracting the ROS formation 

induced by potassium dichromate in human hepatoblastoma HepG2 cells. The 

protection corresponded to 30% for 25μM DK-induced toxicity and treatment with L. 

dentata extract at 50 μg/mL. In turn, M. aquatica purified ethanolic extract induced an 

effective cytoprotective effect (13%), as measured by the MTT test. Overall, these 

results provide new important information for the chemical and pharmacological 

characterization of M. aquatica and L. dentata purified ethanolic extracts, in view to add 

value to the two plants species. 

 

The results obtained in this section of the Doctoral Thesis have been used to write the 

manuscript entitled "ROS scavenging and hepatoprotective activities of Mentha 

aquatica L. and Lavandula dentata L." which is under preparation. 
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Abstract  

Mentha aquatica L. and Lavandula dentata L. are two edible Lamiaceae species 

enriched in rosmarinic acid. In this study, this phenolic compound accounted for 64 ± 2 

and 68 ± 3 mg/g of the purified ethanolic extract of M. aquatica and L. dentata, 

respectively, however, these amounts represented distinct phenolic extract percentages 

(21% and 72% of total phenolics, respectively). Moreover, the M. aquatica extract 

contained high amounts of eriodictyol-7-O-rutinoside (145 ± 6 mg/g). The two extracts 

exhibited distinct antioxidant and hepatoprotective abilities. Lower EC50 values were 

found for M. aquatica purified ethanolic extract in the 2,2-diphenyl-2-picrylhydrazyl 

and reducing power assays, but L. dentata purified ethanolic extract had higher capacity 

in counteracting the reactive oxygen species formation induced by potassium 

dichromate in human hepatoblastoma HepG2 cells. In turn, M. aquatica purified 

ethanolic extract (50 μg/mL) induced an effective cytoprotective effect, as measured by 

the MTT test. Overall, the biological properties herein described can contribute to add 

value to the two plants. 

 

 

 

Keywords: Mentha aquatica L.; Lavandula dentata L.; phenolic compounds; HPLC-

DAD; ESI-MS; human hepatoblastoma HepG2 cells 
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1. Introduction 

Lamiaceae family encloses many plant species with applications on food, 

pharmaceutical and cosmetics industries [1-3]. Several studies have recently described 

that a large proportion of them possess different beneficial health properties, including 

antiproliferative, anti-tumoral, anti-inflammatory, antimicrobial, analgesic and 

neuroprotective properties [4, 5], which have been related to the antioxidant ability of 

their polyphenols [6-8]. 

Mentha aquatica L. has been consumed as tea or as a food component of beverages, 

salads or cooked foods, and has been used in traditional medicine for the treatment of 

external inflammation, as mouth-wash and to gargle for treating sore throats [9, 10]. To 

our knowledge, the antioxidant ability of M. aquatica has been demonstrated in vitro by 

assessing the free radical scavenging activity against DPPH, and by evaluating the lipid 

peroxidation protective activity [10]. According to literature data, the phenolic 

composition of M. aquatica includes phenolic acids (caffeic acid, its esters nepetoidin A 

and rosmarinic acid), the flavones luteolin and its O-glucoside, apigenin and apigenin-7-

O-rutinoside, the methylated flavones pebrellin, gardenin B and salvigenin and the 

flavanone eriocitrin [11-14]. 

Plants of Lavandula genus have been widely used as spices in food manufacturing of 

ice cream, candy, baked goods, chewing gum and beverages [15]. Moreover, the species 

Lavandula dentata L. is also consumed in the tea form to counteract diabetes, colds and 

renal colics [16]. The biological activities of L. dentata have been mainly exploited for 

essential oils fractions. To our knowledge, only one aqueous extract of this plant species 

has been tested for anti-tyrosinase and antioxidant activities, the latter through the 

DPPH assay [17]. Likewise, the phenolic composition of this plant is scarcely reported 
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and comprises rosmarinic acid, luteolin, apigenin and glycosidic forms of these two 

flavones [18]. 

Despite the mentioned applications of M. aquatica and L. dentata, their usage is very 

limited compared to other medicinal plants of their respective genus. The present study 

intends to improve the knowledge of the phenolic composition of M. aquatica and L. 

dentata species, and simultaneously evaluate their potential antioxidant and 

cytoprotective effects with the aim of contributing to the valorization of the two plants 

as agents potentially useful for food and pharmaceutical industries. 

 

2. Material and methods 

2.1. Materials 

Butylated hydroxyanisole (BHA) and 2,2-diphenyl-2-picrylhydrazyl (DPPH) radical 

were obtained from Sigma Chemical Co (St Louis, MO, USA). 3-(4,5-dimethylthiazol-

2-yl)-2,5-diphenyltetrazolium bromide (MTT), dichlorofluorescein-diacetate and 

potassium dichromate were purchased from Sigma-Aldrich (Madrid, Spain). Phenolic 

standards were obtained from Extrasynthese (Genay Cedex, France). Aerial parts 

(leaves and stems) of M. aquatica and flowers of L. dentata were purchased from 

ERVITAL (Castro de Aire, Portugal). 

 

2.2. Obtention of plant extracts 

Five g of plant material was grounded and defatted with n-hexane. The defatted residue 

was then extracted with 80% ethanolic solution (v/v), and purified using Sep-Pak C18 

cartridges, as previously described [19]. The extraction and purification steps were 

performed three times.  
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2.3. Analysis of phenolic compounds 

Identification and quantification of phenolic compounds were carried out by the 

combination of HPLC-DAD and ESI-MS
n
 data following a general procedure 

previously described [19]. HPLC analysis was performed on a Knauer Smartline 

separation module in an end-capped Nucleosil C18 (Macherey-Nagel) column of 250 

mm × 4 mm id, 5 µm bead diameter, that was maintained at 30 ºC. Gradient elution was 

carried out with a mixture of 0.1% (v/v) of formic acid in water (solvent A) and 

acetonitrile (solvent B). The solvent gradient started from 10 to 20% of solvent B over 6 

min, from 20 to 25% of solvent B over 12 min, from 25 to 34% over 30 min, increasing 

to 100% at 37 min. The flow rate used was 1 mL/min. The UV-Vis spectra were 

recorded between 220 and 500 nm (PDA Varian Prostar detector) and the 

chromatographic profiles were recorded at 280 nm. Phenolic identification in each 

HPLC peak was achieved by comparison of retention time, UV-Vis spectra and MS
n 

spectra data with those of available reference standards or alternatively, with those 

registered in literature. Note that phenolic compounds which were detected in MS
n
 

analysis as a minor [M-H]− ion and were not simultaneously detected by UV-spectra 

analysis, were herein considered as trace components. Additionally, the quantification 

of the majority of the compounds in both plant extracts was performed at 280 nm, by 

peak integration using the external standard method, with the most close reference 

compound available. The calibration curves of the standards used for quantification of 

the distinct phenolic compounds in the two purified ethanolic extracts are shown in 

Table 1. The linearity of the calibration curves, the regression coefficient (R
2
) and the 

detection and quantification limits (LOD and LOQ, respectively) are also represented. 

LOD and LOQ were determined as 3.3 and 10 times the value of the regression error 

divided by the slope, respectively [20, 21].  
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2.4. DPPH test 

The ability of each extract to scavenge DPPH free radicals was carried out following the 

Kirby & Schmidt procedure [22] with adaptations (Pereira et al., 2013). Based on 

graphic values of percentage of DPPH inhibition vs extract concentration, the EC50 

(concentration of the extract able to inhibit the 50% of the DPPH radical) of each 

extract was estimated. Ascorbic acid was used as a positive control.  

 

2.5. Reducing power test  

The ability of the purified ethanolic extracts to reduce iron (III) to iron (II) was assessed 

by an adaptation of the method described by Barros et al [23]. The mean absorbance 

values were plotted against concentration, a linear regression analysis was carried out, 

and the EC50 value, corresponding to the extract concentration providing 0.5 of 

absorbance, was determined. BHA was used as a positive control.  

 

2.6. Cell cultures 

HepG2 cells, from human hepatoblastoma (HB-8065, ATCC), were cultured in MEM 

medium supplemented with 1 mM sodium pyruvate, 26.2 µM sodium bicarbonate, 10% 

(v/v) fetal calf serum, penicillin G (20 U/mL), streptomycin (0.02 mg/mL) and 

amphotericin B (0.05 µg/mL). The cells were maintained at 37 °C in an atmosphere of 

95% air/5% CO2 and with 90-95% humidity. 

 

 

2.7. Determination of cell viability by MTT assay 

Cell viability was estimated by the formazan formation from the tetrazolium salt (MTT) 

by living cells as previously described [24]. HepG2 cells were plated onto 96 well-

plates (15,000 cells/well, 100 μL medium) and exposed to 1.5 μM potassium 
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dichromate alone or in presence of extracts for 72 h. This condition was selected based 

on preliminary experiments (Pereira et al., 2013) to determine the potassium dichromate 

concentration able to reduce cell viability by approximately 30%. Cell viability was 

calculated as the percentage of living cells compared to untreated (control) cells.  

 

2.8. Determination of intracellular ROS production by flow cytometry 

HepG2 cells were seeded in 6 well-plates (100,000 cells/plate, 2 mL medium). The 

intracellular ROS formation was evaluated after the exposure of cells, for 48 h, to 5 µM 

or 25 µM potassium dichromate alone or in presence of M. aquatica or L. dentata 

purified ethanolic extracts (final concentrations of 50 μg/mL). These conditions were 

previously pre-established in our group to produce an effective ROS-increment in these 

cells (data not shown). After 48 h, the medium was replaced by RPMI culture medium 

containing 5 μg/mL of 2,7-dichlorofluorescein diacetate and incubated for 30 min. Cells 

were harvested and ROS generation was measured and analyzed in a cytometer 

FACSort flow cytometer (BD Biosciences, San Jose, CA, USA) using the CellQuest 

software (BD Biosciences). The values were normalized to the percentage of ROS 

formation in untreated cells. 

 

2.9. Statistical analysis 

Data were expressed as mean ± SEM of the number of experiments as indicated in the 

figure legends. The comparison between groups was performed by one-way ANOVA, 

followed by Dunnett’s post-hoc test. 

 

 

 

3. Results and discussion 
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3.1. Phenolic constituents in M. aquatica and L. dentata purified ethanolic extracts 

In the present work we used MS spectrometry, together with HPLC-DAD for qualitative 

(Table 2) and quantitative analysis of phenolic compounds in M. aquatica and L. 

dentata. Total phenols accounted for 303 ± 8 and 94 ± 2 mg/g of extract in M. aquatica 

and L. dentata purified ethanolic extracts, respectively (Table 3). The two extracts 

contained similar amounts of rosmarinic acid (Fig. 1, Table 3), but this compound 

represented 21% and 72% of the total quantified phenols in M. aquatica and L. dentata 

purified ethanolic extracts, respectively. The amount of rosmarinic acid herein found in 

the M. aquatica purified ethanolic extract (64.2 ± 2.4 mg/g extract or 7.3 ± 0.3 mg/g dry 

plant) is in-between the quantities previously described for the same plant [11, 25] and 

fits well on the contents found in Mentha plants (1.1 to 19.1 mg/g of dry plant) [11, 26]. 

In turn, the amount of rosmarinic acid in the L. dentata purified ethanolic extract (67.8 ± 

3.3 mg/g extract or 4.5 ± 0.2 mg/g dry plant) was considerable higher than that reported 

for L. intermedia and L. angustifolia (1.2 and 1.7 mg/g of dry plant, respectively) [25, 

27]. Note that, despite previously reported in L. dentata [18], the amount of rosmarinic 

acid in this species has not been deliverable up to this date. 

The M. aquatica purified ethanolic extract also contained significant amounts of other 

phenolics (Fig. 1 and Table 3), mainly flavanones. Together, these phenolics 

represented approximately 65% of total phenols in the extract, which is in accordance 

with previous literature data reporting the prevalence of this subclass of compounds in 

Mentha plants [26, 28]. Eriodictyol-O-rutinoside (peak 1, [M-H]
−
 ion at m/z 595, Table 

2) was identified as the main flavanone in M. aquatica purified ethanolic extract, 

accounting for almost half of the total quantified phenolics (144.6 ± 6.2 mg/g extract or 

16.4 ± 0.7 mg/g of dry plant). Although this value is higher than that previously 

reported for this species (2.1 mg/g of dry plant) [11, 26] overall, it fits on the average 
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amounts found in the Mentha genus [26, 28]. Other previously described flavanones 

(corresponding to the ion at m/z 449) and flavones glycosides (e.g. luteolin-7-O-

glucoside and apigenin-7-O-rutinoside) were also detected in minor amounts in the M. 

aquatica extract (Table 2 and Table 3). Note still that the present study also allowed us 

to detect for the first time in M. aquatica, the flavone luteolin-7-O-rutinoside (4.9 ± 0.3 

mg/g of dry plant), the flavanone naringenin-7-O-rutinoside and the bioflavonol 

hesperitin-7-O-rutinoside. 

L. dentata purified ethanolic extract main phenolics comprised the luteolin-7-O-

glucuronide (28% of the total quantified phenolic components) and rosmarinic acid 

(72% of the total quantified phenolic components). Besides those, the only detectable 

phenolic compound in the L. dentata purified ethanolic extract was an apigenin 

derivative, which has not been previously reported in Lavandula genus. This compound 

was detected in low amounts in peak 6 and was tentatively assigned to apigenin-7-O-

(acetyl)glucoside, in accordance to its fragmentation pattern (473 → 413, 269) plus its 

UV spectra data.  

 

3.2. Antioxidant properties of M. aquatica and L. dentata purified ethanolic 

extracts in chemical models 

Both DPPH radical scavenging and reducing power assays were performed in M. 

aquatica and L. dentata purified ethanolic extracts, as a first approach to evaluate their 

antioxidant abilities. M. aquatica and L. dentata purified ethanolic extracts showed 

DPPH EC50 values of 8.1 ± 0.7 and 11.6 ± 0.6 μg/mL, respectively, and their 

scavenging ability was 3 to 5 times lower than that of the ascorbic acid. Note that these 

EC50 values are significantly lower than those previously described for M. aquatica 
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(27.1 and 29.0 μg/mL [10, 29]) and L. dentata extracts (48.7 μg/mL [17]), which can 

result from the herein applied purification process.  

Regarding the reducing power, the obtained EC50 values were 51.9 ± 7.2 and 78.9 ± 1.5 

μg/mL, respectively, for M. aquatica and L. dentata purified ethanolic extracts. These 

corresponded to a 2- to 3-fold less potency than that of BHA (which is a potent 

synthetic antioxidant) in reducing iron (III) to iron (II). Overall, both M. aquatica and L. 

dentata purified ethanolic extracts showed relevant antioxidant activity in the two 

chemical tests, although DPPH-scavenging ability and electron-donating antioxidant 

activity was superior in the M. aquatica purified ethanolic extract.  

 

3.3. Protective activities of M. aquatica and L. dentata purified ethanolic extracts in 

HepG2 cells 

HepG2 cells are commonly used for evaluating the protective or cytotoxic effects of 

compounds/extracts in liver cells because they retain many of the specialized functions 

of healthy human hepatocytes [30]. On the other hand, potassium dichromate has been 

previously shown to induce toxicity in several biological models, including the human 

hepatoblastoma HepG2 cell line [7, 31]. It is known that this compound enters rapidly 

into the cells and activates intracellular reduction pathways. These events lead to a 

decline in membrane potential and a massive production of ROS, such as hydrogen 

peroxide and superoxide anion radical, resulting in oxidative damage and a cascade of 

cellular events, such as lipid peroxidation, DNA breakdown and induction of apoptosis 

through caspases activation [32].  

As a first approach to this part of the work, we investigated the effect of a broad range 

of extract concentrations (1-200 μg/mL) of M. aquatica and L. dentata on HepG2 cell 

survival, after exposure for 72 h, by the MTT method. As can be observed in Fig. 2, the 
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doses of 100 µg/mL or higher were toxic for the cells, but from 1-50 μg/mL these 

extracts did no affect cell viability. Hence, 50 μg/mL was selected for further 

investigation of the potential ROS scavenging and cytoprotective activities of the two 

plant extracts.  

Potassium dichromate increased intracellular levels of ROS in HepG2 cells in a 

concentration-dependent manner (Fig. 3A); ROS production was 1.7-fold for 5 μM and 

2.4-fold for 25 μM potassium dichromate. We next investigated the protective effect of 

M. aquatica and L. dentata purified ethanolic extracts in intracellular ROS production 

induced by potassium dichromate, and found that ROS scavenging ability was higher 

for L. dentata than for M. aquatica. In fact, L. dentata significantly reduced ROS levels 

in HepG2 cells under basal conditions, and in cells exposed to 5 μM or 25 µM 

potassium dichromate by about 35, 20 and 30%, respectively. On the contrary, M. 

aquatica purified ethanolic extract only significantly decreased ROS production 

induced by the highest concentration of potassium dichromate (approximately 25%). 

The ROS reducing ability of M. aquatica or L. dentata purified ethanolic extracts in 

cells has not been previous described. To our knowledge, from these two plants genus, 

ROS scavenging potential, in particular for superoxide anion and hydroxyl radical, has 

only been reported for L. stoechas in neutrophils [5]. 

When evaluating the protective effect of M. aquatica or L. dentata purified ethanolic 

extracts on the potassium dichromate-induced ROS increment, one should consider that 

rosmarinic acid and luteolin are the main components of L. dentata, and are present in 

similar amounts in the two extracts. Both phenols have been shown to exhibit high ROS 

scavenging activity in several cell models, including the HepG2 cells [33]. In fact, 

previous studies performed by Pereira et al [7] have demonstrated that rosmarinic acid 

and luteolin could efficiently counteract potassium dichromate-induced ROS increment 
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production. Hence, it is feasible that these phenols could be associated, at least, in part, 

to the ROS scavenging ability observed for the M. aquatica or L. dentata purified 

ethanolic extracts.  

Two other phenols present in M. aquatica, eriodictyol and naringenin, also possess high 

ROS scavenging activity in HepG2 cells (Pereira et al., 2013) (about 50% of protection 

at 50 µg/mL) however, the effect of this purified ethanolic extract was lower than that 

of L. dentata. Hence, other phenolic or non-phenolic extract components must also 

contribute to the final ROS reducing ability of each extract.  

Interestingly, the antioxidant ability of the extracts was not directly associated to their 

cytoprotective capacity. As can be observed in Fig. 3B, a moderate cytoprotective effect 

was observed in HepG2 cells exposed to 1.5 μM potassium dichromate together with M. 

aquatica purified ethanolic extract (50 μg/mL) but not together with L. dentata extract, 

despite the later presents higher ROS scavenging activity. These results suggest that the 

protective effect observed for M. aquatica purified ethanolic extract is mainly related to 

a ROS-independent scavenging mechanism. Since this extract is rich in an eriodictyol 

derivative, and this aglycone has been shown to improve the cells survival [7], as well 

to potently inhibit several apoptotic important steps, including the cleavage of pro-

caspase-3 or pro-caspase-9 and the release of cytochrome C [34], it is possible that the 

herein observed protection for the M. aquatica purified ethanolic is partially mediated 

through anti-apoptotic effects of this compounds. Future work focusing the effect of M. 

aquatica purified ethanolic extract on apoptotic-associated processes will help to further 

understand the observed M. aquatica hepatoprotection. 
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4. Conclusion 

This study provides new important information for the chemical and pharmacological 

characterization of M. aquatica and L. dentata purified ethanolic extracts, in view to add 

value to the two plants species. Both plant extracts are rich in rosmarinic acid and 

luteolin glycosides but M. aquatica also contained large amounts of other polyphenols, 

in particular eriodictyol-7-O-rutinoside. Besides this, both plant purified ethanolic 

extracts have considerable antioxidant abilities, as established by DPPH and reducing 

power assays, as well as in a model of chemical stress induced by potassium dichromate 

in HepG2 cells. Although it is likely that rosmarinic acid and luteolin are associated to 

their antioxidant properties, other extract constituents must also contribute to this effect. 

Moreover, the cytoprotective activity observed in the presence of M. aquatica purified 

ethanolic extract seems to be related to a ROS-independent scavenging mechanism, 

which deserves further investigation. In conclusion, the present work suggest that the 

studied plants might be important dietary sources of natural antioxidants and that can be 

consumed for prevention of dysfunctions related with oxidative stress. Further studies 

are now necessary to clarify the exact contribution of phenolic compounds in the 

described effects. 
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Figure Captions 

 

Fig. 1 – Chromatographic profile at 280 nm of M. aquatica (gray line) and L. dentata 

(bold line) purified ethanolic extracts.  

 

Fig. 2 – Viability of human hepatoblastoma HepG2 cells exposed for 72 h to increasing 

concentrations of M. aquatica and L. dentata extracts (1 to 200 µg/mL). Values are 

means of percentage of cell viability with respect to control ± S.E.M. from 3-4 

independent experiments performed in triplicate. 

 

Fig. 3 – Protective effect of M. aquatica and L. dentata purified ethanolic extracts (50 

µg/mL) in ROS incremented production (A) or decrement of cell viability (B) of 

human hepatoblastoma HepG2 cells at basal (□, A and B) or under toxic conditions 

induced with potassium dichromate (DK) at 5 μM (A, ■) and 25 μM (A, ■) for 48h, or 

with 1.5 of DK for 72h (B, ■). Values are expressed as means ± S.E.M. of percentage 

of ROS production compared to control, from 3-4 independent experiments performed 

in triplicate. Ma, M. aquatica purified ethanolic extract; Ld, L. dentata purified 

ethanolic extract. *p < 0.05; ***p < 0.001 when compared to cells exposed to 5, 25 

μM (A) or 1.5 μM (B) potassium dichromate, in the absence of extract; 
#
p< 0.05; 

###
p< 

0.001 when compared to untreated cells. 

(A) 
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Table 1– Test range, slope and intercept values of calibration curve, correlation 

coefficient, LOQs and LODs for standard compounds 

 

Standard 

Compound 

Range 

concentration 

(μg/ mL) 

na 
Slopeb (area 

counts/mg) 

Interceptb 

(area counts 

/mg) 

R2 
LOD 

(μg/ mL) 

LOQ 

(μg/ mL) 

E-7O-G 10 - 136 5 1106(±10) x 104 34(±8) x 103 0.9995 5.6 16.9 

N-7O-G 5 - 68 5 136(±1) x 105 2(±4) x 103 0.9991 2.7 8.1 

L-7O-G 45 - 473 5 385(±10) x 104 7(±2) x 104 0.9945 40.6 123.2 

RA 15 - 173 5 143(±1) x 105 -10(±1) x 104 0.9992 6.4 19.3 

E-7O-G, eriodictyol-7-O-glucoside; N-7O-G, naringenin-7-O-glucoside; L-7O-G, luteolin-7-O-glucoside; RA, 

rosmarinic acid. 
a Number of points used for the regression of standard solutions. Injections were done in triplicate. 
b The standard deviation in the slope and intercept of the regression line is shown in parenthesis 
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Table 2 – Identification of the phenolic compounds in HPLC eluting peaks of M. 

aquatica and L. dentata purified ethanolic extracts through HPLC-DAD and ESI-MS 

combined analysis. 

Peak 
RT 

(min) 
λmax [M-H]_ 

Main fragment 

ESI- MSn Compound 

M. aquatica 

1 15.0 283, 325 595 
MS2 [595]: 287; MS3: [287]: 269(3%), 151(100%), 

125(2%), 107(1%); MS4 [151]: 107 
Eriodictyol-O-rutinoside 

2 16.8 254, 267, 345 

593 

(100%) 

MS2 [593]: 285 (100%), 267(10%), 241(3%); MS3: 

[285]: 241 (100%), 217 (67%), 199 (65%), 175 (62%), 

151(20%) 

Luteolin-7-O-rutinoside 

609 

(35%) 

MS2 [609]: 343 (5%), 301(100%), 255 (2%), 271 

(2%), 179 (2%); MS3 [301]: 273 (10%), 257 (10%), 

179 (100%), 151 (60%) 

Rutin 

449 

(40%) 
MS2 [449]: 287; MS3 [287]: 151 Eriodictyol-7-O-glucoside 

3 17.9 

254,267, 350 

447 

(15%) 

MS2 [447]: 285; MS3 [285]: 243(50%), 241(100%), 

217(90%), 201(7%), 199(85%), 175(75%) 
Luteolin-7-O- glucoside 

461 

(40%) 
MS2 [461]: 285 Luteolin-7-O- glucuronide 

282, 333 
579 

(100%) 
MS2 [579]: 271; MS3: [271]: 177(5%), 151(100%) Naringenin-7-O-rutinoside 

4 19.5 

266, 336 
577 

(50%) 

MS2 [577]: 269; MS3: [269]: 241(10%), 225(100%), 

224(60%), 203(30%), 183(10%), 182(20%), 151(35%) 
Apigenin-7-O-rutinoside 

283, 325 
609 

(100%) 

MS2 [609]: 301(100), 286(<1), 242(<1); MS3 [301]: 

286(100%), 283(40%), 257(25%), 242(40%), 

233(3%), 199(5%), 125(10%); MS4 [286]: 268(5%), 

258(75%), 242(100%), 199(5%), 174(5%); MS5 [241]: 

227(100%), 199(60%) 

Hesperetin-7-O-rutinoside 

253, 267, 345 
461 

(40%) 

MS2 [461]: 285; MS3 [285]: 243(20%), 241(90%), 

217(45%), 199(10%), 175 (100%), 133 (14%) 
Luteolin-7-O-glucuronide 

5 21.1 290, 328 
359 

(100%) 

MS2 [359]: 315(2%), 223(10%), 197(15%), 179(20%), 

161(100%), 133(1%); MS3 [179]: 135 
Rosmarinic acid 

L. dentata 

3 18.1 253, 267, 345 461 

MS2 [461]: 285; MS3 [285]: 267(10%),257(15%), 

243(55%), 241(100%), 217(45%), 199(45%), 

197(8%), 175(55%), 151(10%) 

Luteolin-7-O-glucuronide 

5 21.1 

266, 329 
431 

(10%) 

MS2 [431]: 269; MS3 [269]: 241(5%), 227(15%), 

225(100%), 201(13%), 197(15%), 183(15%), 

181(10%), 151(7%), 149(15%), 117(5%) 

Apigenin-7-O-glucoside 

290, 328 
359 

(100%) 

MS2 [359]: 223(15%), 197(25%), 179(30%), 

161(100%), 133(3%); MS3 [179]: 161(20%), 

135(100%) 

Rosmarinic acid 

6 26.3 266, 330 473 MS2 [473]: 413(1%), 269(100%) 
Apigenin-7-O-(6’’ 

acetyl)glucoside 
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Table 3 – Quantification at 280 nm of the main phenolic constituents of M. aquatica 

and L. dentata purified ethanolic extracts 

 

  M. aquatica  L. dentata 

Peak 
Quantified 

with 
Compound 

mg/g of 

extract
a
 

 Compound 
mg/g of 

extract
a
  

1 E-7O-G 
Eriodictyol-7-O-

rutinoside 

144.6 ± 6.2 

(48%) 
   

2 L-7O-G 
Luteolin-7-O-

rutinoside 

43.3 ± 2.8 

(14%) 
   

3 
N-7O-G/ 

L-7O-G 

Naringenin-7-O-

rutinoside 

24.4 ± 1.0 

(8%) 
 

Luteolin-7-O-

glucuronide 

26.2 ± 2.0 

(28%) 

4 E-7O-G 
Hesperitin-7-O-

rutinoside 

25.9 ± 1.0 

(9%) 
   

5 RA Rosmarinic acid 
64.2 ± 2.4 

(21%) 
 Rosmarinic acid 

67.8 ± 3.3 

(72%) 

6     
Apigenin-7-O-(acetyl) 

glucoside 
* 

  Total 302.5 ± 8.0   93.9 ± 2.0 

 
E-7O-G, eriodictyol-7-O-glucoside; L-7O-G, luteolin-7-O-glucoside; N-7O-G, naringenin-7-O-glucoside; RA, 

rosmarinic acid 

Mean values ± SEM 
aValues in parenthesis are expressed as the percentage of total quantified phenolic compounds 
* Below limit of quantification 
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Figure 1 
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Figure 2 
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Pereira O. R., 2013 | CHARACTERIZATION OF PHENOLIC CONSTITUENTS OF MEDICINAL PLANTS AND 

EVALUATION OF PHARMACOLOGICAL ACTIVITIES: FOCUS IN ANTIOXIDANT AND 

ANTI-INFLAMMATORY PROPERTIES 

3.6. PROTECTIVE EFFECTS OF PHENOLIC CONSTITUENTS FROM CYTISUS 

MULTIFLORUS, LAMIUM ALBUM L. AND THYMUS X CITRIODORUS ON 

LIVER CELLS 

 

Plants are widely used in traditional medicine due to their beneficial activities. From the 

large diversity of the plant constituents, special relevance has been given to their 

polyphenolic compounds, which are often able to counteract oxidative stress, through 

various mechanisms. In this study, the potential antioxidant and cytoprotective effects 

of Cytisus multiflorus, Lamium album L. and Thymus x citriodorus, as well as those 

exhibited by their phenolic constituents, were evaluated by in vitro assays on liver cells.  

The extracts were shown to have high antioxidant effects in the two chemical tests with 

a potency order of L. album > T. x citriodorus > C. multiflorus. The cellular-based 

assays indicated that all extracts can counteract the increased ROS production 

induced by potassium dichromate. The high capacities in counteracting ROS formation 

in oxidative stress conditions in HepG2 cells were shown to be correlated with the 

ROS-scavenging activities of the polyphenols present in the extracts. The cells 

treatment with L. album and C. multiflorus extracts also induced an hepatoprotective 

effect of 34 or 24% (6h of incubation with DK 200μM) and 11 or 12% (72h of incubation 

with DK 2μM), respectively. The cytoprotective effect of L. album purified ethanolic 

extract seems related to the presence of verbascoside, which exhibited the highest 

cytoprotective action between the tested reference compounds. Overall, these results 

suggest that C. multiflorus and L. album purified ethanolic extracts are good 

antioxidants and that polyphenols present in their extracts play an important role in the 

beneficial properties of these plants. 

 

The results obtained in this section of the Doctoral Thesis have been used to write the 

manuscript entitled "Protective effects of phenolic constituents from Cytisus multiflorus, 

Lamium album L. and Thymus citriodorus on liver cells" which is in press in Journal of 

Functional Foods. 
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The present stud y in vestigated the antioxidant and cytoprotecti ve effects of purified etha- 

nolic extracts of Cytisu s multiflorus, Lami um album L. and Th ymus citriodor us plants. These 

extr act s sho wed high antioxida nt activity in DPPH and reducing po wer assa ys. Using a

model of chemical stress induce d by pota ssium dichr omate (DK) in human hepatoblastoma 

Hep G2 cells, 50 lg/mL of C. multiflorus, L. album and T. citriodorus extracts decreased the rate 

of reac tiv e oxyg en species (ROS) production by 35%, 26% and 20%, respectiv ely , when 

exposed to 25 lM of DK. This effect was also observed for the treatment of cells with indi- 

vidual polyphenolic compound s determined in the extracts, or with mi xtures pre pared 

with individual polyphenolic compounds simulating the phe nolic compositio n of the 

extr act s. Additionally , the purified ethanolic extracts and the pre pared polyphenolic mix- 

tures sho wed a cytoprotectiv e effect against DK-induced toxicity . The over all results 

emphasize the contribution of polyphenols in antiox idant and cytoprotectiv e properties 

of the studied plants. 

� 2013 Else vier Ltd. All rights reserv ed. 
1. Intro duction 

Reacti ve oxygen species (ROS) are genera ted in a va riety of 

intra cellular pro cesses and in particular in the mitoc hondrial 

electr on tr ansport chai n, wher e the redox complexes donate 

electr ons to oxygen leading to the formation of O��2 , a pre cur -

sor of the majority of RO S. The imbala nce betw een cellular 
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antioxid ant defenses and the ove rpro duction of ROS leads 

to oxidati ve stre ss. This biolog ical conditi on is closel y associ- 

ated to aging pro cesses and to se veral diseases, includin g car -

dio vascular , neur odegener ativ e, inflammator y diseases and 

cancer . In particula r in liv er , RO S excess can induce cell dam- 

age in lipids, prote ins and DN A, inducin g necr osis and apop- 

tosis of hep atoc ytes, amplify ing the inflammatory response 
. 
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and initiating he patic fibrosis (Sanc hez-V alle , Cha vez-T apia, 

Uribe , & Mendez -Sanc hez, 2012).

On the other hand, plants are fre quentl y used in tr adi- 

tional medicine due to their beneficial activ ities. Among the 

plant constituen ts, special rele va nce has been giv en to their 

pol yphenolic compoun ds (PPCs), which often exhibit high 

antioxid ant capacity and hence , ar e ab le to counte ract oxida- 

ti ve stre ss (Deng et al., 2013 ). Polyph enols can act as antioxi- 

dants thro ugh va rious mec hanisms , including hydr oge n- 

donating reacti ons, metal chela tion, inhibition of cytoc hrome 

P450 isoforms and up-r egu lation or prote ction of antioxid ant 

defenses (e.g. intra cellular glutathio ne le ve ls) (Krishnaia h, 

Sarbatl y, & Nith ya nandam, 2011). The potential antioxid ant 

effect of herbs, or that of isolated phenolic compoun ds, has 

been extensi vel y determin ed by in vitr o tests. Common meth- 

ods for measuring the antioxi dant capacity include free radi- 

cal 2,2-diphen yl-1-picr ylh ydr azyl (DPPH) sca ve ngin g, OH 

radical sca ve ng ing ab ility , reducing/a ntioxidant po wer (FRAP),

oxygen radical absorb ance capacity (ORAC), and Trolox equi v- 

alence antioxid ant capacity (TEAC), among others (Hossain,

Patra s, Barry -Ry an, Martin-Dia na, & Brunto n, 2011; Ja bri-Kar -

oui, Bettaieb , Msaada, Hammami, & Marzouk, 2012). Despite 

their usefulness , these assa ys ha ve some limitations, the 

most import ant being the difficulty of extr apolating results 

to the in vivo conditions, wher eas closer results can be ob- 

tained by the use of cultur ed cells. In this context, the He pG2 

cell line , deri ved from human he patob lastoma, has been 

extensi vely used as an in vitr o model to in vesti gate the bene- 

ficial potenc y of plant extr acts with respect to hep atic injur y

condition s. Althou gh these are tumour cells, the y retain 

man y of the specialize d functio ns of normal human hep ato- 

cytes (including some which are lost by primar y he patoc ytes)

and hence are conside red as a val id tool for this type of stud- 

ies (Chen, Ma, Liang, Peng, & Zuo , 2011; Hanlon, Robbins, 

Hammo n, & Barnes, 2009; Wang, Lee , Chen, Yu, & Duh, 

2012). Toxicity in these cells can be induced by se ve ral agents 

includin g hydr oge n perox ide, tert-buty l hydr opero xide , afla-

toxin B1 and potassium dic hro mate (DK) (Mersc h-Sunder -

mann, Knasm uller , Wu, Darr oudi, & Kassie , 2004). The latter 

enters rapidl y into the cells resultin g in oxidati ve dama ge

by means of RO S genera tion, lipid perox idation, DN A bre ak- 

do wn and inductio n of apoptosis (Son et al., 2010 ).

Cytisus mul tiflorus (L’He ´r.) Swe et, Lamium album L. and Th y- 

mus citriodorus ar e Mediterr anean plants whic h are used, 

either ra w or cooked , for confect ion of distinct local dishes. 

Mor eo ve r, these plants are freq uentl y consum ed in the form 

of tea, or in food supplements pre par ations (L. album L.),

due to their claimed medicinal pro perties. Concr etel y, C. mul- 

tiflorus has been used because of its diure tic, anti-inflamma- 

tor y, anti-h ypertenso r and antidia betic prop erties (Gia ˜o

et al., 2007) while lemon th yme (T. citriodorus ) has been used 

due to its deodor ant, antise ptic and antimic robia l activ ities, 

as well as in the tr eatment of asthma and other respira tory 

disease s (Omidbai gi, Sefidkon, & Hejazi, 2005 ). In turn, L. al- 

bum is famous due to its antioxid ant, antispa smodic, muco- 

ly tic, diur etic, haemos tatic, anti-inflammator y and 

anticanc er activ ities (Paduc h, Wójciak-K osior , & Matysik ,

2007).

The phenolic composit ion of these plants has been studied 

and, accor ding to that, C. mul tiflorus is ric h in chr ysin deri va -
Please cite this article in press as: Pereira, O.R. et al., Protective effects of 
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tiv es (e.g. chr ysin-7- O-b-D-glucop yra noside), also containin g

other flavo nes and flavo nol hexosid e deri vati ve s (Pere ira , Sil- 

va, Doming ues, & Car doso , 2012a). L. album extr acts mainl y

include the phen ylpr opanoid glycos ides verbascoside and 

iso ve rbascosid e, and some phenolic acids and flavo noids (Pa- 

duch et al., 2007; Pere ira, Domingu es, Silva , & Car doso , 2012b),

while phenolic extr acts of T. citriodorus are rich in O-gly cosidic 

deriv ati ve s of luteolin and apig enin, as well as in rosmarinic 

acid (Pere ira, Domingu es, & Car doso , 2010 ).

The antioxid ant pro perties of C. multiflorus (Barr os, Ca brita, 

Boas, Carva lho , & Ferr eira , 2011) and L. album extr acts (Armat-

u, Colceru-M ihul, Bubuean u, Dra ghici, & Pirvu, 2010) ha ve

pre viousl y been eva luated by simple chem ical methods (e.g. 

DPPH and ABTS assa ys) and throu gh assessmen t of lipids oxi- 

dativ e dama ge. Ho wever , there ar e no similar assa ys focusing 

T. citriodorus extr acts. More ove r, ther e is no ava ila ble informa -

tion on the ROS sca venging ab ility , as well as on the potential 

cytopr otecti ve prop erties in cultur ed cells of C. multiflorus, L.

album, and T. citriodorus polar extr acts. This issue was in ve sti- 

gated in the pre sent work using a model of chem ical str ess in- 

duced in Hep G2 cells by incubation with DK. The role of the 

main phenolic components of the thr ee plant extr acts on 

the ROS sca ve ng ing and on cytopr otecti ve pro perties was also 

in ve stigated in this experim ental model. 
2. Exper imental 

2.1. Chemicals 

Por cine trypsin was purc hased fro m Roc he (Barcelona, 

Spain). Tripan blu e, dimeth yl sulphoxide (DMSO), ‘‘Minim um 

Essential Medium Ea gle (MEM)’’ and RPMI-1640 culture med- 

ia, mix of antibio tics and antim ycotic, sodium piruv ate , so- 

dium bicarbona te, 3-(4,5-dimeth ylthiaz ol-2-yl)-2,5-

diphen yltetr azolium br omide (MTT), dic hlor ofluorescein- 

diacetate (DCFH-DA), cisplatin and DK were pur cha sed fro m

Sigma–Aldrich (Madrid, Spain). BHA (butylated hydr oxy ani- 

sole) and DPPH radi cal (2,2-diphen yl-2-picr ylh ydr azyl) were 

obtained fro m Sigma Chemical Co . (St. Louis, MO , USA). Fetal 

bo vine serum (FBS) was obtained fro m T.D .I. (Madrid, Spain).

The phenolic standar d compoun ds apig enin, chrysin , eri- 

odicty ol, quer cetin, luteolin, naringenin, rosm arinic acid 

and ve rbascoside were obtained from Extr asynth ese (Genay

Cedex, Fr ance). Ascor bic acid was purc hased fro m Panr eac 

(Barcelona, Spain).
2.2. Plant extr acts 

C. multiflorus (flowers), L. album and T. citriodorus (aerial parts 

of both plants) wer e purc hased from Ervital (Castro de Aire ,

Portugal) and the ethanolic purified extr acts of the thre e

plants wer e obtained and pre viousl y char acterized reg ar ding 

their phenolic compon ents (Pere ira et al., 2010, 2012a ,

2012b). The content of the main phenolics is summarize d

in Tab le 1 (in terms of ag lyco nes and/or their deri va tiv es)

due to their rele va nce for the understa nding of the pre sent 

stud y. Accor ding to those studies, the total phenolic com- 

pounds in C. multiflorus, L. album and T. citriodorus purified

ethanolic extr acts accounted for 41%, 50% and 14.9% of its 
phenolic constituen ts from Cytisus multiflorus, Lamium album L. and 
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Table 1 – Mean conten t of pheno lic compou nds in Cytisus mu ltiflorus, Lamium album and Th ymus citriodor us extr acts. 

Plant Compo und Mean content 
(mg/g extr act)

Refer ences 

Cytisu s multiflorus Chrysin plus deriv atives 72.8 Pereir a et al. (2012a)

Luteolin deriv atives 23.4 

Apig enin plus deriv atives 20.0 

Quercetin deriv ativ es 14.1 

La mium album Verbascoside plus deriv ativ es 272.9 Pereir a et al. (2012b)

Naring en in deriv atives 32.6 

Apig enin derivati ves 32.3 

Luteolin deriv atives 29.7 

Th ymus citriodorus Luteolin deriv ativ es 15.2 Pereir a et al. (2010)

Rosmarini c acid plus deriv ativ e 12.7 

Apig enin derivati ves 9.0 

Eriodictyol deriv ativ es 5.7 

Naring en in deriv atives 1.8 
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weight, respe ctiv ely . Mor eo ve r, the phenolic composition of 

C. mul tiflorus was mainl y composed of chr ysin-7- O-b-D-

glucop yr anoside and of consider ab le amounts of a dih ydr -

oxyflavo ne isomer of chr ysin. These tw o deri va tiv es plus 

chr ysin account ed for 56% of the total phenolic compou nds 

quantified in the extr act that is equi val ent to 72.8 lg/mg ex- 

tr act. More ove r, luteolin deriv ativ es (200-O-pentos yl-6- C-hexo-

syl-luteolin , 200-O-pentosyl-8-C-hexosyl -luteolin and orientin)

accounted for appr oximatel y 23.4 lg/mg extr act, while api- 

genin plus its deri vati ve s and quer cetin deri va ti ves ac- 

counted for 20.0 and 14.1 lg/mg extr act, respecti ve ly . In 

turn, the amount of ve rbascoside and its deriv ativ es in the 

L. album purified ethanolic extr act re pre sented appr oxi- 

matel y 56% of the total phenol ic content (272.9 lg/mg ex- 

tr act). Remaini ng phenolic compou nds in the extr act 

enclosed isoscutella rein gly cosides and 7- O-deri va ti ves of 

naringenin, apig enin and luteolin, with the three latter 

accounti ng for 32.6, 32.3 and 29.7 lg/mg extr act, respecti ve ly .

In turn, T. citriodorus purified ethanolic extr act mainl y com- 

prised luteolin deriv ativ es (15.2 lg/mg extr act) and rosmari- 

nic acid and deri va ti ve (12.7 lg/mg extr act), besides minor 

amounts of eriodicty ol and apigenin deriv ati ve s. 

2.3. DPPH test 

The sca ve ng ing capacity of eac h purified ethanoli c extr act 

was carried out by DPPH radical test follo wing the Kirb y and 

Sch midt (1997) pro cedur e with adapt ations. For that, distinc t

methanolic test solutions (0.05, 0.1, 0.25, 0.5 and 0.8 mg/mL)

of the extr acts of C. multiflorus, L. album and T. citriodorus were 

pre par ed and 0.1 mL of eac h solution was added to 1.7 mL of a

methanolic solution of DPPH (60 lM) in a test tube , follo wed 

by vigor ous shaken. After 30 min of incubation in the dark, 

the ab sorbance of the mixtur es was measur ed in a spectr o- 

photomet er at 517 nm, ag ainst a bl ank (absence of DPPH).

The radical sca ve ngin g activ ity of each purified ethanolic ex- 

tr act was calculated as the per centa ge of DPPH discolor ation, 

using the equation of Yen and Duh (1994):

%DPPH radical sca venging = [(AC(0) � AE(t))/AC(0)] * 100, 

wher e: AC(0) = Absorba nce of the contro l at t = 0 min; AE

(t) = Absorba nce of the extr act at t = 30 min. 
Please cite this article in press as: Pereira, O.R. et al., Protective effects of 
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Based on gra phic va lues of per centa ge of DPPH inhibition 

vs. extr act concentr ation, the EC 50 (concentration of the ex- 

tr act ab le to inhibit the 50% of the DPPH radical) of eac h ex- 

tr act was estimated. Ascorbic acid was used as positi ve 

contr ol. 

2.4. Reducing power test 

The ab ility of C. mul tiflorus, L. album and T. citriodorus extr acts 

in redu cing iro n (III) was assessed by the method described by

Barr os et al. (2011), performed in a 48-w ell plate using an 

ELX800 Micr oplate Reader (BioTek Instrume nts, Inc., Winoo- 

ski, VT , USA). For that, 0.5 mL of distinct concentr ations 

(0.05, 0.067, 0.1, 0.125, 0.25 mg/mL) of eac h extr act of inter est 

was mixed with 0.5 mL of phosphate buffer (0.2 M, pH 6.6) and 

0.5 mL of a 1% potassium hexac ya noferr ate [K 3Fe(CN)6] aque- 

ous solutio n. After 20 min of incubation at 50 �C, 0.5 mL of 

10% tric hlor oacetic acid was added and 0.8 mL of the mixtur e

was pour ed in the 48-w ells with 0.8 mL of deionized wate r

and 0.16 mL of FeCl 3 (0.1%, w/v). The absorb ance was mea- 

sur ed at 690 nm. The mean absorbance va lues wer e plotted 

ag ainst concent ratio n, a linear re gr ession analy sis was car -

ried out, and the EC 50 va lue , corre sponding to the extr act con- 

centr ation pro viding 0.5 of ab sorbance , was determin ed. BHA 

was used as positi ve contr ol. 

2.5. Cell cultur e

Human he patob lastoma He pG2 cells (HB-8065) were obtained 

fro m the American Type Cultur e Collection (Manassas, VA, 

USA) and cultur ed in pol ystyr ene flasks (Falcon) with MEM 

suppleme nted with 1 mM of sodium pyruv ate, 26.2 lM of so- 

dium bicarbonate , inacti vated FBS 10% (v/v) and 1% of a mix- 

tur e antibiotic–antimyc otic solution [penicillin (20 U/mL),

str epto my cin (0.02 mg/mL) and amphoter icin B (0.05 lg/mL)]

under an atmosphe re of 5% CO 2 at 37 �C. Cells were plated 

onto 96 well- plates at a density of 0.3 · 106 or 0.15 · 106 -

cells/mL (6 or 72 h tr eatments, respe ctiv ely ) in a total vo lume 

of 100 lL, for the MTT experiments. Alterna tiv ely , cells were 

seeded in 6 well-p lates at a density of 0.1 · 106 cells/mL, in a

total vo lume of 2 mL, for RO S experiments. 
phenolic constituen ts from Cytisus multiflorus, Lamium album L. and 
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2.6. Pr epar ati on of test solutions for cellular assa ys 

The C. multiflorus, L. album and T. citriodo rus purified ethanol ic 

extr acts wer e dissolv ed in cultur e medium at a concentr ation 

of 1 mg/mL and sterilized by UV light exposur e (1 h, 30 W), in 

or der to avo id the contamin ation of the cultur ed cells. Phen- 

olics sta bility under these conditions was confirmed by HPLC- 

DAD anal ysis (data not sho wn). Standar d compound s, namel y

apigenin, chry sin, eriodicty ol, quer cetin, luteolin, naringenin, 

rosmarinic acid and verbascoside , were dissolv ed in sterile di- 

meth yl sulphoxid e (DMSO) (50 mg/mL). These concent rated 

solutio ns were subsequen tly diluted in cultur e medium to ob- 

tain final concentr ations of 1–200 lg/mL for purified ethanol ic 

extr acts or 50 lg/mL for standar d compound s. The final

DMSO concentr ation was lo wer than 0.5% and did not affect 

the cell via bility or ROS pro duction (data not sho wn). Based 

on the phenolic composit ion of eac h tar get purified ethanol ic 

extr act (Pere ira et al., 2010, 2012a, 2012b ), thre e mixtur es of 

phenoli c standa rds wer e also pre pare d taking into account 

the amount of the indi vidual PPCs determined in 50 lg/mL

of eac h extr act. In this sense , luteolin, apigenin, quer cetin 

and chr ysin were used with final indi vidual concentr ations 

of 1.2, 1.0, 0.7, 3.6 lg/mL, respe ctiv ely , for the C. multiflorus

mixtur e. These quanti ties corr esponded to the global amount 

of eac h agl ycone (plus their deri va ti ves) in the extr act. In a

similar way, the L. album PPCs mixtur e was pre pare d with 

the phenolic compound s ve rbascosid e, luteolin, apigenin, 

naringenin with concentr ations of 14.0, 1.4, 1.6, 1.6 lg/mL,

respecti ve ly , while that of T. citriodorus was obtained with 

0.3, 0.8, 0.1, 0.5, 0.6 lg/mL of eriodicty ol, luteolin, naringenin, 

apigenin and rosm arinic acid, respe ctiv el y.

2.7. Determina tion of cell viability by MTT assa y

Twenty-fou r hours after seeding the cells, the cultur e medium 

was repl aced by fresh medium containin g the desir ed con- 

centr ation of agents (extracts, PPCs mixtur es or individ ual 

standa rds) in the pre sence or ab sence of DK. After incubation 

for 6 or 72 h, via bility of Hep G2 cells was determined by the 

formaza n formation fro m tetr azolium salt (MTT) by liv ing 

cells (Briz, Serr ano , Macias, & Marin, 2000 ). Briefly, cells were 

rinsed with PBS and incubated with 0.5 mg/mL of MTT dis- 

solv ed in RPMI medium for 4 h at 37 �C. Cell ly sis and dissolu- 

tion of purple formaza n crys tals were accomplis hed by

adding 100 lL of SDS and further incubation ove rnight at 

37 �C. The ab sorbance was read at 595 nm in an ELISA rea der 

(model 550, Bio-Rad, Madrid, Spain). Cisplatin (0.3–30 lg/mL),

a classic cytotoxic compoun d, was used as a positi ve contr ol 

of toxicity . Cell via bility was calculated as the perce nta ge of 

liv ing cells compar ed to untr eated (control) cells. Mor eo ve r,

possib le unspecific reactions betw een MTT and the antioxi- 

dants were rejected by a contr ol experiment performed in 

the pre sence of MTT and distinct extr act/stand ar d concentr a- 

tions, in the ab sence of cells. 

The short-term exposur e (6 h) was used to determine 

acute cell toxicity while long-term exposur e (72 h) permitte d

to calculate the antipr olifer ativ e effect in accor dance to pre -

esta bli shed methods (Zakaria et al., 2011 ). Toxicity in those 

experim ents were , respecti ve ly , induced by DK at 200 and 

2 lM, since pre vious studies by our gro up ha ve sho wn a de- 
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crease on the Hep G2 cells via bility of ab out 25–45% in those 

conditions (data not sho wn).

2.8. Determina tion of ROS pr oduction by flow cytometr y

After 48 h incubatio n of He pG2 cells with the desire d concen- 

tratio n of agents and/or DK, the medium was re placed by

RPMI medium containing 5 lg/mL of the pro be DCFH-D A (a

sta ble non-fluorescent cell permea ble compound ). After 

30 min, cells wer e trypsi nized and resuspend ed in FBS free- 

medium. When internaliz ed by the cell, DCFH-D A is hydro- 

lyze d to DCFH by intra cellular estera ses and rapidl y oxidized 

to the highl y green fluorescent compou nd 2,7-dich lor ofluo-

resc ein (DCF) by endogenous RO S, in particular hydrope rox- 

ides. ROS genera tion was measur ed and analy zed in a

FACSCalibur flow cytometer (BD Bioscien ces, San Jo se, CA, 

USA) and CellQuest softw are (BD Bioscien ces). The va lues 

wer e expre ssed as per centa ge of ROS formation by untr eated 

cells. Note that the 48 h of exposur e was used to in vestigate 

the effect on RO S prod uction befor e the end-point used for 

the cell gr owth inhibition assa ys. Incre ment in ROS prod uc- 

tion by appr oximatel y tw o and thre e fold was accomplis hed 

by their trea tment with DK at 5 and 25 lM, respe cti vel y.
2.9. Statistical analysi s

Data were expre ssed as mean ± S.E.M. of the num ber of exper -

iments as indicated in the figure le gends. The compariso n be- 

twee n gro ups was performed by one-w ay ANO VA, follo wed by

Dunnett’ s post hoc test. 

3. Results and discussion 

3.1. Determina tion of the non-toxic concentr ation ranges 
of the purified extr acts 

As menti oned ab ove , the Hep G2 cells are a well-kno wn in vitr o

model for the assessme nt of prote ctiv e activ ities of natur al 

extrac ts or compou nds in toxicolo gical in ve stigations in liv er 

cells (Chen et al., 2011; Wang et al., 2012 ) and were her ein 

used in the prese nt stud y to eva luate the potential antioxi- 

dant and cytopr otecti ve effects of C. mul tiflorus, L. album ,

and T. citriodor us purified ethanolic extr acts. 

As a first appr oac h, Hep G2 cells were tr eated with differ ent 

concentr ations (1–200 lg/mL) of purified ethanolic extr acts, in 

or der to determine the non-toxic range of doses, allo wing to 

choos e the appr opriate concentr ations of extr acts to be used 

in the follo wing experim ents. This was evaluated by means of 

the MTT assa y, an extensi vel y used test to monitor cell sur -

viv al. Our results demon stra ted that the toxicity of the thre e

extrac ts was ve ry lo w compar ed to that of cisplatin, a classic 

cytotoxi c compound . Except for T. citriodorus , the cell via bility 

measur ed after 72 h of trea tment was unaffecte d up to 200 lg/

mL (Fi g. 1). Based on this stud y, the 50 lg/mL dose was se- 

lected for testing the RO S sca ve ngin g and cytopr otecti ve

activ ities of the thre e extr acts, while that of 200 lg/mL was 

additionall y selected for C. multiflorus and L. album .

Reg ar ding the MTT assa y, it is also importan t to note that 

despite some of the main ag lyco nes fro m the plant extrac ts 
phenolic constituen ts from Cytisus multiflorus, Lamium album L. and 
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Fig. 1 – Viability of human hepa toblasto ma HepG2 cells 

incuba ted with incr easing concentr ations of the purified

ethanolic extr acts fro m Cytisus mu ltiflorus , Lamium album 

and Th ymu s citriodor us (1–200 lg/mL) for 72 h. Cispla tin was 

used as a positi ve contr ol of cytoto xicity in HepG2 cells. 

Values ar e means of percentage of cell viability with respect 

to contr ol ± S.E.M. fro m four independe nt experiments 

perform ed in tr iplica te. 
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ha ve been sho wn to exert cytotoxi c effects on Hep G2 cells, 

e. g. chry sin, ve rbascosid e and luteolin (Ahmed, Mohame d, 

El-Dib , & Hamed, 2009; Yee et al., 2003), no toxicity was regis- 

tere d for the in ve stigated phenolic enric hed ethanolic ex- 

tr acts. Differ ent experimenta l conditions (e.g. trea tment 

period), prese nce of differ ent forms of phenoli c deri vati ve s

(aglyco nes or gly cosides) in extr acts or counte rbalanced ef- 

fects of the mul tiple extr act compon ents could account for 

this result. Besides this, it should be highlighted that the 

slight increm ent in cell via bility observ ed after incubation 

with the lo w doses of extr acts is not surpris ing and has been 

observ ed with other molecule s with antioxid ant prop erties, 

suc h as bile acids, at non-toxic doses (Briz et al., 2000 ).

3.2. Antioxidant and cytopr otective pr operties of purified
ethanolic extr acts and PPCs 

3.2.1. Chemical models 
The antioxid ant potent ial of purified ethanolic extr acts was 

first estimated by the DPPH radical sca ve ng ing and reducing 

po wer assa ys. These tw o chemical tests are widespr ead used 

for estimating the antioxidan t capacity of plant extr acts re- 

lated to their ab ility to trap the DPPH radical, and to reduce 

Fe3+ to Fe2+, respe ctiv ely . As observ ed in Tab le 2, the thr ee 

purified ethanolic extr acts had close DPPH EC 50 va lues, rang- 
Table 2 – Radical sca ve nging potentia l and reducing pow er of 
extr act plants. 

Compound/ plant extr act 

Radical 

Ascorbic acid 2.5 ± 0.2 a

BH A –

Cytisu s multiflorus 13.4 ± 0.5

La mium album 11.2 ± 0.5

Th ymus citriodorus 11.7 ± 1.5

Mean values ± S.E.M. of three independent assay s; Ascorbic acid and buty

was performe d by one -wa y ANO VA, follo wed by Dunn ett’ s post hoc tes t.
A Amount of extract required to reduce 50% of the 60 lM radical 2,2-diphe
B Amount of extract ab le to pro vide 0.5 of absorbance by reducing 3.5 lM
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ing from appr oxima tely 11 to 13 lg/mL. Considerin g that 

these EC 50 va lues are onl y five times lo wer than that obtained 

for ascorb ic acid (Tab le 2), we might conclude that the purified

ethanoli c extr acts of the thre e plants ha ve a consider ab le 

DPPH sca ve ng ing ability . The DPPH sca ve ngin g ab ility has pre -

viousl y been described for C. multiflorus and for L. album phe-

nolic extr acts, while to the best of our kno wledge this topic 

has not yet been addr essed for T. citriodorus . In genera l, the 

DPPH EC 50 herein estimated were lo wer than those pre viousl y

describe d, which is pro ba bl y due to the extrac t purification 

ste p applied in the pre sent stud y. Pre vious describe d DPPH 

EC50 va lues ran ged from 71.5 to 2000 lg/mL (Barr os et al., 

2011; Luis, Domingu es, & Duarte , 2011) and fro m 30 to 

466 lg/mL (Armatu et al., 2010; Val yo va, Dimitr ova , Gane va, 

Miho va Kapc hina-T ote va, & Petko va Yor dano va , 2011), for po- 

lar extr acts of C. multiflorus and L. album, respecti ve ly .

Re gar ding the reducing po wer assa y, the EC 50 val ues ob- 

tained in the prese nt stud y for C. multiflorus, L. album and T.

citriodorus purified ethanolic extr acts wer e respe cti vel y

95.7 ± 2.7, 67.9 ± 5.0 and 88.2 ± 0.8 lg/mL (or 1.6, 2.3, 1.9 mmol 

BHA/g extr act, respecti ve ly). Similarl y to the DPPH assa y data, 

the pre sent EC 50 values for C. multiflorus ar e muc h inferior to 

those pre viousl y report ed (410 lg/mL) by other gro up (Barr os 

et al., 2011). These results indicate a 2 to 3-fold less genera l

capacity for reducing Fe3+ to Fe2+ than that of BHA, the potent 

syntheti c antioxidan t used as positi ve contr ol (Tab le 2). The 

reducing capacity or der was L. album > T. citriodorus > C. 

multiflorus.

3.2.2. Protective effects against ROS production and decr ease 
in cell viability induce d by potassium dic hroma te in human 
hepatoblastoma HepG2 cells 
The antioxidant capacity of the thr ee purified ethanoli c ex- 

tr acts was further eva luated for their ROS sca ve nging ab ili- 

ties, on the potassium dic hroma te-stim ulated human 

he patob lastoma Hep G2 cell model. As observ ed in Fig . 2, the 

exposur e of the cells to 5 or 25 lM potassium dic hro mate 

caused a significant incre ase in the intra cellular ROS le vels, 

of 1.9-fold and 2.9-fold of the contr ol, respecti ve ly . Ho we ve r,

co-incuba tion of cells with potassium dic hro mate plus the 

tar get purified ethanolic extr acts partiall y pre ve nted the in- 

cr ease in intr acellular ROS le ve ls. This effect was dose- 

de pendent for C. mul tiflorus and L. album purified ethanoli c ex- 

tr acts (Fig . 2A and B). Note that in contr ast to the results ob- 
Cytisus multiflorus, Lamium album and Th ymus citriodor us 

EC 50 (lg/mL)

sca ve ngin gA Reducing po wer B

–

27.1 ± 0.6 c

 b 95.7 ± 2.7 d

 b 67.9 ± 5.0 e

 b 88.2 ± 0.8 d

lat ed hydroxyanisole (BHA) wer e us ed as controls. Statistical analysis 

 In each ro w different letters mean significant differences (p < 0.05).

nyl-1-picr ylh ydrazyl (DPPH�).

Fe 3+ to Fe 2+.
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Fig. 2 – Prot ecti ve effect of Cytisus mu ltiflorus (A), Lamium album (B) and Th ymu s citriodor us (C) purified ethan olic extr acts and 

mixtur es of PPCs sim ulatin g eac h plant extr act (D) on intr acellular ROS pro duction in human hepa toblas toma HepG2 cells 

induced with potassium dic hro mate (DK). Cells wer e incuba ted in the absence (h, j) or pr esence of tw o non-to xic extr act 

concentr at ions: at 50 lg/mL ( ) (for all the extr acts) or at 200 lg/mL ( ) for Cytisus multiflorus and Lamium album extr acts and 

with mixtur es of PPCs tha t sim ula te eac h plant extr act (D, ). With the exception of the basal condition, the cells wer e

expose d to DK at 5 or 25 lM, for 48 h. Th e white columns (h) repr esent the contr ol condition and the blac k columns (j)

repr esent the incuba tion of HepG2 cells with DK alone . Values ar e expr essed as means ± S.E.M. of percenta ge of ROS 

pro duction ver sus contr ol, fro m 3–4 independe nt experiments performed in tr iplica te. Mix Cm, Cytisus mu ltiflorus PPCs 

mixtur e; Mix La, Lamium album PPCs mixtur e; Mix Tc, Th ymus citriodor us PPCs mixtur e. Sta tistical anal ysis was performed by

one-w ay ANO VA, follo wed by Dunnett’ s post hoc test. *p < 0.05; **p < 0.01; ***p < 0.001 when comp ar ed to cells exposed to 5 or 

25 lM DK, in the absence of extr act (j);##p < 0.01, ###p < 0.001 when compar ed to untr ea ted cells (h).
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tained in the chemical models, C. multiflorus purified etha- 

nolic extr act was the most effecti ve in counter acting the 

potassiu m dic hro mate-incr eased ROS formation. In mor e de- 

tail, tr eatment of cells with C. mul tiflorus, L. album or T. citriod- 

orus extr acts at 50 lg/mL decr eased the intr acellular ROS 

formation by abou t 19%, 23% and 21%, respe ctiv ely (5 lM

potassiu m dic hr omate-stim ulated cells) or abou t 35%, 26% 

and 20%, respecti ve ly (25 lM potassium dic hro mate-stim u- 

lated cells) (Fi g. 2A–C). More over , for both potassium dic hro -

mate treatm ent condition s, purified ethanoli c extr act fro m

C. multiflorus > L. album (both at 200 lg/mL) decre ased ROS 

pro duction. These extr acts also reduced the intra cellular 

RO S le vels at basal conditions, e. g., in the ab sence of potas- 

sium dic hro mate; C. multiflorus (47–53%), L. album (�30%)

and T. citriodorus (�15%, not significant).

Ov era ll, the results obtained in this part of the work sug- 

gested that the thre e purified ethanol ic extr acts, and in par -

ticular those of C. multiflorus and L. album can act as good 

RO S sca ve ng ing agents in oxidati ve str ess condition s in he pa- 

tic cells. To the best of our kno wledge, this is the first report 

describi ng the potential ROS -sca venging ab ility of these puri- 

fied ethanolic extrac ts. 

The purified ethanol ic extr acts also exhibi ted pro tection 

against the potassium dic hro mate-indu ced acute toxicity 

(200 lM, 6 h) or long-term toxicity (2 lM, 72 h) as measur ed 
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by the MTT assa y. As can be observ ed in Fig . 3A, under acute 

toxic condition s, all the purified ethanolic extr acts exerted a

significant pro tection ag ainst the cell via bility decr ement 

(about 30%). More ove r, the C. multiflorus and L. album extrac ts 

partially pre ve nted cell via bility decre ment under long-term 

toxic conditions (Fig . 3B). The cytopr otecti ve effects of the 

individ ual purified ethanol ic extrac ts (50 lg/mL) were not 

potentiated by the treatm ent of the cells with combinat ions 

of two extr acts (25 lg/mL each ), sugge sting the absence of 

syner gisms on the mention ed beneficial pro perties of the 

extrac ts. 

In or der to determine the role of PPCs in the observ ed pro -

tecti ve effects of the three purified ethano lic extr acts, the pre -

vious assa ys were performed with thre e PPCs mixtur es 

pre pare d as described in the methods section by mixing the 

individ ual PPCs apigenin, ch ysin, eriodicty ol, luteolin, 

naringenin, quer cetin, rosm arinic acid and ve rbascosid e to 

simul ate the content determine d in 50 lg/mL of C. multiflorus,

L. album and T. citriodorus purified ethanolic extr acts. It should 

be mentioned that agly cones were used instead of the gl ycos- 

ylated forms detected in these purified ethanolic extr acts due 

to their commer cial avai lability . Although some differe nces 

can be expected in the ROS sca ve ng ing capacity and in the 

cytopr otecti ve acti vity betw een these tw o forms when tested 

under in vitr o condition s, it is important to note that PPCs are 
phenolic constituen ts from Cytisus multiflorus, Lamium album L. and 
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Fig. 3 – Pr otecti ve effect of Cytisus mul tiflorus (A), Lamium album (B) and Th ymus citriodor us (C) purified ethanolic extr acts and 

mixtur es of PPCs sim ula ting eac h plant extr act (D) in the potassium dich roma te (DK)-induced cell viability decr ement of 

human hepa toblasto ma HepG2 cells. Cells wer e incuba ted in the absence (h, j) or pr esence of each extr act (50 lg/mL) or their 

mixtur es (25 lg/mL each) ( , A, B) or alterna ti ve ly with mixtur es of PPCs that sim ula te eac h plant extr act ( , C, D). With the 

exception of the contr ol condition (h) the cells wer e then exposed to potassiu m dich roma te (DK) 200 lM for 6 h (A, C) or 2 lM

for 72 h (B, D). Th e blac k columns (j) repr esent the incuba tion of HepG2 cells with DK alone . Values ar e means ± S.E.M. of 

percenta ge of cell viability ver sus contr ol, fro m 3–4 independe nt experiments perform ed at least in tr iplica te. Cm, Cytisus 

mu ltiflorus extr act; Mix Cm, Cytisus mul tiflorus PPCs mixtur e; La, Lamium album extr act; Mix La, Lamium album PPCs mixtur e; 

Tc, Th ymus citriodor us extr act; Mix Tc, Th ymu s citriodor us PPCs mixtur e. Sta tistica l anal ysis was perform ed by one-w ay

ANO VA, follo wed by Dunnet t’ s post hoc test. *p < 0.05; **p < 0.01, ***p < 0.001 when compar ed to cells expose d to DK (j), in the 

absence of extr act; ###p < 0.001 when comp ar ed to untr ea ted cells (h).
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mainl y ab sorbed in vivo as agl ycones, since most classes of 

gly cosylated PPCs are hydr olyz ed in the intestine befor e

ab sorption (D’Ar chi vio et al., 2010 ).

As sho wn in Fi g. 2D, a significant redu ction of intra cellular 

ROS prod uction was observ ed both in basal condition s

(mainly for the C. multiflorus mixtur e) and under co-tr eatment 

of cells with 25 lM potassium dic hro mate and eac h PPCs 

mixtur e. 

A similar result was observ ed in the MTT assa y (Fig. 3C and 

D). The thre e PPCs mixtur es pre vent ed the cell via bility reduc- 

tion induce d by short-t erm potassiu m dic hroma te exposur e

(�32%) (Fig . 3C), while the pro tection was lost after long-term 

incubatio n for the T. citriodorus mixtur e (Fig . 3D).

Liter atur e data focusing on plant phenoli cs freq uentl y

associate their content to the health benefits, in particula r

with the antioxi dant capacity of the extr acts. This theor y is 

va lid, at least partiall y, in the pre sent stud y. In fact, L. album 

extr act, which is the most enric hed in phenolics (501 mg/g),

sho wed high antioxid ant potential both in chem ical models 

and in ROS sca veng ing and cytopr otecti ve action s in potas- 

sium dic hro mate-ex posed He pG2 cells. In turn, T. citriodorus 

extr act, the most poor extr act in phenolic compound s

(149 mg/g) also pre sented the weakest antioxidan t capacity 
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in all the tested models and was not ab le to pro tect He pG2 

cells fro m potassiu m dic hr omate toxicity for long incubation 

time (72 h).

This is the first stud y focusing on the potential antioxidan t

ab ilities and cytopr otecti ve acti vities of C. multiflorus, L. album 

and T. citriodorus purified ethanolic extr acts, as well as on the 

association of these beneficial effects to the main phenoli c

constit uents of the extr acts. The herein focused benefits ha ve 

also been scar cel y studied for plants of the three genera (Cyti-

sus, Lamium and Thym us ). To our kno wledge, the antioxid ant 

and cytopr otecti ve effects of Cytisus scoparius plant were dem- 

onstr ated by in vivo studies. Oral administ ration of the extr act 

counte racted the decr ease of super oxide dism utase and cata- 

lase and the incre ase of lipid per oxidation in a chr onic unpr e- 

dicta ble mild str ess model in rats , and pro tected the liv er 

fro m carbon tetr achl oride-induce d oxidati ve str ess in rats 

by incre asing the le vel s of glutathion e and se ver al antioxidan t

he patic enzyme s (Raja et al., 2007a, 2007b ). Some of these ef- 

fects ha ve sho wed a good corr elation with total phenolic con- 

tent in the C. scopar ius plant extrac t (Luis, Doming ues, Gil, &

Duarte , 2009). Other in vivo work re ve aled important cytopr o- 

tecti ve activ ities of Thym us vulgaris on an alcohol ab use model 

by reversing the reduction of the antioxid ant capacity and 
phenolic constituen ts from Cytisus multiflorus, Lamium album L. and 
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Fig. 4 – Prote cti ve effect of the indi vidual standar d compounds (50 lg/mL) on intr acellular ROS pro duction (A, B) or cells 

viability (C, D) of human hepa toblastoma HepG2 cells at basal (A and C) (h) or under toxic conditions (B, D) induced with 

potassiu m dich roma te (DK) at 5 lM for 48 h (B, ) or at 200 lM for 6 h (D, )). Th e blac k columns (j) repr esented the incuba tion 

of HepG2 cells with DK alone. Values ar e means ± S.E.M. of percentage of ROS pro duction or cell viability ver sus contr ol fro m

3–4 independe nt experiments perform ed at least in tr iplica te. Api, apigenin; Chry , chrysin; Eri, er iodicty ol; Lut, luteolin; Nar ,

naringenin; Quer , quercetin ; R Ac, rosm arinic acid; Ver , ve rbascoside . Sta tistical anal ysis was perform ed by one-w ay ANO VA, 

follo wed by Dunnett’ s post hoc test. *p < 0.05; **p < 0.01, ***p < 0.001 when compar ed to cells expose d to DK (j) in the absence of 

indi vidual standar d comp ounds; #p < 0.05; ##p < 0.01; ###p < 0.001 when compar ed to untr ea ted cells (control).
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glutathio ne per oxidase in liv er (Shati & Elsaid , 2009 ). To our 

kno wledge, liv er biopr otection has not been pre viously 

exploite d for Lamium plant extr acts. 

3.3. Relation between ph ytochemical content, antioxidant 
activities and cytopr otective effects 

In or der to determine the contribution of indi vidual standar d

PPCs on the pre viousl y mentioned beneficial pro perties of the 

purified ethanolic extr acts, ROS and MTT experim ents were 

also performed for the majority of their indi vidual phenolic 

constit uents. As stated in the material and methods section, 

the C. mul tiflorus purified extr act mainl y contains chr ysin 

deri va ti ves and other flavo nes enclosing gly cosidic deri va -

ti ve s of luteolin, apig enin and quer cetin (Tab le 1). L. album 

purified ethanol extr act is mainl y composed of ver bascoside ,

while other phenolics enclose deri va tiv es of apig enin, luteolin 

and naringenin (Tab le 1) and major phenolic compon ents in T.

citriodor us extr act are luteolin- O-glucosid es and rosmarinic 

acid, while it containe d minor amounts of eriodicty ol and api- 

genin deri va ti ve s (Tab le 1). Accor dingl y, apigenin, chry sin, eri- 
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odicty ol, quer cetin, luteolin, naringenin, rosmarinic acid and 

verba scoside (all at 50 lg/mL) were assessed for pro tection 

both in basal and under potassium dic hro mate-induce d toxic 

conditions. Some of these compound s had been pre viousl y

tested in Hep G2 cells and in Hep G2/C3A (a clonal deri va tiv e

of HepG 2), sho wing no cytotoxi city after incubatio n with the 

same ran ge of concentr ations for 72 h (Liu, Fl ynn, Fer guson, 

Hoag land, & Yu, 2011).

As can be observ ed in Fi g. 4A, Hep G2 cell exposur e to quer -

cetin, eriodicty ol and naringenin in the absence of potassium 

dic hroma te decr eased the basal intr acellular RO S pro duction 

by ab out 63%, 62% and 38%, respe ctiv el y. More ove r, under 

stre ss conditions, all tar get PPCs (50 lg/mL) sho wed high ab il- 

ity to sca ve ng e HepG 2 intra cellular ROS (Fig . 4B). Fr om all the 

PPCs tested, flavo noids were the most efficient standar d com- 

pounds. Indeed, the 3- and 5-h ydr oxyl gr oups with a 4-oxo 

function in A and C rings of the flavonol quer cetin and the 

C2–C3 doub le bond with a 4-oxo function in C ring, common 

to all of them, are crucial structur al cha racte ristics in deter -

mining the antioxidan t pro perties of PPCs. Additionall y, the 

prese nce of an ortho-dih ydr oxy (3’, 4’-OH) structur e on the 
phenolic constituen ts from Cytisus multiflorus, Lamium album L. and 
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B-ring (catechol group), prese nt in quer cetin and luteolin, are 

importan t to impr ove the antioxid ant pro perties (Dai &

Mumper , 2010). Besides these two compoun ds, the flava none 

eriodicty ol also sho wed high RO S sca veng ing capacity (about 

50%). This fact is in accor dance with pre vious liter ature data 

report ing a po werful antioxi dant potential of this compound 

in se ve ral cellular models, including neur onal cell culture s, 

monoc ytes and retina l pigment ep ithelial ARPE-19 cells (Cho

et al., 2012). One curious finding is the incre ase of ROS pro -

duction caused by chry sin (Fig. 4A), suggesting that at that 

concentr ation, this compoun d can induce some toxicity in 

human he patob lastoma Hep G2 cells, a phenomen a descr ibed 

for other antioxidan t compou nds (Crispo et al., 2010 ). Despite 

this, under oxidati ve stre ss condition s, this flavo ne sho wed 

high ROS sca ve ngin g prote ction (approxima tely 53% ROS 

reduction in comparison to the contr ol) (Fi g. 4B).

Taking into account the amoun t of the indi vidual PPCs in 

the purified ethanolic extr acts and also their indi vidual 

capacity in decr easing ROS pro duction under oxidati ve stre ss 

conditions (Fig. 4B), it is possib le to suggest that chr ysin (56%

of the total phenolics in C. multiflorus purified ethanoli c

extr act) is the main responsib le for its high ROS sca venging 

capacity . Still note that, despite being prese nt in lo wer 

amounts in the C. multiflorus ethano lic extr act, luteolin and 

apig enin also should positi ve ly contrib ute for its antioxid ant 

activ ities, since the y also ha ve high RO S sca ve ng ing capacity .

Importan tly , these latter compoun ds plus naringenin mu st 

for sur e be taken into account when conside ring the RO S

sca venging ab ility of L. album purified ethanol ic extr act. De- 

spite their minor ab undance in the purified ethano lic extr act 

in compariso n to ve rbascoside (54% total phenol ics), the y

exhibited almost twice of its capacity for decr easing potas- 

sium dic hro mate-stim ulated incr ement of ROS le ve ls. In turn, 

luteolin, apig enin and eriodicty ol are the compoun ds mainl y

associate d to the RO S sca ve ng ing ab ility of the T. citriodorus 

ethanoli c extr act. 

Cytopr otecti ve effects of indi vidual phenolics, as mea- 

sur ed by the MTT test, were in ve stigated for the most ab un- 

dant PPCs in eac h purified ethano lic extr act (chrysin ,

ve rbascosid e and luteolin) and also in the flava nones naringe- 

nin and eriodicty ol, due to their high ROS sca ve ng ing pro per -

ties. As sho wn in Fig . 4C, in the ab sence of potassiu m

dic hro mate, none of the tar get standar d compound s induced 

a significant decre ase on the cell MTT reducing ab ility , indi- 

cating that at the concentr ation of 50 lg/mL and for a period 

tr eatment of 6 h, all compoun ds ar e safe for the Hep G2 cells. 

In good agr eement with these results, ve rbascosid e, naringe- 

nin, luteolin and eriodic tyol counte racted the decr ease in cell 

reducing activ ity induced by potassium dic hro mate at 200 lM

(Fig . 4D) by 49%, 28%, 26% and 19%, respecti ve ly . Indeed, this 

pro tecti ve effect was not onl y observ ed for the chr ysin 

tr eatment. 

The her ein obtained resul ts also suggest that the cytopr o- 

tecti ve effects of L. album and T. citriodo rus ethanolic extr acts 

are closel y rela ted to their major phenol compound s (verbas- 

coside and luteolin, respe cti vel y), in opposit ion to that ob- 

serv ed for the C. multiflorus ethanolic extr act. Curiousl y, the 

mec hanism of cytopr otectio n of ve rbascoside , the one exhib- 

iting the highest cytopr otecti ve action, is not totall y related to 

its ROS sca venging action , since this was lo wer than that of 
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the remainin g PPCs (Fi g. 4B). Hence , other mec hanisms of 

pro tection should be in ve stigated in the futur e for the L. al- 

bum phenoli c extr act. Attending that potassium dic hro mate- 

induced cytotoxicity enga ges a cascade of cellular eve nts, 

enclosing DN A br eakdo wn and the inductio n of apoptosis 

thro ugh caspase s acti vati on (He, Lin, Chen, Zhang, & Ma, 

2007; Son et al., 2010), and that the inhibitio n of some of these 

event s has been pre viousl y associated to verbascoside (Fu,

Pang, & Wong, 2008), these are potential mec hanisms in- 

vo lve d in the cytopr otecti ve action of L. album phenolic

extr act. 

4. Conclusion 

C. mul tiflorus and L. album purified ethano lic extr acts are 

good antioxid ants. Their high capacitie s in counter acting 

ROS formation in oxidati ve stre ss conditions in He pG2 cells 

are in good agr eement with the ROS -sca veng ing activ ities 

of the PPCs prese nt in the extr acts. The cytopr otecti ve effect 

of L. album purified ethanolic extr act seems related to the 

pre sence of verbascoside , whic h exhibited the highest cyto- 

pro tecti ve action fro m all the PPCs tested. Since the cytopr o- 

tecti ve effect seems to be related to a RO S-inde pendent 

sca venging action, the mech anisms in vo lve d in the cytopr o- 

tecti ve action of L. album extr act should be in ve stigated. 

Ov era ll, our results suggest that PPCs pla y an importan t role 

in the beneficial pro perties of these plants. 
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ANTI-INFLAMMATORY PROPERTIES 

3.7. ANTI-INFLAMMATORY ACTIVITIES OF CYTISUS MULTIFLORUS 

Historically, extracts and preparations of plants are the basis of traditional medicine 

and the starting point for the discovery of new therapeutic agents [1]. Cytisus 

multiflorus is a leguminous shrub native from Iberian Peninsula that is distributed in the 

south-west Mediterranean region. The plant is used in folk medicine and it is claimed to 

have various health benefits, including anti-inflammatory properties [2, 3]. Yet, the anti-

inflammatory usage of C. multiflorus is totally based on ethnopharmacological 

information, while no scientific data focusing this capacity, or its molecular targets of 

action, has been reported. Moreover, anti-inflammatory mechanisms in Cytisus genus 

have been scarcely reported and, to the author´s knowledge, this property was only 

described for C. aeolicus, which was shown to inhibit leukotriene B4 production in rat 

polymorphonuclear leukocytes [4]. During inflammation, leukocytes, such as 

macrophages are recruited to the site of damage, which leads to a “respiratory burst” 

due to an increased uptake of oxygen and, thus, an increased release and 

accumulation of reactive species at the site of damage. On the other hand, 

inflammatory cells, such as macrophages, also produce soluble mediators, namely 

nitric oxide (NO) produced by inducible nitric oxide synthase (iNOS), leukotrienes 

formed by lipooxigenase (LOX) and prostaglandins produced by cyclooxygenase 2 

(COX-2), which act by further recruiting inflammatory cells to the site of damage and 

producing more reactive species. This sustained inflammatory/oxidative environment 

leads to a vicious circle, which can damage healthy neighboring epithelial and stromal 

cells and over a long period of time may lead to chronic illnesses, namely diabetes, 

neurodegenerative and cardiovascular diseases. Since the overproduction of reactive 

species and pro-inflammatory mediators raises and maintains inflammation, 

compounds targeting their expression are good candidates for attenuating 

inflammatory diseases. 

Once the antioxidant effect of C. multiflorus extract and of their phenolic compounds 

was demonstrated in chemical and cell based assays [5] and, as the antioxidant activity 

is usually well correlated with anti-inflammatory properties [6, 7], the latter were herein 

searched in order to clarify the possible anti-inflammatory mechanisms of C. 

multiflorus. Tests included the monitoring of scavenging activity of reactive species 

formed during the inflammatory response (HOCl, NO●), as well the inhibitory ability of 

key pro-inflammatory enzymes, namely lipoxygenase (LOX), inducible nitric oxide 

synthase (iNOS) and cyclooxygenase-2 (COX-2) in an in vitro model of inflammation. 
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3.7.1. Materials and Methods 

Chemicals 

Lipopolysaccharide (LPS) from E. coli (serotype 026:B6) was purchased from Sigma 

Chemical Co. (St. Louis, MO, USA). Dulbecco’s Modified Eagle Medium ATCC and 

fetal serum were obtained from Gibco (Paisley, UK). The protease and phosphatase 

inhibitor cocktails were obtained from Roche (Basel, Switzerland). Acrylamide was 

obtained from BioRad and the polyvinylidene difluoride membranes were from Millipore 

Corporation (Bedford, MA). The alkaline phosphatase-linked secondary antibodies and 

the enhanced chemifluorescence reagent were obtained from GE Healthcare (Chalfont 

St. Giles, UK). The antibody iNOS was from R&D Systems (Abingdon, UK), COX-2 

antibody was from Abcam (Cambridge, UK) and anti-β-tubulin was from Sigma 

Chemical Co. (St. Louis, MO, USA). The sodium hypochlorite (NaOCl) and boric acid 

were obtained from MaiaLab (Gondomar, Portugal). The naphthylethyldiamine, 

phosphoric acid (H3PO4) and sulfuric acid (H2SO4) were obtained from Panreac 

Quimica S.A.U (Barcelona, Spain). The sulphanilamide was obtained from Merck 

(Darmstadt, Germany). The enzyme soybean lipoxygenase (5-LOX), sodium 

nitroprusside (SNP), sodium linoleate, 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB), 

ethylenediamine tetraacetic acid (EDTA), sodium borohydrate (NaBH4) and ascorbic 

acid were obtained from Sigma Chemical Co. (Saint Louis, USA).  

 

Plant extract 

The purified ethanolic extract of C. multiflorus was prepared using a hidroethanolic 

solution, and further purified onto C18 cartridges (2 g, Waters, Milford, MA, USA), 

following the general procedures described in sections 3.2 and 3.3 [8]. The obtained 

purified extract (CME) contained 410±8 mg of polyphenols/g of the extract, which 

included major amounts of chrysin-7-O-ß-D-glucopyranoside and of a dihydroxyflavone 

isomer of chrysin. It also contained considerable amounts of hexoside derivatives of 

the flavones luteolin, apigenin and of the flavonol quercetin [5, 8].  

 

HOCl scavenging assay 

This assay is based on the ability of hypochlorous acid (HOCl) to promote oxidation of 

thionitrobenzoic acid (TNB) to dithionitrobenzoic acid (DTNB). The TNB oxidation 

(followed by the absorbance decrease at 412 nm) can be prevented when a HOCl 

scavenger compound is present in the reaction mixture. HOCl was prepared 
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immediately before use by diluting the NaOCl solution to 0.1% (v/v) and adjusting its 

pH to 6.2, with diluted sulfuric acid solution (H2SO4 0.5M). The concentration of HOCl 

was further determined spectrophotometrically at 235 nm using the equation [HOCl]235= 

A /100 M-1 cm-1. TNB was prepared by incubating 1 mM DTNB in 50 mM potassium 

phosphate buffer pH 6.6 (supplemented with 5 mM EDTA) with 20 mM NaBH4 for 30 

min at 37ºC. The concentration of TNB was determined by measuring the absorbance 

at 412 nm and using the equation [TNB]412= A /13,600 M-1 cm-1. The assays were 

performed at room temperature and the reaction mixtures (1 mL final volume) 

contained plant extract at various concentrations (10 to 200 µg/mL), TNB (70 µM) and 

HOCl (125 µM). The absorbance was measured at 412 nm using a Xion 500 

photometer (Dr Lange, Germany), 5 min after the addition of HOCl.  

 

Nitric oxide (NO●) scavenging activity  

The NO● scavenging activity was assessed using the method described by Sousa et al. 

[9], with slight modifications. Briefly, 200 μL of the six concentrations of CME (10 to 330 

µg/mL) were added to 200 μL of sodium nitroprusside (SNP, 10 mM). After 60 min of 

incubation, 200 μL of Griess reagent (1% sulphanilamide and 0.1% 

naphthylethyldiamine in 2% H3PO4) was added to each tube and the mixture was 

incubated at room temperature for 10 min, under light. The absorbance of the 

chromophore was measured at 562 nm using a Xion 500 photometer (Dr Lange, 

Germany). The NO● scavenging effect was expressed as EC50, indicating the extract 

concentration providing 50% inhibition. 

 

Culture of RAW 264.7 cells 

The mouse monocytic macrophage cell line RAW 264.7 was obtained from American 

Type Culture Collection (ATCC, USA) and supplied by Dr. Otília Vieira (Centro de 

Neurociências e Biologia Celular, Universidade de Coimbra, Coimbra, Portugal). The 

RAW 264.7 cells were maintained in Dulbecco’s Modified Eagle Medium supplemented 

with 3.5 g/L of glucose (4.5 g/L final concentration) with 10% non-inactivated fetal 

bovine serum, 100 U/mL penicillin, and 100 µg/mL streptomycin, at 37 ºC in a 

humidified atmosphere of 95% air and 5% CO2. 
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Determination of cell viability by MTT assay 

The potential cytotoxicity of the extract CME was measured by the 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) reduction colorimetric 

assay, as previously reported [10]. Cells (0.3×106 cells/well) were cultured in 48-well 

tissue culture plates and incubated for 12 h at 37ºC with 5% CO2. Thereafter, these 

were incubated in the absence or in the presence of CME (160 and 325 µg/mL) for 1 h 

and further stimulated with 1 µg/mL LPS for 24 h. Upon that, 43 µL of MTT solution (5 

mg/mL in PBS) was added to each well and incubated for 15 min at 37 ºC, in a 

humidified atmosphere of 95% air and 5% CO2. The formazan produced by the 

metabolic activity of the cells was then dissolved in acidic isopropanol (0.04N HCl in 

isopropanol) after supernatant removal. The absorbance was measured at 570 nm, 

using an ELISA automatic microplate reader (SLT, Austria), with a reference 

wavelength of 620 nm. 

 

Measurement of nitrite production in culture Raw 264.7 cells 

The amount of nitrite (an oxidative product of nitric oxide, NO●) in the culture 

supernatants, was determine by Griess reagent [11] as previous reported [12]. Briefly, 

170 μl of culture supernatants were collected and diluted with equal volumes of the 

Griess reagent [0.1% (w/v) N-(1-naphthyl)-ethylenediamine dihydrochloride and 1% 

(w/v) sulphanilamide containing 5% (w/v) H3PO4] and maintained during 30 min in the 

dark. The absorbance at 550 nm was measured in an automated plate reader (SLT, 

Austria) and the nitrite concentration determined from a sodium nitrite standard curve. 

 

Determination of the levels of iNOS and COX-2 by Western Blot analysis 

Raw 264.7 cells (24×105 cells/well) were sowed in 12-well plates to prepare total cell 

lysates for Western Blot analysis and allowed to stabilize. After 12 h, cells were either 

maintained in culture medium (control) or pre-incubated with CEM for 1 h. LPS (1 

μg/mL) was thereafter added to the incubation medium and the cells were incubated for 

further 24h. After this period, cells were lysed with RIPA buffer (50mM Tris–HCl, pH 

8.0, 1% Nonidet P-40, 150 mM NaCl, 0.5% sodium deoxycholate, 0.1% sodium 

dodecyl sulfate and 2 mM ethylenediamine tetraacetic acid) freshly supplemented with 

1 mM dithiothreitol, protease and phosphatase inhibitor cocktails and sonicated in Vibra 

Cell sonicator (Sonics & Material INC.) 
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The nuclei and the insoluble cell debris were removed by centrifugation at 4 ºC, at 

12,000 × g for 10 min. The postnuclear extracts were collected and used as total cell 

lysates. Protein concentration was determined by the bicinchoninic acid protein assay 

[13] and cell lysates were denaturated in sample buffer (0.125 mM Tris pH 6.8, 2% 

(w/v) sodium dodecyl sulfate, 100 mM dithiothreitol, 10% glycerol and bromophenol 

blue).  

The levels of iNOS and COX-2 of the prepared cell lysates were performed by Western 

blot analysis, following the general procedure previous reported by Figueirinha et al. 

[14]. For that, an equivalent amount of protein were separated by 10% (v/v) SDS-

PAGE followed by Western blotting. To examine the different proteins studied, the blots 

were incubated overnight at 4 ºC with the respective primary antibodies: COX-2 

(1:10,000) and iNOS (1:5000). Protein detection was performed using the enhanced 

chemifluorescence system in the imager ThyphoonTM FLA 9000 (GE Healthcare). The 

bands densitometry were analyzed using the software ImageQuant TL®. β-tubulin was 

used as the reference protein. 

 

5-LOX inhibition assay 

5-Lipoxygenase (EC.1.13.11.12) is known to catalyze the oxidation of unsaturated fatty 

acids containing 1-4 diene structures. The conversion of linolenic acid to 1-3-linolenic 

acid hydroperoxide is followed spectrophotometrically by the appearance of a 

conjugated diene at 234 nm. The reaction mixture contained 1.95 mL of sodium 

linoleate (250 μM) and 10 μl of CME or of the reference compound (ascorbic acid). The 

reaction was initiated by the addition of 50 μL of soybean lipoxygenase solution (400 

units/mL in potassium borate buffer 0.2 M pH 8). Changes in absorbance at 234 nm 

were measured for 5 min. The percentage inhibition of the enzyme activity was 

calculated by comparison with the control.  

 

Statistical analysis 

All the experiments were performed in triplicate. Results are presented as mean±SEM 

of the indicated number of experiments. To compare the effect of different treatments 

to LPS-stimulated cells, a multiple group comparison was performed and one-way 

ANOVA followed by Dunnett’s test was used. The statistical tests were applied using 

GraphPad Prism, version 5.04 (GraphPad Software, San Diego, CA, USA). The 

significance level was #p < 0.05, ##p < 0.01 and ###p < 0.001, when compared to 

control and *p < 0.05, **p < 0.01 and ***p < 0.001, when compared to LPS. 
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3.7.2. Results and Discussion 

Despite the various biological activities that have been claimed for C. multiflorus plant 

[2, 3], up to present, scientific data has only been gathered for the antioxidant capacity 

of ethanolic extracts from different parts of the plant. 2,2-diphenyl-2-picrylhydrazyl 

(DPPH●) radical scavenging and the reducing iron (III) capacities were monitored 

together with the reactive oxygen species (ROS) scavenging capacity in HepG2 cells 

[5, 15]. In turn, we herein intend to clarify the anti-inflammatory activities of C. 

multiflorus, and their underlying mechanisms of action.  

 

HOCl and NO● scavenging activities 

Several inflammatory conditions have been related to the overproduction of oxygen 

(superoxide anion, perhydroxyl radical, protonated superoxide) and nitrogen (nitric 

oxide, nitrogen dioxide) free radicals. Also, other non radicals, namely hydrogen 

peroxide, singlet oxygen and hypochlorous acid or peroxynitrite anion and 

peroxynitrous acid have been included in ROS and RNS species, respectively [6, 16]. 

HOCl is a strong oxidant produced in large amounts by neutrophils and its inhibition is 

frequently used as marker of anti-inflammatory potential. In a similar way, NO● 

scavenging ability has been largely assessed for plants due to its important role as a 

reactive specie mediator. Indeed, despite the NO● protective effects in physiological 

conditions, its uncontrolled production is associated to the amplification of inflammation 

and to tissue damage in inflammatory processes [17].  

According to the experimental data (Table 1), the CME showed no relevant scavenging 

ability for HOCl species, with an EC50 value of about fifteen times higher than that of 

quercetin. Still, the extract provided significant protection against NO● production with 

EC50 of 148.0±5.2 μg/mL, which is less than the half of the EC50 of the ascorbic acid, 

used as reference compound 

 

  



75 | RESULTS AND DISCUSSION 

Pereira O. R., 2013 | CHARACTERIZATION OF PHENOLIC CONSTITUENTS OF MEDICINAL PLANTS AND 

EVALUATION OF PHARMACOLOGICAL ACTIVITIES: FOCUS IN ANTIOXIDANT AND 

ANTI-INFLAMMATORY PROPERTIES 

Table 1 – Scavenging abilities of HOCL and NO
●
 of CME. 

Assay 

HOCl Scavenging
(1)

 

(μg/mL)  

EC50 

NO
●
 

Scavenging
(2)

 

(μg/mL) 

EC50 

CME 387.5±30.9 148.0±5.2 

Quercetin 26.0±5.9 - 

Ascorbic acid - 372 0±28.1 

Mean values±SEM of three independent assays; (1)
 
Amount of extract 

required to reduce 50% of the 125 nM HOCl; (2) Amount of extract 

required to reduce 50% of the 3.3 nM NO
●
 radical; Quercetin and ascorbic 

acid were used as positive controls controls in the HOCL and NO
●
 radicals 

scavenging assays, respectively. 

 

To our knowledge, the NO● scavenging ability of Cytisus species has only been 

described for C. scoparius hydroalcoholic extract (EC50=116 μg/mL) which is close to 

that herein obtained [18]. 

Furthermore, we also addressed the anti-inflammatory properties of the extract, using 

an in vitro model of inflammation, the mouse macrophage cell line, Raw 264.7, able to 

produce NO after lipopolysaccharide (LPS) triggering. NO is synthesized from l-

arginine by inducible nitric oxide synthase (iNOS) expression in numerous mammalian 

cells, such as macrophages, and large amounts of NO have been found in several 

inflammatory-related diseases. For this reason, NO is a well established marker of 

inflammation, and inhibition of its production upon activation with an inflammatory 

stimulus, such as LPS, might be a useful strategy to disclose new anti-inflammatory 

drugs. In culture, the NO● released by the macrophages into the medium is converted 

to several nitrogen derivatives, from which only nitrite is stable, being easily measured 

by the Griess reagent [19].  

In the cellular model, the NO● scavenging ability and the remaining effects were 

monitored for two non toxic concentrations (as evaluated by MTT assay, see Table 2) 

of CME, namely 160 and 325 µg/mL.  
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Table 2 – Effect of CME in Raw 264.7 macrophages viability. 

Condition 
Cell Viability 

(% of control) 

Control 100 

LPS 1 µg/mL 82.3±1.1 

CME 325 µg/mL 90.7±14.0 

CME 325 µg/mL + LPS 1 µg/mL 86.9±4.1 

CME 160 µg/mL 104.7±4.1 

CME 160 µg/mL + LPS 1 µg/mL 94.0±13.0 

Viability of Raw 264.7 macrophages cells incubated without or with LPS 1 

µg/mL and co-incubated with CME (160 or 325 µg/mL). The results are 

expressed as percentage of cell viability versus control and the Values are 

means±SEM of percentage from at least in 3 independent experiments 

performed duplicate. CME, Cytisus multiflorus purified ethanolic extract; 

LPS, lipopolysaccharide 

 

As can be observed in Figure 1, the cells treatment with LPS resulted in a huge 

increase in nitrite production (> 400% than control). This production was counteracted 

by the pretreatment of macrophages with 160 µg/mL and 325 µg/mL of CME (about 

21% and 33%, respectively). To the author´s knowledge, there are no previous results 

describing this effect for Cytisus species. 
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Figure 1 – Effect of C. multiflorus extract (CME) on NO
●
 production in RAW 264.7 

macrophages. 
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The macrophages were maintained in culture medium (control) or incubated with 1 µg/mL LPS, in the 

presence of CME 160 and 325 µg/mL for 24 h. Nitrite levels in the culture supernatants were evaluated 

by the Griess reaction. Results are expressed as a percentage of nitrite production by control cells 

maintained in culture medium. Each value represents the mean±SEM from 3 experiments, performed in 

duplicate. Statistical analysis was performed by one-way ANOVA, followed by Dunnett’s test. **p < 0.01, 

***p < 0.001 when compared to cells exposed to LPS, in the absence of extract; ###p < 0.001 when 

compared to untreated cells (control). 

 

Effect of CME on LPS-induced COX-2 and iNOS protein expression 

Once iNOS and COX-2 stimulate the production of large amounts of pro-inflammatory 

mediators (e.g. nitric oxide, prostaglandins), their inhibition are potential targets to 

prevent or treat chronic inflammation. In this sense, the expression of iNOS and COX-2 

on LPS-induced mouse macrophages was analyzed by Western blot, using specific 

antibodies against iNOS and COX-2. 

As depicted in Figure 2A, the iNOS protein expression was much raised when the cells 

were incubated for 24h with LPS, comparing to non-stimulated RAW 264.7 cells 

(control). A significant reduction in the iNOS expression (26%) was observed, after the 

cells treatment with CME 325 µg/mL.  

The exposure of RAW 264.7 cells to LPS induced a significant increase in COX-2 

levels and this was not significantly changed by the presence of CME extract, for both 

concentrations (Figure 2B). The inhibition of iNOS expression (and the ineffectiveness 

in protecting from COX-2 increased expression) has been described for other plant 

extracts or for pure phenolic compounds [20]. To the author´s knowledge, this is the 

first work demonstrating iNOS expression inhibition of Cytisus plants.  
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Figure 2 – Effect of C. multiflorus extract (CME) 325 and 160 µg/mL in the iNOS (A) or COX-2 

protein levels (B) in macrophages stimulated with LPS 1 µg/mL. 

Raw 264.7 cells were maintained in culture medium (control), or pre-incubated for 1 h with CME 325 and 

160 µg/mL, and then treated with 1 µg/mL LPS for 24 h. Total cell extracts were analyzed by Western blot 

using a specific anti- iNOS antibody (A) and anti-COX-2 antibody (B). Anti-β-tubulin antibody was used to 

protein normalization. The blot shown is representative of 4 blots yielding similar results. Results were 

expressed as percentage of COX-2 (A) or iNOS (B) protein levels relatively to control. Each value 

represents the mean±SEM from 3 independent experiments. Statistical analysis was performed by one-

way ANOVA, followed by Dunnett’s test. *p < 0.05 when compared to cells exposed to LPS, in the 

absence of extract; ###p < 0.001 when compared to untreated cells (control). 

 

Effect of CME on 5-LOX inhibition 

Lipoxygenases (LOX) are enzymes responsible for generating leukotrienes (LTC4, 

LTD4, LTE4) which are, with prostaglandins, the strong mediators of inflammation. In 

the present study, the inhibition of 5-LOX enzyme activity by the CME (7.5 to 60 µg/mL) 

was recorded together with that of ascorbic acid (2.5 to 10 µg/mL), that is a potent 

inhibitor of the enzyme and for that was used as control [21]. As shown in Fig. 3, the 

CME partially inhibited the activity of 5-LOX, with a maximum of inhibition of about 30% 

and an EC25 value of 37.90 μg/mL. 

B 
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Figure 3 – Effect of ascorbic acid and of C. multiflorus extract (CME) on the activity of 5-LOX 

 

Radical scavenging and inhibition of ROS production are common mechanism of action 

in polyphenols for preventing the propagation of the oxidizing chain reaction and, 

consequently, the damage of macromolecules. These actions are frequently related to 

their anti-inflammatory activities [22]. Other anti-inflammatory related mechanisms of 

polyphenols include the decrement of inflammatory cells, namely macrophages. 

Macrophages produce soluble mediators, namely cytokines, and chemokines, which 

act by further recruiting inflammatory cells to the site of damage and producing more 

reactive species. These key mediators can activate signal transduction cascades as 

well as inducing changes in transcription factors, which mediate immediate cellular 

inflammatory and stress responses. The main pathway initiating this inflammatory 

process is the nuclear factor NF-kB signaling pathway. Activation of the transcriptional 

factor NF-kB causes induction of COX-2 and iNOS and aberrant expression of 

inflammatory cytokines, which have been reported to play a role in oxidative stress-

induced inflammation.  Several authors reported the effect of polyphenols in the NF-kB 

signaling pathways with modulation of proinflammatory enzymes and with consequent 

decrement of inflammatory mediators such as NO●, leukotrienes, TNF-α and 

interleukins [22, 23].  

As previously described, CME extract is rich in flavonoids and particularly abundant in 

chrysin and derivatives. Literature data indicates that chrysin suppresses the pro-

inflammatory enzymes COX-2 and iNOS activities and can counteract the increased 

levels of the proinflammatory cytokines IL-6, TNF-α, as well as PGE2 [24-27]. CME also 
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contains moderate amounts of derivatives of the luteolin, apigenin and quercetin for 

which anti-inflammatory effects have been demonstrated [20]. Concretely, luteolin and 

quercetin inhibited NO●, TNF-α and IL-6 release while the first has shown inhibitory 

activity against COX-2. Apigenin inhibits the production of NO●, IL-1β, IL-8, TNF-α and 

PGE2 by suppressing the expression of iNOS and COX-2 [20, 22, 27, 28].  

Overall, the present results showed that the CME has the ability to partially scavenge 

the NO● radical scavenging (in chemical and in a cell model), as well as to reduce the 

expression of iNOS and 5-LOX. Since accumulation of reactive oxygen and nitrogen 

species generated by inflammatory cells that created oxidative stress is thought to be 

one of the major factor by which chronic inflammation contributes to chronic diseases, 

these results suggest that C. multiflorus exert an anti-inflammatory action with potential 

application in inflammatory related diseases. This hypothesis needs to be supported by 

in vivo models. 
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3.8. INFLUENCE OF MENTHA AQUATICA L. AND LEONURUS CARDIACA L. 

PURIFIED ETHANOLIC EXTRACTS IN MITOCHONDRIAL BIOENERGETICS 

Mitochondria play an important role in cell homeostasis, participating in the synthesis of 

ATP formed through oxidative phosphorylation, and in the biosynthesis of fatty acids or 

amino acids. Besides the metabolic functions, it is involved in calcium fluxes, ROS and 

RNS production and in cell signaling [1, 2]. Moreover, mitochondria are a recognize 

model for evaluating the action of xenobiotics on cell and have been used as bio-

sensor to predict drug safety [3, 4]. 

Disturbances in mitochondrial bioenergetics are related to several mechanisms that 

lead to cell injury and are also associated with different dysfunctions, including 

neurodegenerative disorders and the so-called “mitochondrial diseases” [5]. In fact, 

apoptotic cell death is associated with mitochondrial DNA mutations, decreased 

production of ATP, formation of free radicals and alterations in cellular calcium fluxes 

that promote the peroxidation of mitochondrial macromolecules (DNA, proteins, and 

lipids) and the opening of the mitochondrial permeability transition pore. Due the 

important role in energy metabolism in cells, mitochondria are potential target of 

therapeutic substances. Actually, several drugs (e.g. antidiabetic, antiviral, antitumor, 

potassium channel openers and anesthetics) have their treating mechanism based on 

alterations of mitochondrial functions [2, 5]. In turn, drugs that have other cellular 

targets may also affect mitochondrial function, and this usually is associated with their 

side effects [5]. In this way, mitochondria bioenergetic measurements can be used to 

estimate the potential therapeutic applications of plant extracts, of isolated compounds 

or drugs, or alternatively, to estimate their cytotoxicity [5-8]. 

Mitochondrial bioenergetics monitoring can be evaluated in isolated mitochondria. Liver 

mitochondria are usually the starting point, as this organ is a key metabolic one in 

metabolism. Indeed, liver toxicity is a major worry in drug commercialization and 

several methods are established in order to assess possible toxic effects of compounds 

or plant extracts [3]. In recent decades, the increased demand of natural products as 

alternative or complementary therapeutic products is leading to an exponential search 

focusing medicinal plants and their bioactive compounds. Despite this, their effects on 

mitochondrial bioenergetics is until now overlooked. The potential therapeutic effects 

or, alternatively, the associated toxicity to their consumption is poorly studied. Hence, 

pharmacological studies are needed in order to determine the mechanisms associated 

with the beneficial activities and also the safe level of exposure of plants used as folk 

medicines. 
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Although Mentha aquatica L. and Leonurus cardiaca L. species have been used in 

pharmaceutical supplements and in several medical situations [9-11], the therapeutic 

effects are understudied and toxic activities have not been assessed [12].  

In this way, the present work aimed to evaluate for the first time, the influence of M. 

aquatica and L. cardiaca purified ethanolic extracts in mitochondrial function. For that, 

mitochondrial bioenergetic assays were performed and the respiratory parameters 

state 2, state 3, state 4, uncoupled respiration respiratory control ratio (RCR), and P/O 

ratio, together with transmembrane potencial, were evaluated in the presence of two 

distinct concentrations of the plant extracts. 

 

3.8.1. Materials and Methods 

Materials 

All chemicals used were of analytical grade and obtained from standard commercial 

sources. Inhibitors and drugs were dissolved in water or ethanol. In control 

experiments, solvents were added to isolated mitochondria at concentrations not 

exceeding 0.2%. 

 

Plants extracts 

The purified ethanolic extracts were obtained from the aerial parts of Mentha aquatica 

L. and Leonurus cardiaca L., following the general procedure previous described [13]. 

As reported in sections 3.4 and 3.5, the M. aquatica and L. cardiaca purified ethanolic 

extracts (PEEMa and PEELc, respectively) have 302.5±8.0 and 500.4±49.1 mg of 

phenolic compounds/g of extract, respectively. The PEEMa is enriched in eriodictyol-7-

O-rutinoside (145 mg/g of extract) and rosmarinic (64 mg/g of extract) and also 

possesses moderate amounts of 7-O-rutinoside derivatives of luteolin, hesperidin and 

naringenin. In turn, the PEELc is enriched in phenylethanoid glycosides, which 

represents approximately 90% of the total phenolics quantified and mainly enclose 

lavandulifolioside and verbascoside (254 and 137 mg/g of extract, respectively). The 

extract also contain moderate amounts of glycosidic derivatives of quercetin (flavonol) 

representing 10% of the total quantified phenolics. 
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Isolation of rat liver mitochondria 

Wistar rats (200-250 g), with 3 months of age, were fasted overnight before being killed 

by cervical displacement. The isolation of mitochondria was performed by conventional 

methods [14], with minor modifications as previously described [15]. Homogenization 

medium was composed of 250 mM sucrose, 10 mM 4-(2-Hydroxyethyl)piperazine-1-

ethanesulfonic acid (HEPES), pH 7.4, 1 mM ethylene-bis(oxyethylenenitrilo) tetraacetic 

acid (EGTA), and 0.1% fat-free bovine serum albumin (BSA). EGTA and bovine serum 

albumin (BSA) were omitted from the final washing medium, adjusted at pH 7.2. The 

mitochondrial pellet was washed twice, suspended in the washing medium, and 

immediately used [16]. The final concentration of mitochondrial protein was determined 

by the biuret method [17], using BSA as standard. The experiments were carried out in 

accordance with the National Requirements for Vertebrate Animal Research and the 

EU guidelines (2010/63/EU). 

 

Mitochondrial respiration 

Oxygen consumption of isolated mitochondria was measured polarographically at 30ºC 

with a Clark oxygen electrode, in a closed chamber with magnetic stirring. The reaction 

medium consisted of 250 mM sucrose, 20 mM KCl, 2 mM MgCl
2
, 5 mM KH

2
PO

4
 and 5 

mM Hepes (pH 7.2). Mitochondria (1 mg protein), were added to 1 mL of the standard 

respiratory medium (25 ºC) in the absence or in presence of PEEMa or PEELc and 

allowed to incubate for 5 min before the addition of 2 μM rotenone. Respiration was 

started through the addition of 5 mM glutamate/malate or 5 mM succinate plus 3 μM 

rotenone. State 3 was elicited by adding adenosine 5’-diphosphate (ADP 125 nmol) 

and state 4 respiration was achieved after full ADP phosphorylation [18]. For uncoupled 

respiration, 1 µM FCCP (carbonyl cyanide p-trifluoromethoxyphenylhydrazone) was 

added after a phosphorylative cycle.  

 

Mitochondrial membrane potential  

The mitochondrial transmembrane potential (Δψ) was measured indirectly based on 

the lipophilic cation tetraphenylphosphonium (TPP+) activity, by using a TPP+-selective 

electrode in combination with and Ag/AgCl-saturated reference electrode, as previously 

described [19]. Mitochondria (1 mg protein) were incubated in 1 mL of medium 

containing 250 mM sucrose, 20 mM KCl, 2 mM MgCl
2
, 5 mM KH

2
PO

4
, and 5 mM 

Hepes (pH 7.2), supplemented with 3 μM TPP+ in the absence or in presence of 
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PEEMa or PEELc. After an incubation period of 5 min, mitochondria were energized 

with glutamate + malate (5 mM + 5 mM) or rotenone (2 μM) and succinate (5 mM). The 

baseline was achieved by adding valinomycin. No correction was made for the 

“passive” binding of TPP+ to the mitochondria membranes because the purpose of the 

experiments was to show relative changes in potential rather than absolute values. As 

a consequence, we can anticipate some overestimation for the values.  

 

Statistics 

Solvent controls (water or ethanol) were included within each experimental 

determination, and the numerical data are expressed as a percentage of the respective 

control. Ethanol itself had no effect on any of the parameters measured. Statistical 

analyses were performed using GraphPad Prism 5 software (GraphPad, San Diego, 

CA). The results were presented as mean±SEM of the number of experiments shown 

on tables and figures legends. Statistical significance was determined using one-way 

ANOVA, with Tukey post-test. p < 0.05 was considered significant. 

 

3.8.2. Results and Discussion 

Effects of PEEMa or PEELc on mitochondrial respiratory rates 

Fig. 1a shows a typical oxygen consumption record in control conditions, which reflect 

changes in the metabolic states of mitochondria. In state 1, mitochondria display a slow 

respiratory rate, presumably due to the metabolism of endogenous substrate and 

nucleotide. This rate is slightly increased in state 2, due to the adding of exogenous 

substrate. In turn, the addition of ADP to state 2 activates oxidative phosphorylation 

which is characteristic of state 3. Increased electron flux in the respiratory chain during 

state 3 metabolism is indicated by a temporary increase in the rate of oxygen 

consumption. State 4 is established by the deceleration of respiration that is observed 

upon the complete phosphorylation of available ADP. The low respiratory rate of state 

IV continues until all available oxygen in the reaction system is consumed.  
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Figure 1 – Representative oxygen consumption trace (a) and mitochondrial electric potential (b) 

measured with a TPP
+
-selective electrode. Rat liver mitochondria (1 mg) were incubated in 1 

mL of the medium supplemented with 3 μM TPP
+
. Energization of the mitochondrial population 

was achieved with 5 mM succinate plus 2 μM rotenone. After stabilization of the recording, 125 

nmol ADP was added. 

 

The effects of PEEMa and PEELc (15 and 25 μg. mg protein-1) on the metabolic states 

of isolated mitochondria are resumed in Table 1. For the PEEMa, the results indicated 

a decrease in the respiratory state 3, evaluated either in the presence of 

glutamate/malate or succinate. This effect was dose-dependent and statistically 

significant for 25 μg.mg protein-1 and for both substrates. Respiratory state 4 was not 

significantly changed.  

On the other hand, the mitochondria treatment with the same concentrations of the 

PEELc did not change any of the investigated respiratory parameters in the presence 

of complex I-linked substrates, although when complex II-linked substrate was used, a 

decreasing tendency on state 3 and an increasing tendency on state 4 were both 

observed, with significant differences being observed for the 25 μg. mg protein-1. 
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Moreover, under uncoupled respiration, which was induced by FCCP (a weak lipophilic 

acid that abolishes the proton electrochemical gradient, and maximally stimulates 

respiration) a decreased pattern similar to that of state 3 was registered, reflecting a 

decrease in the rate of electron transfer, more significant for higher concentrations.  

 

Table 1 – Effects of the M. aquatica (PEEMa) and L. cardiaca (PEELc) purified ethanolic extracts on 

rat liver mitochondrial respiratory rates. 

 

 

Plant 

extract 

Condition 

V2 

nmol O2.mg
-

1
.min

-1
 

V3 

nmol O2.mg
-

1
.min

-1
 

V4 

nmol O2.mg
-

1
.min

-1
 

VFCCP 

nmol O2.mg
-

1
.min

-1
 

 Glutamate + Malate     

PEEMa 

Control 4.2±0.5 40.5±1.9 10.9±0.9 42.6±1.2 

M. aquatica 

15 μg.mg protein
-1

 
4.9±0.9 35.0±1.5 9.6 ±0.7 32.0±1.6 ** 

M. aquatica 

25 μg.mg protein
-1

 
4.7±0.4 30.7±1.8* 9.8±0.5 24.9±1.9** 

Succinate     

Control 6.3±0.3 26.1±1.0 6.3±0.3 32.6±1.9 

M. aquatica 

15 μg.mg protein
-1

 
7.1±0.4 23.6±1.1 6.4±0.4 25.4±3.4 

M. aquatica 

25 μg.mg protein
-1

 
7.0±0.4 21.8±1.25* 6.5±0.4 22.5±3.1* 

PEELc 

Glutamate + Malate     

Control 4.12.0 17.82.1 4.40.4 nd 

L. cardiaca 

15 μg.mg protein
-1

 
4.80.6 18.92.8 4.50.5 nd 

L. cardiaca 

25 μg.mg protein
-1

 
4.60.7 18.63.0 4.50.4 nd 

Succinate     

Control 6.30.3 25.01.1 5.50.2 36.60.9 

L. cardiaca 

15 μg.mg protein
-1

 
7.20.2 22.31.1 5.90.2 35.70.3 

L. cardiaca 

25 μg.mg protein
-1

 
7.10.4 20.31.1* 6.40.2* 31.71.6** 

Effects of the purified ethanolic extract of PEEMa and PEELc on rat liver mitochondrial respiratory 

rates: V3 – state 3 respiratory rate; V4 – state 4 respiratory rate; VFCCP – respiratory rate evaluate in 

the presence of FCCP. Mitochondria (1 mg) were incubated with PEEMa and PEELc for 5 min in 1 

mL of the standard respiration medium at 30°C, accordingly to Materials and Methods section. Data 

were obtained with triplicates of four different mitochondrial preparations. Statistics: * p < 0.05; ** 

p < 0.01 compared to control. 
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The concomitant decrease in state 3 (in glutamate/malate for PEEMa and succinate-

stimulated mitochondria in the presence of both plant extracts) followed by an 

increased state 4 (in succinate-stimulated mitochondria in the presence of PEELc) 

resulted in the expected decrease in respiratory control ratio (RCR), i.e., the state 3 to 

state 4 ratio, in all these experimental conditions (Fig. 2A and 2C). Nevertheless, there 

were no significant changes in the ADP/O ratio (Fig. 2B and 2D), indicating that the 

mitochondria phosphorylative system efficiency was not affected. 

 

 

 

 

 

Figure 2 – Effects of the purified ethanolic extract of M. aquatica (PEEMa) and L. cardiaca 

(PEELc) on liver mitochondria respiratory indexes: respiratory control ratio (RCR) (A, C) and 

P/O ratio (B, D). Mitochondria (1 mg protein) were incubated in 1 mL respiratory standard 

medium containing glutamate + malate (5 mM + 5 mM) or succinate (5 mM) + rotenone (1µM). 

State 3 respiration was initiated by the addition of 125 nmol ADP. Values are the means±SEM 

of triplicates performed with 4 different mitochondrial preparations. Statistics: * p < 0.05; ** p< 

0.01; *** p< 0.001 as compared to control.  

 

The RCR is the most useful general measurement of mitochondria fitness, because of 

its influence by almost every functional aspect of oxidative phosphorylation. Indeed, 

respiratory state 3 is controlled approximately in equal mode (depending on the tissue 
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and conditions) by the phosphorylative system activity (primarily the adenine nucleotide 

translocase, phosphate transporter and ATP synthase) and substrate oxidation 

(including substrate uptake, processing enzymes, relevant electron-transport chain 

complexes, pool sizes of UQ (ubiquinone) and cytochrome c, and [O2]). Therefore, 

inhibition of any of these processes will decrease the state 3 respiratory rate [1] and 

consequently, the RCR. In turn, respiratory state 4 (and RCR) is highly influenced by 

proton leak [1, 20].  

The results herein obtained showed that, with the exception of PEELc in the presence 

of glutamate/malate respiratory substrate, the remaining conditions (succinate for 

PEELc), as well as PEEMa (both respiratory substrates) decreased RCR. This was due 

to a decrease in respiratory state 3 (PEEMa), while PEELc affected both the respiratory 

states 3 and 4.  

 

Effects of PEEMa and PEELc on oxidative phosphorylation 

Alterations in oxidative phosphorylation can also be accurately evaluated through 

monitoring of membrane potential fluctuations with a TPP+-selective electrode [19]. As 

shown in Table 2, under control conditions, mitochondria developed a ΔΨ after 

substrate addition of approximately −210 mV in glutamate/malate and close to −218 

mV in succinate-sustained respiration. Upon ADP addition, there was an expected drop 

in the membrane potential (27-28 mV or 29-32 mV for glutamate/malate or succinate-

stimulated respiration, respectively), as ATP synthase uses ΔΨ to phosphorylate the 

ADP during state 3 respiration. This is followed by a ΔΨ repolarization, which occurs 

after a short lag phase taking place along ADP phosphorylation (Fig. 1).  
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Table 2 – Effects of the M. aquatica (PEEMa) and L. cardiaca (PEELc) purified ethanolic extracts on 

rat liver mitochondria membrane potential. 

 

Plant 

extract 

 

Condition 

Energization 

(mV) 

ADP1 

(mV) 

Rep 

(mV) 

Vrep 

(% of mean 

control) 

Lag  phase 

(s) 

PEEMa 

Glutamate + Malate     
 

Control 209.31.5 26.92.0 205.71.2 100.06.0 46.71.2 

M. aquatica 

15 μg.mg protein
-1

 
202.92.3 27.12.1 200.32.4* 84.85.0 55.5±1.0* 

M. aquatica 

25 μg.mg protein
-1

 
200.82.4* 25.81.4 199.91.3* 75.55.0* 65.5±3.2** 

Succinate     
 

Control 218.81.0 29.01.1 218.41.1 100.05.7 66.65.1 

M. aquatica 

15 μg.mg protein
-1

 
218.30.9 28.52.4 216.71.6 91.44.3 64.0±6.6 

M. aquatica 

25 μg.mg protein
-1

 
215.01.2* 27.91.3 214.11.4* 75.73.4** 76.6±5.0* 

 Glutamate + Malate     
 

PEELc 

Control 212.41.6 28.40.8 210.71.6 100.04.3 552.7 

L. cardiaca 

15 μg.mg protein
-1

 
208.11.7 27.91.1 205.61.7 104.03.7 53.84.8 

L. cardiaca 

25 μg.mg protein
-1

 
206.52.1 24.30.7* 204.42.1* 82.84.2* 53.22.0 

Succinate      

Control 217.11.1 32.61.0 217.01.1 100.04.1 58.11.6 

L. cardiaca 

15 μg.mg protein
-1

 
213.21.0* 35.41.0 212.21.0* 86.13.5* 72.62.0** 

L. cardiaca 

25 μg.mg protein
-1

 
212.80.8* 28.31.2* 211.30.9** 68.63.4*** 81.03.7*** 

 

Mitochondria (1 mg) were incubated with plant extract for 5 min in 1 mL of the standard respiration medium 
supplemented with 3 µM TPP+ at 30 °C, accordingly to Materials and Methods section. Statistics: * p < 0.05; 
** p < 0.01; *** p< 0.001 as compared to control. 

 

The treatment of mitochondria with increasing concentrations of PEEMa and PEELc 

(15 and 25 μg.mg protein-1) resulted in a progressive decrease of ΔΨ max, regardless 

of the respiratory substrate used (Table 2). Statistical differences were observed for 25 

μg.mg protein-1 of PEEMa, for both glutamate/malate and succinate substrates, 

whereas the effect of PEELc was particularly evident for succinate-induced 
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polarization. For the highest concentration tested, this extract also caused a significant 

decrease in the depolarization amplitude following ADP addition, for both substrates. 

Additionally, the results also showed that PEEMa and PEELc impaired ΔΨ total 

repolarization, i.e, after ADP addition, mitochondria in the presence of the plant 

extracts, were never able to recover ΔΨ to control values. With the exception of PEELc 

in glutamate/malate sustained respiration, there was also a consistent increase in the 

phosphorylative lag phase, i.e., the time that the membrane potential takes to recover 

after ADP addition  (Table 2). In general, this effect is in agreement with the decrease 

of state 3. 

Obviously, it will be important to further search for potential sites of disturbance on the 

activity in the respiratory chain, as well as on the phosphorilative system, in order to 

pinpoint the main causes of bioenergetic dysfunction induced by PEEMa and PEELc. 

Due to the high phenolic content of these extracts (302.5±8.0 and 500.4±49.1, for 

PEEMa and PEELc respectively), it is possible that phenolic constituents are active 

players in this process. Note that, due to their amphiphilicity, these are able to be 

inserted in mitochondrial inner membrane, affecting their lipidic domains structure and 

fluidity [21, 22]. Also important, the partial lowering of mitochondrial membrane 

potential might have an important physiological meaning, since according to that 

previously demonstrated by Korshunov et al. [23], a small decrease in the 

mitochondrial ΔΨ is responsible for a large decrease in the production of reactive 

oxygen species by the respiratory chain, a phenomenon called “mild uncoupling”. The 

mild mitochondrial stress induced by the polyphenols present in PEEMa, that act as 

hormetic stimuli, can account for the antioxidant and anti-inflammatory properties of M. 

aquatica observed in vivo [24] and contribute also to a higher mitochondrial flexibility 

[25]. These hormetic stimuli can also be important in the prevention of other chronic 

pathologies, related with oxidative stress and the human modern nutritional milieu [25]. 
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FIRST CONCLUSION 

HPLC-DAD combined with ESI-MSn in the negative mode plus NMR spectroscopy are 

valuable analytical techniques for phenolic characterization of ethanolic extracts 

obtained from Cytisus multiflorus, Lamium album L., Lavandula dentata L., Leonurus 

cardiaca L., Mentha aquatica L. and Thymus x citriodorus. 

 

SECOND CONCLUSION 

The plant species in focus in the present work have distinct phenolic profiles. While C. 

multiflorus and T. x citriodorus are enriched in flavones, M. aquatica contains high 

amounts of flavanones (eriodictyol, naringenin and hesperitin glycosides). In turn, L. 

dentata almost exclusively contains rosmarinic acid and L. album and L. cardiaca 

mainly contain phenylethanoid glycosides. 

 
THIRD CONCLUSION 

As determined by two chemical assays, namely DPPH scavenging and reducing power 

assays, the six plant extracts possess high antioxidant activity. The four most relevant 

antioxidant extracts show the potency order of M. aquatica > L. album > L. dentata > T. 

x citriodorus and overall the EC50 values of the six plant extracts ranged from 8.1 to 

18.3 μg/mL and 51.9 to 95.7 μg/mL, for DPPH scavenging and reducing power assays, 

respectively.  

 

FOURTH CONCLUSION 

The extracts obtained from C. multiflorus, L. album, T. x citriodorus and L. dentata 

medicinal plants effectively counteract the increased ROS formation in oxidative stress 

models in liver cells, namely in a human hepatoblastoma HepG2 cells. 

 

FIFTH CONCLUSION 

L. album, C. multiflorus, T. x citriodorus and M. aquatica ethanolic extracts exert 

cytoprotective effects in human hepatoblastoma HepG2 cells under oxidative stress 

conditions.  
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SIXTH CONCLUSION 

The ROS-scavenging and cytoprotective activities of C. multiflorus, L. album, T. x 

citriodorus extracts in the HepG2 oxidative stress model are closely associated to their 

phenolic constituents.  

 

SEVENTH CONCLUSION 

C. multiflorus extract anti-inflammatory activities are mediated through NO● radical 

scavenging and decrement of the expression of the enzyme iNOS, as well as inhibition 

of 5-LOX activity. 

 

EIGHTH CONCLUSION 

Liver mitochondria fitness is affected by M. aquatica and L. cardiaca extracts. M. 

aquatica extract induce a decrease in respiratory state 3, while L. cardiaca extract 

affect the respiratory states 3 and 4. Both plant extracts decrease the respiratory 

control ratio without affecting the phosphorilative efficiency of mitochondria.  

 

GLOBAL CONCLUSION 

C. multiflorus, L. album, L. dentata, L. cardiaca, M. aquatica and T. x citriodorus are 

good sources of phenolic compounds. Having in mind the physiopathologic role of 

oxidative stress in several diseases, together with the high antioxidant capacity shown 

for the majority of the plant extracts herein in focus, it if feasible to propose them as 

potential preventive agents. Additionally, C. multiflorus seems to be a potential agent in 

inflammation-related disorders. 
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6.1. OBJETIVOS 

A pesar del creciente número de estudios centrados en los metabolitos secundarios de 

las plantas, la caracterización del perfil fenólico de un gran número de especies 

permanece poco estudiada. Por otra parte, varios estudios indican la relación entre los 

compuestos fenólicos presentes en las plantas y sus efectos beneficiosos para la 

salud humana, sin embargo, el mecanismo exacto de acción sigue siendo poco claro y 

las propiedades farmacológicas que se les asignan están, en su mayoría, basadas en 

el conocimiento popular.   

Los perfiles en compuestos fenólicos de las especie vegetales Cytisus multiflorus, 

Lamium album L., Lavandula dentata L., Leonurus cardiaca, Mentha aquatica L. y 

Thymus x citriodorus están muy poco estudiados y en algunos casos aún se 

desconocen, por lo que son necesarios más estudios. De igual modo, varias 

propiedades han sido asignadas a distintos extractos de plantas, sin embargo, se 

necesitan más investigaciones científicas para demostrar las propiedades 

beneficiosas, ya que, en la mayoría de los casos, los efectos biológicos se han 

probado exclusivamente en modelos in vitro. En este sentido, el principal objetivo de 

esta Tesis Doctoral fue mejorar el conocimiento de la composición fenólica y también 

de los efectos beneficiosos de las seis plantas medicinales Cytisus multiflorus, Lamium 

album L., Lavandula dentata L., Leonurus cardiaca L., Mentha aquatica L. y Thymus x 

citriodorus. Para ello, se definieron cinco objetivos específicos: 

- Caracterizar y cuantificar los componentes fenólicos de extractos etanólicos de 

Cytisus multiflorus, Lamium album L., Lavandula dentata L., Leonurus cardiaca 

L., Mentha aquatica L. y Thymus x citriodorus por cromatografía líquida de alta 

eficiencia asociada con la detección por haz de diodos (HPLC-DAD), 

espectrometría de masas por electrospray (ESI-MS y MSn) y resonancia 

magnética nuclear (NMR); 

- Determinar los efectos antioxidantes de Cytisus multiflorus, Lamium album L., 

Lavandula dentata L., Leonurus cardiaca L., Mentha aquatica L. y Thymus x 

citriodorus in vitro y en modelos celulares; 

- Evaluar los efectos hepatoprotectores de Cytisus multiflorus, Lamium album L., 

Lavandula dentata L., Leonurus cardiaca L., Mentha aquatica L. y Thymus x 

citriodorus en células HepG2 derivadas de hepatoblastoma humano; 
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- Evaluar las propiedades anti-inflamatorias del extracto etanólico purificado de 

Cytisus multiflorus; 

- Evaluar el efecto de los extractos etanólicos purificados de Mentha aquatica y 

Leonurus cardiaca L. mediante experimentos de bioenergética en mitocondrias 

de hígado de rata. 
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6.2. INTRODUCCIÓN 

Las plantas se utilizan por el hombre desde la antigüedad por sus efectos beneficiosos 

para la salud aunque en la mayoría de los casos nunca se describieron ni la 

composición ni el mecanismo químico asociado a cada efecto. En los últimos años, 

distintas actividades de las plantas se han atribuido a su composición en polifenoles. 

Dado el amplio espectro de efectos biológicos que se atribuyen a este tipo de 

compuestos, numerosos estudios se han desarrollado con vistas a su aplicación en la 

industria farmacéutica, alimentaria y cosmética. 

La región mediterránea es abundante en plantas medicinales, tanto en las formas 

silvestres como cultivadas. De entre las plantas mediterráneas más utilizadas se 

destacan las especies de la familia Fabaceae y Lamiaceae. La introducción de esta 

Tesis Doctoral se centró en la descripción general de los géneros Cytisus, Lamium, 

Lavandula, Leonurus, Mentha y Thymus seguido de un resumen de los métodos de 

extracción y caracterización de compuestos fenólicos, así como de los principales 

compuestos fenólicos descritos en extractos de plantas pertenecientes a estos 

géneros. Por otra parte, se resumen los efectos biológicos descritos en la literatura 

hasta el momento, para las plantas de los géneros Cytisus, Lamium, Lavandula, 

Leonurus, Mentha y Thymus. 
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6.3. MÉTODOS 

Los extractos fenólicos de las especies vegetales Cytisus multiflorus, Lamium album 

L., Lavandula dentata L., Leonurus cardiaca L., Mentha aquatica L. y Thymus x 

citriodorus se han obtenido por agitación con una solución de n-hexano y posterior 

extracción con una solución acuosa etanólica 80% (v/v). La mayor parte de los 

extractos etanólicos así obtenidos, se sometió a posterior purificación en cartuchos de 

SPE Strata C18-E, para concentrar los extractos en compuestos fenólicos. 

Los extractos resultantes fueron caracterizados y cuantificados por cromatografía 

líquida de alta eficiencia (HPLC), asociada a espectrometría de masas por 

electrospray (ESI-MS) en el modo de ionización negativo y MSn. Se realizaron 

determinaciones de resonancia magnética nuclear (NMR) con el objetivo de asignar la 

estructura exacta de los principales compuestos fenólicos de algunos de los extractos. 

Por otra parte, el método de HPLC fue validado en cuanto a su linealidad, precisión 

instrumental y precisión del método y se hico un estudio de recuperación absoluta para 

cuantificación de los compuestos fenólicos en el extracto de T. x citriodorus. 

Además de la caracterización química, se determinaron varios efectos para las 

distintas especies vegetales. La actividad antioxidante se determinó en primer lugar in 

vitro mediante ensayos químicos, utilizando el test de 2,2-difenil-2-picrilhidrazil 

(DPPH●) y el del cálculo del poder reductor. La toxicidad de los extractos se evaluó en 

células HepG2 de hepatoblastoma humano, mediante la prueba del MTT. Además, se 

midió el efecto protector de cada extracto (50 μg/ml) frente al aumento de producción 

de las especies reactivas de oxígeno (ROS) en un modelo de estrés químico inducido 

en las células HepG2 por incubación con dicromato potásico (DK), después de 48 h de 

incubación, por citometría de flujo. Por otro lado, el efecto citoprotector de los extractos 

de las plantas se evaluó por estudios de viabilidad en el mismo modelo celular, 

exponiendo las células a los extractos y a DK por periodos de 6 y 72 horas de 

incubación. Estos ensayos celulares se realizaron también en compuestos fenólicos 

individuales puros, obtenidos comercialmente (apigenina, crisina, eriodictiol, 

quercetina, luteolina, naringenina, ácido rosmarínico y verbascósido) y con mezclas 

que simulan la composición fenólica de los extractos a 50 μg/mL, segun las cantidades 

previamente determinadas de cada compuesto en las especies vegetales, para 

mimetizar los efectos de los extractos que demostraron más actividad. 

En esta Tesis Doctoral también se evaluó el efecto anti-inflamatorio del extracto de C. 

multiflorus utilizando como modelo de inflamación la línea celular de macrófagos RAW 
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264.7. Se empezó por estudiar el efecto de distintas concentraciones del extracto C. 

multiflorus sobre la viabilidad de los macrófagos RAW 264.7 mediante el ensayo del 

MTT. Las propiedades anti-inflamatorias se evaluaron in vitro mediante la 

determinación de las cantidades de óxido nítrico (NO●) en un modelo químico y en 

macrófagos RAW 264.7 estimulados con lipopolisacárido. Además, utilizando western 

blot se determinaron, en el mismo modelo celular, los efectos del extracto de C. 

multiflorus sobre la expresión de dos enzimas clave en los procesos inflamatorios, la 

ciclooxigenasa-2 (COX-2) y la óxido nítrico sintasa inducible (iNOS). También se 

evaluó mediante un modelo químico el efecto inhibidor del extracto frente a la actividad 

de la 5-lipoxigenasa (5-LOX). 

Igualmente, se llevaron a cabo ensayos de bioenergética mitocondrial para extractos 

de las especies vegetales L. cardiaca y M. aquatica. Para ello, se evaluó la influencia 

de dos concentraciones distintas de extractos de las plantas en parámetros 

respiratorios como el estado 2, estado 3 y estado 4, la razón de control respiratorio 

(RCR) y la razón P/O, así como el potencial de membrana. 
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6.4. RESULTADOS Y DISCUSIÓN 

6.4.1. Caracterización y cuantificación de compuestos fenólicos 

presentes en Thymus x citriodorus usando un método validado de 

HPLC-UV y ESI-MS 

Thymus x citriodorus, también conocido como tomillo de limón, es una planta utilizada 

para fines medicinales y culinarios. A pesar de su amplio uso en forma de infusión o 

como condimento en varios platos, la composición fenólica de esta especie vegetal es 

completamente desconocida. Así, esta parte del trabajo tuvo como objetivo validar un 

método de HPLC que fue utilizado en la determinación e cuantificación de los 

compuestos fenólicos presentes en al extracto de T. x citriodorus. 

El fraccionamiento del extracto etanólico mediante HPLC-DAD y la posterior análisis 

de las fracciones recogidas por ESI-MSn, permitieron identificar trece compuestos 

fenólicos, para algunos de ellos se pudo confirmar su identidad por RMN. En conjunto, 

las técnicas permitieron determinar que el extracto de T. x citriodorus contiene ácido 

rosmarínico y otros ácidos fenólicos menos comunes, así como derivados de 

flavonoides, que incluen la flavonas luteolina, apigenina y crisoeriol, las flavanonas 

naringenina y eriodictiol, y el flavonol quercetagetin. Los datos de HPLC y ESI-MSn 

están representados en la Tabla 1 y los de NMR en la Tabla 2. 

En lo que respecta a los ácidos fenólicos, el ácido rosmarínico (fracción 9), fue 

identificado por su tiempo de retención, espectro UV-Vis y por los datos obtenidos en 

los experimentos de ESI-MSn (Tabla 1) y NMR (Tabla 2). Además de este ácido 

fenólico el extracto de T. x citriodorus contiene un derivado cafeico del ácido 

rosmarínico que probablemente corresponde al compuesto ácido 3´-O-(8´´-Z-

caffeoyl)rosmarínico que ha sido previamente detectado en extractos de T. vulgaris. 
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Tabla 1 – Datos de HPLC/DAD y ESI/MS
n
 de las fracciones de T. x citriodorus analizadas.  

Fracción 
RT 

(min) 

λ max 

(nm) 
[M-H]

-
 

ESI
- 
MS

n
 

(Abundance) 
Compuesto 

1 4.3 283, 327 611 

MS
2
[611]: 449(100), 287(15); 

MS
3
[449]: 287(100), 151(<1); 

MS
4
[287]: 269(2), 151(100); 

MS
5
[151]: 107 

Eriodictiol-di-O-hexósido 

   387 

MS
2
[387]: 369(15), 225(5), 207(100), 

163(10), 119(1); MS
3
[207]: 163; 

MS
4
[163]: 109 

5’-Hidroxijasmonic acid-5’-O-hexósido 

2 6.8 283, 327 449 
MS

2
[449]: 287; MS

3
[287]: 151; 

MS
4
[151]: 107 

Eriodictiol-O-hexósido 

   507 

MS
2 
[507]:489(20), 471(10), 345(35), 

327(100), 315(5);  MS
3
[327]: 

312(100), 167(20); MS
3
[345]: 

327(100), 315(15), 309(20), 287(5) 

Quercetagetina dimetil eter O-hexósido 

3 7.3 283, 327 449 

MS
2
[449]: 287(100), 269(<1), 151(1); 

MS
3
[287]: 269(4), 161(<1), 151(100), 

125(4), 107(1); MS
4
[151]: 107 

Eriodictiol-O-hexósido 

4 8.6 248, 342 447 

MS
2
[447]: 285(100); MS

3
[285]: 

243(60), 241(100), 199(100), 

175(50), 151(10) 

Luteolina-5-O-β-glucósido 

5 9.1 283, 340 433 
MS

2
[433]: 271(100); MS

3
[271]: 

227(1), 177(10), 151(100), 107(2) 
Naringenina-O- hexósido 

  283, 327 463 
MS

2
[463]: 301(20), 287(100); 

MS
3
[287]: 151(100), 135(<1), 125(<1) 

Eriodictiol-O- hexurónido 

6 9.6 
254,267 

345 
461 

MS
2
[461]: 285(100); MS

3
[285]: 

241(95), 217(60), 199(60), 175(60), 

151(20) 

Luteolina-7-α-O-glucurónido 

   447 
MS

2
[447]: 285; MS

3
[285]: 243(50), 

241(100), 199(60), 175(50), 151(15) 
Luteolina-7-O-glucósido 

7 10.9 245,338  461 

MS
2
 [461]: 446(1), 341(4), 323(3), 

299(100); MS
3
[299]: 284(100); 

MS
4
[284]: 256(40), 151(5); MS

5
[256]: 

239(4), 227(100), 211(20), 200(10), 

122(60), 94(2) 

Crisoeriol-7-β-O-glucósido 

8 11.3 267, 332 445 
MS

2
[445]: 269(100), 

175(5);MS
3
[269]:225(5),183(1) 

Apigenina-7-β-O-glucurónido 

9 11.5 290, 328 359 

MS
2
[359]: 223(15), 197(25), 179(30), 

161(100), 133(4); MS
3
[179]: 161(25), 

151(<1), 135(100) 

Acido rosmarinic o 

10 12.5 290, 323 537 

MS
2
 [537]: 493; MS

3
 [493]: 359(100), 

357(15), 313(10), 295(3), 269(<1), 

247(<1), 179(1), 161(1); MS
4
 [359]: 

249(5), 223(10), 197(15), 179(25), 

161(100), 135(5) 

Acido 3´-O-(8´´-Z-Caffeoyl) rosmarínico 
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Tabla 2 – Modificaciones químicas (δ) de los compuestos fenólicos 4, 6, 7, 8 y 9 (en DMSO-d6) 

del extracto de T. x citriodorus. 

Compuesto 

4
 

6
 

7
 

8
 

 9
 

Luteolina-5-β-O-

glucósido
 

Luteolina-7-α-O-

glucurónido
 

Crisoeriol-7-β-O-

glucósido
 

Apigenina-7-β-O- 

glucurónido
 

 Ácido Rosmarínico 
 

Atomo 

13
C 

(ppm) 

1
H 

(ppm) 

13
C 

(ppm) 

1
H 

(ppm) 

13
C 

(ppm) 

1
H 

(ppm) 

13
C 

(ppm) 

1
H 

(ppm) 

Ato

mo 

13
C 

(ppm) 

1
H 

(ppm) 

2 161.2 - 164.5 - 160.8 - 164.3 - 1 130.4 - 

3 105.3 6.50 (s) 103.1 6.76 (s) 106.2 6.58 (s) 103.1 6.88(s) 2 114.5 6.65 (br s) 

4 176.6 - 182.0 - 176.1 - ni - 3 144.7 ni 

5 158.7 - 161.2 13.00 (s) ni 12.97 (s) ni ni 4 143.5 ni 

6 105.2 6.73 (br s) 99.5 6.45 (br s) 99.5 6.43 (br s) 104.4 
6.81 (J 

2.0 Hz) 
5 116.4 

6.59 (d, J 

7.6 Hz) 

7 ni 
OH 

8.45 (s) 

162.8 -  ni ni ni ni 6 120.0 
6.47 (br d, 

J 7.6 Hz) 

8 98.5 6.61 (br s) 94.6 6.80 (br s) 94.6 6.83 (br s) 98.1 
6.73 (J 

2.0 Hz) 
7 36.3 

3.00 (d, J 

12.4 Hz) 

2.70 (d, J 

12.4 y 

10.1 Hz) 9 ni - 157.1 - ni - ni - 8 76.2 4.79 (br d, 

J 10.1 Hz) 

10 107.4 - 105.4 - ni - ni - 9 ni ni 

1´ 121.1 - 121.4 - 123.2 - ni - 1´ 125.7 - 

2´ 112.9 7.34 (s) 113.6 7.43 (br 

d) 

112.8 7.40 (br s) 128.4 7.97 (d, J 

8.7 Hz) 

2´ 114.5 7.02 (br s) 

3´ 145.8 OH 

5.12 (br s) 

145.8 -9.48 (br 

s) 

146.8 - 116.0  6.94 (d, J 

8.7 Hz) 

3´ 148.2 ni 

4´ 149.8 OH 

5.12 (br s) 

150.0 10.01  

(br s) 

150.7 ni 161.5 - 4´ 145.7 ni 

5´ 115.8 
6.85 (d, J 

7.8 Hz) 
115.9 

6.90 (d, J 

8.4 Hz) 
110.5 

7.07 (d, J 

8.2 Hz) 
ni ni 5´ 115.4 

6.74 (d, J 

8.4 Hz) 

6´ 118.6 
7.35 (d, J 

7.8 Hz) 
119.2 

7.45 (d, J 

8.4 Hz) 
118.4 

7.49 (br d, 

J 8.2 Hz) 
ni ni 6´ 121.0 

6.94 (d, J 

8.4 Hz) 

Sugar         7´ 143.5 

 

7.34 (d, J 

15.9 Hz) 

1´´ 105.1 4.67 (d, J 

7.3 Hz) 

99.5 5.19 (br s) 103.1 4.68 (d, J 

7.0 Hz) 

99.5 5.03 (d, J 

7.3 Hz) 

8´ 115.1 6.16 (d, J 

15.9 Hz) 
2´´ 73.6 * 73.0 * ni ni ni ni 9´ 166.2 - 

3´´ 75.6 * 75.2 * ni ni ni ni    

4´´ 69.8 * 72.9 * ni ni ni ni    

5´´ 77.6 * 72.8 * ni - ni -    

6´´ 60.8 * ni - ni ni ni ni    

 

* Abajo del pico del agua 

ni – no identificado 
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En cuanto a las flavonas detectadas como compuestos mayoritarios en el extracto T. x 

citriodorus, se encontraron tres derivados de la luteolina, que se eluían con las 

fracciones 4 (ion [M-H]− con m/z 447) y 6 (iones [M-H]− 461 y 447)). El ultimo ion fue 

determinado como luteolina-7-O-glucósido, mientras el que eluía en la fracción 4 fue 

identificado como luteolina-5-β-O-glucósido, basandonos en los datos espectrales de 

1D y 2D NMR (Table 2). Este compuesto había sido detectado en extractos de las 

plantas T. sipyleus y en T. praecox. Además, el análisis por HPLC-DAD-ESI-MSn en 

conjunto con NMR permitió asignar como compuesto principal de la fracción 6 la 

luteolina-7-α-O-glucurónido. Para plantas del genero Thymus plantas solo se habían 

descrito 7-O-β-isomeros de este compuesto. El extracto de T. x citriodorus contiene 

también en su fracción 8 (ion [M-H]− con m/z 445) el derivado 7-β-O-glucurónido de la 

flavona apigenina que había sido determinada previamente en otras especies 

vegetales de Thymus. También se encontró por primera vez en plantas del genero 

Thymus otra flavona, el crisoeriol-7-β-O-glucósido. 

En cuanto a las flavanonas, la fragmentación obtenida para la fracción 1 (ion [M-H]− 

con m/z 611) sugirió un di-O-hexósido del eriodictiol. Otros tres derivados glicosilo de 

esta flavanona han sido determinados en este trabajo y incluyen dos eriodictiol-O-

hexósido (fracciones 2 y 3) y el eriodictiol-O-hexurónido (fracción 5). Además de estos 

derivados otra flavanona, la naringenin-O-hexósido, ha sido identificada en el extracto 

en la fracción 5 (con m/z de 433). 

A semejanza de lo que esta descrito en otros estudios sobre el género Thymus, el 

extracto estudiado en este trabajo se mostró poco abundante en flavonoles. De hecho, 

se propone que el compuesto que eluye en la fracción 2 sea quercetagetina-dimetil-

éter-O-hexósido (m/z 507) que aparece como compuesto minoritario en esa fracción. 

En lo que respecta a la cuantificación de los compuestos determinados, y al igual que 

en otras especies de Thymus, el extracto etanólico de T. x citriodorus contiene 

grandes cantidades de ácido rosmarínico (10,4±0,6 mg/g de extracto), sin embargo 

otros fenólicos menos descritos en plantas del mismo género se detectaron como 

compuestos fenólicos abundantes en el extracto etanólico de T. x citriodorus y incluyen 

la luteolina-7-O-α-glucurónido (12±2 mg/g de extracto) y la apigenina-7-O-β-

glucurónido (9±2 mg/de extracto). 

El método de HPLC-DAD usado para la cuantificación de los compuesto fenólicos en 

T. x citriodorus ha demostrado buena linealidad para los compuestos de referencia 

probadas y también valores satisfactorios de repetibilidad y de precisión para el 

instrumento y para el método. Por otra parte, los resultados satisfactorios de análisis 
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de la precisión intermedia y ensayos de recuperación indicaron que el método 

cromatográfico puede ser utilizado para cuantificar los principales compuestos 

fenólicos de T. x citriodorus con precisión y exactitud adecuadas. 

Como conclusión, esta primera parte del trabajo surge como una contribución 

importante una vez que describe por primera vez los componentes fenólicos de la 

especie T. x citriodorus. Además, las técnicas utilizadas permitieron detectar por 

primera vez en el género Thymus, compuestos como el eriodictiol-di-O-hexósido, el 

crisoeriol-7-O-glucósido, la quercetagetina-dimetil-éter-O-hexósido y la naringenina-O-

hexósido. 
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6.4.2. Identificación de compuestos fenólicos de Cytisus multiflorus 

Cytisus multiflorus es una planta de la familia Fabaceae conocida por sus propiedades 

beneficiosas que muchas veces se asocian con su contenido en compuestos fenólicos. 

Sin embargo, esta especie está menos estudiada que otras del mismo género botánico 

y, hasta donde sabemos, su perfil fenólico sigue desconocido. En este contexto, esta 

parte del trabajo tuvo por objetivo caracterizar la composición fenólica del extracto 

etanólico obtenido de la planta medicinal Cytisus multiflorus.  

Como se puede verificar en la Tabla 1, que resume los datos obtenidos por HPLC-

DAD y MS para cada una de las fracciones recogidas por HPLC (Fig. 1), C. multiflorus 

era principalmente abundante en flavonas. Además de este grupo de compuestos, 

sólo se encontró un derivado de quercetina (flavonol) en el extracto. El total de 

fenólicos determinados en el extracto de C. multiflorus por HPLC es de 41,8±3,0 mg/g 

planta seca. En más detalle, los derivados de la crisina aparecieron en las fracciones 

9, 10 y 12. El compuesto crisina-7-O-β-D-glucopiranósido (MW 452 Da, fracción 9), 

cuya estructura fue confirmada para NMR, en conjunto con el isómero de la crisina 

(fracción 10) representaron los compuestos mayoritario en el extracto de C. multiflorus 

(15,9±2,3  y 7,0±1,3 mg/g planta seca, respectivamente). 

 

Tabla 1 – Identificación y cuantificación de las fracciones de Cytisus multiflorus eluidas por 

HPLC. 

Fracción 
RT 

(min) 
λmax 

MW 

(Da) 
Compuesto 

mg/g planta 

seca 

1 7.2 
256, 266, 

347 
580 

2′′-O-pentosilo-6-C-hexosilo-

luteolina 
3,3±0,5 

2 7.5 
257, 266, 

346 
580 

2′′-O-pentosilo-8-C-hexosilo-

luteolina 
3,5±0,3 

3 7.9 
256, 266, 

345 
448 Orientina 0,8±0,1 

4 8.1 267, 338 564 
2′′-O-pentosilo-8-C-hexosilo-

apigenina 
0,5±0,1 

5 8.3 267, 338 564 
2′′-O-pentosilo-6-C-hexosilo-

apigenina 
0,9±0,1 

6 9.3 255, 352 610 Rutina 4,5±0,7 

   448 Luteolina-5-O-glucósido 
3,6±0,7 
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   724 

6′′-O-(3-hidroxi-3-

metilglutaroilo)-2′′-O-pentosilo-

C-hexosilo-luteolina 

0,8±0,1 

7 9.7 

266, 342 708 

6′′-O-(3-hidroxi-3-

metilglutaroilo)-2′′-O-pentosilo-

C-hexosilo-apigenina 

11,2±2,1 

 464 Quercetina-3-O-glucósido 
 

255, 262, 

347 
448 Luteolina-7-O-glucósido 

 

8 11.3 266, 342 432 Apigenin-7-O-glucósido 0,8±0,1 

9 14.3 267, 303 

462 
Crisina-7-O-β-D-

glucopiranósido 
15,9±2,3 

452 

10 15.7 267, 303 254 Isomero de Crisina  7,0±1,3 

11 16.7 - 270 Apigenina 0,5±0,1 

12 23.7 267, 313 254 Crisina 0,5±0,1 

Medias±SD 

 

 

 

Figure 1 – Perfil cromatográfico del  extracto etanólico de Cytisus multiflorus obtenido por 

HPLC a  280 nm.  
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Como se puede verificar en la Tabla 1 y la Fig. 1, además de derivados de la crisina, el 

extracto contenía el flavonol rutina (4,5±0,7 mg/g planta seca) ([M-H]− con m/z 609) y 

otros compuestos como 2''-O-pentosilo-6-C-hexosilo-luteolina, 2''-O-pentosilo-8-C-

hexosilo-luteolina, y 6''-O-(3-hidroxi-3-metilglutaroilo)-2''-O-pentosilo-C-hexosilo-

apigenina que no están muy descritos en la familia Fabaceae. Como compuestos 

minoritarios, se determinaron en el extracto otras flavonas como la común crisina 

(facción 12) ([M-H]− con m/z 253) y derivados de la luteolina con [M-H]− a m/z 447, 

como el C-glucósido orientina, la luteolina-5-O-glucósido y la luteolina-7-O-glucósido. 

Además, las flavonas  apigenina y apigenina-7-O-glucósido se identificaron en el 

extracto basándonos en que su tiempo de retención, espectro UV-Vis y la 

fragmentación obtenida en los experimento de MS, coincidían con los de compuestos 

patrón. También es importante decir, que en este trabajo se han determinado nuevos 

compuestos fenólicos de que son ejemplo el 2''-O-pentosilo-6-C-hexosilo-apigenina, 

2''-O-pentosilo-8-C-hexosilo-apigenina y el 6''-O-(3-hidroxi-3-methilglutaroil)-2''-O-

pentosilo-C-hexosilo-luteolina. 

En general, esta parte del trabajo surge como una contribución valiosa para la 

dilucidación de los compuestos fenólicos presentes en el género Cytisus y en la familia 

Fabaceae. 
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6.4.3. Compuestos fenólicos de Lamium album L.: derivados de 

isoscutelareína 

Lamium album L., más conocida como ortiga blanca, es una planta mediterránea 

herbácea perenne utilizada como alimento, en suplementos alimenticios y en forma de 

infusión. Esta especie vegetal se viene utilizando desde hace décadas en la medicina 

tradicional para el tratamiento de varias enfermedades, sin embargo, el conocimiento 

de su constitución en fitoquímicos es escaso. En este sentido, el objetivo de esta parte 

del trabajo, fue la caracterización detallada de la composición fenólica del extracto 

etanólico purificado de L. album. 

Como se puede observar en la Fig. 1 y en la Tabla 1, el extracto de L. album estaba 

constituido por flavonas, feniletanóides y una flavanona. De estos compuestos, hay 

que resaltar a los derivados de la flavona isoscutelareína puesto que, para el género 

Lamium, se detectaron por primera vez en este estudio. 

 

 

 

Figure 1 – Perfil cromatográfico del extracto purificado de Lamium album L. registrado a 340 

nm. 
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Tabla 1 – Identificación y cuantificación de las fracciones de Lamium album eluidas por HPLC. 

Fracción 

Tiempo 

retención 

(min) 

λmax [M-H]
-
 Compuesto mg/g extracto 

1 20.0 254, 267, 345 - Derivado de Luteolina - 

2 20.9 290, 329 623 Verbascósido 233,7±13,6 

3 22.7 290, 328 623 Isoverbascósido 39,2±5,6 

4 23.1 275, 302, 333 609 
Isoscutelareina-7-O-

alosilo(1→2)glucósido 
26,8±5,3 

5 24.1 275, 302, 333 651 
Isoscutelareina-7-O-(6-O-

acetilalosilo)(1→6) glucósido 
23,6±6,7 

6 24.6 254, 267, 345 447 Luteolina-7-O- glucósido 29,7±2,2 

7 25.9 275, 302, 333 651 

Isoscutelareina-7-O-(6-O-

acetilalosilo)(1→2) glucósido 

isomer 

9,6±0,3 

8 28.7 266, 342 431 Apigenina-7-O-glucósido 16,1±5,8 

9 29.8 275,302,333 651 
Isoscutelareina-7-O-(6-O-

acetilalosilo)(1→2) glucósido 
37,4±4,4 

10 33.2 275,305, 327 623 
4'-O-Metilisoscutelarein-7-O-

alosilo(1→2) glucósido 
16,6±6,5 

11 40.1 275,305, 327 665 

4'-O-Metilisoscutelarein-7-O-

(6-O-acetilalosil)(1→2) 

glucósido 

19,4±5,2 

12 41.5 266, 342 577 Apigenina-7-O-rutinósido 16,2±4,7 

13 44.2 - 579 Naringenina-7-O-rutinósido 32,6±5,6 

Medias±SD 

 

El extracto de L. album es principalmente abundante en dos feniletanoides que eluían 

en las fracciones 2 y 3 (Fig. 1) que son el verbascósido y el isoverbascósido  y 

contienen 233,7±13,6 y 39,2±5,6 mg/g de extracto, respectivamente. Los dos isómeros 

con peso molecular de 624 Da corresponden a aproximadamente la mitad de los 

fenoles totales determinados (500.7±50.0 mg/g de extracto). Además, el extracto 

contenía también compuestos fenólicos bioactivos poco comunes, catalogados en su 

conjunto, como derivados de la isoscutelareína, que representaban aproximadamente 

el 30% del total los compuestos fenólicos determinados (Tabla 1). Estos compuestos, 

que eluyeron en las fracciones 4, 5, 7, 9, 10 y 11, mostraron espectros UV, con 

máximos a 278, 302 y 333 nm, que está de acuerdo con lo descrito en la literatura 

para glucósidos isoscuttelareina. De entre todos, el principal derivado determinado fue 

la isoscutelareina-7-O-(6-O-acetil-β-alosilo)(1→2)-β-glucósido (MW 652 Da) que 
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representaba 37,4±4,4 mg/g de extracto de L. album. Su estructura ha sido en primer 

lugar determinada por HPLC y MSn y posteriormente confirmada por experimentos de 

1H y 13C NMR cuyos resultados coincidieron con lo estaba descrito en la literatura. 

Otros derivados de la flavona incluyen el compuesto isoscutelareina-7-O-

alosilo(1→2)glucósido (ion [M-H]− con m/z 609), su derivado O-metilo ([M-H]− ion a m/z 

623), derivados acetilo de la isoscutelareína-O-alosilo glucósido (fracciones 5 y 7) y un 

derivados acetilo del compuesto O-metilisoscutelareína-7-O-alosilo(1→2)glucósido 

(MW 666 Da). Además de los compuestos principales, el extracto contiene menores 

cantidades de las flavonas apigenina-7-O-glucósido, luteolina-7-O-glucósido y 

apigenina-7-O-rutinósido. La única flavanona identificada fue la naringenina-7-O-

rutinósido (MW 580 Da). 

En conclusión, esta parte del trabajo es un importante estudio acerca la 

caracterización química de la especie vegetal L. album, sugiriendo la especie como 

una importante fuente dietética de antioxidantes naturales. No obstante, se necesitan 

más estudios para aclarar la contribución exacta de los compuestos fenólicos en los 

efectos beneficiosos en la salud humana que se proponen para esta planta. 
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6.4.4. Caracterización fenólica de extractos de Leonurus cardiaca L. 

Leonurus cardiaca L. (agripalma), subfamilia Lamioideae (Lamiaceae) es una planta 

originaria de Europa central, pero difundida en distintos países templados de todo el 

mundo. En la medicina tradicional se incluye en preparaciones internas y externas 

para el tratamiento de varias enfermedades. Sin embargo, sus propiedades 

beneficiosas (por ejemplo antioxidante, cardioprotectora y neuroprotectora) y los 

compuestos responsables por estos efectos han sido poco estudiados. Por ello, esta 

parte del trabajo tenía como objetivo investigar la composición fenólica de un extracto 

etanólico purificado de L. cardiaca así como evaluar sus propiedades antioxidantes. 

El extracto de L. cardiaca es abundante en compuestos fenólicos con 15 mg/g de 

planta seca (500,4±49,1 mg/g de extracto) como determinado por HPLC-DAD (Tabla 

1. De entre los cuantificados, los más abundantes son los feniletanoides glucósidos 

lavandulifolioside (MW 756 Da) y verbascósido que representan el 50% y el 27%, 

respectivamente (Tabla 1). 

Tabla 1 – Identificación de las fracciones del extracto etanólico de  Lamium album L. que 

eluyeron por HPLC. 

Fracción 
Tiempo retención 

(min) 
λmax [M-H]

-
 Compuesto mg/g extracto 

1 8,2 

290, 329 341 Ácido cafeico glucósido 3,7±0,8 

ND 771 Rutina-O-glucósido ND 

2 13,7 ND 625 Quercetina-3-O-soforósido 5,7±1,1 

3 16,7 290, 329 755 Lavandulifoliósido 253,6±35,8 

4 17,5 290, 329 623 Verbascósido 137,4±19,9 

5 18,0 256, 267, 355 609 Rutina 15,8±2,1 

6 18,9 

256, 267, 357 463 Quercetina-3-O-glucósido 24,9±3,8 

ND 507 Derivado del Ácido Cafeico  ND 

ND 593 Luteolina-7-O-rutinósido ND 

7 19,4 ND 637 Leucoseptósido A 31,5±4,6 

8 20,0 ND 783 Leonósido B 25,1±4,7 

Medias±SD 

ND- No determinado 
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Aunque menos representativos (~10% del total de fenólicos) los compuestos 

leucoseptósido A (con la fragmentación 637→461→315) y leonósido B 

(783→607→475→329) fueron detectados por primera vez en extractos de la especie 

vegetal L. cardiaca (fracciones 7 y 8). Una vez que la fragmentación de estos dos 

compuestos está muy poco descrita en la literatura, su estructura se determinó 

esencialmente a través de la interpretación de los datos de ESI-MS y MSn. De este 

modo, el espectro MS/MS del ion molecular con m/z 637 (fracción 7) demostró que el 

ion de m/z 315, que corresponde a una unidad (3,4 dihidroxifenilo)-glucopiranosilo, se 

formó a través de la pérdida de 176 Da (ion a m/z 461) y 146 Da (ion a m/z 315), lo 

que indica la pérdida de grupos feruloilo y ramnopiranosilo, respectivamente. Por otra 

parte, el ion molecular de la fracción 8 (ion a m/z 783), designado aquí como leonósido 

B presenta una fragmentación en la que se produce una pérdida de 176 Da (ion con 

m/z 607) y 132 Da (ion con m/z 651), atribuido a pérdidas de unidades feruloilo y 

arabinopiranosilo, respectivamente. Además, el espectro de MS4 de este último ion 

indica la pérdida de una unidad ramnopiranosilo, relacionado con la formación del ion 

[M-H-146]− a m/z 329, que corresponde a un fragmento (3-hidroxi,4-metoxifenilo)-

glucopiranosilo. Además de feniletanóides glucósidos, el extracto contiene compuestos 

flavonóides (10%) y derivados del ácido cafeico, representado estos últimos 

cantidades residuales de su total de compuestos fenólicos. Los flavonóides detectados 

en el extracto incluyeron, en su gran mayoría, derivados glicosídicos de quercetina, o 

más concretamente la rutina-O-glucósido (MW 772 Da) y la quercetina-3-O-soforósido 

(MW 626 Da), descritos por primera vez en la especie L. cardiaca y también 

isoquercitrina (quercetina-3-O-glucósido) y rutina (quercetina-3-O-rutinósido), ya 

anteriormente detectados en la misma especie vegetal. 

Además de la caracterización del extracto de L. cardiaca, el presente estudio permitió 

también estimar sus propiedades antioxidantes a través de ensayos químicos. La 

especie ha demostrado poseer una elevada capacidad antioxidante con valores de 

EC50 de 18,3±1,5 y 94,7±7,0 μg/mL obtenidos en los ensayo del DPPH y del poder 

reductor, respectivamente. 

En conjunto, los resultados de esta parte del trabajo permiten decir que la especie L. 

cardiaca es una excelente fuente de compuestos fenólicos y que posee una importante 

actividad antioxidante. Sin embrago, son necesarios más experimentos para confirmar 

la actividad antioxidante y determinar la contribución de los compuestos fenólicos para 

este efecto.  
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6.4.5. Actividades hepatoprotectora y de captura de ROS por Mentha 

aquatica L. y Lavandula dentata L. 

Mentha aquatica L. y Lavandula dentata L. son dos especies vegetales que 

pertenecen a la gran familia Lamiaceae y que se usan como especias en la fabricación 

de alimentos y bebidas. La especie M. aquatica se viene utilizando desde hace 

muchos años en la medicina tradicional para el tratamiento de la inflamación externa, 

en limpieza bucal y para el tratamiento de los dolores de garganta, mientras que la 

especie de L. dentata se utiliza en infusiones para tratar de la diabetes, resfriados y 

cólicas renales. En este contexto, esta parte del trabajo tenía como objetivo determinar 

la composición exacta de extractos fenólicos de las dos especies vegetales y también 

evaluar y sus efectos antioxidantes y citoprotectores. 

Los principales compuestos fenólicos detectados en los extractos etanólicos 

purificados a partir de plantas de las especies M. aquatica y L. dentata determinados 

por de HPLC-DAD, y ESI-MS están representados en la Tabla 1. El total de 

compuestos fenólicos cuantificados representó 303±29 y 94±4 mg/g de extracto, en 

extractos de M. aquatica y L. dentata, respectivamente (Tabla 1). 

Tabla 1 – Cuantificación a 280 nm de los principales fenólicos de extractos de las especies 

vegetales M. aquatica y L. dentata. 

 M. aquatica  L. dentata 

Fracción Compuesto 
mg/g de 

extracto
a
 

 Compuesto 
mg/g de 

extracto
a
 

1 Eriodictiol-7-O-rutinósido 
144,6±22,4 

(48%) 
   

2 Luteolina-7-O-rutinósido 
43,3±10,0 

(14%) 
   

3 Naringenina-7-O-rutinósido 
24,4±3,7 

(8%) 
 Luteolina-7-O-glucurónido 

26,2±4,0 

(28%) 

4 Hesperitina-7-O-rutinósido 
25,9±3,6 

(9%) 
   

5 Acido rosmarínico 
64,2±8,8 

(21%) 
 Ácido Rosmarínico 

67,8±6,7 

(72%) 

6    
Apigenina-7-O-

(acetil)glucósido 
* 

 Total 302,5±28,7   93,9±4,1 

Medias±SD 

a
Los valores entre paréntesis se expresan como el porcentaje de compuestos fenólicos totales 

determinados 

* Por debajo del límite de cuantificación 
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Los extractos presentaron grandes cantidades de ácido rosmarínico, representando 

64±2 y 68±3 mg/g del extracto etanólico de M. aquatica y L. dentata, respectivamente. 

Este compuesto fue el principal compuesto determinado en el extracto de L. dentata, 

pero a la inversa, el extracto de M. aquatica contenía gran cantidad de otros 

polifenoles como el eriodictiol-7-O-rutinósido (145±6 mg/ g) (fracción 1, [M-H]− ion con 

m/z 595), lo que coincide con lo que esta descrito para otras especies de Mentha. De 

acuerdo con datos de la literatura para género Mentha, también se detectaron 

derivados glucósido, glucurónido y rutinósido de flavonas en el extracto de M. 

aquatica. En particular, se detectó la luteolina-7-O-glucósido y la apigenina-7-O-

rutinósido en cantidades muy pequeñas en los picos 3 y 4, respectivamente. En 

cambio, el presente extracto de M. aquatica se mostró abundante en la flavona 

luteolina-7-O-rutinósido (4,9±1,1 mg/g de planta seca) y contenía cantidades 

considerables (~10%) de naringenina-7-O-rutinósido y de hesperitina-7-O-rutinósido. 

La luteolina-7-O-glucurónido también se detectó en el extracto etanólico de L. dentata, 

donde representa el 28% de los componentes fenólicos determinados totales. 

En lo que respecta a efectos estudiados, ambos extractos demostraron capacidades 

antioxidantes significativas, determinadas por los ensayos del DPPH• y poder reductor, 

así como en un modelo de estrés químico inducido por dicromato potásico en células 

hepáticas HepG2. Concretamente, se encontraron valores de EC50 inferiores en el 

extracto de M. aquatica en los dos ensayos químicos usados. En el test del DPPH los 

valores de EC50 fueron de 8,1±1,3 y 11,6±1,1 μg/mL mientras que en el test del poder 

reductor fueron de 51,9±12,6 y 78,9±2,6 μg/mL, para los extractos de M. aquatica y L. 

dentata, respectivamente. Los ensayos realizados en los experimentos con la línea 

celular indicaron que el extracto de L. dentata presenta mejor capacidad para 

neutralizar la formación de ROS inducida por dicromato potásico (DK) en las células 

HepG2. En este ensayo, la protección observada fue del 30% cuando las células 

HepG2 fueron incubadas con 25μM de DK y 50 μg/mL de extracto de L. dentata (Fig. 

1A). Parece ser que este efecto antioxidante no estaba directamente asociado a su 

capacidad citoprotectora. De hecho, fue el extracto de M. aquatica, y no el de L. 

dentata, el que demostró un efecto citoprotector más eficaz (13%), medido por el 

ensayo de MTT (Fig. 1B). 
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Figura 1 – Efecto protector de los extractos etanólicos de M. aquatica y L. dentata (50 mg/mL) 

contra la producción aumentada de ROS (A) y la reducción de viabilidad (B) de células HepG2 

en condiciones basales (□, A y B) o en condiciones tóxicas inducidas por su incubación con 

dicromato potasico (DK) a 5 μM (A, ■) y a 25 μM (A, ■) durante 48h, o con DK a 1,5 μM durante 

72h (B, ■). Los valores se expresan como media±SEM de porcentaje de la producción de ROS 

(A) o de viabilidad celular (B) comparación con el control, a partir de 3-4 experimentos 

independientes realizados por triplicado. Ma, extracto de M. aquatica, Ld, extracto de L. 

dentata. * p <0,05; *** p <0,001 en comparación con las células expuestas a 5 µM, 25 µM (A) o 

1,5 µM (B) de DK, en ausencia de extracto; # p <0,05, # # # p <0,001 en comparación con las 

células no tratadas (control). 

 

En conjunto, los resultados de esta sección proporcionan una importante información 

sobre la caracterización química y farmacológica de los extractos vegetales de M. 

aquatica y L. dentata y contribuyen para la valorización de estas especies. Se 

necesitan más estudios para aclarar la contribución exacta de los compuestos 

fenólicos en los efectos descritos. Se deben también llevar a cabo estudios de 

toxicidad para garantizar la seguridad del uso de las plantas en la prevención de 

trastornos relacionados con el estrés oxidativo.  

A 

B 
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6.4.6. Efectos protectores en células hepáticas de los compuestos 

fenólicos presentes en Cytisus multiflorus, Lamium album L. y 

Thymus x citriodorus 

Dado las actividades benéficas que presentan, las plantas tienen un amplio uso en la 

medicina tradicional. De entre la gran diversidad de componentes de las plantas, en 

los últimos años se ha dado especial relevancia a los polifenoles, que son compuestos  

capaces de combatir el estrés oxidativo a través de distintos mecanismos. En esta 

parte del trabajo se evaluaron, mediante ensayos in vitro, los efectos antioxidantes y 

citoprotectores de extractos etanólicos purificados de las especies vegetales Cytisus 

multiflorus, Lamium album L. y Thymus x citriodorus y de sus componentes fenólicos.  

Los extractos han demostrado buenos efectos antioxidantes en las dos pruebas 

químicas del DPPH y del poder reductor con una orden de potencia de L. album> T. x 

citriodorus> C. multiflorus. Además, los ensayos celulares de MTT en células humanas 

HepG2 indicaron que todos pueden usarse en la concentración de 50 μg/mL y incluso 

los extractos de C. multiflorus y L. album mantienen el 100% de viabilidad en 

concentraciones de 200 μg/mL. Los extractos demostraron buena capacidad 

antioxidante, evaluada en la misma línea celular. En concreto, los extractos 

presentaban capacidad para neutralizar el aumento de la producción de ROS, inducido 

por su co-incubación con DK (Fig. 1). El extracto de C. multiflorus mostró una 

protección de 20 y 23%(Fig. 1A), el de L. album de 23 y 26% (Fig. 1B) mientras que el 

de T. x citriodorus una protección de 25 y 35%, cuando se co-incubaron con 5 μM y 25 

μM de DK (Fig. 1C), respectivamente. Este efecto protector también se puso de 

manifiesto en condiciones basales para los tres extractos. La elevada capacidad de los 

dos extractos para contrarrestar la formación de ROS en condiciones de estrés 

oxidativo en las células HepG2 está de acuerdo con la actividad de neutralización de 

ROS que se determinó igualmente para las mezclas de polifenoles preparadas para 

simular la composición fenólica predeterminada de los extractos (Fig. 1D). Además, 

cuando evaluamos en el mismo modelo, los compuestos puros apigenina, crisina, 

eriodictiol, quercetina, luteolina, naringenina, acido rosmarínico y verbascósido, todos 

demostraron poseer un elevado efecto antioxidante (mediado por la neutralización de 

ROS). 
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Figura 1 – Efectos protectores de extractos de Cytisus multiflorus (A), Lamium album (B) y 

Thymus x citriodorus (C) y de las mezclas de compuestos fenólicos que simulan su contenido 

en cada extracto (D) en la producción intracelular de ROS en células hepáticas HepG2, 

inducida por dicromato potásico (DK). Las células se incubaron en ausencia (□, ■) o presencia 

de dos dosis no tóxicas de extracto: a 50 µg/mL (■) (para los tres extractos) o a 200 µg/mL (■) 

para los extractos de C. multiflorus y L. album y con las mezclas de compuestos fenólicos que 

simulan su contenido en cada extracto (D, ■). Con excepción de la condición basal las células 

fueron incubadas con 5 o 25 μM de DK, por un periodo de 48 h. Las columnas blancas (□) 

representan la condición control y las negras (■) representan la incubación de las células 

HepG2 solamente con DK. 

 

El efecto citoprotector se evaluó en las células HepG2 mediante el método de 

medición de viabilidad celular, utilizando el test de MTT. En cuanto al potencial 

citoprotector de los extractos obtenidos de las especies vegetales L. album y C. 

multiflorus revelaron poseer un elevado efecto con 34 o 24% de protección, 

respectivamente (6 h de incubación) y 11 o 12%, respectivamente (72 h de 

■ 50 µg/mL 

■ 200 µg/mL  
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incubación), como puede observarse en la Fig. 2. El efecto citoprotector del extracto 

de L. album parece estar relacionado con la presencia de verbascósido puesto que, de 

todos los polifenoles probados, fue el compuesto que presentó una acción 

citoprotectora más marcada. 

 

 

 

 

 

 

 

 

Figura 2 – Efectos protectores de los extractos etanólicos de Cytisus multiflorus, Lamium 

album y Thymus x citriodorus (A, B) y de las mezclas de compuestos fenólicos que simulan su 

contenido en cada extracto (C, D) en un modelo de reducción de viabilidad de células HepG2 

inducido por dicromato potásico (DK). Las células se incubaron en ausencia (□, ■) o presencia 

de cada uno de los extractos (50 μg/mL), sus mezclas (25 μg/mL each) (■, A, B) o mezclas de 

compuestos fenólicos que simulan su contenido en cada extracto (■, C, D). Excepto para en la 

condición control (□) las células se expusieron a 200 μM de DK por un periodo de 6 h (A, C) o a 

2 μM por un periodo de 72 h (B, D). Las columnas negras (■) representan la incubación de las 

células HepG2 solo con DK. 
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En general, los resultados de esta parte del trabajo sugieren que los extractos de C. 

multiflorus y L. album poseen buena actividad antioxidante y citoprotectora y además 

que los polifenoles presentes en esos extractos tienen un papel importante en las 

propiedades beneficiosas de estas plantas. 

 

  

A 
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6.4.7. Efecto anti-inflamatorio de Cytisus multiflorus 

Cytisus multiflorus es un arbusto característico de la Península Ibérica, que se 

distribuye en la región sur-oeste del Mediterráneo. La planta se utiliza en la medicina 

popular porque se le atribuyen varios efectos beneficios para la salud, incluida sus 

propiedades anti-inflamatorias. Sin embargo, el uso de la especie vegetal C. multiflorus 

como anti-inflamatorio está basado solamente en la información etnofarmacológica, y 

hasta el momento no hay datos científicos que prueben la existencia de este efecto ni 

sus mecanismos de acción. El efecto antioxidante del extracto de C. multiflorus y de 

sus compuestos fenólicos ha sido demostrado en ensayos químicos y en células 

HepG2 y además se conoce que esta actividad antioxidante está asociada a las 

propiedades anti-inflamatorias. Por ello, el presente trabajo tuvo por objetivo aclarar 

los mecanismos anti-inflamatorios del extracto etanólico purificado de C. multiflorus. 

Las pruebas incluyeron el monitoreo de la actividad de especies reactivas formadas 

durante la respuesta inflamatoria (HOCl, NO●), así como la capacidad inhibitoria de las 

enzimas pro-inflamatorias clave en este proceso, como la lipoxigenasa (5-LOX), la 

óxido nítrico sintasa inducible (iNOS) y la ciclooxigenasa-2 (COX-2) en un modelo in 

vitro de inflamación. 

El extracto de C. multiflorus mostró una protección significativa contra la producción de 

NO● (EC50 de 148,0±5,2 μg/ml) más elevada que la obtenida para el ácido ascórbico, 

usado como control. El NO● fue igualmente medido en el modelo celular Raw 264.7 

cuya producción fue inducida por lipopolisacárido (LPS). El efecto de dos 

concentraciones de extracto de C. multiflorus (160 y 325 µg/mL) en la protección frente 

a la producción exagerada de nitritos se representa en la Fig. 1. Como puede 

observarse, el tratamiento de las células Raw 264.7 con LPS incrementa la producción 

de nitritos, lo que es inhibido en un 21 y 33% por el pre-tratamiento de los macrófagos 

Raw 264.7 con 160 µg/mL y 325 µg/mL de extracto, respectivamente. 
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Figura 1 – Efecto del extracto de C. multiflorus en la producción de NO
●
 en macrófagos RAW 

264.7 estimulados con 1 µg/mL de LPS. 

 

Las proteínas iNOS y COX-2 juegan un papel fundamental en la inflamación ya que 

son, por ejemplo, responsables por la producción de mediadores pro-inflamatorios. 

Por ello, pareció importante medir el efecto del extracto de C. multiflorus en la 

expresión de estas enzimas, lo que se llevo a cabo por Western blot. Los resultados, 

que se muestran en la Fig. 2A, indicaron que la presencia del extracto fue capaz de 

inhibir la expresión de la enzima iNOS, de forma significativa para la concentración 

máxima (325 µg/mL), aunque no se observaron cambios en la expresión de la COX-2 

(Fig. 2B).  
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Figura 2 – Efecto del extracto de C. multiflorus a 325 y 160 µg/mL en el nivel de iNOS (A) 

COX-2 (B) en macrófagos estimulados con 1 µg/mL de LPS. 

 

A pesar de no inducir cambio en los niveles intracelulares de la COX-2 se observó que 

el extracto a concentraciones no tóxicas fue capaz de disminuir significativamente la 

expresión de iNOS y también de inhibir la actividad de la enzima 5-LOX con un valor 

de EC25 de 37.90 μg/mL.  

Puesto que la acumulación de especies reactivas de oxígeno y nitrógeno generadas 

por las células inflamatorias sometidas a estrés oxidativo y la activación de las 

enzimas 5-LOX y iNOS son factores implicados en la inflamación crónica, los 

resultados apoyan el uso tradicional de C. multiflorus en el tratamiento de problemas 

inflamatorios. 
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6.4.8. Influencia de los extractos etanólicos purificados de  Mentha 

aquatica L. y Leonurus cardiaca L. en la bioenergética mitocondrial 

La mitocondria presenta un papel esencial en la homeostasis celular, una vez que 

participa en la síntesis de ATP a través de la fosforilación oxidativa, y en la biosíntesis 

de ácidos grasos y aminoácidos. Además de las funciones metabólicas, la mitocondria 

está implicada en los flujos de calcio, producción de ROS y RNS y señalización 

celular. La mitocondria es también un reconocido modelo para evaluación de la 

toxicidad celular de xenobióticos es y igualmente utilizada como biosensor para 

predecir la seguridad de fármacos. Las perturbaciones en la bioenergética mitocondrial 

están relacionadas con distintos mecanismos asociados con lesión celular y varias 

disfunciones. Por su enorme importancia en la célula, la mitocondria es también una 

potencial diana para fármacos, con lo que hay incluso fármacos usados como 

antidiabéticos, antivirales, antitumorales en los que el mecanismo de acción está 

basado en alteraciones de funciones mitocondriales. 

De esta manera, esta última parte del trabajo tenía como objetivo evaluar los posibles 

efectos de los extractos etanólicos de M. aquatica y L. cardiaca en la bioenergética 

mitocondrial. Para ello, se realizaron ensayos para medición de parámetros 

mitocondriales como el estado 3, el estado 4, la relación del control respiratorio 

respiración no acoplado (RCR) y la relación de P/O, además de la evaluación del 

potencial de membrana, en presencia de dos concentraciones distintas de los 

extractos. 

Los efectos de las dos concentraciones (15 y 25 μg.mg proteína-1) de extractos 

etanólicos de M. aquatica y L. cardiaca en los estados metabólicos de mitocondrias 

aisladas de hígado se presentan en la Tabla 1.  
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Tabla 1 – Efectos de los extractos de M. aquatica (PEEMa) y L. cardiaca (PEELc) en las 

tasas respiratorias de mitocondrias de hígado. 

 

 

Extracto 

Condición 

V2 

nmol O2.mg
-

1
.min

-1
 

V3 

nmol O2.mg
-

1
.min

-1
 

V4 

nmol O2.mg
-

1
.min

-1
 

VFCCP 

nmol O2.mg
-

1
.min

-1
 

 
Glutamato + Malato     

 
Control 4,2±0,5 40,5±1,9 10,9±0,9 42,6±1,2 

 M. aquatica 

15 μg.mg protein
-1
 

4,9±0,9 35,0±1,5 9,6 ±0,7 32,0±1,6 ** 

 M. aquatica 

25 μg.mg protein
-1
 

4,7±0,4 30,7±1,8* 9,8±0,5 24,9±1,9** 

PEEMa Succinato     

 
Control 6,3±0,3 26,1±1,0 6,3±0,3 32,6±1,9 

 M. aquatica 

15 μg.mg protein
-1
 

7,1±0,4 23,6±1,1 6,4±0,4 25,4±3,4 

 M. aquatica 

25 μg.mg protein
-1
 

7,0±0,4 21,8±1,25* 6,5±0,4 22,5±3,1* 

 
Glutamato+ Malato     

 
Control 4,12,0 17,82,1 4,40,4 nd 

PEELc 

L. cardiaca 

15 μg.mg protein
-1
 

4,80,6 18,92,8 4,50,5 nd 

L. cardiaca 

25 μg.mg protein
-1
 

4,60,7 18,63,0 4,50,4 nd 

Succinato     

Control 6,30,3 25,01,1 5,50,2 36,60,9 

 L. cardiaca 

15 μg.mg protein
-1
 

7,20,2 22,31,1 5,90,2 35,70,3 

 L. cardiaca 

25 μg.mg protein
-1
 

7,10,4 20,31,1* 6,40,2* 31,71,6** 

 

Nd- No se determinó 

 

Se observó una disminución dosis-dependiente, en el estado respiratorio 3, en 

presencia de los dos substratos usados, para el extracto de M. aquatica. El estado 

respiratorio 4 no se modificó significativamente. Por otro lado, el tratamiento de las 

mitocondrias con las mismas concentraciones de extracto de L. cardiaca indujo un 

descenso del estado 3 y un aumento del estado 4. De esta forma, se detectó un 

descenso en el RCR que estaba afectado directamente por esta disminución en el 

estado 3 (para el glutamato/malato en presencia del extracto de M. aquatica y para el 

succinato en presencia de ambos extractos), seguido por un aumento de estado 4 (en 

succinato estimulada por las mitocondrias en la presencia de L. cardiaca). Sin 

embargo, los extractos no inducían cambios en el la razón ADP/O, lo que indica que la 

eficiencia del sistema fosforilativo no estaba afectada. 
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Tabla 2 – Efectos de los extractos de M. aquatica (PEEMa) y L. cardiaca (PEELc) en el 

potencial de membrana mitocondrial. 

 

Extracto 

 

Condición 

Energizacion 

(mV) 

ADP1 

(mV) 

Rep 

(mV) 

Vrep 

(% of mean 

control) 

Lag phase 

(s) 

 
Glutamato + Malato     

 

 
Control 209,31,5 26,92,0 205,71,2 100,06,0 46,71,2 

 M. aquatica 

15 μg.mg protein
-1
 

202,92,3 27,12,1 200,32,4* 84,85,0 55,5±1,0* 

 M. aquatica 

25 μg.mg protein
-1
 

200,82,4* 25,81,4 199,91,3* 75,55,0* 65,5±3,2** 

PEEMa Succinato     
 

 
Control 218,81,0 29,01,1 218,41,1 100,05,7 66,65,1 

 M. aquatica 

15 μg.mg protein
-1
 

218,30,9 28,52,4 216,71,6 91,44,3 64,0±6,6 

 M. aquatica 

25 μg.mg protein
-1
 

215,01,2* 27,91,3 214,11,4* 75,73,4** 76,6±5,0* 

 
Glutamato + Malato     

 

 
Control 212,41,6 28,40,8 210,71,6 100,04,3 552,7 

PEELc 

L. cardiaca 

15 μg.mg protein
-1
 

208,11,7 27,91,1 205,61,7 104,03,7 53,84,8 

L. cardiaca 

25 μg.mg protein
-1
 

206,52,1 24,30,7* 204,42,1* 82,84,2* 53,22,0 

Succinato     
 

Control 217,11,1 32,61,0 217,01,1 100,04,1 58,11,6 

 L. cardiaca 

15 μg.mg protein
-1
 

213,21,0* 35,41,0 212,21,0* 86,13,5* 72,62,0** 

 L. cardiaca 

25 μg.mg protein
-1
 

212,80,8* 28,31,2* 211,30,9** 68,63,4*** 81,03,7*** 

 

 

El tratamiento de las mitocondrias con las dos concentraciones de los extractos de M. 

aquatica y L. cardiaca condujo a una disminución progresiva del ΔΨ máximo, 

independientemente del sustrato respiratorio utilizado (Tabla 2). Se observaron 

diferencias estadísticamente significativas para la concentración de extracto de M. 

aquatica más alta, en ambos substratos. Para el extracto de L. cardiaca este efecto fue 

evidente para el substrato succinato, además de inducir un descenso en la amplitud de 

despolarización, posterior a la adición de ADP. Los resultados también indicaron que 

los dos extractos ΔΨ interfieren con la repolarización. Después de la adición de ADP,  

en presencia de los extractos, las mitocondrias nunca fueron capaces de recuperar ΔΨ 

para los valores de control. En la mayoría de las condiciones ensayadas, se observó 

un aumento de la lag phase, lo que es coincidente con el descenso del estado 3. 
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En resumen los resultados indican que los extractos disminuyen la relación del control 

respiratorio: el extracto de M. aquatica induce una disminución en el estado 

respiratorio 3 mientras que el extracto de L. cardiaca afecta a los estados respiratorios 

3 y 4. Los extractos de M. aquatica y L. cardiaca afectan a la funcionalidad de las 

mitocondrias de hígado, sin afectar su eficiencia fosforilativa. 
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6.5. CONCLUSIONES 

 

CONCLUSION PRIMERA 

HPLC-DAD combinado con los métodos ESI-MSn en el modo negativo y el NMR son 

técnicas analíticas útiles para la caracterización fenólica de los extractos etanólicos 

obtenidos a partir de las especies vegetales Cytisus multiflorus, Lamium album L., 

Lavandula dentata L., Leonurus cardiaca L., Mentha aquatica L. y Thymus x 

citriodorus. 

 

CONCLUSION SEGUNDA 

Los extractos etanólicos de las especies de plantas que han sido objeto de este 

trabajo presentan distintos perfiles fenólicos. Mientras que los de C. multiflorus y T. x 

citriodorus son abundantes en flavonas, los de M. aquatica contienen altas cantidades 

de flavanonas (como derivados glucósidos de eriodictiol, naringenina y hesperitina). 

Por su parte, los extractos etanólicos de L. dentata contienen casi exclusivamente 

ácido rosmarínico, mientras que los de L. album y L. cardiaca son ricos en 

feniletanoides glucósidos. 

 

CONCLUSION TERCERA 

Los ensayos químicos de determinación del potencial antioxidante DPPH y poder 

reductor indican que los seis extractos de plantas poseen una elevada actividad 

antioxidante. Los cuatro extractos antioxidantes más relevantes mostraron la orden de 

potencias de M. aquatica > L. album > L. dentata > T. x citriodorus. Los valores de 

EC50 de los seis extractos de plantas tuvieron una variación desde 8,1 hasta 18,3 

μg/mL y 51,9 a 95,7 μg/mL para el efecto bloqueador de radicales de DPPH● y para el 

poder reductor, respectivamente. 

 

CONCLUSION CUARTA 

Los extractos obtenidos de las plantas medicinales C. multiflorus, L. album, T. x 

citriodorus y L. dentata son capaces de contrarrestar eficazmente el aumento de la 

formación de ROS en modelos de estrés oxidativo en las células hepáticas HepG2. 
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CONCLUSION QUINTA 

Los extractos etanólicos de L. album, C. multiflorus, T. x citriodorus y M. aquatica 

poseen efectos citoprotectores en células hepáticas HepG2 en condiciones de estrés 

oxidativo. 

 

CONCLUSION SEXTA 

Las actividades antioxidante (ROS-scavenging) y citoprotectora de los extractos de C. 

multiflorus, L. album, T. x citriodorus están estrechamente relacionadas con su 

contenido en compuestos fenólicos. 

 

CONCLUSION SÉPTIMA 

El extracto de C. multiflorus posee actividades anti-inflamatorias mediadas por la 

captura del radical NO● y por el descenso de la expresión de la enzima iNOS, así 

como por la inhibición de la actividad de la enzima 5-LOX. 

 

CONCLUSION OCTAVA 

Los extractos de M. aquatica y L. cardiaca afectan a la funcionalidad de mitocondrias 

de las células hepáticas. El extracto de M. aquatica induce una disminución en el 

estado respiratorio 3, mientras que el extracto de L. cardiaca afecta a los estados 

respiratorios 3 y 4. Ambos extractos disminuyen la relación del control respiratorio sin 

afectar la eficiencia fosforilativa de las mitocondrias. 

 

CONCLUSION GENERAL 

La especies C. multiflorus, L. album, L. dentata, L. cardiaca, M. aquatica y T. x 

citriodorus son buenas fuentes de compuestos fenólicos. Teniendo en cuenta el papel 

fisiopatológico del estrés oxidativo en distintas enfermedades, junto con la alta 

capacidad antioxidante demostrada por la mayoría de los extractos estudiados, se 

pueden proponer como potenciales agentes preventivos. Además, parece ser que la 

especie C. multiflorus puede ser útil en el tratamiento de trastornos asociados a 

procesos inflamatorios. 
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