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RESUMEN 

 

El factor neurotrófico derivado del cerebro (BDNF) es una proteína de pro-

supervivencia con alta expresión en el hipocampo y funciones esenciales en las neuronas 

durante el desarrollo y en el adulto. El BDNF se une preferentemente a los receptores 

TrkB, activando las vías de señalización Ras-ERK, PI3K/AKT y PLC". En condiciones 

fisiológicas, BDNF regula distintos mecanismos implicados en la plasticidad sináptica, 

mientras que en condiciones patológicas, se ha comprobado que protege de la toxicidad 

por sobre-excitación del glutamato. Sin embargo, los mecanismos moleculares implicados 

en la activación del receptor de BDNF por TrkB con el fin de inducir la protección 

neuronal no se conocen completamente. Este estudio buscó abordar estas cuestiones y 

examinar más a fondo la posible relación entre los mecanismos de neuroprotección y/o la 

recuperación y los mecanismos de plasticidad sináptica inducidos por BDNF. 

En la primera parte del estudio se analizaron las alteraciones moleculares 

inducidas por excitotoxicidad, centrándose en la reducción de la descarboxilasa del ácido 

glutámico, que es probable que afecte la transmisión sináptica inhibitoria. En este trabajo 

demostramos que la estimulación excitotóxica de cultivos neuronales del hipocampo con 

glutamato causa la escisión N-terminal de las isoformas de la descarboxilasas de 

gluatamato GAD65  y GAD67, tras la ubiquitinación y degradación de una pareja de unión 

desconocida por el proteosoma. Nosotros observamos en cultivos de neuronas un 

disminución significativa de aposiciones (puncta) GAD 65 sobre los axones de las 

neuronas de hipocampo, lo que esta de acuerdo con el análisis bioquímico realizado en  

extractos de la corteza cerebral y de cerebelo. La relevancia de estos resultados se basa 

en la demostración de que esta situación podría afectar a la neurotransmisión 

GABAérgica y el proteosoma actua en la disregulación de GADs en condiciones de 

excitotoxicidad además de otros sistemas proteolíticos anteriormente implicados en la 

excitotoxicidad inducida por glutamato (Para mas detalles ver capítulo 1). 

En nuestro análisis de la biología celular del proceso de activación de cascadas 

excitotóxicas  prestamos especial interés a la activación diferencial de los tres principales 

mecanismos proteolíticos (UPS, calpaínas y caspasas) en diferentes compartimentos de 

la neurona. Además, aportamos datos para la mejor comprensión de las secuencias 

temporales del efecto protector inducido por BDNF. Estos resultados mostraron una 

activación temporal diferente de las proteasas aí como la segregación espacial en la 

neurona de estos mecanismos. De este modo comprobamos que la activación inmediata 

de calpaína es seguida por una disregulación del proteasoma, en  los axones y las 

dendritas. El proceso de activación de las caspasas se produce más tarde en el cuerpo 

de la célula y todos los mecanismos proteolíticos disminuyen significativamente por la 
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pre-incubación con BDNF. Sin embargo, los inhibidores del proteasoma y la calpaína no 

fueron capaces de imitar el efecto protector de la inhibición de caspasas y BDNF en la 

prevención de condensación de la cromatina. Por el contrario, la inhibición del 

proteasoma y la calpaína protegió los marcadores neuronales para dendritas (MAP-2), 

axones (neurofilamentos H) y los transportadores vesiculares de glutamato (VGLUT1 y 

VGLUT2), mientras que la inhibición de caspasas no reprodujo el efecto protector de 

BDNF en las neuritas y marcadores sinápticos. Además, inhibidores de la ruta de PLC" 

bloquearon significativamente la acción protectora de BDNF en cultivos neuronales del 

hipocampo, lo que sugiere un mecanismo neuroprotector dependiente de la actividad 

sinaptica. En consecuencia, el carácter neuroprotector de BDNF en las sinapsis fue 

analizado utilizando un nanosensor (FRET glutamato) habiendo comprobado que 

previene parcialmente la reducción de la actividad sináptica excitatoria, tras medir la 

liberación de glutamato inducida por KCl. Por lo tanto, nuestra hipótesis es que que la 

reparación neuronal después de una agresión neuroquímica podría comenzar en el nivel 

sináptico y BDNF, muy probablemente induciría la recuperación a través de la 

reactivación de los mecanismos de plasticidad sináptica que involucran la síntesis de 

novo de proteínas (Por favor, consulte el capítulo 2). 

La hipótesis anterior fue evaluada estudiando el efecto del BDNF sobre la 

expresión de los VGLUT como un paradigma experimental. De este modo comprobamos 

que la aplicación exógena de BDNF en cultivos de neuronas del hipocampo durante 7 

días (DIV7) aumentó rápidamente los niveles de tanto de ARNm como de proteína 

VGLUT2 en una forma dosis-dependiente, mientras que la expresión de VGLUT1 también 

aumentó, pero sólo de forma transitoria. Por el contrario a DIV14, la aplicación de BDNF 

aumentó de manera constante la expresión de VGLUT1, mientras VGLUT2 mantuvo unos 

niveles bajos de expresion. Por otra parte, experimentos de inhibición de la transcripción 

y traducción - de VGLUT1 y VGLUT2 - bloquearon completamente el efecto inducido por 

BDNF en el aumento de la expresión de VGLUTs. Experimentos de microscopía de 

fluorescencia confocal mostraron un incremento transitorio de tráfico axonal de VGLUT1 y 

la redistribución de vesículas VGLUT-2-positivas en las neuronas de hipocampo. Estos 

resultados indican que el BDNF también puede afectar a la distribución subcelular de los 

VGLUTs durante el desarrollo neuronal.  

Además pudimos comprobar que la inhibición de los receptores TrkB y de la 

señalización vía PLC" bloquean el efecto inducido por BDNF en el aumento de expresión 

de VGLUTs, lo que sugiere que este factor y su efecto sobre VGLUT1 podría contribuir a 

mejorar la liberación de glutamato en la potenciación a largo plazo o LTP (Por favor, 

consulte el capítulo 3). 
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En resumen nuestros resultados indican que la neuroprotección mediada por 

BDNF no se limita al cuerpo celular y a la atenuación de la activación de caspasas. BDNF 

también protege significativamente las neuronas de los daños excitotoxicos inducidos en 

axones, dendritas y sinapsis, que predominantemente conllevan la activación de la 

calpaína y el aumento de la ubiquitinación de proteínas. Por otra parte, el BDNF activa 

mecanismos coincidentes tanto en condiciones fisiológicas durante el desarrollo neuronal 

y tras lesiones inducidas por glutamato (excitotoxicidad). BDNF promueve, 

concomitantemente,  la conectividad entre las neuronas y neuroprotección por 

mecanismos de atenuación de la proteolisis y/o la inducción de la expresión de novo de 

proteínas neuronales, en particular VGLUT1 y VLGUT2. Proponemos en este trabajo de 

tesis doctoral que la reactivación de los mecanismos de plasticidad mediados por BDNF 

durante el desarrollo neuronal pueden permitir atenuar daños neuronales. Finalmente, 

BDNF puede disminuir la activación proteolítica y/o inducir la recuperación de las 

neuronas del hipocampo en condiciones de neurodegeneración. 
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ABSTRACT 

 

Brain-derived neurotrophic factor (BDNF) is a pro-survival protein, highly 

expressed in the hippocampus, with critical functions in both developing and adult 

neurons. BDNF preferentially binds to TrkB receptors activating, in parallel, the Ras-ERK, 

PI3K/AKT and PLC" signaling pathways. Under physiological conditions, BDNF regulates 

several mechanisms of synaptic plasticiy. Under pathological conditions, BDNF protects 

hippocampal neurons from glutamate excitotoxicity and ischemia. However, the precise 

molecular mechanisms BDNF triggers upon TrkB receptor activation to induce neuronal 

protection and/or recovery are not fully understood. This study sought to address these 

issues and further examine the possible link between BDNF-induced mechanisms of 

neuroprotection and/or recovery and mechanisms of synaptic plasticity.  

In the first part of this study we examined molecular alterations induced by 

excitotoxicity, focusing on the downregulation of glutamic acid decarboxylase, which likely 

affects inhibitory synaptic transmission. We found that excitotoxic stimulation of cultured 

hippocampal neurons with glutamate leads to a time-dependent N-terminal cleavage of 

glutamic acid decarboxylase isoforms GAD65 and GAD67, upon ubiquitination and 

degradation of an unknown binding partner by the proteasome. The characteristic 

punctate distribution of GAD65 along neurites of differentiated cultured hippocampal 

neurons and total GAD activity measured in cerebellum or cerebral cortex extracts were 

significantly reduced. The results showed the deregulation of GADs under excitotoxic 

conditions, which most likely affects GABAergic neurotransmission, upon UPS activity, in 

addition to other proteolytic systems previously implicated in glutamate-induced 

excitotoxicity (Please refer to chapter 1). 

We then further evaluated the differential activation of the three main proteolytic 

mechanisms (UPS, calpains and caspases) implicated in excitotoxicity. We sought to 

study the protective effect of BDNF in different neuronal compartments and time points 

towards best understanding the spatiotemporal activation of BDNF-induced mechanisms 

of neuroprotection. These results showed a time-dependent activation of proteases and 

spatial segregation of these mechanisms. Calpain activation was followed by proteasome 

deregulation, in synaptic terminals and neuronal processes. Caspase activation 

subsequetly occurred in the cell body and all proteolytic mechanisms were significantly 

decreased by BDNF pre-incubation. Furthermore, proteasome and calpain inhibitors were 

unable to mimic the protective effect of BDNF and caspase inhibition in preventing 

chromatin condensation. Conversely, proteasome and calpain inhibition did protect the 

neuronal markers for dendrites (MAP-2), axons (Neurofilament H) and the vesicular 

glutamate transporters (VGLUT1 and VGLUT2), whereas caspase inhibition failed to 
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mimic the protective effect of BDNF on neurites and synaptic markers. BDNF also partly 

prevented the downregulation of synaptic activity measured by the KCl-evoked glutamate 

release using a FRET glutamate nanosensor. Moreover, PLC" chemical inhibitors 

significantly blocked the protective action of BDNF, suggesting an activity-dependent 

mechanism of neuroprotection. Thus, we hypothesize that neuronal repair after a 

degenerative insult may start at the synaptic level and BDNF most likely induces recovery 

through reactivation of mechanisms of synaptic plasticity involving de novo protein 

synthesis (Please refer to chapter 2). 

The hypothesis above was assessed testing the effect of BDNF on VGLUT 

expression as an experimental paradigm. Exogenous application of BDNF to cultured 

hippocampal neurons at DIV7 (days in vitro) rapidly increased VGLUT2 mRNA and 

protein levels, in a dose-dependent manner, while VGLUT1 expression was only 

transiently increased. However, at DIV14, BDNF stably increased VGLUT1 expression, 

whilst VGLUT2 levels remained low. Transcription and translation inhibition fully blocked 

BDNF-induced VGLUT upregulation. Fluorescence microscopy imaging upon BDNF 

incubation showed a transient upregulation of VGLUT1 axonal trafficking and 

redistribution of VGLUT2-positive vesicles. These results suggest that BDNF may also 

affect VGLUTs subcellular distribution during development. Moreover, inhibition of TrkB 

receptors and PLC" signaling precluded BDNF-induced VGLUT upregulation, suggesting 

that BDNF regulates VGLUT expression during development and its effect on VGLUT1 

may contribute to enhance glutamate release in LTP (Please refer to chapter 3). 

Overall, these results indicate that BDNF neuroprotection is not restricted to the 

cell soma and attenuation of caspase activation, also significantly protecting neurons from 

the excitotoxicity-induced damage to axons, dendrites and synapses, which 

predominantly results from calpain activation and increased protein ubiquitination. 

Furthermore, BDNF activates overlapping mechanisms under physiological and 

pathological conditions. BDNF concomitantly promotes connectivity between neurons and 

neuroprotection, by attenuating proteolytic mechanisms and/or inducing de novo 

expression of key neuronal markers, namely VGLUT1 and VGLUT2. Thus, we propose 

that reactivating BDNF-mediated developmental mechanisms of neuronal plasticity may 

enable to attenuate neuronal damages. BDNF may decrease proteolytic activation and/or 

induce recovery of hippocampal neurons under conditions of neurodegeneration. 
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ABBREVIATIONS 

 

AD: Alzheimer's Disease  

AIF: Apoptosis-Inducing Factor 

AMPA: 2-amino-3-(5-methyl-3-oxo-1,2- oxazol-4-yl)propanoic acid 

aPKC-#: atypical protein kinase C-#  

Arc: Activity-regulated cytoskeleton-associated protein  

bFGF: basic Fibroblast Growth Factor 

ARAP: Rap-dependent RhoGAP 3 

BDNF: Brain-Derived Neurotrophic Factor 

BHLHB2: Basic Helix-Loop-helix B2 

CaMKI!: Ca2+/calmodulin-dependent protein kinase CLICK-III (CL3) 

CARD: Caspase Recruitment Domain  

CaRE1: Ca2+-response element 1 

CaRTF: Calcium-Responsive Transcription Factor  

CRE: cAMP/Ca2+-Response Element  

CREB: cAMP Response Element-Binding Protein 

CRMP2: Collapsin Response Mediator Protein-2  

CNTF: Ciliary Neurotrophic Factor 

DAG: Diacylglycerol 

DIV: Days in vitro 

ECD: Extracellular Domain 

EPSP: Excitatory Postsynaptic Potentials 

eIF4E: eukaryotic Initiation Factor 4E 

4E-BP1: 4E-Binding Protein 1  

ER: Endoplasmic Reticulum 

ERK: Extracellular signal-Regulated Kinase 

GAD: Glutamate Decarboxylase 

GEF: Guanine nucleotide Exchange Factor  

GDNF: Glial cell line-Derived Neurotrophic Factor 

GSK3": Gycogen Synthase Kinase 3 " 

HD: Huntington’s Disease 

ICD: Intracellular Domain  
IGF: Insulin-like Growth Factor 

IKK-$: I!B kinase-$  

ILK: Integrin-Linked Kinase 

IP3: Inositol 1,4,5-triphosphate 
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IRAK: Interleukin-1 Receptor-Associated Kinase 

IRS-1: Insulin Receptor Substrate 1 

JNK: c-Jun N-terminal kinase  

LINGO: Leucine rich repeat and Ig domain containing 1  

LTD: Long-Term Depression 

LTP: Long-Term Potentiation 

MAG: Myelin-Associated Glycoportein 

MAGE: Melanoma-Associated Antigen  

MAP: Mitogen-Activated Protein  

MBGI: Myelin-BasedGrowth Inhibitor  

MCAO: Medial Cerebral Artery Occlusion 

MeCP2: Methyl-CpG-binding Protein 2 

MEF2D: Myocyte Enhancer Factor 2D 

miR: microRNA 

MKK: MAP kinase kinase  

MKP-1: MAP kinase phosphatase-1 

mTORC1: mTOR (mammalian target of rapamycin) complex 1 

NF-H: Neurofilament H 

NgR: Nogo-66 Receptor 

NMDA: N-Methyl-D-aspartic acid 

NPAS4: Neuronal PAS domain protein 4 

NRAGE: Neurotrophin Receptor p75 interacting MAGE homologue 

NRIF: Neurotrophin Receptor-Interacting Factor  

NT3: Neurotrophin 3 

NT4/5: Neurotrophin 4/5 

NGF: Nerve Growth Factor 

NF-kB: Nuclear Factor-kB  

OAG: one-oleoy1–1 acetyl-sn glycerol 

OMgp: Oligodendrocyte Myelin Glycoprotein 

p75NTR: p75 Neurotrophin Receptor  

PARP-1: Poly (ADP-ribose) Polymerase-1  

PIP2: Phosphatidylinositol 4,5-bisphosphate 

PLC-": Phospholipase C" 

PKAc": Protein Kinase A catalytic " 

RanBPM: Ran-Binding Protein in Microtubule-organizing center  

RasGEF: Ras guanine nucleotide exchange factor  

RhoA: Ras homologue member A 
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RIP-2: Receptor-Interacting Protein 2 

ROCK: Rho-activated kinase 

ROS: Reactive Oxygen Species 

SC1: Schwann Cell Factor 1 

SorCS2: Sortilin-related VPS10 domain-containing receptor 2  

SNP: Single-Nucleotide Polymorphism 

SVZ: Subventricular zone 

TACE: Tumor necrosis factor-%-converting enzyme 

TGF-$: Transforming Growth Factor-$  

TGN: Trans-Golgi Network 

TrkB: Tropomyosin-related kinase B 

TRAF: TNF Receptor Associated Factor  

TRPC: Transient Receptor Potential Canonical 

UPS: Ubiquitin-Proteasome System 

VGLUT: Vesicular Glutamate Transporter 

WAVE: Wiskott-Aldrich syndrome protein (WASP) family verprolin-homologous 
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INTRODUCTION 

 

Brain-derived neurotrophic factor (BDNF) (Barde et al., 1982) is a pro-survival 

protein highly expressed in the hippocampus, amygdala, cerebral cortex and 

hypothalamus (Katoh-Semba et al., 1997; Conner et al., 1997; Ernfors et al., 1990). This 

member of the neurotrophin family is encoded by the homonymous gene Bdnf, with 

multiple transcript variants, bidirectional transcription, complex splicing and several 

functional promoters, specifically used in different tissues and brain regions (Pruunsild et 

al., 2007). BDNFis expressed as a 32-kDa precursor protein, proBDNF (Lee et al., 2001), 

which is processed by constitutive or activity-dependent regulated mechanisms 

(Goodman et al., 1996; Farhadi et al., 2000; Lessman and Brigadski, 2009), and through 

numerous post-translational modifications, including N-glycosylation and cleavage into the 

mature protein (Mowla et al., 2001). The non-covalently linked stable BDNF homodimer 

binds tropomyosin-related kinase B (TrkB) receptors activating, in parallel, the Ras-ERK, 

PI3K/Akt and PLC! signaling pathways (Huang & Reichardt, 2003; Reichardt, 2006). 

BDNF has critical functions in both developing and adult neurons, under 

physiological and pathological conditions, either implicated in genetic and multifactorial 

neurological diseases or contributing for neuroprotection against glutamate excitotoxicity 

and ischemia (Bramham and Nessaoudi, 2005; Almeida et al., 2005; Cunha et al., 2010; 

Murray and Holmes, 2011; Nagahara and Tuszynski, 2011; Gomes et al., 2012 Hartmann 

et al., 2012; Park & Poo, 2013).  

During development, BDNF regulates neuronal differentiation by stimulating the 

formation of appropriate synaptic connections, concomitantly controlling the direction and 

rate of axon growth (Wang and Poo, 2005; Li et al., 2005) as well as the shape of 

dendritic arbors and spines (Ji et al, 2005; An et al., 2008; Kwon et al., 2011), and 

promoting the survival of selected neuronal populations of the peripheral (Oppenheim et 

al., 1992; Song et al., 2008) and central nervous systems (Lindsay et al., 1985; Phillips et 

al., 1990;Klöcker et al., 2000;Gupta et al., 2009; Gomes et al., 2012).  

In many regions of the adult CNS, BDNF not only enhances excitatory 

transmission (Lohof et al., 1993; LeVine et al., 1995; Kang and Schuman, 1995, Tyler and 

Pozzo-Miller, 2001; Carvalho et al., 2008) but also favors inhibitory synaptic activity in 

order to negatively control the homeostatic scaling of intrinsic neuronal excitability (Desai 

et al., 1999; Swanwick et al., 2006; Pozo and Goda, 2010). In addition, BDNF regulates 

several forms of synaptic plasticity (Vicario-abejon et al., 1998; Rutherford et al., 1998; 

Huang et al., 1999; Minichiello, 2009). In the hippocampus, this neurotrophin is involved in 

both learning (Linnarsson et al., 1997; Minichiello et al., 1999;Minichiello, 2009) and 

memory (Liu et al., 2004; Beckinschtein et al., 2008a; Beckinschtein et al., 2008b) 
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formation. BDNF is also essential for a variety of adaptive neuronal responses dependent 

on short-term plasticity (Cirulli et al., 2004; Ninan et al., 2010), while facilitating long-term 

potentiation (LTP) (Korte et al., 1995; Figurov et al., 1996; Patterson et al., 1996) and 

attenuating long-term depression (LTD) (Akaneya et al. 1996; Huber et al. 1998; Kinoshita 

et al. 1999), whereas pro-BDNF has the opposite effect, facilitating hippocampal LTD 

(Woo et al., 2005). 

BDNF is also implicated in the most prevalent late-onset neurodegenerative 

conditions (Connor et al., 1997; Canals et al., 2004; Yanpallewar et al., 2012). Decreased 

BDNF levels in the hippocampus of Alzheimer's disease (AD) patients (Connor et al., 

1997) and axonal transport deficits of BDNF-containing vesicles in mice with presenilin-1 

mutations and hyperphosphorylated tau (Peethumnongsin et al., 2010) indicate that 

modulating neurotrophin signaling is a potential therapeutic approach to this pathology. 

Increasing BDNF expression prevents neuronal loss, corrects motor dysfunction and 

improves hippocampal learning and synaptic plasticity in transgenic murine (Arancibia et 

al., 2008; Blurton-Jones et al., 2009) and non-human primate (Nagahara et al., 2009) 

models of Alzheimer's disease. Aerobic exercise, which increases BDNF levels (Neeper 

et al., 1995), also prevents the decline in spatial learning and memory through 

hippocampal LTP improvement in an AD mouse model (Liu et al., 2011). Similarly, 

decreased BDNF levels in the striatum of Huntington’s disease (HD) patients (Ferrer et 

al., 2000) expressing mutant huntingtin, which impairs BDNF gene expression (Zuccato et 

al., 2001) and anterograde vesicular transport from cerebrocortical afferents (Gauthier et 

al., 2004), can be rescued by BDNF overexpression (Xie et al., 2010; Giralt et al., 2011) 

and pharmacological agents that increase BDNF expression (Rigamonti et al., 2007; 

Simmons et al., 2009). BDNF signaling also correlates with the etiology of Parkinson’s 

disease (Mogi et al, 1999; Parain et al., 1999; Collier et al., 2005), Multiple Sclerosis 

(Stadelmann et al., 2002) and Amyotrophic Lateral Sclerosis (Yanpallewar et al., 2012). 

BDNFis additionally linked to stress response (Vollmayr et al., 2001) and the 

biology of mood disorders (Hall et al., 2003), especially anxiety and depression (Eisch et 

al., 2003; Martinowich et al., 2007), mediating resilience to chronic stress (Taliaz et al., 

2011). BDNF variants increase the susceptibility to numerous psychiatric disorders, for 

example, schizophrenia (Krebs et al., 2000) and aberrant eating behaviors, including 

anorexia nervosa restrictive type (Ribases et al., 2003), bulimia nervosa 2 (Ribases et al., 

2003) and severe obesity (Liao et al., 2012). BDNF-deficient mice show aggressiveness 

(Lyons et al., 1999), locomotor hyperactivity (Rios et al., 2001), hyperphagia (Gray et al., 

2006; Unger et al., 2007) and type-2 diabetes (Sha et al., 2007). Furthermore, BDNF is a 

critical regulator of energy balance (Xu et al., 2003), pain (Pezet and McMahon, 2006) 

and drug addiction, particularly opioid and cocaine dependence (Vargas-Perez et al., 
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2009; Mao et al., 2009; Lu et al., 2010). Conversely, exogenous BDNF application 

rescues different neural tissues from excitotoxic, ischemic, traumatic and toxic injuries, in 

vitro and in vivo, upon acute or long-term neurotrophic treatment, both before and after 

the insult (Coughlan et al., 2009;Pereira et al., 2009; Murray and Holmes, 2011; Noble et 

al., 2011).  In vitro, BDNF protects cultured cortical (Hetman et al., 1999; Sun et al., 2008), 

cerebellar granule (Bazán-Peregrino et al., 2007; Wang et al., 2010) and hippocampal 

(Almeida et al., 2005; Johnson-Farley et al., 2007; Gomes et al., 2012) neurons from 

apoptotic cell death through activation of the ERK and PI3K signaling pathways. BDNF 

also rescues cortical neurons from oxygen-glucose deprivation (Ferenz et al., 2012) and 

prevents N-Methyl-D-aspartic acid (NMDA)-induced protein kinase C (PKC) inactivation, 

equally providing maximal protection from cell death when pre-incubated, either 

continuously for 8 hours, or transiently between 8 and 4 hours, prior to NMDA 

excitotoxicity (Tremblay et al., 1999). In vivo, long-term (7-day) BDNF intraventricular 

infusion beginning 24 hours (Schabitz et al., 1997) or immediately before (Beck et al., 

1994) the injury reduces infarct size and protects hippocampal CA1 neurons in a rat 

model of transient forebrain ischemia, respectively. Infusion (Yamashita et al., 1997) and 

vehicle-mediated intravenous (Wu and Pardridge, 1999; Schabitz et al., 2000) 

administration of BDNF shortly (up to 30 minutes) after medial cerebral artery occlusion 

(MCAO) produce similar neuroprotective results, mimicked even with delayed (up to 2 

hours) intravenous application of BDNF conjugated to a blood-brain barrier drug targeting 

system (Zhang and Pardridge, 2001).  

BDNF neuroprotection in vivo extends to other insults, namely hypoxic-ischemic 

(Han and Holtzman, 2000), traumatic and spinal cord (Oppenheim et al., 1992; Ikeda et 

al., 2002) injuries, kainate excitotoxicity (Gratacòset al., 2001) and neonatal hypoxia 

(Galvin and Oorschot, 2003), and includes the most recent therapeutic strategies, namely 

ex vivo gene therapy (Yasuhara et al., 2006; Shi et al., 2009; Takeshima et al., 2011) and 

transplantation of BDNF-overexpressing human neuronal stem cells (NSCs) grafted into 

the brain region overlying the lesion (Lee et al., 2010).  

Unsurprisingly, BDNF is often called the “wonder molecule” (Monk, 2009) or 

“miracle-gro for the brain” (Ratey, 2008). BDNF does play a panoply of roles in neuronal 

function, which makes its study just as fascinating as complex, frequently hindering the 

distinction between different developmental and neuroprotective effects triggered by 

endogenous and exogenous BDNF, respectively. Furthermore, the use of BDNF in clinical 

applications is limited by unfavorable pharmacokinetics, specifically its short plasma half-

life (less than 1 minute in rats) and the low rate of transport across the blood-brain barrier 

(BBB) (Pardridge et al, 1994; Poduslo and Curran, 1996), poor intraparenchymal 

penetration (Morse et al., 1993) and adverse side-effects, mainly resulting from the low-
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affinity BDNF-p75 neurotrophin receptor (p75NTR) interaction, which can induce pain 

(Zhang et al., 2008), among other factors (Kingwell, 2010).  

However, recent advances through the development of alternative BDNF delivery 

methods, for example, pegylation (Pardridge et al., 1998), chimeric peptide approaches 

(Zhang and Pardridge, 2001; Wu, 2005), adeno-associated viral (AAV) vector-mediated 

gene delivery (Baumgartner and Shine, 1997; Martin et al., 2003; Kells et al., 2004; Shi et 

al., 2009), genetically engineered bone marrow mesenchymal stem cells (Kurozumi et al., 

2004; Sasaki et al., 2009; Harper et al., 2009; Makar et al., 2009; Park et al., 2012) and 

the use of poly(ethylene vinyl acetate) (EVAc) polymers (Sirianni et al., 2010) as 

vehiclesforlong-term in vivo delivery of BDNF, in addition to partial (Schmid et al., 2012) or 

selective (Jang et al., 2010; Bai et al., 2010; Chen et al., 2011) TrkB agonists and BDNF 

peptidomimetics (O’Leary and Hughes, 2003; Fletcher et al., 2008; Massa et al., 2010), 

have enabled to overcome such drawbacks and successfully promote neurotrophic 

activities and neuroprotection aimed at designing new therapeutic strategies. 

Notwithstanding, in vitro studies using primary cultures of dissociated neurons 

enable to follow individual neurons and dynamic changes of their morphology over time, 

facilitating the access to the surface of cells and high-resolution imaging, allowing a high 

number of experimental conditions to be tested simultaneously, among several other 

advantages (Dotti et al., 1988; Potter and DeMarse, 2001; Kaech and Banker, 2006). 

Moreover, neuronal cultures normally reproduce in vivo aspects of neuronal development 

and neurodegeneration, despite lacking some three-dimensional features, and results 

initially found in such preparations are usually confirmed in animal models afterwards 

(Kaech et al., 2012a, b, c). 

Excitotoxicity has been recently proposed by an increasing number of researchers 

as the converging mechanism of neurodegeneration in several neuropathological 

conditions (Dong et al., 2009; Lau and Tymianski, 2010; Ehrnhoefer et al., 2011). In 

particular, glutamate-induced excitotoxicity has been found to trigger the critical events of 

in vivo neurodegeneration in cultured hippocampal neurons (Luetjens et al., 2000; Aarts 

and Tymianski, 2004; Almeida et al., 2005; Hilton et al., 2006; Gomes et al., 2011; Gomes 

et al., 2012). Hippocampal neurons are further susceptible to excitotoxic damage 

(Hollmann and Heinemann, 1994) because they lack the p50 subunit of Nuclear Factor-kB 

(NF-kB) (Yu et al., 1999) and show enhanced expression of corticosteroid receptors, 

calcium channel activity and synaptic plasticity with consequent vulnerability to 

hyperexcitability (reviewed in Murray and Holmes, 2011).  

In the following sections, we will address the state-of-the-art on the role of BDNF in 

mechanisms of synaptic plasticity and neuroprotection,in further detail, focusing on 

mechanisms of plasticity and neuroprotection against glutamate excitotoxicity induced by 
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BDNF in cultured hippocampal neurons. The aim is to best understand the therapeutic 

potential of BDNF in the treatment of excitotoxicity-based neurodegenerative conditions, 

whether through reactivation of BDNF-induced developmental gene expression to trigger 

functional recovery, or attenuation of cellular damage by downregulation of proteases and 

pathogenic mechanisms triggered on programmed cell death. Therefore, the identification 

of the key molecular targets of physiological BDNF signaling is critical to develop new 

approaches for BDNF-induced neuroprotection against different pathological conditions. 
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         1. Neurotrophins 

 

 Neurotrophins are agroup of secreted growth factors critical for the development and 

maintenance of the vertebrate nervous system(Allen and Dawbarn, 2006).Nerve growth 

factor (NGF) was the first neurotrophin identified, more than half a century ago, during a 

search for survival factors that could explain the death of developing sensory and motor 

neurons in the absence of peripheral targets, as a result of a degenerative process rather 

than a failure of differentiation (Hamburguer and Levi-Montalcini,1949; reviewed in 

Thoenen and Edgar, 1985). Subsequently, brain-derived neurotrophic factor (BDNF) 

(Barde et al., 1982; Leibrock et al., 1989), neurotrophin 3 (NT3) (Ernfors et al., 1990; 

Jones and Reichardt, 1990; Hohn et al., 1990; Maisonpierre et al., 1990; Rosenthal et al., 

1990) and neurotrophin 4/5 (NT4/5) (Berkemeirer et al., 1991; Hallböök et al., 1991; Ip et 

al., 1992) were identified in different tissues and cloned through homology screens, 

establishing this family of functionally and structurally related proteins. 

 In addition to neurotrophins, several other polypeptide factors have shown 

neurotrophic activities, including the ciliary neurotrophic factor (CNTF) (Ip et al., 1996), 

insulin-like growth factor (IGF) (Doré et al., 1997), basic fibroblast growth factor (bFGF) 

(Walicke et al., 1986), transforming growth factor-$ (TGF-$) (Farkas et al., 2003), glial cell 

line-derived neurotrophic factor (GDNF) (Lindsay and Yancopoulos, 1996) and Sonic 

hedgehog (Miao et al., 1996), among others, which promote the survival of specific 

neuron populations and protect such cells from toxic insults.  

 

 1.1- The neurotrophin hypothesis 

 

 The neurotrophin hypothesis was set on three principles: i) specific target tissues 

produce limiting amounts of a neurotrophin; ii) responsive neurons projecting to these 

targets compete for the limiting amounts of neurotrophin; iii) the neurotrophin binds to 

selective receptors on afferent terminals and is internalized and retrogradely transported 

to the neuronal cell body, where it provides signals affecting neuronal survival and 

differentiation (Oppenheim, 1991; Lucidi-Phillipi and Gage, 1993; Snider, 1994; Burek and 

Oppenheim, 1996; Wright et al., 1997; Pettmann and Henderson, 1998).However, 

neurotrophins are not just retrogradely transported target-derived growth factors. Recent 

studies demonstrating the anterograde transport of neurotrophins, which can also act in 

autocrine and paracrine modes, upon constitutive and activity-dependent release, has 

lead to the reassessment of this hypothesis, whereby neurotrophin access rather than 

quantity is the limiting factor determining cellular fate (Conner et al., 1998). 
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 1.2 - Neurotrophin structure 

  

All neurotrophins are post-transcriptionally processed from precursor forms (pre-

pro-neurotrophins) into mature polypeptides with similar molecular size, roughly 13 kDa. 

Secreted proteins typically have basic isoelectric points (pI = 10.5 for BDNF) (Mowla et 

al., 2001; Kanato et al., 2008), which limits their diffusion (Yan et al., 1994; Dittrich et al., 

1996; Lodovichi et al., 2000) and range of action (Bibel and Barde, 2000).  

Neurotrophins exist as non-covalently linked and stable homodimers in solution 

(Sofroniew et al., 2001), sharing a highly homologous protomer structure, with 

approximately 50% amino acid identity and overlapping three-dimensional conformations, 

encompassing three pairs of anti-parallel "-strands and cysteine residues, arranged in a 

cysteine “knot” motif, formed by three intramolecular disulfide bonds between the 

polypeptide chains(McDonald et al., 1991; McDonald and Hendrickson, 1993). The $-

strands maintain the conformation of the dimer interface and delineate a flat surface with a 

hydrophobic core that includes highly conserved residues. The highly conserved $-

strands are interconnected by four highly variable $-loops, which significantly contribute 

for the different receptor specificities (Jungbluth et al., 1994; Lindsay et al., 1996; 

Kullander et al., 1997).The highly variable $-loops enable different structures of receptor-

ligand complexes and receptor binding kinetics, determining the variability of interactions 

between the intracellular domains of the receptors and adaptor proteins, their 

phosphorylation, and the association with membrane microdomains on the cell surface, 

specialized for signaling and trafficking(Robinson et al., 1999).Such issues are addressed 

in further detail, in section 4, with emphasis on BDNF and its mechanism of action. 

 

1.3- Neurotrophin homology 

 

Evolutionary studies have shown that a single ancestor gene underwent two 

independent duplication events at an early stage of vertebrate evolution, leading to the 

formation of the current neurotrophins (Götz et al., 1994). According to sequence 

comparisons and isolation of neurotrophin genes from various vertebrates, NGF/NT3 and 

BDNF/NT4/5 evolved from those separate duplication events (Hallböök, 1999). 

 No homologs of neurotrophins or their receptors have been identified, thus far, in 

invertebrate phyla (Chao, 2000), despitethe complete genome sequencing of invertebrate 

organisms, in recent years, particularly those most used by geneticists, including 

Caenorhabditis elegans (Ruvkun and Hobert, 1998) and Drosophila melanogaster (Myers 

et al., 2000). However, growth factors other than neurotrophins, including FGF (Klämbt et 

al., 1992; Roubin et al., 1999) and TGF-" (Krishna et al., 1999; Raftery and Sutherland, 
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1999), have been identified in invertebrates. Therefore, a nervous system with precise 

wiring, chemical neurotransmission and developmentally regulated elimination of neurons 

can be assembled in the absence of neurotrophins, suggesting that neurotrophins may be 

involved in adaptive responses of long-lived higher vertebrates to environmental stimuli 

(Bibel and Barde, 2000). 

 In vertebrates, two novel neurotrophins from the platyfish and carp have been 

cloned and named neurotrophin-6 (Götz et al., 1994) and neurotrophin-7 (Nilsson et al., 

1998), respectively. Although they appear to interact with the same receptors as the 

mammalian proteins, no orthologs of neurotrophin-6 and neurotrophin-7 have been found 

in mammals or birds. Moreover, molecular phylogeny studies on the evolution of the 

neurotrophins,in general (Kullander et al., 1997), and BDNF, in particular(Tettamanti et al., 

2010),have shown that neurotrophins are a paradigmatic example of how natural 

selection acts on mammals, separating them from other classes. Conversely, this also 

suggests that neurotrophins are key determinants of the extremely high complexity of 

nervous systems found in such organisms (Jaaro et al., 2001).Furthermore, BDNF was 

considerably more conserved in structure and function than nerve growth factor during 

vertebrate evolution (Götz et al., 1992), and is the most abundantly expressed 

neurotrophin in the brain,despite the high homology shared by neurotrophins, further 

indicating the key role of BDNF in neuronal function. 

 

1.4- Neurotrophin receptors 

 

All four known members of the neurotrophin family activate two classes of cell 

surface receptors, the tropomyosin-related kinase (Trk) family of tyrosine kinase receptors 

(TrkA, TrkB and TrkC), and the p75 neurotrophin receptor (p75NTR), a member of the 

tumor necrosis factor receptor superfamily, through which neurotrophins trigger their 

biological functions (Figure 1). 

 NGF is the preferred ligand for TrkA (Cordon-Cardo et al., 1991; Kaplan et al., 1991; 

Klein et al., 1991a), TrkC preferentially binds NT3 (Hohn et al., 1990; Lamballe et al., 

1991; Soppet et al., 1991; Ip et al., 1993), and TrkB can bind either BDNF or NT4 

depending on the cell type (Glass et al., 1991; Soppet et al., 1991; Ip et al., 1992, 1993). 

TrkA and TrkB also display low-affinity binding for NT3 (Cordon-Cardo et al., 1991; Glass 

et al., 1991; Soppet et al., 1991; Ip et al., 1993), which demonstrates the redundancy of 

this family. Furthermore, NGF, BDNF, NT3 and NT4 also bind to p75NTR with a similar, low 

affinity of 1x10-9M (Radeke et al., 1987; Meakin and Shooter, 1992; Barbacid, 1993). 
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Figure 1.Neurotrophins and their receptors (in Skaper, 2012). Neurotrophins interact with 

three Trk receptors: NGF binds TrkA, BDNF and NT-4 bindTrkB, and NT-3 binds TrkC. In 

some cellular contexts, NT-3 can also activate TrkA and TrkB, albeit with less affinity. All 

neurotrophins bind to and activate the p75NTR. CR1–CR4 cysteine-rich motifs, C1/C2 

cysteine-rich clusters, LRR1–3 leucine-rich repeats, Ig1/Ig2 immunoglobulin-like domains. 
 

  

1.4.1- Trk receptors  

 

1.4.1.1- Trk receptor structure and binding specificity to neurotrophins 

 

The Trk receptors are modular, single-pass membrane proteins consisting of an N-

terminal signal peptide followed by two cysteine-rich domains separated by three leucine-

rich motifs, two immunoglobulin-like domains and a transmembrane, a juxtamembrane 

and a kinase domain preceding the C-terminus (reviewed in Barbacid, 1995). The C-

terminal immunoglobulin-like domain (Urfer et al., 1995) and the second leucine-rich motif 

(Windisch et al., 1995), may both mediate the direct interaction with neurotrophins, in the 

extracellular surface of neurotrophin receptors, but recent evidence suggests that only the 

former (Ig-C2) domain actually contacts with NGF in the TrkA receptor-NGF complex 

structure (Wehrman et al., 2007). In turn, neurotrophins bind to Trk receptors through an 

analogous region on the surface, formed by conserved amino acids, while the variable 

residues on the periphery of this common region confer Trk receptor specificity (Ultsch et 

al., 1999; Wiesmann et al., 1999; Wiesmann et al., 2000). Discontinuous stretches of 

amino acid residues along the primary sequence group together on one side of the 
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neurotrophin dimer three-dimensional structure, forming thiscommon interface responsible 

for binding to and activating Trk receptors. This interface includes the N-terminus, some of 

the variable loop regions and a beta-strand (Robinson et al., 1999; Banfield et al., 2001). 

The N-terminus of neurotrophins only becomes ordered upon complex 

formationwith the Trk receptor and this ordering ismainly directed by the complementary 

receptor surface, which additionally determines receptor specificity (Stanzione et al., 

2010). These features further explain the limited crossreactivity between neurotrophins 

and Trk receptors and the high-affinity binding associated with the respective ligand-

receptor pairs (Banfield et al., 2001). The two symmetrical surfaces formed along the two-

fold axis of the neurotrophin dimer provide a model for ligand-mediated receptor 

dimerization (Ibáñez et al., 1993). However, the magnitude of binding constants is 

insufficient, by approximately threeorders of magnitude, to promote receptor dimerization 

at physiologically active concentrations (Philo et al., 1994). In dispute of the classical 

model of Trk receptor dimerization upon neurotrophin binding, TrkB receptors have been 

quite recently shown to exist as homodimers formed in the endoplasmic reticulum (ER), 

before ligand binding, and the isoforms lacking the intracellular domain cannot form such 

dimeric structure (Shen and Maruyama, 2012). 

 

 1.4.1.2- Trk receptor isoforms 

  

 All three Trk receptors show different isoforms with either deletions in the 

extracellular region or intracellular truncations, including the tyrosine kinase domain 

(Shelton et al., 1995; Palko et al., 1999; Kryl et al., 1999), resulting from alternative 

splicing in the case of TrkB and TrkC loci (Klein et al., 1990; Middlemas et al., 1991; 

Tsoulfas et al., 1993; Valenzuela et al., 1993; Garner and Large, 1994),and post-

transcriptional ectodomain cleavage in the case of TrkA receptors (Cabrera et al., 1996; 

Díaz-Rodríguez et al., 1999). 

 Extracellular-domain Trk variants have different ligand specificities, namely the TrkB 

splice variant lacking exon 9, which shows decreased interaction with NT3 and NT4/5 

(Strohmaier et al., 1996), and the TrkA variant with increased specificity for NGF and 

decreased specificity for NT3 (Clary and Reichardt, 1994). 

 Trk splice variants lacking the canonical intracellular tyrosine kinase domain are the 

most highly expressed isoforms in the adult brainand show multiple functions in 

mammalian development (Klein et al., 1990; Allendoerfer et al., 1994; Escandon et al., 

1994; Fryer et al., 1996). Truncated TrkB receptor isoforms, TrkB.T1 and TrkB.T2, contain 

short intracellular domains with 23 and 21 amino acid residues, respectively (Klein et al., 

1990; Middlemas et al., 1991). Both truncated forms of TrkB receptors are upregulated in 
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early postnatal development and predominate over the full-length receptor in the adult 

brain (Fryer et al., 1996).  

 Truncated TrkB receptors internalize BDNF, which may restrict neurotrophin 

availability (Biffo et al., 1995) or, conversely, enable BDNF recycling (von Bartheld et al., 

2001), although TrkB.T1 receptors predominantly recycle back to the cell surface by a 

default mechanism, whilst endocytosed TrkB-FL receptors recyclein a hepatocyte growth 

factor-regulated tyrosine kinase substrate (Hrs)-dependent manner, which relies on its 

tyrosine kinase activity (Huang et al., 2009). Truncated TrkB receptors act as dominant-

negative modulators of Trk signaling (Eide et al., 1996; Ninkina et al., 1996), especially in 

full-length TrkB-mediated regulation of cell survival (Dorsey et al., 2006), but they also 

induce their own signaling cascades, independently of full-length TrkB (Takai et al., 2001; 

Ohira et al., 2006; Manadas et al., 2007). TrkB.T1 deletion in mice causes increased 

anxiety and morphological abnormalities in basolateral amygdala neurons, consistent with 

an independent signaling function for this receptor (Carim-Todd et al., 2009). In 

astrocytes, TrkB.T1 receptors mediate inhibition of RhoA (Ohira et al., 2006),a GTPase 

responsible for Ca2+-dependent activation of p38 MAPK, coupled to neuronal death under 

excitotoxic conditions (Semenova et al., 2007). 

        The physiological levels of truncated TrkB receptors are significantly altered under 

pathological conditions (Manadas et al., 2007). The frontal cortex of patients with AD has 

decreased full-length TrkB expression and increased truncated TrkB expression (Ferrer et 

al., 1999). TrkB signaling is impaired in ALS patients, who show increased total TrkB 

mRNA in the spinal cord but decreased TrkB receptor phosphorylation, which suggests 

that alterations in the TrkB response to BDNF, rather than insufficient neurotrophin supply, 

may be the underlying cause of disease in ALS, probably involving the expression of 

truncated TrkB isoforms (Mutoh et al., 2000; Küst et al. 2002). Accordingly, TrkB.T1 

deletion in a mouse model of ALS delays disease onset (Yanpallewar et al., 2012).  

 Under excitotoxic conditions, the expression of truncated TrkB receptors is 

increased in hippocampal neurons (Rudge et al., 1998; Gomes et al., 2012), while BDNF 

and TrkB.FL immunoreactivity decreases preceding neuronal loss, in damaged areas 

(Goutan et al., 1998; Ferrer et al., 2001). Calpains mediate the initial step of TrkB.FL 

degradation, while the TrkB.T receptors expressed de novo may have a dominant 

negative effect on the signaling activity of the remaining TrkB.FL receptors. However, this 

may be compensated by the neuroprotective signaling activity of the truncated receptors 

(Gomes et al., 2012). In addition, the physiological levels of TrkB.T1 receptors are key 

regulators of neuronal complexity and full-length TrkB signaling in vivo because loss of 

TrkB.T1 can partially rescue BDNF haploinsufficiency (Carim-Todd et al., 2009). 
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 1.4.2- p75NTR 

 

 1.4.2.1- p75NTR expression  

 

 The p75NTR is a 75-kDa protein encoded by the human NGFR gene located on 

chromosome 17q21.The rat, mouse and human p75NTR promoter sequences are highly 

homologous (Schor, 2005). p75NTR receptor expression can be detected early on in the 

nervous system development, both in neural stem cells (Yan et al., 1988) and on the 

surface of glial cells (Chen et al., 2009). During the CNS development, p75NTR is highly 

expressed in the neocortex, hippocampus and midbrain, while in the adult brain p75NTR is 

mainly restricted to cholinergic neurons in the forebrain, motor neurons and Purkinje 

neurons in the cerebellum. In the peripheral nervous system, p75NTR is found in 

sympathetic neurons and dorsal nerves (Chen et al., 1996). 

 There are two isoforms of the receptor p75NTR, a full-length receptor and a truncated 

variant form, which results from alternative splicing of exon III of the NGFR locus and 

lacks the neurotrophin-binding site, both of which are expressed in nerve cells (von 

Schack et al., 2001). 

  

 1.4.2.2- p75NTRmolecular structure and ligand-binding affinity 

  

 p75NTR is a transmembrane protein with 399 amino acid residues, upon cleavage of 

the signal peptide, containing an extracellular domain (ECD), a transmembrane portion 

and an intracellular domain (ICD) (Johnson et al., 1986). The ECD consists of a stalk 

region connecting the transmembrane domain and four negatively charged cysteine-rich 

repeats (CR1-4, Fig. 1). The third and fourth cysteine-richrepeats are the neurotrophin-

binding site (Chapman et al., 1995; Shamovsky et al., 1999; Dechant and Barde, 2002; 

Skeldal et al., 2011). The ICD of p75NTR is a global-like domain, known as the death 

domain, consisting of two sets of perpendicular helices arranged in trios. The death 

domain connects to the transmembrane portion through a flexible linker region, which may 

be involved in signal transduction (Liepinsh et al., 1997).  

 Unlike the Trk receptors, the cytoplasmic region of p75NTR shows no intrinsic ligand-

inducible enzymatic function (Locksley et et al., 2001). Furthermore, in contrast with other 

TNF receptors, the p75NTR has a type-2 death domain, rather than a type-1, and the 

p75NTR does not self-associate in solution (Hempstead, 2002).  

 All neurotrophins in their mature form bind to p75NTR with low affinity (Radeke et al., 

1987; Meakin and Shooter, 1992; Barbacid, 1993a). Contrary to the mature form, the pro-

neurotrophins pro-NGF and pro-BDNF can bind to p75NTR with high affinity (Figure 3), 
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approximately 1000 fold higher than mature neurotrophins (Lee et al., 2001; Teng et al., 

2005). Although pro-neurotrophins do not directly bind or activate Trk receptors, 

endocytosis and cleavage of pro-neurotrophins generate mature forms of neurotrophins 

that are capable of inducing Trk activation (Boutilier et al., 2008). 

  

 
 

Figure 2. Surface representations of a region of the neurotrophin homodimers critical for 

p75NTR binding (in Robinson et al., 1999). The first and third panels from the left show a 

transparent surface on top of a wire frame (gray) of each neurotrophin. Residues known to 

bind to p75NTR are displayed and their surface contribution colored: Ile31 (NGF), gold; 

Lys32 (NGF), Arg31 (NT3), Arg34 (NT4), blue; Lys34 (NGF), His33 (NT3), Arg36 (NT4), 

green; Lys95 (BDNF), orange; Lys95 (NGF), Lys96 (BDNF), Lys97 (NT3), pink; Arg97 

(BDNF), Arg107 (NT4), purple, and Glu35 (NGF), red. The right panels show an opaque 

surface charge representation of each neurotrophin dimer in the same orientation as the 

corresponding left panel. Blue regions represent positive and the red ones denote 

negatively charged regions.  

 

 Whether neurotrophins promote or not receptor homodimerization upon binding to 

p75NTR is still under debate. The initial model proposed the binding of a single ectodomain 

of deglycosylated p75NTR toan NGF dimmer, in an asymmetric structure, thereby enabling 

p75NTRto form heterocomplexes with other co-receptors, including Trk receptors, given the 
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similarity of p75NTR extracellular domains withthose of TNF receptors bound to a trimer of 

ligands (He and Garcia, 2004). However, O-glycosylation of the p75NTR stalk domain is 

required for receptor sorting (Yeaman et al., 1997; Bronfman and Fainzilber, 2004). 

Recent results have shown that NT-3 and NGF bind to p75NTR in a 2:2 ligand-receptor 

stoichiometry, forming a central homodimer around which two glycosylated p75NTR 

molecules bind symmetrically (Gong et al., 2008; Feng et al., 2010). The p75NTR forms 

dimers even in the absence of neurotrophins through cysteinyl residues within the 

transmembrane domain, and it was proposed that the interaction of the neurotrophins with 

the receptor complex induces a conformational chance in the p75NTR intracellular domain 

which may allow the recruitment of the effector molecules (Vilar et al., 2009b; Vilar et al., 

2009a). Furthermore, no evidence for a direct TrkA/p75NTR interaction has been found 

(Wehrman et al., 2007), suggesting that p75NTR and Trk receptors most likely 

communicate through convergence of downstream signaling pathways and/or shared 

adaptor molecules, rather than direct extracellular interactions (Chen et al., 2009). 

 

 1.4.2.3- p75NTR post-translational modifications and regulation of activity  

 

p75NTR is palmitoylated by thioester formation at cysteine 279 (Barker et al., 1994), 

which facilitates translocation to cholesterol- and sphingolipid-rich bilayer membranes 

(Huang et al. 1999; Wahrle et al., 2002). Although the singleN-glycosylation site is not 

required for receptor sorting, the juxtamembrane region of the extracellular domainis rich 

in O-glycosylated serine/threonine residues contains an apical targeting signal for p75NTR 

sorting in polarized cells (Yeaman et al., 1997). 

p75NTR undergoes regulated intramembrane proteolysis (RIP) by the tumor 

necrosis factor-#-converting enzyme (TACE), also known as disintegrin and 

metalloprotease domain17 (ADAM17), a phorbol 12-myristate 13-acetate (PMA)-inducible 

membrane protein #-secretase, generating a soluble extracellular domain (p75ECD). This 

cleavage may be followed by a presenilin 1 (PS1)-dependent !$secretase cleavage of the 

resulting 25 KDa fragment, releasing the soluble 20 KDa fragment of the intracellular 

domain (p75ICD) into the cytoplasm (Urdiales et al., 1998; Kanning et al., 2003; 

Srinivasan et al., 2007; Ceni et al., 2010). This "-secretase cleavage occurs in the middle 

of the transmembrane domain (Jung et al., 2003) and requires prior %-secretase cleavage 

in a 15-amino-acid strech of the p75NTR stalk domain (Zampieri et al., 2005). 

Palmitoylation of the p75NTR C-terminal fragment regulates apoptotic signaling and 

is required for subsequent cleavage by !-secretase (Underwood et al., 2008). 
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The sequential #- and !-secretase-mediated cleavage is required for p75NTR-

triggered intracellular signaling, which leads to either apoptotic cell death, upon JNK3 

activation (Kenchappa et al., 2006; Srinivasan et al., 2007), or cell survival, dependent on 

activation of the PI3K/Akt signaling pathway (Ceni et al., 2010). 

 

1.4.2.4- p75NTR-mediated signaling pathways and cellular effects 

 

Several signaling pathways are activated upon neurotrophin binding to 

p75NTRthrough recruitment of adaptor proteins, including TRAF6, neurotrophin receptor-

interacting factor (NRIF), melanoma-associated antigen (MAGE), neurotrophin receptor 

p75 interacting MAGE homologue (NRAGE), Schwann cell factor 1 (SC1), RhoGDI and 

other proteins (Yamashita et al., 2005; Schecterson and Bothwell, 2010). 

The activation of p75NTR triggers multiple downstream proapoptotic signals, 

including the stress-activated c-Jun N-terminal kinase (JNK), ceramides and the small 

GTP binding protein Rac. In contrast, p75NTR also promotes cell survival signaling through 

the transcription factor NF-!B and acts as a cell cycle regulator of neuronal precursor 

cells. 

 

1.4.2.4.1- p75NTR-inducedNF-!B activation and cell survival 

 

Neurotrophin binding to p75NTR induces NF-!B activation, thereby promoting NF-

!B-dependent neuronal survival (Hamanoue et al. 1999; Middleton et al. 2000) through 

TRAF6 interaction with the cytoplasmic domain of p75NTR (Khursigara et al. 1999). 

Interleukin-1 receptor-associated kinase (IRAK) is recruited to this complex, resulting in 

formation of a complex of TRAF6 and IRAK with atypical protein kinase C-& (aPKC-&) and 

the aPKC-interacting protein p62 (Wooten et al. 2001; Vandenplas et al. 2002). I!B 

kinase-$ (IKK-$), which is a substrate of aPKC, is recruited to and activated in this 

complex. IKK-mediated phosphorylation of I!B releases the transcription factor NF-!B, 

which then translocates to the nucleus activating the transcription of survival genes. Both 

the p62 and the kinase activity of IRAK are required for NF-!B activation. The Ran-binding 

protein in the microtubule-organizing center (RanBPM) negatively regulates the p75NTR-

induced activation of the NF-!B pathway by interacting with TRAF6 and affecting its 

ubiquitination (Wang et al., 2012).  

NF-!B can also be activated by the interaction between the caspase recruitment domain 

(CARD) of receptor-interacting protein 2 (RIP-2) and the death domain of p75NTR, 

demonstrating how adaptor proteins account for the ability of neurotrophins to trigger a 

bifunctional switch for cell survival or cell death through the same p75NTR (Khursigara et 
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al., 2001). Alternatively, upon neurotrophin binding to p75NTR, the mitogen-activated 

protein (MAP) kinase p38beta2, activated by MAP kinase kinase (MKK) 6, specifically 

interacts with the 5th and 6th helices of the p75NTR intracytoplasmic region and induces its 

phosphorylation, thereby increasing the activation of NF-!B and decreasing that of AP-1 

(Wang et al., 2000). Upon excision from the p75NTR, p75ICD can translocate to the 

nucleus, through an unknown mechanism (Peng et al., 2004; Srinivasan et al., 2007), and 

activate NF-!B (Kanning et al., 2003) in concert with the TNF receptor associated factor 6 

(TRAF6). The latter requires the NGF-induced association between PS1 and TRAF6 for 

TRAF6 E3 ligase-mediated ubiquitination of p75NTR and the regulated intramembrane 

proteolysis of p75NTR (Powell et al., 2009). TrkA and TrkB but not TrkC receptors mediate 

this cleavage (Kanning et al., 2003). TrkA and TrkB induce MEK-dependent 

phosphorylation of ADAM17 at the intracellular residue threonine 735, activating this 

transmembrane cysteine protease and triggering cleavage of p75NTR in primary cerebellar 

granule neurons (Ceni et al., 2010). In turn, Trk-induced ADAM17 phosphorylation and 

generation of the p75ICD is required for neurotrophin-induced Erk and Akt activation and 

survival signaling in a feedback mechanism sustaining Trk-dependent cell survival 

(Kommaddi et al., 2011). However, this contrasts with the p75NTR-induced NF-!B 

activation, which promotes apoptosis in neonatal rat oligodendrocytes (Yoon et al. 1998) 

and prion-infected neurons (Bai et al., 2008).  

Overall, p75NTR-induced NF-!B activation may be ligand-dependent, through NGF 

binding (Carter et al., 1996) or ligand-independent, through signaling inducedby disulfide-

crosslinked p75NTR dimmers (Vilar et al., 2009a). 

 

1.4.2.4.2- p75NTR-inducedJNK activation and apoptosis 

 

p75NTR signaling promotes apoptosis through two regions of the receptor, the 

cytoplasmic juxtamembrane “chopper” domain (Coulson et al., 2000) and the intracellular 

death domain (Wang et al., 2001), and an array of adaptor proteins, including the 

melanoma-associated antigen (MAGE), neurotrophin receptor p75 interacting MAGE 

homologue (NRAGE) and Schwann cell factor 1 (SC1), triggering the Jun kinase cascade 

(Yamashita et al., 2005; Niewiadomska et al., 2011). Palmitoylation of p75NTR is necessary 

for the induction of apoptosis through the “Chopper” domain (Diarra et al., 2009). 

Key intermediates of p75NTR-induced activation of the Jun kinase cascade also 

include the neurotrophin receptor interacting factor (NRIF) and the E3 ubiquitin ligase 

TRAF6 (Yeiser et al. 2004; Linggi et al. 2005), which form a complex whereby TRAF6-

mediated K63 ubiquitination of NRIF enables NRIF translocation into the nucleus (Geetha 

et al. 2005b). Nuclear transport of NRIF complexed to p75ICD requires ligand-dependent 
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"-secretase-mediated cleavage of p75NTR (Kenchappa et al. 2006) and activates the 

expression of pro-apoptotic genes, including BAX, BAD and BAK, and caspases-9, -6 and 

-3. (Coulson et al., 2000; Huang and Reichardt, 2003; De Felice et al., 2008; Diolaiti et al., 

2007; Khwaja et al., 2006). Upon neurotrophin binding, p75NTR stimulation may also 

activate p53 and the expression of pro-apoptotic genes, including BAX, concomitantly 

inducing the expression of Fas in neuronal cells and promoting apoptosis through Fas 

receptor activation (Reichardt, 2006). 

In sympathetic neurons, activation of the Jun kinase cascade by p75NTR involves 

Cdc42 (Bazenet et al. 1998) and the downstream MAP kinase kinase kinase apoptosis 

signal-regulated kinase 1 (ASK1), which inhibits cell death induced by constitutively active 

Cdc42 (Kanamoto et al. 2000). The Jun kinase kinase MKK7 likely provides a link 

between ASK1 and Jun kinase (Kanamoto et al. 2000). In oligodendrocytes, Rac 

activation is required for p75NTR-induced apoptosis, demonstrating that different cells may 

use different intermediates in the pathway that leads to activation of the Jun-kinase 

signaling-pathway (Harrington et al. 2002).  

Activation of p75NTR is not always related with neuronal death and, in fact, during 

development of the sympathetic nervous system, the p75NTR has a dual function: 

promoting survival together with TrkA in response to NGF and inducing cell death upon 

binding pro- or mature BDNF.BDNF-binding to p75NTR activates JNK3, inducing 

TACE/ADAM17 mRNA and protein up-regulation, which promotes receptor proteolysis, 

leading to prolonged activation of JNK3 and subsequent apoptosis in sympathetic 

neurons (Kenchappa et al., 2010). Conversely, TrkA may form a heteromeric complex 

with either the full-length p75NTR or the 25 KDa membrane-tethered C-terminal fragment to 

promote neuronal survival, but not with the p75ICD. This indicates that!-secretase-

mediated removal of the p75NTR transmembrane domain may disturb the interaction with 

TrkA, thereby affecting the formation/disassembly of the p75NTR-TrkA receptor complex, 

by regulating the availability of the transmembrane domain required for this interaction 

(Jung et al., 2003). However, results subsequently found have contradicted the formation 

of the full-length p75NTR-TrkA receptor complex (Wehrman et al., 2007). 

 

1.4.2.4.3- p75NTR-inducedceramide production and downstream signaling 

 

Neurotrophin binding to p75NTR activates acidic sphingomyelinase, resulting in the 

production of ceramides, lipid components of cell membranes, which can also act as 

second messengers (Dobrowsky et al., 1994).  Ceramides may induce both apoptotic and 

prosurvival effects downstream of p75NTR activation, according to their levels within cells 

(DeFreitas et al., 2001; Song and Posse de Chaves, 2003). They trigger a number of 
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signaling pathways, including the Erk, Jun kinase and NF-!B signalling pathways, in 

addition to TrkA receptor activity, which is mediated through phosphorylation of serine 

residues (MacPhee and Barker, 1997; Muller et al., 1998). Ceramides bind Raf, thereby 

inhibiting ERK signaling (Muller et al., 1998), and may also inhibit or promote PI3-Kinase 

signaling through different mechanisms, depending on the neural populations (MacPhee 

and Barker, 1997; Zundel et al., 2000) and signal intensity (Blöchl and Blöchl, 2007). 
 

1.4.2.4.4- p75NTR-induced RhoA activation and neurite outgrowth 

 

CNS neurons are mostly unable to regrow naturally after neural injury for several 

reasons, including scar formation, myelin inhibition and decreased intrinsic regrowth 

potential after development (Chen et al., 2009). Myelin-based growth inhibitors (MBGIs), 

including Nogo, myelin-associated glycoprotein (MAG) and oligodendrocyte myelin 

glycoprotein (OMgp), all bind to the Nogo-66 receptor (NgR), negatively regulating neurite 

outgrowth (Wang et al., 2002) by modulating Ras homologue member A (RhoA) activity 

(Gehler et al., 2004). The NgR lacks an intracellular domain and, thus, requires the 

formation of the NgR-Leucine rich repeat and Ig domain containing 1 (LINGO-1)-p75NTR 

complex to trigger its cellular effects (Wong et al., 2002; Mi et al., 2004). RhoA inhibits 

regeneration, as demonstrated by NgR, p75NTR and RhoA siRNA silencing, which 

significantly blocks myelin inhibition (Ahmed et al., 2005), but RhoA does not bind directly 

to the NgR-LINGO-1-p75NTR complex. RhoA-GDP is usually bound to the Rho guanine 

dissociation inhibitor# (Rho-GDI#), which prevents RhoA activation by guanine exchange 

factors (GEFs), whilst the GTPase activating proteins (GAPs) accelerate the intrinsic 

GTPase activity of Rho proteins (Luo, 2000). 
The binding of MBGIs to the NgR-LINGO-1-p75NTR complex enables p75NTR to bind 

to Rho-GDI# through the fifth helix of its death domain, releasing RhoA from Rho-GDI. 

After being activated by GEFs, RhoA stimulates Rho-activated kinase (ROCK), 

depolymerizing actin filaments and leading to growth cone collapse (Yamashita and 

Tohyama, 2003). Conversely, the binding of mature NGF (Yamashita et al., 1999), NT-3 

(McQuillen et al., 2002) and BDNF (Gehler et al., 2004) to p75NTR abolishes the interaction 

of p75NTR with Rho-GDI%, which leads to the inactivation of RhoA, likely through 

p190RhoGAP and Rap-dependent RhoGAP (ARAP3), and promotes neurite outgrowth 

(Jeon et al., 2010). p75NTR additionally facilitates internalization of Trk receptors, through 

recruitment of an E2–E3 ubiquitin ligase complex that ubiquitinates Trk receptors, and 

subsequent signaling events that promote axon growth, retrograde transport and nuclear 

signaling at the cell soma (Geetha et al., 2005). Likewise, p75NTR promotes retrograde 
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transport of neurotrophins in vivo, which may enhance axon growth through the same 

mechanism (Curtis et al., 1995; von Bartheld et al., 1996; Butowt et al., 2009). 

However, the precursor forms of NGF, BDNF and NT-3 apparently have the 

opposite effect, mimicking MBGI-induced inhibition of neurite outgrowth. In hippocampal 

neurons, the Rac GEF Trio dissociates from the p75NTR–sortilin-related VPS10 domain-

containing receptor 2 (SorCS2) upon pro-NGF binding, decreasing Rac activity and 

impairing filopodial formation. In parallel, PKC is activated, phosphorylating and 

inactivating the actin-bundling protein fascin, which leads to destabilization and collapse 

of actin filaments and, consequently, acute growth cone retraction (Deinhardt et al., 2011). 

In cortical and dorsal root ganglion neurons, pro-BDNF promotes a dose- and time-

dependent activation of RhoA via p75NTR and significant neurite collapse, mediated by 

ROCK and the collapsin response mediator protein-2 (CRMP-2) (Sun et al., 2012).  

Therefore, the specificity of mature neurotrophins vs. proneurotrophins actions 

partly depends on the formation of distinct co-receptor complexes (Teng et al., 2011). 

 

Figure 3. Schematic representation of mature neurotrophin (NT) and proneurotrophin 

(proNT) actions, and the diversity of coreceptor interactions (in Teng et al., 2010). 

 

Neurite growth and connectivity are severely affected upon full knockdown of 

p75NTR, which demonstrated that p75NTR has a key role in the growth cone outgrowth 

(Bentley et al., 2000). However, contradicting results on regulated proteolysis of 

p75NTRand neurite outgrowth and regeneration have been reported. On the one hand, 

MAG binding to p75NTR cerebellar neurons induces sequential %- and "-secretase 

proteolytic cleavage of p75NTR, which is required for the activation of Rho and inhibition of 

neurite outgrowth (Domeniconi et al., 2005). On the other hand, TACE-induced regulated 
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intramembranous proteolysis of p75NTR abrogates axon growth inhibitory signaling, 

thereby enabling CNS axon/neurite growth (Ahmed et al., 2006). 

 

Additional neurite growth inhibitory factors, including semaphorin3A (Tang et al., 

2004), repulsive guidance molecule b (Liu et al., 2009) and ephrin-B3 (Benson et al., 

2005), preclude the regeneration of CNS neurons through p75NTR-mediated signaling 

(Naska et al., 2010). 

 

1.4.2.4.5- p75NTR-induced Ras/ERK signaling  
 

 Similarly to Trk receptors, p75NTR can also activate the Ras/ERK pathway because 

the death domain has two tyrosine residues, Y337 and Y336, which can be 

phosphorylated upon p75NTR activation. In particular, Y366 phosphorylation stimulates 

Ras, a small GTPase involved in neuron growth regulation, through the same adaptor 

proteins as the Trk receptors (Blöchl et al., 2004). Furthermore, ceramide (Song et al., 

2003) and Ras (Xue et al., 2000) promote robust neuronal survival by a mechanism 

dependent on the juxtamembrane sequence of the cytoplasmic region of p75NTR and 

involving the activation of PI3K and the downstream kinase Akt (Costantini et al., 2005; 

Roux et al., 2001). Akt is responsible for the balance between pro- and anti-apoptotic 

proteins, including Bcl-2, promoting neuronal survival (Frade et al., 1996; Wehrman et al., 

2007). 

 However, while p75NTR activation of Ras is relatively brief, lasting only a few 

minutes, rapidly returning to basal levels (Sahai et al., 2001; Peng et al., 2004), activation 

of Ras by Trk receptors, which is also fast, is sustained for much longer periods of time 

(Shamovsky et al., 1999; Schor et al., 2005; Diarra et al., 2009). Therefore, p75NTR-

induced short-term activation of Ras signaling mediates neuronal proliferation, whilst Trk 

receptor-induced long-term activation may also trigger the differentiation process, inducing 

ERK-mediated long-lasting effects, through up-regulation of genes encoding proteins 

involved in both differentiation and proliferation (Cargnello and Roux, 2011). 

 

 In summary, neurotrophin stimulation of differentiating neurons shifts the initially 

trophic role of p75NTR signaling during development into a negative growth regulator and 

an apoptosis inductor upon overstimulation (Blöchl and Blöchl, 2007). 
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         1.5- Neurotrophin heterodimers 

 

 Neurotrophins form stable, non-covalently linked homodimers at physiologically 

active concentrations but may also form non-covalent heterodimers (Radziejewski and 

Robinson, 1993). BDNF and NT-3 establish highly stable heterodimers, although10-fold 

less active in neuronal survival assays than a 50:50 mixture of BDNF and NT3 

homodimers (Jungbluth et al., 1994). In contrast, the formation of heterodimers involving 

NGF is extremely unfavorable (Arakawa et al., 1994) and heterodimers containing NGF 

subunits undergo gradual rearrangement to the homodimers (Radziejewski and Robinson, 

1993). Nevertheless, the NGF-NT4 heterodimer has been shown to produce neuronal 

differentiation in PC12 cells as effectively as NGF (Treanor et al., 1995). 

The crystal structures of NGF (McDonald et al., 1991) and NT4 (Robinson et al., 1999) 

homodimers, in addition to BDNF/NT3 (Robinson et al., 1995) and BDNF/NT4 (Robinson 

et al., 1999) heterodimers have been reported, enabling the comparison of such highly 

homologous structures (Figure 4). 

 

 
Figure 4. Superpositions of the four neurotrophins (in Robinson et al., 1999) with mouse 

NGF in green, human BDNF from the BDNF/NT3 heterodimer in red, NT3 from the 

BDNF/NT3 heterodimer in yellow and NT4 from the BDNF/NT4 heterodimer in blue. 
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2. BDNF gene structure and expression 

 

In humans, the Bdnf gene spans approximately 70Kb in the short arm of 

chromosome 11 at position 13,between the loci FSHB and HVBS1 (Jones and Reichardt, 

1990), has a complex structure consisting of 11 exons and 9 functional promoters 

(Pruunsild et al., 2007), and each transcript contains multiple 5’ upstream translation 

initiation codons regulating translational efficiency  (Kidane et al, 2009). In mice and rats, 

11 different 5' untranslated regions (UTRs) generate 22 different transcripts, encoded by 9 

exons (Figure 5). As in humans, each 5' exon is alternatively spliced to downstream exon 

IX (the coding region of BDNF) and a 3'UTR containing two potential polyadenylation 

signals (Aid et al., 2007). 

The human and rodent (mice and rat) Bdnf genes have similar structures and 

splicing patterns. However, the Bdnf gene has two human-specific exons, Vh and VIIIh, 

unused as 5' exons but always spliced with exon V, a longer and more complexly spliced 

exon IX 5'UTR and a non-coding antisense Bdnfos gene (Figure 6), absent in rodents (Liu 

et al., 2005). In addition, the splice donor site in human exon VII contains nucleotides GG 

instead of the conventional GU sequence characteristic of eukaryotes (Black, 2003). Brain 

Bdnf and Bdnfos transcripts form dsRNA duplexes, in vivo, potentially acting as cis-

antisense RNAs, targeting one of the initial transcripts (Borsani et al., 2005), or directly 

inhibiting Bdnftranscription and/or regulating pre-mRNA splicing, although the mRNA 

levels are not specifically reduced in tissues with high expression of Bdnfos transcripts 

(Pruunsild et al., 2007). 

Multiple BDNF promoters enable a developmentally, tissue specific and activity-

dependent regulated bidirectional transcription (Pruunsild et al., 2007).  

 
Figure 5. Schematic representation of rodent (A) and human (B) BDNF gene structures 

(adapted from Koppel et al., 2009). BDNF genes consist of multiple untranslated 5' exons 

spliced together with a common 3’ protein-coding sequence in exon IX (transcriptional 

start sites are indicated with arrows). BDNF transcription can also start from exon IX 

introducing a unique 5' UTR sequence. Filled boxes indicate BDNF coding sequences 

whilst unfilled boxes correspond to untranslated sequences. Hatched lines indicate sites 

of alternative splicing. Bdnf exon IX, which encodes the BDNF protein and 3’UTR, 



 48 

undergoes internal splicing, and transcription may also start from this exon, divided into 

regions “a”, “b”, “c” and “d” as indicated in the box marking the position of exon IX. 

 
 

Figure 6. Alternative transcripts of the human Bdnf (top) and antiBdnf (bottom) genes 

(adapted from Pruunsild et al., 2007). The numbers below exons (boxes) and above 

introns (lines) indicate their sizes in base pairs, if not shown otherwise. ATG and TAG 

mark the positions of translational star and stop codons, respectively. Vertical dashed 

lines indicate alternative splicing sites for the respective axons. 

 



 49 

2.1- Developmental regulation of Bdnf expression 

 

During embryonic development, BDNF expression is more abundant in the 

nervous system than other tissues. However, the highest levels are reached during post-

natal development, when BDNF mRNA and protein expression significantly increase in 

the brain, peaking at P10-14 and decreasing thereafter (Katoh-Semba et al., 1997).  While 

BDNF exons I- and II-containing transcripts are only found in adults, exons III and IV 

transcripts are mainly expressed during the postnatal period (Pattabiraman et al., 2005). 

 

2.2- Subcellular and tissue-specific BDNF expression  

 

In terms of tissue-specific expression, the hippocampus shows the highest levels 

of Bdnfexpression in the nervous system, followed by the amygdala, cerebral cortex and 

hypothalamus (Ernfors et al., 1994; Timmusk et al., 1994; Kawamoto et al., 1996; Conner 

et al., 1997). In general, Bdnfis found in almost all brain tissues, but the dentate nucleus, 

white matter of the cerebellum, substatia nigra and epiphysis show very low BDNF 

expression (Pruunsild et al., 2007). In the peripheral tissues BDNF is found in very low 

concentrations (Katoh-Semba et al., 1997). Although BDNF is more expressed in the 

developing brain than in other organs, this neurotrophin is also found in non-neural 

tissues of adults, especially the thymus, liver, spleen, heart, and lung (Maisonpierre et. al., 

1990; Hohn et al., 1990; Ernfors et al., 1990; Maisonpierre et. al., 1991; Katoh-Semba et 

al., 1997). Bdnf transcripts containing exons I, II and III are expressed throughout the 

brain, whereas exon IV transcripts are mainly expressed outside the brain (Tardito et al., 

2006). 

In neurons, Bdnf exons I- and II-containing transcripts are typically excluded from 

the soma whilst exon IV is strongly expressed in the soma and proximal dendrites (Aliaga 

et al., 2009) and exon III is restricted to the soma (Pattabiraman et al., 2005). In 

hippocampal neurons, silencing individual endogenous transcripts or overexpressing 

Bdnf-Gfp transcripts has demonstrated that exons I- and IV-containing transcripts 

selectively affect proximal dendrites, whilst II and VI affect distal dendrites, reflecting a 

segregation of BDNF transcripts, which results in a highly selective activation of TrkB 

receptors, thereby enabling BDNF to differentially shape distinct dendritic compartments 

(Baj et al., 2011). Exons I- and II-containing transcripts are absent from cultured 

hypothalamic neurons (Aliaga et al., 2009) and only expressed in adult cerebrocortical 

neurons (Pattabiraman et al., 2005). 
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2.3- Activity-dependent Bdnf expression 

 

Neuronal activity regulates Bdnf transcription through calcium-mediated pathways 

(West et al., 2001; Flavell and Greenberg, 2008) acting on promoters I and IV (Tao et al., 

2002; Rattiner et al., 2004; Kidane et al., 2009; Koppel et al., 2010) and distinct 3’UTRs 

(Lau et al., 2010). Upregulation of BDNF transcription requires increased intracellular 

calcium concentrations ([Ca2+]i) (Zafra et al., 1992; Ghosh et al., 1994; Sano et al., 1996), 

likely dependent on Ca2+influx through L-type voltage-gated calcium channels (VGCCs) or 

NMDA receptors (Shieh et al., 1998; Tao et al., 1998; Tabuchi et al., 2000). In fact, 

numerous studies have shown that Bdnf mRNA expression is increased upon glutamate 

receptor activation (Zafra et al., 1990; Zafra et al., 1991; Lindefors et al., 1992; Lauterborn 

et al., 2000), but halted upon !-aminobutyric acid type A (GABAA) receptor activation 

(Lindholm et al., 1994; Berninger et al., 1995).  

Rodent Bdnf (rBdnf) genes have several effectors of calcium-dependent 

upregulation on promotersI and IV. Depolarization-induced Ca2+influx upon neuronal 

activity leads to CaM Kinase IV-dependent phosphorylation of cAMP response element-

binding protein (CREB) (alias CREB1) on Ser-133 (Shieh et al., 1998; Tao et al., 1998). 

The duration of CREB phosphorylation is longer when calcium influx occurs through L-

type VGCCs rather than through NMDA receptor, showing that distinct stimuli trigger 

different gene expression readouts (Hardingham et al., 1999). 

CREB1 binding to cAMP/Ca2+-response element (CRE) upregulates the Bdnf 

promoter IV (Shieh et al., 1998; Tao et al., 1998), which is modulated by upstream 

stimulatory factors (USFs) and calcium-responsive transcription factor (CaRF) binding to 

an E-box element and CaRE1 (Ca2+-response element 1) element, respectively (Tao et 

al., 2002; Chen et al., 2003a). MeCP2 (methyl-CpG-binding protein 2), BHLHB2 (basic 

helix-loop-helix B2) and NF!B (nuclear factor !B) also regulate promoter IV (Chen et al., 

2003b; Jiang et al., 2008) but CRE has a key role because CRE knock-in mutations block 

mouse Bdnf (mBdnf) promoter IV activity-responsiveness in vivo (Hong et al., 2008).  

Neuronal activity also induces rBdnf exon I (Timmusk et al., 1993) through CREB, 

USFs, MEF2D (myocyte enhancer factor 2D), and NF!B (Tabuchi et al., 2002; Lubin et 

al., 2007; Flavell et al., 2008). NPAS4 (neuronal PAS domain protein 4) binds unspecified 

sites of mBdnf promoters I and IV (Liu et al., 2006). Similarly, human Bdnf transcripts 

containing exons I and IV and 5’-extended exon IXa show strong activity-dependent 

induction in vivo, while exon II and III transcripts show only moderate induction (Koppel et 

al, 2009). The absence of induction of exon VI-containing transcripts is also consistent the 

results found for Bdnf mRNAs in rodents (Timmusk et al., 1993; Metsis et al., 1993; Aid et 

al., 2007). 



 51 

Taken together, the evidences available indicate that a cooperation between 

CREB/CRE and CaRF/CaRE1 mediate activity-dependent Bdnf transcription.  

 

 

 
Figure 7. Activity-dependent Bdnf transcription model (in West et al., 2002). The 

activation of plasma-membrane channels, including NMDA receptors and L-type VGCCs, 

which allow the influx of calcium, lead to the transcriptional activation of c-Fos and BDNF. 

The calcium influx induces phosphorylation of CREB at Ser133, recruitment of the 

transcriptional coactivator CBP (CREB-binding protein) and activation of the transcription 

factor CaRF (calcium-response factor). The phosphorylation of CREB at Ser142 and 143 

inhibits the association of phosphorylated Ser133 with CBP, suggesting that an alternative 

cofactor might be recruited to CREB in response to calcium signals. CaRF cooperates 

with CREB to promote Bdnf transcription. 

 

Recently, the direct interaction between scaffolding proteins RACK1 and 14-3-3& 

has been show to regulate Bdnftranscription by triggering cAMP-dependent RACK1 

nuclear translocation (Neasta et al., 2012). However, the effectors of RACK1-regulated 

BDNF transcription remain completely unknown. 

Bdnfmay be considered an immediate-early gene but its transcription is rather slow 

(2-4h), when compared to prototype c-fos, supporting two critical findings. Firstly, activity-

dependent Bdnf expression is further associated to long-lasting alterations with synaptic 

physiology and morphology (Lu, 2003). Bdnf mRNA expression in the hippocampus 
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significantly increases 2-4h after tetanic stimulation (Patterson et al., 1992; Morimoto et 

al., 1998), which correlates with late long-term potentiation (L-LTP) and long-term memory 

formation (Abel et al., 1997; Miller et al., 2002; Villareal et al., 2002). Secondly, synapse-

specific modulation by BDNF expression relies on local protein translation of previously 

targeted Bdnf transcripts (Steward and Schuman, 2001). Bdnf transcripts result from 

regulated polyadenylation at the two alternative sites in the Bdnf gene, generating two 

mRNA pools with either a long or a short 3’UTR (Timmusk et al., 1993). The long Bdnf 

3'UTR is a cis-acting translation suppressor at rest but promotes fast and strong activation 

of translation upon neuronal activity (Lau et al., 2010). Bdnf transcripts with a long 3'UTR 

are targeted to dendrites (Tongiorgi et al., 1997; An et al., 2008) for local protein 

translation (Kaneko et al., 2012) while those with a short 3'UTR remain in the soma, 

maintaining basal levels of Bdnf expression. Exons II and IV transcripts localize to distal 

dendrites upon activity, whilst I and IV remain in the soma, even after strong neuronal 

activation (Pattabiraman et al., 2005; Chiaruttini et al., 2008). As previously mentioned, 

exons I- and IV-containing transcripts selectively affect proximal dendrites, whilst II and VI 

affect distal dendrites (Baj et al., 2011). Dendritic trafficking of Bdnf mRNA can be 

mediated by translin-dependent (Chiaruttini et al., 2009) or -independent (Wu et al., 2011) 

mechanisms but the activity-dependent targeting, induced by exogenous application of 

recombinant BDNF, is not blocked by translin knockdown, in cultured hippocampal 

neurons (Wu et al., 2011). The G196A (Val66Met) mutation blocks the trafficking of Bdnf 

transcripts to dendrites (Chiaruttini et al., 2009), which plays a key role in mediating 

synaptic plasticity (An et al., 2008; Lu et al., 2008; Tongiorgi, 2008). 

Thus far, no evidence for intra-axonal protein synthesis of BDNF has been found, 

although local translation also occurs in both growing and mature axons (Jung et al., 

2012). In hippocampal neurons, dendritic BDNF synthesis drives retrograde homeostatic 

plasticity of presynaptic function (Jakawich et al., 2010) but the lack of postsynaptic BDNF 

localization in adult neurons suggests otherwise (Dieni et al., 2012). Nevertheless, BDNF 

activity-dependent recycling (Santi et al., 2006) and self-amplifying autocrine actions 

(Cheng et al., 2011) indicates that axons may not require local BDNF synthesis, but 

instead rely on fast anterograde axonal transport of TrkB- and BDNF-containing vesicles 

(Adachi et al., 2005, Huang et al., 2011).  

Bdnf expression is also regulated at a post-transcriptional level by microRNAs, 

small non-coding RNAs of approximately 22 nucleotides, which target mRNA sequences 

by 3’UTR base-pairing, triggering mRNA cleavage or translation repression (Filipowicz et 

al., 2008). The more complex a gene is, the higher the probability of harbouring miRNA 

targets will be (Cui et al., 2007). Predictably, considering the high complexity of Bdnf cis-

regulation, numerous miRNA targets have been validated for human Bdnf 3’UTR 
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sequences, including miR-1/206 (Lewis et al., 2003), miR-30a, miR-30a-5p and miR-195 

(Mellios et al., 2009), miR-124 and let-7d (Chandrasekar and Dreyer, 2009), miR-15a 

(Friedman et al., 2009), miR-210 (Fasanaro et al., 2009) and allele-specific miR-26a and 

miR26b (Caputo et al., 2011). Although no activity-dependent mechanism for regulation of 

BDNF expression directly through microRNA has been found, thus far, BDNF increases 

miR-212 (Im et al., 2010; Remenyi et al., 2010) and miR-132 (Kawashima et al., 2010) 

expression, through the MAPK/ERK signaling pathway, in cultured cortical neurons, 

specifically up-regulating postsynaptic, but not presynaptic proteins, namely the glutamate 

receptor subunitsGluN2A, GluN2B, and GluA1 (Kawashima et al., 2010). In turn, miR-212 

and miR-132 have recognition elements in the extended 3’UTR of brain MeCP2, down-

regulating MeCP2 translation and, consequently, BDNF levels in vivo, through a CREB-

induced homeostatic mechanism of feedback regulation (Klein et al., 2007). Additionally, 

miR-206 represses BDNF expression during myogenic differentiation, specifically in 

skeletal muscle cells (Miura et al., 2012), but the mechanisms involved remain 

incompletely elucidated. 

 
 

Figure 8. Inducers and targets of the miR-212/132 locus (in Wanet et al., 2012). In 

neurons, various stimuli (neurotrophins, including BDNF, photic cues or an extended 

access to cocaine) lead to transcription of the miR-212/132 locus through CREB 

activation, although an unidentified ERK1/2-dependent, MSK1/2- and CREB-independent 

mechanism may also contribute to miR-212/132 expression in BDNF-stimulated neurons 

(dashed arrow). miR-212/132 are involved in neurite outgrowth, dendrite morphology and 
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resetting of the circadian clock, in addition toparticipating in synaptic functions by up-

regulating the expression of the glutamate receptors GluN2A, GluN2B and GluA1.  

 

 Various studies in animal models have shown that BDNF expression is also 

regulated by visual stimuli (Castren et al., 1992; Schoups et al., 1995; Pollock et al., 

2001). Similarly to darkness (Karpova et al., 2010), monocular activity blockade causes a 

marked decrease in Bdnf mRNA and protein in the visual cortex corresponding to the 

deprived eye (Bozzi et al., 1995; Rossi et al, 1999; Lein and Shatz, 2000). Conversely, 

sensory stimulation of whiskers up-regulates BDNF in the barrel cortex (Rocamora et al., 

1996; Nanda and Mack, 2000). 

 Aerobic exercise, namely running (Neeper et al., 1996; Oliff et al., 1998; Russo-

Neustadt et al., 1999; Berchtold et al., 2001; Chen et al., 2009; Zajac et al., 2010; Gomez-

Pinilla et al., 2011), sleep and circadian rhythm (Bova et al., 1998; Liang et al., 1998; 

Berchtold et al., 1999; Cirelli and Tononi, 2000; Fujihara et al., 2003), environmental 

enrichment (Thiriet et al., 2008; Zajac et al., 2010; Kuzamaki et al., 2011) and dietary 

restriction (Lee et al., 2000) are found among some of the factors that differentially affect 

BDNF gene expression under physiological conditions. 

Under pathological conditions, decreased BDNF levels have been found in the 

hippocampus of Alzheimer's disease (AD) patients (Connor et al., 1997) and in the 

striatum of Huntington’s disease (HD) patients (Ferrer et al., 2000). Stress (Smith et al., 

1995; Ueyama et al., 1997; Taliaz et al., 2011; Yu et al., 2012), depression (Kokaia et al., 

1993; Kawahara et al., 1997) and ischemia (Lindvall et al., 1992; Miyake et al., 2002) also 

influence BDNF expression. Bdnf II-IX mRNA is significantly reduced in the dorsolateral 

prefrontal cortex (DLPFC) of patients with schizophrenia (Wong et al., 2010). 

In summary, miRNA-dependent regulation (Klein et al., 2007), spatial segregation 

of different BDNF transcripts (Tongiorgi et al., 2006; Chiaruttini et al., 2008; Baj et al., 

2011) and local-protein translation at proximal and distal dendrites (Baj et al., 2011) 

modulate BDNF availability and function. This tight control of BDNF expression and high 

homology among species, from fish to mammals, with nearly identical primary sequences 

and conserved tissue distribution (Heinrich and Pagtakhan, 2004; Aid et al., 2007; 

Pruunsild et al., 2007; Tettamanti et al., 2010), imply a strong functional significance 

(Cohen-Cory et al., 2010).  
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3. BDNF post-translational modifications, transport and release 

 

All Bdnf transcripts encode the same 32-kDa precursor protein, proBDNF, 

regardless of the promoter used and polyadenylation site (Lee et al., 2001). BDNF is 

expressed as a preproprotein, which consists of the mature BDNF domain, corresponding 

to the C-terminal portion of polypeptide precursor, a prosequence of 112 amino acids and 

a N-terminal signal sequence of 18 amino acid residues (Pruunsild et al., 2007). Exons I, 

VII and VIII contain in-frame ATG codons that could be used at alternative translation sites 

originating prepro-BDNF proteins with longer N-termini (Figure 9). 

 

 

(A) 

 
 

(B) 

prepro-BDNF 

     pro-BDNF 

 

 

 
  Signal  

Sequence        BDNF 

 

Figure 9.Amino acid sequence of potential prepro-BDNF N-termini (adapted from 

Pruunsild et al., 2007). (A) Sequences encoded by exon IX are in black and sequences 

encoded by alternative 5' exons in blue. The transcripts encoding the respective N-termini 

of BDNF are listed adjacent to the N-terminal sequences. (B) Schematic representation of 

prepro-BDNF, consisting of N-terminal signal sequence (in blue) and pro-BDNF (formed 

by the pro-domain (in green) and mature domain (in red), the latter encompassing the 

BDNF monomer released upon endoproteolytic cleavage. 
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3.1-BDNF proteolytic processing and secretion 

 

 The signal sequence immediately following the initiation codon is cleaved off upon 

translation into the Endoplasmic Reticulum (ER), yielding the precursor form of the 

neurotrophin, pro-BDNF, which undergoes further posttranslational modifications through 

the Golgi apparatus and the trans-Golgi network (TGN). proBDNF may be cleaved 

intracellularly by endoproteases, including furin (Mowla et al., 2001) and proprotein 

convertases (PCs) (Seidah et al., 1996; Mowla et al., 1999), and secreted as the 14 kDa 

mature BDNF upon excision of the COOH-terminal and/or NH2-terminal basic residues by 

exoproteases, carboxypeptidases and aminopeptidases, respectively (Figure 10) (Thomas 

and Davies, 2005; Leßmann and Brigadski, 2009). The cleaved BDNF peptide may also 

undergo N-acetylation of amino-terminal glycine, alanine, serine or threonine residues 

(GAST substrates) adjacent to aspartate, glutamate or asparagine residues (DEN group), 

catalyzed by N-acetyltransferase (NAT) (Bradshaw et al., 1998), or C-terminal amidation, 

catalyzed by peptidylglycine alpha-amidating monooxygenase (PAM) to prevent ionization 

of the COOH-terminus (Eipper et al., 1992; Mulcahy and Nillni, 2007), before release into 

the extracellular matrix. Alternatively, proBDNF may be secreted first and then cleaved by 

extracellular endoproteases, including the serine protease plasmin, generated from tPA 

cleavage of plasminogen (Lee et al., 2001; Pang et al., 2004), and matrix 

metalloproteinases MMP-3, MMP-7 or MMP-9 (Lee et al., 2001; Hwang et al., 2005; 

Mizoguchi et al., 2009), into the pro-domain and mature BDNF. 

The mechanisms regulating intracellular or extracellular cleavage of pro-BDNF are 

not fully understood, possibly depending on the optimal pH of proteases and sequence 

information in the pro-domain C-terminal region (Nomoto et al., 2007), but the extracellular 

processing of pro-BDNF is more efficient and pro-BDNF secretion prevails over the 

release of mature BDNF (Goodman et al., 1996; Farhadi et al., 2000; Mowla et al., 2001; 

Nagappan et al., 2009).  

Furthermore, both pro-BDNF and mature BDNF may be sorted and packaged 

either through the default constitutive secretion pathway or through the regulated 

pathway. Although the relative role of each pathway in the release of the neurotrophin in 

vivo has not been clearly established, the regulated pathway (Chen et al., 2005; Lou et 

al., 2005) is particularly relevant in the release of pro-BDNF in distal neuronal processes 

(Brigadski et al., 2005). Thus far, no single prodomain consensus sequence regulating 

this process of differential sorting has been found (Leßmann and Brigadski, 2009). 

However, several sequence motifs and protein domains contribute to cargo sorting into 

the regulated secretion pathway, through electrostatic interactions between the negatively 

charged amino acids in the pro-domain and the positively charged residues in the mature 
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domain (Ma et al., 2008), or molecular interactions between the pro-domain and TGN 

membrane-resident sorting receptors of secretory granules, including select convertases, 

namely subtilisin/kexin (Seidah et al., 1999), carboxypeptidase E (Lou et al., 2005; Park et 

al., 2008), sortilin (Chen et al., 2005) and chromogranins (Li et al., 2005).  

 
Figure 10. Schematic representation of the BDNF precursor pro-BDNF and the two 

cleavage products, pro-peptide and BDNF (in Leßmann and Brigadski, 2009). (A) The 

different domains of BDNF are drawn to scale along the length of its amino acid 

sequence. Different endoproteases, including protein convertases (PCs), furin, and 

plasmin can cleave at position 130. The position of the val66met single nucleotide 

polymorphism in the prodomain, the carboxypeptidase recognition site, two putative 

matrix-metalloproteinase (MMP) and subtilisin/kexin cleavage sites and a putative N-

glycosylation site are also indicated. (B) proBDNF is first cleaved endoproteolytically by an 

intracellular endopeptidase (furin or PC) or by extracellular plasmin. Intracellular cleavage 

can be followed by the removal of carboxy- and/or amino-terminal (preferentially basic) 

residues by exoproteases (carboxypeptidases and aminopeptidase, respectively). The 

cleaved peptides can undergo further modification: a peptidylglycine alpha-amidating 

monooxygenase (PAM) catalyzes the C-terminal peptide amidation to prevent ionization 

of the COOH-terminus. The N-acetyltransferase (NAT) catalyzes the acetylation of amino-

terminal. 
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In cultured hippocampal neurons, high-frequency neuronal activity controls the 

ratio of extracellular pro-BDNF/mBDNF by regulating the secretion of extracellular 

proteases. Low-frequency stimulation predominantly induces pro-BDNF secretion, 

whereas high-frequency stimulation preferentially induces the secretion of tissue 

plasminogen activator and increases extracellular mBDNF. Furthermore, inhibition of 

extracellular, but not intracellular cleavage of pro-BDNF greatly reduces high-frequency 

stimulation-induced extracellular mBDNF (Nagappan et al., 2009; Greenber et al., 2009).  

 

 

3.2- Activity-dependent BDNF sorting and release 

 

3.2.1- Sorting mechanisms and sub-cellular sites of BDNF release 

 

According to the consensus model, proBDNF binding to sortilin in the Golgi 

enables the correct folding of the mature domain, which then binds carboxypeptidase E, 

thereby sorting the neurotrophin to the regulated secretory pathway (Chen et al., 2005; 

Lou et al., 2005). Syt-IV was recently shown to mediate activity-dependent sorting of 

BDNF-containing vesicles into distinct vesicle pools targeted to axons or dendrites, in 

hippocampal neurons (Dean et al., 2012). The neurotrophin is either transported along 

dendrites via secretory granules (Kohara et al., 2001; Brigadski et al., 2005) or within 

large dense core vesicles in axons (Fawcett et al., 1998; Adachi et al., 2005). Ultimately, 

synaptotagmin-IV mediates neurotrophin release (Dean et al., 2009) through different 

activity-dependent exocytic mechanisms in axons and dendrites (Matsuda et al., 2009).  

Upon calcium influx due to spiked synaptic activity, CAPS2 promotes synaptic and 

extrasynaptic secretion specifically in axons (Sadakata et al., 2004; Sadakata et al., 2007; 

Shinoda et al., 2011), while BDNF is secreted by dendrites through “full-collapse” vesicle 

fusion and complete content extrusion with only a brief increase in activity, which merely 

generates “kiss-and-run” exocytosis in axons (Matsuda et al., 2009).  

In addition to calcium influx-dependent release from presynaptic (Balkowiec and 

Katz, 2002) and postsynaptic (Hartmann et al., 2001) sites through VGCCs, a third, 

calcium influx-independent mechanism regulates BDNF release upon calcium release 

from intracellular stores (Griesbeck et al., 1999).   

The methods used to measure BDNF secretion have relied mainly on recombinant 

overexpression of BDNF tagged with Green Fluorescent Protein (GFP) (Kojima et al., 

2001; Matsuda et al., 2009) or indirect assays measuring endogenous BDNF release to 

the extracellular medium through scavengers (Gubellini et al., 2005; Walz et al., 2006; 
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Magby et al., 2006; Mohajerani et al., 2007; Crozier et al., 2008). Consequently, neither 

spatiotemporal data on the secretion of endogenous BDNF, nor direct evidences of site-

specific endogenous BDNF release have been found thus far (Cohen-Corey et al., 2010).  

Most studies indicate a predominantly postsynaptic release of endogenous BDNF 

and a retrograde mode of action (Kuczewski et al., 2009; Lessmann and Brigadski, 2009). 

In cultured hippocampal neurons, postsynaptic depolarization elicits calcium-dependent 

release of BDNF that diffuses retrogradely and enhances presynaptic transmitter release 

(Magby et al., 2006 Crozier et al., 2008).  

Similarly, postsynaptic BDNF release and retrograde action can be spontaneously 

induced by giant depolarization potentials during a period of the postnatal development 

(Mohajerani et al., 2007; Kuczewski et al., 2008b). Concurrently, homeostatic modulation 

of presynaptic function, in response to synaptic inactivity caused by 2-amino-3-(5-methyl-

3-oxo-1,2- oxazol-4-yl)propanoic acid (AMPA) receptor blockade, requires postsynaptic 

BDNF release as a retrograde messenger, locally synthesized in dendrites (Lindskog et 

al., 2010; Jakawich et al., 2010). However, recent in vivo findings (Dieni et al., 2012) have 

challenged the activity-dependent dendritic synthesis and release of BDNF in adult 

neurons, supporting previous evidence in favor of an anterograde mode of action in 

striatal (Altar et al., 1997) and hippocampal (Zakharenko et al., 2003) neurons. Thus, 

BDNF released form axon terminals partly accounts for spontaneous, rapid calcium 

synaptic transients on CA3 dendrites (Lang et al., 2007). In addition, the %-burst-induced 

release of endogenous BDNF from hippocampal mossy fibers suffices to trigger 

intracellular changes in postsynaptic CA3 neurons (Li et al., 2010) and presynaptic pools 

of BDNF support the formation of a postsynaptic form of LTP in the dorsal striatum (Jia et 

al., 2010).  

Ultrastructural resolution of endogenous BDNF subcellular location unequivocally 

shows no localization of this neurotrophin in hippocampal dendritic spines, in contrast with 

a strong labeling associated with secretory vesicles, in presynaptic terminals (Figure 11) 

(Dieni et al., 2012).  

Several other studies have concluded that BDNF is stored and released in both 

axons and dendrites, albeit strictly in cultured hippocampal neurons (Haubensak et al., 

1998; Hartmann et al., 2001; Wu et al., 2004; Adachi et al., 2005; Brigadski et al., 2005; 

An et al., 2008; Dean et al., 2009; Matsuda et al., 2009). 
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Figure 11.Ultrastructural localization of BDNF and pro-BDNF in mossy fiber boutons 

(MFB) (adapted from Dieni et al., 2012). (A) Electron micrograph of an ultrathin section of 

wild-type (WT) stratum lucidum (SL) prelabeled with anti-BDNF immunogold. Gold 

clusters, indicated with arrows, are associated with large secretory vesicles within the 

bouton (sp, dendritic spine). (B) Anti-pro-BDNF-labeled WT MFB containing cluster-

labeled secretory vesicles are indicated with arrows. The inset image shows a large 

labeled dense-core vesicle (DCV). 

 

Whether delivered by axonal anterograde transport, in dense core vesicles, to 

presynaptic terminals (Fawcett et al., 1998; Kohara et al., 2001; Adachi et al., 2005; Ng et 

al., 2007), or postsynaptic terminals, via secretory granules (Goodman et al., 1996, 

Haubensak et al., 1998; Hartmann et al., 2001; Kohara et al., 2001; Adachi et al., 2005; 

Brigadski et al., 2005), the differential secretion and release of pro-BDNF and BDNF are 

essential for numerous neuronal functions, contributing for the specificity of their effects. 

 

 

3.2.2- Val66Met BDNF variant 

 

A single-nucleotide polymorphism in the human Bdnf gene, expressed by 40% of 

humans, of whom 5% are homozygous, results in a valine to methionine substitution 

(Val66Met) in the pro-domain, leading to reduced trafficking and activity-dependent 

regulated secretion of BDNF, abnormal hippocampal-specific short-term plasticity and 

impaired episodic and working memory (Egan et al., 2003; Hariri et al., 2003; Dempster et 

al., 2005; Tan et al., 2005; Ho et al., 2006). The Met allele also increases susceptibility to 

neurodegenerative pathologies, namely Alzheimer’s disease (Kunugi et al., 2001; 

Riemenschneider et al., 2002; Ventriglia et al., 2002), levodopa-induced dyskenesias in 
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Parkinson’s disease (Foltynie et al., 2009) and psychiatric conditions, including 

depression (Kaufman et al., 2006; Kim et al., 2007), anxiety (Sen et al., 2003; Jiang et al., 

2005; Lang et al., 2005), aberrant eating behavior (Rosas-Vargas et al., 2011; Skledar et 

al., 2012; Monteleone and Maj, 2013) and bipolar disorder (Neves-Pereira et al., 2002; 

Sklar et al., 2002; Chen et al., 2004).  

Even though the Met allele shows a functional advantage regarding cognitive 

control, when response inhibition is required (Beste et al., 2010), a common clinical 

symptom of these disorders may be the variable impairment of cognitive functions 

(Gratacòs et al., 2007; Frustaci et al., 2008). Furthermore, the Met allele has been linked 

to lower levels of hippocampal N-acetylaspartate (Egan et al., 2003) and significant 

alterations in brain anatomy, including decreased gray matter volume throughout the 

prefrontal cortex and middle temporal lobes, in addition to limbic structures such as the 

amygdala (Pezawas et al., 2004; Ho et al., 2006, 2007; Montag et al., 2009).  

The knock-in Bdnf (BdnfMet/Met) mouse, which expresses the BDNFMet variant 

under the regulation of endogenous BDNF promoters, shows an approximately 30% 

decrease in activity-dependent secretion of endogenous BDNF and hippocampal volume, 

impairment in hippocampal contextual but not cue-dependent fear conditioning, and 

increased anxiety-related behaviors, fully mimicking the phenotypic hallmarks in humans 

with this single-nucleotide polymorphism (SNP) of Bdnf (Chen et al 2006; Chen et al., 

2008) and, thus, validating a vertically integrated approach to studying human genetic 

variants (Dincheva et al., 2012). 

 

3.3- Physiological roles of BDNF processing andrelease 

 

Endogenous BDNF release triggers postsynaptic calcium currents, which can be 

spontaneous, fast and frequent upon activation of voltage-gated sodium and calcium 

channels (Lang et al., 2007), or slow and sustained when mediated by transient receptor 

potential canonical subfamily 3 (TRPC3) channels (Amaral and Pozzo-Miller, 2007a,b), 

along dendrites of CA1 hippocampal neurons. These calcium signals may account for the 

BDNF-dependent unsilencing of presynaptically non-functional synapses by actin 

cytoskeleton remodelling (Shen et al., 2006), and the “unmasking” of postsynaptically 

silent synapses in developing neurons, through insertion of AMPA receptors into NMDA 

receptor-only membranes, thereby increasing responsiveness to glutamate (Itami et al., 

2003; Caldeira et al., 2007b; Nakata and Nakamura, 2007). Endogenously released 

BDNF was also shown to mediate increases in dendritic spine volume (Tanaka et al., 

2008), inducing growth of PSD95 positive postsynaptic specializations in glutamatergic 
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synapses (Yoshii and Constantine-Paton, 2007), and presynaptic bouton enlargement (Li 

et al., 2011). 

Selective presynaptic knockdown of syt-IV increases spontaneous quantal release, 

whilst postsynaptic loss of syt-IV increases quantal amplitude, revealing a mechanism 

whereby syt-IV-mediated regulation of BDNF secretion modulates synaptic strength in a 

useful range during LTP (Dean et al., 2009). Accordingly, extracellular cleavage of 

proBDNF into the mature form, the non-covalent, stable homodimers, by serine protease 

plasmin, is critical for protein synthesis-dependent late-phase long-term potentiation (L-

LTP) in hippocampal neurons (Pang et al., 2004) and pro-survival effects of BDNF (Lee et 

al., 2001). In contrast, constitutively secreted proBDNF facilitates long-term depression 

(LTD) (Woo et al., 2005) and pro-apoptotic effects (Teng et al., 2005) by high-affinity 

binding to p75NTR (Fayard et al., 2005).  

Mature BDNF may also bind to p75NTR, albeit with low affinity (Rodriguez-Tébar et 

al., 1990), or truncated TrkB receptor isoforms lacking the tyrosine kinase domain 

required for downstream signaling (Klein et al., 1990). The latter receptors negatively 

modulate BDNF signaling through heterodimerization with full-lenght TrkB receptors and 

clearance of BDNF from the extracellular space upon receptor internalization (Haapasalo 

et al., 2002), although this possibility remains highly controversial, as previously discussed 

in section 1.4.2.4.  

Nevertheless, extracellular BDNF preferentially binds to full-length tropomyosin-

related kinase B (TrkB) receptors, setting off the trans-autophosphorylation of tyrosine 

residues in the intracellular domain, Y490 and Y816, which recruit SH2 proteins activating, 

in parallel, the Ras-ERK, PI3K/AKT and PLC! signaling pathways (Huang & Reichardt, 

2003; Reichardt, 2006).  

 

In summary, numerous factors contribute to the extremely complex regulation of 

BDNF expression, secretion and release through the constitutive or activity-dependent 

regulated pathways. In addition, the intracellular or extracellular proteolytic processing of 

pro-BDNF, the highly regulated release of BDNF in response to different stimuli, and both 

pro-BDNF and BDNF differential affinity for and activation of TrkB receptors and p75NTR, 

enable the panoply of effects triggered by this neurotrophin, mediated by the numerous 

signaling pathways it activates upon receptor binding (Figure 12). 
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Figure 12. BDNF processing, packaging and secretion in neurons (in Cunha et al., 2010). 

BDNF is synthesized as a pre-proBDNF protein, which has its pre-sequence cleaved off in 

the endoplasmic reticulum (ER) and the resulting 32-kDa proBDNF moves, via the Golgi 

apparatus, into the trans-Golgi network (TGN) where it is sorted into the constitutive and 

activity-dependent regulated secretory pathways. ProBDNF is either proteolytically 

cleaved and secreted as 14-kDa mature BDNF (mBDNF) or secreted as proBDNF and 

cleaved by extracellular proteases. Secretion of the proBDNF predominates and both 

proBDNF and mBDNF are preferentially packaged into vesicles of the regulated secretory 

pathway. Once released, proBDNF binds preferentially to pan-neurotrophin receptor 

p75NTRwhile mBDNF binds preferentially to bothpre-and post-synaptic TrkB receptors, 

triggering different intracellular secondary messenger cascades and affecting distinct 

cellular responses. 
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4. BDNF: mechanism of action 

 

The mature form of BDNF is a 27.0 kDa homodimer of two polypeptides with 119 

amino acid residues, each binding to two distinct classes of receptors, one with low 

affinity, the p75NTR (Rodriguez-Tébar et al., 1990) and one with high affinity, the TrkB 

receptor (NTRK2) (Soppet et al., 1991; Squinto et al., 1991; Klein et al., 1991; Haniu et 

al., 1997; Naylor et al., 2002). proBDNF also interacts with sortilin (SORT1) controlling the 

sorting of BDNF at the Golgi apparatus to the regulated secretory pathway (Chen et al., 

2005). The pro-BDNF-sortilin interaction is also involved in the formation of a trimeric 

complex withthe p75NTR, which promotes apoptosis (Teng et al., 2005; Skeldal et al., 

2012). Additional interactions with other receptors, which would determine the mechanism 

of action of this neurotrophin, have not been identified thus far (Figure 13). 

. 

 

 
 

Figure 13. Network display based on evidence of BDNF interactions. Nodes are either 

colored (if directly linked to BDNF as in the table below) or white (nodes of a higher 

iteration or depth). Edges represent predicted functional links and consist of up to eight 

lines, one color for each type of evidence. Source: STRING 9.0 software. 
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BDNF binding to TrkB receptors activates, in parallel, the Ras-ERK, PI3K/AKT and 

PLC! signaling pathways (Figure 14) (Huang & Reichardt, 2003). 

 

 
 

 

Figure 14.BDNF signaling (in Reichardt, 2006). Interactions of the neurotrophin BDNF 

with p75NTRand Trk receptors and the main intracellular signaling pathways activated by 

each receptor. p75NTR regulates NF-!B activation, which results in transcription of multiple 

genes, including several that promote neuronal survival. Activation of the Jun kinase 

pathway similarly induces the expression of several genes, some of which promote 

neuronal apoptosis. p75NTR also regulates the activity of Rho, which controls growth cone 

motility. Each Trk receptor also controls three main signaling pathways. Activation of Ras 

results in activation of the MAP kinase-signaling cascade, which promotes neuronal 

differentiation including neurite outgrowth. Activation of PI3K through Ras or Gab1 

promotes survival and growth of neurons. Activation of PLC-"1 results in activation of 

Ca2+- and protein kinase C-regulated pathways that promote synaptic plasticity. Each of 

these signaling pathways also regulates gene transcription. Several other adaptors for 

p75NTR and Trk receptors have been omitted for simplicity.  
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Upon binding to TrkB receptor, BDNF sets off the trans-autophosphorylation of 

tyrosine residues Y490 and Y816, in the intracellular domain. Trans-autophosphorylation 

of Y816 recruits and activates cytoplasmic PLC!, which hydrolyzes PIP2 into IP3 and 

DAG. IP3 promotes Ca2+ release from internal stores activating [Ca2+]i-regulated enzymes, 

including CAMKs and PKC isoforms (Ouyang et al., 1997). Concomitantly, DAG 

stimulates DAG-regulated PKC isoforms, for example, PKC( (Huang and Reichardt, 

2003). The PLC! pathway is central in LTP (Minichiello et al., 2002; Gärtner et al., 2006; 

Gruart et al., 2007), neurotrophin-mediated neurotrophin release (Canossa et al., 1997) 

and growth cone guidance (Li et al., 2005), retrograde synaptic modification (Du and Poo, 

2004) and dendritic spine morphology (Amaral and Pozzo-Miller, 2007) regulated by 

activation of TRPC channels. 

Trans-autophosphorylation of Y490 enables recruitment of Shc, IRS1 and IRS2 

linker proteins activating the Ras-ERK and PI3K/Akt cascades. Following docking to TrkB 

receptor, Shc binds to adaptor protein Grb2 and guanine nucleotide exchange factor 

SOS, initiating the GTP loading of Ras followed by sequential activation of Raf, MEK and 

ERK (Reichardt et al., 2006). ERK translocates to the nucleus upon phosphorylation, 

regulating gene expression through isoform-specific activation of transcription factors, 

including CREB (ERK1/2/5), MEF2 (ERK5) or Elk1 (ERK1/2) (Grewal et al., 1999). The 

Ras-ERK signaling pathway is crucial for neurogenesis (Barnabé-Heider and Miller, 

2003), inhibition of pro-apoptotic proteins (Datta et al., 1997), stimulation of pro-survival 

gene expression (Bonni et al., 1999) and protein synthesis-dependent plasticity (Kelleher 

et al., 2004). 

The PI3K/Akt cascade can be triggered by Grb2 recruitment of intermediary 

binding protein Gab1 (Holgado-Madruga et al., 1997) or direct interaction between PI3K 

and Ras or IRS1/IRS2 (Yamada et al., 1997). The PI3K/Akt pathway has a pivotal role in 

cell survival (Brunet et al., 2001), neuroprotection (Almeida et al., 2005), trafficking of 

synaptic proteins (Yoshii and Constantine-Patton, 2007) and can also directly control 

protein synthesis through mTOR activation and 4EBP phosphorylation (Takei et al., 2004).  

Nonetheless, there is significant interplay between the signaling pathways 

activated by TrkB receptors. DAG regulates PKC(-dependent mitogenic activation of 

MAPK/ERK (Corbit et al., 1999) and is implicated in MAPK/ERK-mediated neurite 

outgrowth (Williams et al., 1994; Dimitropoulou and Bixby, 2000). Furthermore, 

neuroprotection by BDNF against apoptotic cell death involves crosstalk between the ERK 

and PI3K pathways (Almeida et al., 2005).  
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4.1- PLC!  signaling pathway and the modulation of TRPC channels 

  

BDNF induces the activation of docked PLC-"1 through TrkB-mediated 

phosphorylation, hydrolyzing PtdIns(4,5)P2 into IP3 and diacylglycerol (DAG) (Figure 15). 

IP3 triggers the release of Ca2+ from endoplasmic reticulum stores through IP3 receptors 

(IP3Rs) (Berridge, 1998), which causes Ca2+ elevations in embryonic cultures of 

cerebrocortical (Zirrgiebel et al., 1995; Behar et al., 1997; Matsumoto et al., 2001) and 

hippocampal  (Berninger et al., 1993; Marsh and Palfrey, 1996; Canossa et al., 1997; 

Finkbeiner et al., 1997; Li et al., 1998) neurons. This pathway converges on the same 

IP3R-containing Ca2+ stores targeted by other metabotropic receptors in hippocampal 

pyramidal neurons, including group-I metabotropic glutamate receptors (mGluR) (Conn 

and Pin, 1997). Concomitantly, DAG stimulates DAG-regulated protein kinases, including 

almost all PKC isoforms (Reichardt, 2006). The activation of PKC-( may also trigger 

MEK1 and Erk1/2 activation, promoting crosstalk between the signaling pathways (Corbit 

et al., 1999). 

As a result of PLC! signaling, several Ca2+-calmodulin-dependent protein kinases 

and other Ca2+-calmodulin-regulated targets are activated, which regulate the expression 

and activity of several proteins, including ion channels and transcription factors critical for 

BDNF-induced mechanisms of synaptic plasticity (Toledo-Aral et al., 1995; Minichiello et 

al., 2002; Klein et al., 2005). BDNF-triggered Ca2+ transients induce the translation and 

synaptic incorporation of the AMPA receptor subunit GluA1 upon IP3 receptor-mediated 

and TRPC-dependent Ca2+ release from cytoplasmic intracellular stores in cultured 

cerebrocortical (Nakata and Nakamura, 2007) and hippocampal (Fortin et al., 2012) 

neurons. The rise in the intracellular calcium concentration also up-regulates Ca2+-

sensitive adenyl cyclase (AC) activity, which is required for CREB-dependent gene 

transcription (Nguyen et al., 1994; Shaywitz and Greenberg, 1999) and the synthesis (Ji et 

al., 2005), transport (Yoshii and Constantine-Paton, 2007) and synaptic delivery of PSD-

95-TrkB complexes, upon PKM&-dependent and ZDHHC8-mediated palmitoylation of 

PSD-95 (Yoshii et al., 2011). Mutant mice with a deficiency in the coupling of TrkB 

receptors to PLC! show impaired hippocampal LTP and associative learning (Minichiello 

et al., 2002; Gartner et al., 2006; Gruart et al., 2007).  

Focal and brief applications of BDNF to dendritic spines of dentate granule cells 

induce Ca2+ transients (rapid and short-lived Ca2+ elevations) and fast membrane 

depolarization, mediated by TTX-insensitive Nav1.9 channels (Kafitz et al., 1999; Blum et 

al., 2002) and sensitive to VGCC blockers (Kovalchuk et al., 2002). Therefore, such 

BDNF-induced Ca2+ signals translate a voltage-gated Ca2+ influx, secondary to membrane 

depolarization and independent of PLC"/IP3R-mediated Ca2+ mobilization from 
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intracellular stores (Amaral et al., 2007). However, in the absence of extracellular Ca2+, 

BDNF-induced Ca2+transients are significantly reduced, though not completely blocked, 

suggesting that both Ca2+ influx and its mobilization from intracellular stores contribute to 

the effects of BDNF (Canossa et al., 1997; Finkbeiner et al., 1997; Marsh and Palfrey, 

1996; Li et al., 1998) and, consequently, the involvement of non-selective cationic 

currents mediated by plasma membrane TRPC channels (Montell et al., 2002; Clapham, 

2003). Accordingly, TrkB receptor signaling through PLC-"1-mediated release of 

intracellular Ca2+ and DAG also activates several TRPC channels, including TRPC3, 

which co-distribute and associate with TrkB receptors (Li et al., 1999; Li et al., 2005) and 

TRPC6 (Li et al., 2005).  

 
Figure 15.TrkB-induced stimulation of PLC" causes PIP2 hydrolysis and formation of 

DAG and IP3 (in Amaral et al., 2007). Activation of IP3Rs leads to Ca2+ mobilization from 

intracellular stores. TRPC channels, most likely heteromultimeric, may be gated by 

different mechanisms: a diffusible factor, by Ca2+ ions released from IP3-sensitive Ca2+ 

stores, a physical interaction with activated IP3Rs or by DAG itself. TRPC channels are 

known to mediate a non-selective cationic current that requires intact IP3R signaling, full 

intracellular Ca2+ stores and extracellular Ca2+ ions. 

 

TRP channels are a group of structurally related and membrane-localized ion 

channels, originally described in Drosophila photoreceptors (Montell et al., 1985). The 

mammalian TRP homologues are classified into TRPC (canonical, or short form), TRPV 

(vanilloid), TRPM (melastatin), TRPP (polycystin), and TRPML (mucolipin) subfamilies 

(Clapham, 2003). Mammalian TRP channels are involved in capacitative Ca2+ entry 

(Birnbaumer et al., 1996) and sensory transduction, including temperature, touch, pain, 

osmolarity, pheromone and taste, in addition to modulation of the cell cycle (Clapham, 

2003; Montell et al., 2002).  
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All mammalian TRPC proteins (TRPC1 through TRPC7) are widely expressed in 

the brain (Mizuno et al., 1999), including the hippocampus (Philipp et al., 1998; Li et al., 

1999; Strubing et al., 2001), and function as receptor-operated channels (Ma et al., 2000). 

TRPC channels can be activated in neurons by stimulation of Gq/G11-type G protein-

coupled receptors and tyrosine kinase receptors. IP3Rs (Kiselyov et al., 1998), DAG 

(Hofmann et al., 1999) and a soluble Ca2+influx factor produced in response to Ca2+store 

depletion (Clapham et al., 2001) have all been implicated in TRPC channel gating, as a 

result of the distinct activation properties between functional homomeric and heteromeric 

channels, but the different models of activation and modulation of native TRPC channels 

remain highly controversial (Clapham, 1996; Birnbaumer et al., 1996; Boulay et al., 1997; 

Zhu et al., 1998; Clapham, 2003; Montell et al., 2002; Putney, 2004; Putney, 2007; Shen 

et al., 2011).  

Independently of the gating mechanism, TRPC channels are implicated in BDNF-

induced Ca2+ transients at growth cones and synapses (Li et al., 2005; Amaral and Pozzo-

Miller, 2007). IBDNF, a slow and sustained nonselective cationic current mediated by TRPC 

channels (Amaral and Pozzo-Miller 2007; Li et al. 1999), is consistently associated with 

slow and sustained Ca2+ elevations in voltage-clamped CA1 pyramidal neurons, in the 

presence of the Na+ channel blocker tetrodotoxin. The rapid increase of quantal vesicular 

transmitter release induced by BDNF in CA1 pyramidal neurons depends on such slow 

and sustained nonselective cationic current mediated by TRPC channels or IBDNF (Amaral 

and Pozzo-Miller, 2012). In addition, TRPC channels are also required for BDNF-induced 

changes in dendritic spine density because both siRNA-mediated TRPC3 knockdown and 

TRPC inhibitors effectively prevent the increase in spine density induced by BDNF 

(Amaral and Pozzo-Miller, 2007b). Similarly, local application of BDNF to intact Xenopus 

laevis optic tectum induces rapid retrograde synaptic modification by persistent 

potentiation of retinal ganglion cell synapses, dependent on TrkB receptor activation, 

phospholipase C" activity and TRPC-mediated intracellular Ca2+ elevation (Du and Poo, 

2004). 

Consistent with the model of TRPC activation by BDNF-induced TrkB signaling, 

TRPC3/6 channels mediate BDNF-evoked Ca2+ signals in growth cones of cultured 

cerebellar granule cells (Li et al., 2005). Furthermore, the xTRPC1 channel, a Xenopus 

homolog of TRPC1, plays a similar role in BDNF-induced growth cone turning in vitro 

(Wang and Poo, 2005) and similar non-selective cationic currents have been previously 

described in cortical and hippocampal neurons (Alzheimer, 1994; Haj-Dahmane and 

Andrade, 1996; Congar et al., 1997).  

TRPC channels are additionally involved in BDNF-mediated neuroprotection. In 

particular, TRPC3 and 6 protect cerebellar granule neurons from serum deprivation-
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induced cell death (Jia et al., 2007). Suppression of NMDA receptor-dependent calpain 

degradation of the TRPC6 N-terminal domain, with a fusion peptide derived from the 

calpain cleavage site in TRPC6, prevents ischemic neuronal brain damage and preserves 

neuronal survival, in a rat model of stroke, improving behavioral performance through the 

CREB signaling pathway (Du et al., 2010). Furthermore, the TRPC6 agonist one-oleoy1–1 

acetyl-sn glycerol (OAG) significantly increases retinal ganglion cell survival in a rat model 

of retinal ischemia/reperfusion-induced cell death, through a mechanism mediated by 

BDNF (Wang et al., 2010). 

In summary, focal application of BDNF triggers fast calcium transients at 

postsynaptic sites in developing hippocampal neurons (Lang et al., 2007) and the PLC! 

pathway is central in LTP (Minichiello et al., 2002; Gartner et al., 2006; Gruart et al., 

2007), neurotrophin-mediated neurotrophin release (Canossa et al., 1997) and growth 

cone guidance (Li et al., 2005), retrograde synaptic modification (Du and Poo, 2004) and 

dendritic spine morphology (Amaral and Pozzo-Miller, 2007a) regulated by activation of 

TRPC channels. 

 

4.2- MAPK/ERK signaling pathway, neuronal differentiation and plasticity 

 

The MAPK/ERK signaling pathway is activated downstream of TrkB upon Shc 

recruitment and phosphorylation, which promotes Shc interaction with the adaptor protein 

Grb2. Grb2 recruits and activates the GEF SOS, which promotes the removal of GDP 

from Ras. This enables Ras activation by GTP binding, leading to the sequential 

phosphorylation of Raf, Mek1 and/or Mek2, which in turn phosphorylate and activate Erk1 

and Erk2 (English et al., 1999; Reichard, 2006). MAPK/ERK signaling regulates CREB-

dependent transcription as phosphorylated Erk translocates to the nucleus, directly 

phosphorylating and activating the transcription factor CREB (Shaywitz and Greenberg, 

1999). The MAPK/ERK signaling pathway also regulates protein synthesis-dependent 

plasticity by increasing the phosphorylation of eukaryotic initiation factor 4E (eIF4E), 4E-

binding protein 1 (4E-BP1) and ribosomal protein S6 (Kelleher et al., 2004; Klann and 

Dever, 2004). 

In hippocampal neurons, targeted inhibition of ERK signaling significantly impairs 

the induction of LTP, implicating this signaling pathway in hippocampal-dependent 

behavior, while mice lacking the neuronal-specific Ras guanine-releasing factor (Ras-GR) 

have severely impaired LTP in the amygdala and a corresponding deficit in long-term 

memory for aversive events (Orban et al., 1999; Sweatt, 2004).  

ERK1 knockdown results in a stimulus-dependent increase of ERK2 signaling, 

likely due to its enhanced interaction with the upstream kinase MEK, which enhances 
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synaptic plasticity in striatal neurons and facilitates long-term adaptive changes underlying 

learning, memory and drug addiction (Mazzucchelli et al., 2002). ERK2 knockdown 

causes a reduction in cerebrocortical thickness due to impaired proliferation of neural 

progenitors during the neurogenic period and the generation of fewer neurons (Samuels 

et al., 2008), as previously found by inhibiting MAPK signaling (Vaccarino et al., 1999; 

Ménard et al., 2002; Barnabe-Heider and Miller, 2003; Dono, 2003; Ohkubo et al., 2004; 

Zheng et al., 2004; Paquin et al., 2005; Thomson et al., 2007). ERK2 also regulates the 

timing of oligodendrocyte differenciation (Fyffe-Maricich et al., 2011), while MEK1 

inhibition causes the retention of neuronal precursor cells in the subventricular zone 

(SVZ)/VZ in an undifferentiated state, blocking neurogenesis (Ménard et al., 2002; 

Barnabe-Heider and Miller, 2003; Paquin et al., 2005). Therefore, MAPK/ERK signal 

transduction directs neurogenesis and concomitantly suppresses gliogenesis (Miller and 

Gauthier, 2007).  

Although the various signaling pathways activated by TrkB receptors are often 

analyzed separately, there is a significant interplay between them. PLC!-dependent 

production of DAG regulates PKC(-dependent mitogenic activation of MAPK/ERK, upon 

BDNF binding to TrkB receptors (Corbit et al., 1999), contributing for MAPK/ERK-

mediated neurite outgrowth (Williams et al., 1994; Dimitropoulou et al., 2000). 

Neuroprotection mediated by BDNF against apoptotic cell death involves crosstalk 

between the ERK and PI3K pathways in cultured hippocampal neurons (Almeida et al., 

2005), and both ERK (Thomas and Huganir, 2004) and PI3K (Lin et al., 2001) pathways 

have been implicated in LTP, in addition to PLC!. PI3K-activated Akt regulates 

downstream effector Cdc42, involved in growth cone guidance (Menna et al., 2009), 

synaptic vesicle docking (Shen et al., 2006) and cytoskeletal dynamics (Chen et al., 2012; 

Rosário et al., 2012), which respond to PLC!-modulated secondary messengers [Ca2+]i 

and cAMP (Mai et al., 2009). 

 

4.3- PI3K/Akt signaling pathway, apoptosis regulation and neuroprotection 

 

The PI3K/Akt signaling pathway can be activated downstream of TrkB either by 

the Shc/Grb2/SOS complex or by IRS1/2. Recruitment of Gab1 by phosphorylated Grb2 

enables the subsequent binding and activation of PI3Kinase (Holgado-Madruga et al. 

1997). In some neurons, Trk receptor activation results in phosphorylation of IRS1, which 

also enables the recruitment and activation of PI3Kinase (Yamada et al. 1997). 

Activated PI3K generates P3-phosphorylated phosphoinosides, which, in 

combination with otherphosphoinositide kinases, change the plasma membrane 

composition, in the cytoplasmic side, enabling the membrane translocation and activation 
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of protein kinase Akt, with multiple effects on neuronal survival and development 

(Reichardt, 2006). Activated Akt controls, through phosphorylation, the activation of key 

regulators of thecaspase cascade, including BAD, a Bcl2-family member.  BAD promotes 

apoptosis upon binding to Bcl-xL, thereby preventing Bcl-xL from inhibiting the pro-

apoptotic activity of Bax. 14-3-3 proteins sequester phosphorylated BAD in the cytoplasm, 

preventing its pro-apoptotic actions (Yuan & Yankner 2000; Brunet et al. 2001; Yuan et al. 

2003a). On the one hand, Akt regulates the activity of transcription factors, including the 

forkhead transcription factor FKHRL1, promoting theirinteraction with 14-3-3 proteins, 

thereby sequestering them in the cytoplasm and precluding thetranscription of a number 

of genes encoding pro-apoptotic proteins (Brunet et al. 2001).  

Akt-mediated phosphorylation of I!B causes its degradation, releasing NF-!B, 

which promotesthe transcription of genesinvolved in sensory neuron survival (Hamanoue 

et al. 1999). Additionally, PI3K-Akt-mediated signaling downstream of TrkB receptor 

activation triggers integrin-linked kinase (ILK) activation (Li et al., 2012). ILK inactivates 

glycogen synthase kinase 3-$ (GSK3-$) by phosphorylation (Zhou et al. 2004) and can 

also function upstream of Akt, affecting Akt activity (Mills et al. 2003). The convergence of 

BDNF signaling in the ILK-mediated inactivation of GSK3-$ has been implicated in 

neuroprotection (Guo et al., 2008) and the control of apoptosis (Jantas et al., 2009; 

Ortega et al., 2010). 

PI3Kinase activation promotes axon growth and pathfinding, in addition to 

neuronal differentiation. The 3-phosphoinositides formed by PI3Kinase activity recruit 

several signaling proteins to the membrane, including GEFs for Cdc42, Rac and Rho 

(Yuan et al. 2003b), whichregulate F-actin cytoskeleton organization, enabling BDNF 

gradients to steer filopodial dynamics (Luikart et al., 2008). PI3K activity localizes to the tip 

of developing hippocampal axons (Shi et al., 2003), enhancing BDNF secretion and 

membrane insertion of TrkB receptors. PI3K activity simultaneously promotes the 

anterograde transport of TrkB receptors, further enhancing local BDNF/TrkB signaling, in 

a dual self-amplifying autocrine loop (Cheng et al., 2011). 

PI3Kinase activation downstream BDNF-binding to TrkB receptors also facilitates 

local protein translation in dendrites by activation of mammalian target of rapamycin 

(mTOR) (Schratt et al., 2004; Takei et al., 2004; Smart et al., 2004), one of the main 

regulators of protein synthesis (Sarbassov et al., 2005). Akt phosphorylates TSC2 directly 

on multiple sites, mitigating the inhibitory effects of the TSC1-TSC2 complex on Rheb and 

mTORC1 [mTOR (mammalian target of rapamycin) complex 1] (Huang and Manning, 

2009). PI3K-Akt-mTOR signaling mediates the BDNF-induced phosphorylation of 

eukaryotic initiation factor 4E binding protein (4EBP1) and p70 ribosomal S6 kinase 

(p70S6K), and the dephosphorylation of eukaryotic elongation factor 2 (eEF2) (Chen et 
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al., 2009). 4EBP1 phosphorylation promotes the assembly of the eIF4F complex and 

enhances the translation initiation of subsets of mRNAs at active synapses (Santos et al., 

2010; Yoshii and Constantine-Paton, 2010). 

 

Overall, these TrkB-activated signaling pathways account for nearly all BDNF 

synaptic effects but their biological responses likely reflect BDNF or TrkB receptor levels 

and the spatiotemporal pattern of BDNF stimulation, especially when activated pre- and/or 

postsynaptically (Cunha et al., 2010).  

 

4.4- BDNF and lipid rafts:  

       Signaling regulation through the compartmentalization of TrkB receptors 

 

Upon binding, BDNF may induce a rapid translocation of full-length TrkB receptors 

into cholesterol-rich lipid rafts. Accordingly, the depletion of cholesterol from the cell 

surface prevents the strengthening effect of BDNF in glutamate release and long-term 

regulation of dendritic growth (Suzuki et al., 2004), in addition to chemotropic guidance of 

axonal growth cones (Guirland et al., 2004).  

In dendrites, sequential prenylation and kinase-activity-dependent palmitoylation of 

the Ca2+/calmodulin-dependent protein kinase CLICK-III (CL3)/CaMKI! C-terminal region 

is essential for CL3 membrane anchoring and targeting into dendritic lipid rafts, 

significantly contributing to BDNF-stimulated dendritic growth in cortical neurons. CL3 acts 

upstream of the RacGEF STEF and Rac, in lipid rafts, thereby linking Ca2+-dependent 

modifications in lipid raftsto extrinsic activity-regulated dendrite formation (Takemoto-

Kimura et al., 2007). In axons, TrkB receptor localization within the membrane or graded 

receptor activation by BDNF along discrete axon sites polarizes growth, by triggering 

gradients of cytoplasmic secondary messengers, including intracellular Ca2+ and cyclic 

adenosine monophosphate (cAMP) (Mai et al., 2009). Therefore, BDNF-induced polarized 

signaling differentially affects cytoskeletal rearrangementsinvolved in the initiation of 

dendritic branchingand axon growth as BDNF application to cultured neurons rapidly 

affects filopodia and lamellipodia dynamics through localized changes in the actin 

cytoskeleton (Gibney and Zheng, 2003; Menna et al., 2009). 

Different mechanisms participate in the regulation of TrkB recruitment to lipid rafts. 

Neuronal activity promotes BDNF-induced recruitment of TrkB receptors from 

extrasynaptic sites into lipid rafts and TrkB receptor endocytosis, which is a key signaling 

event for many long-term BDNF functions (Nagappan and Lu, 2005). BDNF-induced 

translocation of TrkB receptors into lipid rafts is mediated in vivo by Fyn and is required for 

full activation of TrkB receptors and of downstream PLC! signaling (Pereira and Chao, 
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2007). The localization of p75NTR to lipid rafts after its phosphorylation at Ser304 by 

protein kinase A catalytic "subunit (PKAc") inhibits the BDNF-dependent translocation of 

TrkB receptors into lipid rafts and causes the inactivation of Rac1 (a small guanosine 

triphosphatase [GTPase] regulator of actin cytoskeleton) and the suppression of neurite 

outgrowth (Higuchi et al., 2003).  

In cultured cortical and hippocampal neurons, but not in glial cells, BDNF elicits de 

novo cholesterol biosynthesis, rather than the mere incorporation of extracellular 

cholesterol, increasing cholesterol, the lipid raft marker protein caveolin-2 and presynaptic 

proteins, exclusively in lipid rafts, which indicates that BDNF promotes the development of 

neuronal lipid rafts with a key role in the readily releasable pool of synaptic vesicles 

(Suzuki et al., 2007). The integrity of lipid rafts is not required for BDNF regulation of 

neuronal survival (Suzuki et al., 2004), suggesting a direct role of these lipid 

microdomains in the spatial organization of signalling mechanisms mediated by TrkB 

receptors (Ibáñez, 2004). 
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5. The role of BDNF in neuronal connectivity 

 

During development, BDNF regulates neuronal differentiation by stimulating the 

formation of appropriate synaptic connections, concomitantly controlling the direction and 

rate of axon growth (Wang and Poo, 2005; Li et al., 2005), in addition to the shape of 

dendritic arbors and spines (Ji et al, 2005; An et al., 2008; Kwon et al., 2011). 

 

5.1- BDNF and the development of dendritic arbors and spines 

 

BDNF affects apical and basal dendritic branching in opposite ways (McAllister et 

al., 1995; McAllister et al., 1997), either promoting dendritic arbor branching (McAllister et 

al., 1995; Horch and Katz, 2002; Wirth et al., 2003) or limiting its size (McAllister et al., 

1997; Lom et al., 2002). In cultured hippocampal neurons, BDNF increases the number of 

primary dendrites and dendritic spines (Ji et al., 2005) although conditional knockout of 

TrkB receptors in adult mice shows no deficits in dendritic number, branching or length, 

affecting only synapse formation (Luikart et al., 2005). In cortical pyramidal neurons, the 

presence of BDNF in dendritic arbors can be rapidly detected upon exposure to the 

neurotrophin, in a spatially restricted and activity-dependent manner (McAllister et al., 

1996; Horch and Katz, 2002). In cerebellar Purkinje neurons, BDNF affects the shape and 

number of dendritic spines but not the complexity of dendritic arbors, both in vitro 

(Shimada et al., 1998) and in vivo (Bosman et al., 2006). Therefore, BDNF differentially 

affects synaptic connectivity of developing neurons, modulating the development of 

dendritic arbors and spines, depending on the neuronal population (Cohen-Cory et al., 

2010). 

Evidence suggests a direct postsynaptic action of BDNF on dendritic branching 

and spine formation. Firstly, TrkB receptors can be found in the dendrites of 

cerebrocortical (Gomes et al., 2006) and hippocampal neurons (Drake et al., 1999). 

Secondly, GFP-tagged BDNFendogenously released from presynaptic, excitatory 

neurons, and anterogradely transferred to post-synaptic, inhibitory neurons, regulates 

dendritic development through this transsynaptic route (Kohara et al., 2003). 

The effect of BDNF on dendritic arbors likely translates local changes in signaling 

regulating dendritic filopodial density, motility and connectivity (Cohen-Cory et al., 2010). 

Focal application of BDNF in dendrites induces localized calcium transients at nascent 

synapses along dendrites (Lang et al., 2007). In addition, BDNF controls the branching 

and laminar refinement of dendritic arbors in different subtypes of retinal ganglion cells 

(Liu et al., 2007; Liu et al., 2009). 
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5.1.1 – Dendritic branching and MAP2 

 

Microtubule-associated protein 2 (MAP2) is a long filamentous protein that belongs 

to the MAP family and plays a key role in dendritic branching (Audesirk et al., 1997). All 

MAP family proteins are natively unfolded, adopt specific conformation upon binding to 

their targets (Uversky, 2002), contain several microtubule-binding repeats near the 

carboxyl terminus (Lewis et al., 1998) and include a conserved KXGS motif that can be 

phosphorylated (Dehmelt and Halpain, 2005) (Figure 16). MAP2, in particular, contains 

several PEST sequences, susceptible to calpain-mediated breakdown (Fischer et al., 

1991; Johnson et al., 1993). In combination, these factors enable MAP2 to bind along the 

length of microtubules altering their dynamic behavior by crosslinking microtubules with 

intermediate filaments and other microtubules (Al-Bassam et al., 2002).  

 

 
 

Figure 16.The domain organization of MAP family proteins (in Dehmelt and 

Halpain, 2005). Selected isoforms of the human homologs are shown, in addition to the 

nematode homolog PTL-1. All family members have alternative splice forms with varying 

numbers of carboxy-terminal microtubule-binding repeats and amino-terminal projection 

domains of varying lengths. PKA (RII) indicates a domain interacting with the RII subunit 

of protein kinase A.  
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MAP2 can be regulated by calpain-mediated cleavage (Friedrich and Aszódi, 

1991) and by phosphorylation (Brugg and Matus 1991), which contribute for its role in 

dendritic remodeling (Fadis et al., 1997; Huang et al., 2007). Phosphorylation mediated by 

several kinases, including PKA, the microtubule affinity regulating kinase (MARK) (Drewes 

et al., 1995) and JNK1 (Chang et al., 2003), decreases MAP2 affinity for microtubules 

(Ozer and Halpain, 2000). MAP2 dephosphorylation promotes microtubule polymerization 

and bundling, whereas MAP2 phosphorylation and the consequent spacing of 

microtubules enhance branching (Hely et al., 2001).  

In hippocampal neurons, the extracellular matrix protein Agrin (Mantych and 

Ferreira, 2001), the tyrosine kinase Abl (Jones et al., 2004), the brain-specific Ras 

guanine nucleotide exchange factor (RasGEF) very-KIND (Huang et al., 2007; Huang et 

al., 2011) and cholesterol (Fan et al., 2002) have all been implicated in MAP2 regulation 

of microtubule stability in a phosphorylation-dependent manner, through different 

mechanisms.  

 

5.2 – BDNF and axon branching 

 

BDNF significantly affects axonal arborization and addition of the neurotrophin in 

the optic tectum of Xenopus laevis tadpoles elicited axon branching within two hours of 

treatment (Cohen-Cory and Fraser, 1995). Furthermore, BDNF-mediated TrkB signaling 

enhances axon arborization and synaptic connectivity of hippocampal axons (Danzer et 

al., 2002) and, accordingly, mice lacking TrkB show reduced axon branching in the 

hippocampus (Martinez et al., 1998). The effects of BDNF on axon extension and 

branching are mediated through different mechanisms, involving gene and protein 

expression, in addition to posttranslational modifications of key regulatory proteins, 

especially phosphorylation, depending on the neuronal population (Bilimoria and Bonni, 

2013). 

BDNF-dependent activation of ERK1/2 increases Pol1-mediated nucleolar 

transcription, which regulates axon outgrowth in rat forebrain neurons (Gomes et al., 

2011). BDNF also targets microRNA 9 (miR-9), which represses the translation of Map1b, 

a key protein inmicrotubule stability, thereby mediating BDNF-dependent axon branching 

and linking regulatory signaling processes with dynamic translation mechanisms (Dajas-

Bailador et al., 2012).  

In hippocampal neurons, TrkB interaction with ephrinA5 via its second cysteine-

rich domain (CC2), which is necessary and sufficient for binding to ephrinA5, enhances 

PI-3 kinase/Ak signaling, axon branching and synapse formation (Marler et al., 2008). In 

parallel, BDNF-induced activation of TrkB receptors results in phosphorylation of beta-
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catenin at residue Y654, which colocalizes with the cytoskeleton at growth cones and 

increase axon growth and branching (David et al., 2008). 

In spinal motor and sensory neurons, Sprouty 3 (Spry3) is expressed in a BDNF-

dependent manner and inhibits the ability of BDNF to induce filopodia by repressing 

calcium release downstream of BDNF signaling, thereby regulating BDNF-induced axonal 

branching of motoneurons (Panagiotaki et al., 2010). 

BDNF signaling downstream TrkB receptors further promotes axon outgrowth and 

branching by stimulating two Dock3-dependent pathways: actin polymerization and 

microtubule assembly. On the one hand, Dock3 forms a complex with Fyn and Wiskott-

Aldrich syndrome protein (WASP) family verprolin-homologous (WAVE) proteins at the 

plasma membrane, triggering Rac1 activation and promoting actin polymerization 

(Namekata et al., 2010). On the other hand, Dock3 binds to and inactivates GSK-3$ at the 

plasma membrane, thereby increasing the nonphosphorylated active form of collapsin 

response mediator protein-2 (CRMP-2), which promotes microtubule assembly 

(Namekata et al, 2012). Furthermore, exogenous application of BDNF induces GSK-3$ 

phosphorylation and CRMP-2 dephosphorylation, in hippocampal neurons. GSK-3$ 

phosphorylation is associated with regeneration of axons in transgenic mice 

overexpressing Dock3 upon optic nerve injury (Namekata et al, 2012). 

BDNF-induced expression of MAP kinase phosphatase-1 (MKP-1) also controls 

axon branching by spatiotemporal deactivation of JNK, which controls the formation and 

the maintenance of axons (Oliva et al., 2006). JNK dephosphorylationnegatively regulates 

the phosphorylation of stathmins (Tararuk et al., 2006), including SCG10 (Suh et al., 

2004) and SCLIP (Poulain and Sobel, 2007), and neurofilament H (De Girolamo and 

Billett, 2006; Yamasaki et al., 2011), precluding microtubule destabilization (Jeanneteau et 

al., 2011). 

Taken together, the available evidences indicate that BDNF regulates axon 

branching through different mechanisms depending on the cell type and possibly the 

signaling machinery available. 
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5.2.1- Neurofilament H and regulation of axon morphogenesis 

 

The main constituents of the neuronal cytoskeleton are microtubules (MTs), 

microfilaments (MFs) and the intermediate filaments (IFs).  

In axons, IFs are 10 times more abundant than MFs and MTs.  IFs are classified 

into five types, according to gene structure and amino acid sequence (Sihag et al., 2007). 

Type IV IF proteins are expressed in CNS mature neurons and include the 

neurofilaments, NF light (NF-L; 68 kDa), NF medium (NF-M; 150 kDa) and NF heavy (NF-

H; 200 kDa) (Figure 17), in addition to %-internexin (66 kDa) and peripherin (57 kDa). 

Neurofilaments are heteropolymers formed by the assembly of subunits that differ 

by C-terminal phosphorylation, bundling, and axonal transport rate in growing axons 

(Yabe et al., 2001). They are normally synthesized and assembled in the cell body, and 

subsequently transported along the axon where they form an array responsible for 

maintaining axonal caliber and optimal conduction (Ohara et al., 1993; Shah et al., 2000; 

Motil et al., 2006).  

Neurofilament proteins are closely linked to axon development and neuronal 

homeostasis, as demonstrated by the tight regulation of post-transcriptional changes in 

Neurofilament mRNA transport, translation and stability, in addition to Neurofilament gene 

transcription during axon regeneration (Szaro and Strong, 2010). In particular, the balance 

of kinase and phosphatase activities regionally and temporally regulates C-terminal 

phosphorylation of neurofilaments (Shea and Chan, 2010). 

The proper formation of a neurofilament axonal network is essential for the 

establishment and maintenance of axonal calibre and consequently for the optimisation of 

axon transport velocity (Perrot et al., 2008). Fast axonal transport (50–250 mm/d) is 

involved in the transport of organelles, including mitochondria, lysosomes and 

endosomes, in addition to channel proteins and neurotransmitters. Slow axonal transport 

(0.1–4 mm/d) is responsible for the transport of cytoskeletal and cytosolic proteins. 

Impairment of axonal transport is one of the key factors common to several 

neurodegenerative disorders (Chevalier-Larsen and Holzbaur, 2006; De Vos et al., 2008). 

NF-H is the dynamic and interchangeable component of the NF network, positioned 

primarily in the periphery of the core composed of NF-L subunits (Takeda et al., 1994). 

Phosphorylation of the NF-H carboxy-terminal tail domains regulates both axonal 

transport (Ackerley et al., 2003) and diameter or caliber (Perrot et al., 2008). As previously 

mentioned, Neurofilament-H is a substrate of JNK, which is negatively regulated by 

BDNF-induced expression of MKP-1 (Oliva et al., 2006). 
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Figure 17.The role of phosphorylation on the structural dynamics of neurofilament 

proteins (in Sihag et al., 2007). (A) Schematic representation ofneurofilament (NF-L, NF-M 

and NF-H) protein phosphorylation, by different protein kinases, in the amino-terminal 

head and carboxyl-terminal tail domains. (B) Signaling transduction involved in the 

phosphorylation of ‘KSP motifs’ on the NF-M/NF-H proteins. Ca2+ influx, growth factors 

(GF), extracellular matrix (ECM), myelin-associated glycoprotein (MAG) and stress 

(osmotic, UV) were proposed to activate MAP kinases (ERK1/2, SAPK) or Cdk5, which 

are known to phosphorylate NF-M/NF-H in vivo. 
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Increasing NF-H phosphorylation changes its charge depended proton-binding 

capacity. Non-phosphorylated NF-H only binds two protons, whereas phosphorylated NF-

H can bind up to 82 protons (Chang et al., 2009). NF-H phosphorylation causes lateral 

protrusion of the carboxyl-terminal tail regions from the filament backbone, forming 

‘sidearms’. The radial extension of sidearms out of the dense polymer structure results 

from charge repulsion and locally altered entropic and electrostatic interactions 

betweenneurofilaments, which controls the formation of a cytoskeletal lattice supporting 

the mature axon (Grant et al., 2000; Petzold, 2005; Kim et al., 2011). The abnormal 

accumulation of neurofilamentous inclusions, mainly composed by hyperphosphorylated 

NF-H, is a hallmark of numerous neurodegenerative disorders, including ALS, PD, 

Charcot-Marie-Tooth (CMT) disease, giant axonal neuropathy, progressive supranuclear 

palsy and spinal muscular atrophy (Ronald et al., 2009).  
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6. Mechanisms of synaptic plasticity induced by BDNF 

 

BDNF plays an important role in several forms of synaptic plasticity (Vicario-abejon 

et al., 1998; Rutherford et al., 1998; Huang et al., 1999; Minichiello, 2009; Yoshii and 

Constantine-Patton, 2010). In the hippocampus, BDNF is involved in both learning 

(Linnarsson et al., 1997; Minichiello et al., 1999) and memory formation (Lee et al., 2004; 

Beckinschtein et al., 2008b), and is essential for a variety of adaptive neuronal responses 

dependent on short-term plasticity (Cirulli et al., 2004; Ipe et al., 2010).  

Furthermore, the mature form of BDNF facilitates long-term potentiation (LTP) 

(Korte et al., 1995; Figurov et al., 1996; Patterson et al., 1996) and conversely attenuates 

long-term depression (LTD) (Akaneya et al. 1996; Huber et al. 1998; Kinoshita et al. 

1999). 

 

6.1- Hippocampal LTP 

 
Hippocampal LTP is a long-lasting increase in synaptic efficacy between two 

neurons that are activated simultaneously (or in response to an adequate protocol of 

presynaptic stimulation), and akey molecular mechanisms involved in learning and 

memory. Hippocampal LTP occurs at different synapses, but has been studied to a larger 

extent at the synapses from CA3 afferents onto CA1 pyramidal neurons.  

On the one hand, a weak, high frequency tetanus triggers an increase in synaptic 

efficacy lasting 1-2 hours, known as Early-Phase LTP (E-LTP) (Figure 18). This short-

lasting form of LTP requires the activation of existing glutamate receptors in postsynaptic 

dendritic spines and their trafficking to synapses but not de novo protein synthesis 

(Malenka and Bear, 2004). The calcium influx through NMDA receptors causesa 

significant increase in intracellular calcium concentration and activation of CaMKII, as well 

as other protein kinases, increasing AMPA receptor phosphorylation and potentiation of 

ionic conductance (Malinow, 2003; Lynch, 2004; Tse, 2012). Threfore, E-LTPresults from 

this increased phosphorylation and membrane expression of AMPA receptors, in 

combination with metabolic changes resulting from the postsynaptic Ca2+ increases 

generated through NMDA receptors (Lauri et al., 2007).  

On the other hand, repeated, strong, high frequency stimulations induce an 

increase in synaptic efficacy lasting over several hours or days (Abraham, 2003). L-LTP 

requires de novo protein synthesis and structural changes in synapses (Kandel, 2001; 

Yuste and Bonhoeffer, 2001; Bosch and Hayashi, 2012). L-LTP evokes cAMP-dependent 

PKA and ERK/MAPK activation, which lead to the downstream phosphorylation of 
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transcription factors, including CREB/CRE and Elk-1, increasing the expression of several 

genes, which are required for late-phase LTP (L-LTP) (Lu et al., 2008). 

 

Decreased BDNF signaling in BDNF and TrkB knockout mice or upon application 

of endogenous BDNF scavangers, including TrkB-Fc (TrkB ligand binding sites fused to 

the Fc region of immunoglobulin G) and anti-BDNF antibodies (Yoshii and Constantine-

Paton, 2007), attenuates hippocampal LTP (Korte et a., 1995; Patterson et al., 1996; 

Chen et al., 1999; Xu et al., 2000; Minichiello et al., 2002). Furthermore, exogenous BDNF 

application can rescue impaired LTP either through viral-mediated delivery (Korte et al., 

1996) or upon direct application (Patterson et al., 1996; Pozzo-Miller et al., 1999). 

 

 
 

Figure 18. Early- and late-phase LTP (in Lu et al., 2008). E-LTP requires activity-

dependent secretion of BDNF from presynaptic sites (red in A and C), while the long-term 

maintenance of L-LTP requires sustained supply of BDNF through activity-dependent 

transcription and translation in the postsynaptic neurons (green in B and C). 
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BDNF has a potentiating effect on E-LTP, as LTP is induced when BDNF is 

simultaneously applied with a synaptic stimulus, below the LTP threshold (Kovalchuk et 

al., 2002). BDNF enhances synaptic responses to high-frequency stimulation and synaptic 

vesicle docking at presynaptic active zones, thereby triggering its effect on E-LTP (Pozzo-

Miller et al., 1999; Xu et al., 2000; Jovanovic et al., 2000). A brief application of BDNF also 

triggers postsynaptic calcium transients through calcium channels and NMDA receptors 

(Kovalchuk et al., 2002), which promote synaptic accumulation of PSD-95 (Yoshii and 

Constantine-Paton, 2007). PSD-95 scaffolds complexes of AMPA receptors with 

transmembrane AMPA receptor regulatory proteins (TARPs) at the synapse (Tomita et al., 

2004), in a stoichiometry dependent on the neuronal population (Shi et al., 2009), thereby 

controling the trafficking and gating of AMPARs (Kato et al., 2010). 

BDNF is also involved in L-LTP, as demonstrate by the effects of BDNF acute 

application, which induces synaptic potentiation in the hippocampal CA1 region (Kang et 

al., 1997) and sustained increases in field excitatory postsynaptic potentials (EPSP), 

lasting 2 to 10 hours, indicative of L-LTP (Messaoudi et al., 1998). Accordingly, in 

hippocampal slices, fast increases in BDNF enhanced basal synaptic transmission and 

slow, gradual increases induce LTP (Ji et al., 2010). Similarly, both endogenous BDNF 

scavengers TrkB-Fc and anti-BDNF antibodies block L-LTP (Kang et al., 1997), and 

BDNF perfusion in BDNF knockout mice rescues L-LTP (Korte et al., 1996; Pang et al., 

2004). 

 
6.2-Protein synthesis-dependent mechanisms of synaptic plasticity  

 

The stimulation of transcription in postsynaptic neurons and local protein synthesis 

are both required for L-LTP, which is mimicked by BDNF application to hippocampal slices 

and in vivo (Soulé et al., 2006). The application of exogenous BDNF in the mature form is 

also sufficient to rescue L-LTP in the CA1 region of the hippocampus when protein 

synthesis is inhibited (Pang et al., 2004) suggesting that local translation of BDNF plays a 

key role in the late phase of LTP. BDNF induces the mTOR-dependent activation of local 

translation in neuronal dendrites (Takei et al., 2004), promoting the local expression of 

mainly synaptic proteins, including CaMKII#, NMDA receptor subunits, Homer-2, and the 

PSD scaffolding protein (Schratt et al., 2004). The role of BDNF in synaptic potentiation is 

further supported by the results showing effects of the neurotrophin on protein synthesis in 

dendrites (Aakalu et al., 2001), as well as bythe synaptic potentiation observed upon 

injection of the neurotrophin into the rat dentate gyrus. Translation activation by BDNF is 

mediated by rapid phosphorylation of the eukaryotic initiation factor 4E (eIF4E) and 

elongation factor-2, and enhancement of eIF4E expression (Kanhema et al., 2006).  
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In synaptoneurosomes, a subcellular fraction containing the pre- and post-synaptic 

regions, BDNF selectively induces a transient phosphorylation of eIF4E and upregulates 

CaMKII (but not eEF2), in contrast with the BDNF-induced LTP, which induced a transient 

phosphorylation of eIF4E and eEF2, and enhanced expression of eIF4E protein in dentate 

gyrus homogenates. This suggests that BDNF-induced translation is initiated at synapses, 

whereas both initiation and elongation are regulated at non-synaptic sites (Kanhema et 

al., 2006; reviewed in Santos et al., 2010). BDNF further induces the translocation of the 

initiation factor eIF4E to mRNA granules, by an F-actin-dependent mechanism (Smart et 

al., 2003), and the activation of the dendritic translation machinery, which triggers the local 

synthesis of GluA1 (Schratt et al., 2004; Fortin et al., 2012 ), Arc/Arg3.1 (Yin et al., 2002; 

Takei et al., 2004) and CaMKII (Takei et al., 2004). Furthermore, BDNF activation of 

CAMKK, which controls mTOR activation, induces the synaptic delivery of GluA1-

containing AMPA receptors, enhancing the synaptic strength, a BDNF effect mediated by 

TRPC5- and TRPC6-containing TRPC channels (Fortin et al., 2012). Conversely, Calpain-

2knockdown by small interfering RNAin cultured cerebrocortical neurons fully suppresses 

the effect of BDNF on mTOR activation, precluding BDNF-induced local protein translation 

in dendrites (Briz et al., 2013). 
In vivo studies have implicated different signaling pathways and mechanisms in 

BDNF-triggered translation required for the induction of L-LTP. In the dentate gyrus, 

BDNF-induced translation is apparently mediated by ERK signaling (Kanhema et al., 

2006). However, the mTOR-PI3K-dependent pathway has also been shown to mediate 

the regulation of dendritic protein synthesis downstream BDNF activation of TrkB 

receptors (Schratt et al., 2004), including the synthesis of activity-regulated cytoskeleton-

associated protein (Arc) and CaMKII, which is partly blocked by rapamycin in 

synaptoneurosomes (Takei et al., 2004). Upon BDNF-dependent upregulation of Arc 

mRNA, Arc transcripts are rapidly delivered to neuronal dendrites (Yin et al., 2002). Arc 

translation is then required for BDNF-induced LTP and its time-dependent consolidation 

(Soulé et al., 2005). Arc regulates actin polymerization and remodeling, thereby 

contributing for long-term LTP (Messaoudi et al., 2007). In addition, the PLC" signaling 

pathway has been proposed to mediate the activity of TrkB receptors coupled to BDNF-

induced synaptic potentiation because L-LTP is impaired in mice with a targeted mutation 

in the PLC-" docking site, but not in the Shc site, on TrkB (Minichiello et al., 2002). 
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6.3-BDNF-induced synaptic tagging 

 

The maintenance of L-LTP also requires activity-dependent gene transcription, 

which occurs in the nucleus, in addition to de novoprotein synthesis or local protein 

translation. According to the synaptic “tagging” model, which accounts for the synapse-

specificity of L-LTP, newly synthesized proteins are specifically targeted to, or “captured” 

by, tetanized synapses but not by nearby un-tetanized synapses (Frey and Morris, 1997; 

Redondo and Morris, 2011). In this mechanism, a strong tetanus induces the protein 

synthesis of “plasticity-related proteins” (PRPs) in the soma, which are then transported to 

dendrites. PRPs can only modify tetanized activated synapses, because only synaptic 

tags, previously created by tetanic stimulation, can capture PRPs (Martin and Kosic, 

2002) but the nature and identity of PRPs and synaptic tags remain mostly unidentified 

(Reymann and Frey, 2007; Redondo and Morris, 2011). 

BDNF is a potential PRP. Strong tetani enhance the expression of BDNF in the 

soma of CA1 pyramidal neurons (Castren et al., 1993; Dragunow et al., 1993; Patterson et 

al., 1992), likely through BDNF promoter III-dependent transcription (Lee et al., 2005). 

BDNF is among the only three genes upregulated by strong, L-LTP-inducing stimulation, 

statistically identified as L-LTP specific genes (Barco et al., 2005). Furthermore, BDNF 

perfusion can induce the transition from E-LTP to L-LTP when paired with a stimulus that 

would otherwise only elicit E-LTP, that is, a weak, tetanic stimulation that creates a 

synaptic tag but not PRP expression (Figurov et al., 1996; Kovalchuk et al., 2002) (Pang 

et al., 2004), which can be reversed by TrkB-IgG (Barco et al., 2005).  

PKM& has been shown to mediated the maintenance of BDNF-induced L-LTP in 

the absence of protein synthesis (Mei et al., 2011), specifically establishing synaptic 

tagging of long-term potentiation (Sajikumar and Korte, 2011). In addition, PKM& 

regulatesthe synaptic localization of PSD-95 in combination with TrkB receptors (Yoshii et 

al., 2011), which likely represent synaptic tags corresponding to the role of BDNF as a 

PRP. 
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7. Glutamate excitotoxicity 

 

The excitatory system in the CNS consists primarily of glutamatergic neurons, 

which play a key role in neurophysiological functions, including cognition and perception. 

Under normal conditions, glutamate is the main excitatory neurotransmitter, which is 

released from presynaptic terminals, activating postsynaptic ionotropic and metabotropic 

glutamate receptors (Figure 19). However, excessive activation of glutamate receptors 

results in neuronal dysfunction and death, in a process known as excitotoxicity (Dong et 

al., 2009). 

 

7.1-Excitotoxicity as a unifying model of neurodegeneration  

 

Excitotoxicity has been proposed as the primordial mechanism of 

neurodegeneration for several neuropathological conditions including Alzheimer´s disease 

(Miguel-Hidalgo et al., 2002; Hynd et al., 2004; Lesné et al., 2006; Yoshiyama et al., 2007; 

Zwilling et al., 2011; Camandola and Mattson, 2011), Parkinson’s disease (Helton et al., 

2008), Huntington’s disease (McGeer and McGeer, 1976; Zeron et al., 2001; Stack et al., 

2007; Zwilling et al., 2011), Amyotrophic Lateral Sclerosis (Lai et al., 2006; Kasai et al., 

2011), Dementia with Lewy bodies (Kramer and Schulz-Schaeffer, 2007) and Prion 

disease (Mallucci et al., 2007). In addition, excitotoxicity has a pivotal role in acute and 

chronic mental disorders (Lipton and Rosenberg, 1994; Nonaka et al., 1998, Hashimoto et 

al., 2002; Blaylock and Strunecka, 2009), including cerebral ischemia (Hossmann, 1994; 

Siesjo et al., 1995; Gascón et al., 2008; Mustafa et al., 2010; Zhang et al., 2010), hypoxia 

(Schurr et al., 1995; Sun et al., 2010), traumatic brain (Brittain et al., 2011) and spinal cord 

(Ferguson et al., 2008) injuries, epileptic seizures (Ben-Ari, 1985; Baumeister et al., 1994; 

Vincent and Mulle, 2009), oxygen/glucose deprivation (Dennis et al., 2011) or 

neurodegeneration after stroke (Aarts et al., 2003; Sattler and Tymiansky, 2001; Zhou et 

al., 2010).  
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Figure 19. Schematic representation of an excitatory synapse (in Sheldon and Robinson, 

2007). Glutamate released from pre-synaptic terminals activates ionotropic and 

metabotropic glutamate receptors. Na+-dependent glutamate transporters mediate 

glutamate uptake. Glial cells express glutamine synthetase, enabling them to convert 

transported glutamate into glutamine, which can then be shuttled to neurons via glutamine 

transporters and converted to glutamate. System Xc) exchanges glutamate for cystine, 

providing cysteine as a precursor for glutathione synthesis.  

 

During an excitotoxic event, neurons are exposed to toxic concentrations of 

excitatory neurotransmitters causing an excessive activation of calcium-permeable 

glutamate receptors (Noh et al., 2005) and the opening of gap junction hemichannels 

(Thompson et al., 2006), which account for an acute ionic disarray.  

The collapse of transmembrane Na+ and K+ gradients not only induces Na+-

dependent glutamate transporterson neurons and astrocytes into ceassing glutamate 

uptake, but also reverses their glutamate transport, leading to glutamate efflux and 

accumulation in the extracellular space (Li et al., 2001; Romera et al., 2004; Grewer et al., 

2008; Foran and Trotti, 2009; Brandon et al., 2011). The rise in intracellular Na+ also 

accounts for the immediate neuronal swelling observed in hippocampal cultures, caused 

by passive Cl- influx (Rothman, 1985; Beck et al., 2003), whereas calcium overload 
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triggers the activation of proteases, including calpains (Bano et al., 2005; Xu et al., 2009; 

Brustovetsky et al., 2010; Gomes et al., 2011) and caspases (Takano et al., 2005; Higuchi 

et al., 2005; Carlsson et al., 2011; Tornero et al., 2011). Alterations in the ubiquitin-

proteasome system (UPS) were also shown to occur under excitotoxic conditions and in 

brain ischemia, whereby proteasome inhibition provides neuroprotection under the latter 

conditions (Phillips et al., 2000; Di Napoli and McLaughlin 2005) (section 7.4). 

 

7.2-The role of calpains in glutamate excitotoxicity 

 

Calpains are calcium-activated neutral proteases which target several proteins for 

degradation, in particular, spectrin (Vanderklish and Bahr, 2000) and actin microfilaments 

(Chung et al., 2005). The collapsed cytoskeleton proteins, together with vesicles and 

organelles, accumulate onto focal bead-like swellings or blebs at non-random sites 

(Bindokas and Miller, 1995), primarily at synaptic contacts enriched in mitochondria, on 

axons and dendrites, as a result of the impaired retrogade-anterograde transport and 

inhibition of the mitochondrial respiratory chain complex IV activity (Takeuchi et al., 2005). 

Although inhibiting mitochondrial ATP production does not affect vesicle motility during 

fast axonal transport, which is dependent on vesicular glycolysis for ATP production (Zala 

et al., 2013), mitochondrial transport and their membrane potential (*m) have been 

correlated (Chang and Reynolds, 2006). The loss of *m and drop in intracellular ATP 

levels (Abramov and Duchen 2008) following an excitotoxic insult might further aggravate 

the failure in the bi-directional transport mechanisms within the lysosome and ER 

compartments in dendrites (Greendwood et al., 2007). Alterations in mitochondrial 

transport may also affect the anterograde transport of neurofilaments in developing axons 

(Perrot and Julien, 2009), as observed in hippocampal neurons, which may account for 

the increased susceptibility of developing neurons to glutamate excitotoxicity (Johnson et 

al., 1999). 

Calpain activation under excitotoxic conditions also contributes to neuronal 

deregulation due to the abnormal cleavage of several proteins. The plasma membrane 

Na+/Ca2+ exchanger (NCX) is one of the calpain targets and the cleavage of the 

transporter impairs the extrusion of Ca2+ by the transporter contributing to a [Ca2+]i 

overload (Bano et al., 2005). Several other critical proteins for neuronal function, including 

the NMDA receptor subunit GluN2B (Simpkins et al., 2003; Zhou and Baudry, 2006), the 

AMPA receptor subunit GluA1 (Glazner et al., 2000; Lu et al., 2002), and the mGluR1# 

metabotropic glutamate receptors (Xu et al., 2007) are also cleaved, as well as the 

vesicular GABA transporter (Gomes et al., 2011), to name a few. 
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7.3- Excitotoxicity-induced activation of caspases and apoptotic cell death 

 

Downstream of the events involving mitochondrial electron transport defects 

(Luetjens et al., 2000), mitochondrial cytochrome c release is followed by an increase in 

caspase-9 and caspase-3 activation, and there is an increased production of superoxide, 

nitric oxide and other reactive oxygen species (ROS), leading up to apoptotic-like 

chromatin condensation and, finally, DNA fragmentation, in a panoply of neuronal cells 

subjected to glutamate excitotoxicty (Molz et al., 2008; Seo et al., 2009; Karmarkar et al., 

2011). Other caspase-independent pathways of programmed cell death are also activated 

under excitotoxic conditions, including apoptosis triggered by Poly (ADP-ribose) 

polymerase-1 (PARP-1)-dependent translocation of apoptosis-inducing factor (AIF) from 

the mitochondria to the nucleus (Yu et al., 2002; Wang et al., 2004; Cheung et al., 2005), 

which requires Bax and calpains, but not caspases or cathepsins (Moubarak et al., 2007). 

 

 

7.4- The Ubiquitin-proteasome system in excitotoxicity and ischemia 

 

Recently, the ubiquitin proteasome system (UPS) has also been implicated in 

glutamate excitotoxicity, either through changes in UPS activity (Ge et al., 2007; Caldeira 

et al., 2013) or the proteasome-mediated cleavage of proteins, including the Bcl-2 

interacting mediator of cell death (Bim) (Meller et al., 2006; Ordonez et al., 2010), Bcl-2 

(Zhang et al., 2011) and DGK& (Okada et al., 2012). Excitotoxic stimuli induce the 

nucleocytoplasmic translocation of the diacylglycerol kinase DGK& followed by its 

degradation through the cytoplasmic UPS in hippocampal neurons. Although DGK&-

deficient neurons do not succumb directly to apoptosis, they are more vulnerable to 

excitotoxicity (Okada et al., 2012). 

The role of the UPS in cell death caused by excitotoxicity and ischemia is quite 

complex because proteasome activity is downregulated in the ischemic brain (Asai et al., 

2002; Ge et al., 2007; Suh et al., 2010) but both inhibition (Phillips et al., 2000; Zhang et 

al., 2001; Williams et al., 2003) and enhancement (Li et al., 2011; Hogins et al., 2011) of 

the proteasome activity was shown to be neuroprotective in ischemia. In addition, UPS 

inhibition attenuates the neuroprotective effect of both acute and delayed ischemic 

preconditioning (Rehni et al., 2011), while pharmacological preconditioning with 

adenosine induces the proteasomal degradation of Bim mediated by p42/44 MAPK 

(Ordonez et al., 2010). Presynaptic silencing, another neuroprotective strategy 

endogenously triggered by neurons during excitotoxic insults, also depends on 

proteasome function because an hypoxic insult increases the percentage of silent 
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glutamate synapses in a proteasome-dependent manner and proteasome inhibition 

prevents the hypoxia-induced silencing and exacerbates neuronal loss (Hogins et al., 

2011). 

 

In summary, generalized activation of different proteolytic mechanisms, 

downstream of NMDA receptors overactivation, sets off mitochondrial dysfunction, 

generation of ROS, cytoskeleton disarray and, ultimately, cell death under glutamate 

excitotoxicity. Concomitantly, protein synthesis arrest (reviewed in DeGracia and Hu, 

2007) and endoplasmic reticulum stress (Sokka et al., 2007; Ruiz et al., 2009) are also 

found among the numerous consequences of delayed calcium deregulation as a result of 

excitotoxicity.  
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8. Neuroprotection mediated by BDNF 

 

BDNF application rescues different neural tissues from excitotoxic, ischemic, 

traumatic and toxic injuries, in vitro and in vivo, upon acute or long-term neurotrophic 

treatment, both before and after the insult (Coughlan et al., 2009; Pereira et al., 2009; 

Murray and Holmes, 2011; Noble et al., 2011).   

In vitro, BDNF protects cultured cerebrocortical (Hetman et al., 1999; Sun et al., 

2008), cerebellar granule (Bazán-Peregrino et al., 2007; Wang et al., 2010) and 

hippocampal (Almeida et al., 2005; Johnson-Farley et al., 2007) neurons from apoptotic 

cell death through activation of the ERK and PI3K signaling pathways. BDNF also rescues 

cerebrocortical neurons from oxygen-glucose deprivation (Ferenz et al., 2012) and 

prevents N-methyl-D-aspartic acid (NMDA)-induced protein kinase C (PKC) inactivation, 

equally promoting maximal protection from cell death with BDNF pre-incubation, either 

continuously for 8 hours, or transiently between 8 and 4 hours, prior to NMDA 

excitotoxicity (Tremblay et al., 1999).  

In vivo, BDNF promotes the survival of numerous neuronal populations, including 

embryonic primary sensory neurons (Barde et al., 1982; Lindsay et al., 1985; Davies et 

al., 1986), cholinergic neurons of the basal forebrain (Knusel et al., 1991), dopaminergic 

neurons of the substantia nigra (Hyman et al., 1991) and retinal ganglion cells (Johnson et 

al., 1986). Long-term (7-day) BDNF intraventricular infusion beginning 24 hours (Schabitz 

et al., 1997) or immediately before (Beck et al., 1994) the injury reduces infarct size and 

protects hippocampal CA1 neurons in a rat model of transient forebrain ischemia, 

respectively. Infusion (Yamashita et al., 1997) and vehicle-mediated intravenous (Wu and 

Pardridge, 1999; Schabitz et al., 2000) administration of BDNF shortly (up to 30 minutes) 

after medial cerebral artery occlusion (MCAO) produce similar neuroprotective results, 

mimicked even with delayed (up to 2 hours) BDNF intravenous application (Zhang and 

and Pardridge, 2001).  

BDNF neuroprotection in vivo extends to other insults, namely hypoxic-ischemic 

(Han and Holtzman, 2000), traumatic and spinal cord (Oppenheim et al., 1992; Ikeda et 

al., 2002) injuries, in addition to kainate excitotoxicity (Gratacòs et al., 2001) and neonatal 

hypoxia (Galvin and Oorschot, 2003), and other further recent therapeutic strategies, 

including ex vivo gene therapy (Yasuhara et al., 2006; Shi et al., 2009; Takeshima et al., 

2011). Adenoviral vector-mediated delivery of BDNF, expressed under the regulation of 

the hypoxia response element (HRE) from the vascular endothelial growth factor gene 

produces similar results, improving the recovery from brain injury in a mouse focal 

cerebral ischemia model (Shi et al., 2009). 
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Human neural stem cells (NSCs), genetically modified to overexpress BDNF, 

grafted into the cerebral cortex overlyingintracerebral hemorrhage (ICH) in mice induce 

behavioral improvement and produce a threefold increase in cell survival at 2 weeks and 

8 weeks posttransplantation (Lee et al., 2010). Gain-of-function studies show that 

recombinant BDNF mimics the beneficial effects of NSC transplantation. Furthermore, 

loss-of-function studies show that depletion of NSC-derived BDNF fails to improve 

cognition or restore hippocampal synaptic density (Blurton-Jones et al., 2009) 

Continuous intraventricular administration of BDNF also protects cerebrocortical 

neurons against apoptosis and reduces infarct size after 2-vein occlusion is rats 

(Takeshima et al., 2011). Moreover, an antisense BDNF oligonucleotide, which blocks the 

expression of Bdnf mRNA, precludes the beneficial effects of rehabilitation exercise on 

recovery of skilled reaching, upon infusion into the contralateral lateral ventricle for 28 

days after ischemia in rats, with no effect on the reaching with the unaffected limb. This 

indicates that the treatment is specific to the relearning of motor skills after ischemia and 

shows a critical role for BDNF in rehabilitation-induced recovery after stroke (Ploughman 

et al., 2009). Furthermore, BDNF promotes regeneration of adult sensory neurons, retinal 

ganglion cells and basal forebrain cholinergic neurons following injury, in the adult brain 

(reviewed in Sohrabji and Lewis, 2006). 

The use of BDNF in clinical applications is, however, limited by unfavorable 

pharmacokinetics, specifically its short plasma half-life (less than 1 minute in rats) and the 

low rate of transport across the blood-brain barrier (BBB) (Pardridge et al, 1994; Poduslo 

et al., 1996), poor intraparenchymal penetration (Morse et al., 1993) and adverse side-

effects, mainly resulting from the low-affinity BDNF- p75NTR interaction, which can induce 

pain (Zhang et al., 2008), among other factors (Kingwell, 2010).  

Recent advances through the development of alternative BDNF delivery methods, 

for example, pegylation (Pardridge et al., 1998), chimeric peptide approaches (Zhang and 

Pardridge, 2001), adeno-associated viral (AAV) vector-mediated gene delivery 

(Baumgartner and Shine, 1997; Martin et al., 2003; Kells et al., 2004; Shi et al., 2009), 

genetically engineered bone marrow mesenchymal stem cells (Kurozumi et al., 2004; 

Sasaki et al., 2009; Harper et al., 2009; Makar et al., 2009; Park et al., 2012) and the use 

of poly(ethylene vinyl acetate) (EVAc) polymers (Sirianni et al., 2010) as vehiclesforlong-

term in vivo delivery of BDNF, in addition to partial (Schmid et al., 2012) or selective (Jang 

et al., 2010; Bai et al., 2010; Chen et al., 2011) TrkB agonists and BDNF peptidomimetics 

(O’Leary and Hughes, 2003; Fletcher et al., 2008; Massa et al., 2010), have enabled to 

overcome such drawbacks and successfully promote neurotrophic activities and 

neuroprotection aimed at designing new therapeutic strategies. 
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II. Aims 

 

Excitotoxic injury is known to induce the proteolytic cleavage of numerous proteins 

in the soma and neurite compartments, which contributes to cell death. BDNF partially 

prevents excitotoxic cell death in vitro and in vivoas determined based on nuclear 

morphology analysis. However, it remains to be assessed whether BDNF also protects 

neurons from the loss of axons and dendrites, and synaptic activity, which would be 

required to maintain connectivity. In particular, the precise molecular mechanisms BDNF 

triggers following TrkB receptor activation and signal transduction towards inducing 

neuronal protection and/or recovery from a toxic glutamate insult, and its functional 

consequences, are still not fully understood.  

Upon previous findings, we hypothesized that BDNF protects neurons against 

excitotoxicity either by stabilizing the existing morphology and physiology of neurons, or 

by promoting the restoration of normal morphology and synaptic function post-insult. In 

order to test this hypothesis, we aimed to examine the molecular and cellular 

mechanisms triggered by the neurotrophin, primarily in hippocampal neuronsin the early 

stages of development, but also in more mature neurons, with fully developed synapses. 

For this purpose, we aimed at using cell biology methods and pharmacological inhibitors 

of the key signalling effectors downstream TrkB receptor activation, in addition to 

functional assays to assess the synaptic activity of neurons before and after the toxic 

insult, with and without BDNF pre-incubation. 

 This study aimed at focusing on key protein markers of axons (Neurofilament H), 

dendrites (Microtubule-Associated Protein 2) and glutamatergic (Vesicular Glutamate 

Transporters 1 and 2) and GABAergic (Glutamate Decarboxylase 65 and 67) functions, 

among others, to further examine the spatiotemporal resolution of BDNF neuroprotective 

effects in cultured hippocampal neurons submitted to glutamate excitotoxicity. 

Furthermore, we hypothesized that three protease pathways were involved in excitotoxic 

mechanisms, calpains, caspases and the ubiquitin-proteasome system (UPS), and that 

BDNF could target one or more of these pathways in its mechanism of action in axons 

and dendrites.  

Therefore, the aims of this studywere: 

 

 (i) To characterize in vitro and in vivo the effect of excitotoxicity on structural and 

functional key neuronal markers, including Glutamate Decarboxylase isoforms GAD65 

and GAD67: 
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 Several lines of evidence have suggested that multiple proteolytic systems 

would be involved in the cleavage of GAD isoforms under excytotoxic conditions, 

including calpain- and cathepsin-mediated proteolytic mechanisms (Wei et al, 2006; Sha 

et al., 2008; Monnerie & Le Roux, 2008). However, the ubiquitin-proteasome system had 

not been implicated in such mechanisms. In particular, the soluble isoform GAD67 is 

mainly found in the cytoplasm and, thus, may be a UPS target. Therefore, we aimed at 

assessing whether the UPS targets GAD isoforms under excitotoxic conditions and the 

inherent functional consequences for these proteins markers of GABAergic neurons. 

 

 (ii) To identify the mechanism of neurite protection by BDNF: 

 

 We aimed at analyzing the activation of calpain- and caspase-mediated 

proteolytic mechanisms, and the putative alterations in the UPS in cell lysates of cultured 

hippocampal neurons at different time points post-insult, with and without BDNF 

incubation, towards further characterizing the cellular damage induced by excitotoxic 

stimulation. Furthermore, we aimed at assessing the spatiotemporal regulation of BDNF-

induced neuroprotective mechanisms using several key neurobiological markers, and the 

transient receptor potential channels TRPC3 and TRPC6, which are activated by calcium 

store depletion and required for BDNF-dependent survival of cerebellar granule neurons 

deprived of serum (Jia et al., 2007), towards further understanding the protective effect of 

BDNF in hippocampal neurons subjected to excitotoxic stimulation. 

 

 (iii) To elucidate the role of BDNF on the functional regulation of the vesicular 

glutamate transporters (VGLUT1 and VGLUT2) during the development and maturation of 

hippocampal synapses: 

 

 The control conditions of preliminary experiments assessing BDNF 

neuroprotection of VGLUT2 showed that incubation with the neurotrophin alone 

significantly upregulated the protein levels of the vesicular glutamate transporter, 

considerably above the control levels, without BDNF incubation, similarly to its effect on 

the protein markers of BDNF-induced neuroprotection, TRPC3 and TRPC6. Therefore, we 

aimed at examining whether BDNF could regulate the expression of VGLUTs, which 

would correlate its neuroprotective effect with a protein-synthesis dependent mechanism, 

concomitantly suggesting a likely link, or even overlap, between BDNF-induced 

mechanisms of synaptic plasticity, with VGLUTs as the molecular effectors of its 

mechanism of action. 
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Overall, these studies aimed at assessing whether BDNF is able to protect both 

structurally and functionally hippocampal neurons under excitotoxic conditions and 

elucidate some of the mechanisms involved in BDNF-induced neuroprotection. 
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Chapter 1 

The role of the ubiquitin-proteasome system in excitotoxicity-induced cleavage of glutamic 

acid decarboxylase in cultured hippocampal neurons 
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 Glutamic acid decarboxylase (GAD) is the key enzyme in the synthesis of "-

aminobutyric acid (GABA) and the functional protein marker of GABAergic neurons, which 

represent approximately 10% of total cells in cultured hippocampal neurons, but play a 

key role in regulating neuronal excitability, especially in hippocampal neurons. 

Consequently, any alterations in the activity of the enzyme will also have an impact on 

GABAergic synaptic transmission. GAD exists in two isoforms encoded by different genes, 

GAD65 and GAD67, with a molecular weight of 65 and 67 KDa, respectively. GAD65 

represents 81% of total GAD in rat hippocampus and is found predominantly in 

association with synaptic vesicle membranes in nerve terminals, while GAD67 is evenly 

distributed throughout the cell, constitutively active, and accounts for the basal production 

of the cytosolic pool of GABA.  

 Several lines of evidences suggested that multiple proteolytic systems were involved 

in the cleavage of GAD under excitotoxic conditions, including calpain- and cathepsin-

mediated proteolytic mechanisms, but the ubiquitin-proteasome system had not been 

previously implicated in such mechanisms. In particular, the soluble isoform GAD67 is 

present mainly in the cytoplasm and, thus, could constitute a target of the UPS. Therefore, 

we sought to assess whether the UPS would target the GAD isoforms under excitotoxic 

conditions and the inherent functional consequences. 

 In the present study, we aimed at examining the synthesis, cleavage and subcellular 

location of GAD65 and GAD67, and the role of calpain and the UPS in these modifications 

following excitotoxicity induced by exposure of hippocampal primary cultures to glutamate 

and subsequent analyses at different time periods. The results indicated that GAD65 and 

GAD67 are processed via UPS activity, albeit apparently without requiring ubiquitination 

for the process to occur, indicating that GAD molecules may be trapped by other 

ubiquitinated components that render the enzymes susceptible to UPS processing. In 

particular, this study enables to conclude that the UPSmost likely regulates GAD67 

cleavage under excitotoxic conditions through modulation of an unknown GAD binding 

partner. In addition, GAD activity was measured in the cortex and cerebellum of adult rats 

after a 24 h post-mortem period to induce the cleavage of GAD. The cleavage of GADs 

diminishes the enzymatic activity and the characteristic punctate distribution of GAD65 

along neurites in cultured hippocampal neurons was also affected under excitotoxic 

conditions, thereby indicating that the GABAergic function is significantly affected under 

these conditions. 
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Abstract

Glutamic acid decarboxylase is responsible for synthesizing GABA, the major inhibitory neurotransmitter, and exists in two
isoforms—GAD65 and GAD67. The enzyme is cleaved under excitotoxic conditions, but the mechanisms involved and the
functional consequences are not fully elucidated. We found that excitotoxic stimulation of cultured hippocampal neurons
with glutamate leads to a time-dependent cleavage of GAD65 and GAD67 in the N-terminal region of the proteins, and
decrease the corresponding mRNAs. The cleavage of GAD67 was sensitive to the proteasome inhibitors MG132, YU102 and
lactacystin, and was also abrogated by the E1 ubiquitin ligase inhibitor UBEI-41. In contrast, MG132 and UBEI-41 were the
only inhibitors tested that showed an effect on GAD65 cleavage. Excitotoxic stimulation with glutamate also increased the
amount of GAD captured in experiments where ubiquitinated proteins and their binding partners were isolated. However,
no evidences were found for direct GADs ubiquitination in cultured hippocampal neurons, and recombinant GAD65 was not
cleaved by purified 20S or 26S proteasome preparations. Since calpains, a group of calcium activated proteases, play a key
role in GAD65/67 cleavage under excitotoxic conditions the results suggest that GADs are cleaved after ubiquitination and
degradation of an unknown binding partner by the proteasome. The characteristic punctate distribution of GAD65 along
neurites of differentiated cultured hippocampal neurons was significantly reduced after excitotoxic injury, and the total GAD
activity measured in extracts from the cerebellum or cerebral cortex at 24h postmortem (when there is a partial cleavage of
GADs) was also decreased. The results show a role of the UPS in the cleavage of GAD65/67 and point out the deregulation
of GADs under excitotoxic conditions, which is likely to affect GABAergic neurotransmission. This is the first time that the
UPS has been implicated in the events triggered during excitotoxicity and the first molecular target of the UPS affected in
this cell death process.
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Introduction

In traumatic brain injury, epilepsy, and following episodes of
hypoxia-ischemia the excessive release of glutamate and the
consequent overactivation of glutamate receptors leads to cell death
by excitotoxicity [1–4]. Brain ischemia also has a strong impact in
GABAergic neurotransmission. The Ca2+-dependent exocytotic
release of GABA appears to account for the initial phase of
neurotransmitter release at the onset of ischemia, while the reversal
of the plasma membrane transporters is responsible for much of the
subsequent efflux [5,6]. However, the decrease in surface expression
of post-synaptic GABAA receptors, in part due to their internali-

zation, decreases GABAergic synaptic transmission [7]. Following
transient focal ischemia there is also a decrease in the expression of
the vesicular GABA transporter, which may have a delayed impact
on the exocytotic release of the neurotransmitter [8]. The plasma
membrane GABA transporter GAT1 is a calpain substrate [9], and
calpain activation in the postischemic brain [10] may contribute to
the deregulation of the transporter.
Glutamic acid decarboxylase (GAD) is the key enzyme in the

synthesis of c-aminobutyric acid (GABA) [11] and any alterations
in the activity of the enzyme will also have an impact on the
GABAergic synaptic transmission. GAD exists in two isoforms
encoded by different genes, GAD65 and GAD67, with a
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molecular weight of 65 and 67 KDa, respectively [12]. GAD65
represents 81% of total GAD in rat hippocampus [13], and is
found predominantly in association with synaptic vesicle mem-
branes in nerve terminals [14–16]. This GAD isoform synthesizes
mainly the vesicular pool of GABA [17,18], and is responsible for
the fine tuning of inhibitory transmission [19]. In contrast, GAD67
is evenly distributed throughout the cell [20], being constitutively
active and accounting for the basal production of the cytosolic
pool of GABA [21]. Both isoforms of GAD are cleaved in
cerebrocortical neurons subjected to excitotoxic conditions by a
mechanism that is sensitive to inhibitors of calpain [22–25], a non-
lysosomal, calcium-activated protease that has been implicated in
excitotoxic neuronal damage [26], and recombinant GAD65 and
67 are cleaved in vitro by calpain [22,23]. Cathepsin inhibitors
also inhibited the cleavage of GAD65 and 67 in cerebrocortical
neurons exposed to a toxic concentration of glutamate, and
recombinant GAD was cleaved by cathepsin L in an in vitro assay
[24]. These evidences suggest that multiple proteolytic systems are
involved in the cleavage of GAD under excitotoxic conditions.
The ubiquitin-proteasome system (UPS) is the major extralyso-

somal system for protein degradation in the cells [27,28]. Proteins
targeted to be degraded by this system are first conjugated by
polyubiquitin chains and then degraded by the proteasomes. The
role of the UPS in cell death in the ischemic brain is rather complex
since the activity of the proteasome is downregulated in the ischemic
brain [29,30] but inhibition of the proteasome was found to be
neuroprotective in focal brain ischemia [31–33]. Furthermore, the
effect of proteasome deregulation on the turnover of specific
proteins in the ischemic brain remains to be investigated. Hence, in
the present study we investigated the putative role of the UPS in
GAD cleavage under excitotoxic conditions. In particular the
soluble isoform GAD67 is present mainly in the cytoplasm [34] and,
therefore, may constitute a target of the UPS. We found that
excitotoxic stimulation of hippocampal neurons with glutamate
downregulates GADs, both at mRNA and protein levels. Our
results indicate that the UPS does regulate GAD67 cleavage under
excitotoxic conditions, possibly through modulation of an unknown
GAD binding partner. Cleavage of GADs diminished the activity of
the enzyme and the characteristic punctate distribution of GAD65
along neurites was also affected under excitotoxic conditions.

Materials and Methods

Hippocampal cultures
Primary cultures of rat hippocampal neurons were prepared

from the hippocampi of E18-E19 Wistar rat embryos, after
treatment with trypsin (0.06%, for 15min at 37uC; GIBCO-
Invitrogen, Paisley, UK) and deoxyribonuclease I (5.36 mg/ml), in
Ca2+- and Mg2+-free Hank’s balanced salt solution (HBSS;
5.36 mM KCl, 0.44 mM KH2PO4, 137 mM NaCl, 4.16 mM
NaHCO3, 0.34 mM Na2HPO4.2H2O, 5 mM glucose, 1 mM
sodium pyruvate, 10 mM HEPES and 0.001% phenol red). The
hippocampi were then washed with HBSS containing 10% fetal
bovine serum (GIBCO-Invitrogen), to stop trypsin activity, and
transferred to Neurobasal medium (GIBCO-Invitrogen) supple-
mented with B27 supplement (1:50 dilution; GIBCO-Invitrogen),
25 mM glutamate, 0.5 mM glutamine and 0.12 mg/ml gentamy-
cin. The cells were dissociated in this solution and were then
plated in 6 well plates (870,000 cells/well) coated with poly-D-
lysine (0.1 mg/mL), or on poly-D-lysine coated glass coverslips, at
a density of 150,000 cells/well (12 well plates). The cultures were
maintained in a humidified incubator of 5% CO2/95% air, at
37uC, for 7 or 10 days. Excitotoxic stimulation was performed with
125 mM glutamate in supplemented Neurobasal medium, for

20 min at 37uC, in a humidified incubator. After stimulation with
glutamate the cells were further incubated with the original culture
medium for the indicated periods of time. When appropriate,
50 mM UBEI-41 (ubiquitin-activating enzyme inhibitor; Biogen-
ova Corp., Maryland, USA), 1 mM MG132 (Calbiochem,
Darmstadt, Germany), 10 mM Lactacystin (Sigma, MO, USA) or
10 mMYU102 (Biomol, Exeter, UK) were added to the incubation
medium 30 min (or 1 h for UBEI-41) before stimulation.
Animals used in the preparation of cell cultures and in the GAD

activity experiments (see below) were handled according to
National and Institutional guidelines. Experiments conducted at
the Center for Neuroscience and Cell Biology were performed
according to the European Union Directive 86/609/EEC on the
protection of animals used for experimental and other scientific
purposes. These experiments did not require approval by an
Institutional Animal Care and Use Committee (IACUC). The
work performed at GNF adhered to the Animal Behavior Society
Guidelines for the Use of Animals in Research, and was approved
by the Institutional Animal Care IACUC.

Preparation of extracts
Hippocampal neurons (DIV7) were washed twice with ice-cold

PBS and once more with PBS buffer supplemented with 1 mM
DTT and a cocktail of protease inhibitors (0.1 mM PMSF; CLAP:
1 mg/ml chymostatin, 1 mg/ml leupeptin, 1 mg/ml antipain, 1 mg/
ml pepstatin; Sigma-Aldrich Quı́mica, Sintra, Portugal). The cells
were then lysed with RIPA (150 mM NaCl, 50 mM Tris-HCl,
5 mM EGTA, 1% Triton, 0.5% DOC and 0.1% SDS at a final
pH 7.5) supplemented with the cocktail of protease inhibitors.
After centrifugation at 16,100 g for 10 min, protein in the
supernatants was quantified using the bicinchoninic acid (BCA)
assay (Thermo Scientific, Rockford, IL), and the samples were
denaturated with 2x concentrated denaturating buffer (125 mM
Tris, pH 6.8, 100 mM glycine, 4% SDS, 200 mM DTT, 40%
glycerol, 3 mM sodium orthovanadate, and 0.01% bromophenol
blue), at 95uC for 5 min.

Total RNA isolation
Total RNA was extracted from 7 DIV cultured hippocampal

neurons using TRIzolH Reagent (Invitrogen), following the manu-
facturer’s specifications. The content of 2 wells from a 6 well plate,
with 870,000 cells/well (DIV7), was collected for each experimental
condition. After the addition of chloroform and phase separation, the
RNA was precipitated by the addition of isopropanol. The
precipitated RNA was washed once with 75% ethanol, centrifuged,
air-dried and resuspended in 60 ml of RNase-free water (GIBCO-
Invitrogen). The whole procedure was performed at 4uC.

RNA Quality and RNA Concentration
RNA quality and integrity was assessed using the Experion

automated gel-electrophoresis system (Bio-Rad, Amadora, Portu-
gal), as previously described [35]. A virtual gel was created for
each sample, allowing the detection of degradation of the
reference markers, RNA 18S and 28S. Samples showing RNA
degradation or contamination by DNA were discarded. RNA
concentration was determined using both the fluorescent dye
RiboGreen (Invitrogen-Molecular Probes, Leiden, The Nether-
lands) and NanoDrop 1000 (Thermo Scientific). The samples were
aliquoted and stored at -80uC to further use.

Reverse Transcription reaction
For first strand cDNA synthesis 1000 ng of total RNA was

mixed with Random Hexamer Primer p(dN)6 followed by 10 min

Proteasome and GAD Cleavage
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denaturation at 65uC to ensure loss of secondary structures that
may interfere with the annealing step. The samples were chilled on
ice, and the template-primer mix was then supplemented with
Reaction Buffer (50 mM Tris/HCl, 30 mM KCl, 8 mM MgCl2,
pH 8.5), Protector RNase Inhibitor (20U), dNTPs (1 mM each)
and finally AMV Reverse Transcriptase (10U; Roche, Carnaxide,
Portugal), in a 20 ml final volume. The reaction was performed at
25uC for 10 min, followed by 30 min at 55uC, for primer
annealing to the template and cDNA synthesis, respectively. The
Reverse Transcriptase was then denatured during 5 min at 85uC,
and the samples were then cooled to 4uC for 5 min, and finally
stored at 280uC until further use.

Primer Design
Primers for real-time PCR were designed using the ‘‘Beacon

Designer 7’’ software (Premier Biosoft International, CA, USA),
and the following considerations were taken: (1) GC content about
50%; (2) annealing temperature (Ta) between 5565uC; (3)
secondary structures and primer-dimers were avoided; (4) Primer
length between 18–24 bp; (5) Final product length between 100–
200 bp. The primers used for amplification of GAD65 and
GAD67 were, respectively, NM 012563 (accession number to
mRNA sequence) – 59GCT CAT TGC CCG CTA TAA G39 and
59ATC ACG CTG TCT GTT CCG39; NM 017007 – 59ACA
CTT GAA CAG TAG AGA C39 and 59GCA GGT TGG TAG
TAT TAG G39. The primers used for the amplification of
endogenous controls GAPDH and Tubulin alpha 1a were,
respectively, NM 017008 –59AAC CTG CCA AGT ATG
ATG39 and 59 GGA GTT GCT GTT GAA GTC39 ; NM
022298 –59CAT CCT CAC CAC CCA CAC39 and 59GGA
AGC AGT GAT GGA AGA C39. Following the first experiment
all sets of primers were tested for their specificity in an agarose gel
that allows determination of the product size and possible non-
specific products.

Real-Time PCR
For gene expression analysis 2 ml of 1:100 diluted cDNA was

added to 10 ml 2x SYBR Green Master Mix (Bio-Rad) and the
final concentration of each primer was 250 M in 20 ml total
volume. The thermocycling reaction was initiated with activation
of the Taq DNA Polymerase by heating at 95uC during 30 s,
followed by 45 cycles of a 10 s denaturation step at 95uC, a 30 s
annealing step, and a 30 s elongation step at 72uC. The
fluorescence was measured after the extension step, using the
iQ5 Multicolor Real-Time PCR Detection System (Bio-Rad).
After the thermocycling reaction the melting step was performed
with slow heating, starting at 55uC and with a rate of 0.5uC per 10
s, up to 95uC, with continuous measurement of fluorescence,
allowing detection of possible non-specific products. The assay
included a non-template control and a standard curve (in 10-fold
steps) of cDNA for assessing the efficiency of each set of primers.
All reactions were run in duplicate to reduce confounding variance
[36].

Real Time PCR Data Processing
The threshold cycle (Ct) represents the detectable fluorescence

signal above background resulting from the accumulation of
amplified product, and is a proportional measure of the starting
target sequence concentration. Ct was measured in the exponential
phase and, therefore, was not affected by possible limiting
components in the reaction. For every run performed Ct was set
at the same fluorescence value. Data analysis was performed using
the GenEx (MultiD Analyses, Sweden) software for Real-Time
PCR expression profiling, and the results were normalized with a

set of two internal control genes. Statistical analysis was performed
using the Student’s t test.

Immunoblotting
Protein samples were separated by SDS-PAGE, in 12%

polyacrylamide gels (or 7.5% gels when spectrin products were
detected), transferred to polyvinylidene (PVDF) membranes
(Millipore Corp., Billerica, MA), and immunoblotted. Blots were
incubated with primary antibodies (overnight at 4uC), washed and
exposed to alkaline phosphatase-conjugated secondary antibodies
(1:20000 dilution; 1 h at room temperature) or exposed directly to
ECL in the ubiquitin-conjugates detection which films were
scanned and the optical densities of the bands were measured with
appropriate software. Alkaline phosphatase activity was visualized
by ECF on the Storm 860 Gel and Blot Imaging System (GE
Healthcare, Buckinghamshire, UK). The following primary
antibodies were used: anti-GAD65/67 (1:5000, Sigma), anti-
GAD67 (1:250; BD Biosciences, Erembodegem, Belgium), anti-
body against calpain-mediated fragment of spectrin/fodrin
nSBDP NSBDPs [1:300 [37,38]] and anti-b-Actin (1:5000, Sigma).

Recombinant GAD65 cleavage assay
0.75 mg of recombinant GAD65 (Diamyd Diagnostics, Stock-

holm, Sweden) were incubated with 1.5 mg of 20S or 26S
proteasome (Biomol) at 37uC for 2 h, in a total volume of 20 ml
of buffer (30 mM TrisHCl pH 7.6, 100 mM NaCl, 1 mM CaCl2,
2 mMMgCl2, 50 mM ATP, 1 mM DTT, 5% (v/v) glycerol), with
or without 10 mM MG132. A pre-incubation of 5 min with the
proteasome inhibitor was performed. Reactions were stopped by
addition of 20 ml of 2x concentrated denaturating buffer (same for
immunoblot), resolved by 12% PAGE and probed with a GAD65
antibody by Western blot.

Purified proteasome activity
To test for the activity of the purified proteasome activity, the

20S and 26S proteasome preparations were incubated in the
presence of the chymotrypsin-like fluorogenic peptide suc-LLVY-
MCA (Peptide Institute, Inc., Osaka, Japan). The proteasome
preparations were incubated with the substrate (50 mM) in the
presence or in the absence of the proteasome inhibitor MG132
(10 mM), in a medium containing 1 mM EDTA, 10 mM tris-HCl
(pH 7.5), 20% glycerol, 4 mM DTT, 2 mM ATP (100 ml final
volume). Substrate degradation by the proteasome was monitored
every 5 min during 1 h at 37uC in a fluorescence-luminescence
detector (SynergyTM HTMulti-Mode Microplate Reader, BioTek,
Winooski, VT), set to 380 and 460 nm, excitatory and emission
wavelengths, respectively.

Immunoprecipitation Assay
Immunoprecipitation of ubiquitin-conjugated proteins was

performed using the Ubiqapture – Q Kit (Biomol, Exeter, UK),
as described by the manufacturer. A total of 50 mg lysates from
cultured hippocampal neurons were used per assay. Samples were
added to the tubes containing 80 ml UbiQapture-Q matrix and
incubated overnight at 4uC in an horizontal rotor mixer. The
matrix was then carefully washed and the ubiquitin-protein
conjugates were eluted by addition of 160 ml of PBS and 50 ml
of 5X concentrated denaturating buffer (same for immunoblot).
Samples were quenched by incubation during 15 min at 4uC on
an horizontal rotor and then denaturated by heating during at
95uC for 10 min. The eluted fraction was clarified from the matrix
pellet by centrifugation at 16,100 g during 10 min. Western blot
analysis was performed as previously described using an anti-
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GAD65/67 antibody and the ubiquitin-conjugate antibody
supplied by the kit, applying equal sample volumes (approximately
60 ml).

Measurement of GAD activity
Wistar adult rats were decapitated and each head was covered

and kept at room temperature (approximately 21uC) for 24 h.
Brains were then dissected and placed on an ice-cold plate for
dissection of the cerebellum and cerebral cortex. Samples were
then resuspended in 50 mM TrisHCl and 0.02% Triton X-100,
sonicated with a probe sonicator in 5 pulses of 5 seconds, and
centrifuged at 16,100 g for 10 min. The supernatants were diluted
(1:30–1:100) and the protein content was measured using the BCA
method. Activity of glutamate decarboxylase (GAD) was measured
by the [14C]CO2 trapping method, using L-[1-14C]-glutamic acid
(60 mCi/mmol, GE Healthcare, Buckinghamshire, UK) as a
substrate [39]. Enzyme activity was expressed as nmol of product/
h/mg of protein. Reactions contained 40 mg of extract protein and
0.5 M KH2PO4, 5 mM ethylenediamineteraacetic acid (EDTA),
1 mM 2-aminoethyliso-thiouronium bromide (AET), 10 mM
glutamate, 1 mM pyridoxal phosphate and L-[1-14C]-glutamic
acid in a total volume of 100 ml. Samples were incubated for 1 h at
37uC in test tubes containing #32 glass fiber filters (Schleider and
Schuell, Keene, NH, USA) coated with 0.5 M Solvable (Packard
Instruments, CT, USA). Each filter was suspended at the top of the
tube, just underneath a rubber stopper, which sealed the tube. The
reaction was stopped by the injection of 15% trichloroacetic acid
through the stopper. The tubes were incubated at room
temperature for another 120 min to ensure complete release and
absorption of [14C]CO2 into the filter paper. The filter papers
were then removed from the tubes and placed in scintillation vials
for measurement of the [14C]CO2 product in a Packard 2000
spectrometer provided with dpm correction. The scintillation
cocktail used contained 5.84 g 2,5-diphenyloxazole (PPO) and
133.6 mg of 1,4-Bis(5-phenyl-2-oxazolyl)benzene (POPOP),
800 ml toluene and 200 ml of Triton X-100. Sample extracts
were also analysed by Western Blot using the anti-GAD65/67
antibody.

Immunocytochemistry
For immunocytochemistry, cultured hippocampal neurons were

grown on poly-D-lysine coated glass coverslips, at a density of
456103 cells/cm2, and were then fixed in PBS supplemented with
4% paraformaldehyde/4% sucrose, for 30 min at 4uC. After
fixation the cells were permeabilized with 0.25% Triton X-100 in
PBS, for 5 min at room temperature, washed three times in PBS,
and then blocked with 20% normal goat serum, for 1 h at room
temperature, and stained against VGLUT1 (1:1000; Synaptic
Systems) + VGLUT2 (1:500; Synaptic Systems) or GABA (1:2000;
SIGMA) overnight at 4uC. Next, the cells were washed six times
and incubated for 1 h at room temperature with the secondary
antibody (Alexa FluorH 488 goat anti-rabbit, 1:500 to 1:1000;
Barcelona, Spain). The cells were washed three times, mounted on
glass slides with the Dako mounting medium and viewed on an
Axiovert 200 fluorescence microscope coupled to an Axiocam
HRm digital camera (Zeiss) (Figure 1).
Immunocytochemistry experiments for localization of GAD65

were performed using hippocampal neurons maintained in culture
for 10 days. The cells were fixed with 4% formaldehyde, 4%
sucrose in PBS for 12 min at room temperature and were
subsequently permeabilized with 0.25% Triton X-100 in PBS for
3 min, washed 3 times in PBS and incubated in blocking solution
(2% bovine serum albumin, 2% glycine, and 0.2% gelatin in
50 mM NH4Cl) for 1 h at room temperature. Afterwards, the

neurons were incubated for 1 h with a mouse monoclonal
antibody anti-GABAAReceptor b2/3 (Upstate Biotechnology) at
a dilution of 1:200, and a rabbit polyclonal antibody anti-GAD65
(SIGMA) at a dilution of 1:1000, in blocking solution. Following
the incubation with the primary antibodies, the cells were rinsed 4
times in PBS during 15 min periods, incubated for 1 h at room
temperature with secondary antibodies Alexa Fluor 568 goat anti-
rabbit and Alexa Fluor 488 goat anti-mouse (Invitrogen), at a
dilution of 1:500 in blocking solution, rinsed 3 times in PBS
followed by a final rinse in deionized water, dried, and mounted in
Vectashield mounting solution (Vector Laboratories, Inc.). The
neurons were imaged at the Garner Laboratory (Stanford
University) with a Zeiss Axovert 200M microscope using a 63x
objective. The image emission was directed through a CSU10
spinning disk confocal unit (Yokogawa) and collected by a 512B-
CCD camera (Roper Scientific). Image acquisition and analysis
was conducted with Metamorph software. For each field of view,
stacks of 2 images with a Z step size of 0.2 mm were collected and
a Metamorph 3D reconstruction tool was used to create a
projection image. For each condition, 15 images were collected
from two different cover slips.
For quantitative assessment of GABAAReceptor b2/3 and

GAD65 protein co-localization, the 3D reconstruction stacked
images were submitted to threshold using the MetaMorph
Inclusive Threshold application, in order to include only the
puncta labeled by the GAD65 antibody. The total number of
GAD65 puncta was determined using Integrated Morphometry
Analysis of the image and selecting the Area parameter setup for
measurement. After proceeding to perform an identical 3D
reconstruction and threshold of the GABAAReceptor b2/3
corresponding image, the two reconstructed images were over-
layed and a color threshold was set. Finally, the overlay image was
used to quantify the number of puncta positive for both
GABAAReceptor b2/3 and GAD65, using the Integrated
Morphometry Analysis tool. This procedure was repeated for
each field of view, and the ratio of GABAAReceptor b2/3 subunits
and GAD65 positive puncta per total number to GAD65 puncta
was determined in percentage. The average number of 15 images,
per condition, was calculated for 3 independent experiments.
Likewise, the number of GAD65 puncta per unit length of axon
was determined by selecting the option Trace Region on
MetaMorph to delineate segments of axons with at least
100 mm, and measuring the number of GAD65 puncta on the
image previously submitted to a threshold, using Integrated
Morphometric Analysis. The length of each axonal segment was
determined selecting the Multi-line tool and uniting consecutive
puncta along the delineated neurite. This procedure was repeated
in each field of view, for 10–15 images per condition, in each of
the 3 independent neuronal preparations.

Determination of the viability of GABAergic neurons with
Hoescht 33342
Determination of cell viability was performed by fluorescence

microscopy, using the indicator Hoechst 33342 as previously
described [40]. The cells were stimulated with 125 mM glutamate
for 20 min, in Neurobasal medium supplemented with the GABA
transporter inhibitor SKF89976 (10 mM). After the excitotoxic
insult hippocampal neurons were further incubated in culture
conditioned medium supplemented with 10 mM SKF89976 for
12 h. Incubation of the cells with SKF89976 during stimulation
with glutamate and after the excitotoxic insult prevents the
depletion of GABA through reversal of the plasma membrane
transporter [41]. GABAergic neurons were stained using an anti-
GABA polyclonal antibody (see above), and the nuclear morphol-
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ogy was assessed through staining with Hoechst 33342. Analysis of
the nuclear morphology was limited to GABAergic neurons,
stained with the anti-GABA antibody.

Measurement of metabolic activity with CellTiter-Glow
Rat hippocampal neurons cultured in 384 micro-titter plates,

coated with poly-D-lysine, at a density of 91.66103 cells/cm2 were
incubated with 125 ı̀M glutamate in supplemented Neurobasal
medium, for 20 min at 37uC. After stimulation with glutamate, the
cells were further incubated with the original culture medium, for

14 h at 37uC. The viability of the cells was then measured by
analysing the levels of ATP as an indicator of cellular metabolic
activity, using CellTitter-Glo (Promega) according to manufactur-
er’s instructions. Briefly, in each well, 50 ı̀l of PBS/CellTitter-Glo
(1:1) were dispensed with a Multidrop 384 stacker (Titertek), after
removal of the growth media, at room temperature. The plate was
then placed on an orbital shaker for 2 minutes, at maximum speed
and further incubated for 10 minutes at room temperature, without
shaking. Luciferase luminescence was measured immediately
afterwards, using an Acquest plate reader (Molecular Devices).

Figure 1. Glutamate excitotoxicity decreases viability of cultured hippocampal GABAergic neurons. GABAergic and glutamatergic
neurons in the cultures (DIV7) were identified by immunocytochemistry, using antibodies against GABA (A, E) and VGLUT1+2 (A, D). The total
number of cells present in the analysed fields was calculated based on the number of nuclei, stained with the fluorescent dye Hoechst 33342. Data
are presented as mean6SEM of 5 independent preparations (A). Excitotoxic stimulation of hippocampal neurons was performed by incubation
with 125 mM glutamate, for 20 min, in fresh Neurobasal medium containing B27 supplement, and the cells were further incubated in the original
medium for 14 h. Cell death was assessed with the recombinant Luciferase chemoluminescence assay with CellTiterGlo (B), or by fluorescence
microscopy using the fluorescence dye Hoechst 33342 (C). In the latter condition GABAergic cells were identified by immunocytochemistry, using
an antibody against GABA. Data are presented as mean6SEM of 5 independent experiments. Statistical analysis was performed using Student’s t-
test. ***p,0.001.
doi:10.1371/journal.pone.0010139.g001
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Statistical Analysis
Statistical analysis was performed using one-way ANOVA

analysis of variance followed by the Bonferroni test, or using the
Student’s t test, as indicated in the figure captions.

Results

Excitotoxic damage of cultured GABAergic hippocampal
neurons
Dissociated cultures of hippocampal neurons contain gluta-

matergic and GABAergic neurons, expressing the vesicular
glutamate transporter 1 (VGLUT1) and glutamic acid decarbox-
ylase, respectively [42]. Immunocytochemistry experiments using
antibodies against VGLUT1+VGLUT2 (Fig. 1D) and against
GABA (Fig. 1E) showed that 65% of the cells present in
hippocampal cultures are glutamatergic and 5% are GABAergic,
respectively (Fig. 1A).
Excitotoxic stimulation of cultured hippocampal neurons with

125 mM glutamate for 20 min reduced cell viability as determined
using the CellTiter-Glo Luciferase chemiluminescence assay, a
method based on the quantification of the ATP present in the cells.
Luciferase activity was reduced to 48% of the control 14 h after
the toxic insult (Fig. 1B), in agreement with the results obtained in
experiments where cell survival was determined using fluorescence
microscopy with the indicator Hoechst 33342 [40]. Under these
conditions damaged hippocampal neurons display an apoptotic-
like morphology. Since GABAergic neurons represent a minor
fraction of the cells present in the cultures, we have specifically
assessed the effects of excitotoxic stimulation with glutamate on the
neuronal population displaying GABA immunoreactivity. In these
experiments the cells were stimulated with glutamate in the
presence of the GABA transporter inhibitor SKF89976 in order to
prevent the release of the neurotransmitter through reversal of the
plasma membrane transporter [41]. The number of GABAergic
cells displaying apoptotic-like morphology 12 h after glutamate
stimulation was about 54% (Fig. 1C).

Excitotoxicity-induced cleavage of GAD and down-
regulation of gene expression
To test the effect of glutamate stimulation on glutamic acid

decarboxylase, a marker of GABAergic neurons, GAD protein
levels were evaluated after the excitotoxic insult, using an antibody
that recognizes both forms of the enzyme in a common C-terminal
region (Fig. 2C). Under control conditions the antibody allows
identifying the two GAD isoforms, with 67 kDa and 65 kDa.
Glutamate stimulation induced a time-dependent decrease in the
abundance of both isoforms, and this effect was correlated with the
upregulation of a truncated form with an apparent molecular mass
of 55–58 kDa (Fig. 2A). The truncated form still bound the C-
terminus directed antibody, but no smaller immunoreactive forms
of GAD were detected in the blots (not shown). These results
indicate that glutamate-induced cleavage of the two GAD isoforms
occurs at the N-terminal region and gives rise to truncated forms
with similar apparent molecular weights.
In order to further characterize the cleavage of GAD under

excitotoxic conditions, we tested a GAD67 specific antibody that
binds its N-terminus (amino acids 17–130). The immunoreactivity
pattern in extracts prepared from cells incubated for 14 h after the
toxic insult with glutamate was similar to that obtained using the
antibody directed against the C-terminal region of GAD (Fig. 2B).
This indicates that GAD67 is cleaved before amino acid 130.
Besides its effect in inducing the cleavage of GAD, excitotoxic

stimulation with glutamate may also have delayed effects on GAD
by acting at the transcription level. This was tested by Real-Time

PCR, in cells subjected to excitotoxic stimulation with glutamate
for 20 min and further incubated in culture medium for 4 h.
Under these conditions there was a 58% and 71% downregulation
of GAD65 and GAD67 mRNA, respectively, relative to
unstimulated cells (Fig. 3).

Proteasome inhibitors protect GAD65/67 from cleavage
under glutamate-induced excitotoxicity in hippocampal
neurons
Multiple proteolytic systems have been shown to participate in

the cleavage of GAD under excitotoxic conditions, including
calpains and cathepsins [22–25]. Despite the key role of the
ubiquitin-proteasome system (UPS) in protein degradation in the
CNS, no studies have addressed its role in the down-regulation of
full-length GAD isoforms under excitotoxic conditions. To test for
the effect of inhibiting different proteolytic activities of the
proteasome, we used the chymotrypsin-like activity directed
inhibitor MG132 and the post-glutamyl peptide hydrolyzing-
activity (PGPH) directed inhibitor YU102. We also tested the
effect of lactacystin which shows a slight preference for the trypsin-
like and caspase-like activities [43]. MG132 is a synthetic peptide
aldehyde that binds reversibly to the 20S proteasome active site
forming a covalent hemiacetal adduct [44,45]. The effect of
proteasome inhibitors was tested 5 h after the toxic insult with
glutamate since long incubation periods with these compounds
causes neuronal cell death [46,47]. MG132 abrogated glutamate-
induced cleavage on both isoforms of GAD, as determined 5 h
after the toxic insult (Fig. 4A). Lactacystin is a Streptomyces
lactacystinaeus metabolite that targets the 20S proteasome by an
irreversible modification of the amino terminal threonine of b-
subunits, while YU102 is a a9, b9-epoxyketine, the only peptidyl-
glutamylpeptidehydrolyzing (PGPH)-specific peptide used in this
study [45,48]. Both YU102 and lactacystin inhibited glutamate-
evoked GAD65 cleavage, but were without effect on GAD67
(Fig. 4A).
To further characterize the role of the UPS in the glutamate-

evoked cleavage of GAD we tested the effect of the ubiquitin-
activating enzyme (E1) inhibitor, UBEI-41 [49]. It has been
assumed that only a single activating enzyme for ubiquitin exists,
which operates at the initial step of the ubiquitin-proteasome
pathway. Therefore, if the UPS plays a role in the cleavage of
GAD, inhibitors of E1 should abrogate the excitoxicity-induced
cleavage of the GAD. Accordingly, inhibition of the ubiquitin-
activating (E1) enzyme prevented the effect of excitotoxic
stimulation on the cleavage of GAD67 and GAD65 (Fig. 4B).
In previous studies the cleavage of GAD under excitotoxic

conditions was found to be abrogated by calpain inhibitors [22–
25]. Furthermore, recombinant GAD65 and 67 are cleaved in
vitro by calpain [22,23]. Accordingly, incubation of hippocampal
neurons with ALLN, a chemical inhibitor that targets preferen-
tially calpains when used at lower concentrations, prevented the
glutamate-induced cleavage of GAD65/67 (Fig. 4B). Therefore,
we determined whether inhibition of calpains could account for
the effect of the UPS inhibitors on glutamate-induced cleavage of
GADs. Activation of calpain was measured by western blot, using
an antibody that binds specifically to the product resulting from
the cleavage of spectrin by calpains (SBDPs) [37,38,50].
Glutamate stimulation increased the formation of N-terminal
SBDPs (NSBDPs), and this effect was only slightly inhibited by
MG132 (16.6%; p,0.05) and by UBEI-41 (28.3%; p.0.05)
(Fig. 4C). These results indicate that calpain inhibition is not likely
to account for the effects of MG132 and UBEI-41 on glutamate-
evoked cleavage of GAD.
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Figure 2. Glutamate excitotoxicity induces a time-dependent decrease in GAD65 and GAD67 protein levels in cultured
hippocampal neurons. Neurons were stimulated with 125 mM glutamate, for 20 min, and further incubated in culture conditioned medium for the
indicated period of time. Full length GAD 65/67 protein levels were determined by Western Blot with an antibody that recognizes both isoforms.
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GAD65/67 interact with ubiquitinated proteins in primary
hippocampal cultures
The results shown above suggest that the proteasome plays a

direct role in GAD67 cleavage under excitotoxic conditions. In
particular, the inhibition of GAD67 cleavage by the E1 inhibitor
(Fig. 4C) suggests that the enzyme is ubiquitinated before cleavage by
the proteasome. To test for the possible ubiquitination of GADs we
used the UbiQaptureTM-Q Kit which allows isolating both mono-
and poly-ubiquitinylated proteins (and their binding partners),
independent of lysine residue chain linkage. Ubiquitinated proteins
(and their binding partners) were isolated from extracts of
hippocampal neurons stimulated or not with glutamate (with or
withoutMG132), and the results were analysed byWestern Blot with
an anti-GAD65/67 antibody. GAD65/67 was immunoprecipated
in similar amounts in all experimental conditions tested, but
stimulation with glutamate in the presence or in the absence of
MG132 increased the capture of GAD (Fig. 5A, top panel).
However, in all experimental conditions the mobility of the
immunoprecipitated GAD65/67 was the same as the mobility of
the protein present in extracts directly loaded on the gel, suggesting
that there is no change in GAD ubiquitination following glutamate
stimulation. Taken together these results suggest that GAD67
interacts with another protein(s) that is ubiquitinated, and capture of
this protein by an anti-ubiquitin antibody allows co-purification of
the enzyme. The increased co-immunopurification of GAD67 in
extracts from cells stimulated with glutamate may suggest that the
excitotoxic insult increases the ubiquitination of the GAD67
interacting protein(s).
Since the 20S proteasome is able to cleave substrates without

ubiquitination [51,52], an in vitro system was used to determine

whether this could account for the observed inhibitory effect of
MG132 on the excitotoxicity-induced cleavage of GAD65. Recom-
binant GAD65 was incubated with 20S and 26S proteasomes using
the protocol previously described [51], which allowed characterizing
the ubiquitin- and ATP-independent cleavage of YB-1 (a DNA/
RNA-binding nucleocytoplasmic shuttling protein) by the 20S
proteasome in vitro. No cleavage of recombinant GAD65 was
observed following incubation with the 20S or 26S proteasome
(Fig. 5B), suggesting that this GAD isoform does not undergo a
ubiquitin-independent proteasomal cleavage, as described for YB-1.
Control experiments using fluorogenic substrates showed that the
20S and 26S proteasome preparations were active (Fig. 5C), further
suggesting that the proteasome does not act directly on GAD65.

GADs cleavage is correlated with decreased enzyme
activity and changes the subcellular distribution
Since GADs play a key role in the synthesis of GABA from

glutamate, we investigated how the cleavage of the enzyme affects
its activity. The assay of GAD activity using the [14C]CO2 trapping
method requires the use significant amounts of protein that cannot
be obtained using hippocampal cultures. Therefore, the effect of
GAD cleavage on the activity of the enzyme was investigated using
brain tissue from decapitated rats. Previous studies have shown that
under these conditions GAD is cleaved with a pattern similar to that
observed under excitotoxic conditions, particularly in the cerebel-
lum and in the cerebral cortex [53]. The post-mortem cleavage of
GAD65 and GAD67 in these brain regions was confirmed in the
present study (Fig. 6B), and 24 h after death there was a decrease in
the total full length GAD protein levels both in the cerebellum and
in the cerebral cortex (Fig. 6A). At this time point the activity of
GAD was decreased to 68.8% in the cerebral cortex and to 33.1%
in the cerebellum, while the total amount of full-length protein was
reduced to 73% and 58%, respectively. The total GAD protein
levels (full-length + cleaved protein) at 24 h post-mortem was not
significantly different from the amount of protein detected under
control conditions (see representative western blot in the top panel
of Fig. 6B).
GAD65 is anchored to synaptic vesicles through its N-terminus

[54,55]. Since glutamate stimulation cleaves GAD near the N-
terminal region, we hypothesized that the cleavage of the enzyme
could affect its sub-cellular localization. Under control conditions
GAD65 displays a partially punctate distribution along neurites
(Fig.7A, arrowheads), but this pattern is altered 4 h after
excitotoxic stimulation with glutamate. Under the latter conditions
some neurites show a more homogeneous distribution of GAD65,
diffuse along the neuronal processes (Fig. 7A, B), and the number
of GAD65 puncta is significantly reduced in comparison to the
control conditions (Fig. 7C). Colocalization of GAD65 with the
b2/3 GABAA receptor subunits was also significantly decreased
(Fig. 7C), showing a loss of synaptic distribution of GAD65 under
excitotoxic conditions.

Discussion

Previous studies have shown the cleavage of the glutamic acid
decarboxylase isoforms GAD65 and GAD67 under excitotoxic

Control protein levels of GAD65/67 were set to 100%. Actin was used as loading control (A). Panel A shows a representative experiment and
mean6SEM of 9 independent experiments. The cleavage of GAD67 was also analysed with an antibody directed against amino acids 70–130 of this
isoform (B). In this case the results obtained under control conditions were compared with the immunoreactivity in extracts prepared 14 h after the
toxic insult. The amino acid sequence of GAD65 (lower sequence) and 67 (top sequence) are aligned in panel C, which also show the binding sites for
the antibodies used in this study. Statistical analysis was performed using one-way ANOVA, followed by Bonferroni’s multiple comparison test.
**p,0.01; ***p,0.001.
doi:10.1371/journal.pone.0010139.g002

Figure 3. Glutamate excitotoxicity decreases GAD65/67 mRNA.
Gene expression was analysed in cultured hippocampal neurons (7 DIV)
exposed or not to 125 mM Glutamate, for 20 min, and then returned to
the original culture medium for 4 h. For the reverse transcription
reaction 1 mg of total RNA was used. The results were normalized with
two internal control genes, GAPDH and Tubulin. Data are presented as
mean6SEM of four to five independent transcription reactions,
performed in independent preparations. Statistical analysis was
performed using Student’s t-test. *p,0.05; **p,0.01.
doi:10.1371/journal.pone.0010139.g003
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conditions [23,25], and pointed out a key role for calpains in this
process [22–24]. In this work we show that the activity of E1 ubiquitin
ligase and the proteasome are required for glutamate-evoked
cleavage of GAD67, although no clear evidences were obtained
showing a direct ubiquitination of the enzyme. Furthermore, cleavage
of GAD65/67 was found to decrease enzyme activity and changed
the characteristic punctate distribution of GAD65 along neurites.
Both effects are likely to downregulate the activity of GABA as a
neurotransmitter under excitotoxic conditions.

Glutamate-induced cleavage of GAD protein levels and
downregulation of mRNA
Excitotoxic stimulation of cultured hippocampal neurons induced

the cleavage of GAD65 and 67 by a mechanism sensitive to the
calpain inhibitor ALLN, similarly to what was observed in neuronal
cultures prepared from the whole brain or from the cerebral cortex
[23,24]. The full-length proteins were cleaved into a truncated form
with approximately 55–58 kDa, which was detected by an antibody
directed against the N-terminal of GAD65 and GAD67. Since no
immunoreactive bands with low apparent molecular weight were

identified, the results indicate that both GAD isoforms are cleaved in
a sequence close to the N-terminal region of the proteins.
Accordingly, an antibody directed against amino acids 17–130 of
GAD67 also detected the cleavage product of the enzyme, showing
that the cleavage site is located before amino acid 130. The sequence
after amino acid 100 in GAD67 shows high homology with GAD65
(Fig. 2C), and this explains the similarity in the apparent molecular
weight of the cleavage products of GAD65 and GAD67.Much of the
available evidences suggest that the N-terminal segment of GAD is
exposed and flexible [56], and this maymake this region available for
cleavage by proteases. In vitro studies showed that recombinant
human GAD67 lacking the first 70 or the first 90 amino acids is not
cleaved by calpain, in contrast with the full length protein [22],
suggesting that under excitotoxic conditions GAD67 may be cleaved
between amino acids 90 and 130. If this is the case, the dimerization
of GADs required for their activity is likely not affected by enzyme
cleavage since dimer formation occurs through interaction of C-
terminal portions of GAD molecules [56]. GAD is a pyridoxal 59-
phosphate (PLP)-dependent enzyme, but the co-enzyme binding site
is not contained within the N-terminal regions [57]. Therefore,

Figure 4. Proteasome and ubiquitin-activating enzyme (E1) inhibitors prevent glutamate–induced GAD65/67 cleavage. Cultured
hippocampal neurons were pre-incubated or not with 50 mM of UBEI-41 (E1 inhibitor), for 1h, or with the proteasome inhibitors MG132 (1 mM),
lactacystin (10 mM) or YU102 (10 mM), for 30 min, before excitotoxic stimulation with glutamate (125 mM), for 20 min. The cells were further incubated
in culture conditioned medium (with or without chemical inhibitors) for 5h, and the GAD65/67 immunoreactivity was assessed by western blot (A and
B). Incubation with the calpain inhibitor ALLN (10 mM) was performed under the same conditions. The average results in (A) represent the changes in
GAD65 or GAD67 immunoreactivity. In panel (B) GAD cleavage was calculated as a percentage of the total enzyme content (GAD65/67). When calpain
activity was evaluated through formation of N-terminal spectrin breakdown products (NSBDPs) the cells were incubated for 30 min after the toxic
insult (C). The effect of MG132 and UBEI-41 on calpain activation is expressed as a percentage of the activity measured in the absence of the protease
inhibitors. Results are means6SEM of 3–4 different experiments, performed in independent preparations. Statistical analysis was performed using
one-way ANOVA, followed by Bonferroni’s Multiple Comparison Test (A and B) or the Student’s t test (C). ***p,0.001.
doi:10.1371/journal.pone.0010139.g004
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changes in PLP binding are not likely to account for the changes in
GAD activity following enzyme cleavage.
In addition to the cleavage of GAD we also observed a decrease

in the mRNA levels for both isoforms of the enzyme in hippocampal
neurons subjected to an excitotoxic insult with glutamate (Fig. 3).
This is likely to limit the de novo synthesis of GAD, which could
otherwise compensate for the observed dowregulation of the full-
length protein. It remains to be determined whether the observed
decrease in the mRNA for GAD is due to a reduction in
transcription activity and/or to an active degradation of the existing
transcripts. The rapid down-regulation of GAD mRNA following
excitotoxic stimulation of cultured hippocampal neurons contrasts
with the delayed effects of ischemic injury on GAD67 mRNA [58];

unilateral ischemic lesions of the frontoparietal cortex in adult rats
increased GAD67 mRNA levels in the striatum, lasting up to 3
months after surgery. Inhibition of NMDA receptors also
downregulated GAD mRNA in various brain regions, starting at
day 2 after treatment [59], suggesting that glutamate receptors are
directly coupled to the activation of GAD67 expression.

UPS system activity is essential for excitotoxicity-induced
GAD cleavage
Previous studies have shown that calpain inhibitors fully block

[23] [or inhibit to a great extent [24]] the glutamate evoked cleavage
of GAD65/67 (see also Figure 4B), and in vitro experiments showed
that calpains cleave recombinant GAD67 [22]. Taken together these

Figure 5. GAD 65/67 are captured with an anti-ubiquitin antibody in hippocampal cultures. (A) Cultured hippocampal neurons were
stimulated or not with 125 mM glutamate for 20min, in the presence or in the absence of 10 mM MG132, and the cells were further incubated with
culture conditioned medium for 4h before preparation of the extracts. In the top panel, mono- and poly-ubiquitinylated proteins were isolated using
the UbiQaptureTM-Q Kit, and the eluted fraction [46] was subjected to western blot, using an antibody against GAD65/67. GAD65/67 total
immunoreactivity in the extracts prepared from control cells and from hippocampal neurons stimulated with glutamate is shown on the right (E.T.).
The left lane was loaded with a control provided in the kit, consisting in ubiquitinated protein lysate. The same membranes were probed for mono-
and poly-ubiquitin using an antibody included in the kit (A, middle). (B) Human recombinant GAD65 (0.75 mg) were incubated with 20/26S
proteasomes (1.5 mg) for 2h at 37uC with or without MG132. The extracts were then probed with GAD65/67 antibody. The activity of the 20S/26S
proteasomes used in the experiments was confirmed using the fluorogenic substrate suc-LLVY-MCA. The increase in fluorescence resulting from the
cleavage of the substrate was measured in relative fluorescence units (RFU) (C). The results of the capture of ubiquitinated proteins and the assay of
the recombinant GAD65 cleavage are representative of two and three independent experiments, respectively.
doi:10.1371/journal.pone.0010139.g005
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evidences strongly suggest that calpains play a key role (if not
exclusive) in GAD cleavage under excitotoxic conditions. Surpris-
ingly, we observed that inhibition of the proteasome with MG132,
lactacystin or YU102 fully abrogated the cleavage of GAD67 in
hippocampal neurons subjected to excitotoxic conditions, and
MG132 had the same effect on the cleavage of GAD65.
Furthermore, inhibition of the ubiquitin-activating enzyme (E1)
with UBEI-41 also prevented the cleavage of GAD67 and GAD65.
The effects of MG132 and UBEI-41 cannot be attributed to
inhibition of calpains since the inhibitors had a small (MG132) or no
effect (UBEI-41) on the glutamate-evoked calpain activation, as
determined by measuring the formation of spectrin breakdown
products (Fig. 4C). Since the molecular weight of the GAD truncated

forms observed in the present studies is similar to that observed in
previous studies where calpains were shown to participate in the
cleavage of the enzyme, it is likely that the UPS and calpains act in a
co-ordinated manner to cleave GADs. If this is the case, the UPS is
likely to act upstream of calpains since no evidences were found for a
direct effect of proteasome in GAD cleavage.
Interaction between calpains and the UPS is also physiologically

relevant in other scenarios. Sequential activity of calpains and the
UPS has been proposed to contribute to the degradation of
myofibrils; calpains release myofibrils form the contractile
apparatus, which allows initiating ubiquitination and degradation
by the proteasome [60,61]. Also, degradation of IkB through
phosphorylation-dependent ubiquitination or following cleavage
by calpains is thought to release NFkB, and the transcription
factor migrates to the nucleus where it binds DNA [62–64]. There
are reports suggesting that proteasome inhibition could be
neuroprotective after stroke [31,65], namely through stabilization
of IkB and thereby preventing NF-kB activation. Inhibition of
calpains can also provide functional neuroprotection in various
animal models of cerebral ischemia [66].

The role of ubiquitination in GADs cleavage
The glutamate-evoked cleavage of GAD65/67 was sensitive to

proteasome inhibition, but incubation of GAD65 with the 20S
proteasome did not give rise to the cleavage product of the enzyme.
Although some proteins are cleaved by the 20S proteasome without
ubiquitination [51,52], this is not the case of GAD65.
Inhibition of the E1 ubiquitinating enzyme also abrogated the

cleavage of GAD65/67 under excitotoxic conditions, indicating
that protein ubiquitination plays a key role in the process.
Separation of mono and poly-ubiquitinated proteins with the
UbiQaptureTM-QKit allowed recovering GAD65 and GAD67, but
although there was an increase in the amount of GAD isolated with
the kit under excitotoxic conditions the apparent molecular weight
of the proteins isolated was similar to that observed in whole cell
extracts. This strongly suggests that GAD is not ubiquitinated, but
instead interacts with a protein which state of ubiquitination is
increased following excitotoxic stimulation with glutamate. This
may be related with an increase in ubiquitin mRNA transcripts, as
observed following ischemia [67,68], with an impairment of the
proteasome activity [29,30,69], and/or to a signalling cascade
induced by excitotoxicity that may ultimately leads to the
ubiquitination of the GAD binding partner. Excitotoxicity also
regulates the NF-kB transcription factor after cerebral ischemia
through ubiquitination and degradation of its binding partner IkB
[70]. Similarly, the cleavage of GAD may follow the increase in
ubiquitination and degradation of a binding partner, which may
allow cleavage of the enzyme by calpains. This hypothesis explains
the effect of both E1 inhibition and proteasome inhibition on GAD
cleavage, and the results showing no apparent ubiquitination of the
enzyme (present work), and the role of calpains [24]. The GAD
binding partner that may be involved in the regulation of the
protein under excitotoxic conditions remains to be identified.
Interestingly, the proteasome inhibitors showed differential

effects on GAD65 and GAD67 cleavage induced by excitotoxic
stimulation with glutamate. MG132 abrogated the cleavage of both
GAD isoforms, in contrast with YU102 and lactacystin which were
only effective against the cleavage of GAD67. The difference in the
effects of the inhibitors tested may be due to their specificities:
MG132 and YU102 act preferentially on the cheymotrypsin-like
and caspase-like activities of the proteasome, respectively, whereas
lactacystin targets preferentially the trypsin-like and caspase-like
activities [43,48]. Assuming that under excitotoxic conditions the
proteasome targets a GAD binding partner before cleavage of the

Figure 6. Excitotoxicity-induced decrease in GAD65/67 activity.
Heads of adult Wistar rats were decapitated and processed immediately
or kept for 24 h at room temperature. The extracts were used for both
GAD activity measurements and Western Blot analysis. GAD activity was
determined using a trapping technique for radiolabelled [14C]CO2

brought by GAD65/67 activity, and was expressed as nmol CO2/hr/mg
of protein (A). Full-length GAD65/67 protein levels from the same
extracts were determined by Western Blot using an anti-GAD65/67
antibody, and control protein levels of GAD65/67 were set to 100% (B).
Data are presented as mean6SEM of 3 to 4 independent experiments.
Statistical analysis was performed using Student’s t-test. *p,0.05;
**p,0.01: ***p,0.001.
doi:10.1371/journal.pone.0010139.g006
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enzymes by calpains, these results suggest that the proteasome
substrates bound to each of the GAD isoforms are distinct.

Alterations of GADs activity and localization under
excitotoxic conditions
The decrease in GADs activity observed in post mortem cerebral

cortices to 74% was correlated with a decrease to 73% of the full-
length protein found in the extracts analysed byWestern Blot; in the
cerebellum the GAD activity decrease to 48% in post mortem extracts
relative to control, and a down-regulation of the full-length protein
to 58% was observed. This decrease in enzyme activity following N-
terminal cleavage is in agreement with previous results obtained
using a similar experimental paradigm [53] and with the effect of
calpain cleavage at the N-terminal region on the activity of
recombinant GAD67 [22]. In contrast, truncation of the N-terminal
region of recombinant GAD65 increased enzyme activity [71] and
trypsin cleavage of recombinant GAD65 and GAD67 at their N-
terminal region was shown to increase enzyme activity [56]. The
difference between the effects observed in brain extracts and in in
vitro experiments may be due to interaction of GAD with regulatory
proteins (see below), which are absent when recombinant proteins
are used. Post-translational modifications of GAD, such as
phosphorylation, may also contribute to the differences in the effect
of N-terminal cleavage on the activity of the enzyme measured in
brain extracts or using recombinant protein [72]. A decrease in
enzyme activity in neurons subjected to excitotoxic conditions may
activate compensatory mechanisms in surviving neurons since the
expression of GAD is regulated by the abundance of GABA by a
mechanism independent of the activation of GABA receptors
[73,74]. However, within the time frame analysed after the
excitotoxic insult we found no evidences for an upregulation of
GAD protein levels from de novo protein synthesis (Fig. 2).
In this work we also found that excitotoxic stimulation of

cultured hippocampal neurons changes the subcellular distribution
of GAD65, with a loss of protein clustering along neurites. This is
in agreement with the results showing a role for palmitoylation of
Cys30 and Cys45 in GAD65 in the post-Golgi trafficking of the
protein to presynaptic clusters [75,76]. The N-terminal truncation
under excitotoxic conditions is likely to separate this targeting
sequence from the catalytic domain of GAD65, dissociating the
enzyme from synaptic vesicles as suggested in the results of the
immunocytochemistry experiments shown in Fig. 7. Furthermore,
the decrease in colocalization of GAD65 and the b2/3 GABAA

receptor subunits suggests that the cleaved protein becomes more
diffuse, moving away from the synapse.
It was proposed that association of GAD with membranes and

the anchoring of the enzyme to synaptic vesicles occur first
through formation of a complex with the heat shock protein 70
family member HSC70 (heat shock cognate 70), followed by

interaction with cysteine string protein (CSP), an integral protein
of the synaptic vesicle [54]. Cleavage or degradation of the GAD
anchoring proteins may release the enzymes anchored to synaptic
vesicles and may contribute to change the subcellular distribution
of the enzyme under excytotoxic conditions. If the N-terminal
region of GAD65 plays a role in the interaction with the anchoring
proteins, the cleavage of the enzyme under excitotoxic conditions
may also explain the observed changes in immunoreactivity after
the toxic insult with glutamate. The interaction of GAD with
HSC70 and synaptic vesicles also promotes the activity of the
enzyme [54]. The release of GAD65 from synaptic vesicles that
may occur under excitotoxic conditions would explain, at least in
part, the decrease in enzyme activity observed in cerebellar and
cerebrocortical extracts containing cleaved GAD.
The anchoring of GAD65 to synaptic vesicles through interaction

with the vesicular GABA transporter may allow coupling the
synthesis of GABA to the packaging of the neurotransmitter into the
vesicles [17]. The cleavage of the N-terminal region of GAD65 and
the consequent dissociation of the enzyme from synaptic vesicles
and from the synapse may decrease the accumulation of GABA in
the vesicles and, therefore, may deregulate GABAergic synapses.
This is particularly relevant considering that GAD65 is the isoform
responsible for the synaptically released GABA [77].
In conclusion, we showed that excitotoxic conditions lead to the

cleavage of GAD65/67 in cultured hippocampal neurons in a
UPS-dependent manner. GAD cleavage decreased enzyme
activity and changed the subcellular distribution of the 65KDa
isoform, which should decrease GABA production and may affect
the accumulation of the neurotransmitter in synaptic vesicles.
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This study applied a pharmacological approach to examine the role of different 

protease systems in the degeneration of soma and neurites, and neuroprotection by 

BDNF, towards further characterizing the cellular damage induced by excitotoxic 

stimulation with glutamate. Therefore, we analyzed the activation of calpain and caspase-

3, and putative alterations in the ubiquitin-proteasome system (UPS), in cell lysates of 

cultured hippocampal neurons, at different time points after the insult. Calpain activation 

was the fastest, peaking at 30 min after the excitotoxic insult, gradually decreasing at 

subsequent time points, whereas caspase activation only reached maximal values at the 

latest time-points tested. Maximal accumulation of ubiquitin-conjugated proteins was 

found at intermediate time points, suggesting that the deregulation of the UPS is preceded 

by calpain activation and decreases upon caspase activation. Furthermore, the 

spatiotemporal regulation of the neuroprotective mechanisms induced by BDNF was 

assessed using several key neurobiological markers was assessed, after a toxic 

glutamate insult, in a time-dependent manner. The neurobiological markers chosen 

included MAP-2, Neurofilament H, and the vesicular glutamate transporters 1 and 2, 

enabling the spatial segregation of dendrites and axons, and the assessment of synaptic 

markers of glutamatergic neurons, which represent approximately 80% of the total 

neurons in hippocampal cultures. There was a time-dependent decrease in the protein 

levels and immunoreactivity of the tested markers, prevented upon proteasome and 

calpain inhibition with specific chemical inhibitors. However, pre-incubation with the pan-

caspase inhibitor z-VAD-FMK showed no significant effect in reducing axon and dendritic 

damage in neurons exposed to glutamate excitotoxicity, unlike its neuroprotective effect 

by precluding chromatin condensating. Together, these results indicate that distinct 

degenerative mechanisms are activated in different subcellular locations of the neuron, 

when comparing soma and neurites. 

 However, BDNF significantly protected both axons and dendrites from the 

excitotoxic injury, further suggesting its ability to abrogate different neurodegenerative 

mechanism. Accordingly, BDNF attenuated calpain activation while simultaneously 

protecting the vesicular glutamate transporters and glutamatergic function assessed with 

a glutamate FRET nanosensor, which measured the activity-dependent glutamate 

exocytotic release. PI3-K and PLC! chemical inhibitors significantly blocked BDNF 

protective action, suggesting an activity-dependent mechanism of neuroprotection. The 

results indicate that neuronal repair after a degenerative insult may start at the synaptic 

level and BDNF activates different signalling mechanisms to induce neuroprotection in 

different subcellular compartments. The results also indicate that BDNF may selectively 

protect glutamatergic neurons, as BDNF failed to protect the protein levels of GAD65 and 

GAD67, although futher functional studies will be required to confirm this hypothesis. 
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Abstract—Brain-derived neurotrophic factor (BDNF) pro-
tects hippocampal neurons from glutamate excitotoxicity
as determined by analysis of chromatin condensation,
through activation of extracellular signal-regulated kinase
(ERK) and phosphatidylinositol 3-kinase (PI3-K) signaling
pathways. However, it is still unknown whether BDNF also
prevents the degeneration of axons and dendrites, and the
functional demise of synapses, which would be required
to preserve neuronal activity. Herein, we have studied the
time-dependent changes in several neurobiological mark-
ers, and the regulation of proteolytic mechanisms in cul-
tured rat hippocampal neurons, through quantitative
western blot and immunocytochemistry. Calpain activation
peaked immediately after the neurodegenerative input, fol-
lowed by a transient increase in ubiquitin-conjugated pro-
teins and increased abundance of cleaved-caspase-3.
Proteasome and calpain inhibition did not reproduce the
protective effect of BDNF and caspase inhibition in prevent-
ing chromatin condensation. However, proteasome and cal-
pain inhibition did protect the neuronal markers for
dendrites (MAP-2), axons (Neurofilament-H) and the vesicu-
lar glutamate transporters (VGLUT1-2), whereas caspase
inhibition was unable to mimic the protective effect of BDNF

on neurites and synaptic markers. BDNF partially prevented
the downregulation of synaptic activity measured by the
KCl-evoked glutamate release using a Förster (Fluores-
cence) resonance energy transfer (FRET) glutamate nano-
sensor. These results translate a time-dependent
activation of proteases and spatial segregation of these
mechanisms, where calpain activation is followed by protea-
some deregulation, from neuronal processes to the soma,
and finally by caspase activation in the cell body. Moreover,
PI3-K and PLCc small molecule inhibitors significantly
blocked the protective action of BDNF, suggesting an activ-
ity-dependent mechanism of neuroprotection. Ultimately,
we hypothesize that neuronal repair after a degenerative
insult is initiated at the synaptic level.
! 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

Key words: brain-derived neurotrophic factor (BDNF), excito-
toxicity, dendrites, axons, synapses, neuroprotection.

INTRODUCTION

Excitotoxicity has been proposed as the primordial
mechanism of neurodegeneration in chronic
neurodegenerative disorders, including Alzheimeŕs
disease, Parkinson’s disease, Huntington’s disease,
amyotrophic lateral sclerosis, and others. Moreover,
excitotoxicity has a pivotal role in neuronal death
induced by acute CNS, insults such as ischemia and
traumatic brain injury, and chronic mental disorders
(Salinska et al., 2005). Therefore, the clinical and
biomedical relevance of excitotoxicty, as well as the
need for a deeper understanding of its cellular
mechanisms, in order to develop new therapeutic
approaches, are unquestionable.

During excitotoxicity, neurons are exposed to toxic
concentrations of excitatory neurotransmitters causing
an excessive activation of calcium-permeable glutamate
receptors (Choi, 1988) and the opening of gap junction
hemichannels (Thompson et al., 2006), which account
for an acute ionic disarray. Activation of the Na–K–Cl
cotransporter isoform 1 (NKCC1) is also thought to play
a role in the disruption of ion homeostasis in cerebral
ischemia (Beck et al., 2003). The resulting intracellular
elevation of Na+ and Cl! is responsible for the
immediate neuronal swelling, whereas calcium overload
leads to protease up-regulation, including activation of
calpains (e.g., Bano et al., 2005; Xu et al., 2009;
Gomes et al., 2011) and caspases (e.g., Higuchi et al.,
2005; Carlsson et al., 2011). Alterations in the ubiquitin–
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proteasome system (UPS) were also shown to occur
under excitotoxic conditions and in brain ischemia,
whereby proteasome inhibition provides neuroprotection
under the latter conditions (Di Napoli and McLaughlin,
2005; Caldeira et al., 2013).

Calpains are calcium-activated neutral proteases
which target several proteins for degradation, in
particular, spectrin (Vanderklish and Bahr, 2000) and
actin microfilaments (Chung et al., 2005). The collapsed
cytoskeleton proteins, together with vesicles and
organelles, accumulate onto focal bead-like swellings or
blebs at non-random sites (Bindokas and Miller, 1995),
primarily at synaptic contacts enriched in mitochondria,
on axons and dendrites, as a result of the impaired
retrogade–anterograde transport and inhibition of the
mitochondrial respiratory chain complex IV activity
(Takeuchi et al., 2005). Downstream of these events
involving mitochondrial electron transport defects
(Luetjens et al., 2000), mitochondrial cytochrome c
release is followed by an increase in caspase-9 and
caspase-3 activation, and there is an increased
production of superoxide, nitric oxide and other reactive
oxygen species (ROS), leading up to apoptotic-like
chromatin condensation and, finally, DNA fragmentation,
in a panoply of neuronal cells subjected to glutamate
excitotoxicty (Dawson and Dawson, 2004). Calpain
activation under excitotoxic conditions also contributes to
neuronal deregulation due to the abnormal cleavage of
several proteins. The plasma membrane Na+/Ca2+

exchanger (NCX) is one of the calpain targets and the
cleavage of the transporter impairs the extrusion of Ca2+

by the transporter contributing to a [Ca2+]i overload
(Bano et al., 2005). Several other critical proteins for
neuronal function, including the N-methyl-D-aspartate
(NMDA) receptor subunit GluN2B (Simpkins et al., 2003;
Zhou and Baudry, 2006), the AMPA receptor subunit
GluA1 (Glazner et al., 2000; Lu et al., 2002), and the
mGluR1a metabotropic glutamate receptors (Xu et al.,
2007) are also cleaved, as well as the vesicular GABA
transporter (Gomes et al., 2011), to name a few.
Recently, the UPS has also been implicated in glutamate
excitotoxicity, through changes in its activity (Ge et al.,
2007; Caldeira et al., 2013) or cleavage of proteins by
the proteasome such as glutamic acid decarboxylase 65
and 67 isoforms (Baptista et al., 2010).

Brain-derived neurotrophic factor (BDNF) signaling
has been studied as a potential therapeutic approach for
its TrkB-mediated activation of phosphatidylinositol 3-
kinase (PI3-K), Ras/mitogen-activated protein kinase
(MAPK) and phospholipase C intracellular signaling
pathways, given the widespread cellular implications of
glutamate excitotoxicity, as well as the lack of efficacy
and side effects of glutamate receptor antagonists in
clinical trials aiming to preclude the toxic effects of
excessive ionotropic receptor activation (Sheldon and
Robinson, 2007). BDNF has been shown to protect
hippocampal neurons from glutamate excitotoxicity
in vitro and in vivo, preventing the condensation of
chromatin (Almeida et al., 2005; Baptista et al., 2010;
Gomes et al., 2012). This protective effect can be
mimicked by z-VAD-FMK, a general caspase inhibitor.

However, it is not known whether the neurotrophin also
prevents the degeneration of axons and dendrites,
which would be required to preserve neuronal function.
In fact, a single toxic stimulus can activate different
degenerative programs in the cell body and in neurites
(Berliocchi et al., 2005), being calpains more relevant
for the loss of neuronal processes (Higuchi et al., 2005).
This clearly indicates that the neuroprotective
mechanisms in the cell body may not overlap with the
ones observed in axons and dendrites. In this work we
used key protein markers of the glutamatergic (VGLUT1
and VGLUT2) and GABAergic (GAD65/67) function,
axons (NF-H) and dendrites (MAP-2) in order to further
examine the spatiotemporal resolution of BDNF
neuroprotective effects in cultured hippocampal neurons
subjected to glutamate excitotoxicity.

EXPERIMENTAL METHODS

Hippocampal cultures

Experiments were performed according to the European Union
Directive 86/609/EEC for the protection of animals used for
experimental and other scientific purposes. Dams were
sacrificed by cervical dislocation. Embryos were then surgically
removed and sacrificed by decapitation. Animals used in the
preparation of cell cultures at the Garner Laboratory, Stanford
University, for the glutamate release experiments with the FRET
glutamate sensor, were handled according to National and
Institutional guidelines.

Primary cultures of rat hippocampal neurons were prepared
from the hippocampi of E18–E19 Wistar rat embryos, after
treatment with trypsin (0.06%, for 15 min at 37 !C; GIBCO-
Invitrogen) and deoxyribonuclease I (5.36 mg/ml), in Ca2+- and
Mg2+-free Hank’s balanced salt solution (HBSS; 5.36 mM KCl,
0.44 mM KH2PO4, 137 mM NaCl, 4.16 mM NaHCO3, 0.34 mM
Na2HPO4!2H2O, 5 mM glucose, 1 mM sodium pyruvate, 10 mM
HEPES and 0.001% phenol red). The hippocampi were then
washed with HBSS containing 10% fetal bovine serum (GIBCO-
Invitrogen), to stop trypsin activity, and transferred to Neurobasal
medium (GIBCO-Invitrogen) supplemented with B27 serum-free
supplement containing antioxidants (1:50 dilution; GIBCO-
Invitrogen #17504044), 25 lM glutamate, 0.5 mM glutamine and
0.12 mg/ml gentamycin. The cells were dissociated in this
solution and were then plated in 6-well plates (870,000 cells/well)
coated with poly-D-lysine (0.1 mg/mL), or on poly-D-lysine coated
glass coverslips, at a density of 150,000 cells/well (12-well
plates). The cultures were maintained in a humidified incubator
of 5% CO2/95% air, at 37 !C, for 7 or 14 days. Excitotoxic
stimulation was performed with 125 lM glutamate in
supplemented Neurobasal medium, for 20 min at 37 !C, in a
humidified incubator. After stimulation with glutamate the cells
were further incubated with the original culture medium for the
indicated periods of time. When appropriate, 100 ng/ml BDNF
was added to the incubation medium 24 h before stimulation.
Fifty micromolar PD150606 (calpain chemical inhibitor; SIGMA)
and 50 lM z-VAD-FMK (pan-caspase inhibitor; SIGMA) were
added 2 h before the excitotoxic insult whereas 1 lM Lactacystin
(proteasome inhibitor; Sigma) was added to the incubation
medium 30 min before stimulation.

Preparation of extracts

Hippocampal neurons (DIV7) were washed twice with ice-cold
PBS and once more with PBS buffer supplemented with 1 mM
Dithiothreitol (DTT) and a cocktail of protease inhibitors
(0.1 mM phenylmethylsulfonyl fluoride (PMSF); CLAP: 1 lg/ml
chymostatin, 1 lg/ml leupeptin, 1 lg/ml antipain, 1 lg/ml
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pepstatin; Sigma–Aldrich Quı́mica). The cells were then lysed
with RIPA (150 mM NaCl, 50 mM Tris–HCl, 5 mM EGTA, 1%
Triton, 0.5% DOC and 0.1% SDS at a final pH 7.5)
supplemented with the cocktail of protease inhibitors. After
centrifugation at 16,100g for 10 min, protein in the supernatants
was quantified using the bicinchoninic acid (BCA) assay
(Thermo Scientific), and the samples were denaturated with 2!
concentrated denaturating buffer (125 mM Tris, pH 6.8, 100 mM
glycine, 4% SDS, 200 mM DTT, 40% glycerol, 3 mM sodium
orthovanadate, and 0.01% bromophenol blue), at 95 !C for 5 min.

Immunoblotting

Protein samples were separated by SDS–PAGE (sodium dodecyl
sulfate - polyacrylamide gel electrophoresis), in 12%
polyacrylamide gels (or 7.5% gels when spectrin cleavage
products were detected), transferred to polyvinylidene (PVDF)
membranes (Millipore Corp.), and immunoblotted. Blots were
incubated with primary antibodies (overnight at 4 !C), washed
and exposed to alkaline phosphatase-conjugated secondary
antibodies (1:20000 dilution; 1 h at room temperature) or
exposed directly to ECL in the detection of ubiquitin-conjugates.
The films were scanned and the optical densities of the bands
were measured with appropriate software. Alkaline
phosphatase activity was visualized by ECF on the Storm 860
Gel and Blot Imaging System (GE Healthcare). The following
primary antibodies were used: anti-VGLUT1 and anti-VLGUT2
(1:1000, Synaptic Systems); anti-neurofilament-H (NF-H) and
anti-MAP-2 (1:1000, SIGMA); antibody against calpain-
mediated fragment of spectrin/fodrin SBDPs [1:300, (Bahr,
2000; Munirathinam et al., 2002)]; anti-b-Tubulin I (1:10000,
Sigma); HRP-conjugated FK2 antibody (1:1000, BIOMOL); anti-
cleaved-caspase-3 antibody (1:1000, Cell Signalling); anti-
transient receptor potential channels (TRPC) 3 and 6
antibodies (dilution 1:1000, SIGMA).

Immunocytochemistry

For immunocytochemistry, cultured hippocampal neurons were
grown on poly-D-lysine coated glass coverslips, at a density of
45 ! 103 cells/cm2, and were then fixed in PBS supplemented
with 4% paraformaldehyde/4% sucrose, for 30 min at 4 !C.
After fixation the cells were permeabilized with 0.25% Triton X-
100 in PBS, for 5 min at room temperature, washed three times
in PBS, and then blocked with 20% normal goat serum, for 1 h
at room temperature. Incubation with primary antibodies was
performed overnight at 4 !C. Next, the cells were washed six
times and incubated for 1 h at room temperature with the
appropriate secondary antibodies (Alexa Fluor" 488/594 goat
anti-rabbit, 1:500 to 1:1000 and/or Texas Red" goat anti-
mouse, 1:150; Invitrogen), and finally with Hoechst 33342
(0.5 lg/ml; Sigma) for 10 min at room temperature. The cells
were washed three times, mounted on glass slides with the
Dako mounting medium and viewed on an Axiovert 200
fluorescence microscope coupled to an Axiocam HRm digital
camera (Zeiss).

Image processing and analysis

16-bit images, recorded with an Axiovert 200 fluorescence
microscope coupled to an Axiocam HRm digital camera (Zeiss),
were converted into 8-bit images before the respective analysis
protocol. The camera controller settings (gain, offset and
sensitivity) were not altered during image recording from each
field of view, and the signal intensity range was optimized in
the preparations with hippocampal neurons exposed to
excitotoxic stimulation with glutamate. The mean dendritic and
axonal segments per neuron, in each condition tested, were
assessed using the Scholl analysis plugin on Image J. The

mean VGLUT1- and VGLUT2-positive puncta per neuron were
assessed using the cell counter and analyze particles plugins
on Image J. Briefly, each image was analyzed according to the
following sequence of steps: background subtraction, threshold
setting, quantification of the total number of neurons on the
field of view (cell counter plugin), and quantification of the total
number of puncta above the threshold setting (analyze particles
plugin). Mean puncta per neuron corresponds to the total
number of puncta divided by the total number of cells,
averaged from 3 to 5 different fields of view, from four
independent experiments.

Determination of the viability of cultured
hippocampal neurons with Hoescht 33342

Determination of cell viability was performed by fluorescence
microscopy, using the indicator Hoechst 33342 as previously
described (Almeida et al., 2005). The cells were stimulated with
125 lM glutamate for 20 min, in Neurobasal medium. After the
excitotoxic insult hippocampal neurons were further incubated
in conditioned culture medium for 14 h. The nuclear
morphology was assessed through staining with Hoechst 33342.

Quantification of activity-dependent exocytotic
glutamate release using a glutamate FRET sensor

BL21 (DE3-gold) cells expressing pRSET-FLIPE600n were
cultured in LB at room temperature for 2 days (Okumoto et al.,
2005). Cells were harvested by centrifugation, re-suspended in
extraction buffer (50 mM Sodium Phosphate, 300 mM NaCl,
pH7.2), and disrupted by ultrasonication. The FRET glutamate
sensor was purified by Talon His-affinity chromatography
(Clontech). Binding to the resin was performed in batch at 4 !C,
washed in a column with extraction buffer, and then eluted with
extraction buffer containing 150 mM imidazole. FRET glutamate
sensor was dialysed against Tyrode’s buffer prior to use.
Emission spectra and ligand titration curves were obtained by
using a spectrofluorometer (excitation 433/12 nm; emission
485/12 and 528/12 nm).

Quantification of the exocytotic glutamate release in cultured
hippocampal neurons was performed in cultured hippocampal
neurons plated in 12-well dishes, at DIV7. Cells were initially
washed with Tyrode’s solution at 37 !C and depolarized for
60 s with high-K+ Tyrode’s solution (90 mM KCl and 31.5 mM
NaCl) supplemented with 10 lM TBOA (DL-threo-b-
benzyloxyaspartic acid, Tocris), a competitive non-transportable
blocker of excitatory amino acid transporters. The depolarizing
solution was replaced immediately after with normal Tyrode’s
solution containing the titered glutamate FRET sensor and
10 lM TBOA. Quantification of the exocytotic glutamate
release was performed by a fluorescence plate reader at an
excitation wavelength of 433/12 nm and emission wavelengths
of 485/12 and 528/12 nm. The ratio between the fluorescence
measured at the two wavelengths was calculated and the
results were expressed as a percentage of the control
glutamate release, measured in cells not subjected to
excitotoxic stimulation.

Statistical analysis

Statistical analysis was performed using a one-way analysis of
variance (ANOVA) followed by Dunnett’s test, or Bonferroni
test, at a significance level a= 0.01 (99% confidence
intervals), as indicated in the figure captions.
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RESULTS

Excitotoxic damage of cultured hippocampal
neurons is mediated by different proteolytic
mechanisms

Cultures of rat hippocampal neurons have been widely
used as an in vitro model of glutamate excitotoxicity.
Excitotoxic stimulation with 125 lM glutamate for
20 min, followed by replacement with culture conditioned
medium for different periods of time (Fig. 1A), has been
previously shown to reduce significant cell viability as
assessed by fluorescence microscopy analysis of
chromatin condensation using the indicator Hoechst
33342 (Almeida et al., 2005). Under these conditions,
about 50% of the hippocampal neurons display an
apoptotic-like morphology, as determined 7–14 h after
the insult, and neuronal death was blocked by the pan-
caspase inhibitor z-VAD-FMK (Fig. 1B), in agreement
with previous reports (e.g., Almeida et al., 2005; Ray
et al., 2006). A significant neuroprotection was also
observed in neurons pre-incubated with BDNF for 24 h
before the excitotoxic insult, and in these experiments
the neurotrophin was present during the period of the
insult and after glutamate stimulation. In contrast,
neither the proteasome inhibitor lactacystin (Fig. 1C) nor
the calpain inhibitor PD 150606 (Fig. 1D) affected
glutamate-induced neuronal death. Therefore, the
protective effect of the pan-caspase inhibitor z-VAD-

FMK cannot be attributed to calpain inhibition (Wolf
et al., 1999).

In order to further characterize the cellular damage
induced by excitotoxic stimulation with glutamate, we
analyzed the activation of calpain and caspase-3, and
the alterations in the ubiquitin–proteasome system
(UPS), in cell lysates of cultured hippocampal neurons,
at different time points after the insult. Calpain activation
was measured by western blot, using an antibody that
binds specifically to the product resulting from the
cleavage of spectrin by calpains (SBDPs) (Bahr, 2000;
Munirathinam et al., 2002). The results show that
calpain activation was the fastest, peaking at 30 min
after the excitotoxic insult (Fig. 2B), gradually
decreasing at subsequent time points. Conversely,
caspase-3 activation, assessed by immunoreactivity of
the cleaved protease (Fig. 2C), was statistically
significant only 5 h after glutamate stimulation, reaching
a maximum 14 h after the insult, approximately between
2.5- and 3-fold the % of control. Interestingly, the
maximum of FK2 immunoreactivity, a measure of
ubiquitin-conjugated proteins, was observed at
intermediate time points of 5–8 h after the insult
(Fig. 2D). This time course for accumulation of
ubiquitinated proteins is in agreement with the reported
time-dependent decrease of the proteasome activity in
hippocampal neurons subjected to excitotoxic
stimulation, as determined with fluorogenic substrates

Fig. 1. BDNF protects cultured hippocampal neurons from chromatin condensation induced by glutamate excitotoxicity. Cultured hippocampal
neurons were pre-incubated or not with BDNF (100 ng/ml), during 24 h (A), the pan-caspase inhibitor z-VAD-FMK (50 lM), for 2 h (B), the specific
proteasome inhibitor Lactacystin (1 lM), 30 min (C), or the calpain inhibitor PD 150606, 50 lM, 2 h (D), before stimulation, or not, with 125 lM
glutamate, for 20 min, in fresh Neurobasal medium containing B27 supplement. After excitotoxic stimulation, the cells were returned to the original
medium, and further incubated for 14 h (B, D) or 5 h (C), according to the schematic representation. Therefore, the protease inhibitors were also
present in the culture media after excitotoxic stimulation (A). A shorter post-incubation with lactacystin was used given the toxicity of the proteasome
inhibitor. The total number of cells present in the analyzed fields was calculated based on the number of nuclei stained with the fluorescent dye
Hoechst 33342 (B–D). Cell death was assessed 14 h after the insult by fluorescence microscopy using the fluorescence dye Hoechst 33342. Data
are presented as mean ± standard error of the mean (SEM) of four independent preparations. Statistical analysis was performed using Bonferroni’s
Multiple Comparison Test. ⁄⁄⁄p< 0.001.
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(Caldeira et al., 2013). The early formation of SBDPs
following glutamate stimulation, before caspase-3
activation and downregulation of the proteasome
activity, confirms that analysis of spectrin cleavage is an
appropriate strategy to investigate the differential
activation of proteases in hippocampal neurons
subjected to excitotoxic injury. Taken together, these
results suggest that the deregulation of the UPS is
preceded by calpain activation and decreases at later
time points when caspase activation peaks.

Considering the inability of specific calpain and
proteasome inhibitors to preclude glutamate-evoked
chromatin condensation (Fig. 1C, D), an event occurring
in the soma, as opposed to the effect of the caspase
inhibitor Z-VAD-FMK (Fig. 1B), and the different periods
of activation of the three proteolytic mechanisms
(Fig. 2B–D), we hypothesized that the activation of
these proteases could occur at different sub-cellular
locations in cultured neurons under glutamate
excitotoxicity. This was confirmed by visualization of the
proteins using fluorescence microscopy in cells fixed at
different time points after the insult. Cleaved (active)
caspase-3 was only visualized in the cell body, with

increasing immunoreactivity from 30 min to 5 h, and an
additional increase at 14 h after the insult. These results
do not allow ruling out an activation of caspase-3 in
neurites, but clearly show a differential effect in the
soma and neurite compartments. The increase in
SBDPs immunoreactivity and expression of ubiquitin-
conjugated proteins in neurites and, to a lesser extent,
in the soma, was noted at earlier time points,
suggesting a spatiotemporal differentiation of these
proteolytic mechanisms. We used b-Tubulin I as protein
loading control for immunoblotting, since it is cleaved to
a low extent under glutamate excitotoxic conditions
(Fig. 2A), but simultaneously allows the visualization of
neuritic disarray as a result of the toxic glutamate insult
by immunocytochemistry.

Glutamate excitotoxicity downregulates the protein
levels of dendritic (MAP-2), axonal (NF-H), and
synaptic markers (VGLUT1–2)

The results of the previous section, suggesting temporal
and spatial differences in proteolytic activation following
excitotoxic stimulation, prompted us to examine the
effects of glutamate excitotoxicity on protein levels and

Fig. 2. Glutamate-induced neurodegeneration is linked to a differential regulation of proteolytic mechanisms: Calpain, caspase-3 and ubiquitin–
proteasome system. Cultured hippocampal neurons were subjected to a toxic insult of 125 lM glutamate (in Neurobasal medium), for 20 min, and
then lysed (western blot experiments) or fixed (immunocytochemistry experiments) after different incubation periods. The extracts were analyzed by
immunoblotting with specific antibodies for (A) b-Tubulin I, (B) calpain-mediated formation of spectrin breakdown products (SBDPs), (C) Cleaved
caspase-3 or (D) FK2 (monoclonal antibody that recognizes ubiquitin-conjugated proteins). The protein localization was visualized with (B) rabbit
Alexa 594-, (C) rabbit Alexa 488- and (B, D) mouse Alexa 594-conjugated secondary antibodies, using a Zeiss Axiovert fluorescence microscope
(B) 63!; (A, C) 40!; (D) 20! objectives. Data are presented as mean ± SEM of four independent experiments (B–D). Statistical analysis was
performed using the Dunnett’s Multiple Comparison Test. ⁄p< 0.05; ⁄⁄p< 0.01; ⁄⁄⁄p< 0.001.
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subcellular location of specific neuronal markers for
synapses (VGLUT1 and VGLUT2) (Fremeau et al., 2004)
and neurites (MAP2, a dendritic marker [Dotti et al.,
1988], and NF-H, an axonal marker [Mori et al., 2012]),
and whether or not pre-incubation with BDNF would
protect these marker proteins in cultured hippocampal
neurons.

Cell extracts from cultured hippocampal neurons
subjected to glutamate excitotoxicity and analyzed by
immunoblotting with specific antibodies for MAP-2 and
NF-H (Fig. 3A), as well as VGLUT1 and VGLUT2
(Fig. 3B), showed a time-dependent decrease in
abundance of the protein markers. In all cases, a rapid
decrease was observed, concomitant with fast activation
of calpains (Fig. 2B), with their respective
immunoreactivity reaching values close to (for NF-H and
VGLUT2) or even below (for MAP-2 and VLGUT1) 50%
of the control value (i.e., before the toxic insult) only 5 h
after excitotoxic stimulation with glutamate. The fast
decrease in the levels of these neuritic and synaptic
protein markers clearly precedes caspase activation
(Fig. 2C).

Immunocytochemistry experiments were performed to
characterize the alterations in neurite length induced by
excitotoxic stimulation with glutamate, based on NF-H
and MAP2 immunoreactivity, and the effect of inhibitors
of the proteasome (lactacystin), calpains (PD150606)
and caspases (z-VAD-FMK). The number of VGLUT1
and VGLUT2 puncta were also determined under the
same experimental conditions, at 5 h and 14 h after the
excitotoxic insult. There was a time-dependent decrease
in the length of neurites labeled with the anti-MAP2 or
anti-NF-H antibodies (Figs. 3C, D and 4A–C), and a
reduction in the number of VGLUT1 and VGLUT2
puncta was also observed (Figs. 3E, F and 4A, D, E).
Inhibition of the proteasome and calpain by pre-
incubation with lactacystin or PD150606, respectively,
significantly reduced the loss of immunofluorescence of
all markers tested, when compared with the control
(Fig. 4). On the other hand, pre-incubation with the pan-
caspase inhibitor z-VAD-FMK showed no significant
effect in reducing axon and dendritic damage in neurons
exposed to glutamate excitotoxicity.

Taken together these results indicate a temporal and
spatial segregation of the proteolytic effects, wherein
calpain activation and proteasome deregulation are
found in neurites and, to a lesser extent, in the soma, at
earlier time periods following the toxic insult, whereas
caspase activation is found in the cell body at later
stages of the neurodegenerative process triggered by
glutamate excitotoxicity.

BDNF protects axonal and dendritic markers from
glutamate-induced excitotoxicity

We aimed at determining whether pre-incubation with
BDNF prevents or significantly decreases the glutamate-
evoked loss of synaptic and neuritic markers, given the
results indicating spatiotemporal differences in the
activation of the various proteolytic systems in neurites
and in the soma. Hippocampal neurons pre-incubated
with BDNF before excitotoxic stimulation with glutamate

showed significantly higher levels of the dendritic (MAP-
2) and axonal (NF-H) markers, when compared with
cells subjected to the toxic insult in the absence of
BDNF, at 5 h (for MAP-2) or 14 h (for NF-H) after the
insult (Fig. 5D, E), as determined by western blot. In
contrast, incubation of hippocampal neurons with the
neurotrophin for 5 or 14 h under control conditions did
not affect MAP-2 and NF-H protein levels.

We visualized populations of fixed hippocampal
neurons, cultured under the same conditions and
labeled by immunocytochemistry with specific antibodies
for the neuritic markers, using low-magnification
fluorescence microscopy (as shown in Fig. 4), to further
understand the protective effect of BDNF under
excitotoxic conditions. We found that primary dendrites
and axons are still abundant in neurons pre-incubated
with BDNF, 14 h after the insult, in contrast with
neurons that were not pre-incubated with BDNF, which
displayed severe loss of neurites (Fig. 5A), at both
timepoints. In comparison with the control condition
(cells not subjected to glutamate excitotoxicity), the
conditions in which BDNF preceded the glutamate insult
clearly show similar number of primary neurites,
although with a decreased intensity of the signal, when
visualized with the same imaging parameters.

We sought to determine whether pre-incubation with
BDNF modulates the glutamate-evoked activation of
proteases, given the spatiotemporal differentiation
between calpains and caspases (Fig. 2), and the
predominantly protective effect of calpain inhibition over
the conservation of neurites (Fig. 4 as opposed to
Fig. 1). In order to answer this question, we analyzed
the protein levels of SBDPs (Fig. 5F) under the
experimental conditions used to analyze alterations in
MAP-2 and NF-H protein levels. We found that pre-
incubation with BDNF does reduce the formation of
SBDPs as determined 30 min (not shown) or 5 h after
excitotoxic stimulation (Fig. 5F), which is relevant
considering that calpains are the first of all proteases
analyzed to reach the peak activation following the toxic
glutamate insult. Under control conditions, in the
absence of glutamate, no SBDPs immunoreactivity was
detected. In control experiments, we tested the effect of
Z-VAD-FMK on glutamate-evoked accumulation of
SBDPs, 5 and 14 h after the toxic insult. Surprisingly,
the pan-caspase inhibitor increased the formation of
spectrin breakdown products, both at 5 and 14 h after
the toxic insult (Fig. 5G), possibly due to inhibition of the
enzymes responsible for further degradation of calpain-
generated spectrin breakdown products.

Overall, this indicates that intracellular protective
mechanisms triggered by exogenous application of BDNF
may, directly or indirectly, interfere with calpain activation,
decreasing the extent to which axons and dendrites are
lost after the toxic insult, since pre-incubation with BDNF
reduces glutamate-evoked calpain activation.

BDNF selectively preserves glutamatergic markers
after an excitotoxic injury

The abundance of VGLUT1 and VGLUT2, key markers of
excitatory synaptic activity, which showed a time-
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Fig. 3. Glutamate excitotoxicity induces a time-dependent decrease in the protein levels of the neuronal markers for dendrites (MAP-2), axons
(Neurofilament H), and synaptic markers (VGLUT1-2). (A, B) Cultured hippocampal neurons were challenged with 125 lM glutamate, for 20 min,
and then lysed after different incubation periods. The extracts were analyzed by immunoblotting with specific antibodies for (A) MAP-2 and
Neurofilament-H, (B) VGLUT1 and VGLUT2. The upper panels show the results of representative experiments, and the lower panels show the
quantification of the immunoreactivity. Data are presented as mean ± SEM of at least four independent experiments. (C–F) Hippocampal neurons
were challenged with 125 lM glutamate, for 20 min, and then fixed in PBS supplemented with 4% paraformaldehyde/4% sucrose, for 30 min at
4 !C, after different incubation periods. Following permeabilization, cells were incubated overnight at 4 !C with anti-MAP-2 (C), anti-NF-H (D), anti-
VGLUT1 (E) or anti-VGLUT2 (F) antibodies. Assessment of the mean dendritic (C) and axonal (D) segments per neuron was performed using the
Sholl analysis plugin on Image J. Mean VGLUT1 (E) and VGLUT2 (F) puncta per neuron were assessed using the cell counter and analyze particles
plugins on Image J (C–F). Data are presented as mean ± SEM of four different experiments, performed in independent preparations (B–D).
Statistical analysis was performed using the Dunnett’s Multiple Comparison Test. ⁄p< 0.05; ⁄⁄p< 0.01; ⁄⁄⁄p< 0.001.
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dependent decrease in their protein levels after a toxic
glutamate insult (Fig. 3B), was also significantly affected
in hippocampal neurons pre-incubated with BDNF
before excitotoxic stimulation. Under the latter
conditions, glutamate stimulation was less effective in
down-regulating VGLUT proteins levels, as determined
14 h after the insult (Fig. 6D, E, respectively).
Interestingly, incubation of hippocampal neurons with
BDNF under control conditions, for 5 or 14 h,
upregulated VGLUT2 proteins levels (Fig. 6E).

Immunocytochemistry experiments showed a loss of
axonal labeling (Fig. 6A) and VGLUT1/2 puncta (Fig. 6B,
C) in cultured hippocampal neurons 14 h after excitotoxic
stimulation with glutamate, when compared to the
respective controls. This loss in VGLUT labeling was not
as significant in neurons pre-incubated with BDNF.
Conversely, pre-incubation with BDNF did not prevent
the decrease in protein levels of GABAergic markers
GAD65 and GAD67 as a consequence of the glutamate
toxic insult (authors’ unpublished observations),
suggesting that this neurotrophin has a differential
protective effect on glutamatergic and GABAergic
neurons, selectively preserving the protein levels
VGLUT1 and VGLUT2 markers, albeit only partially.

BDNF protects survival (TRPC3 and TRPC6) markers
from glutamate excitotoxicity

To further understand the protective effect of BDNF in
hippocampal neurons subjected to excitotoxic

stimulation, we analyzed the protein levels of TRPC3
and TRPC6, which are activated by calcium store
depletion and required for BDNF-dependent survival of
cerebellar granule neurons deprived of serum (Jia et al.,
2007). Similarly to the markers described above, we
observed a time-dependent decrease in the protein
levels of the TRPCs under glutamate excitotoxicity
(Fig. 7A, B) albeit with different kinetics. Whereas
TRPC3 showed a gradual reduction of its protein levels,
stabilizing after 12–14 h following the toxic insult, well
below 40% of the control levels (Fig. 7A), TRPC6
appears to show a two-step reduction of its protein
levels, as determined by immunoblotting (Fig. 7B), with
an initial decrease of the protein levels between 3 and
5 h after the toxic insult, followed by a slight, transient
recovery between 8 and 10 h and a subsequent
secondary decrease to approximately 60% of the control
protein levels at 12–14 h after the insult. This difference
is suggestive of alternative regulatory mechanisms of
the TRPC protein levels under glutamate excitotoxicity.
However, in both cases, we found a protective effect of
BDNF on the protein levels of TRPC3 (Fig. 7D) and
TRPC6 (Fig. 7E), 5 h and 14 h after the insult, when
compared with the same time points without pre-
incubation with BDNF. This effect was particularly
relevant at 5 h after glutamate stimulation, when TRPC
protein levels were about 50% or 80% of the control
when the cells were incubated in the absence or in the
presence of BDNF, respectively. This effect of BDNF
correlates with a transient increase in TRPC6 protein

Fig. 3. (continued)
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Fig. 4. Neuronal markers for dendrites (MAP-2) and axons (NF-H) are downregulated under excitotoxic conditions by proteasome- and Calpain-
dependent mechanisms. (A–E) Cultured hippocampal neurons were challenged at DIV7 with 125 lM glutamate, for 20 min, after pre-incubation or
not with general caspase inhibitor z-VAD-FMK (50 lM), for 2 h, specific proteasome inhibitor Lactacystin (1 lM), 30 min, or calpain inhibitor
PD150606 (50 lM), during 2 h, and then incubated with the conditioned Neurobasal medium. Cells were fixed 5 or 14 h after the toxic insult and
labeled with specific antibodies raised against MAP-2 (A, B) and Neurofilament H (A, C), VGLUT1 (A, D) and VGLUT2 (A, E). The cellular
distribution of proteins was visualized with rabbit Alexa 488 (VGLUT1 and VGLUT2) or mouse Alexa 594-conjugated secondary antibody (MAP-2
and Neurofilament H) using a Zeiss Axiovert fluorescence microscope (40! objective) coupled to a digital camera. The images are representative of
four independent experiments, performed in distinct preparations. Mean dendritic (B) and axonal (C) segments per neuron were quantified using the
Sholl analysis plugin on Image J. Mean VGLUT1 (D) and VGLUT2 (E) puncta per neuron were assessed using the cell counter and analyze particles
plugins on Image J. Data are presented as mean ± SEM of four independent experiments (B–E). Statistical analysis was performed using the
Bonferroni’s Multiple Comparison Test. ⁄p< 0.05; ⁄⁄p< 0.01; ⁄⁄⁄p< 0.001; ⁄⁄⁄⁄p< 0.0001.
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Fig. 5. BDNF protects axonal and dendritic neuronal markers in hippocampal neurons subjected to glutamate-induced excitotoxicity. Cultured
hippocampal neurons, pre-incubated with BDNF (100 ng/ml), for 24 h (A, B, D–F), or z-VAD-FMK (50 lM), for 2 h (G), were then stimulated with
125 lM glutamate (in Neurobasal medium), for 20 min, and fixed (A) or lysed (D–G) after different incubation periods with conditioned medium. (A)
The cellular distribution of proteins was visualized with mouse Alexa 594-conjugated secondary antibody (MAP-2 and Neurofilament H) using a
Zeiss Axiovert fluorescence microscope (20! objective) coupled to a digital camera. The images are representative of four independent
experiments, performed in distinct preparations. Mean dendritic (B) and axonal (C) segments per neuron were quantified using the Sholl analysis
plugin on Image J. The control images may appear overexposed, but this was required to visualize the neurons subjected to glutamate
excitotoxicity, with comparatively much weaker signal, due to the cellular damage, particularly the loss of the protein markers used for
immunolabeling. The extracts were analyzed by immunoblotting with specific antibodies for MAP-2 (D), NF-H (E) and SBDPs (F, G). (B–E) Data are
presented as mean ± SEM of at least four different experiments, performed in independent preparations. Statistical analysis was performed using
the Bonferroni’s Multiple Comparison Test. ⁄p< 0.05; ⁄⁄p< 0.01; ⁄⁄⁄p< 0.001.
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Fig. 6. BDNF protects VGLUT1 and VGLUT2 in hippocampal neurons subjected to excitotoxic stimulation. Cultured hippocampal neurons, pre-
incubated or not with BDNF (100 ng/ml), for 24 h, were exposed to a toxic insult with 125 lM glutamate (in Neurobasal medium), for 20 min, and
then fixed (A) or lysed (D, E) after different incubation periods in conditioned medium. (A) The cellular distribution of proteins was visualized with
rabbit Alexa 488 (VGLUT1 and VGLUT2) using a Zeiss Axiovert fluorescence microscope (40! objective) coupled to a digital camera. The images
are representative of four independent experiments, performed in distinct preparations. Mean VGLUT1 (B) and VGLUT2 (C) puncta per neuron
were assessed using the cell counter and analyze particles plugins on Image J. The extracts were analyzed by immunoblotting with specific
antibodies for VGLUT1 (D) and VGLUT2 (E). Data are presented as mean ± SEM of four independent experiments (B–E). Statistical analysis was
performed using the Bonferroni’s Multiple Comparison Test. ⁄p< 0.05; ⁄⁄p< 0.01; ⁄⁄⁄p< 0.001.
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Fig. 7. BDNF protects TRPC3 and TRPC6 in hippocampal neurons subjected to excitotoxic stimulation. (A, B) Glutamate excitotoxicity induces a
time-dependent decrease in the protein levels of TRPC3 (A) and TRPC6 (B). Cultured hippocampal neurons were challenged with 125 lM
glutamate, for 20 min, and then lysed after different incubation periods. The extracts were analyzed by immunoblotting with specific antibodies
raised against TRPC3 (A) and TRPC6 (B). (C-E) Cultured hippocampal neurons, pre-incubated or not with BDNF (100 ng/ml), for 24 h, were
exposed to a toxic insult with 125 lM glutamate (in Neurobasal medium), for 20 min, and then fixed (C) or lysed (D, E) after different incubation
periods in conditioned medium. (C) The cellular distribution of TRPC proteins was visualized with rabbit Alexa 488 using a Zeiss Axiovert
fluorescence microscope (20! objectives) coupled to a digital camera. The images are representative of four independent experiments, performed
in distinct preparations. (D, E) The extracts were analyzed by immunoblotting with specific antibodies for TRPC3 (D) and TRPC6 (E). Data are
presented as mean ± SEM of four independent experiments (D, E) or the number indicated in the figure (A, B). Statistical analysis was performed
using the Bonferroni’s Multiple Comparison Test. ⁄p< 0.05; ⁄⁄p< 0.01; ⁄⁄⁄p< 0.001.
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levels found upon stimulation with the neurotrophin for
24 + 5 h under control conditions. These results were
confirmed by fluorescence microscopy imaging of
cultured hippocampal neurons under the same
conditions, labeled with TRPC3 and TRPC6 antibodies
(Fig. 7C). While neurons subjected to glutamate
excitotoxicity without pre-incubation with BDNF
displayed an increasing loss of TRPC-labeled neurites
from 5 to 14 h after the insult, we found a clear
preservation of TRPC3 and TRPC6 positive neurites in
hippocampal neurons pre-incubated with BDNF.
Moreover, in some experiments we observed an
increased TRPC6 immunoreactivity in BDNF-
preincubated neurons and subjected to the toxic insult,
when compared with the control.

BDNF protective effect on axons and dendrites
requires the activation of both PI-3K and PLCc
signaling pathways

Taking into account the protective effect of BDNF on
structural and functional markers of neurites and
synapses, additional immunofluorescence experiments
were performed to study the signaling mechanisms
involved in the protection of axons and dendrites, using
selective chemical inhibitors of the different pathways
activated by TrkB receptors, at the concentrations used.
The phosphatidylinositol 3-kinase (PI-3K) chemical
inhibitors wortmannin and LY294002, as well as the
phospholipase C inhibitor U73122 blocked the protective
effect of BDNF against glutamate-induced dendritic and
axonal loss, as determined 14 h after the insult
(Fig. 8A–C). Similarly, inhibition of the PI-3K or PLCc
pathways prevented BDNF from precluding the loss of
VGLUT2 puncta and TRPC3/6 immunoreactivity, but
only the latter mechanism appears to be involved in the
protection of VGLUT1 punctate labeling (Fig. 8D–F).
Conversely, neither the MAPK/ERK (mitogen-activated
protein kinase/ extracellular signal-regulated kinase)
inhibitors, PD098,059 and U0126, nor the Src-family
non-receptor protein tyrosine kinase inhibitor, SU6656,
was effective in blocking the protective effect of BDNF
when incubated before exogenous application of the
neurotrophin (Fig. 8A–G). As expected, the protective
effects of BDNF were inhibited in the presence of the
Trk receptor inhibitor K252a, for all markers tested
(Fig. 8A–G). The chemical inhibitors tested under
control conditions had no effect on the TRPC 3 and 6,
VGLUT1, MAP2 and NF-H immunoreactivity (data not
shown). Therefore, whereas BDNF prevents the
condensation of chromatin through activation of the
ERK and PI3-K signaling pathways (Almeida et al.,
2005), the neurotrophin also prevents degeneration of
axons and dendrites through activation of the
phosphatidylinositol 3-kinase (PI-3K) and phospholipase
Cc signaling pathways.

Hence, there is a spatiotemporal differentiation
between the protective role of BDNF at the cell soma
and neurites, not only on the proteolytic mechanisms
restrained by this neurotrophin, but also on the
intracellular signaling mechanisms it activates in order to
do so.

BDNF partially prevents the excitotoxicity-induced
downregulation of synaptic activity

In order to determine whether BDNF would also preserve
the activity of the vesicular glutamate transporters, critical
for glutamatergic synaptic function, we used a
recombinantly expressed and purified glutamate FRET
[Förster (Fluorescence) resonance energy transfer]
nanosensor, added to the extracellular medium
(Okumoto et al., 2005) with an inhibitor of glutamate
transporters, TBOA. We found a time-dependent
decrease in KCl-induced exocytotic glutamate release at
5 and 14 h after the toxic insult. At 14 h, synaptic activity
measured by FRET was significantly lower compared to
the control level but pre-incubation with BDNF for 24 h
before the toxic insult partially restored the activity-
dependent exocytotic glutamate release to !90% of the
control levels (Fig. 9). Incubation of hippocampal
neurons with BDNF under control conditions significantly
increased exocytotic glutamate release, as previously
found for the VGLUT2 proteins levels upon 24 + 5 h or
24 + 14 h incubation with BDNF alone (Fig. 6E).

DISCUSSION

In the present work we show that BDNF neuroprotection
extends beyond apoptotic cell soma death, significantly
reducing the loss of neurites and synaptic activity
induced by excitotoxicity, in cultured hippocampal
neurons. While in the cell soma, BDNF inhibits caspase-
3-like activity and reduces neuronal death by a protein
synthesis-dependent mechanism, through the PI3-K and
ERK signaling pathways (Almeida et al., 2005), in axons
and dendrites BDNF reduces the calpain-mediated
downregulation of protein markers and the early
activation of calpains induced by a toxic glutamate
insult, which precedes chromatin condensation. In
between, there is a transient accumulation of ubiquitin-
conjugated proteins and we found that specific inhibition
of the proteasome protects the neuritic markers MAP-2
and NF-H. The effect of BDNF on neurites and
glutamatergic synapses is mediated by the PLCc and to
some extent by the PI3-K signaling pathways.

Role of calpains and the UPS in neurite damage
induced by excitotoxic stimulation

The degeneration of neurites has been consistently
described as an active (Lunn et al., 1989; Glass et al.,
1993; Raff et al., 2002; Saxena and Caroni, 2007), non-
apoptotic (Finn et al., 2000; Ikegami and Koike, 2003)
process, occurring independently of the cell soma
demise (Koike et al., 2008), both during development
(Deckwerth and Johnson, 1994) and following chemical
(Ikegami and Koike, 2003) or toxic (Berliocchi et al.,
2005) insults. In this study we have found that
glutamate-induced degeneration of neurite markers is
sensitive to proteasome and calpain inhibitors,
lactacystin and PD150606, respectively, but unaffected
by Z-VAD-fmk, a pan-caspase inhibitor. In contrast, Z-
VAD-fmk abrogated glutamate-evoked chromatin
condensation (Fig. 1A) similarly to the effect of caspase-
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Fig. 8. The neuroprotective effect of BDNF against glutamate toxicity requires the activation of PI-3K and PLCc signaling pathways. (A, D, G)
Cultured hippocampal neurons were pre-incubated with specific chemical inhibitors of BDNF-induced intracellular signaling pathways:
Phosphatidylinositol 3-kinase (PI-3K) inhibitors Wortmannin (100 nM) and LY294002 (30 lM), MAPK/ERK (Mitogen-activated protein kinase/
Extracellular signal-regulated kinase) inhibitors PD098,059 (20 lM) and U0126 (300 nM), Phospholipase C inhibitor U73122 (5 lM), or Src-family
protein tyrosine kinases inhibitor SU6656 (10 lM), and then incubated with BDNF during 24 h. Afterward, the neurons were challenged, at DIV7,
with 125 lM glutamate, for 20 min, and then incubated with the conditioned Neurobasal medium. Cells were fixed 14 h after the toxic insult and
labeled with specific antibodies raised against the proteins indicated in the left side of the panel. The localization of the proteins was visualized with
mouse Alexa 594-conjugated (MAP-2 and Neurofilament H) secondary antibody (A) or rabbit Alexa 488 [(VGLUT1 and VGLUT2) (D) and (TRPC3
and TRPC6) (G)], using a Zeiss Axiovert fluorescence microscope (20! and 40! objectives), coupled to a digital camera. (B, C) The images are
representative of four independent experiments, performed in distinct preparations. Mean dendritic (B) and axonal (C) segments per neuron were
quantified using the Sholl analysis plugin on Image J. (E, F) Mean VGLUT1 (E) and VGLUT2 (F) puncta per neuron were assessed using the cell
counter and analyze particles plugins on Image J. Data are presented as mean ± SEM of four independent experiments (B, C, E, F). Statistical
analysis was performed using the Bonferroni’s Multiple Comparison Test. ⁄p< 0.05; ⁄⁄p< 0.01; ⁄⁄⁄p< 0.001.
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3 inhibition (Almeida et al., 2005). The results correlate
with the activation of calpain and accumulation of
ubiquitin conjugates found in neurites and, to a lesser

extent, in the soma, following excitotoxic stimulation, in
contrast to caspase-3 activation, limited to the soma.
Together, these findings indicate a spatial segregation

Fig. 8. (continued)
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of proteolytic effects in neuronal damage, wherein calpain
activation and proteasome deregulation play a
predominant role in neurites, whereas caspases are
further activated in the cell body. However, lactacystin
was previously shown to partly inhibit a cathepsin A-like
activity released from platelets (Ostrowska et al., 1997)
and, therefore, we may not exclude a similar non-
specific effect under the experimental conditions used
herein. In contrast, PD150606 was shown not to inhibit
cathepsin B and L at the range of concentrations
required to target calpains (Edelstein et al., 1996; Wang
et al., 1996).

BDNF activates different neuroprotective programs in
the neuronal soma and neurites

In order to distinguish the different neuronal
compartments, we studied the protein markers of
dendrites (MAP-2) (Dotti et al., 1988; Garner et al.,
1988), axons (NF-H) (Mori et al., 2012) and
glutamatergic synapses (VGLUT1-2) (Fremeau et al.,
2004), which encompass over 80% of total synapses in
cultured hippocampal neurons (Baptista et al., 2010).
Under physiological conditions, MAP-2 regulates
microtubule-dependent transport (Lopez and Sheetz,
1993; Hagiwara et al., 1994; Maas et al., 2009) and

modulates synaptic strength and long-term potentiation
(Zhong et al., 2009). These critical roles of MAP-2 in
neuronal function are all potentially disturbed under
excitotoxicity. We have found that a toxic glutamate
insult elicits a time-dependent decrease in MAP2 protein
levels (Fig. 3A) and disrupts microtubule structure
without significantly changing tubulin protein levels
(Fig. 2A), similarly to other models of neurodegeneration
(Guo et al., 2012). MAP-2 downregulation has also been
detected in cerebrocortical (Irving et al., 1996) and
hippocampal neurons (Miyamoto et al., 1998; Hoskison
et al., 2007) subjected to a toxic insult. Likewise, there
is a rapid breakdown and redistribution of MAP-2 to the
soma of pyramidal neurons following oxygen-glucose
deprivation (Buddle et al., 2003) or injections of the
glutamate transport inhibitor dihydrokainate and kainate
(Arias et al., 1997) into the rat hippocampus.

Since MAP-2 may be cleaved by calpain (Buddle
et al., 2003) the protective effects of BDNF on MAP-2
downregulation (Fig. 5A, B, D) may result, at least in
part, from its effect on calpain activity (Fig. 5F). Other
proteolytic mechanisms, besides calpain activity, may
also be indirectly involved in MAP-2 turnover, given that
proteasome inhibition with lactacystin mirrored the
neuroprotective effect of BDNF on MAP-2, 5 h after the
toxic insult (Fig. 4). Still, proteasome-mediated

Fig. 8. (continued)
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degradation of MAP-2 has only been linked to
predominantly cytoplasmic 20S in cortical neurons of
AIDS patients with neurological dysfunctions, albeit
associated with deterioration of neuronal processes
(Aprea et al., 2006). Furthermore, inhibition of lysosomal
pathways with NH4Cl and chloroquine showed no effect
on MAP-2 under excitotoxicity (data not shown). BDNF
may also protect MAP-2 and dendrites through
redistribution of MAP-2-associated NMDA receptors
(Buddle et al., 2003), suggesting that acute exogenous
application of BDNF in hippocampal neurons may play a
more general role in neuroprotection. This further
suggests that neuroprotection of neurites mediated by
BDNF is not limited to activation of protein synthesis-
dependent mechanisms, as previously found in the cell
soma (Almeida et al., 2005).

In this study we have also analyzed the
neuroprotective effect of BDNF in axons by studying the
protein marker NF-H, which is critical for the regulation
of axonal transport (Ackerley et al., 2003) and diameter
(Perrot et al., 2008). We have found that glutamate
excitotoxicity triggers a progressive loss of total
(phosphorylated and non-phosphorylated) NF-H protein
levels (Fig. 3A), and the formation of NF-H-positive
swellings and axonal beads (not shown), as previously
found in the cortical neurons overlying the stereotaxic

injection site of AMPA (Fowler et al., 2003), or following
inhibition of plasma membrane calcium ATPase isoform
2 (PMCA2) in an animal model of Multiple Sclerosis
(Kurnellas et al., 2005). Preincubation of hippocampal
neurons with BDNF significantly reduced the loss of NF-
H following excitotoxic stimulation with glutamate
(Fig. 5C), precluding the disarray of the NF network,
which would otherwise impair axoplasmic flow, leading
to retrograde degeneration and loss of connectivity
(Perrot et al., 2008). These results corroborate evidence
on a similar model of primary septo-hippocampal cell
cultures wherein BDNF lipotransfection either pre-injury
or 24 h following depolarization injury promoted recovery
from neurofilament loss (Hayes et al., 1995). This
neuroprotective effect of BDNF was mimicked by the
proteasome inhibitor lactacystin, and a calpain inhibitor,
PD150606, although, to a lessened extent (Fig. 4A, C),
indicating an indirect effect of calpain activity on the
regulation of NF-H turnover, as previously suggested
(Kampfl et al., 1996).

In addition to the changes in NF-H protein levels
observed in the present work glutamate excitotoxicity
also induces phosphorylation of NF-H in the cell body,
slowing its axonal transport (Ackerley et al., 2000) and
promoting the formation of phosphorylated
neurofilamentous inclusions (Kesavapany et al., 2007).
Since phosphorylation protects NF-H against calpain-
mediated proteolysis (Goldstein et al., 1987; Pant, 1988;
Greenwood et al., 1993) and the 20S proteasome only
degrades non-phosphorylated NF-H (Kimura et al.,
2007), the perikaryal accumulation of NF-H proteins
may be an endogenous protective mechanism of
neurons coping with such neurodegerative insult.
However, despite these protective mechanisms, a
significant fraction of NF-H protein is lost by a
mechanism involving calpains and the proteasome in
hippocampal neurons subjected to excitotoxic
stimulation (Fig. 4). We have only found significant
levels of NF-H-positive axonal beadings in the later time
points analyzed, i.e., these structures were absent in
the earlier time points (data not shown) that coincide
with maximal calpain activation (Fig. 2B) and the
decrease in NF-H protein levels was delayed compared
to the decline of MAP-2 (Fig. 3A).

BDNF protects glutamatergic neuronal function

We have previously shown that excitotoxicity induces the
cleavage and deregulation of both GABAergic and
glutamatergic neuronal markers, respectively, glutamic
acid decarboxylase isoforms GAD65 and GAD67
(Baptista et al., 2010), and the vesicular glutamate
transporters VGLUT1 and VGLUT2 (Lobo et al., 2011).
However, acute treatment with BDNF does not preclude
the loss of GAD65 and GAD67 (authors’ unpublished
observations) whereas the protein levels and punctate
labeling of VGLUT1 and VGLUT2 are significantly
protected (Fig. 6). Furthermore, BDNF prevents the
downregulation of exocytotic glutamate release (Fig. 9),
suggesting a selective protection of glutamatergic
function, in addition to the exocytotic machinery involved
in neurotransmitter release. However, since BDNF

Fig. 9. BDNF protects exocytotic glutamate release in cultured
hippocampal neurons subjected to excytotoxicity. Hippocampal neu-
rons cultured in 12-well plates, pre-incubated or not with BDNF
(100 ng/ml), for 24 h, were exposed to a toxic insult with 125 lM
glutamate (in Neurobasal medium), for 20 min, and further incubated
in the conditioned media for 5 or 14 h, as indicated. The cells were
then washed with Tyrode’s solution at 37 !C and depolarized with
high-K+ Tyrodes solution (90 mM KCl and 31.5 mM NaCl) for 60 s,
which was immediately replaced with normal Tyrode’s solution
containing the recombinantly expressed and titered glutamate FRET
sensor and 10 lM TBOA. Quantification of the exocytotic glutamate
release was performed by a fluorescence plate reader at an excitation
wavelength of 433/12 nm and emission wavelengths of 485/12 nm
and 528/12 nm. The ratio between the fluorescence measured at the
two wavelengths was calculated and the results were expressed as a
percentage of the control. Data are presented as mean ± SEM of
four independent experiments. Statistical analysis was performed
using the Bonferroni’s Multiple Comparison Test. ⁄p< 0.05;
⁄⁄p< 0.01.
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upregulates VGLUT protein levels and glutamate release
under control conditions (Fig. 6E), the protective effects
observed in cells pre-incubated with the neurotrophin
may be due, at least in part, to an increase in the
expression of the vesicular transporters with a
concomitant upregulation of glutamate release in the
cells that are resistant to the excitotoxic injury. Although
TrkB receptors are equally associated with excitatory
and inhibitory markers, BDNF is preferentially
associated with VGLUT1 and GluN1 in cultured
hippocampal neurons (Swanwick et al., 2004). Likewise,
glutamatergic and GABAergic neurons react differently
to postsynaptic BDNF, with an upregulation of
glutamatergic synaptic inputs and downregulation of
GABAergic synaptic terminal numbers in hippocampal
neurons (Singh et al., 2006).

BDNF-induced neuroprotection via protein synthesis
vs. inhibition of protein degradation

TRPC 3 and 6 protect cerebellar granule neurons from
serum deprivation-induced cell death (Jia et al., 2007)
and inhibition of calpain-mediated TRPC6 cleavage also
provided neuroprotection in a rat model of stroke (Du
et al., 2010). The TRPC6 agonist 1-oleoyl-2-acetyl-sn-
glycerol (OAG) significantly increases retinal ganglion
cell survival in a rat model of retinal ischemia/
reperfusion-induced cell death, through a mechanism
mediated by BDNF (Wang et al., 2010). Likewise, we
have found that BDNF significantly protects TRPC3 and
TRPC6 protein levels (Fig. 7D, E) and TRPC3/6-
immunopositive neurites (Fig. 7C) in cultured
hippocampal neurons subjected to glutamate
excitotoxicity.

Although the aforementioned evidence from other cell
death models indicates inhibition of protein degradation,
specifically calpain-mediated proteolysis, as the
mechanism of neuroprotection, similarly to what we
have found for several neuritic markers studied (Figs. 4
and 5F), BDNF alone significantly upregulates the
protein levels of TRPC6 (Fig. 7E) under control
conditions, and similar effects were observed for
VGLUT2 (Fig. 6E). Therefore, we may not exclude the
contribution of protein synthesis-dependent mechanisms
for BDNF-induced maintenance of TRPC6 protein levels
(as well as VGLUT2) in hippocampal neurons subjected
to excitotoxic stimulation, which is likely to contribute to
the neuroprotective effects of the neurotrophin.
Furthermore, VGLUT2 and TRPC6 protein levels in
hippocampal neurons pre-incubated with BDNF are still
lower than the control levels 14 h after the glutamate
toxic insult, despite the partial but significant recovery
(Figs. 6E and 7E). This evidence suggests a change in
the sub-cellular distribution of the proteins, with
increased trafficking to the neurites (Figs. 6A and 7C),
further suggesting that BDNF promotes the functional
recovery of neurons subjected to glutamate
excitotoxicity (Fig. 9), in addition to an attenuation of
proteolytic mechanisms activated by the toxic glutamate
insult (Fig. 4).

We have found that BDNF requires activation of both
PI3-K and PLCc signaling pathways in order to prevent

the loss of immunoreactivity of all neuritic (Fig. 8A–C)
and synaptic markers (Fig. 8D–F) tested, in addition to
TRPC3 and TRPC6 (Fig. 8G). PI3-K has a pivotal role
in promoting neuronal survival upon toxic insults
(Almeida et al., 2005; Yao et al., 2009) via transcription-
dependent and -independent mechanisms (Brunet et al.,
2001), either by impairing the proteolytic machinery
activation (Datta et al., 1997; del Peso et al., 1997) or
upregulating the mammalian target of rapamycin
(mTOR), the key regulator of protein synthesis
(Sarbassov et al., 2005), arresting glycogen synthase
kinase-3 (GSK-3) activity (Cross et al., 1995), and
suppressing axonal (Cheng et al., 2011) and dendritic
(Baki et al., 2008) retraction. In addition, the PI3-K/Akt
signaling pathway promotes axon regeneration in
peripheral (Namikawa et al., 2000) and CNS (Park
et al., 2008) neurons, which may be correlated with its
role in neuritic morphogenesis (Jaworski et al., 2011)
and synaptic potentiation (Wang et al., 2003). Similarly,
the PLCc signaling pathway not only mediates
neuroprotection in hippocampal neurons (Beazely et al.,
2009) but also regulates intracellular calcium transients
contributing to growth cone guidance and synaptic
plasticity (Li et al., 2005; Amaral and Pozzo-Miller, 2007).

In summary, we have found several lines of evidence
in this study suggesting a spatiotemporal differentiation of
the neuroprotective effect of BDNF in different neuronal
compartments: (1) the activation of the machinery
responsible for the loss of synapses and degeneration
of neurites precedes caspase-3 activation which leads
to cell soma demise; (2) the proteolytic mechanisms
activated in the neurites differ from the ones activated in
the cell soma; (3) BDNF activates distinct signaling
mechanisms in order to induce neuroprotection of
different sub-cellular compartments. Some studies
suggest that neurite pruning and injury-induced
degeneration share a common disassembly pathway
(Luo and O’Leary, 2005; Schoenmann et al., 2010)
while others advocate different molecular mechanisms
for the developmental and pathological degeneration of
neurites (Hoopfer et al., 2006; Tao and Rolls, 2011). In
either case, BDNF signaling has been implicated not
only in the developmental regulation of pruning in axons
(Cao et al., 2007; Singh et al., 2008) and dendrites (An
et al., 2008), but also in the regenerative sprouting of
neurotoxin-injured serotonergic axons (Mamounas et al.,
2000). Moreover, exogenous BDNF increases axon
growth and synaptogenesis after NMDA or kainate-
induced excitotoxicity (Wang and Green, 2011).
Although BDNF-mediated effects may differ between
developmental and neurodegenerative contexts,
understanding the key effectors of BDNF signaling
mechanisms involved in neuronal development and
synaptic maturation may enable to develop new
therapeutic approaches aimed at reactivating the same
developmental programs in order to promote functional
recovery of neurons after a neurodegenerative input.
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 The control conditions of experiments assessing BDNF neuroprotection of vesicular 

glutamate transporters 1 and 2 showed that incubation with BDNF alone significantly 

upregulated the protein levels of VGLUT2, considerably above the control levels. 

Therefore, we examined whether or not BDNF could regulate the expression of vesicular 

glutamate transporters, which would correlate its neuroprotective effect to a protein 

synthesis-dependent mechanism, while concomitantly suggesting a likely link between 

BDNF-induced mechanisms of synaptic plasticity, with VGLUTs as molecular effectors of 

its mechanism of action. 

 Therefore, the present study aimed to examine whether and how BDNF would 

regulate the expression of VGLUT levels in hippocampal neuronal cultures and showed 

that exogenous BDNF increased VGLUT expression through transcription and protein-

synthesis dependent mechanisms. Exogenous application of BDNF to cultured 

hippocampal neurons at DIV7 rapidly increases VGLUT2 mRNA and protein levels, in a 

dose-dependent manner. VGLUT1 expression also increased but only transiently. 

However, at DIV14, BDNF stably increased VGLUT1 expression, whilst VGLUT2 levels 

remained low. Transcription inhibition with actinomycin-D or #-amantine, and translation 

inhibition with emetine or anisomycin, fully blocked BDNF-induced VGLUT upregulation.  

 The results further demonstrated thatinhibition of TrkB receptors with K252a and 

PLC! signaling with U-73122 precludes the BDNF-induced VGLUT upregulation. BDNF 

activates different signaling pathways to up-regulate the expression of VGLUT1 and 

VGLUT2 at DIV7, which rely on CAMKII and PKC activation, respectively. Hippocampal 

neurons express both VGLUT isoforms during embryonic and neonatal development in 

contrast to adult tissue expressing only VGLUT1. Furthermore, fluorescence microscopy 

imaging 30 min after BDNF incubation showed a transient upregulation of VGLUT1 axonal 

trafficking and redistribution of VGLUT2-positive vesicles, indicating that BDNF may also 

affect VGLUT subcellular distribution during development. Increased VGLUT1 and 

VGLUT2 somatic signals were respectivelyfound 3 and 6 h later, further suggesting 

increased de novo transcription and translation.  

 Overall, these results suggest that BDNF regulates VGLUT expression during 

development and its effect on VGLUT1 may contribute to enhance glutamate release in 

LTP.Moreover, these results indicate that BDNF actives overlapping mechanisms under 

physiological conditions, during development, and in pathological conditions, induced by 

glutamate excitotoxicity, concomitantly promoting connectivity between neurons and 

neuroprotection. 
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Abstract

BDNF is a pro-survival protein involved in neuronal development and synaptic plasticity. BDNF strengthens excitatory
synapses and contributes to LTP, presynaptically, through enhancement of glutamate release, and postsynaptically, via
phosphorylation of neurotransmitter receptors, modulation of receptor traffic and activation of the translation machinery.
We examined whether BDNF upregulated vesicular glutamate receptor (VGLUT) 1 and 2 expression, which would partly
account for the increased glutamate release in LTP. Cultured rat hippocampal neurons were incubated with 100 ng/ml
BDNF, for different periods of time, and VGLUT gene and protein expression were assessed by real-time PCR and
immunoblotting, respectively. At DIV7, exogenous application of BDNF rapidly increased VGLUT2 mRNA and protein levels,
in a dose-dependent manner. VGLUT1 expression also increased but only transiently. However, at DIV14, BDNF stably
increased VGLUT1 expression, whilst VGLUT2 levels remained low. Transcription inhibition with actinomycin-D or a-
amanitine, and translation inhibition with emetine or anisomycin, fully blocked BDNF-induced VGLUT upregulation.
Fluorescence microscopy imaging showed that BDNF stimulation upregulates the number, integrated density and intensity
of VGLUT1 and VGLUT2 puncta in neurites of cultured hippocampal neurons (DIV7), indicating that the neurotrophin also
affects the subcellular distribution of the transporter in developing neurons. Increased VGLUT1 somatic signals were also
found 3 h after stimulation with BDNF, further suggesting an increased de novo transcription and translation. BDNF
regulation of VGLUT expression was specifically mediated by BDNF, as no effect was found upon application of IGF-1 or
bFGF, which activate other receptor tyrosine kinases. Moreover, inhibition of TrkB receptors with K252a and PLCc signaling
with U-73122 precluded BDNF-induced VGLUT upregulation. Hippocampal neurons express both isoforms during
embryonic and neonatal development in contrast to adult tissue expressing only VGLUT1. These results suggest that BDNF
regulates VGLUT expression during development and its effect on VGLUT1 may contribute to enhance glutamate release in
LTP.
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Introduction

BDNF (brain-derived neurotrophic factor) is a pro-survival
protein that promotes neuronal differentiation and synaptic
plasticity [1,2], in addition to neuroprotection [3,4]. During
development, BDNF stimulates the formation of appropriate
synaptic connections, controlling the direction and rate of axon
growth [5,6], as well as the shape of dendritic arbors and spines
[7–9]. In the adult hippocampus, BDNF is also involved in
learning [10,11] and memory formation [12,13], and is essential
for long-term potentiation (LTP) [14–18].
The effects of BDNF are mainly mediated through activation of

the TrkB (tropomyosin-related kinase B receptor) receptor tyrosine
kinase as well as the p75 neutrotrophin receptor (p75NTR) [19].
Activation of TrkB receptors by BDNF leads to receptor

dimerization and trans-autophosphorylation of several tyrosine
residues in the intracellular domain, including Y490 and Y816,
which allow recruiting proteins containing PTB and SH2 (Src
homology-type 2) domains, activating in parallel the Ras-ERK
(extracellular signal-regulated kinase), PI3-K (phosphatidylinositol
3-kinase)/Akt and phospholipase C-c (PLCc) signaling pathways
[20]. Trans-autophosphorylation of Y816 recruits and activates
cytoplasmic PLCc, which hydrolyzes PIP2 (phosphatidylinositol
4,5-bisphosphate) into IP3 (inositol 1,4,5-trisphosphate) and DAG
(diacylglycerol). IP3 promotes Ca2+ release from internal stores,
activating [Ca2+]i-regulated enzymes, including Ca2+- and cal-
modulin-dependent protein kinases (CAMKs), and protein kinase
C (PKC) isoforms [21]. Concomitantly, DAG stimulates DAG-
regulated PKC isoforms, such as PKCd [20]. The PLCc pathway
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is central in LTP [18,22,23] and growth cone guidance [6],
retrograde synaptic modification [24] and dendritic spine mor-
phology [25] regulated by activation of TRPC (transient receptor
potential canonical) channels. Trans-autophosphorylation of Y490
enables recruitment of Shc (Src homology 2-containing protein),
IRS1 (insulin receptor substrate 1) and IRS2 linker proteins,
thereby activating the Ras-ERK and PI3K/Akt cascades [26].
ERK translocates to the nucleus upon phosphorylation, regulating
gene expression through isoform-specific activation of transcrip-
tion factors, including cAMP-response element binding protein
(CREB) (through ERK1/2/5), MEF2 (downstream of ERK5) or
Elk1 (following activation of ERK1/2) [27]. The Ras-ERK
signaling pathway is crucial for neurogenesis [28], inhibition of
proapoptotic proteins [29], stimulation of pro-survival gene
expression [30] and protein synthesis-dependent plasticity [31].
The PI3K/Akt pathway has a pivotal role in cell survival [32],
neuroprotection [3], trafficking of synaptic proteins [33] and can
also directly control protein synthesis through mTOR (mamma-
lian target of rapamycin) activation and 4EBP phosphorylation
[34].
The TrkB-activated signaling pathways account for nearly all

BDNF synaptic effects but their biological responses likely reflect
BDNF or TrkB receptor levels and the spatiotemporal pattern
of BDNF stimulation, especially when activated pre- and/or
postsynaptically [35]. Nevertheless, the molecular mechanisms
underlying BDNF signaling in short-term plasticity and long-
term potentiation are not fully understood. We have previously
reported that BDNF induces significant proteome changes [36],
including the regulation of AMPA and NMDA receptors
involved in molecular mechanisms of synaptic plasticity
[37,38]. BDNF promotes phosphorylation of synapsin I [39]
and beta-catenin [40] increasing synaptic vesicle docking at the
active zone and quantal glutamate release [39,41]. However,
direct presynaptic effectors of protein synthesis-dependent
BDNF signaling on glutamatergic function, which also contrib-
utes to LTP and memory formation [22,23], have not been
identified thus far. The vesicular glutamate transporters
(VGLUT) are such target candidates because they mediate L-
glutamate uptake into synaptic vesicles and are required for
exocytic glutamate release at presynaptic terminals [42].
Moreover, VGLUT1 and VGLUT2 expression is developmen-
tally regulated in order to match vesicle cycling and quantal
amplitude [43,44]. In addition, VGLUT isoforms have similar
substrate specificity, transport activity and kinetics but comple-
mentary expression, which correlates with release probability
and potential for plasticity [45]. Therefore, the current study
aimed at examining the effect of BDNF on the expression of
VGLUT, given their relevance in LTP, learning and memory
function [46,47]. We report that BDNF regulates VGLUT gene
and protein expression during development of cultured hippo-
campal neurons, through activation of the PLCc signaling
pathway, and also affects VGLUT subcellular distribution,
further suggesting a role in BDNF-induced LTP.

Materials and Methods

Ethics Statement
Experiments were performed according to the European Union

Directive 86/609/EEC and the legislation Portaria n. 1005/92,
issued by the Portuguese Government for the protection of
animals used for experimental and other scientific purposes. Dams
were sacrificed by cervical dislocation. Embryos were then
surgically removed and sacrificed by decapitation.

Hippocampal Cultures
Primary cultures of rat hippocampal neurons were prepared

from the hippocampi of E18–E19 Wistar rat embryos, after
treatment with trypsin (0.06%, for 15 min at 37uC; GIBCO-
Invitrogen) and deoxyribonuclease I (5.36 mg/ml), in Ca2+- and
Mg2+-free Hank’s balanced salt solution (HBSS; 5.36 mM KCl,
0.44 mM KH2PO4, 137 mM NaCl, 4.16 mM NaHCO3,
0.34 mM Na2HPO4.2H2O, 5 mM glucose, 1 mM sodium pyru-
vate, 10 mM HEPES and 0.001% phenol red). The hippocampi
were then washed with HBSS containing 10% fetal bovine serum
(GIBCO-Invitrogen), to stop trypsin activity, and transferred to
Neurobasal medium (GIBCO-Invitrogen) supplemented with B27
supplement (1:50 dilution; GIBCO-Invitrogen), 25 mM glutamate,
0.5 mM glutamine and 0.12 mg/ml gentamycin. The cells were
dissociated in this solution and were then plated in 6-well plates
(870,000 cells/well) coated with poly-D-lysine (0.1 mg/ml), or on
poly-D-lysine coated glass coverslips, at a density of 80,000 cells/
well (12-well plates). The cultures were maintained in a humidified
incubator of 5% CO2/95% air, at 37uC, for 7 or 14 days. BDNF
stimulation was carried out by adding BDNF (Regeneron or
PeproTech) in Neurobasal medium to a final concentration of
100 ng/ml, for the indicated period of time. When appropriate,
1.5 mM a-amanitin or actinomycin D (transcription inhibitors),
2.0 mM emetine or anisomycin (translation inhibitors) (Calbio-
chem), 200 nM K252a (TrkB inhibitor), 5 mM U73122 (PLCc
pathway inhibitor), 5 mM chelerythrine (PKC inhibitor) or 1 mM
KN-93 (CAMKII inhibitor), 20 mM PD098059 or 10 mM U0126
(Ras-ERK pathway inhibitors), 30 mM LY294002 or 300 nM
Wortmannin (PI3K/Akt pathway inhibitors) (Sigma-Aldrich
Quı́mica) were added 30 min before BDNF stimulation, as
indicated. The cells were further incubated with the signaling
inhibitors for 3 h or 5 h, during BDNF stimulation. When
appropriate, 100 ng/ml IGF-1 (insulin-like growth factor 1) and
bFGF (basic fibroblast growth factor) (Sigma-Aldrich Quı́mica)
were added in lieu of BDNF.

Preparation of Extracts
Hippocampal neurons (DIV7/DIV14) were washed twice

with ice-cold PBS and once more with PBS supplemented with
1 mM DTT and a cocktail of protease inhibitors (0.1 mM
PMSF; CLAP: 1 mg/ml chymostatin, 1 mg/ml leupeptin, 1 mg/
ml antipain, 1 mg/ml pepstatin; Sigma-Aldrich Quı́mica). The
cells were then lysed with RIPA buffer (150 mM NaCl, 50 mM
Tris-HCl, 5 mM EGTA, 1% Triton, 0.5% DOC and 0.1%
SDS at a final pH 7.5), supplemented with 50 mM NaF,

Figure 1. BDNF upregulates VGLUT1 and VGLUT2 protein expression through a translation-dependent mechanism. (A–B) Cultured
hippocampal neurons at DIV7 (A) and DIV14 (B) were incubated with 100 ng/ml BDNF for different time periods and total VLGUT1 and VGLUT2
protein levels were compared to control (without BDNF) expression, upon normalization with b-actin I levels. (C–D) Cultured hippocampal neurons at
DIV7 were pre-incubated or not with the translation inhibitors emetine or anisomycin (2 mM) for 30 min before BDNF stimulation during 30 min or
3 h and VGLUT1 (C) and VGLUT2 (D) protein levels were compared to control expression. When the effect of translation inhibitors was tested, the cells
were incubated with the compounds during stimulation with BDNF. (A–D) Quantification of 3–5 different experiments, performed in independent
preparations, is presented as mean percentage 6 SEM compared to the control (unstimulated neurons). Statistical significance was determined by
One Way ANOVA followed by Bonferronis multiple comparison test with a confidence interval of 99% (*p,0.05, **p,0.01, ***p,0.001).
doi:10.1371/journal.pone.0053793.g001
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1.5 mM sodium orthovanadate and a cocktail of protease
inhibitors, and sonicated, on ice, using an ultrasonic cell
disrupter microtip (VibraCell, Sonics & Materials, Inc.), with
2 cycles of 10 consecutive 1 s, low-intensity pulses interspaced
by 30 s, in order to fully disrupt membrane structure. After
centrifugation at 16,100 g for 10 min, protein in the superna-
tants was quantified using the bicinchoninic acid (BCA) assay
(Thermo Scientific), and the samples were denaturated with 2x
concentrated denaturating buffer (125 mM Tris, pH 6.8,
100 mM glycine, 4% SDS, 200 mM DTT, 40% glycerol,
3 mM sodium orthovanadate, and 0.01% bromophenol blue),
without denaturation at 95uC for 5 min, which would otherwise
cause loss of vesicular proteins to the insoluble fraction.

Total RNA Isolation and Reverse Transcription for Real-
time PCR
Total RNA from cultured hippocampal neurons was extract-

ed with TRIzol reagent (Invitrogen), according to the manu-
facturer’s instructions. The full content of a 6-well cell cluster
plate, with 870,000 cells/well (DIV7), was collected for each
experimental condition. For first strand cDNA synthesis, 3 mg of
total RNA was reverse-transcribed with avian myeloblastosis
(AMV) reverse transcriptase (Roche Applied Science) using
random primers p(dN)6 (3.2 mg), dNTPs (1 mM each), MgCl2
(25 mM), RNase inhibitor (50 units) and gelatin (0.01 mg/ml) in
reaction buffer (10 mM Tris, 50 mM KCl, pH 8.3), in a total
volume of 40 ml. The reaction was performed at 25uC for
10 min, followed by 60 min at 42uC, for primer annealing to
the RNA template and cDNA synthesis, respectively. The
reverse transcriptase was then denatured during 5 min at 99uC,
and the sample was cooled to 4uC for 5 min and finally stored
at -80uC until further use.

Real-time PCR
Real-Time PCR analysis of gene expression was performed

using the LightCycler System II (Roche Applied Science). The
PCR reactions were performed using LightCycler FastStart DNA
Master SYBR Green I (Roche et al., 1996) in 20 ml capillaries.
The primers used for amplification of genes encoding VGLUT1
and VGLUT2 were, respectively, VGLUT1, forward: 59 TGG
AGT TCC GGC AGG AGG AGT T; VGLUT1, reverse: 59
GTG TGT GTG GTG ACT GGG CGC; VGLUT2, forward: 59
GAA GAA ACG GGG GAC ATC ACT GAG A; VGLUT2,
reverse: 59 GTC TTG CGC ACT TTC TTG CAC AAA T. The
primers used for the amplification of endogenous control gene 18S
ribosomal RNA were those included in the Applied Biosystems
TaqMan Ribosomal RNA Control Reagents Kit. Each primer of a
pair was added to the reaction mixture (10 ml) at a final
concentration of 0.8 mM, with 3 mM MgCl2, in addition to the
‘‘Hot Start’’ LightCycler Fast Start DNA Master SYBR Green I
mix (1x) and 2.0 ml of cDNA sample. Thermal cycling was
initiated with activation of the FastStart TaqDNA polymerase by
denaturation during 10 min at 95uC followed by 45 cycles of a
30 s melting step at 95uC, a 5 s annealing step at 60uC, and a 25 s

elongation step at 72uC. All temperature transition rates used were
at 20uC/s. After amplification for 45 cycles, at least 10 cycles
beyond the beginning of the linear phase of amplification, samples
were subjected to a melting curve analysis according to the
manufacturer’s instructions in order to confirm the absence of
unspecific amplification products and primer-dimers. Samples
containing no template were included as negative controls in all
experiments.

mRNA Quantitative Analysis
The mRNA levels of the constitutively expressed reference gene

encoding 18S ribosomal RNA were used as a control, in all
experiments. The relative changes in the mRNA levels of
glutamate receptor subunits in cultured hippocampal neurons
were determined using the DDCp method. Accordingly, for each
experimental condition (unstimulated neurons and neurons
treated with 100 ng/ml BDNF for 30 min or 3 h) the ‘‘crossing
point’’ (Cp) values given by the LightCycler system II software, for
each target gene, were subtracted by the respective Cp value
determined for the 18S gene from the same sample and condition
(DCp). This allows normalizing changes in target gene expression.
Afterward, the DCp values were subtracted by the respective values
of the control for the target gene giving DDCp. The derivation to
the value of 22(DDCp) sets each control at the unity (or 100%),
because DDCp (control) = 0, and the stimuli conditions used were
set at percentage relative to control.

Immunoblotting
Protein samples were separated by SDS-PAGE, in 12%

polyacrylamide gels, transferred to polyvinylidene (PVDF) mem-
branes (Millipore Corp.), and immunoblotted. Blots were
incubated with primary antibodies (overnight at 4uC), washed
and exposed to alkaline phosphatase (ECF)-conjugated secondary
antibody (1 h at room temperature). Alkaline phosphatase activity
was visualized by enhanced chemifluorescence (ECF) on the Storm
860 Gel and Blot Imaging System (GE Healthcare). The following
primary antibodies were used: anti-VGLUT1 and anti-VGLUT2
(1:1000, Synaptic Systems); anti-b-Tubulin I (1:10000, Sigma-
Aldrich Quı́mica), anti-b-actin I (1:20000, Sigma-Aldrich Quı́-
mica), anti-pERK1/2 (1:1000, Cell Signaling), anti-BDNF
(1:1000, Santa Cruz Biotechnology). Anti-rabbit or anti-mouse
IgG alkaline phosphatase-conjugated secondary antibodies (re-
spectively, 1:20000 and 1:10000, GE Healthcare) were used for
detection.

Immunocytochemistry
For immunocytochemistry, cultured hippocampal neurons were

grown on poly-D-lysine coated glass coverslips, at a density of
80000 cells/well (12-well plates), and were then fixed in PBS
supplemented with 4% paraformaldehyde/4% sucrose, for 15 min
at room temperature. After fixation the cells were washed and
permeabilized with 0.25% Triton X-100 in PBS, for 5 min at 4uC,
washed once in PBS for 5 min, and then blocked with 10% BSA,
for 1 h at room temperature, and stained with specific primary

Figure 2. The effect of BDNF on VGLUT1 and VGLUT2 protein levels is dependent on gene expression. (A–B) Hippocampal neurons
were stimulated with BDNF (100 ng/ml) for the indicated periods of time, in the presence or in the absence of the transcription inhibitors a-amanitin
(1.5 mM) or actinomycin-D (1.5 mM), and VGLUT1 (A) and VGLUT2 (B) protein levels were determined by western blot. (C) The variation of Slc17a7
(VGLUT1) and Slc17a6 (VGLUT2) mRNA levels was assayed by real-time PCR, as described in the methods section. The neurons were stimulated with
100 ng/ml BDNF during 30 minutes (grey) or 3 hours (red). (A–C) Quantification of 4–5 experiments, performed in independent preparations, is
presented as mean percentage6 SEM compared to the control (unstimulated neurons), and normalized to 18S reference gene. Statistical significance
was determined by One Way ANOVA followed by Bonferronis multiple comparison test with a confidence interval of 99% (*p,0.05, **p,0.01,
***p,0.001).
doi:10.1371/journal.pone.0053793.g002

BDNF and VGLUT Expression

PLOS ONE | www.plosone.org 5 January 2013 | Volume 8 | Issue 1 | e53793



Figure 3. TrkB receptor inhibition blocks BDNF upregulation of VGLUT1 and VGLUT2. (A–C) Cultured hippocampal neurons at DIV7 (A, B)
and DIV14 (C) were stimulated with BDNF (100 ng/ml), for the indicated periods of time, in the presence or absence of a selective inhibitor of tyrosine
kinase activity, K252a (200 nM), and VGLUT1 (A, C) and VGLUT2 (B) protein levels were determined by western blot. Quantification of the indicated
number of experiments, performed in independent preparations, is presented as mean percentage 6 SEM compared to the control (unstimulated
neurons). (D–F) DIV7 hippocampal neurons were stimulated with IGF-1 or bFGF, for 4 or 20 h, and VGLUT1 (D) and VGLUT2 (E) protein levels were
determined by western blot. Quantification of 4 different experiments, performed in independent preparations, is presented as mean percentage 6
SEM compared to the control. Statistical significance was determined by One Way ANOVA followed by Bonferronis multiple comparison test with a
confidence interval of 99% (*p,0.05, **p,0.01, ***p,0.001). (F) DIV7 hippocampal neurons were stimulated with IGF-1 or bFGF, for 15 or 30 min,
and the levels of ERK1/2 phosphorylation were determined by western blot. The antibody used specifically recognizes the phosphorylated isoforms 1
and 2 of ERK, but not the nonphosphorylated (presumably inactive) proteins.
doi:10.1371/journal.pone.0053793.g003
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Figure 4. Inhibition of the PLCc signaling pathway blocks BDNF-induced upregulation of VGLUT1 and VGLUT2 protein levels. (A–D)
DIV7 cultured hippocampal neurons were stimulated with BDNF (100 ng/ml) for the indicated periods of time, in the presence or absence of U73122
(PLCc inhibitor; 5 mM) (A, B), chelerytrine (PKC inhibitor; 5 mM) or KN-93 (CAMKII inhibitor; 1 mM) (C, D), and VGLUT1 (A, C) and VGLUT2 (B, D) protein
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antibodies overnight at 4uC. The following primary antibodies
were used: rabbit anti-VGLUT1 or anti-VGLUT2 (1:1000 and
1:500, respectively; Synaptic Systems) and mouse anti-b-Tubulin I
(1:1000; Sigma-Aldrich Quı́mica). Subsequently, cells were
washed six times and incubated for 1 h at 37uC with the
secondary antibodies (Alexa FluorH 488 goat anti-rabbit and Alexa
FluorH 568 goat anti-mouse, 1:500; Invitrogen). The cells were
washed six times, mounted on glass slides with the Dako mounting
medium and viewed on an Axio Observer 2.1 fluorescence
microscope coupled to an Axiocam HRm digital camera. For each
set of experiments the cell images were acquired using identical
exposure settings. The regions of interest for the quantification
were blindly chosen using the tubulin channel. The images were
analyzed for the number, the integrated density (mean intensity6
puncta area), and the intensity of VGLUT puncta along neurites,
as well as the total immunoreactivity in the soma, using the ImageJ
software (NIH). The quantification was performed after determi-
nation of the threshold and subtraction of the background. The
results of the quantification were normalized for the length of the
region of interest in the case of neurites or for the area in the case
of the soma. At least 12 cells per condition were analyzed for each
preparation.

Statistical Analysis
Data are presented as mean 6 SEM of at least three different

experiments, performed in independent preparations. Statistical
analysis was performed using one-way analysis of variance
(ANOVA) followed by the Dunnett’s or Bonferroni post-tests, at
a 99% confidence interval, or using the Student’s t test, as
indicated in the figure captions.

Results

BDNF Upregulates VGLUT1 and VGLUT2 Total Protein
Levels
7 and 14 DIV cultured hippocampal neurons were incubated

with or without 100 ng/ml BDNF, for different time periods
(30 min to 24 h), in order to determine whether acute stimulation
with BDNF affects the protein expression of vesicular glutamate
transporters. VGLUT1 and VGLUT2 protein levels were
determined by Western blotting (Fig. 1A). At DIV7, BDNF
rapidly and significantly upregulated VGLUT2 protein levels,
while VGLUT1 protein levels were only transiently upregulated at
the initial time points, subsequently returning to levels similar to
the control condition (unstimulated neurons). In contrast, at
DIV14, BDNF did not significantly change VGLUT2 protein
levels but instead upregulated VGLUT1 throughout time (Fig. 1B).
The increase in VGLUT2 protein levels at DIV7 and in VGLUT1
at DIV14 had distinct kinetics, and the maximal effects were found
after incubation with BDNF for 3 h and 24 h, respectively. At
DIV7, after a rapid increase, VGLUT2 protein levels remained
high and relatively similar to the maximal value (3 h), even 24 h
after incubation, while the abundance of VGLUT1 showed a slow
and gradual increase, in comparison to the control. The sustained
increase in VGLUT1 and VGLUT2 protein levels observed in
hippocampal neurons (DIV14 and DIV7, respectively) subjected
to a chronic stimulation with BDNF was not observed when the
incubation was limited to 4 h, and followed by 14 h incubation in

culture conditioned medium (p.0.05) (Fig. S1). The effect of
BDNF on VGLUT2 expression was not further examined at
DIV14 because it was not significant and the endogenous
expression levels of this isoform are rather low and variable, in
developed neurons. These results mimic the developmental switch,
from VGLUT2 to VGLUT1 expression, observed in postnatal
hippocampal neurons [42,43,48].
In order to test whether the effect of BDNF resulted from an

increase in protein synthesis, we used two translation inhibitors,
anisomycin and emetine. Hippocampal neurons were stimulated
with BDNF for 30 min or 3 h, in the presence or absence of
translation inhibitors, which were added to the cultured media
30 min prior to BDNF stimulation and kept in the media during
incubation with BDNF. Emetine (2 mM) or anisomycin (2 mM)
fully abrogated the effect of BDNF on VGLUT1 (Fig. 1C) and
VGLUT2 (Fig. 1D) isoforms at DIV7. None of the protein
synthesis inhibitors reduced VGLUT1 or VGLUT2 protein levels
under control conditions (p.0.05), in agreement with the
relatively long half-life suggested for VGLUT2 [49]. However,
translation inhibition was not tested at DIV14 because BDNF only
upregulates VGLUT1 protein levels for long incubation periods,
above the cellular toxicity threshold of emetine and anisomycin
[50]. Treatment with anisomycin or emetine alone did not alter
VGLUT1 or VGLUT2 protein levels in the time periods tested
(p.0.05). Taken together, these results indicate that BDNF
upregulates VGLUT isoforms 1 and 2 through a protein-synthesis
dependent mechanism, and rule out the hypothesis of a reduction
in protein degradation.

BDNF Upregulates VGLUT1 and VGLUT2 by Enhancing
Transcriptional Activity
BDNF signaling may stimulate gene transcription [51] and/or

protein synthesis [52,53]. Hence, we used two different transcrip-
tion inhibitors, a-amanitin (1.5 mM) and actinomycin D (1.5 mM)
to test the role of transcription in the upregulation of vesicular
glutamate transporters by BDNF. Both transcription inhibitors
blocked the effect of BDNF on VGLUT1 (Fig. 2A) and VGLUT2
(Fig. 2B) protein levels and had no effect on the abundance of
VGLUT variants in the absence of this neurotrophin, relative to
the control condition. In agreement with these findings, real-time
PCR experiments showed that BDNF stimulation for 30 min
caused an approximately 2-fold increased in VGLUT1 mRNA
levels (p,0.001). A significant increase in VGLUT2 mRNA
(approximately 3-fold) was also found when cells were incubated
with the neurotrophin for 3 h (p,0.001), with VGLUT1 mRNA
levels remaining at a similar level to that of stimulation for only
30 min (Fig. 2C). Overall, the results suggest that BDNF regulates
VGLUT1 and VGLUT2 gene expression, likely through activa-
tion of a BDNF signaling-modulated transcription mechanism
and/or transcription factor(s).

VGLUT Upregulation Depends on TrkB Receptor
Activation Specifically Induced by BDNF
BDNF signaling may stimulate gene transcription [51] and/or

protein synthesis [52,53], essentially through activation of TrkB
receptors [33]. K252a is a potent inhibitor of tyrosine protein
kinase activity of TrkA, TrkB and TrkC receptors, blocking
receptor autophosphorylation and, consequently, the biological

levels were determined by western blot. Quantification of the indicated number of experiments, performed in independent preparations, is
presented as mean percentage 6 SEM compared to the control (unstimulated neurons). Statistical significance was determined by One Way ANOVA
followed by Bonferronis multiple comparison test with a confidence interval of 99% (*p,0.05, **p,0.01, ***p,0.001). (E) Schematic representation
of BDNF-induced TrkB receptor trans-activation and downstream PLCc signaling pathway effectors and inhibitors.
doi:10.1371/journal.pone.0053793.g004
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functions of their neurotrophin ligands [54]. In addition to TrkB,
cultures of embryonic day 18 (E18) hippocampal neurons express
TrkC, but not TrkA receptors [55] and BDNF does not bind to
TrkC receptors [56,57]. The results found show that TrkB
receptor activation is required for upregulation of VGLUT1
(DIV7 and DIV14) and VGLUT2 (DIV7) protein levels because
no effect of BDNF was found when the stimulation with the
neurotrophin was performed in the presence of 200 nM K252a
(p.0.05) (Fig. 3A–C). K252a alone did not significantly alter
either VGLUT1 or VGLUT2 protein levels, when compared to
the control condition (without treatment) (p.0.05), which
demonstrates a specific action of BDNF in the upregulation of
VGLUT expression (Fig. 3A–C). In addition, the lack of effect of
K252a on VGLUT2 expression at DIV14 did not result from the
endogenous release of saturating amounts of BDNF, which would
prevent any additional effect by its exogenous application, because
incubation with the Trk receptor inhibitor alone did not decrease
VGLUT2 protein expression below the control levels (Fig. S2).
This further suggests that BDNF signaling may regulate the
developmental switch from VGLUT2 to VGLUT1 expression in
hippocampal neurons.
Cultured hippocampal neurons express receptors for other

trophic factors, including IGF-1 [58,59] and bFGF [60,61],
which activate the same BDNF-induced signaling pathways in
cultured hippocampal neurons. Moreover, IGF-I enhances the
expression of TrkB receptors and the ability of BDNF to induce
ERK1/2 phosphorylation in cerebrocortical neurons [62] while
bFGF rapidly stimulates BDNF expression in the hippocampal
cell line HiB5 [63]. In this context, we tested whether acute
stimulation with IGF-1 or bFGF in lieu of BDNF would affect
the expression levels of VGLUT isoforms, at two different time
points (4 h and 20 h). Either brief or prolonged incubation with
100 ng/ml IGF-1 or bFGF had no effect on VGLUT1 (Fig. 3D)
and VGLUT2 (Fig. 3E) protein levels, at DIV7, when
compared to the control condition (p.0.05). Since exogenously
applied neurotrophic factors are only effective when their
receptors are expressed at the cell surface and free to bind
their ligands, the absence of any effect on VGLUT expression
could have resulted from ligand or receptor inactivity. In order
to exclude this possibility, we tested the levels of ERK1/2
phosphorylation, upon 15 or 30 min of stimulation with IGF-
1 or bFGF. The antibody used specifically recognizes the
phosphorylated isoforms 1 and 2 of ERK, but not the non-
phosphorylated (presumably inactive) proteins. The results show
ERK1/2 phosphorylation after 15 min incubation with both
IGF-1 and bFGF, and the effect of bFGF was still observed
after 30 min of stimulation. These results confirm that the lack
of effect of IGF-1 and bFGF on VGLUT expression was not
due to inactivity of trophic factors or their receptors (Fig. 3F).
Therefore, we may conclude that BDNF upregulates VGLUT1
and VGLUT2 specifically through activation of TrkB receptors
as K252a fully abrogated the effect in cultured hippocampal
neurons at DIV7 (Fig. 3A, B) and DIV14 for VGLUT1
(Fig. 3C).

BDNF Regulates VGLUT Expression through PLCc
Signaling Pathway Activation
The specificity of BDNF signaling through TrkB activation

prompted us to further assess which pathway(s) triggered by TrkB
trans-autophosphorylation was (were) involved in BDNF-mediated
VGLUT upregulation. For this purpose, we used the chemical
inhibitors U73122 (PLCc pathway), PD098059 or U0126 (Ras-
ERK pathway), and LY294002 or Wortmannin (PI3K/Akt
pathway). At DIV7, U73122 fully abrogated BDNF-induced
VGLUT1 (Fig. 4A) and VGLUT2 (Fig. 4B) upregulation
(p.0.05), indicating that this pathway plays a key role in response
to BDNF. Chemical inhibitors chelerythrine and KN-93 selec-
tively and potently block the activation of PKC and CAMKII,
respectively, two kinases that act downstream of PLCc. We have
found that incubation with KN-93 (1 mM) prevented BDNF-
induced VGLUT1 (p.0.05), but not VGLUT2 upregulation
(p,0.05), while chelerythrin (5 mM) blocked VGLUT2 upregula-
tion (p.0.05), but was without effect on VGLUT1 (p,0.05)
(Fig. 4C, D). These results indicate that BDNF regulates VGLUT
1 and 2 expression through signaling mechanisms acting
downstream of PLCc. VGLUT1 transient upregulation at DIV7
is dependent on CAMKII activation whereas VGLUT2 long
lasting upregulation, at the same developmental stage, requires
PKC activation. Blocking the Ras-ERK (Fig. 5A, B) or PI3-K/Akt
(Fig. 5C, D) signaling pathways with PD098059 or U0126 and
LY294002 or Wortmannin, respectively, showed no significant
effect (p.0.05).

BDNF Affects VGLUT Subcellular Distribution
The subcellular distribution of VGLUT1 and VGLUT2 was

assessed by immunocytochemistry in cultured hippocampal
neurons (DIV7) stimulated or not with 100 ng/ml BDNF, for
different time periods, and imaged by fluorescence microscopy.
VGLUT1-positive neuritic (presumably axonal) labeling transient-
ly increased after 30 min - 3 h of incubation with BDNF when
compared with the control (Fig. 6A). Quantification of the
immunofluorescence images showed a BDNF-induced increase
in the number (Fig. 6B), integrated density (mean intensity6
puncta area) (Fig. 6D) and intensity (Fig. 6E) of VGLUT1 puncta
along neurites, as well as an upregulation in the total immuno-
reactivity in the soma (Fig. 6C). A small but non-significant
upregulation of VGLUT1 protein levels was found in the soma, at
an early time point (30 min), before the maximal increase in
VGLUT1 puncta intensity (3 h) (p,0.001). VGLUT2 punctate
labeling was also increased in the neurites of hippocampal neurons
following stimulation with BDNF for 30 min or 6 h (Fig. 7). In this
case, BDNF was also found to increase the number (Fig. 7B),
integrated density (Fig. 7D) and intensity (Fig. 7E) of VGLUT2
puncta in neurites, with maximal effects at 30 min of incubation
with the neurotrophin. However, BDNF was without effect on
total VGLUT2 immunoreactivity in the soma (p.0.05) (Fig. 7C),
in contrast with the results obtained for VGLUT1. Overall, these
imaging results not only provide further support to the biochem-
istry results previously presented but also show that BDNF affects

Figure 5. Inhibition of the PI3-K/Akt and Ras-ERK signaling pathways has no significant effect on BDNF-induced upregulation of
VGLUT1 and VGLUT2 protein levels. (A–D) DIV7 cultured hippocampal neurons were stimulated with BDNF (100 ng/ml), for the indicated
periods of time, in the presence or absence of Ras-ERK pathway inhibitors PD098059 (20 mM) or U0126 (10 mM) (A, B), or PI3K/Akt inhibitors LY294002
(30 mM) or Wortmannin (300 nM) (C, D), and VGLUT1 (A, C) and VGLUT2 (B, D) protein levels were determined by western blot. Quantification of the
indicated number of experiments, performed in independent preparations, is presented as mean percentage 6 SEM compared to the control
(unstimulated neurons). Statistical significance was determined by One Way ANOVA followed by Bonferronis multiple comparison test with a
confidence interval of 99% (*p,0.05, **p,0.01, ***p,0.001). (E) Schematic representation of BDNF-induced TrkB receptor trans-activation and
downstream effectors and inhibitors of the PI3-K/Akt and Ras-ERK signaling pathways.
doi:10.1371/journal.pone.0053793.g005
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the subcellular distribution and trafficking of VGLUT1 and
VGLUT2 in hippocampal neurons.

Discussion

We and others have previously shown direct presynaptic effects
of BDNF, which upregulates K+-evoked [3H] glutamate release
from hippocampal synaptosomes, in a subset of glutamatergic
synapses expressing TrkB receptors on the plasma membrane
[39,64]. In the current study, we have shown that BDNF regulates
VGLUT1 and VGLUT2 gene and protein expression, during
development of cultured hippocampal neurons, specifically
through activation of TrkB receptors and the PLCc signaling
pathway. At DIV7, BDNF-induced transient VGLUT1 upregula-
tion requires the activation of the PLCc downstream effector
CAMKII, whereas VGLUT2 sustained upregulation, at the same
developmental stage, depends on PKC activation. At DIV14,
BDNF upregulates VGLUT1 expression with no significant effect
on VGLUT2 expression, which was endogenously downregulated
during this period, approximately corresponding to the develop-
mental switch from VGLUT2 to VGLUT1 neurons in postnatal
hippocampus [42,43]. The results also indicate that BDNF affects
VGLUT1 and VGLUT2 subcellular distribution, further suggest-
ing a role in BDNF-induced short-term plasticity and LTP. These
findings correlate with the BDNF-induced increase in the number
of docked vesicles at the active zone and quantal glutamate release
observed at hippocampal excitatory synapses [39,41,65].

Effect of BDNF on VGLUT1 and VGLUT2 Gene and Protein
Expression
In this study, we show that BDNF differentially upregulates

VGLUT isoforms 1 and 2 during the development of hippocampal
neurons in a time-dependent manner (Fig. 1A), by a mechanism
sensitive to inhibition of transcription (Fig. 2A–D) and translation
(Fig. 1C, D). The BDNF-induced sustained increase in VGLUT2
protein levels contrasts with the transient upregulation of
VGLUT1 protein levels induced by the neurotrophin. The latter
effects correlate with the transient increase in TrkB signaling
activity observed in hippocampal neurons incubated with BDNF,
which reached a maximum after about 10 min of exposure to the
neurotrophin and decreased to control levels after 24 h of
incubation [3]. These results also indicate that VGLUT1
synthesized in response to BDNF stimulation is degraded within
less than 24 h. The more sustained BDNF-induced increase in
VGLUT2 protein levels suggests that this transporter has a longer
half-life in hippocampal neurons than VGLUT1. Alternatively,
the results may indicate that the TrkB signaling pathway coupled
to the regulation of VGLUT2 expression (which is distinct from
the pathway responsible for VGLUT1 upregulation) may undergo
a slower inactivation after desensitization of the TrkB receptors. In
addition to the effect on VGLUT protein levels reported here,
BDNF was previously shown to upregulate the expression of the
synaptic vesicle proteins synaptophysin, synaptobrevin and
synaptotagmin, but showed no effect on the presynaptic
membrane proteins syntaxin and SNAP-25, or the vesicle-binding

protein synapsin-I, in organotypical cultures of hippocampal
neurons [66]. BDNF overexpression in a Huntington’s disease
mouse model was previously shown to prevent the decrease of
striatal VGLUT1, but that effect most likely resulted from a
neuroprotective mechanism of BDNF, which may have precluded
the loss of glutamatergic synapses [67].
Immunocytochemistry experiments also showed a rapid effect

of BDNF on VGLUT1 protein levels in the soma, which was
followed by an increase in the expression of this protein in
puncta along neurites (presumably axons). These results suggest
that newly synthesized vesicular glutamate transporters are
delivered to neurites within 3 h, being clustered in both new
and pre-existing puncta. BDNF also induced a sustained
increase in the intensity of VGLUT2 puncta in neurites, but
no changes were found in the somatic abundance of the
transporter. This suggests that VGLUT2 synthesized in the
soma following BDNF stimulation may be rapidly delivered to
neurites or, alternatively, VGLUT2 may be produced locally at
the neurites in response to stimulation with the neurotrophin.
Furthermore, the increase noted in the number of VGLUT1/2
puncta and in the number of transporters clustered in these
regions, in BDNF-stimulated hippocampal neurons may result,
at least partly, from a redistribution of vesicles containing the
vesicular transporters already available in neurites.
VGLUT1 and VGLUT2 were initially identified as Na+-

dependent inorganic phosphate transporters BNPI and DNPI
[68–70] in screenings of cDNAs upregulated by NMDA and
growth factors, respectively [53]. However, the characterization
of VGLUT1 [71,72] and VGLUT2 promoters [73] has only
recently been performed, and no transcription factors or
signaling pathways directly modulating the expression of these
genes have been identified thus far, to our knowledge.
Nonetheless, VGLUT1 protein levels show strong diurnal
cycling, which is lost in mice lacking the period gene Period 2
[74]. CAMKII is maximally active during the subjective day, in
contrast to Erk [75], and the CAMKII inhibitor KN-93 was
shown to block Period 2 expression while the MEK inhibitors
PD98059 and U0126 were without effect [76]. In agreement
with these results, we have found that CAMKII inhibition
blocks BDNF-induced upregulation of VGLUT1 (Fig. 4C),
whereas MEK/ERK inhibition had no significant effect
(Fig. 5A). VGLUT1 is also upregulated in cerebrocortical and
hippocampal regions of rat brains upon antidepressant treat-
ment with fluoxetine, paroxetine or desipramine [77], or in
striatal neurons due to intraperitoneal injection of methanphe-
tamine [78]. In turn, VGLUT2 is upregulated in vasopressin
and oxytocin neurons after osmotic stimulation [79] or the
thalamus of schizophrenic patients [80] although, in all cases,
the underlying transcriptional mechanisms are still unknown.
Nevertheless, these results demonstrate that glutamatergic
neurons regulate glutamate release through modulation of
VGLUT expression, which is endogenously regulated in
developing and mature neurons enabling synaptic refinement
and plasticity [44].

Figure 6. Effect of BDNF on the subcellular distribution of VGLUT1 in cultured rat hippocampal neurons. Hippocampal neurons were
stimulated at 7 DIV with BDNF (100 ng/ml) for 30 min, 3 h or 6 h. Neurons were then stained for total VGLUT1 (green) and b-tubulin I (red) (A) (Scale
bar: 10 mm). Arrowheads show the location of VGLUT1 puncta. The acquired fluorescence images were analysed to assess the number (B), integrated
density (mean intensity6puncta area) (D) and intensity (E) of VGLUT1 puncta in neurites, as well as for VGLUT1 immunoreactivity in the soma (C).
Results were normalized for neuritic length (B, D and E) or for soma area (C). The protein localization was visualized using a Zeiss Axio Observer 2.1
fluorescence microscope (63x Objective). Quantitative particle analysis was performed using ImageJ software. Results are shown as mean percentage
of control of at least three independent experiments (n $30 cells per condition). *p,0.05; **p,0.01; ***p,0.001, significantly different in
comparison to the respective control (unpaired Student’s t-test).
doi:10.1371/journal.pone.0053793.g006
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TrkB Activation and PLCc Signaling in BDNF-mediated
Regulation of Glutamatergic Function
We have found that BDNF regulation of VGLUT expression in

developing hippocampal neurons depends specifically on the
activation of TrkB receptors and PLCc signaling (Fig. 4), and
although stimulation with BDNF is also coupled to the activation
of the Ras/ERK and PI3-K signaling pathways in cultured
hippocampal neurons [3] these pathways do not participate in the
regulation of VGLUT1 and VGLUT2 expression. Interestingly,
the effects of BDNF are specific since stimulation of cultured
hippocampal neurons with IGF-1 and bFGF, which also activate
receptor tyrosine kinases, did not affect VGLUT protein levels.
This difference may be due to a distinct location of the receptors in
the cells and/or to a differential coupling to intracellular signaling
mechanisms. In cultured cerebrocortical neurons, TrkB receptors
were found in all major compartments of each neuron (cell bodies,
dendrites, and axons) both before (DIV4) and during the peak of
(DIV10) synapse formation [81].
The role of PLCc signaling in BDNF-induced upregulation of

VGLUT protein levels in cultured hippocampal neurons corre-
lates with its role in the modulation of other components of
glutamatergic synapses by BDNF. BDNF-induced glutamate
release depends on the PLCc pathway [82,83] and ceases
following treatment with a synthetic glucocorticoid (DEX) that
decreases glucocorticoid receptor-TrkB interaction thereby atten-
uating PLCc activation [84]. Likewise, in cultured hippocampal
neurons, BDNF enhances glutamatergic synaptic transmission by
raising the presynaptic intracellular calcium concentration, due to
Ca2+ release from IP3-sensitive stores [85]. Furthermore, in
hippocampal synaptosomes, the effect of BDNF on K+-evoked
[3H] glutamate release correlates with increased PLCc phosphor-
ylation but not ERK or Akt phosphorylation [64]. Additionally,
both the early and late phases of long-term potentiation are
impaired in the CA1 hippocampus region of homozygous mice
with mutant PLCc docking sites at TrkB receptors, as a result of
impaired CAMKIV and CREB phosphorylation, whilst mutation
of Shc docking site, upstream of Ras-Erk and PI3K/Akt, had no
effect on LTP [18]. The effects of BDNF on LTP are likely
mediated by activation of pre- and post-synaptic TrkB receptors
since selectively blocking of pre- or postsynaptic signaling showed
no significant reduction in LTP [22,23]. The current results
showing BDNF-induced differential upregulation of VGLUT1
and VGLUT2, via CAMKII and PKC activation, respectively,
identify VGLUT as potential presynaptic molecular targets of
BDNF contribution to protein-synthesis dependent mechanisms of
synaptic plasticity. This is supported by evidences showing that
inhibition of BDNF signaling impairs LTM [86,87], VGLUT1
deletion results in impaired LTP, learning and memory function
[46,47], and both isoforms are crucial effectors of synaptic
plasticity [42,88].
In addition to the effects on VGLUT protein levels, activation

of TrkB receptors by BDNF has also been shown to enhance
glutamate release in cultured hippocampal neurons by increasing
the frequency of miniature excitatory postsynaptic currents

(mEPSCs) [85,89]. Other authors have also reported that BDNF
enhances presynaptic function by increasing the number of docked
vesicles at the active zone and quantal glutamate release [39,41]
when the postsynaptic neuron is glutamatergic or excitatory but
not when GABAergic or inhibitory [90]. At the postsynaptic level,
BDNF may potentiate excitatory synaptic transmission by
regulating the expression and synaptic delivery of AMPA receptor
subunit GluA1, through activation of PKC and CAMKII [37],
and upregulating the expression of GluN1, GluN2A and GluN2B
NMDA subunits in a transcription-dependent mechanism [38].
CAMKII and PKC, activated downstream of BDNF binding to
TrkB receptors and PLCc stimulation, have a key role in the
potentiation of NMDA receptors by BDNF [91,92]. These
findings support the model whereby BDNF induces LTP through
targeting of both pre- and postsynaptic mechanisms, critical for
synaptic function. We have also found that incubation with BDNF
has no effect on protein markers of GABAergic neurons,
glutamate decarboxylase 65 and 67 (data not shown), further
demonstrating the correlation between BDNF signaling-depen-
dent regulation of neuronal protein levels and function.
In addition to TrkB receptors, BDNF may also bind to p75NTR,

abundantly expressed in the hippocampus during the late
embryonic and early postnatal [93,94] period of developmental
cell death [95,96], although with low affinity [19]. Furthermore,
BDNF binds to truncated TrkB receptors, but their endogenous
expression does not peak until postnatal days 10–15 (P10–15), in
contrast with the full-length (FL) TrkB mRNA, which reaches
adult levels at birth (P0) [97]. Hence, BDNF signaling in
developing hippocampal neurons is essentially dependent on
TrkB.FL receptor activation. This is in accordance with the results
reported here showing that BDNF-induced upregulation of
VGLUT was inhibited by the Trk receptor inhibitor K252a.

VGLUT1 and VGLUT2 may Mediate BDNF-induced
Mechanisms of Synaptic Plasticity
The current study showing a BDNF-induced upregulation of

total VGLUT protein levels in hippocampal neurons, in addition
to an increase in the punctate distribution of the transporters along
neurites, provides further evidence indicating a role of this
neurotrophin on presynaptic potentiation of glutamatergic trans-
mission. The following evidences suggest that BDNF-induced
upregulation in VGLUT clustering in neurites may significantly
potentiate excitatory neurotransmission: 1) VGLUT expression
directly correlates with synaptic strength [43,44] and biogenesis or
recycling of synaptic vesicles [42,98]; 2) VGLUT1 deficient mice
exhibit decreased spontaneous glutamate release and quantal
synaptic transmission due to exocytosis of partially filled vesicles in
hippocampal synapses [43]; 3) VGLUT1 overexpression not only
rescues this phenotype but also enhances AMPA receptor-
mediated evoked EPSCs by increasing glutamate release per
vesicle [44]; 4) loss of VGLUT 1 and 2 causes changes in synaptic
vesicle shape and leads to decreased number of vesicles [42,98]; 5)
VGLUT2 deficiency decreases evoked glutamate release proba-
bility and reduces LTD at hippocampal CA3-CA1 synapses of

Figure 7. Effect of BDNF on the subcellular distribution of VGLUT2 in cultured rat hippocampal neurons. Hippocampal neurons at 7
DIV were stimulated with BDNF (100 ng/ml) for 30 min or 6 h. Neurons were immunolabeled with specific antibodies for total VGLUT2 (green) and b-
tubulin I (red) (A) (Scale bar: 10 mm). Arrowheads show the location of VGLUT2 puncta. The acquired fluorescence images were analysed to assess the
number (B), integrated density (mean intensity6puncta area) (D) and intensity (E) of VGLUT2 puncta in neurites, as well as for VGLUT1
immunoreactivity in the soma (C). Results were normalized for neuritic length (B, D and E) or soma area (C). The protein localization was visualized
using a Zeiss Axio Observer 2.1 fluorescence microscope (63x Objective). Quantitative particle analysis was performed using ImageJ software. Results
are shown as mean percentage of control of at least three independent experiments (n $30 cells per condition). **p,0.01; ***p,0.001, significantly
different in comparison to the respective control (unpaired Student’s t-test).
doi:10.1371/journal.pone.0053793.g007
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young postnatal (P11–P14) mice [99]; 6) even though one
transporter apparently suffices to fill a vesicle [100], enhanced
VGLUT expression may increase the number of transporters per
vesicle, thus, accelerating the rate of vesicle filling or its volume
[101]. Conversely, decreased VGLUT1 expression causes depres-
sive behavior and impaired memory in mice [47], while VGLUT2
heterozygotes show decreased neuropathic pain and defense
responses [98,102]. Hence, differences between transcription and
translation rates or synaptic delivery of VGLUT isoforms,
otherwise quite similar in function, further explain presynaptic
regulation of quantal size.
In conclusion, the results presented herein suggest that BDNF

signaling regulates differentially the gene and protein expression of
VGLUT1 and VGLUT2 in developing and mature hippocampal
neurons. Nevertheless, future in vivo studies as required for
verifying the potential role of BDNF-mediated regulation of
VGLUT expression in hippocampal synaptic mechanisms of
short-term plasticity and long-term potentiation.

Supporting Information

Figure S1 Acute BDNF stimulation does not induce a sustained
increase in VGLUT protein levels after removal of the
neurotrophin. (A–B) Cultured hippocampal neurons at DIV14
(A) and DIV7 (B) were incubated with 100 ng/ml BDNF for 4
hours in Neurobasal medium followed by a 14 h recovery period
in culture conditioned medium. Total VGLUT1 (A) and
VGLUT2 (B) protein levels were compared to control (without
BDNF) expression, upon normalization with b-Tubulin levels.

Quantification of ten different experiments, performed in
independent preparations, is presented as mean percentage
6SEM compared to the control (unstimulated neurons). The
differences obtained are not statistically significant, as determined
by paired Student’s t-test with a confidence interval of 95%.
(TIF)

Figure S2 TrkB receptor inhibition has no effect on VGLUT2
expression. Cultured hippocampal neurons at DIV14 were
incubated with a selective inhibitor of tyrosine protein kinase
activity K252a (200 nM) and VGLUT2 protein levels were
determined by western blot. Quantification of the indicated
number of experiments, performed in independent preparations, is
presented as mean percentage 6SEM compared to the control
(unstimulated neurons). Statistical significance was determined by
paired Student’s t-test with a confidence interval of 95%.
(TIF)
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VI. Conclusions  

 

The results shown in the previous sections (Chapters 1-3), regarding the 

mechanisms of neuroprotection and plasticity induced by BDNF, in cultured hippocampal 

neurons, lead to the following conclusions: 

 

(i) Glutamate excitotoxicity triggers a time-dependent activation of spatially 

segregated proteolytic mechanisms, which likely reflect different pathogenic pathways;  

 

 (ii) The onset of excitotoxicity-induced neurodegeneration coincides with calpain 

activation in axons and dendrites, gradually progressing to caspase activation in the cell 

soma, with significant proteasome dysregulation in the transition phase between calpain 

and caspase activation; 

 

 (iii) The UPS regulates GAD67 cleavage under excitotoxic conditions, possibly 

through modulation of an unknown GAD binding partner. GAD cleavage has significant 

functional consequences as enzyme activity decreases and the characteristic punctate 

distribution of GAD65 along neurites is also affected. 

 

 (iv) BDNF protects the neurites and cell bodies of hippocampal neurons through the 

activation of different signaling pathways, further suggesting that glutamate excitotoxicity 

triggers different neurodegenerative mechanisms; 

 

 (v) BDNF-induced neuroprotection is correlated with an attenuation of calpain 

activation upon a toxic glutamate insult; 

 

 (vi) BDNF protects key functional markers of glutamatergic neurons, including the 

vesicular glutamate transporters, and activity-dependent neurotransmitter release, 

indicating that BDNF protects the components of the exocytotic machinery and/or enables 

the functional recovery of synaptic activity upon a toxic insult; 

 

 (vii) BDNF regulates the expression of vesicular glutamate transporters 1 and 2 in 

developing and mature hippocampal neurons, through the PLC! signaling pathway; 

 

 (viii) The overlap of signaling pathways (PLC!) and protein markers (VGLUTs and 

TRPCs) involved in BDNF-induced mechanisms of synaptic plasticity and neuroprotection, 

and the ability of BDNF to attenuate excitotoxicity-triggered proteolytic activity, suggest 
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that BDNF may simultaneously diminish the damage caused to neurons and enable the 

functional recovery. The results indicate that the hypothesis ofBDNF inducing 

regeneration through activity-dependent mechanisms should not be excluded; 

 

 (xix) The reactivation of BDNF-induced developmental programs may be used to 

promote the regeneration of neurons, based on de novo protein synthesis mechanisms, 

involving molecular targets with a key role in neuronal connectivity and plasticity; 

 

 (xx) The spatial and temporal segregation of BDNF-induced mechanisms of 

neuroprotection and its ability to attenuate damage and/or promote the functional recovery 

of neurons through different signaling cascades demonstrate the potential use of BDNF 

mimetics as therapeutic agents in the treatment of neurodegenerative diseases. 
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VII. Future Perspectives 

 

From the functional point of view it is critical to clarify whether BDNF acts by 

preventing the loss of neurites and/or by inducing the reorganization of the neuronal 

cytoskeleton and functional recovery of neuronal processes. In order to address this 

issue, morphological measurements could be made using time-lapse fluorescence 

microscopy. The changes in neuritic morphology after an excitotoxic insult with glutamate 

would be assessed in cultured hippocampal neurons transfected with EGFP and mounted 

into a heat-controlled perfusion system. The fluorescence would be followed immediately 

after the insult, during 14 hours, in cells pre-incubated in the absence or presence of 

BDNF. The role of calpains and of the proteasome in the loss of neurites following the 

excitotoxic insult would be evaluated by performing similar experiments in the presence or 

absence of chemical calpain inhibitors (e.g. calpain inhibitor I) and proteasome inhibitors 

(e.g. lactacystin). The role of calpain could also be further addressed by transfecting the 

neurons with calpastatin cDNA under control of a CMV promotor. 

Excitotoxicity decreases the TRPC3 and TRPC6 protein levels and their mRNA. 

The transient calcium channels are essential for the refilling of calcium stores and 

guidance of nerve growth cones by BDNF in developing neurons, and pre-incubation of 

hippocampal neurons with BDNF reverts this effect, as previously shown (Chapter 2), 

most likely due to de novo protein systhesis.  Fura-2 imaging experiments could be 

performed to determine the functional consequences of TRPC cleavage. Since these 

channels are permeable to Sr2+, and directly activated by oleoyl-2-acetyl-sn-glycerol 

(OAG) (Jung et al., 2002; Venkatachalam et al., 2003), we could study the effect of 

glutamate toxicity on OAG-induced Sr2+ entry, in cultured hippocampal neurons. The 

effect of BDNF on the activity of TRPCs under normal conditions and after an excitotoxic 

insult would also be determined. Considering that BDNF upregulates TRPC3 and TRPC6 

protein levels in hippocampal neurons and the role of these channels in growth cone 

guidance (Li et al., 2005), we would determine the role of TRPCs in neurite regeneration 

after a toxic insult with glutamate. Neurite regeneration after the toxic insult would be 

compared in the presence or in the absence of the TRPC inhibitor BTP2. Studies should 

also be performed in cells transfected with specific siRNA for TRPCs in order to determine 

their relative role in the effects of BDNF. According to the results, further assessment of 

the possible regenerative effect of overexpressing TRPC channels in mature hippocampal 

neurons (DIV21) submitted to excitotoxic insults (glutamate and NMDA) would enable the 

comparison to its overexpression in developing neurons (DIV7). 

In this study, the putative neuroprotective effect of BDNF on dendritic spines was 

not assessed although previous studies have shown that sublethal activation of glutamate 
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receptors induces the collapse of dendritic spines, by a mechanism involving the activity 

of cathepsin B-like proteases. Therefore, it would be of interest to determine whether the 

neurotrophin prevents the collapse of the spines and/or promotes the formation of new 

spines that would contribute to maintain synaptic activity. The latter hypothesis is 

particularly appealing, given the known effect of BDNF on spine formation in mature 

hippocampal neurons (Ji et al., 2005). Studies using the fluorogenic cathepsin B substrate 

(z-RR)2-MR-Cathepsin would allow determining whether a subtoxic stimulation with 

glutamate increases enzyme activity in the spines of mature hippocampal neurons in 

culture. The enzyme activity could then be compared in glutamate-stimulated cells, pre-

incubated or not with BDNF. The relative role of Ca2+ entry through VGCCs and reversal 

of the Na+/Ca2+ exchanger to the activation of cathepsin B-like activity would be 

determined using appropriate chemical inhibitors. The collapse of dendritic spines is likely 

to involve a time-dependent change in actin dynamics and a reduction in F-actin content. 

Phalloidin staining of F- actin should, therefore, be performed in control cells and cells 

subjected to subtoxic stimulation with glutamate, and the relative role of different Ca2+ 

influx pathways to spine collapse may be investigated using chemical inhibitors of VGCCs 

and the Na+/Ca2+ exchanger. Experiments conducted in the presence and in the absence 

of BDNF would, thereby, show whether the neurotrophin prevents dendritic spine collapse 

or induces the formation of new spines after their collapse. 

Furthermore, studies using trkBPLC/PLC and trkBSHC/SHC mutant mice (Minichiello et 

al., 1998; Minichiello et al., 1999; He et al., 2004;Zhai et al., 2011), expressing TrkB 

receptors unable to activate PLC! and the Ras/ERK pathways, respectively, would also 

allow determining the in vivo role of these pathways in the regulation of VGLUT 

expression in the early phase of hippocampal development.  
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