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In this paper, the diffusivity in suspended monolayer graphene at low and high electric fields is investigated.
The knowledge of this quantity and its dependence on the electric field is of primary importance not only
for the investigation of the electronic transport properties of this material, but also for the development
of accurate drift-diffusion models. The results have been obtained by means of an ensemble Monte Carlo
simulation. For the calculation of the diffusion coefficient, two different methods are considered, one based on
the second central moment and the other one based on the Fourier analysis of velocity fluctuations, which are
directly related to the noise behaviour at high frequencies. The diffusion coefficient is analyzed considering
both parallel and transversal directions with regard to the applied field. Taking into account the importance
of degeneracy in this material, the calculations are properly performed by considering an excess electron
population obeying a linearized Boltzmann transport equation, which allows studying in an adequate fashion
the diffusivity phenomena. The results show the importance of degeneracy effects at very low fields, in
which transport is mainly dominated by acoustic phonon scattering. Values of the diffusion coefficient larger
than 40.000 cm2/Vs are obtained for a carrier concentration equal to 1012 cm−2. The correlation function
of instantaneous velocity fluctuation is explained in terms of the wavevector distribution, and their power
spectral density is evaluated in the THz range, showing an important dependence on the applied field and
being strongly related to microscopic transport processes.

PACS numbers: 72.80.Vp, 72.10.Di, 05.10.Ln

I. INTRODUCTION

Due to its extraordinary electronic properties, in the
last few years graphene has probably become the most
promising material to be considered in the post-Silicon
scenario.1–4 Measured intrinsic cut-off frequencies of 300
GHz have been reported in graphene transistors, and es-
timations from static measurements and simulations indi-
cate that values well exceding the THz could be reached,
thus outperforming traditional semiconductors for analog
applications.5–7 Graphene nanoribbon transistors have
been proposed also as the building blocks for low-noise
amplifiers.8 THz emission and detection is also being in-
vestigated in order to design new devices who may func-
tion as detectors, mixers, phase shifters and frequency
multipliers, thanks to the properties of carrier relaxation
dynamics and surface plasmons in single layer and mul-
tilayer graphene.9–12

Therefore, the investigation of the transport properties
in graphene up to the THz range is of primary impor-
tance. Moreover, the study of the high-frequency noise
properties of this exciting material is crucial for the devel-
opment of analog applications. Several works have been
presented discussing the influence of 1/f noise in mono-
layer, bilayer graphene and graphene FETs.13–17 Re-
cently, high-frequency noise has been studied in graphene
on sapphire, showing, in that case, the importance of shot
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noise associated with hole jumps across the potential bar-
riers located in the graphene layer.18

An in-depth study of diffusivity in this material is also
a must; in the case of bilayer graphene (which bandstruc-
ture notably differs from that of monolayer graphene3),
the electric field dependence of the diffusion coefficient
has been studied analytically by using the relaxation time
approximation (assuming a constant τ) in order to solve
the kinetic Boltzmann transport equation.19 Other stud-
ies have been devoted to monolayer graphene, investi-
gating by pump-probe spectroscopy the expansion of a
Gaussian spatial profile of carriers; in this way, diffusion
coefficients equal to 11000 and 5500 cm2/s in epitax-
ial graphene and reduced graphene-oxide samples have
been observed.20,21 The influence of disorder on the diffu-
sion coefficient has been analyzed theoretically by means
of a random gap model, both in bilayer and monolayer
graphene.22 However, in general the diffusion coefficient
in monolayer graphene has been mainly described by el-
ementary equations derived considering the classical mo-
tion of electrons in a diffusive random walk in equilibrium
conditions,3,23 not taking into account the influence of
the applied electric field. The knowledge of the electric
field dependence of the diffusion coefficient in graphene
is therefore critical for the development of accurate drift-
diffusion models for device simulation.24

In the case of a uniform and infinite ideal graphene
sheet, several authors have shown the accuracy of the
semiclassical model (slightly away form the Dirac point)
for the study of this material.25–27 Consequently, the
Boltzmann transport equation can be steadily solved by
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considering the stochastic movement of an ensemble of
carriers under the action of an applied electric field, and
different Monte Carlo models have been develped for the
study of graphene at the material and device level.27–38

While the Monte Carlo technique has already provided
accurate and reliable results for the study of the electric
field dependence of diffusion coefficients and correlation
functions and power spectral density of instantaneous ve-
locity fluctuations in conventional semiconductors,39–42

to the authors’ knowledge this modelling technique has
not been yet employed for a detailed investigation of the
diffusivity or high frequency instantaneous velocity fluc-
tuations in graphene.

In this paper we present a Monte Carlo study of dif-
fusivity and carrier velocity fluctuations in monolayer
graphene. Particular attention is paid to the correlation
functions of velocity fluctuations and their power spec-
tral density up to the THz range, together with a detailed
description of the diffusion coefficient (in the parallel and
perpendicular directions with regard to the applied elec-
tric field) at low and high electric fields.

II. SIMULATION PROCEDURE

A. Monte Carlo model

The conical shape of the graphene bandstructure close
to the Dirac points (the band minima) is taken into
account in our model, thus providing a lineal disper-
sion relationship.43 The scattering rates included in the
simulator have been derived by other authors taking
into account the results obtained by means of ab ini-
tio calculations.44,45 The parameters (deformation po-
tentials, phonon energies) for the different scattering
rates are also obtained from the literature.37,44,46 The
graphene layer is assumed to be a perfect 2D honeycomb
completely ideal, with no rippling, wrinkling or impuri-
ties. Acoustic and optical scattering processes, includ-
ing TA, LA, TO and LO phonon branches, are incor-
porated. In order to account for degeneracy effects, the
Pauli exclusion principle is considered. After selection of
each scattering mechanism, a rejection technique based
on the instantaneous wavevector distribution (updated
each time step) is applied.29,30,47 More details about our
Monte Carlo model can be found in previous works.38,48

The drift velocity values obtained under high-field con-
ditions (ranging from ∼ 4.4 ·107 cm/s to ∼ 3.5 ·107 cm/s
for fields between 20-50 kV/cm for the carrier concentra-
tion range considered) are in good agreement with those
presented in the literature in simulations and experimen-
tal measurements.30,32,46,49 Extremely high mobilities are
found at low fields (1.2 · 106 to 3.7 · 105 cm2/Vs for car-
rier densities between 5 ·1011 cm−2 and 2 ·1012 cm−2), in
the same order of magnitude of those from experimental
data and modelling results in suspended graphene.44,50–54

Some authors point towards a reduced low-field mobility
in suspended single layer graphene due to flexural phonon

modes and imperfections in fabricated samples;49,55 since
there is still controversy regarding this issue, our model
accounts for the most favourable scenario for a suspended
graphene layer.

To determine the diffusion coefficient, two carrier pop-
ulations -background and excess carriers, as described in
subsection II B- coupled via a exchange mechanism are
considered. In the simulation, the events undergone by
each single particle are recorded, thus providing not only
the average values of velocity, energy or wavevector and
their distribution functions, but also the average num-
ber of scatterings, the scattering time, the instantaneous
velocity values, correlation functions, mean free paths,
etc.

B. Diffusion coefficient calculation

The zero-field value of the diffusion coefficient (the
diffusivity D) can be related to the low-field mobility
through the Einstein relationship:56–58

µ =
qD

nS

dnS
dEF

(1)

where µ is the mobility, q the elementary electron charge,
nS the carrier concentration and EF the Fermi level. In
the case of graphene, the Fermi level can be obtained
through:3

EF = h̄vF
√
πnS (2)

From equations (1) and (2) is is straightforward to get:

D =
µEF

2q
(3)

From the classical motion of electrons in a diffusive ran-
dom walk scattering independently off the different im-
purities, D. Sarma et al.3 provided the following alterna-
tive expression to determine the diffusion coefficient in
graphene:

D =
v2F τ

2
=
vFλ

2
(4)

where τ is the scattering relaxation time and λ is the
mean free path.

Under non-equilibrium conditions alternative ways of
determining the diffusion coefficient (which becomes no
longer isotropic) must be considered. In our case, the
diffusion coefficient has been computed by means of two
separate techniques, both based on microscopic stochas-
tic simulations. The first one is focused on the second
central moment (related to the spreading of the electron
concentration profile) and the second one on the study
of velocity fluctuations (essentially due to thermal noise
processes).39

Considering the phenomenological definition of diffu-
sion according to the Fick laws,59 at relatively large
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times, the diffusion coefficient corresponds to the vari-
ance of the random distances travelled by individual car-
riers per unit time,39 and can be obtained from the sec-
ond central moment of the carrier distribution function
in the following way:39,59

D‖(⊥)(E) =

〈(
r‖(⊥) −

〈
r‖(⊥)

〉)2〉
2t

(5)

where E is the applied electric field, t is the time, and
r‖(⊥) corresponds to the parallel (perpendicular) position
of each particle with regard to the applied electric field
direction. The brackets denote ensemble average.

Due to the importance of the Pauli exclusion princi-
ple in graphene for the carrier densities considered, the
calculations are performed considering an excess carrier
population, as described in the literature in the case of
a 2DEG59 or in degenerate bulk semiconductors.42,60 In
the simulation, two sets of particles are taken into ac-
count: the background carriers (the standard carrier con-
centration), obeying the non-linear Boltzmann transport
equation (BTE), and an excess carrier population, small
enough to be considered a minor perturbation of the sys-
tem (∼ 10% of the background carriers), that evolves
according to a linearized BTE.60 In this way, the calcu-
lations are performed for the excess carrier population,
which is the one adequate to determine the diffusivity
in a Monte Carlo simulation when degeneracy plays an
important role, as in the present case. The number of
background particles is 105, while the number of excess
particles is 10% of the number of background particles.
This allows obtaining accurate results for the study of ve-
locity fluctuations while not severely compromising the
CPU time and computer resources. The coupling be-
tween both sets of populations is considered through a
rejection technique based on a carrier-carrier exchange
scattering mechanism.42,59,60 To deal with the particu-
larities of graphene, the corresponding density of states3

is considered to determine the initial distributions of both
background and excess electrons.

The second calculation method to obtain the diffusion
coefficient is related to the Fourier analysis of instanta-
neous velocity fluctuations.61 The correlation function of
velocity fluctuations can be obtained as:

Cv‖(⊥)
(t) =

〈
δv‖(⊥)(t

′)δv‖(⊥)(t
′ + t)

〉
(6)

where Cv‖(⊥)
is the time-dependent correlation function

of parallel (perpendicular) velocity fluctuations, δv‖(⊥)
the instantaneous fluctuation of parallel (perpendicular)
velocity of individual particles and the brackets indi-
cate ensemble average. Applying the Wiener-Kintchine
theorem, the frequency-dependent diffusion coefficient is
given by:

D‖(⊥)(ω) =
1

4
Sv‖(⊥)

(ω) =

∫ ∞
0

Cv‖(⊥)
(t)ejωt dt (7)

where Sv‖(⊥)
(ω) is the frequency-dependent power spec-

tral density of the parallel (perpendicular) velocity fluc-
tuations. In this case, the calculations are performed

also over the excess carrier concentration, following the
methodology previously discussed.

For comparison purposes and in order to provide a
more detailed and clarifying discussion, in some cases
the results obtained for the background population are
also presented.

III. RESULTS AND DISCUSSION

The diffusion coefficient as a function of the applied
electric field, both for parallel and perpendicular direc-
tions with regard to the applied field and for background
and excess electrons is presented in Figure 1. Grey and
black symbols represent the values obtained with the
second central moment calculation (equation 5), while
white symbols account for diffusion coefficients deter-
mined from the low-frequency power spectral density of
velocity fluctuations (equation 7), presented just for a few
electric field values for comparison purposes. The yellow
diamond indicates the value obtained for the diffusion
coefficient from equation (3) taking into account the mo-
bility extracted from the velocity-field curve at extremely
low electric fields.38The agreement between the diffusion
coefficient obtained by means of the two methodologies
considered (second central moment method and the ve-
locity fluctuations method) is very good in the whole
field range and in all the cases considered, both for back-
ground and excess carriers and for the parallel and per-
pendicular directions, so from now on we will focus on the
discussion of the results provided by the second central
moment. It is important to notice the important varia-
tion in the diffusion coefficient values from low to high
electric fields, at least three orders of magnitude in the
electric field range considered. This is consistent with
an increase of the electron mass with the average energy
at high fields, derived from the unique properties of the
linear dispersion relation in graphene.30,38

However, if one examines the diffusion coefficient val-
ues at low electric fields (see inset of Figure 1) signifi-
cant differences appear between background and excess
carrier populations. The calculation from background
carriers produces noticeably high and anisotropic values
for both the parallel and perpendicular directions, much
larger than the value predicted by the Einstein relation-
ship (yellow diamond). However, for excess carriers, at
very low electric fields the parallel and perpendicular dif-
fusion coefficients tend to become similar (thus making
the diffusion coefficient isotropic) and get very close to
the equilibrium value predicted by the Einstein relation-
ship. Both trends are similar to the results obtained by
other authors in the case of bulk degenerate semiconduc-
tors and 2DEG.42,59,60

To get a better understanding of the behaviour of dif-
fusivity and carrier transport, the wavevector distribu-
tion function of background and excess carriers is pre-
sented in Figure (2). At extremely low electric fields
(Figure 2(a), E = 0.01 kV/cm), the background pop-



4

FIG. 1. Diffusion coefficient for parallel (circles) and perpen-
dicular (squares) directions for background (grey) and excess
(black) carriers obtained by means of the second central mo-
ment. White symbols show the results obtained from velocity
fluctuations just for some selected electric field values in or-
der to provide an insight of the agreement of both methods
and avoid excessive symbol overlapping in the figure. The
inset shows an ampliation of the low-field region. The carrier
density is equal to 1012 cm−2.

ulation is practically restricted to the circle set by the
Fermi wavevector, with just a very small deviation from
the origin. In the case of excess electrons (Figure 2(d)),
at this ultra-low E they are distributed at the k states
near the surface defined by the Fermi wavevector, not
being allowed to occupy the lowest k values already ful-
filled by background carriers (Figure 2(d)). This is to
be expected since the excess carrier distribution corre-
sponds to the incremental distribution function with re-
gard to nS . Close to equilibrium, for both populations
quasi-elastic acoustic scattering (Figure 3(a)) is the dom-
inant mechanism (∼66% of the total number of mecha-
nisms). The differences appear regarding inelastic scat-
tering events: optical and acoustic intervalley emission
processes are clearly more relevant for the excess carrier
population, in good agreement with its larger average
energy at that electric field (126.7 meV for excess car-
riers and 94.2 meV for background carriers, see Figure
3(d)) and with the wavevector distribution function ob-
tained. Consequently, in this regime of very low electric
field the background population fails to predict the diffu-
sion coefficient since most carriers travel without suffer-
ing scatterings in the Fermi region (they are forbidden by

FIG. 2. Wavevector distribution function for background car-
riers at E = 0.01 kV/cm (a), 0.1 kV/cm (b) and 1 kV/cm (c)
and excess carriers distribution at E = 0.01 kV/cm (d), 0.1
kV/cm (e) and 1 kV/cm (f). The carrier density is equal to
1012 cm−2. The circles indicate the equilibrium Fermi surface
as a reference.

the Pauli exclusion principle59) and therefore yield much
larger scattering times (see Figure 4(a)). These scatter-
ing times for the background population are in the same
order of magnitude that the carrier relaxation times ex-
perimentally observed in graphene (∼ 20 ps).53 In the
case of excess electrons, there is a comparatively larger
number of scattering events at low electric fields (174
% larger in the population of excess electrons as com-
pared to background electrons at extremely low fields
for nS = 1012 cm−2) due to the reduced importance of
Pauli exclusion principle at the edge of the Fermi sur-
face. These two facts (transport at the edge of the Fermi
surface and greater importance of inelastic phonon emis-
sion) combine to provide saturation and high isotropy of
the diffusion coefficient values at extremely low applied
fields, in good agreement with the Einstein relation.

As the electric field in increased to the 0.1 kV/cm
range, the influence of intravalley acoustic phonons tends
to reduce in both cases, being more significant the reduc-
tion in their percentage in the case of excess electrons.
Conversely, optical phonon emission gets much influent,
particularly for excess carriers with positive and large val-
ues of k‖. While the distribution of background carriers is
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FIG. 3. Percentage of scattering events as a function of the
applied field for background carriers (grey symbols) and ex-
cess carriers (black symbols) for nS = 1012 cm−2 (a), (b) and
(c). Average electron energy as a function of the applied field
for background (grey diamonds) and excess (black diamonds)
carriers (d).

spread towards the direction of the applied field (Figure
2(b), E = 0.1 kV/cm), the excess electrons wavevector
distribution shows a ⊂ shape (Figure 2(e)). Those excess
electrons corresponding to the negative k‖ half distribu-
tion at equilibrium keep in a semicircle distribution, since
the immediately higher k‖ states are still largely occupied
by background electrons. The positive k‖ half at equilib-
rium is now largely displaced towards the right, thanks
to the larger amount of free k states available in that
direction. The excess distribution function is therefore
strongly anisotropic at that electric field value, and the
diffusion coefficient becomes anisotropic too.

At electric fields over 0.2-0.4 kV/cm optical emission
becomes the dominant scattering mechanism (emission
by intervalley acoustic phonon plays a secondary role as
compared to intravalley acoustic scattering at low fields
and intrinsic optical emission at high fields), and the re-
lated scattering times (Figure 4(a)) drop to the tenths of
ps range at very high fields, with corresponding mean free
paths near 100 nm, consistent with the data found in the
literature for hot carriers.62 This provokes a larger dis-
persion of the wavevector cloud, so the degeneracy effects
become less relevant and the differences in the wavevector
distribution functions for both populations tend to van-
ish (Figures 2(c) and (f)). Consequently, the diffusion
coefficients are quite similar for background and excess
carriers at high fields, particularly for the perpendicular

FIG. 4. Average time between scatterings for background
(black circles) and excess carriers (grey circles) for nS = 1012

cm−2 (a) and quasi-equilibrium diffusion coefficient as a func-
tion of the carrier density (circles: Monte Carlo results; trian-
gles: results from equation (3); squares: results from equation
(4) for background electrons and diamonds: for excess elec-
trons).

direction and over 1 kV/cm.
The dependence of the quasi-equilibrium diffusion coef-

ficient as a function of the carrier density is shown in Fig-
ure 4(b). Together with the Monte Carlo results for the
excess population at E = 0.01 kV/cm, the results consid-
ering the Einstein relation (equation 3) and equation 4
are also presented. As it can be observed, the agreement
between equation 3 and the Monte Carlo results is rather
good, particularly at the highest values of nS presented.
However, equation 4 clearly fails to predict not only the
values of the diffusion coefficient at equilibrium, but also
its dependence with the carrier concentration.

Let us now focus on the study of instantaneous velocity
and its peculiarities in graphene. First, we present the
average velocity distribution function of excess electrons
(in the parallel and perpendicular directions) for three
values of the electric field, 0.01, 0.1 and 1 kV/cm (Fig-
ure 5). As it can be observed, for all the applied fields
and in both directions two local maximums appear for
velocity values equal to ±vF . In the case of graphene,
the maximum carrier velocity in any direction is limited
by the carrier scalar velocity value, which is always equal
to vF due to the fact that electrons behave as relativistic
massless particles with constant velocity.1 Those peaks
in the distribution function for parallel and perpendicu-
lar directions correspond therefore to electrons with their
momentum strongly oriented in the k‖ or k⊥ directions,
respectively, with positive or negative sign. In the case
of the perpendicular direction, the distribution is sym-
metric for positive and negative v⊥ values, as it is to be
expected from the wavevector distribution previously dis-
cussed. However, in the case of the parallel direction, as
the electric field is raised, the distribution function tends
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FIG. 5. Average velocity distribution function in the parallel
(a) and perpendicular (b) directions for several values of the
applied field (excess carriers).

to tilt towards +vF , but not surpassing this value for the
aforementioned reasons.

Consequently, the velocity fluctuations in graphene are
limited an cannot reach arbitrarily high values. As an
example, in Figure 6 depicts the instantaneous velocity
fluctuations of a single particle as a function of time.
Contrarily to the case of conventional semiconductors, in
which parabolic-type bands imply a linear dependence
of the velocity with time, the variation of the velocity
component is not linear and shows positive and negative
saturation values equal to ±vF . Therefore, even in the
case of very large applied fields or under reduced scat-
tering conditions the instantaneous velocity fluctuation
would be always smaller than 2vF .

The time-dependent autocorrelation function of paral-
lel and perpendicular velocity fluctuations (equation 6)
for the excess carrier population is shown in Figure 7
for several values of the applied electric field. For the
lowest value of E, the results for the background car-
riers are also included for comparison purposes. At ex-
tremely low electric fields, the correlation function for ex-
cess carriers shows no relevant differences between paral-
lel and perpendicular directions, which is consistent with
the isotropic nature of the diffusivity in that regime. An
exponential decay (in the form Cv(t) = Cv(0)exp(−t/τ))
is observed for these type of carriers. The background

FIG. 6. Instantaneous velocity for a given particle in the
parallel (a) and perpendicular (b) direction, for an applied
field equal to 1 kV/cm

.

FIG. 7. Autocorrelation function of parallel and perpendic-
ular velocity fluctuations for excess carriers, for nS = 1012

cm−2 and several values of the applied electric field, 0.01
kV/cm (a), 0.1 kV/cm (b), 1 kV/cm (c) and 10 kV/cm (d).
Figure (a) includes also the results for the background carrier
population for comparison.

carrier population, however, shows differences between
both directions, with a slower decay in the perpendicu-
lar orientation, and the parallel one presenting negative
values for Cv(t) after several tens of ps. The reduced
decay time of the correlation function for excess carriers
is directly related to the minor influence of the Pauli ex-
clusion principle and the increased emission of inelastic
phonons previously discussed.

As the electric field is increased, some interesting ef-
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fects appear. First of all, the decay times become pro-
gressively shorter: in the case of the parallel direction,
which shows an exponential decay with no negative parts
in all cases, the characteristic times drop to the tenths of
ps range for the highest electric field shown. The steady
augmentation of the average carrier energy and the num-
ber of scatterings with E acts as a correlation-breaker
mechanism, reducing noticeably the correlation times.
Differences also arise regarding the parallel and perpen-
dicular orientations. While the perpendicular orientation
keeps the previously mentioned exponential decay shape
observed at the lowest electric field, the parallel corre-
lation function shows a negative peak, particularly no-
ticeable for E ≥ 1 kV/cm. This is related to the strong
anisotropy of the wavevector distribution evidenced in
Figure 2. The distribution is symmetric regarding the k⊥
axis but it is asymmetric with regard to the k‖ axis, since
the centroid position is displaced in the parallel direc-
tion under the action of the applied field. To understand
the consequences of this behaviour, it is important to re-
mind that, as discussed above, in graphene the velocity of
carriers is always equal to the Fermi velocity, and their
v‖ and v⊥ values are determined by the ratio between
the wavevector components and the wavevector module.
During free flights, the k⊥ value for a given carrier re-
mains constant due to the absence of a E⊥ field, and
consequently the v⊥ velocity usually decreases but does
not change its sign with regard to the initial flight time
(see Figure 6(b)). Hence, the sign of the v⊥ fluctuation
for every single carrier remains the same and the correla-
tion is always positive. The decay is faster at higher fields
since in this case the decrease of v⊥ during the free flight
is quicker because of the rapid increase of the wavevector
module, and consequently the fluctuation (the average
v⊥ value is zero) also decreases.

Concerning the parallel direction, the asymmetric dis-
tribution of the wavevector is a key fact to understand the
appearance of a negative peak in Cv‖(t). Carriers with an

initial v‖ value lower than the average (and consequently,
with a negative initial velocity fluctuation) progressively
increase their v‖ under the action of the applied field,
and can easily turn their fluctuation into positive when
they surpass the average v‖ value. Carriers with a paral-
lel velocity higher than the average (with initial positive
fluctuation) have, on the one hand, a limitation of the
increase of the fluctuation value since they rapidly ap-
proach the vF limit and, on the other hand, have a large
probability of being scattered back to lower energy values
(and v‖ below the average) by isotropic inelastic scatter-
ing (intrinsic optical and intervalley acoustic emission).
Consequently, in both cases (carriers over and below the
average v‖ value) there is a very elevated probability of
changing their fluctuation sign, therefore producing neg-
ative Cv‖(t) values after a relatively short time. This is
another important difference with regard to conventional
semiconductors with negative differential conductance, in
which the negative peak of the correlation function is ex-
plained in terms of partition noise, due to the transfer to

FIG. 8. Parallel (a) and perpendicular (b) power spectral den-
sity of velocity fluctuations for nS = 1012 cm−2 and several
values of the applied electric field.

upper valleys in the conduction band.39

The power spectral density of velocity fluctuations
(Sv(f)) of excess carriers as a function of the frequency,
up to 10 THz, is shown in Figure 8 both for parallel and
perpendicular directions and several values of the applied
electric field. This quantity provides information for the
power dissipated by velocity fluctuations at a given fre-
quency. In the case of parallel velocity fluctuations (Fig-
ure 8(a)) a white noise behaviour is observed in all cases
in the GHz range. As the electric field is increased, the
low field value is reduced, the white noise region extends
to higher frequencies (consistent with the progressively
shorter correlation times) and a peak appears in the THz
range for Sv‖(f) (approximately 1.04 THz at 10 kV/cm)
related to the negative peak of the correlation function.
At high frequencies there is a monotonic decrease of the
Sv(f) values in all cases.

For perpendicular velocity fluctuations (Figure 8(b))
the low frequency values of Sv⊥ are larger than those of
the parallel direction, particularly at high fields. This is
in good agreement with the previously discussed larger
diffusivity in that orientation, and indicates a greater
power dissipation by velocity fluctuations in the perpen-
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dicular direction. In this case, no local maximum is ob-
served in the THz range, consequence of the monotonic
correlation decay produced by the microscopic fluctua-
tions in this direction. In all cases, there is a white noise
plateau followed by a monotonic decay, the corner fre-
quency being displaced towards larger frequencies as E
is increased. For E = 10 kV/cm the plateau extends
practically up to 1 THz, corresponding to extremely fast
(tenths of ps) correlation times.

It is important to remark that the results presented
correspond to an ideal, defect-free, suspended graphene
layer electrically excited. In the case of optically pumped
excitations, interband interactions shall play a funda-
mental role in the carrier dynamics at the THz range.63,64

Moreover, shot noise due to carriers traversing potential
barriers could also have influence at least at the GHz
range, as recently shown by other authors.18

IV. CONCLUSIONS

The diffusion coefficient in monolayer graphene and its
evolution with the applied electric field has been investi-
gated by means of an ensemble Monte Carlo simulator.
Two methods have been considered: the second central
moment calculation, based on the spreading of the carrier
population, and the Fourier analysis of the instantaneous
velocity fluctuations. In the simulation the effect of de-
generacy on the diffusion at a microscopic level is care-
fully taken into account by means of the consideration
on an excess carrier population (coupled to background
carriers through a carrier-carrier exchange mechanism)
which obeys a linearized Boltzmann transport equation.

The results show that in order to obtain physically
sound values of the diffusion coefficient (in agreement
with the Einstein relation in equilibrium and the isotropic
nature of the diffusion coefficient at extremely low elec-
tric fields) the calculations shall be performed over the
excess carriers travelling at the edge of the Fermi surface,
which are those relevant for the consideration of diffusion
phenomena. It is also shown that for the case of graphene
the expression of the diffusion coefficient in terms of the
scattering times or mean free path for standard carriers
fails to predict not only the diffusion coefficient value, but
also its dependence on the carrier density. A very impor-
tant decay of the diffusion coefficient with the applied
electric field in suspended monolayer graphene has been
also observed, falling three orders of magnitude from the
equilibrium value to high field conditions.

The correlation function of velocity fluctuations has
been also investigated. Its behaviour and dependence on
the electric field has been explained in terms of the mi-
croscopic nature of fluctuations, with special attention
to the different conditions for parallel and perpendicular
directions with regard to the applied field and the micro-
scopic wavevector distribution of carriers. While the cor-
relation function for perpendicular fluctuations presents
a monotonic decay and larger correlation times, the fluc-

tuations in the parallel direction show a negative peak in
its correlation function consequence of the distribution
of the wavevector population under the applied electric
field and the fluctuation limitations imposed by the Fermi
velocity of carriers. The power spectral density of veloc-
ity fluctuations evidences a white noise behaviour in the
GHz range, and a monotonic decay in the THz range.
Parallel velocity fluctuations have a reduced power dissi-
pation, but show a maximum in the values of the spectral
density which takes place around 1 THz for high electric
fields, which is related to the observed correlation times,
in the tenths of picoseconds range.
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