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Abstract

We build and study rotating and time-independent stellar models in General Rela-
tivity using analytical approximations (post-Minkowskian and slow rotation) for
a perfect fluid with linear equation of state and some of its subcases, including in
particular uniform density, the one of the Wahlquist’s and Whitakker’s solutions
fluid and MIT bag model strange matter. We obtain a global spacetime match-
ing the interior solution (inside the source) to an asymptotically flat exterior using
both Lichnerowicz and Darmois-Israel matching conditions. Concerning the in-
terior, we find its possible Petrov types and cast it into the same form a certain
perturbative expansion of Wahlquist’s solution has. We also use the AKM nume-
rical code to obtain equivalent models to compare both the metric components
and the results for many physical properties of the source we obtain from analyt-
ical formulae, getting good results from the comparison. Finally, we increase the
complexity and adaptability of the interior adding an additional layer of linear
EQOS matter.
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Chapter One

Introduction

Astrophysical observations have frequently been the source of unexpected expe-
rimental data for those societies which understand their importance and put the
necessary economical effort to carry them out. Recent observations have made
us broaden the spectrum of theories to levels probably never attained before, al-
though in many aspects we are still developing the paradigm change of the begin-
ning of the 20th century. Among the observations that led to it are the effects of
mass and energy concentrations of objects of astrophysical size. These effects—
mainly the gravitational redshift of photons and the bending of their trajectories,
as well as the evolution of planetary orbits—had no explanation inside the Newto-
nian theory for gravity and have led to several different gravity theories, the most
successful—and one of the oldest—of them being Einstein’s General Relativity.

1. UsING GENERAL RELATIVY

In General Relativity (GR), gravity does not act on particles as a traditional force.
Seen as a traditional force, it was rather striking that the inertial mass that dic-
tates how much a particle accelerates in response to any force was equal to the
gravitational mass, the property of particles that generates gravitational fields.
This implies that every object behaves in the same way in the presence of gravity,
and this behaviour depends only on its initial velocity and position. It also lead
Einstein to consider that the results of experiments made locally in different freely
falling frames could only differ if they were subject to different gravitational fields
and hence, most naturally, to consider that gravity is described by 4-dimensional
manifolds with a geometry—and therefore curvature—described by a Lorentzian
metric to ensure that physics are invariant under Lorentz transformations. Parti-
cles move along the geodesics of this curved manifold, with trajectories that de-
pend only on their initial velocity and position.

The three odd effects already mentioned are, together with Shapiro’s time de-
lay (Shapiro, 1964), the classic tests successfully passed by the theory, but there
have been more. In particular, the Nobel prize of 1993 was awarded to Hulse and
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Taylor (1975) for the discovery of a pulsar that lead to an indirect confirmation of
the existence of gravitational waves (Taylor and Weisberg, 1989), one of the pre-
dictions of GR.

Many other alternative theories of gravitation have appeared, and most of
them do not pass the different experimental tests (see Will, 2006, for a review). GR
has yet to fail a test and is currently part of the ACDM cosmological model, which
despite possessing several worrying points like dark matter and dark energy, is
still the mainly accepted model. Some new gravity theories have appeared in the
last years trying to overcome these issues, though. Dark matter was introduced
to explain the discrepancies between theory and observations of the galactic ro-
tation curves (Rubin et al., 1980), although it was promptly noticed these curves
could be also explained modifying the description of gravity, what accomplishes
the Modified Newtonian Dynamics (MOND) (Milgrom, 1983) and its relativistic
generalisation, the Tensor-Vector-Scalar theory (TeVeS) (Bekenstein, 2004), which
seems able to deal with other cosmological needs of dark matter (Dodelson and
Liguori, 2006). A lot of attention has been put lately on f(R) modifications of
GR (Sotiriou and Faraoni, 2010) and braneworlds to deal with the observed accel-
erated expansion of the universe solved that in ACDM is solved with the intro-
duction of the dark energy (Copeland et al., 2006). Nevertheless, these theories
focus on explaining cosmological behaviour, some times in different cosmologi-
cal epochs, and they have to match the predictions of GR at least at solar system
scales, where it has been successfully tested. In this thesis we will focus in the
study of stellar models and GR will be our gravitational theory.

2. RELEVANCE OF STELLAR MODELS IN GR

The understanding of the physics of even common stars is of paramount impor-
tance in a field where any information from out of the solar system must be in-
ferred from signals originated light years away. One could argue, though, that
the corrections expected by relativistic effects in these objects are too small to care
about them. We will now discuss how, beyond the initial simple impulse of seek-
ing more precise models, one can

¢ improve the testing and keep on discarding theories that may imply big con-
sequences in cosmology,

¢ gain in essential knowledge about the vast population of compact objects
and

¢ help to discard some hypothesis about the ground state of matter



2. Relevance of stellar models in GR

studying stellar models in GR.

2.1. Quadrupole moment and rotation

Astrometric observations have reached a precision of 1 microarcsecond (uas). This
makes possible to observe several relativistic effects, in particular some associated
with the quadrupole moment M, of gravity sources. In particular, its effect on the
deflection of light (Klioner, 2003) can be measured and used to test several dif-
ferent gravity theories (Crosta and Mignard, 2006)" with the data from the ESA
astrometric survey mission Gaia (2012-2018). Ithas also been claimed that this pre-
cision can measure orbital effects of M, with the Juno mission (2016-2017) (Iorio,
2013). The calculations in these works involve first post-Newtonian approxima-
tion (1PN) approximations of the orbits, which require the value of M, as input. Its
value is inferred from observations of satellite flybys (Bagenal et al., 2007), but one
must rely on stellar models that can predict it from easier to measure parameters
when no spacecraft is or has been around.”

A GR stellar model allows as well to know how the rotation of a source mod-
ifies the spacetime around it. The effect on deflection for a grazing ray of this
rotational motion amounts to 0.7 yas and 0.2 yas in the Sun and Jupiter, respec-
tively. These are not yet observable but only one order of magnitude above current
precision (Klioner, 2003).

2.2. ISCO and kHz QPO

The innermost stable circular orbit (ISCO)—a orbit beyond which it is not possible
to remain in a circular geodesic—is already present in Newtonian gravity (for non-
massless particles) if the source deviates enough from sphericity, but GR predicts
a higher effect of mass and quadrupole moment on its radii, making that for a
given source this last stable orbit is (When present) further apart from the surface
(Zdunik et al., 2000; Gourgoulhon, 2010). Both the surface and ISCO radii depend
on the mass, composition and spin rate of the source. In order to have an ISCO,
quite strong gravitational fields are required and this is expected to happen in
compact stars. Since the ISCO position carries information about the source, one
needs GR stellar models to extract it from any ISCO-related observational data.
Currently, it is of great interest in the study of neutron stars, as we show in what
follows. Nevertheless, since we will use some terminology along this work, it is

'This is done using the parametrized post-Newtonian formalism (PPN) scheme.
>0Of course we have the error introduced by composition and any approximation in the method
to obtain the stellar model.
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worth reviewing the current concept of neutron—and more generally—compact
stars.

The kind of composition of the core is what allows us to classify a compact star.
The lower level of compatification corresponds to atomic matter in a degenerate
Fermi gas of electrons that is sustained by their degeneracy pressure, reaching
densities of up to ~ 10° g cm™. Beyond this point, a core is unstable until it reaches
densities of ~ 101 g cm™3, where it is sustained by the degeneracy pressure of the
neutrons of a fluid of neutron-rich g-stable nuclear matter (n,p, e, u). As pres-
sure increases, it is energetically favoured to occupy states with new particles and
hyperons and baryon resonances appear (A, L, Y0 =-, =0, A). Also boson con-
densates of 7~ or K~ and even u, d, s quark matter can appear in the inner part
of the star. This last deconfined phase must first co-exist with the hadronic mat-
ter (Glendenning, 1992; Miiller and Serot, 1995), but can eventually lead to a pure
quark matter core. If strange quark matter (SQM) exists, then the whole core can
be composed of strange matter. It would not necessarily be incompatible with the
existence of non-strange compact stars (Bombaci et al., 2004), though. Hence, due
to its core composition, a compact star can be:

* a white dwarf, with a core of atomic matter with degenerate electrons;
* a neutron star, that encloses

- “traditional” neutron stars with only n, p, ¢, and p,

hyperon stars,

nucleon stars (those with kaon condensation),

neutron stars with pion-condensate and

— hybrid stars, if there is some fraction of quark matter;
* astrange star, if it is composed of strange matter.

Black holes are also considered compact stars, but being its source totally struc-
tureless from the GR point of view, we will exclude them from now on from the
compact star term.

Among compact stars, neutron stars are particularly interesting and hard to
deal with because their equation of state (EOS), begin dominated by the strong
interaction, is plagued with uncertainties. Some of these stars are source of X-ray
bursts, whose intensity show a quasi-periodic oscillation (QPO) usually around a
frequency of 200-400 Hz that is thought to be the spin rate of the source (Strohma-
yer et al., 1996). But prior to the burst, the X-ray spectrum shows two kHz QPO
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peaks. Currently, there is wide consensus in that the higher frequency one corre-
sponds to the orbital frequency at the inner edge of the accretion disk around the
source (Barret et al., 2006; Lattimer and Prakash, 2007; Miller, 2010), for which the
ISCO is the lower limit. If it were known to be at the ISCO, a stellar model could
give the mass of the star. If it is out of the ISCO, the orbital frequency can then
give an upper limit to the mass since for the same rotation rate, bigger mass im-
plies further ISCO. Since whether or not a certain neutron star can hold up these
masses depend on the EOS of its components, it can constrain the EOS of matter
at supranuclear densities (Kaaret ef al., 1997; Kluzniak, 1998; Zhang et al., 1998;
Miller et al., 1998; Thampan et al., 1999; Schaab and Weigel, 1999; Zdunik et al.,
2000). This mass upper limit is near 2M,, which as upper limit is not restrictive,
but the detection of Demorest et al. (2010) of a 1.97 + 0.04 M, pulsar in a binary
system has been claimed to discard some compositions. Newer EOS have rein-
troduced them again into the possibilities (Lattimer and Prakash, 2010; Lattimer,
2012), though.

2.3. The strange quark matter hypothesis

Among the possible constituents of compact stars, one of the most intriguing can-
didates is the so-called strange quark matter. It is an hypothetical ground state of
matter and as such, its possible existence has fundamental importance in labora-
tory physics, early and modern age universe cosmology, astrophysics and strong
interactions. SQM was popularised by Witten (1984), who recovered the idea of
Bodmer (1971) that strange quark matter could be more stable than nuclear matter
and used a simple MIT bag model (Chodos et al., 1974) to make some estimations,
hinting to the possible existence of stable quark stars of large strangeness.

The main ideas behind stable SQM are the following. When nuclear matter
is put under enough pressure, the quarks in its hadrons start to deconfine, ex-
panding their wave functions all through the lump of matter. Eventually hadrons
are no more and we get quark matter. Quarks of a flavor can be converted to an-
other flavor through weak interaction, and as long as the mass of the new flavor is
lower than the Fermi energy, this weak conversion will actually decrease the total
energy of the system and thus will be favoured. The chemical potentials involved
are around 300 MeV, so in practice only u, d, s quark matter will be favoured over
u, d quark matter. Nevertheless, as Witten (1984) pointed out, there is no empir-
ical or theoretical evidence ruling out the possibility of quark matter with large
strangeness more tightly bounded than nuclear matter at zero pressure and temper-
ature. All what is known in this regard is that nuclear matter with strangeness is
heavier and will eventually decay into non-strange hadrons, and that two-flavour
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quark matter has a higher energy per baryon than two-flavour nuclear matter.
Witten (1984) and later Farhi and Jaffe (1984) used a simple MIT bag model to
show that, within the uncertainties associated with strong interactions, strange
matter (1, d, s quark matter with electrons to ensure charge neutrality) was a rea-
sonable hypothesis as ground state of matter.

If this were true, although the absorption of nucleons by strange matter would
be prevented by Coulomb barriers, neutrons could be absorbed and once a little
quark matter is formed by the pressure inside a neutron star, it would rapidly
grow and the entire star (except perhaps a thin outer crust without free neutrons)
could be transformed into a strange star (Witten, 1984).

SQM hypothesis is quite old now but despite its interest it has not been con-
firmed or refuted yet. The most immediate test of the validity of the SQM hy-
pothesis and the true nature(s) of compact stars (although a universe of coexisting
neutron, hybrid and strange stars is possible [Weber, 2005]) is a comparison of the
mass-radius (MR) relation for strange stars, neutron stars and hybrid stars.

The easiest scenario would have different maximum masses for each compo-
sition to contrast with the mass of heaviest (confidently measured) pulsar, M =
1.97 + 0.4 M, (Demorest ef al., 2010), but it turns out that their behaviour in the
high mass regime is quite similar (Haensel et al., 1986; Alcock et al., 1986) and very
little information has come from this direction so far (Lattimer and Prakash, 2010;
Lattimer, 2011).

The situation is different in the low-mass spectrum. A distinctive feature of
SQM is that since it is absolutely stable, there is no need of gravitation to hold
it together. Gravitation just makes strange stars more compact and accordingly,
there is no lower mass limit for them, making the low-mass part of their MR re-
lation radically different from the rest of compositions. Taking this into account,
there are five measures (Weber, 2005) of objects with semiempirical MR relations
conflicting with most theoretical models for compositions other than SQM:

* SAXJ1808.4-3658 (Li et al., 1999a),

e 24U 1728-34 (M < 1.0Mg, R < 9km) (Li et al., 1999b),

e RX J1856.5-3754 (see also Turolla et al., 2008 and references therein) and
¢ 4U 1820-30 and Her X-1 (Dey et al., 1998).

All these objects have MR relations overlapping in an area where only the strange
star model of Dey et al. (1998), labeled “ss1” in Fig. 1.1, can get. Nevertheless, this
model has a lower maximum mass than the very confidently measured minimum
masses of Ter 5I and PSR J1903+0327. Other strange star models (Li ef al., 2011;

6
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Figure 1.1: Regions of allowed mass-radius (MR) configurations for several pulsars and their
relation with some known theoretical models with different compositions. The line R = Rg marks
the Schwarzschild radius depending on the mass; the green line gives the maximum radius of XTE
J1739-285 as a function of its mass from observational data. The closed areas give the allowed con-
figurations from semiempirical considerations for SAX J1808, 4U 1820-30 and Her X-1. Lines tagged
Ter 51 and PSR J1903+0327 give the minimum masses for these objects with at least a 95% confi-
dence level. See Li et al. (2011) for details on the labels of the different MR curves. This figure is
adapted from that work and Alcock et al. (1986).

Alcock et al., 1986) and different kinds of star give masses compatible with these
measurements but fail to reach the MR areas of most of the candidates. One could
fine-tune at least some models to get to the MR areas. In the MIT bag model of
Alcock et al. (1986), this happens for a bag constant B ~ 110 MeV fm™ but it is
quite far from the value used to fit light hadron masses (B = 56 MeV fm~3) and
also above the upper limit for stability of SQM of massless non-interacting quarks
(B =~ 91.5MeV fm~2)(Weber, 2005; Dey et al., 1998).

Briefly, there is still much to know about about the behaviour of quark matter,
although a simple MIT bag model gives the right qualitative MR behaviour for
strange stars and, with some caveats, it can mimic more complete descriptions.
Leaving the simple MIT bag model and allowing for more freedom, a linear EOS
actually gives good approximations even for modern SQM EOS (Zdunik, 2000;
Gondek-Rosinska et al., 2000).
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3. OBTAINING STELLAR MODELS IN GR

Here we start making a more precise definition of the main characteristics of stel-
lar models. As we will see, calculating them is not a trivial task at all and involves
several simplifications. Some of them are necessarily assumptions, but in most of
the cases they are proven consequences of GR for wide classes of stellar composi-
tions, can be physically related to proven results or at least are expectable.

3.1. Main characteristics of stellar models and common simplifications

By stellar model we mean a solution of the self-gravitating fluid equations that
can represent an isolated body. In the context of GR it means that the exterior
spacetime of the source is asymptotically flat, and the whole model should be free
of singularities. We refer implicitly to equilibrium stellar models, so we seek time-
independent solutions. They should also have the angular velocity as a parameter
and include a solution corresponding to staticity—no rotation at all.

This static state is generally assumed to be spherical, and though it is very rea-
sonable on physical grounds it has been hard to prove even in Newtonian gravity
(Carleman, 1919). In GR, the proof still is composition dependent. First, Avez
(1964), Kiinzle (1971) and Lindblom (1978, 1980, 1981) established a base for the
subsequent development using barotropic perfect fluids, with the work by Kiinzle
and Savage (1980) proving that there are no almost spherical static stars in GR as
the main consequence. The key point for the final proof came from Masood-ul
Alam (1987). He showed that under some unphysical conditions, the spatial ge-
ometry of the static stellar model is conformal to a metric with non-negative scalar
curvature and zero mass. Then, it must be conformally flat as a consequence of the
rigidity part of the positive mass theorem (Schoen and Yau, 1979) and, applying a
result developed in Avez (1964); Kiinzle and Savage (1980); Lindblom (1980), the
conformally flat static spacetime is spherically symmetric. Along the next fifteen
years these restrictions where relaxed and made more physical with the work of
Lindblom (1988), Masood-ul Alam (1988) and Beig and Simon (1991, 1992), even-
tually reducing to inequalities of the adiabatic index of the fluid in Lindblom and
Masood-ul Alam (1994); Simon (1993). Only recently these important restrictions
were removed. Following his previous line of work, Masood-ul Alam (2007) gave
a proof for general barotropic C! piecewise EOS, allowing a finite number of dis-
continuities inside the fluid (see the text for some extra conditions). Recently Pfis-
ter (2011) has lowered the original requirement on the energy density-pressure
relation €(p) € C! to be just Lipschitz continuous in the body of the source and to
more general functions near the surface, including many polytropic equations of

8
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state.

Regarding axisymmetry in rotating sources, there are time independent non-
axisymmetric solutions already in Newtonian, such as Dedekind ellipsoids, and
even non-axisymmetric solutions that are time dependent in the inertial frame but
time independent in a rotating frame (Jacobi ellipsoids, see Chandrasekhar, 1969),
so one could expect that axisymmetry is actually an assumption in GR. But this
kind of Newtonian solutions have either shear—so viscous fluids would tend to
depart from this configurations—or emit gravitational waves, so we eventually ar-
rive at axisymmetric ones (Lindblom, 1976, 1992) even in GR. There are no proofs
of reflection symmetry around the equatorial plane in GR, although in Newto-
nian gravity Lindblom (1977) proved it for the case of barotropic ideal fluids in
stratified flow. Hence, it will be an assumption in GR stellar models.

We focus now in the kind on stress-energy tensor to use. Despite its interest
in solar system experiments, the main field of application of GR stellar models
is the study of compact stars, and in particular neutron stars. In current neutron
star models, a solid nuclear matter crust surrounds a core of superfluid and su-
perconducting material at supranuclear densities with several different possible
compositions (see Weber, 2005, for a summary), although the interaction between
the superfluid nuclear phase and the electrons gives them an effective viscosity
(Flowers and Itoh, 1976). This fluid also sustains strong magnetic fields. The in-
tensity of the currently observed magnetic fields on the surface of most of them
is ~ 102 G, with values ranging mainly from 108G to 1013 G, although in some of
them—the so-called magnetars—it can reach 10*° G, (see Fig. 1.2). This scenario
seems to lead to a very complex and difficult problem but it can be greatly simpli-
fied as we see in what follows.

¢ Neutron stars are expected to acquire differential rotation during the col-
lapse phase from which they are born, but the increased magnetic fields
of that phase causes a very efficient magnetic braking that acts on Alfvén
timescales, which are < 30 ms for the average neutron star. The remaining
differential rotation profile will be damped by viscosity typically in 100 years
(Cutler and Lindblom, 1987; Shapiro, 2000; Shibata et al., 2006). Hence, very
soon after their birth they are at uniform rotation. Actually, Bonazzola et al.
(1993) have shown that without convective motions and assuming infinite
conductivity, the presence of magnetic fields imposes rigid rotation.

* Magnetic fields affect the structure of the star and are a source of anisotropy
in the stress-energy tensor. They give rise to Lorentz forces that tend to flat-
ten the fluid, but assuming only poloidal fields Bocquet et al. (1995) have

9
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Figure 1.2: Number of known pulsars with a certain intensity of magnetic field on their surface.
Units are Gauss and the scale on the X axis logarithmic. Color codes the kind of source; blue are
pulsars in binary systems, green are anomalous X-ray pulsars or soft gamma-ray repeaters and
purple are high energy sources. Obtained from http://www.atnf.csiro.au (Manchester ef al.,
2005)

shown that in static and slowly rotating cases the deformation is apprecia-
ble only for magnetic field intensities > 10'° G, and the ratio of magnetic
central pressure vs. fluid central pressure is in general lower at typical ro-
tation rates, so these fields would only affect the equilibrium structure of
magnetars.

¢ The presence of the solid crust causes departures from perfect fluid behaviour
of order 107, and although the superfluid phase will be comprised of vor-
tices, on scales above 1 cm it is well approximated using an averaged velocity
field of uniform rotation, implying errors close to 107! computing the met-
ric (see Friedman and Ipser (1992) and references therein).

Hence, in their equilibrium phase, neutron stars are rigidly rotating, so their vis-
cosity does not play a dynamical part anymore, and their magnetic fields have
negligible effect on their structure, so they can be very accurately described by
a perfect fluid. Additionally, since the thermal energy associated to their typical
temperature (101°K ~ 1MeV) is much lower than the Fermi energies of the nu-
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clear degenerate matter (~ 60 MeV), one can disregard the effect of temperature
and use a barotropic EOS e(p) (Stergioulas, 2003).

3.2. Approaches to the problem

One of the regrettable facts about General Relativity is that, by now, despite the
numerous exact solutions and modern methods to generate them (see e.g. Sen-
ovilla, 1993; Stephani et al., 2003), it has not been able to provide an exact solution
describing a rotating stellar model other than the rotating disc of dust described
by Neugebauer and Meinel (1995) and its generalisation for counter-rotating discs
(Klein, 2001). Although this infinitesimally thin disc solutions are useful mod-
els for galaxies and accretion discs, they are quite far from describing sources of
spheroidal shape which are the most common astrophysical objects.

Stellar models are built matching through its zero-pressure surface an inte-
rior spacetime describing the source and the exterior spacetime that encloses it.
While the Einstein equations for stationary and axisymmetric exteriors form a
completely integrable system (Maison, 1978, 1979) and then can be dealt with us-
ing solution generation methods to get general solutions, interiors are far more
complicated. The only case we know to form a completely integrable system is
the disc of dust so in any other case one can only try to get particular solutions. In
spite of the effort and interest put in the problem, it has proved difficult to obtain
non-singular solutions of this kind. Until now—and this includes the recent works
of Davidson (2008, 2009)—, to our knowledge, the only candidates have been for a
long time the Wahlquist metric (Wahlquist, 1968, 1992) and the differentially rotat-
ing solution by Chinea and Gonzalez-Romero (1990). The zero-pressure surface
of the latter has finite area but can not enclose the symmetry axis, and while nu-
merical relativity predicts stationary toroidal sources (Ansorg et al., 2009) that can
be obtained starting from a spheroidal topology for a sufficiently strong degree of
differential rotation, in the case of rigid rotation they are unreachable (Ansorg
et al., 2004). Here our focus is on rigidly rotating and—since we are interested
also in the static limit of our stellar models—spheroidal sources. Accordingly, the
only exact interior candidates are the singularity-free members of the Wahlquist
family of metrics.

Summing to the difficulties of finding suitable exact interiors, there are the
ones arising from the matching with the asymptotically flat exterior. For stellar
models it is an overdetermined problem (Mars and Senovilla, 1998) so in general—
and importantly, not only in the exact problem—we can not find an exterior that
matches a given interior. Such seems to be the case for Wahlquist, where the
derivations of the impossibility of matching it with an asymptotically flat exte-
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rior (Wahlquist, 1968; Bradley et al., 2000; Sarnobat and Hoenselaers, 2006) come
from the analysis of the shape of its surface and involve approximations. This
situation leads, if one is to extract information about spheroidal stellar models to
purely numerical computations, analytical approximations or a mixture of both.

It is possible to obtain stellar models without any approximation, losing any
analyticity and taking the fully numerical approach. The seminal works in GR
are due to Bonazzola and Maschio (1971) and Bardeen and Wagoner (1971), using
the self-consistent field scheme applied to Newtonian sources by Ostriker and Mark
(1968). The most recent applications of this idea are the rotstar code (Bonazzola
et al., 1998; Gourgoulhon et al., 1999b), based on BGSM (Bonazzola et al., 1993), the
rotstar-dirac, working in Dirac gauge (Lin and Novak, 2006), and last AKM
(Ansorg et al., 2002, 2003), which was the first to achieve machine accuracy, 16
meaningful digits when working with double precision programs.

Looking for some analyticity of the results one is far more limitated and must
make approximations. Probably the main approximation schemes in GR are the
post-Newtonian approximation—where the equations of motion are expanded in
1/c" powers—and the post-Minkowskian one—that allows to linearize and solve
iteratively the Einstein equations with a parameter related with the strength of the
gravitational field—. Nevertheless, they have been more concerned by the exterior
field of the sources, involving trajectories near sources, mass, angular momemtum
and radiation of gravitational waves. Wide reviews can be found in Futamase and
Itoh (2007) and Blanchet (2006). It is really hard to find analytical approximations
for the interior of equilibrium stellar models.

Some pieces of information can be extracted using variational principles. Sha-
piro and Lightman (1976) used the variational principle of Zel’dovich and Novikov
(1971) to obtain approximate formulas for a non-relativistic Fermi gas in fast rota-
tion in the context of PPN, giving equations for the maximum density and mass,
which are solved numerically. They also gave the kinetic/gravitational energy
and mass/radius ratios for such configurations. Closely in time, Abramowicz
and Wagoner (1976, 1977) generalised the variational principle of Nauenberg and
Chapline (1973) from static to rotating sources and gave analytic expressions for
the mass, angular momentum and baryon number of rigidly slowly rotating uni-
form interiors using the work of Hartle (1967). Later, using the variational prin-
ciple of Bardeen (1970), they found expressions for the moment of inertia and
angular velocity of the dragging of inertial frames.

Nevertheless, if one is to obtain analytic information about the global metric of
the stellar model in full GR, the main option is, despite having to make numeric
integrations to get the final metric, the approximate scheme of Hartle (1967). It
shows how to build a global metric for a uniformly but slowly rotating perfect
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fluid with barotropic EOS. Perturbations are made on the static initial solution of
Einstein’s equations, making expansions of the metric functions in Legendre poly-
nomials and using the quotient of the Newtonian gravitational and centrifugal en-
ergies as expansion parameter. In this paper and also at least in it first applications
(Hartle and Thorne, 1968; Chandrasekhar and Miller, 1974), the metric is explic-
itly assumed to be C! on the coordinates chosen. This is not the most general way
of matching interior and exterior spacetimes (Darmois, 1927; Israel, 1966; Bonnor
and Vickers, 1981), though. Recent applications of the method have improved this
and use Darmois-Israel conditions. In the work by Bradley et al. (2000) the Hartle
formalism is used to obtain an interior for Whittaker’s metric fluid, reproducing
the results obtained from a series expansion of Wahlquist’s metric, and is later
matched using Darmois-Israel conditions with an approximate exterior by Hartle
and Thorne (1968) which depends on the mass, quadrupole moment and angular
momentum of the source. In Bradley et al. (2007), a Hartle interior is matched with
both asymptotically and non-asymptotically flat exteriors to investigate the possi-
ble Petrov types of physically realistic sources. Again, Bradley and Fodor (2009)
match a Hartle interior for a quite general EOS with the Hartle-Thorne exterior to
investigate possible sources of the Kerr metric. They also calculate a slowly rotat-
ing post-Minkowskian source for Newtonian polytropes, recovering some results
from Martin et al. (2008).

To our knowledge, the only completely analytical stellar models in GR are the
ones of Cabezas et al. (2007), (CMMR from now on) which is based on the pre-
vious work of Cabezas and Ruiz (2006) and deals with a constant density source,
and a later application to polytropes (Martin et al., 2008). The key for the complete
analyticity is that it is mainly a post-Minkowskian approximation. The equations
for the interior can be completely integrated in general, although in the polytropic
case the final metric depends on the zeros of the Lane-Emden function. With the
post-Minkowskian approximation one can solve iteratively a linearized version of
the Einstein equations, but the general solution involves an infinite multipole ex-
pansion that must be truncated. They introduced a further approximation—slow
rotation—in order to deal with this. The dependence of the multipole moments
on the approximation parameters is obtained from the MacLaurin spheroids of
Newtonian gravity. This dependence is later assigned to the interior constant that
multiplies the same spherical harmonic tensor of the multipolar expansion, and
the matching of the exterior and interior spacetimes enforces the metric to be C!
on the surface. All this is done in harmonic gauge, with both metrics including
terms that could be omitted but that parametrize coordinate changes. This last
flexibility is key during the matching process.

In this work we will develop further this fully analytical scheme, CMMR, to un-
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derstand better its characteristics and limitations, check its validity and the quality
of its results. In particular, we intend to

develop a systematic way of obtaining new metrics in the CMMR scheme,
creating software as automatic as possible to help during the calculations
and allow for going further in the approximation without heavy hours of
work and attention;

expand the range of applicability with a more general EOS, if possible con-
taining several cases of exact known solutions to check the behaviour of the
approximation, as well as physically relevancy;

improve the quality of the matching from imposing C! to using Darmois-
Israel conditions to see whether previous results are totally general or only
partially;

check the conditions for the interior to be matchable with an exterior, ruling
out classes of solutions as candidate interiors of stellar models;

check the behaviour with exact solutions to ensure that the theoretical pre-
dictions are meaningful and the hypothesis on the interior are well justified.
At the same time, since the physical characteristics of our model are clear
confirm or gain insight about the exact solution itself;

check the results with an accurate numeric code, going to further orders of
approximation to see the behaviour of the convergence of our results and
the goodness of the global character of the solution;

extract from our most precise solution analytic expressions for quantities of
observational interest and

increase the complexity of the interior allowing for two-layer compositions
to identify possible issues and allow a wider span of applicability.

This task is organised in chapters in the following way. In Chapter 2 we start
giving the theoretical background for taking the Einstein equations in harmonic
gauge beyond the commonly used form of linearized gravity to deal with subse-
quent iterations. This is the base on which CMMR works. Then, we give a sum-
marised but sufficient view of this approximate scheme, focusing on the main
issues of each step. This chapter is supplemented by

1.
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Appendix A, which contains a more precise definition of perturbation the-
ory in GR and summarise the work of Bruni et al. (1997) on gauge behaviour
in non-linear approximation schemes.
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2. Appendix B, where we give the full derivation of the general solution of
the homogeneous part of the Einstein equations in harmonic gauge using as
many simplifications as possible and a decomposition of the tensor spherical
harmonics due to Martin (2006).

In Chapter 3 we build the stellar model corresponding to an interior with EOS
€+ (1-n)p = ¢y, where € and p are energy density and pressure, respectively, and
n, € constants, going to second order in the post-Minkowskian approximation. In
this model, we use Darmois-Israel matching conditions and make an analysis of
the generality of our ansatz for the surface and the way we work with the exterior
and interior coordinates. We also show the way to change the post-Minkowskian
parameter to involve only invariant quantities and compare the Darmois-Israel
results with the ones obtained directly from imposing a C! metric on the surface.
Finally, we look for the possible Petrov types of this interior in order to find corre-
spondences with exact solutions and point towards the possible futility of search-
ing exact solutions for stellar models within the Petrov type II class. Some extra
material concerning this chapter appears in

1. Appendix C, where we write the linear EOS metric components after per-
forming Lichnerowicz matching,

2. Appendix D, with a summary of the Petrov classification of spacetimes and

3. Appendix E, that contains the expressions of the Q matrix of the interior
spacetime, which is needed to find its Petrov type.

In Chapter 4 we compare one of the interior metrics contained in the solution
from Chapter 3 with an exact solution, the Wahlquist metric. To do so, we make
a post-Minkowskian and slow rotation expansion on Wahlquist’s solution, and
manage, through coordinate changes and identification of parameters, to trans-
form our solution into this approximate Wahlquist metric. We make verifications
of this procedure using the Petrov conditions derived in the previous chapter.

Chapter 5 faces the comparison with the numerical code. We make a wider
review of the available choices and their characteristics to finally choose the AKM
code. We find the way to make the approximate coordinate change from ours
to the quasi-isotropic ones this code—and many others—use. Then we select a
physically interesting subcase of the EOS of Chapter 3 and build several numerical
stellar models to compare with an improved—fourth post-Minkowskian order—
version of the Chapter 3 metric. The results are compared at each approximation
order to check improvement and quality of the results in two ways,
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¢ direct comparison of metric coefficients at every point inside and near the
source and

¢ comparison of the value of physical quantities obtained through analytical
formulae and the AKM ones.

Several other physical quantities of interest are computed, including ISCO radii
and their orbital frequencies. The full matched fourth post-Minkowskian metric
appears in Appendix F

Finally, Chapter 6 covers the possibility of building more complex interiors,
calculating explicitly the solution for an interior containing two different layers
i =1, 2with EOS € + (1 — n;)p = €;, opening the way to the study of more realistic
sources. The full metric appears in Appendix G.

The original research fills Chapters 3 to 6, which include final summary sec-
tions. In Conclusions we summarise the main findings, contextualise them and
hint at future developments.
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Chapter Two

Stellar models in the post-Minkowskian
approximation

This chapter sets the main theoretical background for the analytical calculations
involved in the obtention of stellar models in the CMMR scheme, summarising
the main points of the work of Cabezas et al. (2007) and adding some extra mate-
rial for completeness. We start with a general vision of its fundamental ground,
the post-Minkowskian approximation. We keep the discussion and equations as
general as possible in the first part. Then we focus on the task at hand, i.e., dealing
with stellar models. We give the precise definition of this term, that will be used
throughout the thesis, and use the simplifications it allows to ease the solution of
the post-Minkowskian equations. In the process, we introduce an additional ap-
proximation, the slow-rotation or small deformation one, what forces us to guess
the expansion of the free constants of the post-Minkowskian solution, what con-
stitutes the main hypothesis of the method. The final sketch of the steps required
is also given. It will guide the building of the solution for a linear equation of state
in Chapter 3

1. THE POST-MINKOWSKIAN APPROXIMATION IN HARMONIC COORDI-
NATES

In this section we will write Einstein’s equations in a general way that can be ite-
ratively solved. To allow this, the key is the post-Minkowskian approximation,
but the harmonic gauge gives the equations a particularly simple structure that
we will take advantage of. Hence, we start defining these harmonic coordinates
and finding the expression Einstein’s equations take when using them. Later we
will define and use the post-Minkowskian approximation to get a simpler iterable
form.

17



2. STELLAR MODELS IN THE POST-MINKOWSKIAN APPROXIMATION

1.1. The relaxed Einstein Equations in harmonic coordinates

A certain function f is said harmonic if it satisfies
Of =0, (2.1)

where [J = g%V, V; is the d’Alembertian operator. If we look for a set of four
harmonic functions x(*)

Dx(a) = g:uV&u&Vx(a) —g*“TﬁVQAx(“) =0 (2'2)

to use them as coordinates, d,x@ = 6% and hence the harmonic condition reduces
to
I'*:=gtTy, = 0. (2.3)

We can also find a different useful expression for it. Since d, (g“ Vgov) = 9,(65) =0
gyv&agav = _gav&aguv- (2.4)

Using it in the first two terms of

1
I = 5848 (ugu1 + A8 = Iayw) (2.5)
and rewriting the last one as —% g9, Suv = —g‘”\Fﬁ L we get
[ =-d gt —g“l”ﬁ#, (2.6)

which we will need below.
The harmonic condition notably simplifies the expression of the Ricci tensor

Raup = 03T = 9gTay + T)iThs = Tpelh ). (2.7)

To see it, we define
Lyi= ga)\rA = _ga)\&ygw\ - rg# (2.8)

which, besides being zero in harmonic coordinates as well, is also, in terms of the
covariant Christoffel symbol I, ., = g, Al"ﬁv ,

Iy = guvra,yv' (2.9)
Then, the first term in the right hand side (rhs) of (2.7)
&J'gﬁ = (9/1 (gA“TH,aﬁ) = g/\fl&;tlﬂ#,aﬁ + 8Ag/mfylaﬁ (2.10)
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1. The post-Minkowskian approximation in harmonic coordinates

turns into, using (2.6),
ITag = 8" )Ty ap = THT ap — TagTh ) (2.11)
leaving the Ricci tensor as

Rag = 891 yap = Tulhs = pTn = TapThy- (2.12)

where the second term would vanish if harmonic coordinates are used. Now, from
eq. (2.8), since

_ A
IsTa = 95 (894 9,8a0) — DT,
= &ﬁg}i/l&#ga/l +gﬂ/1(9ﬁ(9#ga/\ - &‘Brl/x\/\, (2.13)
we can combine the first term of eq. (2.12)
1
g/wa)\ry,aﬁ = Eg/wa/\ (aagﬁy + aﬁgya - apgaﬁ)
1
=2 [~8"029u8ap + 8" (920 + 91 9p81a)| (2.14)
with the third and get
1
gL ap = IpThy = _EgAyaAaygaﬁ + 9l = 98" 9u8p)1 (2.15)

where the round brackets around indices stand for the corresponding symmetric
part J(,I'g) = % (8aI’ﬁ + Bﬂfa), rendering the Ricci tensor into

1
Rag = =5 0580 + dalp) 98" 9ugpn — TuTap — TapThy (2.16)

where we have introduced [, := ¢g'#d A9y This expression of R, is important
because the Einstein equations

1
G()t[)’ = Ralg - Ego‘ﬁR = 87ZT043/ (2.17)

—where R = R¢, is the scalar curvature and T, the stress-energy tensor—in its
equivalent form (R = -8nT4)

1
Ra/j =8m (Taﬁ - ET/}\gaﬁ) , (2.18)
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2. STELLAR MODELS IN THE POST-MINKOWSKIAN APPROXIMATION

are then written in harmonic coordinates as

1 1

_ A A TP A
EDz?gaﬁ = =08"" 9u8p1 — Taplg) -8 (T‘”/g - ETAgaﬂ) , (2.19)
=0

where now the only second derivatives are those in [J5¢,4, turning the Einstein
equations into more easy to deal with Poisson equations.

In eq. (2.19) we write the so-called relaxed form of the Einstein equations to-
gether with the harmonic condition for a reason. Every solution of the full Einstein
equations, if written in harmonic coordinates, satisfies the relaxed equation while
not every solution of the relaxed equations is a solution of Einstein’s equations
though. Actually the contracted Bianchi identities

V.G =0 (2.20)
do not hold for a Ricci tensor eq. (2.16) without the d(,I'g) — r#rgﬁ terms. Instead,
they lead to an expression that is only zero if I'* = 0. Hence, whenever using the
relaxed Einstein equations, one must ensure the harmonic condition verifies as
well if one is to get a solution of Einstein equations.

It is also thanks to the structure of 2.19 that the well-posedness of the Cauchy
problem in General Relativity was proved, i.e., that in a general spacetime sliced
using spatial sections with x° = const., imposing the harmonic condition in a
¥ = x¥ = 0 slice and giving the value of (aps v8ap)ly on it—a Cauchy data—
one can evolve this data and get a metric that verifies the harmonic condition in
any other %Y = const. slice of the spacetime (Foures-Bruhat, 1952; Choquet-Bruhat,
1962).

1.2. The post-Minkowskian decomposition

Now we introduce the main approximation in CMMR. In the post-Minkowskian
approximation, we consider the exact metric of a spacetime g,; to be expressible
as Minkowski’s metric 7,4 plus the metric deviation

haﬁ = 8ap ~ Nap (2.21)

or, for the inverse metric,
kb = g — b, (2.22)

With these decompositions and taking into account that the harmonic coordinates
of the flat metric are Cartesian, we can simplify and transform eq. (2.16) into the
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1. The post-Minkowskian approximation in harmonic coordinates

form it has in CMMR as follows. Splitting the covariant harmonic condition into
its linear (L,) and quadratic parts (H,)

1
Iy = _ga/laygyA - rg# = gy)\&ygad - Egy)\&agy)t

1 1
= BAI/IW\ - EBah + kHA (&#ha/\ - Efyahw\) ’ (2.23)

[ —
L, H

a

we can group all the terms of R,z which are at least quadratic in the deviation
into*

1
Ny = —Ek"#& 1uhap + I aHp) = Okt Iuhigr =T\ Thg = TaoThy (2.24)

where 0% := 17“‘(9# and h = n“)‘hm. Then, we get
1
Raﬁ = —Ethaﬁ + 8(aLﬁ) + Naﬁ (2.25)

with O, = 17/‘“ dyo u the flat d’Alembertian, and making the usual definition tap :=

(Taﬁ - % gaﬁT) we arrive finally at the expression of the relaxed Einstein equations
in a post-Minkowskian decomposition and harmonic coordinates

Dq haﬁ = —167Ttaﬁ +2 [N(Xﬁ - B(aHﬁ)],

1 (2.26)
&p(l’lpa - Enpah) = _Ha ’

that groups all quadratic terms of the Ricci and harmonic condition in the right
hand sides.

1.3. The iterative solution of the post-Minkowskian equations

This is still a system of non-linear differential equations. Going further in the
post-Minkowskian approach, we can now introduce a dimensionless parameter A
related with the amount of deviation from flat spacetime such that

hog = ABG) + AZHG) + - A + O(AY), (2.27)

*Actually, one could write the relaxed equations without any reference to H, just not including
it in N,4. It may lead to some faster computations, but have sticked to the original formulation.
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2. STELLAR MODELS IN THE POST-MINKOWSKIAN APPROXIMATION

Introducing this expression into eq. (2.26) the non-linear system splits into infinite
systems according to the A—power involved. In the first of them

O,k = 167ty

.28)
o 1 ~ (2.2
BP [hpa - Eh(l)ﬂpa] =0 ,

the relaxed Einstein equations are reduced to Laplace equations in exterior (vac-
uum) spacetimes. In interior (source) spacetimes, the kind of equation depends
on the type of stress-energy tensor. For perfect fluids of 4-velocity u* we have

T = (e + p) uuf + pgf, (2.29)

with €, p energy density and pressure, respectively, and hence, since one should
only expect g, = 1,4 in an empty interior, the minimum dependence of the energy
density € and pressure p with A is

€e=0(\) (2.30)
p =00 (2.31)

what allows us to construct tgﬁ) using only 7,6. Thus, in a perfect fluid interior the
first order relaxed equations are Poisson equations.
Hence, using this kind of source and because N3 and H, are nonlinear in h,4,
in the i-th A-order system
(0 _ @) () (i) (i)
Ophap = =167t + 2Nyg = 9o Hg' — dgHa
y 1. : (2.32)
9P [hg; - Eh(z) npa] =-HY

we can obtain the metric dependent rhs terms—e and p may remain undeter-
mined*—in both sets of equations using

. -1
g,[iﬁ” = Nag + /th(x])ﬁ : (2.33)
j=1

The relaxed Einstein equations and harmonic condition are then transformed into
a infinite set of differential equations systems like eq. (2.32) which are linear in hg;;
and must be solved iteratively.

>This indeterminacy of € and p depends on the EOS. In the one that will concern us later, unlike
for polytropes, they are totally fixed.
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1. The post-Minkowskian approximation in harmonic coordinates

It may be worth noting a difference regarding the use of harmonic condition
between these post-Minkowskian equations and numerical codes that solve the
Cauchy problem one slice at a time. They start from initial data that verify the
harmonic condition, and thanks to the well-posedness of the relaxed equations
in this gauge, they do not need to re-impose harmonic constraints at each step.
Actually, sometimes the deviation from harmonic condition is used to measure the
quality of the method. In the post-Minkowskian approach we start from g,z = 7,5,
and at after each iteration of the process we get a totally different metric. Hence,
one can never drop the harmonic constraint. The iterative property of the method
ensures that the condition up to ©(A) differs only in ~ A’ terms from the O(A"!)
one, but it must be calculated.

1.4. Computing non-linear terms

Last, we focus now on easing the calculation of the quadratic terms N4 and H,,.
Regarding the first one, if we build the Ricci tensor corresponding to the metric
up to order A1, Reg (h=11), it must verify also

Ry (HY) = _%mnhgﬁ” + ALy (M) + Ny (HE1). (2.34)

Note that because of the non-linear terms this e'x?ression will differ from Rgg”.
Now, L, is linear in haﬁ, so if we built it using hgg ], we obtain its full expression
up to A"

Ly (R1) = LE7. (2.35)

Conversely, N,g is purely non-linear in 1,4, so its terms containing Al verify
NG (r1) = N (2.36)
Thus, if we keep only the Al terms in eq. (2.34), we get

R 4-4) = )

fy% / (2.37)

what allows us to obtain N, directly from the Ricci tensor. This is useful because
there are several algebraic codes for tensor calculus that compute the Ricci tensor
straightaway.

Something similar happens with H,. Since it is purely non-linear, we can do

HO = g (h[i—l]) =1® (h[i—ll) . (2.38)
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2. STELLAR MODELS IN THE POST-MINKOWSKIAN APPROXIMATION

In this case, I', is particularly easy to compute in a convenient set of coordinates
as follows. It is known that the difference of connections is a tensor and on the
other hand that the Levi-Civita connection associated to the flat metric in Carte-
sian coordinates is the trivial one. Hence we can write

I, = gAH(ra,)\p - )/a,/\p) (2~39)

where 7, is the flat connection in arbitrary coordinates. Itis a tensor equality and
also easy to compute from tensor calculus codes.

2. SOLVING STELLAR MODELS WITH THE POST-MINKOWSKIAN APPROXI-
MATION

By now we have discussed the post-Minkowskian equations with a focus on vac-
uum and perfect fluid spacetimes. This was in order to serve our main goal, the
construction within General Relativity of stellar models in the sense of Lindblom
(1992), i.e., a global spacetime (M, g,5), where M is a differentiable manifold and
Sap @ Lorentzian metric that

¢ satisfies the Einstein equations,
* is stationary and axisymmetric,
¢ contains a compact and rotating perfect fluid surrounded by vacuum and

¢ describes an isolated self-gravitating source, and hence is asymptotically
flat.

In practice this global solution is built up from two different spacetimes that
one must obtain separately. The interior, that contains the perfect fluid source
(V", g4p), and the exterior asymptotically flat vacuum solution (V*, g3s). The spe-
cial characteristics of stellar models allow for some important simplifications re-
garding structure and coordinate dependence of both metrics, as we see in what
follows.

2.1. Papapetrou’s structure

In the interior (V, g,4), the condition of stationarity implies the existence of a time-
like Killing vector field &~. The axisymmetry of the spacetime is given by another
Killing vector ¢~ with closed orbits and vanishing module on the symmetry axis.
Carter (1970) showed that these two vector fields commute, i.e.

[£7,¢71=0, (2.40)
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2. Solving stellar models with the post-Minkowskian approximation

so that we can choose two coordinates of V™ to be adapted to the symmetries.
Calling them {f, ¢}, we have

E =9, and ¢ =dy. (2.41)

When the fluid flows along the 2-surfaces spanned by the Killing vector fields, its
4-velocity is

u=1 (8t + a)z9¢) , (2.42)
where ¢ is a normalization function and
¢
u
w = ? (243)

is the angular velocity as seen by an observer at infinity?3.

If, in addition to this, the fluid lacks of any energy flux, then there is no convec-
tive motion inside the source (Carter, 1969). This also implies the verification of
the so-called circularity condition (Papapetrou, 1966; Carter, 1973) and then a theo-
rem by Kundt and Triimper (1966) grants the integrability of 2-planes everywhere
orthogonal to the transitivity surfaces of the isometry group. Choosing {r, 0} to be
coordinates spanning these 2-surfaces, the metric becomes block diagonal (Papa-
petrou’s structure)

St 8o 0 0

o = ot 8¢p 0 0
ap 0 0 grr gr6
0 0 gor o0

what is a great simplification of the problem. Hence, we assume these properties
for the fluid and add a new one, that the function w = const.; rotation is then rigid
and thus free of expansion and shear. Note that in this case ¢ = const. defines
isobaric surfaces, so in particular the p = 0 surface X, the outer boundary of the
interior, is implicitly defined ¢ = 1y, with iy = ¢(p = 0).

This theorem holds as well for stationary and axisymmetric vacuum space-
times, allowing us to use Papapetrou’s structure in the exterior g*, too.

Besides, having our temporal coordinate adapted to a Killing, (2.32) gets the
simpler form

(2.44)

ahly = =167ty +2N5 - . HY - dHE,

yo 1. ’ (2.45)
|- 30| = -0

3This common use of w in relation with a distant observer may hide some subtleties. We will
discuss them in a later chapter.
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2. STELLAR MODELS IN THE POST-MINKOWSKIAN APPROXIMATION

2.2. Solving the homogeneous system

The linear structure of the equations in (2.45) for vacuum and perfect fluids allows
us to solve the i-th order system in two steps, finding the general solution of the
homogeneous equations, k., and adding a particular one of the full equations,
hlare SO that

= Mo + Mpart- (2.46)

The homogeneous system has the same structure at any A-order and it is formally
equivalent to find its general solution at each order and finding its exact general
solution. The latter is more convenient here.

In the exterior case, the general solution to the homogeneous system is, once
we introduce all the simplifications allowed by the symmetries and Papapetrou’s
structure,

o M o i 1
Phom =2 gg ey (T)+Dy) + 21_21:3 T+ 12032 3 (AlEl+2 +Bio P1+2) (2.47)

—the full derivation of this solution appears in Appendix B—where we have in-
troduced the definitions for the spherical harmonic tensors
= Pi(cos O) w' ® ' (1 >0),
Dl = Py(cos 0) 6;;dx' ‘®dx (1>0), (2.48)
Z, = Pl (cosO) ('@ w? + w? @ w') (1>1),
and
w'=dt, o' =dr, w=rd0, @?®=rsin0de (2.49)

is the Euclidean orthonormal cobasis corresponding to the spherical-like coordi-
nates {t, ¢, r, 0}. They are called spherical-like in the sense that they are associated
through the usual relations

x=rsinfcos¢p, y=x=rsinOsing, z=cosO (2.50)

toasetx* = {t, x, y, z} of harmonic coordinates which are in turn called Cartesian-
like because they correspond to Cartesian coordinates when the spacetime is flat.
Eventually, we will use cylindrical-like coordinates in the same way. Pj(cos 0),
Pj"(cos 0) are associated Legendre polynomials. The remaining spherical har-
monic tensors

H, = Pl(COS 9) (61] - 3ez-e]-)dxi® dx/ (l > 0),
Hl1 = Pll(cos 0) (kie; + k]-ei)dxi® dd (1>1), (2.51)
= P(cos 0) (kikj — mm))dx'®dx (1> 2),
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2. Solving stellar models with the post-Minkowskian approximation

—where k;, ¢; and m; stand for Euclidean unit vectors of the standard cylindrical
coordinates, dp = k;dx', dz = e;dx, pd¢ = m;dx'—are grouped into the combina-
tions
1 11
E; = El(l -1)H +(I-1)H; - EHI (1=2),
1 1 1 (2.52)
F, = 51(21 -1)D, - gl(z +1)H, - 5 (H+HY) (=1,

because it simplifies notably the results*. Among the constant coefficients M, J,
A; and B}, the first two are mass and angular Thorne-Geroch-Hansen multipole
moments (Thorne, 1980; Geroch, 1970; Hansen, 1974), respectively, and the last
two parametrize the gauge, in the sense that they belong to a part of the solution
that can be eliminated with a suitable change of coordinates. Aslong as one keeps
working with asymptotically Cartesian and mass centred coordinates, of which
the harmonic ones we use are a subset, changes of coordinates only modify the
value of A; and B;. Also, the index I runs only on even numbers because the equa-
torial symmetry only allows for even parity of tensors, except for Z;, which must
be odd to give negative angular moment when the angular velocity w is reversed.

In the interior, the solution has to be regular at the origin, what modifies the
dependence on the radial coordinate r and the definitions of the spherical har-
monic tensor combinations so that

Mom = E iy v (T; + D) + E ]Tli’l Z, + Z (ﬁl 'E; + by, Ff) , (2.53)
1=0,2 =13 1=0,2
with5 - .
+
E := — [(6 + 41D, - IH]] - =(H}! + H?),
6 2 (2.50)
1 1 54
F = E(l +1)( +2)H, - (I + 2)H}! - EH,Z.

Here, again, we have a purely gauge part of the solution, the one containing 7, and
b;, but contrary to what happens in the exterior, the remaining part is not gauge
invariant, so 7i7; and j; are expected to vary under coordinate changes.

2.3. The approximate solution of the homogeneous system

The expressions (2.47) and (2.53) for b are infinite expansions in tensors which
are increasingly complex in terms of 6 dependence. To work with them, we must

“Note that the definitions from Cabezas et al. (2007) have been modified. Now E, has spherical
symmetry.

5The definition of E; is different from the one used in Cabezas et al. (2007). Also, Ej; := D, has
now spherical symmetry and the first b; constant is b,.
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2. STELLAR MODELS IN THE POST-MINKOWSKIAN APPROXIMATION

truncate these expansions. To do it, we introduce a new approximation parameter
Q) related with the rotation that measures the degree of deformation of the fluid.
It must be noted though, that the normalization condition for the 4-velocity of the
fluid u,u®* = -1 gives

2

P = [~ (g + 2081y + 0?8y )| (2.55)

and hence since the base post-Minkowskian expansion of h to give a static space-
time when w = 0 is

hoo = MBS + A2h2 + .. (2.56)
1 2
hy = AR + 2200 + - (2.57)
1 2

we have that for the equation ¢ = const. to define spheres instead of cylindrical
surfaces, we need w? ~ A at least. This two conditions led to introduce Q as

r2w?

with 7, the coordinate radius of the static spherical fluid mass. It causes that h;
terms, naturally possessing odd powers of () to give the expected behaviour under
reversal of rotation direction, have an expansion of the form

hoi = A32hS) + 15212 1 (A7), (2.60)

We can give O a more intuitive expression. Defining A to characterise the
strength of the gravitational field in terms of parameters of the source as

A= — (2.61)
rS

with m the Newtonian mass of the source in the static case, then

rsa)z

02 = 5
mfr2’

(2.62)
gives the ratio between the classical centrifugal and gravitational energies (also
used by e.g. Hartle, 1967), what one should expect as a measure of source defor-
mation because of rotation.

Now, to truncate the expansions and to extract the i-th post-Minkowskian so-
lution from egs. (2.47) and (2.53) we must find the expression of their constant
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2. Solving stellar models with the post-Minkowskian approximation

coefficients in terms of (A, ). Starting with the exterior, the dimensional analy-
sis of the first multipole moments gives the base dependence

MO = mMO = ATSM(), (263)
Ty = mar?f;, = 12Q02; . (2.64)

where the untilded M, and J; are series expansions of A and ) with constant di-
mensionless coefficients. Superior multipole moments have dynamic origin and
hence they depend on the Q) power that correspond to their multipole order, i.e.

M, = AQIH M, (2.65)
J, = ATQiAH, (2.66)

It is worth noting that this is the kind of dependence that the multipole moments
of the MacLaurin ellipsoids have when they are expanded in Q. The gauge part
coefficients are left with the most general base dependence that gives A; and B,
dimensionless expansions with the only caveat that while E, has spherical sym-
metry, F, does not and thus cannot be present in the static limit. Accordingly, we
get

A = AQHH A, (2.67)
B, = AQ1B; (2.68)

but the summation of the F; terms must start at / = 2. Summing up, the expression
of the metric deviation up to O(Q2%), which is as far as we will go regarding Q in
this work, is

M, 3 Ji
B =2 120]2 "Q%”rm (T, + D)) +2 12113 A2Ql1 prdd

+ 12 AQI3 %EZ+2 + /\erg’% F, + 0(QY). (2.69)
=02
For the interior solution, we lack the multipole moments reference of the ex-
terior. We can but make an educated guess and follow the same procedure we
have applied to the exterior. Since Ej; and Fj behave in the same fashion as their
exterior counterparts, we have

r (Tl +Dl) + Z AEQZJ—;TZZZ

_ _ m
Fhom = E M =13 Ts

!
7
1=0,2 Ts

+ 3 AT E + AQ%, Fy + 0(QY).  (2.70)
=02 s
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Metric Free parameters Constant coefficients
Exterior rs, W Mo, Mz, ]1, ]2, Ao, Az, Bz
Interior Ts, @ my, My, J1, ]2, Ao, A2, b,

Table 2.1: Remaining constants in the solutions of the homogeneous system for a certain EOS. The
constant coefficients are fixed when the metrics are fully matched. The free parameters remain so.
Then, one can select different members of the family of metrics choosing values for them.

2.4. The particular solution of the complete system

With the solution of the homogeneous system at every A-order, we only need to
find a way to obtain particular solutions of the full harmonic post-Minkowskian
equations (2.45). Regarding N, 5[); and HY, we already got formulas to compute
them in Section 1.4. To find the approximate expression of t,; for the interior
problem, the only non-straightforward step is finding the e(i)) and p(y) relations.

The assumptions of perfect fluid, circularity and rigid rotation allows us to
obtain from the Euler equations V, Tg = 0 (Boyer, 1965) that

dp
(e+p)

=dIlny (2.71)

which, making use of the e(p) relation of the fluid, gives a separable ordinary
differential equation for p(¢). If we are able to integrate it, using eq. (2.55) we get
the expressions of € and p we need. In the cases we study in this work, (€?, p)
depend only on hli=1], leading to a rhs of the Poisson equation fully known. It must
be noted that it is not always the case, though. For example, for a polytropic fluid
one ends up having to deal with a Lane-Endem equation at each iteration (Martin
et al., 2008).

In the cases when the rhs of the Poisson equation is completely known, the
advantage of working with spherical harmonic tensor becomes clear because the
rhs is a sum of terms of the form f(r)Y;(6, ¢) which verify

1
A(fYi(0,9)) = = [9:(70,f(1) = I+ DF ] YO, ). (2.72)

Then, we can start from the full rhs and correct the r dependence and numeric
factors appropriately to get the particular solution.

The last step is ensuring that the solutions of the Poisson equation hp,;,, Ve-
rify the harmonic condition as well. A solution hf; of the complete system is also
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2. Solving stellar models with the post-Minkowskian approximation

a solution of the Poisson equation. Now, since two solutions of a certain Pois-
son equation can only differ in a solution of the corresponding Laplace equations,
we can find a solution of the complete system adding to the Poisson solutions a
solution of the Laplace equation

hfiull = hli’oisson + hljjaplace (273)
with its coefficients adjusted so that the combination verifies the harmonic con-
dition. In the exterior this step is unnecessary since hp ;... is already written in
harmonic coordinates. In the interior, we add a solution of the form
=aE, + bE4 + cF,. (274)

+
Laplace

Note that inserting interior combinations Ej, F;, would not work since they have
been built to satisfy the interior harmonic condition in the same way as were the
exterior ones in Appendix B and would therefore vanish.

2.5. Surface of the source and matching

Once we have the approximate solutions g* in the two separate spacetimes V*, to
build a stellar model we need to match them across the p = 0 surface of the fluid.
In Cabezas et al. (2007) and Martin ef al. (2008), the surface was introduced as an
ansatz using an expansion in Legendre polynomials

re(0) = 1, {1+ Q2 [co + caPa(cos )]} + O(QY) (2.75)

with ¢, constants to be found. It was then used as the base for the matching.
There, they imposed that the metrics g* and its first derivatives were continuous
through the surface—Lichnerowicz matching conditions—. This fixed the value
of the constant coefficients of ;, , and then they got the metric of the global space-
time of the stellar model, which depends only on the values of w, 7; and the free
parameters of the equation of state of the fluid.

Nevertheless, it has been argued that in some situations this kind of matching
may not lead to the most general stellar model. Also, in general matching theory,
the surface is actually one of the results of the matching procedure, so prescribing
it at the beginning of the process can again lead to lack of generality. This problem
will be treated in full care in the next chapter.

Note also that even after fixing the gauge, the rescaling freedom in the radial
coordinate will affect the possible values of r;. This does not affect the capability
of CMMR to give explicit values for the metric and other quantities as we will
discuss later.
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Chapter Three

The linear EOS solution

In this chapter we apply CMMR to obtain the global solution for a non-convective
fluid with a linear energy density-pressure relation, € + (1 - n)p = €;, what we will
from now on call linear EOS unless otherwise stated'. Among the relevant EOS
it includes are the ones corresponding to constant density (n = 1), the Wahlquist
and Whittaker fluid (n = -2) and n = 4 which corresponds to the simple MIT bag
model EOS that has been frequently used to study the properties of strange quark
matter. The latter as constituent of at least a class of compact stars is currently
an exciting possibility in astrophysics (Weber, 2005; Weissenborn et al., 2011; Lat-
timer, 2011) as was discussed in Chapter 1. We also show that the full matching
procedure used in CMMR can be made completely general using Darmois-Israel
matching conditions (Darmois, 1927; Israel, 1966) instead of Lichnerowicz ones
(Lichnerowicz, 1955), as well as ensuring the generality of the assumptions made
on the embeddings of the matching surface. Later, we use the approximate metric
to exclude as candidate sources of stellar models those Petrov type Il interiors with
this EOS that admit a CMMR expansion. This is unexpected. This fact coincides
with a lack of exact stationary axisymmetric perfect fluid solutions of that Petrov
type (Senovilla, 1993), what leads us to wonder if this can be the case irrespective of
the EOS. The Q matrix of a metric with Papapetrou’s structure like ours rules out
Petrov type III, and the combination of its symmetries and EOS discards type N as
well (Carminati, 1988) and hence we get that the possible Petrov types of match-
able rotating interiors with this EOS are I or D. Our analysis, though approximate,
shows as well that the stationary (non-static) constant density case can only have
Petrov type I. Finally, we obtain the conditions for our interior to correspond to
an approximate Wahlquist metric and recover the result that Wahlquist can not be
matched with stationary axisymmetric asymptotically flat exteriors Bradley et al.
(2000); Sarnobat and Hoenselaers (2006). We also show that our interior can not
be a source of Kerr metric.

'The equation of state of a temperature independent substance is actually given by two relations,
€(n) and p(n), with n the particle number. It contains more information than the e(p) relation, but it
is common to abuse the term and refer to it as equation of state as well.
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3. THE LINEAR EOS soruTtion

1. INTERIOR SOLUTION

We begin finding the approximate interior. All CMMR needs as input are the e(1),
p(y) relations, hence we first look for them.

1.1. Source characterization

We will study a fluid with EOS

e+(1-n)p=e, (31)

where 7 is a real number and ¢ is a constant with units of energy density. This
linear barotropic EOS contains the ones of two significant exact solutions: n = 1
corresponds to constant density of the Schwarzschild interior and n = -2 gives the
EOS of the Wahlquist family of metrics (Wahlquist, 1968) which has Whittaker’s
solution (Whittaker, 1968) as static limit.

As we saw in Chapter 2, the information about the EOS of the source fluid
enters the Einstein equations through the €(y’) and p(¢) relations, which we need
to integrate using Euler’s equations. Since our perfect fluid is in rigid rotation and
verifies the circularity condition, Euler’s equations are reduced to eq. (2.71) and
give for this EOS, whenn # 0,

€= i—o[(n—l)(%) +1], (3.2)
_al(¥)
=l ) 5
andifn =0,
€=¢p (1 —log %) (3-4)

The value of 1 depends in turn on the metric components through eq. (2.55),
which have a post-Minkowskian expansion. Since we choose &~ to be a unit time
translation at Minkowskian level, the first terms of ¢ are

P =1+Ap0 + 2@ + 0(2%) (3.6)

34



1. Interior Solution

with an equivalent expansion for 1y. This makes that the expansions of €, p for
the n # 0 case

o =T A (0 - p) ) - y)
#2202 gy 2 90 3 (0 | (000 - 92 - ()" + 42

-5 () + 9@+ 2 ()" ¢<2>} +o(2), (3:7)
1 1
:LO =2 (lp(l) _ lP(zl)) + AZ{ [ w(l)w(l) (1;0 1)) + 5 (w(l))z]
+ 5 (0) - - 5 (00) +¢<2>}+<9(A3) (38)

coincide making n = 0 with the ones derived from eqgs. (3.4) and (3.5)

é 1+ (IPS:D _ IP(D) " %)\2 [_ (IPS:D)Z + leg) n (lp(l))z _ 2¢(2)] + (9(/\3) , (3.9)
r

1 1))2 2
Eoaph )+ 52 [( OV _2y@ — (p)* 2¢<2)] +0(¥). (310
Therefore, egs. (3.7) and (3.8) actually cover every possible value of n. It is also
very important to note that the zeroth order of € is just €, Which is one of the free
parameters of the solution. Hence, t( ap 1s fully derivable from gaﬁ , allowmg for
an easy obtention of the i-th order particular solution of the Poisson equation.

The definition of A (2.61) taking €, as average energy density becomes

A= gnrgeo. (3.11)
This causes that the lowest term of the energy density and pressure behave likely
e~ O, (3.12)
p~0(A%). (3.13)

A relation of this kind also holds for spherical configurations in Newtonian theory
(Bradley and Fodor, 2009).

1.2. Approximate solution

Once we have fully determined taﬁ, following the steps summarised in Chapter 2
leads to the following solution for the interior metric
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3. THE LINEAR EOS soruTtion

g_ = —TQ +DO +/\{(TT’ZO —ﬂz)TO + (Clo +m0—1]2)D0 +
+ QZ [sz]sz + (5[12 + mz) T]zDz + bZHO + ﬂzT]ze]}
Mo i
+ A% —ao—7(n+2)+(n+2)5+(2+3n)% Ty

13 3n)\
+(—2a0—%(n+2)+(n—2)5+(—+—n) n—)DO

3 2/10

2S5 2n?

Mo 2,2
5 5 21

3 gl g
+ é—3az+ @+E—im2n)n2Tz

7 7 7 14

+ z_ 8a, — my + I imzn) °D,

7 7 14

2 2 2
_ "\ 2T 1_m)\ "
b2+(1+m2)15)H0 21 E2+(3 > )105E4
m 2
(?2(21710 + 110) + (az + 5(2 - mz)) 1']2) Fz]}

32 .67 2: 2
+A7Qn - Zy + Q312

1 27 15
+ /\5/297735 {(jl - 12(ay + mg) — 3mgn + 6nS + (— + _n) 772) Z,

7 14
42b, nm 42a,\ 31?
+QZ[—(T2 +j1my + (4-31112 - Tz +2n — Tz) 7)21

9 5 9 3 9 3
+0(A%,Q% (3.14)

+ (4_1_48£+%_4ﬂ+2_n_@)n223]}

where 7 := r/r; and the constant S comes from the expansion of i on the surface,

Py =1+ SA+0O(A?). (3.15)
It takes the value ,
-1 Q
S= moz + =+ OO (3.16)
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2. Global Solution

but leaving S undetermined in the expression of g,z will be useful in Chapter 4

The first order part of eq. (3.14) corresponds to the constant energy density
problem already solved in Cabezas et al. (2007). It is so due to the dependence on
A of € and p—egs. (3.12) and (3.13)—.

2. GLOBAL SOLUTION

After getting the interior, we have to find a suitable exterior and match both space-
times together. In this section we will do this using two sets of matching condi-
tions and then analyse both results.

2.1. Exterior Solution

The EOS does not play any role in the obtention of the exterior and it can be ob-
tained directly from the considerations in Chapter 2. Notice though that the coor-
dinates in eq. (2.47) have been named as the ones used in V" but they are not the
same in principle. Even after the Darmois matching, the coordinates will only be
? on the surface. Properly speaking, {t, ¢, r, 0} should be replaced by {T, ®, R, ©)
by now.

The general vacuum solution is

1 A
g+ = _TO + DO + /\5 |:2M0(T0 + Do) + T]_ZOEZ

+Qzl 2M,(T, + D) + B,F. +ﬁ15
772 AC Y] 2 282 172 4

AM2  AgM, 3A.°
+A2l{(ZM%AOMO)T0+[ 0 _ZoMo O]DO

n? 1 3 n? 2n
. My’ .\ 2A0£\/IO 94y ,
3 n 4nt
1 6B, 2M, 3A
5 2 2 2
Ho ?|A°(W+_5nz ‘2_174)H"

3A,M, 3A,M
+(2M0(B2—2M2)— 270 210 2)T2

n? n?

32M,\ Ay 3A,My 66444,
+ (ZMO (Bz + 7 ) - 7—172 (12B, = 13M,) - 7 + 7k D,
IM,\ Ay 30494,
+ (2M0 (Bz - T) - 7—772 (15B2 - 4M2) + 77]4 F,
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3. THE LINEAR EOS soruTtion

(33B2 + 6M2)

MM,
+(_ 0

24,My 53A0A2)E4]}
7 35 e

772 14174
+A32Q = (]121 + 2= ]3 ) + AS/ZQ—B {( 2]1M0 - L]1)21
g 7 n 7

QZ 4B,]; N 9A )1 Z,
[\ 5 51

N (632] 1 AyJq 3A0]3

5 -sMy - 1My + — —

5P )23]} +0O(A3,0%.  (3.17)

2.2. Matching

The last step to build our global spacetime M is the matching of (V',¢7) and
(V",g%). The general problem involves finding a hypersurface X with its embed-
dings into V™ and V*

I=x(Y) and X" =)x.(T) (3-18)

along which the identification of the two spacetimes to form a manifold M that
has Lorentzian geometry and on which the Einstein’s equations are well defined
(a wider summary can be found in Fayos ef al., 1996). Several sets of matching or
junction conditions have been used in the literature. Bonnor and Vickers (1981)
showed that among them, the more general ones are due to Darmois (1927)—see
also Israel (1966)—. They read as follows. Denoting with x7% the pull-backs of x.
and with y.. their push-forwards, let

q" = xi8* (3.19)
be the first fundamental forms of * and «3, (2,0 =0, ..., dimV* - 1)
Ky, = —N5 ea"VJ’eg (3.20)

its second fundamental forms, with e, the basis of the tangent space of Z, e;" the
components of

axt o0
—X —_— —e;;, (3.21)
ace 9

where (" and x§ are coordinates on X and Vi respectively. The unit vectors n; are
normal to e; and have a suitable orientation. Then two spacetimes are matchable
when the Darmois-Israel conditions

Xi*(ea) -

.
ab = Dap»

L (3.22)
Kap = Kaps
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2. Global Solution

are satisfied for a certain X. In particular, these imply that for every point of ©
there is a local set of coordinates in which the metric and its first derivatives are
continuous

Sapl. = g&ﬁ|zx

(3-23)

ayg;ﬁ - = ayg&ﬁL:_ .

These are known as Lichnerowicz matching conditions (Lichnerowicz, 1955); they are
verified on a local set of admissible coordinates when the spacetimes are matchable.

Darmois-Israel and Lichnerowicz matching conditions are equivalent in the
sense that the latter are the practical realization of the former in a certain set of
coordinates. Nevertheless, when two families of spacetimes are to be matched us-
ing Lichnerowicz matching, these equations give the conditions for the families to
be matched in the particular set of coordinates used, i.e., the family members for
which the coordinates used are admissible. Then, if some members of the exterior
and interior families are matchable in a different set of coordinates, they would
not be present in the final matched spacetime. In this sense, when dealing with
spacetime families Lichnerowicz matching conditions are more restrictive than
the Darmois-Israel ones.

Here, we are going to match the most general exterior and interior solutions
for our problem. This generality is expressed in the practice through all the free
constants in both metrics. We are then matching spacetime families and therefore,
although our primary goal is to find the fully matched spacetime, we will first
analyse the result of the Darmois-Israel conditions to ensure that we find all the
possible global solutions.

MATCHING SURFACE

Now, we are going to match the exterior and interior solutions given in the previ-
ous sections keeping all the free constants they have. First, let us start discussing
how to choose the matching surface. In a general matching of spacetimes the sur-
face, along with its embeddings, is actually part of the solution and can not be
given beforehand without risk of losing generality (see Mars et al. (2007) and Mars
and Senovilla (1998) for a discussion of this topic). In our case and in stellar model
building, X~ is uniquely characterized in V" as the locus of points where p = 0 and
it is the only relevant matching surface. The zero pressure surface r = ry(0) of our
interior metric is defined implicitly by the equation i(r, 0) = {5, (see [3.3]). There-
fore, we may write

Lo={t=1,¢=¢,r=ry(3),0=9). (3:24)
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3. THE LINEAR EOS soruTtion

where {7, ¢, 9} are coordinates of X.

To simplify the resolution of the matching, we are interested in using a com-
mon expression for 2 and X~ in terms of the interior an exterior coordinates, that
is to say

It ={T=1,® =g, Ry = r(9), Oy = 9)), (3.25)

{T, D, R, B} being coordinates in V. This assumption implies no loss of generality
if we prove that the coordinates that verify the above equations for £~ and X*
belong to the class of coordinates we use to write the metrics. Then we can go
along with the matching using the expressions for the interior and exterior metrics
we got in the previous sections.

Let us set up the problem. The following expression for X*,

t={T=1,®=¢, R=R(E),0=00). (3.26)

is well suited to the symmetries of the exterior field and how they have been im-
plemented in the metric (3.17). Coordinates T and @ are adapted to the Killing
tields, and they have been chosen to ensure that the metric tends to the flat metric
in standard spherical coordinates at infinity. They are unique up to an additive
constant we can set equal to zero. On the other hand, coordinates R and © are
not completely set. Any pair of functions F(R, ®) and H(R, ®) leading to a set of
Cartesian-like harmonic coordinates

X" =F(R,0©)cos D, (3.27)
Y’ = F(R,®)sin ®, (3.28)
Z =H(R,0O), (3.29)
defines implicitly a couple of new coordinates by means of these two equations
R’ cos®’ = F(R, ©), (3.30)
R’ cos®" = H(R, ©). (3.31)

Nevertheless, we must impose some conditions on the two functions in order to
preserve the good behaviour of the coordinates at infinity, namely

F(R,0) - Rsin®, H(R,0)— RcosO. (R — o) (3-32)

This freedom is actually included in our metric (3.17) by means of the constants
Ay, Ay and B;.

The harmonic condition requires F (and H) to be a solution of a second order
elliptic equation. If we add to the boundary condition at infinity mentioned above
this other one on X,

F((Rx(9),0x(9)) =rx(9)sind, H (Rx(9),0x(9)) = re(9) cos 9, (3:33)
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2. Global Solution

we get a Dirichlet problem. We assume by now that it admits a solution. We will
later show that this is indeed the case, at least up to the order considered, since
we are able to find a solution of the Lichnerowicz matching in these coordinates.
The equation of the surface X* in the new coordinates (we drop out the primes)
can then take the form we want, eq. (3.25).

There is another problem which should be mentioned here, even though it
has no consequences on the equation for the matching surface itself. It has been
pointed out that coordinates T and @ can not be naively identified with t and ¢
on the matching surface as we have done in the precedent paragraph (Mars and
Senovilla, 1998). Anyhow it can be done by making a suitable linear change t = at’
and ¢ = ¢’ + abt’ preserving the regularity of the symmetry axis.

In order to make such a change compatible with the approximate interior met-
ric (eq. [3.14]), we have to assume an expansion of these two constants in powers
of A as follows

a=1+0), (3-34)
b= OAY). (3-35)

The first one and the lack of a @O(1°) term in b just take into account that the starting
point of our approximation is the flat metric; the reason behind the semi-integer
expansion of b is that under this change the angular velocity of the fluid reads
@ — b, and within the CMMR scheme this quantity must be of order ©(A?). These
infinitesimal expansions actually do not keep the structure of the interior metric
because g;,,, contains a O(A'2) term proportional to b which is absent in 8 (that
starts at O(A%?)). It does not matter. The matching sets it equal to zero because
the component g7, can not have a O(1'/2) term unless it violates the asymptotic
conditions on the coordinates. Moreover, the rest of the contribution of 2 and b to
the metric in the new coordinates can be absorbed into the free constants m, a,
and j;.

We actually think that the choice of t and ¢ discussed above has already been
considered in the CMMR scheme from the very beginning. Dropping out a O(A"?)
in g, at the linear level of the approximation is a way of choosing the inner coor-
dinates t and ¢, and also the angular velocity w in a sense, since we assumed g7,
to be proportional to w in eq. (2.58).

These kind of assumptions are meaningful in a perturbation scheme but they
cannot be easily implemented in an exact matching problem. The continuity of
the Killing fields on the surface matching used in Mars and Senovilla (1998) is a
smart reasonable assumption to make an exhaustive use of the symmetries of the
problem. The arguments sketched above show how this point of view has not
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3. THE LINEAR EOS soruTtion

been forgotten in our scheme. Therefore, we can argue that our approach is in
accordance with it.

Lastly, let us simplify a little more the matching process by introducing an
ansatz for the explicit equation of the surface. Being this an axisymmetric prob-
lem, the zero pressure surface can be expanded as a power series in Legendre
polynomials, and the reflection symmetry allows us to rule out every odd degree
term in the expansion. Coherently with the assignment of dependence on Q) we
made for the approximate solutions of the homogeneous linear Einstein equations,
we have then

re(0) =1, {1+ Q% [¢o + ¢, Pa(cos O)]} + O(QY) (3:36)

where ¢, are constants expandable in (A, () to be determined while matching.
This, which is the original ansatz in CMMR, is also coherent with the kind of
expression we need for r to solve the implicit equation y(r, 0) = ¢y, of the surface.

DARMOIS MATCHING

First we impose Darmois-Israel conditions on the surface (3.36) to match {V", g~}
and {V*,g*} up to O(A%2,(33) in the metrics. They are satisfied when the constants
associated to the multipole moments are

My=1+A [% + g + % + %QZ (4- n)] +O(A%,QY), (3-37)
M, = —% +A (—% + % - i—;) + 012, Q?), (3.38)
]1:g+%2+A[a0+§—§+%+Q2(5—20—§—Z+%)]+(9(AZ,Q4), (3.39)
Iy = —; + A (—‘%0 4 411}7711 - %) +O(12,Q2), (3.40)

while their interior counterparts take the values

3 9
o =3+ A [:—mo + Z” e (1 - g)] +O(A2,Qb, (3.41)
3n 29
= — — - _ - 2 2
my = 1+/\( ag + 2b, m 35)+(9(/\,Q), (3-42)
2 n 49 4ag 5n 289

=24 — 4 =y 0220 sy, - 2 OA2. O4

I + 3 +A a0+2+5+ (3 + 2b, 14+105)+ (A%, Q%),
(3-43)
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) 4ay 12b, 3n 326
= —— /\ _— 2, - OAZ,QZ )
jp==7+ ( 7t == 245)+ ( ) (3.44)

and finally, the exterior gauge constants are

3a3 237 220°
Ag=ag+A (220 _3q — 220 _ +0O(A2,QY, :
agn 743 1394 383
Ay =0 2+A(07 T g+ T g, 4 %) LOU2,02),  (3.46)
ay agn  3a3  25aq 7 2 2
Bo=—4+b, +A-22  Z9 _20 3, — 2+ O(A2 Q2. .
) > + by + ( 7 + 3 11 3 ) 5 + ( ’ ) (3 47)

The matching surface on which the matching conditions hold is

5 3a 51 10
Ny = 1+ Py(cos 0)Q? [_6 +A (—72 thy+ oo+ i)] +O(A2, Q4. (3.48)

These results require some comments. Here, the only free parameters are a, a,
and b,, (which, as already mentioned, parametrize changes of harmonic coordi-
nates in V"), ry (which depends on the size of the source but also on the coordinates),
€0, @ (Which are part of the definitions of A and Q) and the EOS parameter n1. Then,
for a fixed set of source parameters

s:={n, €y, w) (3-49)

and 7,,> the interior metric that can be matched is unique up to changes of coor-
dinates. Since the asymptotically flat exterior of a certain source spacetime in ro-
tation is unique (Mars and Senovilla, 1998) then, given a set of source parameters
s and r,, there is only one possible global spacetime, i.e., only a couple of met-
rics (g—, g+) among the families g~ and g* give spacetimes that can be matched.
Nevertheless, this could seem contradictory with the apparent fact that the value
of mass and angular multipole moments depend on the value of a4 as egs. (3.37)
to (3.40). This apparent dependence happens because these constants are not the
only gauge dependent quantities in the expressions. There is coordinate depen-
dence hidden in A, which, unlike (2, depends on 7.

This problem can be solved finding their expression in terms of physical vari-
ables because they are gauge invariant. A convenient way of doing it is using the

2Note that r; has been excluded from s because of its coordinate dependence. It contains infor-
mation necessary to fully characterise the source, though.
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3. THE LINEAR EOS soruTtion

mass monopole moment M to redefine 1. In CMMR, A is defined as A := Fepr?
so that .
My = - lim >gi,r* = ArsMy (3.50)

and My = 1+ O(A) reflecting the fact that A and r; were chosen to reproduce
the Newtonian mass of the source. Now, if we define {1, r{} to give the general
relativistic mass monopole moment M, and keep the same relation between them,
ie.,
4
X = e, (351)
A'rl = M,, (3.52)

inserting eq. (3.51) into eq. (3.52) and using the expression of M, (3.37) to find
M, = Ar,M,, we obtain that

2in 14 2
r = nll e V1 3 Ot
A= /\(1 +/\{a0 + 3 |5 + 5 + 150 4 n)]}) + O(A°,Q%), (3-53)
, ap 1|n 14 2 5 ~d
rs—rs(1+)\{2+3[5+ G +150 4-n)|p|+ O, Q%). (3-54)
Using these changes,
My =1+0(1"?) (355)

as required and the dependence on the gauge constant a, of the multipole mo-
ments M,, J; and J; disappears. In this way, the set of parameters to completely
specify the interior would become €, 1, @ and M,.

This procedure can be followed as well using the central pressure p, instead of
M to characterise the interior as is sometimes done in astrophysics.

From the O(A?) metric we can obtain the pressure up to the next order

L= (-3 + [2427 4 P (243m) P

6 9 9 6
+/\3(§+gn+3a0+3m0+n2(—3—3n—3a0—3m0)+(g+§)q4

17n . .
+QZ{—1— 10 - 2ag + 4j; —4m0+n2(2+3n+2u0—4]1 +4m0)

13 3
+ ( -1- —1(1)1)774 + 172( -n—2ay + 4j; —4mgy + _nzmz + 3m0m2)
62 10n 18m 15nm
4 0c YR _ 2 2 4 4
iy (35 + -9 - — - )]Pz}) LO04QY  (3.56)
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and its value atr = 0, p,.

p
8;2 /\2(3 202)

J[6 on N ,
+ A §+€+3a0+3m0+ﬂ —1—W—2a0+4]1—4m0
+0OAY0Y. (3.57)

Using the Darmois-Israel matching results it is reduced to the form

Pc 2 = )2 2y, 3|2, 9 2 17n 4 4
oori=1 (3-20%)+A [5 +g+3aO+Q -5 =~ 20| [+ 0%, Q%) (3.58)

and now, using the definition of A, can be rewritten as

402 2 3n 17 3 n
—+ == A+ A% ag+ — + — + Q= — = ||+ O3, QY. .
Pe (360 eo) [ao 5 5 (5 6)] ( ) (3-59)
Next, defining the coordinate independent parameter
2 2, 4
AN:i=p.— 1+ 07|+ 0O(Q%). (3.60)
€0 3
eq. (3.59) leads to
3n 17 3
A:/\{1+A a0+€n+g+ﬂz(g—g)}+(9(/\3,Q4), (3.61)

Keeping a relation of the form of eq. (3.51), the associated radial coordinate changes
as

rA:r0{1+/\ %+E+%+Qz(%_%)
Again, as one expects, with these changes the expressions for the multipole mo-
ments become manifestly coordinate independent.

Thus, with these last results, the exterior (3.17) and the interior (3.14) with their
constants taking the values in egs. (3.37) to (3.47) give the most general approxi-
mate family of global asymptotically flat solutions for the kind of source studied.
Each of its members characterized only by the values of {1, €y, w} and r{, or r that,
with the first three fixed, depend only on M, and p,, respectively. Additionally,
they also point out the behaviour one intuitively expects as a generalization of the
theorem by Rendall and Schmidt (1991), i.e., that for a stationary axisymmetric
singularity free compact rotating perfect fluid, its asymptotically flat exterior is
unique once the EOS, central pressure and rotation speed are fixed.

} +0O(A%, Q4. (3.62)
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3. THE LINEAR EOS soruTtion

LICHNEROWICZ MATCHING

Now we impose Lichnerowicz conditions. The O(1%2, %) metric is then matched
in the global set of coordinates when its multipole moments and {rm,, j;} constants
take the values

14 8 2n
My=1+4 (2 - 2|+ 002, 0 6
0o=1+ [5 5t (15 15)] ( ), (3-63)
1 n 37
M, = ok A (E - ﬁ) + O(A2,Q2), (3-64)
2 @ [2n 16 176 3n
Sy [ Pt ¢ Y2 (e O(A2, 0%, 6
h=g+75+ [35 7 (105 35)]+ (%) (365)
1 (1n 4%
- __ - ZQZ
Js==7+ (441 735) O~ ), (3.66)
3n 9 2 2 4
m0:3+/\ Z+§+Q (1—5) +(9(/1,Q), (367)
31 29
my = ~1+ A (—ﬁ - £) +O12,02), (3.68)
2002 n 49 289 5n
e B | LYot Y el | IO L e .
=2 +/\[2+5+ (105 14)]+ 209, (369)
2 31 326
= —= + A|-— - — | + O(A2, 2 :
B==7% (49 245)+ (A% ), (3:70)

and the coordinate-parametrizing constants are

47 0?2 2002
AO 35 (2 + ?) + O(Az O ) ag = A (7 + T) + O(Az, 04),
41 86A (3.71)
Ay =——+0(A%,0? = +O(A?, O?
2 3 +0(A%, (), 2="705 (A%,0Q7),
B, = O(A2, ?), b, = O(12,Q2).

The value of these parameters is unique for each set of parameters {n, €;, w, 7}
and verify the relations obtained with Darmois-Israel conditions as is to be ex-
pected. Nevertheless, it proves the existence of a harmonic and asymptotically
Cartesian global system of coordinates up to the approximation order considered.

In spite of the attention drew to Darmois-Israel matching before, it is impor-
tant to remark that the real focus of the approximation scheme is the obtention
of totally matched spacetimes in the sense that even the gauge constants are fully
fixed and the Lichnerowicz admissible coordinates are found. In fact, only Lich-
nerowicz conditions were used in Cabezas et al. (2007) and Martin ef al. (2008)
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3. Petrov classification

although the generality of the results in them can be verified with the same tech-
niques used here. Besides, one needs the fully matched spacetime for many practi-
cal purposes, as for example to compare with numerical results for stellar models
built using global coordinates, as we will see in Chapter 5

3. PETROV CLASSIFICATION

We will now analyse the possible Petrov types of the unmatched interior metric.
They are given by the possible Jordan canonical forms of the Q“ P matrix—which is

symmetric and tracefree in an orthonormal cobasis—defined from the Weyl tensor
Cys as

Qo‘ﬁ = (Ca?tﬁy + i*CaAﬁy) ok = CAyUAU”, (3.72)

where % denotes the left Hodge dual and v* is a unit timelike vector. We use u' = 0
for simplicity. A full reminder of the Petrov classification in the form we use here
appears in Appendix D.
This Q,p matrix can be directly calculated from C using the timelike unit vector

v = (1/,/—gt )d; since the contraction Caﬁyévﬂv picks out the fourth 3 X 3 element
of C g as can be seen from the definition of the 2-form cobasis (D.15) and then we
have

+ -1(0 0

Capyottu® = —( ) —Q (373)

o g \0 -Q) gy~

where Q,, contains the components of the Q matrix expressed in the coordinate
cobasis. Thus, we have to solve the eigenvalue problem

QupVF = eV, = eg,gVF (3.74)
or equivalently
(Qus — egap) VP = (@ - 0 v* =0. (3.75)

When studying Petrov types one generally chooses an orthonormal cobasis at a
point what makes the components and structure of Qup and Q“ P be the same

N )
=10 Q) (3.76)
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3. THE LINEAR EOS soruTtion

If one does not use an orthonormal cobasis this is not true in general. In the par-
ticular case of a metric with Papapetrou’s structure, we can compute Q and see

00 0 0 0 0 0 Qf
_ 0 er Qr@ 0 a 0 er QrG 0
Qaﬁ = 0 QQr QQ@ 0 — Q B ~lo Qer QQ@ 0 . (377)
0 0 0 Qu o 0o o Q%

The only possible Jordan canonical forms of Q% at each point must still be those
of a 3 X 3 matrix though, completely irrespective of the kind of coordinates we
use. This can be made apparent in this case considering the following. First, we
rearrange components of Q% so that

0 Q, 0 0
¢
0 Q% 0 0
Q% = ¢ (3.78)
B 0 0 er Q?’Q
0 0 Q% Q%

and it is clear that the eigenvectors of the {r, 0} subspace are orthogonal to those
of the {t, ¢} subspace so we can analyse these subspaces separately. Considering
the {t, ¢} box, it can only be similar to the Jordan canonical forms

0 1
when Qf, #0

if O? =0: .

if Q' 0 o hen0r o (3.79)
00 ¢~

if Q7 #0: (O 97;] (3.80)
0 QY

Since the inverse of a metric with Papapetrou’s structure has also Papapetrou’s
structure, the components of Q% = g% Qup are

Q'y =8"Quo = 8"Qip + 8% Qo = 8% Qo (3.81)
quqb — g(X(PQaqb = 8t¢Qt¢ +g¢¢Q¢¢ = g¢¢Q¢¢ , (382)

i.e., for an axi-stationary metric Q' o = 0 only when Q% o = 0. Hence the only
possible Jordan form of the {t, ¢} subspace is

f ny v lu fQ ( 8)
Oor a alue o .
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3. Petrov classification

and then, the classification of eq. (3.78) is equivalent to the one of

(@ Qp 0
Q= Q% Q% 0, (3.84)
0o o @

that keeps the greatly simplifying property of possessing two orthogonal blocks,
so that we can write all its possible Jordan canonical forms as

e a 0
Jo=10 & 0}, (3-85)
0 0 &3

with a = 0 or 1, the latter being a possibility only if ¢ = ¢.
The eigenvalues ¢; and ¢, of the r-0 subspace are degenerate iff the discrimi-
nant of the roots of its characteristic equation is zero, ,

(@, - Q%) +4Q75Q% = 0 (3.86)

which using the traceless property gives
r Mo r Mo 1 o 2
Q/Q% - Q% - (Q%) =0 387)
The condition for either ¢; or ¢, to be degenerate with ¢35 = Q(Z) is

Q,Q% - QeQ% +2(Q%)? =0, (3.88)

that has the same expression as eq. (3.87) switching the numerical factor. The
structure of Qij, see (3.84), allows the following possibilities.

1. First, no degeneracy at all. This is the general case and corresponds to Petrov
type I, whose Segre symbol is {111}.3

2. The second, degeneracy in only two eigenvalues. It can come from eq. (3.87),
in which case it can lead to types D —Segre symbol {(11)1}- and II —{21}-, or
from eq. (3.88) that can only give rise to type D because from the structure
of (3.85) we see that the degenerate eigenvalues would then belong to or-
thogonal subspaces.

3In a Segre symbol, each number gives the dimension of one of the invariant subspaces. Num-
bers associated to subspaces with degenerate eigenvalues are written inside parenthesis.
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3. THE LINEAR EOS soruTtion

3. Last, three degenerate eigenvalues, what happensif both eq. (3.87) and (3.88)
are fulfilled. This can lead only to types N —{(21)}-and O —{(111)}-since type
III {3}~ is directly excluded again by the form of (3.85).

We get the following conditions on the metric parameters (in which the trivial
case A = 0 is not considered) extracting from (3.87) and (3.88) the relevant infor-
mation up to this order of approximation.

We will first analyse the general rotating case separately from the static case
for clarity. The relevant condition eq. (3.86) for €1 = ¢;, even considering only its
terms up to O(A3, ()

372

25¢8
X {5my(n — 1) [4P,5(cos 0) — 1] — 108} + O(A72, Q%) =0 (3.89)

) 54r
—1/\5/203%7112& (cos 0) + A3Q2? X

can not be satisfied everywhere unless Q = 0 and therefore we cannothave ¢; = ¢,
degeneracy out of the static case. The conditions for the other possible degenera-
cies €1 = &3 Or €, = €3 are given by eq. (3.88), that yields

3 1p (cos 0) — 1] [5rmp(n — 1) + 18] + AT 18
25,8 1 2" 2 ' 17517
x [Py (cos 0) - P3(cos )] [2 (355 + 3) (1 — 1) + m(23 — 14n)]

+0O(A, QY =0. (3.90)

_ /\3()2

They are satisfied in the static case and, if QO # 0, when the constants of the metric
verify
I 18 and i _ 3(n+8)(8-5n)
27 5(1-n) B= T s o1

which can never be satisfied in the constant energy density case.

Concerning the static case, equation (3.86) gives conditions different from
eq. (3.89). They are satisfied only when n = 1, while the other degeneracy possi-
bility condition (3.88) is always verified. This can be seen straightaway from the
form the Q' j matrix takes

(3-91)

12 (2= 00
Qi=zz# 0 1-n 0 [+0(1%) (3-92)
s 0 0 1-n

as well as the fact that the only possible Petrov types are D (n # 1) and O (n = 1)
as must be the case for a spherically symmetric spacetime (Stephani et al., 2003,
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p- 228). The condition on n for type O is expectable since any conformally flat
perfect fluid solution with our symmetries must be Schwarzschild’s interior solu-
tion (Collinson, 1976). From the equations (3.86) and (3.88) alone one can not say
whether this behaviour will endure further approximations because extra condi-
tions could impose a more general Petrov type, but these theorems on spherical
symmetry and constant energy density give a strong hint about its endurance.

Therefore, collecting the results together from the rotating and static cases, we
conclude that

¢ An invariant subspace of dimension 3 for the eigenvalue problem, which
would lead to Petrov type III, is ruled out by the structure of Q associated
to the Papapetrou structure of the metric. From our perturbation theory
results, we see that the only option for a bidimensional invariant subspace
appears in the static limit, where its existence is forbidden by the fact that
the spherical symmetry associated imposes types D or O. Accordingly, the
Q matrix of our interior spacetime is always diagonalizable.

¢ In general, the Petrov type is I. Out of the static case, it will only be type D
when eq. (3.91) are satisfied provided n # 1. In the static case, it will always
be type D unless n = 1, in which case the Petrov type is O. Then, the constant
energy density case can only be type I (Q2 # 0) or O (Q = 0).

It could be argued that our approximate results do not necessarily hold for exact
solutions. Nevertheless, as long as an exact solution for the source we work with
exists, a series development of it following the CMMR approach must lead to our
results. Because of this, while any property compatible with a truncated series
development is not necessarily a property of the exact solution, a behaviour ruled
out already in the truncated solution can not be a property of the hypothetical
exact solution.

4. SOME IMPLICATIONS

Besides any theoretical result we can extract from it, a key point is knowing when
this linear EOS metric gives a good approximation for a specific problem. Its range
of applicability is given by the set of values (r;, tiy, @). The parameter A will be
small whenever r; or 1 are small enough. For €, small values w are in principle
required, but the greater A is, the higher @ can be. This comes from the fact that
a strongly gravitationally bounded source deforms much less with rotation than
a lightly bounded one. We will focus deeply on this topic on Chapter 5.
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3. THE LINEAR EOS soruTtion

We make now some connections with known exact solutions and possible fu-
ture ones. It has long been suspected that the Kerr metric can not represent the
exterior of any stellar model. We can easily check that it is indeed the case here
using the kind of analysis that appears in Cabezas et al. (2007).

The first three Kerr multipole moments are (Hansen, 1974)*

Mgerr =m, H(err = ma, M12<err = —ma?. (3-93)

If our two first multipole moments were equal to the Kerr ones, MK should have
the expression

MEe™ = m = Ar,My i = _(Aa/ Qrih)? __ AZQZ,,_%E
%(err = ma = /\3/2(21”3]1 ArsMy ’ My

i.e., the first A-order component of M, should vanish. This in in contradiction with
eq. (3.64) and hence neither our interior nor any exact metric of which it could be
an approximation can be a source of Kerr.

Now we focus on the Wahlquist family of metrics (Wahlquist, 1968). That is to
say to a stationary axisymmetric rigidly rotating perfect fluid with EOS € + 3p =
const. and Petrov type D (Kramer, 1986; Senovilla, 1987). In the non-static case, the
conditions for Petrov type D for our interior family are given by eq. (3.91). Then,
in the case when n = -2 and eq. (3.91) is satisfied, g~ is of type D and our interior
is an approximation to the Wahlquist family.

It must be noted nevertheless that, despite the fact that Wahlquist’s family is
a subcase of our general interior solution (as must be expected), the values m;,
and j; imposed by the matching with the asymptotically flat exterior do not satisfy
eq. (3.91). Then, we recover and give an independent derivation of the known
result that, within perturbation theory, Wahlquist’s family can not correspond to
an isolated source (Bradley ef al., 2000; Sarnobat and Hoenselaers, 2006).

A last comment. If one looks for stationary axisymmetric perfect fluid solu-
tions with a static limit as candidates to represent the interior of a stellar model,
considering the Penrose chart of how a certain Petrov type can lead to another
through degeneration, one should then only take into account those metrics whose
Petrov type can lead to the types D and O corresponding to spherical symmetry
(Senovilla, 1993). A type N, rigidly rotating perfect fluid with barotropic EOS and
€ +p # 0 can not be axisymmetric (Carminati, 1988), therefore we must discard
types Il and N, but all the rest should, to the best of our knowledge, be considered.
It seems reasonable that a type II exact metric with the properties we demand can

4Here m stands for the Kerr mass parameter.
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be approximated by our solutions. Nevertheless, the Petrov type Il is not included
among the possible types of our general interior metric and hence, we conjecture
that there is no stationary axisymmetric rigidly rotating perfect fluid metric with EOS
€ + (1 — n)p = const. of type II possessing a static limit and a surface of zero pressure.
This is in accordance with the weird fact that, even dropping the demand of zero
pressure surface, it has not been found any type II exact interior metric suitable to
be part of a stellar model, while the harder field of type I solutions is not empty
(Senovilla, 1993).
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Chapter Four

An approximate Wahlquist solution from the
CMMR linear EOS metric

The question we try to answer in this chapter is whether or not we can include an
appropriate approximation of the Wahlquist solution in our family of approximate
solutions for the linear EOS (which we will generally call CGMR" from now on)
There are two ways to answer. One of them is asking our n = -2 solution to
be of Petrov type D, since a metric with its characteristics and this Petrov type
must belong to the Wahlquist family (Senovilla, 1987). The other way is finding a
coordinate change to make them to coincide.

Regarding the first one, we have already verified that our solution can take
Petrov type D in Chapter 3. Some of its free constants are then fixed and we have
found their values do not coincide with the ones they are forced to take when we
matched our interior solution with an asymptotically flat exterior solution, as one
expects.

The coordinate change way involves writing our solution in a co-rotating frame,
and then making a series expansion of Wahlquist’s solution with py—rest-mass
density at the zero pressure surface—as post-Minkowskian parameter. When the
parameter ug tends to zero the Wahlquist solution becomes Minkowski’s metric,
what shows that pj plays an equivalent role to the one of the parameter A in our
scheme. This way is more meaningful since, in spite of any result we can get from
our approximate metric alone, there is always the question of whether our solu-
tion really corresponds to a parametric expansion of an exact metric. Working this
way we verify explicitly this correspondence.

In Section 1 we write the CGMR interior metric for n = -2 and perform the ro-
tation to write our metric in a co-rotating coordinate system. In Section 2 we give
the Wahlquist metric, write it in spheroidal-like coordinates and then write the ap-
proximate post-Minkowskian Wahlquist metric. Finally, in Section 3 we compare

It stands for the initials of the authors of Cuchi et al. (2013a), which covers the material en
Chapter 4. The present chapter contains the work published in Cuchi et al. (2013b)
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4. AN APPROXIMATE WAHLQUIST SOLUTION FROM THE CMMR LINEAR EOS METRIC

both solutions and determine the value of our constants and the relation between
1o and the rotation parameter.

1. THE APPROXIMATE INTERIOR METRIC

The main goal of this chapter is attempting to get an approximation of Wahlquist’s
metric using the CMMR approach. Since Wahlquist’s metric is only valid in a
non-empty spacetime, we will only need here to work with the interior part of the
CMMR solution for the linear EOS € + (n — 1)p = €y (CGMR) from now on. To
ease the work of comparison with Wahlquist’s metric, we will keep the notation
used for it in Stephani ef al. (2003)—which in turn is mainly adopted from Sen-
ovilla (1993)— . The only modification is the use of 7 instead of 1 to denote one of
Wahlquist’s coordinates. Also, we will work with rest-mass density parameters
U, o instead of energy density ones €, €.
To match the kind of fluid in the Wahlquist metric, first we need the EOS

p+3p = po. (4.2)

which is the n = -2 interior subcase of CGMR, what, using egs. (3.2) and (3.3),
involves these expressions for the p(y’), p(i) relations

_Hofy_¥r
2 Y2 )’
2%
For n = -2, the components )5 of the CGMR interior metric in the orthonor-
mal cobasis (2.49) are, up to O(A?, )

(4-2)

S

212 42 (5, 8\ 1
+ == {my - 125 - 4m0mZQP2—— Q?2(Zp,— 2|+ =

2
')/,,C,,GMR =1+A |:TI10 - r_ (1 szZPZ)]

5 12 32 7)"7
+ O3, QY), (4-3)
CGMR _ _j2 27 1 17 _ 3 Ok
Vo -17Q) P2 5m0m2 + — 6312 — (1—6my) |+ O(A°, Q2%), (4.4)
S

7’2
ySgMR =1+A |:mo - r—z (1 - ngzpz)]

S

56



1. The approximate interior metric

2
1
+ Azr_ (_g [185 + my + 2m0m2Q2(2P2 - 1)]

r2
172 (8 Q?[m, 134 (31 23m,
tom o — = —+ | =+ P,
725 3|2 15 \3 ' 2

£ O3, QY (4-5)
72 (1
yggMR =1+A|mg- 2 (1 - ngzpz)} + AZE (—g (185 +my + ZmOmZQZ)
2 2
R L e
r 6 12 r2
ygf)GMR _ AS/ZQZ [(]’1 _ gE) p! +]'3Q2EP%:| + 0152, Q5), (4.7)

r2 7’4 1 4
‘)/%GMR =-1+A [mO - (1 — mZszz)] - /\27_4 |:g (1 + ZQZ) - ?Qz(l + mZ)PZ
S

rS
+ O3, Q). (4.8)

Note that the original CGMR includes (9(/15/2, QS) terms as well, but we will not
work with them here. The reason will become apparent later in the chapter. Also,
and again only in this chapter, to mirror the already published formulae, we work
in 8tG = 1 units, so the value of A we work here with is

1
A= 8#075- (4.9)

With the EOS fixed, the interior in CGMR depends on nine free constants. Two
of them, r; and w, are part of the approximation parameters A and Q. The other
seven are (11, My, j1, j3, Ay, A2, bp). These arise from the harmonic expansion we
use to solve the homogeneous part of the Einstein equations at each order. The
tirst four of them are the ones that a Darmois matching fixes and choosing val-
ues for them amounts to choosing a “particular metric” from the CGMR family—
although in a strict sense, such particular metric would still be a family of met-
rics because of the free values of A and (J—. The last three parametrize changes
between the harmonic coordinates used. Here, to simplify we have taken these
purely gauge constants

ag=0, a, =0, b,=0, (4.10)

without losing generality because they are not needed hereafter. The static limit
(Q = 0) of CGMR for a certain EOS is characterised with only (r,, mg) (see Ta-
ble 4.1).
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Table 4.1: Free parameters in the CGMR interior. The last column is a subset of the previous ones.

Parameters Harmonic expansion constants Static limit

o, 1, T, @ Mo, My, j1, J3 o, 1, s, My

The constant S is defined as

2

1 Q
Yy =1+A (_5 ot %) +0O(A%, QY =1+ AS + O(A%, Q). (4.11)

This value ¢y, comes from the value of i
7’2 my )
V=1+A{——=5+—+Q

r2 s (1 AT
22" 2 32 2\ 3 2)°
Lo (Wt sme® dmg L 7t A 20 Sm
4074 4n2 8 30r¢ 2\ 3 6
|1,4 ( 67 13m2) N 72 (2j1 S5mgy  3mgmy

a\~1n _— — - = 2 2
rA\210 28 2\ 3 6 T4 )]Pz})H?(A,Q) (4.12)

on the zero pressure surface

1 m 1 . 3m
Iy =7, (1 + {(—5 + 72) +A [ﬁ (—1 + 145 - 7m0) + 3—52]} QZPZ) +0O(A2, ().

(4.13)
We have not replaced S in the expressions for both brevity and to check the be-

haviour of ¢y when we compare with the parameters in the Wahlquist solution.
These expressions for 1y and 1)y, lead to the following one for the pressure

p 1 2 1 2 21 m y
— =Mz 5+ Qs+ +5|-3+—=|P O(A%, Q%). .
o { + 3 + 31/_3 + 1’3 3 + 7 2|+ ( ) (4 14)
This solution is apparently less interesting than the Wahlquist exact solution

for the same kind of source because it is an approximation. Nevertheless, it is
more general in a sense because it is a Petrov type I solution unless

6 36
=—+0, %), j3=—+0( 1%, .
My = 2+ O, OF), s = T + O, Q) (415)
in which case it becomes a Petrov type D solution. It is worth noticing though that
when finding the Petrov type of a metric, the more special the algebraic type is,
the bigger is the number of conditions to verify. Then, while an approximate met-
ric can satisfy these constraints up to a certain order, it is possible that its higher
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1. The approximate interior metric

orders do not. Accordingly, the Petrov type of an approximate metric must be re-
garded generally as an upper bound to the algebraic speciality of its Weyl tensor
(see Chapter 3).

Another feature of the CGMR interior is that, as we saw in Chapter 3, imposing
Darmois-Israel matching conditions shows that when

my =3+ A (3+202) + O(A2,QY), (4.16)
my =-1- ;A +0O(A%,0%), (4.17)
=2+ g +A (% + %Qz) +0O(A%,Q%), (4.18)
=5~ 3h + 002, 0P) (419

the interior can be matched with an asymptotically flat vacuum exterior. There is
no known asymptotically flat exterior for Wahlquist, though. Additionally, in our
solution the parameter w = u®/u' is the angular velocity of the fluid with respect
to our harmonic coordinate frame and its vanishing leads to a static solution (i.e.,
V¢ = 0). There is no parameter in Wahlquist’s metric with these two features.

If we want to compare this approximate solution with Wahlquist’s metric we
have to start finding their expressions in the same coordinates. The first problem is
that the Wahlquist metric is written in a co-rotating coordinate system and CGMR
is not, so first we must choose between the two kinds of coordinates. Changing
the CGMR interior to a co-rotating system is straightforward doing

A0

Ts

- P+ t, t—ot (4.20)
and then in the co-rotating system the metric components are:

2
T

CGMR _
Vi ——1+/\{m0+z
S

-1+ %92 (2+ @my - 2)P2)]}

> (2 12[ 2 1
+ Az:_z {592(211 —mp)(P - 1) - 5r [1 - -2 (4 + 5(30m; - 19)P2)]}

2 23
+0O(A3, QY), (4.21)
CGMR 127 [p1 .17 2 1
VMR = —0A - Pl +A mo—]1+gg(1—Q m,) | P}
(. m
— QZE (]3 — ?2) Pé}) + O(A5/2, Q4) (4‘22)

and the other components remain unchanged. Let us remark that the y;, compo-
nent is now of order A2 instead of the order A3? it was in the original coordinates.
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2. THE WAHLQUIST METRIC

The next steps in the comparison are, using the singularity free Wahlquist met-
ric, first expand it in the appropriate approximation parameters and then make
coordinate changes to reduce it to a particular case of the CGMR interior.

The singularity free Wahlquist metric reads (Wahlquist, 1968; Stephani et al.,
2003)>

= —f(dt + Adp)*+
hih d&? dn?
2052 4 A2 12 442
ol )[ 1 e T A e, ] (423
where
N hy —hy . &2hy + A%y e
f(gl 17) . 2;—2 Azr A= CrO( hl _ hz Mo, (424)
< 1 :
(&) =1+ & + 55| & - (1 - &) P arcsin(k 5)], (4.25)
hy(A) :=1-H% - ;72 [n - —(1 + k?A#%)2arcsinh(k r])] (4.26)
and .
K% o= 5 Ho rob?. (4.27)

Here g, b, o are free constants and 7}y and c are related with the behaviour of the
solution on the axis. The symmetry axis is located at 7 = fj, where

ha(fl0) = 0, (4.28)
and to satisfy the regularity condition of axisymmetry, c must be
1 1 dh
- = 5Lk =2 2 (4-29)
c anil,. .
="l

Therefore 7, and ¢ become functions of the constants pg, 7y and b, which thus
characterise completely the singularity free Wahlquist’s solution. It is generated
by a perfect fluid with 4-velocity

w= P9 (guputuf =-1), (4.30)

*Here ¢ is a coordinate not to be mistaken with any quantity related with the stationary Killing
vector & of CGMR.
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and with energy density and pressure are given by
1 2
p = SpoB0f = 1), (4-31)

1
P=§mﬂ—ﬂﬁ, (4.32)

where we can see now more clearly that the constants b and (i are the values of
the normalization factor f~1/2
zero pressure (see also [4.2]).

Regarding rotation in Wahlquist’s solution, the full expression of the module
of its twist vector @" (A}, &) can be found in Wahlquist (1968) and its value at () =
0,£=0)is

and the energy density on the matching surface of

1
@™ (0, 0) = ZHoro. (433)

We can also get a static limit for it—Whittaker’s metric (Whittaker, 1968)—making
the change

R
&ﬁ%ﬂ&ﬂt§=aﬁ=wm1 (4-34)

and letting ry go to zero (Wahlquist, 1968) although it must be noted that this
coordinate change is singular when r; = 0.
Expression (4.33) and the limiting procedure suggest a relation between ry and
the rotation of the fluid. It is actually the case since
lim ®W =0 (4.35)
r9—0
everywhere so 7y — 0 implies vanishing rotation and should lead to a static space-
time. Nevertheless, it must be done through the limiting procedure (4.34). It is
also worth noticing that the only other parameter choice capable of giving @V = 0
everywhere is iy = 0 but it gives an empty interior.

The parameters {rg, g} will be the natural choice for us to make the formal
expansions—they do not need to be small at all—of the Wahlquist metric if we
want to compare with the post-Minkowskian and slow rotation expansions of
CGMR, but first we must find the change to spherical-like coordinates.

2.1. The Wahlquist metric written in spherical-like coordinates

Our approximate metric (4.3) to (4.6), (4.21) and (4.22) is written in “standard”
spherical coordinates—in the sense that when A = 0 the metric becomes the Min-
kowski metric in standard spherical coordinates—so we need to find a consistent
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4. AN APPROXIMATE WAHLQUIST SOLUTION FROM THE CMMR LINEAR EOS METRIC

way to write the Wahlquist metric in a set of coordinates as close to ours as possible
to begin with.

In this regard we note first that if we put yy = 0 in the Wahlquist metric (4.23)
we obtain the Minkowski metric in oblate spheroidal coordinates {&, 1}, whose
coordinate lines are oblate confocal ellipses and confocal orthogonal hyperbolas.
From these coordinates it is easy to go to Kepler coordinates {R, y} changing & =
R/ry, ) = cos x, where R represents the semi-minor axis of the ellipses, x the Kepler
eccentric polar angle and 7, the focal length. Finally we get standard spherical
coordinates {r, 0} by changing

\RZ+7r3siny =rsin0, Rcosy = rcos0. (4.36)

Moreover, the limiting procedure (4.34) from Wahlquist’s solution to its static limit
(the Whittaker metric) has a similar form, in this case leading to Kepler-like coor-
dinates.

These considerations suggest to look for a change of coordinates in the Wahl-
quist metric (prior to any limit) so that the new coordinates “directly represent”
spheroidal-like coordinates. We use a heuristic approach here and start plotting
the graphs of h1(&) and hy(7) (Fig. 4.1.) We can see that these curves have the
appearance of a hyperbolic cosine and a squared sine for some values of b and k,
respectively. Taking this into account we write as an educated guess

R2 R?
mE=1+—:=1+—
7o o

{&M =R, xt: (4.37)

2
1-Iy(f) = cos? y := 2.
o

‘ ‘ ¢ —1/5/ -10 -05 05 1.0 &5"
-05 05 -0.2F

Figure 4.1: Behaviour of the h;(&) and h,(f) functions for k = 1.2, b = 1and k = 1.248,b = 1,
respectively.
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2. The Wahlquist metric

where we introduce R, R; just to simplify calculations later. Let us write now the
two dimensional metric spanned by {&, 7}

dy? = f1d&% + fodip (4.38)
in terms of {R{, R,}. Since
dhy dh,
dé = d di= , .
taking hy, h, as functions of R; and R,
2R 2R
dhy = —HdRy,  —dhy = S2dRy, (4-40)
"o 7o
we get
2R, \? 2R, \’
dx? = my (—zlde) + MMy (—zzdRz) , (4-41)
o o
where f f
- 2 (4-42)

T dnyage’ "2 T (dnydny

Now let us do another coordinate change to a kind of spherical coordinates
{r, 0} using the previous relations eqs. (4.36) and (4.37). Then, Ry and R, are the
following functions of r and 6

1
R; = \/E (r2 -5+ \/(r2 — 13)2 + 4727 cos? 9) ,
{erRZ} - {7’, 9} : \ (443)

1
R, = \/E( 212 + \/(rz - 13)2 + 4727 cos? 0),

and if we define the function

F=(?-7r3)?+4r’r3cos? 0,
we have that the metric (4.38) in {r, 8} coordinates
dX? = ¢, dr* + 2¢,0drd0 + gpgd0?

has the coefficients

s = 2 [VF <+ 2o Oy -
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+ (F - 2r} sin® 6 cos? 0)(my; + mzz)] , (4.44)
, 213
8ro = —sin 0@ cos Qﬁ [\/l?(mll — Myp)
0

+ (r? — 13 + 2r cos? 6) (myq + mzz)], (4-45)
474
F
Only the terms my; + my, and my; — my, depend on both {ug, ry}; the remaining
terms depend on r; alone.

Now we are going to write the full metric in terms of {r, 0}; notice that the
inversion can only be approximately done (in a series of ). First, we determine
flp up to order u3, and then c to the same order. This last series depends on b?, so
before that must determine how b depends on y. We recall that in the py = 0 limit
the Wahlquist metric becomes Minkowski’s metric written in oblate spheroidal
coordinates so

Qoo = Sin® B cos? O—(myq + 1myy). (4.46)

lim f =1, (4.47)
to—0

and hence, since b = f ‘1/2| _ 1ts series expansion must begin as b* = 1 + O(yy).
Besides, since eq. (4.32) takes the form
1
p= 5o {1l - P[1+ 0o, (4.48)

the expansion of b makes the pressure start with p ~ u2, behaving like in CGMR.
Accordingly, we are going to use

1
=1+ 5#001 + pdo, + (9(1118) (4-49)

where 0, and 0, are two new constants introduced merely for calculation conve-
nience. Inserting it into eqs. (4.27) to (4.29), we obtain for the constants 7}y and c

up to O(u)

1 1 73
flg=1+ Eyor% {1 + EW% [11 + Lo (%rg - 801)]} +0O(ug), (4.50)
ww 18 5 4
c=-1+ oMo + o (302 — 30 + O(uy)- (4.51)

Next, we invert the change of coordinates eq. (4.37), which gives

R2 1 1 37
2=_1 (1 - gyoR% {1 - EuoR% [2 — o (01 + 8—4R%) }) +O(u5) (4.52)

2
o
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2. The Wahlquist metric

A2

R2 1 1 37
= 2|14 -pugR3{1+ —uyR3 |2 - - —_R? 4 ,
n r(z)( +6H0 2{ +15H0 2[ H0(01 84 z)]})+@(ﬂo) (4.53)

And finally, by doing the coordinate change {R;, Ry} — {r, 0} we obtain the metric
coefficients up to O(u3) in the spherical-like coordinates desired

5 3
72 ol B0 [T 12 (e oo\ 2 _2y2
+E(r0—r) +% ?[r0(5r0—7r)cos 6?—7(r0—r)]

2
+ 450,12 — 13 sin” 6) + ;—2(1’% —12)(85r2 —

42 1}
y)’)f:1+%(r%—r) ‘Léo[al(r — 13 sin 9)+ro(i——0)cos 0

2813) cos? 0

L 149 3
* R Erz cos? 6} ,

(4.54)
W o_ Ho, 2 K3 r g 3 2)2
796‘1"'?(70 )+9 3 5+E_501 cos? 0 + = (r 1)
3
+ 1%’0 {01 [r%(3r2 —5r3) cos? O — 2(r3 - rz)z] — 900,73 cos? 0
2 37
+ ﬁ(ré - 12)(37r% + 56r%) cos? 6 + r%rz cos* 6 + E(r% -1?)3%, (4-55)
2.2
W = Hlogo sin 0 cos 0 { —12 =30
8
- il—g [SGl(r% - 12) + 900, — r3r? cos 62 — 5(1’% - rz)z]} , (4.56)
z 1 13 3
Vo =1+ %(r% -7?) - % {r% [al = (7r0 -5 )] 1Or%r2 cos? 0
2 T
- Er‘*} + 9—8 { [ (912 = 7r3) — r2r? cos? 0 — r4] — 45130,
149 43 11 37 1
arg - ﬁrérz - 71% - Qré - @r 2(95r% — 151r3) cos 9} (4-57)
13
7/% = —‘u06rorsm9{ (r +313) 4+ Ko 15 (1’2 - Zr%)
2

4 3
0 2y & 2 a2
+ 84(97r0 41r°) + 21r + 28r o< cos 6]} (4.58)
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2 3
Ho Ho Ho
yW=-1+ Z(r% -7r?) - 130 {(1% -7r2)? - 41’2r(2J cos? 8} + % {(1% -7 X

4 3
X ﬁ(’% O ﬁrzr(z) cos? 9] -0 [(1’2 - r%)2 + 1’21% cos? 6]} . (4-59)

3. COMPARING THE APPROXIMATE WAHLQUIST SOLUTION WITH THE
CGMR SOLUTION IN CO-ROTATING COORDINATES

Now we face the problem of identification of the parameters and to perform the
final adjustments of coordinates needed to make every term in Wahlquist’s metric
and the CGMR interior equal.

To get an idea of the problems arising, we analyze first the static limit. Us-
ing eq. (4.9) and making ry = 0 in eq. (4.54) we obtain the expression for the y,,
coefficient of the static metric

21 2r?)A? (71’2 + 150 )
Wre oo A 1
Vrr(ro—o)—l—rs—z"' 5.8
and upon comparison with the corresponding static limit of CGMR
A 2r*A% 2myr?A? 241°SA?
—_— + —_
rs2  35rt 5r,2 5r42

+ O(A%) (4.60)

YGEMR(Q = 0) = 1+ mpA - +0O(A%  (4.61)

we can see that there are discrepancies among 7 terms in the sense that they can
not be made equal adjusting parameters. To some extent this was to be expected
since CGMR was written in coordinates associated to harmonic ones and no such
condition has been imposed on the Wahlquist metric. In this particular case, the
two metrics can be rendered exactly equal with a change of radial coordinate in

Yap(ro = 0)

) 214 9¢28
r—r [1 + (—% - 5]"3 )A2:| + (9(A3) (462)

and making mg = 0, o1 = 72S.

3.1. Adjusting parameters

We go back now to the non-static case. If we compare the lowest order term in g,
and gy of both solutions—eqs. (4.21), (4.22), (4.58) and (4.59)—we can see that the
relation between A and p is (4.9) as expected and the constant Q) of the CGMR
solution must be related with the ry constant of the Wahlquist metric as

K r,Q
ro = —Ts/z (4.63)
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3. Comparing the approximate Wahlquist solution with the CGMR solution

with « a factor to be determined later on. If we perform this identification we
get to a new difficulty because Wahlquist’s solution has A-free terms with (2 de-
pendence. These terms appear associated with powers of pyr3 (or k2Q? using eq.
[4.63]). This is not possible in our self-gravitating solution building scheme. This
issue can be solved using the remaining freedom in time scale and {r, 8} coordi-
nates. The changes we can do are>

=T (1+ poFy + 3Fa + ), (4.64)

= R[1+ 19G1(R,©) + i3Ga(R, ©) + -,

(4.65)
0 = © + 1o sin© [H (R, ©) + tgH(R,©) + -] ,

with F; constants depending on the parameters and G;, H; undetermined func-
tions. Imposing vanishing of these unwanted terms, we get the time scale change

2 2 2
_ Ho'o 1porg 73440’ 4
t_T{1+ 5 [1+ 120 (1+ 303 + O(1p) (4.66)

and the {r, 0} changes

2
— _ Ho'o #Oro 41 2 Horg (191 o2 4
r= R{l B (1 + — 3 [40 cos“ O + ( cos- @ +O(up), (4.67)

2,4 2
6=0-"06n0c0s0 (1 + m) + Od). (4.68)
36 10

Note that the symmetry axis for the old coordinates is located at 6 = 0, 7w and due
to the presence of the sin © it remains at © = 0, 7. We will maintain this condition
for all the coordinate changes of the 0 coordinate.

Now, we introduce these changes in our last expression of Wahlquist metric
obtaining up to O(u3)

7 R? (4
)/IVQ%=1—%R2+y%{%1{4+%1{2+#[10 (3c052® 1)—Zsm G)]}

17 1 1 7
n R4 = 2 2 + RZ 1-2 2 .
u3r3 [42 (20 g €08 @) > —sin*@© 5 ( 108 @)], (4.69)

) 242 1 o 4
YWy = —sin© cos @% [01 + ng + Uo (302 - ZlRZ 45R4)] (4.70)

3Here R is a totally new coordinate not to be mistaken with the one used in eq. (4.36)
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1 1 15
Yoo =1~ %RZ + Ey% {R4 + 15 [RZ (cos e + E) ~ 501 cos? 6]}
3
0

+ =
2

1 74
r% [g—(l)Rz (4 + 3 cos @2) + ER4 (1 ~ 5 cos? @) — 0, cos? @}, (4.71)

2
1 1
ygyd)zl_@Ru@{_Ru_rg

RZ
E(C”cos@z -1)- 01]}

6 3 115 2
o1, (9 R*(2 19 )
+ u3rd [%Rz (5 - cos? @) t 3 (g -5 cos?®| - > | (4.72)
. rz
y}g = —%roRsm(*D{l + % (R2 + EO)
2 2
Ho o | RT 2o 103} 13
+ ZOrO[ 7 (cos ¢) 18 5 01|( (4.73)
K H5
YW= _1- ZORZ - ﬁ [R4 ~ 2r3R? (1 + 2 cos? @)]
2 R* (55
+ ygr—% [GlRZ(Z —cos? @) + I (F — 3 cos? @)] : (4.74)

After dealing with ug and ry, we have to find expressions for b and «. Recalling
eq. (4.49), we wrote b? as a series in to with coefficients oq, ;. To help with its
determination, we can give more details about 0, and g,. When b? is written in
terms of A and Q, its O(1°) terms will in general contain order Q? terms. These
arise from yr3 factors and, using dimensional arguments, we can redefine

01 — 0177 + ”%Vl (4.75)
0y — (0972 + 18y (4.76)

to make this possibility more explicit during calculations.

Now we can write the approximate Wahlquist metric in terms of our parame-
ters A and Q using (4.63). Comparing the lower terms in A for g;,, of the CGMR
co-rotating interior solution and the approximate Wahlquist metric just built, we
can determine the proportionality constant x to be a series in our rotation param-

eter Q)
2

Q
KZl_T6+0“P) (4.77)

3.2. Adjusting terms

Once the relations between the approximation parameters of both metrics are de-
termined we can obtain the expression of the approximate Wahlquist metric writ-
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3. Comparing the approximate Wahlquist solution with the CGMR solution

ten in the same parameters we have used for the CGMR co-rotating interior. With
the coordinate change in egs. (4.66) to (4.68) we eliminated terms that can not be
present in CGMR. Now, to make both solutions coincide we can use changes of
coordinates in the Wahlquist metric as long as they do not reintroduce undesired
terms. Also, we have freedom to adjust the (img, m,, j1, j3) constants of CGMR. Re-
garding the first, the remaining freedom is a change in the {r, 0} coordinates of the
type displayed in eq. (4.65). If we make this change in the Wahlquist metric

1 2
r— r{l + A2 (301 sin? 6 — Er_z cos? 9)

Ts

92 24 1 4 (13
_AZ[—r—a + r———er—(—+3300326)

} + 013, OO, (4.78)

502 ' 74 70 4\3
6 — 04 AQ?sinBcos 6 (L +3 A + O3, QY (4.79)
— sinfcosO|=—= +30; - —A— , Y, .
272 TP T 107 A 479

we get that, for the two metrics to be exactly equal up to ©O(A?, ) the free con-
stants (apart from A and Q) of the CGMR co-rotating interior must be

6
my = O(A2, QY), my = 5(1 +2A8) + O(A?, Q2?), (4.80)
= 9928 +0O(A, QY = o0 +0(A, Q?) (4.81)
= 5 ’ 7 I3 = 175 ’ 4.
and the free constants of the approximate Wahlquist metric must be
1 1
01=5, 02=0 v = > 2715 (4.82)
This gives b? as
b2 = (1+Q%)(1+2AS) + O(A%, QY), (4.83)

thus coinciding with the expansion of 2 from (4.11) if we take into account that
the term (1+Q?) comes from the change of the normalization factor over the trans-
formation of the temporal coordinate eq. (4.66) we have done. This gives a first
check of the consistency of the comparison since b is the Wahlquist counterpart of
¥r.

The final expressions for the metric components of either Wahlquist’s solu-
tion or the CGMR interior in the orthonormal basis are, up to O(A?, Q*)—and

OA2, Q%) in Vie—
8 r2 5 2 2
2 yl6s-22|p, | S,
712 ( 3r§) 2]}r§

(4.84)

PTGl PR PSS U SPY AT Liper,
L iy B 772
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31

Vio = 315)\292ﬁp2, (4.85)

_1 Ar 1 6Q2P 12 272 1895 12 12

Yoo = 27 Aa\P T 52 T 25 0T B 2

2572 1({18172

02|20 _ (== J126s)p, |V, 86
[6@ 5(3@ )]} (4.5

2 6 2 2

Yoo =1-15 (1 - gQZPZ) - ﬁ/\z {1895 - 12r—2

17 2 110 72
2 2
=2l (p!y 2 - ~pl .

yt(b rs 1 3 35 + g 35 3 (4 88)

r 2
(o
Ts

72 2 .,
ytt:_l_Ar_z 1—§Q 1+ P2

S

34 2
vl (125 + — 1 rz)Pz]}

(4-89)

To give another check of the whole procedure we can compare now with the
conditions necessary for our n = -2 approximate metric to be of Petrov type D, i.e.,
eq. (4.15). They are compatible with the values of the constants 1, and j; we have
just found in (4.80) and (4.81), as wished. Also, when matched with an asymptot-
ically flat vacuum exterior, mj, j; and the rest of the free constants of the metric
can only have the expressions we found in Chapter 3. Since the n = -2 fluid for
a type D interior does not satisfy the matched expressions, we concluded then
that it can not be the source of such exterior in accordance with previous works
(Wahlquist, 1968; Bradley et al., 2000; Sarnobat and Hoenselaers, 2006). Neverthe-
less, it is worth noting here that CGMR contains a n = -2 subcase that lacks this
problem and can indeed be matched that way. It has then all the characteristics
of Wahlquist’s fluid but Petrov type I instead of D.

Note, finally, that the Cartesian coordinates associated to the spherical-like co-
ordinates used above are not harmonic. Nevertheless, since eqs. (4.84) to (4.89)
correspond as well to the co-rotating n = =2 CGMR interior with particular values
of the free constants, undoing the change (4.20) they become harmonic again.
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4. REMARKS

In this chapter we have taken the singularity-free Wahlquist metric and managed
to transform it into the form the CGMR interior metric takes when written in
a co-rotating coordinate system. We have started from a formal expansion of
Wahlquist’s solution in (ug, 7y) and found its expression in terms of the param-
eters of CGMR, so it possesses the range of applicability already discussed for
CGMR.

We have identified Wahlquist’s parameters corresponding to A and Q of Cabe-
zas et al. (2007). Doing this, we have found an expansion of the parameter r; of
Wahlquist’s metric in terms of our Q. Accordingly, now we have an approximate
expression of rj in terms of the better characterised quantities w and p

r 0?2 6 3w? w*
___'s _ 4y — _ - -
ro = _\/XQ (1 0 ) + O(Q%) #ow (1 G ) +0 ( y% ) . (4-90)

To the best of our knowledge its qualitative relation with the angular velocity was
previously only guessed through the singular limiting procedure that takes the
Wahlquist solution and leads to Whittaker’s metric but no parametrization of it in
terms of well defined quantities had been given.

In the context of fixed EOS, this last equation, together with eq. (4.83), com-
pletes the map from the free parameters of Wahlquist’s solution (b, ry) to the free
parameters of a particular CGMR metric (75, w). Curiously, we have gained in-
sight in both sets. The role of ry as key to a vanishing twist vector and its good be-
haviour in the comparison with Q shows far more clearly than the limiting proce-
dure eq. (4.34) its relation with the rotation in the Wahlquist metric. But also, the
role of b as fundamental parameter in Wahlquist’s solution hints towards the pos-
sibility of trying to build our post-Minkowskian approximation with a stronger
emphasis on 1y instead of the coordinate dependent ;.

Last, notice that the usual interpretation of w = uy/u; as angular velocity of
the fluid as seen from the infinite lacks sense if we deal with a metric that is not
matched with an asymptotically flat exterior. In our interior though, it is still sin-
gled out by the harmonic coordinate condition. Besides, the definition of station-
arity and axisymmetry allows a change of coordinates

{t=t,¢p=0¢" +at'} (4.91)
that can modify the value of w to

’ ’

W' = ufp/ut =w-a (4.92)
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or make it zero (the case of co-rotating frames). Nevertheless, when dealing with
a family of metrics explicitly dependent on w, its value can be important. In the
case of, e.g., CGMR, we see that written in co-rotating coordinates ut//u(i,, = 0but
w is part of the metric functions and actually, o — 0 still leads to a static metric.
It is actually the only way for the module of the CGMR twist vector

2A120)
®CGMR = 2227 4 912, Q%) = 20 + O(A2, QY (4-93)

Ts

to vanish (its ©(A?, Q%) terms are proportional to @ as well). In this sense, the
characterization (4.90) of r( is meaningful.
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Chapter Five

Comparison of results with a numerical code

The CMMR scheme works on several assumptions. Among them, the most promi-
nent are:

3
1. the A expansion of 8t components starts with O(A2) terms,

2. the parametrization of the multipole moments of the exterior metric and
their associated constants of the interior in terms of 7;, A and Q,

3. the harmonic gauge is completely non-restrictive in our Lichnerowicz match-
ing, and

4. the post-Minkowskian approximation still holds inside the source.

Some of them have been shown to be non-restrictive at least up to second order
in our post-Minkowskian approximation. This is the case for items 1 and 3. For
item 2 we have given not even a partial proof. Also, one could certainly expect
that the post-Minkowskian approximation starts to crash when the deformation
of a spacetime begins to be of importance, but when should we start to mistrust its
results? It would remain a matter of rather subjective evaluation if we did not give
some error estimation or cross-checked our results. This will be the main purpose
of this chapter.

We can give error estimations easily, but provided there is a reliable set of pre-
vious results from other methods, a comprehensive comparison of results would
be far superior in terms of quantity of information that can be obtained about the
behaviour of our scheme. The ideal situation would be having at one’s disposal
some exact global metrics. This would give us the best density of information and
precision possible but, out of the static constant density case, it is not an option.
The next best option in terms of information density would be having well tested
results from other global analytic approximation for our EOS. Nevertheless, they
are not so substantially different from CMMR so as to be sure that they do not suf-
fer the same possible issues. This, united to the effort required to use other scheme
for our EOS, makes this option not so interesting. Thus, if we want a reliable but
fundamentally different approach, we are led to numerical results.
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Datta Ray

Hartle
Thorne
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Figure 5.1: Evolution of approaches and numerical codes for relativistic stellar models and some
characteristics. Green circles indicate the use of spectral methods instead of finite differences, con-
centric circles indicate multi-domain codes and light purple refers to open-source codes. Yellow
circles correspond to relevant applications.

It would also be interesting to know how CMMR behaves when going to higher
approximation orders, the rate of improvement of the results and actually whether
they show convergence or not. To answer this, we have computed two addi-
tional post-Minkowskian iterations getting the O(1%2, O%®) CGMR metric that can
be found in Appendix F. We will compare these three CGMR metrics of increasing
precision with highly precise numerical stellar models. Thus, we start selecting

one code among the several possibilities.
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1. CHOICE OF CODE

Axistationary rotating sources are fundamental in Astrophysics. In the case of
compact stars models and observation can impose constraints on the largely un-
known EOS of dense nuclear matter (see Haensel et al., 2008, Triimper, 2011, Bag-
chi, 2010, Lattimer, 2012 and references therein). The great importance of this
topics is in direct contrast with the lack of analytic results and has eventually led
to the development of several different numerical approaches to compute stellar
models in General Relativity.

The first numerical results—in the sense that they are not completely analy-
tical—for rotating stars are due to Hartle and Thorne (1968) and based on the
formalism introduced by Hartle (1967). It has been applied to several different
EOS by Datta and Ray (1983) and other works reviewed by Datta (1988). Later,
Weber and Glendenning (1991) and Weber et al. (1991) also used Hartle’s method
and eventually gave an improved version (Weber and Glendenning, 1992). Being
based in Hartle’s work, they use a slow-rotation approximation, and only resort
to numerical methods to integrate some final expressions. It has been already
reviewed in the Introduction.

But one can compute stellar models without making any approximation. Most
the codes to follow are based on the self-consistent-field approach of Ostriker and
Mark (1968). Although originally designed for Newtonian stars, Bonazzola and
Maschio (1971) made its first relativistic version, which was later improved (Bonaz-
zola and Schneider, 1974).

A different adaptation of the self-consistent-field to GR (Bardeen and Wagoner,
1971) gave rise to the codes of Wilson (1972), Butterworth and Ipser (1976) (with
later applications by Friedman et al., 1986, 1989 (FIP) and Lattimer ef al., 1990),
and finally to the one by Komatsu ef al. (1989a,b) (KEH). This last code has been
subsequently improved by Cook ef al. (1992) (CST) and Stergioulas and Friedman
(1995) to give the public domain code rns.

Three other independent applications of the self-consistent-field method are
quite remarkable. The first one (Bonazzola et al., 1993) (BGSM) was the first of
these codes to implement spectral methods. Later, it was improved to work on
multiple domains, i.e., solve Einstein’s equations on different spacetimes and then
match the results at each iteration (Bonazzola et al., 1998; Gourgoulhon et al., 1999b).
This code, called rotstar is also public domain and part of the LORENE library. A
similar approach in a different gauge (Dirac instead of the usual quasi-isotropic)
was performed by Lin and Novak (2006), resulting in the rotstar-dirac code.
The third one (Ansorg et al., 2002, 2003) (AKM) is spectral and multi-domain as
well, and has been the first code to achieve machine accuracy, i.e., 16 meaningful
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AKM KEH rns BGSM  rotstar
Pc 1
Ry/Req 07 1%x1073
) 1.411 1x102 3x10* 1x102%2 9x10°
M, 0.1357 2x1072 2x107° 9x10% 2x10*

M, 0.1863 2x107% 2x10% 1x102 2x10™*

Ree 03454 1x10% 3x10° 3x102% 5x107°
I 0.01405 2x102 4x10™* 2x102 2x107°
Zp 1.707 6x1072 4x107° 2x102 1x107°
28 -0.1625 2x1072 2x1073 4x102 2x10™*
Zeq 11.353 2x1071 7x107° 8x1072 7x107°

IGRV3] 4x107® 1x10" 3x10° 4x103 3x10°

Table 5.1: Relative errors of some numerical codes with respect to the values given by AKM for a
rotating constant density model. The quantities compared are defined in Section 4. Table obtained
from Stergioulas (2003).

digits when working with double precision programs, what gives errors of or-
der 107, Stergioulas (2003) and Gourgoulhon (2010) have made more detailed
reviews on these codes.

To choose between these codes for the task at hand, the determining factor is
precision. The main tool here is the so-called GRV3 identity. For stationary space-
times, it is the general relativistic generalization of the Newtonian virial identity
and was introduced by Gourgoulhon and Bonazzola (1994). Its value for an ex-
act metric should be zero, so any deviation from it gives a measure of the error
of a numerical code or approximation scheme. In every code its value depends
on the configuration, giving worse results at higher rotations (and especially near
the mass-shedding limit, as one could expect) but the result from AKM is con-
sistently better than any other. Table 5.1 shows a comparison of codes and their
performance for a particular configuration. Another interesting characteristic to
consider is whether the code is adapted to work on several domains or not. Since
some EOS lead to density discontinuities on the surface of the source, mono-
domain codes suffer Gibbs phenomena in the metric potentials near the surface.
Multi-domain codes were born to deal with this and other situations where space-
time matching is the natural approach, so it is another desirable feature. AKM
is multi-domain as well, and though not public domain, it is available as online
complement of a book by Meinel et al. (2008) from http://www.tpi.uni-jena.
de/gravity/relastro/rfe/, and is the code we chose to work with.
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1. Choice of code

1.1. Building stellar models with AKM

The AKM code is able to compute the metric of a stellar model characterised by
the value of two physical parameters and its EOS. These two parameters can be
any of a list including the multipole moments My and J;, baryon mass My, (it will
be later defined in Section 4.1), rotation speed w and some others. Regarding the
EOS, the code has three modes: constant density, relativistic polytrope (p = Ky,
with K and y the polytropic constant and exponent respectively and 1, the baryon
mass density) and custom EOS. To use the custom EOS mode, one needs first to
find the p(h) relation, where

€+p

Ho

is the specific enthalpy. From the Gibbs—Duhem relation at zero temperature

b= (5-1)

dp = nbdta/ (52)

where 1, is the baryon number density in the fluid frame and /I its chemical po-
tential, since

_ P
h - mb/ (5'3)

(with my, the mass per baryon) we have

1
dh = —dp (5.4)
Ho
and thus o ;
P fp P
— = —  h(p) = h(0) ex —_— .
n T erp (p) = h(0) exp o )+ (5-5)
which is integrated knowing e(p). Once inverted, replacing h for
h
H=—-1 .
70) (5.6)
leads to p(H). Finally, if we can express this relation as
N .
p=CRpH (5.7)

i=1

with C a constant and p; some constant coefficients, these p; is what the code re-
quires to specify the custom EOS.
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AKM works on Lewis—Papapetrou (LP) coordinates {g, C, ¢, t}, the cylindrical
coordinates associated to quasi-isotropic coordinates {R, ©, ¢, t}, i.e.

0=Rsin®, {=Rcos®. (5-8)

In these coordinates, the line-element of the axistationary interior and exterior
reads

2
ds? = 2 (dpz + dCz) + W2e (dgb - (I)dt) - e?vdt? (5.9)
and defining
. W e’
Bi=—, e':=—, (5.10)
0 B

it can be rewritten as
e o . 2
ds? = —B2e?dt? + 2@ (dC2 + dgz) + g%e 2t (dqb - d}dt) . (5.11)

The code obtains the four functions B, i, @, and @ which are necessary to fully
determine both metrics. It finds their values on a {g, C} grid of custom resolution
and then writes them in a file. It also gives several physical parameters of the
stellar model computed. All these results are given in an EOS dependent unit
system. It works on units where ¢ = G = 1 and the third constant is

1. €y = 1 in the case of constant density,
2. K =1 for relativistic polytropes and

3. C =1 for custom EOS

2. CHOICE OF SOURCE

Having chosen the code for the comparison, the next step is the selection of the
kind of matter to study. Its EOS must allow to get a finite expansion of eq. (5.7) and
also be a subcase of the linear EOS of CMMR. It should nevertheless correspond
to a physically interesting source. We will now look for a candidate source of
compact stars with such an EOS, but since many of the available results focus
on the more fundamental thermodynamic potential instead of the EOS, we start
reminding the relation between the two of them. Then we will review some results
for a very interesting class of sources and see to what extent they are contained in
the linear EOS.
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2. Choice of source

2.1. Thermodynamics and strange stars

The thermodynamic potentials are the fundamental tool for the thermodynamic
characterization of a system, in the sense that when one knows their expression
in terms of their natural variables, partial derivatives give all the thermodynamic
properties. Working with matter where number of particles fluctuates, e.g. the
kind of matter expected to constitute compact stars, the natural choice is the gran-
canonical ensemble, what leads to work with the specific grand potential Q. Tt
comes from a Legendre transformation of the specific Helmholtz free energy f =
€ — Ts, where € is the energy density, T temperature and s specific entropy, that
substitutes as natural variables the particle number densities #; for their chemical
potentials f1;, i.e.

Q= f- E ain;. (5.12)
i
It can be made more manageable using the relation

e=Ts—p+ Z fLin; (5.13)

to give
Q=-p. (5.14)

Fromeq. (5.14), working at T = 0 (itis a good approximation for almost degenerate
matter, see Introduction for details) and knowing Q(f1;) we can get the equations
of state p(n;) and €(n;) just doing

of €= P+ L (515)

The grand potential is thus the main focus of the research field of the thermody-
namics of nuclear and quark matter (see Kurkela et al. (2010) for a critical review
of previous computations and an modern example).

In what follows we give two examples of obtention of equations of state from
grand potentials, in the particular case of strange matter. They will be useful later
when we relate them with our linear EOS. Witten (1984) modelled SQM with the
simple MIT bag model, in which the grand potential is Q= Q(ﬁi, m, o, B), with
fi; the chemical potentials of the three flavors, m, the mass of the s quark, a, the
strong interaction coupling constant and B the bag constant. Neglecting m; and
the effects of strong interactions (m; = a; = 0), the grand potential for the ultra-
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relativistic gas of uds quarks is

3
O=>0,+B (5.16)
i=1
with
o _ h

When m; is considered zero, the electron number density n, vanishes and we
get, from weak interactions equilibrium and charge neutrality (see Haensel et al.
(2006), pg. 365), that the quark chemical potentials {; and number densities n;
verify

fy =g =fs:=0 Ny =hg ="Ns =MNp (5.18)
so that eq. (5.16) becomes

127 ﬁ"“ + B. (5.19)
and leads to the EOS (see also Haensel et al., 1986)

A

1
p= 5(6 —4B). (5.20)

With increasing value of m, the abundance of strange quarks decreases so that
the effect of neglecting 1 is less than 4% from the full calculations (Alcock et al.,
1986), making eq. (5.20) a useful simplification.

The MIT bag model is only one of the attempts to implement some of the main
features of Quantum ChromoDynamics (QCD) into the behaviour of matter. QCD
equations can not be solved as of now, and wherever the strong interaction cou-
pling constant a; is not expected to be very small (e.g., compact stars interiors),
the only option available is to work with non-perturbative models of QCD. Here
the main choices are phenomenological models (MIT bag model and others, see
the paper by Li ef al., 2011) and dynamical models and Dyson-Schwinger equation
models (Weber, 2005). Recently, Alford et al. (2005) showed that a phenomeno-
logical parametrization of the 3-flavor quark matter grand potential

QQM = —%AM}‘L + 43?142[:12 + Beff (5.21)
with Ay, Ay, Beg independent of {i can approximate several O(a?) perturbative
QCD effects.

e With Ay := 1 - ¢, quark matter made of three non-interacting flavors has
¢ = 0. Por interacting quarks, Fraga et al. (2001) showed that O(a?) results
can be approximated with ¢ with a value of order 0.3.
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2. Choice of source

¢ The quadratic I term can arise from strange quark mass and color super-
conductivity (also known as pairing). Strange quark mass increases A, and
pairing reduces it.

It is important to note that, setting A, = 0, the grand potential Qqy gives the
e(f1), p(f1) equations

NV
p=>1- c)4—7_(2y — Beg, (5.22)
3
e=3(1- 5)mﬁ4 + Begt (5.23)
and they lead to the EOS
e = 3p + 4B (5.24)

what evidences that the term corresponding to quark interactions in the approach
of Fraga et al. (2001) has no effect in the e(p) EOS.

2.2. The linear EOS and the simple MIT bag model

We are finally led to the question of what kind of grand potentials can lead to our
linear EOS metric, and what kind of source matter among the ones previously
discussed we will finally study. A reasonable first guess for the grand potential is

Q=ap"+b, (5.25)

with a and b constants, leads to the n,(f1), p(f1) and e({1) relations

ny = —an"!, (5.26)
p=-aff" —b, (5-27)
€=-a(n-1)p" +b. (5.28)
and to our linear EOS
€= m-1)p+nb. (5.29)

with nb =: ;. Accordingly, we work from now on with a source described by
eq. (5.25). This EOS corresponds to several different situations. In particular, when
n = 4, it corresponds to the simple MIT bag model of SQM (eq. [5.19]) and the
case A, = 0 of eq. (5.21). In the remainder of the chapter we will perform the
comparison between AKM and CMMR for the simple MIT bag model, but we
will give formulae in terms of (g, b, n) whenever possible.

Nevertheless, it must be taken into account egs. (5.26) to (5.28) have been de-
rived under the assumption that eq. (5.25) gives the behaviour of some kind of
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matter with only one component. Whenever we are interested in the numerical
densities n; of a system of N kinds of particles (as is the case of SQM in the simple
MIT bag model, where N = 3) or in obtaining p(1;), e(n;), we must use eq. (5.15).
In this way, when a grand potential that can be written as eq. (5.25) is actually

. Nog
Q= Z ﬁﬁ? +0b, (5.30)
i=1
then an
m= - B (5.31)

In the case all f1; and n; are equal it gives, defining I := f1;, the p(f1), e({1) relations
already found in egs. (5.27) and (5.28), but

Ny |71
=—g|-—| -p, .
p a( an) (5-32)
1
1 N n
=|-= -— Nn,)# T + b )
€ | an+a( an)] (Nn;)=1 + b, (5-33)

differ from the ones we would have obtained from eq. (5.26). The EOSis eq. (5.29)
again, since it is insensitive to the value of a.

It is worth giving two more comments. First, as we already calculated in Chap-
ter 2, the hydrostatic equilibrium of a perfect fluid leads to eq. (2.71)

dyp __dp
v ey (5:34)
and, by integration,
ol (L)
e=b|(n-1) +1}, (5-35)
v
7N
=b||—] -1f. .36
P |(¢z (5:36)
Now, because of eq. (5.1) and eq. (5.3), h and fI verify
dh dpp  dp
KR ep e (537
as well so that v ) .
f
== 38
yr RO A0) (539
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and accordingly, the dependence of € and p on these three variables is the same,

ie.
LA L): ( o )
E(le) e(h(O) “\20)’ (5-39)
LA L): ( o )
p(wz) y (h(O) Plao) (5.40)

These relations are useful to compare different calculation approaches, since nu-
merical methods usually build stellar models with a heavy focus on & instead of
our . It also allows us to directly write eq. (5.36) in the form

p=b[(H+1)"-1] (5.41)

that determines the p; coefficients in eq. (5.7) that AKM uses as input.
Last, for the particular case we will study, n = 4 so that

pr=4 p2=6 p3=4 and ps=1 (5-42)

The constant C of the AKM system of units when working with custom EOS cor-
responds to b in the linear EOS grand potential and to B in the simple MIT bag
model. In the uniform density case, the third AKM dimensional constant is ¢
instead, but since n = 1 it is again b in our linear EOS. Accordingly, we will work
in ¢ = G = b = 1 units unless otherwise stated, making explicitif b = ¢y or b = Bin
some particular cases.

3. COMPARING METRIC FUNCTIONS

Both CMMR and AKM compute all that is required to know the metric inside
and outside a stellar model source with a certain EOS. Since it is an axisymmetric
problem with equatorial symmetry, it is enough to find its value on a 90° sector.
Then, the most straightforward way to compare their results in finding the abso-
lute value of the relative difference between each metric component on every point
of that sector. Nevertheless, two limitations arise from the use of a numerical the
code.

1. First, the size of the sector computed by AKM is finite. Despite its inter-
nal use of conformal transformations to deal with asymptotic conditions, its
results are restricted to a square region with the centre of the star in one
vertex. Its size is customizable, as well as its resolution (see the next point),
so getting information about big portions of the spacetime comes at the cost
of either detail or computation time in both the AKM computation and the
comparison procedure.
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2. Next, AKM gives us the value of the functions necessary to find the 5 com-
ponents of a metric written in LP coordinates but it only gives their values
at the nodes of a coordinate grid. The number of nodes can be modified,
nonetheless.

These features condition all the comparison procedure. We must choose the squa-
re sector of the spacetime to compare. We are interested in seeing both the interior
and exterior behaviour of CMMR, but being a post-Minkowskian approximation
it will give very good results in the far field zone, so we will focus on the spacetime
inside and immediately around the source, where troubles may arise. AKM needs
the size of the sector before attempting to build the model, but it can be adjusted
through trial and error (or using data from similar models) to get the desired de-
tail on the source. Additionally, we can only compare on the grid nodes of AKM.
Hence we need in principle to find the coordinate change from our spherical-like
coordinates to LP coordinates, take the AKM grid points and evaluate CMMR on
them. Nevertheless, to build our matched spacetime on that grid we will need to
decide if a certain point belongs to the interior or the exterior, so we have will have
to resort to our surface and it is easier to deal with it in quasi-isotropic (QI) coordi-
nates. Since they are simply related by eq. (5.8), we will use QI coordinates during
the first part of the comparison. We will find the QI coordinates of each node of
the AKM grid, and we could do the same with CMMR, getting the spherical-like
label of each node of the grid, obtaining in this way the value of the metric func-
tions in AKM and CMMR for each point. However, this would require as many
coordinate changes as points in the grid so finding the expression of CMMR in QI
coordinates straightaway is less resolution dependent and it is the procedure we
choose. As a last step, from the set of grid points and relative errors on them we
will build interpolate plots to show the behaviour of the error in every point of the
sector, not just the nodes. This part requires the grids to be written in cylindrical-
like coordinates, so we will change the QI labels of the points to the LP ones we
already have from the original AKM input.

3.1. Finding quasi-isotropic coordinates

If we want to write in QI coordinates {t, R, ®, ¢} a line-element with general Papa-
petrou structure, it is easier to find LP coordinates {t, g, C, ¢}, first. To do so, we re-
quire a conformal change from its expression on the bidimensional {t = const., ¢ =
const.} planes

AP = g,,dr? + 28,drd0 + goed0? (5-43)
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to
di? = f(g, 0) (do? +dC?). (5.44)
A simple way to do it is the following. If we decompose eq. (5.44) in two factors
= f(0,0) (do? + dC?) = e(g, 0)e(0, ©) (do + idC) (do - idC) (5.45)
we see that if we do the same with eq. (5.43)
di? = g,.dr? + 2¢,0drd0 + gged6?

(5-46)

_ (@dr " gr@%de) (@d 4 810 \/7‘@61@)

where § = ¢,,900 — 8%, all we need to do is to find the coordinate change ¢ :
(r,0) > (Q 2o(r,0), C=((r, 6)) that verifies

8re T \/§ .
Q. dr + d@) @. (e(do+1dC (5.47)
(Vrr+ S 0) = . e (1 + )
do dC do . dC
— -1 2 % £ L=
=@ (e)[(z9r+1&r)dr+(86+186)d6]' (5.48)
This leads to
do . dC
— o1 = +i= =
[\/5 [ (E)(&r + 1(%)]617 0, (5-49)
got Vg (90, 9C\|
[ N @~ (e) (&9 + 10.)9 do =0, (5.50)
and from here we can extract partial differential equations on ¢ eliminating ¢~ (e)
so that 5 5 5 5
0 9\ _ _ & (90 .9C
(&’r i &r) G0 +iVE (&6 86)' (5:51)
whose real and imaginary parts glve the equatlons
gr@ 31’ \/—31’ = grr 39 (5.52)
L 4 g0 % =g, L (5.53)
8(91, 805, = 8m5g 5.53
that can be rearranged giving finally the conditions on ¢
do 1 dC dC
o g\o"ae %)
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and
ac 1 do do
or - \/§(ng or _grrge)/ .
K_1( dw_ 5540
96 = g \3%9r “8950)

These equations (their derivation can be found in Dubrovin et al., 1985) have two
good properties. On one hand, imposing integrability conditions on them so that

Jdo do d8C_8C

%ZZE% an %5_5%’ (555)
we get
1
e”b&z( —c“g) 9d) =0,
\/E C

1 (a,b,c,d=1,2) (5.56)
eabaa (_Aeajgbcad) 0= 0,
V&

respectively, where ¢ is the bidimensional Levi-Civita symbol. Because of their
structure, they can be rewritten as Laplace equations

gV, Vv, L =0, (5.57)
§"VaVpo =0 (5.58)

and hence when g,, components are analytical these equations are solvable and ac-
cordingly the systems egs. (5.54a) and (5.54b) are integrable. On the other hand,
if we take eq. (5.54a) and use it to replace the terms dp/dr and dg/dO appearing in
eq. (5.54b), we get an identity. Thus, we can find the change to quasi-isotropic
coordinates if first we find a function ((r, 0) satisfying the Laplacian equation
eq- (5.57). Since its general solution is a power series of 1 with positive (in the
interior) or negative (in the exterior) exponents and Legendre polynomials, it can
be found adjusting coefficients in a general enough ansatz. Then, we use it to build
the rhs of eq. (5.54a) and solve it to get . Because of the form of , the integration
of this differential equation is straightforward. Once we find ¢ we have finished
since, as already discussed, this set of (C, ) identically satisfies eq. (5.54b).

Using this procedure with the CGMR metric egs. (3.14) and (3.17), once we
solve these two differential equations, we get the 9(A2, Q?) change in the interior

2 2 2
o _ 20)c1 3 7 2| On 1 o1
=142 S — - =+ Q|- — — 4y + 00520 | ——= +2 ,
rsin0 1 {qZ 20 28 148 " 35 T2 TSI Tgg T2
(5.59)
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C a 3 7 437 4 512

142220 L 4 = L L 2L 4 20|—— +2

rcosg T {nZ T20 728 T 13aa T35 T 2T Tgg T2
(5.60)

and the exterior

CE 2 1 2 1 dz

=1+—=<{—+d; +Q?|- + + +
rsin 6 2 {35q ! [14173 105 3212 12

+cos 20 (—i + %)]}, (5.61)

42n3

A2 (4 1 1 2 5 d
G 5= —d +? + - + —=
rcos 6 7 |35 2 423 105n 327 1P

5 5 2,
+ cos 26 (—w + FT]Z — ?)]} . (562)

In these expression we have used the same r, 0in V™ and V' trying not to overload
notation. Also, the constants ¢y, ¢, dq, d, are not necessary for the change to LP
coordinates so we could drop them, but if we want to preserve the C! character of
the metrics across the surface, we need to impose continuity of each pair {g;, or}
and {(}, Cg} and their derivatives on the surface. From these conditions, we get
the values of the constants:

1 Q2 1
012—1—%, d1:—Z+E,

5 5 (5.63)
2= 1157 d2=6—4.

With this we have determined ¢. Together with eq. (5.8) it gives us R(r, 0), ©(r, 0),
and inverting these relations we finally have the change to QI coordinates. Its
expression inside the source is (dropping I and E subindices in coordinates where
there is no need of extra clarification), for the radial coordinate

L o142 1—?’RZ+R4+Q2 + — +c — +
R 28 96 560 1344 56 8

+ O3, Q%Y (5.64)

1 41R?2 55R* 13R2 R4
OS2
4 20

and for the azimuthal

1 N N
cos O = cos® + %/\ZQZRZ (—18 + 7R2) sin® @ cos © + O(A3, Q4. (5.65)
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With them, the line element of the t = ¢ = const. surfaces has the expression
f [(R, ®)(dR? + R2d©?) with

A 3 3 11 n\., (3 3n\.
fI(R,®)=1+/\(3—R2—Q2R2P)+/\2(12+—n ( ”)R2+( ”) 4

— + R
4 2 2 5 20
27 23 A 127 .
S0 7D S L L LR T
16 2 24 3 480 10
303  3m) 4 37 5n
—— - —|R? R4|P o3, Ot .66
+[( 70 14) +(42 14) ] 2})+ W 1) (5:66)
where P! stand now for the associated Legendre polynomials P [(cos®) and we
have introduced R = £, the equivalent in QI coordinates of 1 to simplify the ex-
pressions. The other metrlc components are

4

2 A 3 A 29 3n) .
020§ WL Fa -2 - - T | i -2
2 3 3 5 10

35 14

+ (; + ?_Z) R4]P2}) +0(\%, QY), (5.67)

. 6R® 2R 2R3
8ty = AY? (Q (ZR - ?)P% + Q8 ( 3 —Pj- 71)%))

19 n\, (34 3n\., (27 3n\.
A2 (2 + 2R+ [-Z - )R + (= + 2| R5| P
5 72 5 5 35 14

289 5n\. (8 2n\., (3 3n\,
CUEZ - Z R+ (= + Z|R® +[-2 - =) &5 P
105 14)" (1575 5

R A 9 3 . 1 3n).
oo B

1

326  3n)\ . 34 n\.
- |R¥+|— + = |R5|P} O2, O° 68
+[( 245 49) +(105+9) ] })+ ( ) (5:68)
3 3n 26 n\ . 37 3n
2 2702 2 2
ghs=1+A(3-R QRP)+/\(2 Z+(—g—E)R +(70 20)
5 16 . 193 . 517  3n) .
P02 S AL - B Bl L) U | i) -2
3 2 105 3 630 10 105 14
167 51\ ., 5
+(126 14)R ]Pz})+(9(/1,Q). (5.69)

Now, in the exterior, the change to QI coordinates is
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——1+/12——4:+Q2 L __2 +3—1
R 4R?  35R3 16R2  105R3  64R* 21R5

+( L1 1) ol +ous, 0
- = COS ,
8R%2 8R* 7R5

and

(32 —63R + 42R3)

cos 0 = cos ® — 12002 ~
336R5

sin? @ cos © + O(A3, QY (5.70)

what gives the line element f E(R, ®)(dR? + R?d©®?) with

1 28 2n\ 1 3 16 4n\1
ER,©) =1+A == 2P|+ 2 T+ ——+ === =
fHR, ©) ( 2) 5 "SRR 15 15/R

1 1 1 74 n\1 3
——+|—=+|-—=+=|=—-—|P +(9A3,Q4 71
24R2 ~ 32R* [6R2 ( 35 7) R 2R4] 2}) A2 57

and the rest of the exterior metric is

o2 16 4n 1+ 74+n 1+2
15 15 35 7)JR3 R4

41 32 4n)\ 1 4
_/\3/2 ——Qpl Q3 +/\5/2 Qll=m+=—=|=—=-— Pl
8o [5 2 3R2 7R4 7 35)R2 5R3|!
1

352 6n\ 1 2 992 221 12
{[(105 35) 3R3] 1 +[( 735+441)R 35R5] 3})

+O(A"2, %), (5.73)

Pz}) +0(A%, Y, (5.72)

2 1 28 2n\1 1 8
E _ Z_ 2 2
ng_1+/\(R R3QP2)+A ((5 + )

o2 16 4n1+4+1 4+ 74+n1
15 15 105R3  6R* 63R5 35 R3
7 zo
- ]Pz})+0(/\3,ﬂ4). (574)
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3.2. Setting up the metrics for comparison

After a successful run, AKM gives, besides some properties of the source, the line-
element of the sector of spacetime in the form

19 = -Pear + & (10 4 d7) + P (dp-0dtf. (575)

It is contained in a multi-column file where each row gives all the data correspond-
ing to each point. It is organised as follows.

 Columns #1 and #2 give ¢? and C?, respectively.

¢ Column #3 contains the value of I and #4 and #5 its partial derivatives with
respect to g% and C2.

¢ Columns #6, #7 and #8 corresponds to the function B and its derivatives,
e columns #9, #10 and #11 to @ and its derivatives and
¢ finally, columns #12 — #14 give o and its derivatives as well.

From the two first columns we can extract the LP coordinates of all the grid points.
We can obtain the value of the metric components on each of them from the rest
of the columns straightforwardly as

gu = ~B2 4 2202, (576)
St = —€20%D (5.77)
Spp = €720 (5-78)
8oo = et (5-79)
S =e€* (5.80)

Now we can focus on building the corresponding part of spacetime from CGMR.
First we take the AKM grid and change its points to QI coordinates inverting
eq. (5.8) to get the usual

. 4
R = /0% + O = arcsin —. (5.81)
/02 + CZ

Next, we evaluate the surface equation at the corresponding approximation order
at each grid point p,. If the R coordinate of the point is lower than Rz (©(py)),
we use the QI interior eq. (5.69) to find gus(p,). Otherwise, we use the exterior
formulae eq. (5.74). Afterwards, we revert the coordinates of the grid points to
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LP coordinates and find the relative error between the AKM and CGMR value of
each component g,5(p)

Sap M (pg) - 855 (pg)

gap " (pg)
Finally, we take each set of grid and relative error and make interpolated contour

plots of the data using a modification of the ContourPlot command from Mathe-
matica.

€ [gaﬁ(pg)] = (5.82)

3.3. The surfaces

To get a better understanding of the behaviour of the plots of the relative errors
€ [gaﬁ(pg)], knowing the shape and position of the AKM and CGMR surfaces is a
key step. In the case of CGMR, this points can be identified noticing where the
switch from interior to exterior metric occurs. This must be done ranging first
along ¢ = const. lines and afterwards following C = const. ones to ensure that no
point is missing, but otherwise it is just an algorithmic exercise. The AKM case is
a little different. AKM gives a file with the coordinates of the surface points (and
the ergosurface, if any), and while it is straightforward to make them appear in the
plots, they do not necessarily belong to the grid the program used to compute the
metric. Since we want to compare the surfaces mainly to give information about
the metric component plots, we need to get both of them in terms of the original
grid points. We have found no other way to do so in the AKM case but finding
the grid points lying closest to the ones in the surface file.

4. PHYSICAL PROPERTIES COMPARED

We can get more information about how well CMMR performs if, besides the di-
rect comparison of metric functions, we extract as many physical parameters from
our metric as possible and compare them with the ones AKM provides. We can
see if and how the precision obtained in the metric functions correlates with the
one in the physical properties, check which of them are more sensitive to higher
values of mass and rotation and also get estimates about the behaviour of errors.
With the calculation of these properties we will be obtaining from CMMR a kind
of information that we have not cared about before, setting up the bridge from the
more theoretical focus of previous chapters to different line of work, the analysis
of our solutions to shed some light about source models and observation.

Here we give the definitions of the physical properties that will be later used
in the comparison with AKM, along with some others that, while not being part of
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the AKM output, are commonly found in other relevant works such as Friedman
et al. (1986); Nozawa et al. (1998); Gourgoulhon et al. (1999a). We write the cor-
responding approximate expressions obtained from the O(1%2, Q%) CGMR metric
as well.

4.1. Masses, energies and moments

We start with the definitions of quantities associated with masses, energies and
momenta of the source.

92

* Baryon mass M,,. Let us define 1, as the particle density as seen by an ob-

server at rest with the fluid. Now, due to the kind of flow inside the source
we deal with,

u® =9 (& + wl%), (5-83)

the baryon 4-current in the fluid j; := n,u® is a conserved quantity (V,ji =
0). Thanks to this, we can evaluate the integral that defines the total number
of baryons in the source

N, = - f janaydxdx?dx® (5.84)
L

independently of the time-like hypersurface X; chosen. In this expression,
n“ is the unit normal vector to X; and y is the determinant of the restriction
of the metric to this hypersurface, y;; = g;;+n;1;. The most convenient choice
of X; gives

n = —/-gudt (5.85)
so that y;; = g;; and (%, 22, x%) = (R, ©, ¢). Having fixed n, in this way, we
have u“n, = -¢/-g; and then

No = [ oy, VyaRaeds (5.86)

It is worth noting that in —jyn, = y/=guny gives the number density that
would be measured by the observers following the congruence n®, that in
this case corresponds to locally non-rotating observers (Bardeen, 1970), and
Y4/=8:t is the associated Lorentz correction. With N, the total baryon mass
is defined as M,, = m;,N},, where m, is the mean rest mass per baryon that is
usually taken as m;, = 1.66 X 107 kg. This standard approach is followed,
e.g., by Gourgoulhon et al. (1999a). Nevertheless, when one is interested in
working in the units AKM uses for custom EOS, i.e. units where (c = G =
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b = 1) with b a constant with energy density units, one must first find the
value of the dimensionless 77, in

My = Ty =357 (5.87)
and this implies fixing a value for b. We are interested in giving scalable
results, and the common solution for this is to pick a reference value, b,

calculate the new value of the dimensionless part 7y with it and rewrite m,
in terms of the dimensionless ratio by := b/b,s so that

4
—rpl2  C

my, = mbb#/ W (588)
remains constant independently of the b we choose. Accordingly, the baryon
mass in AKM units My, is

—7 = M, Np. (5-89)

The presence of by is usual in models for, e.g., strange stars, but it can be
avoided if we are able to introduce the constant 1, into the problem through
a quantity expressively in terms of only c and G. Actually, this is what AKM
does. One of its input data is the specific enthalpy at zero pressure, 1(0) (5.5),
that from the definition of specific enthalpy (5.1) can be written as

€0 €0
~ up(0)  mymy(0)

h(0) = h(0)c?. (5.90)

They use it to find an alternate expression for uy, = my,n;, and integrate it to
directly get M,, as

Miy= | 43 Zapty V7RO (5.91)

This alternate expression is essentially the Gibbs-Duhem relation (5.4) that,
using eq. (5.6), they rewrite to work inside their code as

1 dp

o = n0) dH (5.92)

We can find the equivalent expression in terms of ¢ using equations (5.36)

and (5.38) so that
A
P b[(wz) 1] b[(h(@) ' (593
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94

and then

Cdp b [ R\
= i i )

B Vl_b i n-1
) (wz) / (5:94)

that allows us to give M, inc = G = b = 1 units totally free of any by to
compare directly with the AKM result.

Working this way the CGMR baryon rest-mass is

h(O)Mb=A+A2[1—7+E+(1—2—n)Q2]

s 5 5 \3 15
969 72n 3n® (403 251 8n?

/\3 e = - oy /e QZ

" [70 BT +(105 21 105) ]

4| 12997  1441n 767n%  74n3
+A + + +
210 90 525 1575
98369 1257n  2059n%  4nd
. ( n_ n n )QZ

3150 175 1575 75

+0O(1°, QY. (5.95)

We obtain the value of /(0) for the general linear EOS imposing p = 0 on
egs. (5.31) to (5.33) to get

nb [ a\Vn
0="2 (__) 96
ny(0) ~ 5 (5.96)
€y =nb (5.97)
that gives
1/n
€0 N b

h(0) = = —|-- . .98
0= mb( a) (599)
For the simple MIT bag model for SOQM considered, where a = —4%2@%)3,

b =B, n=4and N = 3, it takes the value (in B, ¢ units)

1/4
1o 33/4 (Bc3h3) / 27 33/4:273/4/2 17
0) = o~ = e

= 0.899124c2. (5.99)
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* Gravitational mass M. It can be read directly from the exterior metric or
integrated from the interior spacetime using (see Wald, 1984, e.g.)

- 1
My = 2fz (TAH - ETVVgM,) ntEf\fydex. (5.100)
t
We get it directly from the Lichnerowicz matching

M, 14 n 8 2n
— = A+ | = o (- |2
s [ 5 5 (15 15) ]
+/\3 §+64_n+%+ @_@_% QZ
7 35 35 106 35 105
) [13894 4169n  2116n% 7413 (1468 918n 37612

315 315 1575 1575 T\ 45 175 315

4\ 5 )4
-5 Q71+ 0O(A°,Q%), (5.101)

though evaluating the integral as well could lead to an estimation of the
error. We will compute GRV3 for this purpose, though.

* Proper mass M,,. Represents the energy of the configuration excluding ro-
tational and gravitational potential energies (Cook et al., 1992). Has a defi-
nition similar to the baryon mass, but including the internal energy density
€int between the particles. Since the energy density is the result of adding it
to the energy due to the rest-mass of the particles, € = e}, + €y, its expression
is

M, = fz €= \[ydRAOdp. (5.102)

what leads to

M
—L =1+
rS

17 N n N 1 2n o2
5 5 3 15
967 73n 3n? (407 43n 8n2) 2]

+A3 | =+ —_———— -

70 T35 T35 \105 35 105
45[194029 51287n  334n2  74nS (33161 39381

+ + + + -
3150 3150 225 1575 1050 525
47n%  4nd

-5 - 7_5) QZ] +0(1°, QY (5.103)
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¢ Binding energy Ey,;q. Is the difference between the gravitational and baryon
masses

Eping = Mo — My,. (5-104)

It is not different enough from the separate expressions of both quantities to
be worth writing.

* Mass quadrupole M,. Can be read directly from the exterior metric

M, AQ*> (37 mn\ , ., (83927 128n 10n?

— =——t|-=+ = | AT+ |- + +

s 2 35 22050 735 441
( 4856219  476479n  6443n%  67n

) A3Q2

- - 402 + (A5, 0 ,
282975 1697850 ' 33957 6174)A Q7+ 0(°, Q7). (5.105)

* Angular momentum J;. Appears in the exterior metric as well

]1_A3/2 ZQ ° + 152 16+2_” O+ 176 _3n 03
r2 5 3 7 35 105 35

2
Ve [(18896 76n 34n2) (34889 494n  124n ) 93]

1575 75 1575 3675 735 3675
o2 [(120744 | 1813521 103761 . 64n3)
1925 ' 17325 © 17325 5775
(67472308 30802331 166497202 49393n3)Q3]
1157625 848925 2546775 2546775
+ OA12, ) (5.106)

although, as My, can be integrated from the source using
- f Ty 'y dx. (5.107)
L

* 3. Again from the Lichnerowicz matched exterior,

I5 1 3 496 11n 2703854 358n  1234n?
E— ] /ZQ?) + /\5/203 + +

7 735 441 848925 5775 169785

1396705292  4293174n N 60800012 N 10433#°3

89137125 8583575 9270261 3090087

) /\7/2Q3

)A9/2Q3 +O(A12, ().
(5.108)
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* Rotational energy T'. It is defined as

1 o 1 .
T= 5 deh = EQh (5.109)

so can be obtained directly from eq. (5.106). Again, its definition using inte-
grals over the source

1
T= EQ f Ty Cfydx. (5.110)
Xy
could be used for an error check.

* Moment of inertia about the rotation axis I. For a rigidly rotating star, it has
the usual definition _
1

@
The result obtained directly dividing instead of using a Taylor expansion is

I 2 Q2 16 2 176 3
—3:/\(—+—)+/\2[—+—n+(———n)02]

I (5.111)

73 5 3 7 35 \105 35
2 18896 76n 34n® (34889 494n  124n? 5
3675 735 3675

1575 75 1575
A [120744 , 1813520 10376n* . 64n°
1925 = 17325 17325 5775
. (67472308 _3080233n 16649721 49393113)02]
1157625 848925 2546775 2546775
+0O(A5,QY), (5.112)

and leads in the static case to the classical expression for a uniform density
sphere at O(A), as desirable. This is also the reason behind the kind of ex-
pansion of T and gives, by the way, a result that we have not been able to
find in numerical codes, probably because of the difficulties of dividing by
quantities close to zero.

¢ Gravitational energy W. It is the rotational energy plus the difference be-
tween gravitational and proper masses

W=T+M, - Mo, (5.113)
with its O(1%2, Q%) CGMR expression

w 3 0t 237 9 13 6 88 3
AASNPE Y Nl ] LY s i) o PN il Y
T 5 6 70 35 35 35 105 70
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A [6121 L 47 74n? N (15619 3061 218n2) o2
350 150 © 525 {3150 175 1575
(34889 2470 62n2)Q4] 15 [(60372 | 90676n  5188n?
7350 735 3675 1925 17325 = 17325
32n3) 2, (33736154 30802331 832486n° 49393n3) 4]

—+

5775 1157625 1697850 2546775 5093550
(5.114)

In this case we keep the O(A°) contribution because it is the only way to
have an expansion leading to the result obtained adding the independently
evaluated terms of (5.113). It must be noted that the 9(A°) part will not be
fully known until the ©(A°) metric is known.

4.2. Radii
Using the information in the expression of the source surface

R 5Q2P 10 5
T 22 (2 ) aqzp,
s 6 21 21
19 47 22877 548 41n?
+ A% —— + Q% |- + il P,
140 6720 17640 735 882
J[_ 1213 179n [ 1987  403n
8400 11200

1575 3150
(24643463 134431687n 23855612 188n3) ]}
2

+ + +
5093550 40748400 509355 9261
+ 014, QY), (5-115)

we get different characterizations of the size of the source. First

¢ the coordinate radii Req and R, the values of coordinate R on the p = 0
surface where © = 7 and ® = 0, respectively:

=1+ —+ — 4+ + +
Ts 12 140 \28224 735 1764

5[1213  179n (108212789  52599703n 119278n? . 94n®\
1575 3150 | 40748400 ~ 32598720 ~ 509355 ~ 9261
+ (A%, QY, (5.116)

R 2 0 5 19 182029 548 41n?
i SIS EL N PYe I Ml VoY)
7 6 21 21 140 141120 735 882

Req 5022 ( 5 5n)mz_/12[19 (18499 274n 41n2) z]
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12 [_ 1213 179n N (187508767 N 5435916071 N 23855612 N 188113) 2]
1575 3150 40748400 162993600 509355 9261
+O(A%, QY. (5.117)
¢ Circumpherential radius R ... Itisa commonly used coordinate-independent
way to measure the stellar radius. Its definition (Gourgoulhon, 2010) is
Reire = ;%1 with C.q the length of the equator, i.e.,

1 T
7zcirc = E § ds = g(fxf) (Req/ E) . (5.118)
R=Req
O=7/2
what in CGMR gives
R 5022 1 5
Bare _ 1422 a1+ - )2
Ts 12 84 42

|02 n (9467 53ln41n?)
35 5 \17640 980 1764

13| 17417 | 2948n 3n? (98503871 1135571n
20374200 407484

+ +—+
1575 1575 35

16386112 94n
- - Q2|+ 004 QY. (.
509355 9261) ] O, (5.119)

An alternate way of giving the size of the source is the straightforward inte-
gration of the equatorial radius R,

R:Req ’ n ’
7eeq = jl; 0 8RR (R ’ E) drR’, (5~120)

ie.,

R 50? 4 11 5
eq:1+—+/\[§+(———n)£)2]

,[4313  23n (38351 27031n 41n2) 2]

1050 © 75 ' \29400 44100 1764
e [176003 L3810 169 (42650147 8195204
11025 © 11025 © 1225 ' \ 5093550 2546775
377363912 9dn3
10187100 9261

)QZ] +O4 Q4. (5.121)
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We can get the polar radius R, in a similar fashion with

R=R,
Roi= [ ge(®,0)R, (5.122)
R=0
obtaining
R 500? 4 11 5
St S D i P
T, 6 377217 21

, (4313 23n 7327  13507n  41n? )
A —+ — + |- + +
1050 75 14700 22050 882
Pt 176003 N 31811n N 169n? N 6620767 N 3887302n
11025 11025 1225 2546775 2546775
18803631  188n° ) o2

4 M4
5093550 o261 ) |+ OW QD) (5123)

In our case, these proper radii would correspond to the ones measured inte-
grating the spatial metric on the quotient space to observers that follow the
normal vectors to the t = const. surfaces, i.e., ZAMO observers.

4.3. Eccentricity and proper radii

The eccentricity of an ellipsoidal object is defined as

2
p
-2 -
Teq

with 7, and req the lengths of the polar and equatorial radii. Accordingly, the
natural generalization in General Relativity comes from taking a congruence of
observers and using their associated quotient metric to integrate these lengths.
This leads to the definition used, e.g., in Cook ef al. (1994)

Rp 2
€ =41~ , (5.125)
proper ( Req )
with R, and R, the so-called proper radii.

Nevertheless, some have also used a different definition (Friedman et al., 1986;
Nozawa et al., 1998). They take the restriction of the metric of the spacetime to
the surface Ry and find its isometrical embedding into R3. Then, the surface is
described by the coordinates

Rs(®) = Vg(pdn(RZf@) (5'126)
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71/2 dR 2 d 2
20)= [ d@\/gmmz,@)(d—g) gooRe ) - (Y22] (512

and they take the coordinates of the equator and pole to define the eccentricity as

_ z©=0) \’
EFIP = \/1 - (M) . (5128)

This procedure is questionable because it implicitly integrates in the flat space and
this is extrinsic to the surface. Only intrinsic properties are kept in the isometri-
cal embedding. We can check if it is somehow related with the circumpherential
lengths C;, and C.,, quantities completely intrinsic to the surface. From eq. (5.126)
we see that Coq = 2nRy(© = 7/2), i.e., the circumpherential equatorial radius is
equal to Ry(® = 71/2). Nevertheless, the polar circumpherence

7 dR
Cp = Zfo d@\/gRR(RZ/G)d_@Z +gee(Ry, 0), (5.129)

coincides with 2t z,(® = 0) in the static case but in general differs from it. With
the current CGMR metric, its expression is

2mr; 24 168 84
,1102 n (3953 139n 41n? 5
+ A —=+ =+ + +
35 5 \7056 1960 3528
5[ 17417 2948n 3n? (196281697 3860173n
+ A —=+ +—+ -
1575 1575 35 40748400 20374200

+0O(A%, QY (5.130)

4743702 473\
+ + Q
1018710 ~ 9261

We will compute this different generalization of the eccentricity as well

C 2
Eintrinsic = 1- (_p) ’ (5131)

as an alternative to egs. (5.125) and (5.128) using only quantities intrinsic to the
surface.
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4.4. GRV3)

Gourgoulhon and Bonazzola (1994) introduced a generalization of the Newtonian
virial identity to stationary spacetimes in General Relativity. Their codes, part of
the LORENE library, use it to measure precision, and although the AKM code we
use does not, some published AKM results incorporate it. Defining

gtqbz Epo
M2 = —¢, + D? = = 132
St Y00 R s’ 0 (5-132)
A% = gpp, v:=logM, (5.133)
S=3p+(e+p) [2 (a) + gﬁ) Rsin@)]2 (5.134)
M\ g '
and
CRVA 1 o\ 1 (v 1 (A D 1 dAdD (5139
— — =] - — —_—— 1
1 JR] "rR2\90) " 24D \9R R T RZ 90 00 5135
GRV3 1 dA 1 JD N 1 JdD
2 A2 JR R tan © 9O JdR Rtan® 0O
(5136)
3R2D?sin”* © 9(G16/80¢) 21 (g16/S o) ’
R = | PP ‘
CRVSs = —gaonp ( IR ) TR ( 90 ) (5:137)
the GRV3 is integrated with
GRV3= [ (4nS - GRV3, + GRV3, + GRV3;) \ydRAOd¢p. (5.138)

L

We intended to use it to measure error in our approximation as well. Nevertheless,
using CMMR metrics this virial identity holds exactly at each order. This happens
because after the matching, the primitive of the integral is evaluated at R = 0 and
R = o0, and at these two points our spacetime is exactly Minkowski.

4.5. Thermodynamic properties at the centre of the source

AKM gives the value at R = 0 of the pressure, rest mass density and specific
enthalpy h. = h(O)%| . For us, they have the expressions
R=0

3 51 91 (5 17n
4 2=A2 _QZ /\3 - QZ
Pt (2 )+ |10 10+( 2 20) ]
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,[3001  2013n 83n? [ 169 44n 101n%)\ ,
+ + + +l-—=-—- Q
140~ 280 140 25 7 140

5[2472  204881n = 65621n* 1391
+A + + +
25 4200 8400 336

(68423 473747n 235013112 10331n3) 2]

6300 12600 25200 16800
+O(A6,Q), (5139)

3 3
UAT? = 3] + A2 (—E + ?” +(1- n)QZ)

51 21n  9n? 5 33n 17n? 2
2 20 20

+A3 =+ — +—+
[ 10" 5 10

o[ 3001 3989n 1847n2 83n% (169 83n _779n% 101r)
+A + + t === Q
140 © 280 280 ' 140 \25 175 140 140
+0(A°,QY), (5.140)
PP S P! L L 1o
H0) 3 0 0" 60

+ A3 — —
600 35 280

14 855517 N 248681n N 27835912 N 538913
22400 20160 201600 100800
( 84481 13709691  42239n% 35313

- - - — 2 5 M4
9450 151200 30240 5600)Q ]*‘9(/"9)- (5.141)

t— A+ -—=-
560 112 56

4489 183n  5n? (1967 43n 23n2)Q2]

4.6. Properties related with geodesic motion of particles near the source

We will now re-derive the formulas describing redshifts of photons emitted by the
source and circular orbits of massive and massless particles around it. They can
be found spread in the literature (Shibata and Sasaki, 1998; Gourgoulhon, 2010)
for particular expressions of the metric and using quasi-isotropic coordinates, but
here we will collect these results together. We will use the following subsections
to give here their expression for a general metric with Papapetrou structure as
well as a reminder of their main features. All the quantities we will deal with
can be obtained making use of normalization conditions and the fact that when
an affinely parametrized geodesic vector u®V,uf = 0 is contracted with a Killing
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vector &%, it verifies
uAVA(EPuy) = u/‘(uyVAéf‘ +&Vuy) = uAuHVAEP = u*u“V)\Ey

142
_o, (5.142)

i.e., the vector product £%u,, is constant along the geodesic defined by u“.
In what follows it is assumed that the coordinates are adapted to the Killings
and the metric has Papapetrou’s structure.

ReDsHIFTS

The redshift of a photon of 4-momentum p* with emitted and received wave-
lengths Aey, and A, is defined as

/\rec - Aem Eem

z= = -1 (5.143)
/\em Erec

where ug;, p, = —Egps is the energy measured by a geodesic observer ug, .. When
the photon is emitted at the surface of the fluid u%, = ul, (5"‘ + a)n"‘) and mea-
sured by an stationary observer ug, . = &% at r = r,, we have

ém 5“+ * a “
b (7 + 0n®) pal _uém( wM)_ (5144)

zZ= -1=
uf‘ecéapa |rec ui'ec Eapa |rec

where we have used £%Pylem= EPalrec-
There are two simple cases. The first one corresponds to photons emitted from
the poles of the fluid, where w = 0. eq. (5.144) leads then to

t
Uem gttlrec
Z, = —1:,{——1. (5.145)
P u{‘ec gtt|em
and in CGMR,

Q? 33 n (5 2n
= 1 - AZ _ _ - _ = QZ
% A(+3)+ [1o+5+(3 15) ]

L |93, 7in 3w (3387 19n 8
350 21 105

—+—+
70 35 35

4]260263  49951n 913n%> 74n> (555199 3586m
+A + + + + -
4200 3150 630 1575 9450 945
5587n%  4n®
- - — Q% |+ OA%, QY. 146
UPE 75) ]+< ). (5146)
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The second one, photons emitted from the equator and following a geodesic con-
tained in the equatorial plane, so that p* = p!&* + p?n®. For them, using again that
&%, and np, are constant along the path of the photon,

1" Palem _ N Pa _ 8ty T A8po

= = (5.147)
5Dlpozlrec éapa it agtqb 2147
with a := p?/p'. Now, the normalization
PPa = Qi + 2810 + 90> =0 (5.148)
renders eq. (5.147) into
8tp T A8 1
e Al o R (5.149)
8t T A8tg a
which, solving eq. (5.148) for a allows us to finally write eq. (5.144) as
+ 2916 @ + Toi @ )|em
Zeqt 1= \/(gtt 816% + 899" Ne 1+w—— s . (5.150)
gttlrec 8tp F 81?2 ~ 8popSitt

The particular sign to use depends on the direction of emission of the photon. If
it is emitted forwards, p? > 0. The product of the future oriented &% and p, is
always £p, < 0, and in this situation 7%p, > 0. This makes

124 a
TPa 2o Tha_ $00 (5.151)
<Pa <P 819 = 8ig2 ~ 8¢S
and the situation is reversed when p? < 0. Hence, we have
Zeq = Za F 2p (5.152)

with

Q? 23 1 2
Z =1+A(—1—?) +A2[———E+(——+—n)02]
2 2
o[ S5 R (01 sin 8
720 35 35 1050 35 105
4| 27509 34903n 557n%  74n3 N 49933
840 3150 450 1575 9450

24338n  727n*  4nd\ 5
1755 + 75 +ﬁ)Q ]+(9(/\ , Q% (5.153)
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and

84 42

503 41 5
Zb:ﬁ(QJrH) +A3/2[Q+(————n)0 ]

| 52 [(102 n) (_20521  531n 41712)Q3]
17640 980 1764
e [(17417 29481 3n? ) (_5481737 64637171
1575 ' 35 4074840 2037420
16386172 9413
509355 9261

)Q3] +0O(A2, Q).  (5.154)

INNERMOST STABLE CIRCULAR ORBIT

The normalization condition of the 4-momentum p® of a particle of mass m when
the metric of an axisymmetric spacetime has Papapetrou’s structure is

= (5.155)
= 8"'pF +28'"pipy + 8°°P% + 87 PF + 28"pipo + 870pp. '

Since the coordinates are adapted to the Killing vectors
& =4y n= &qb/ (5.156)

the p; and p,, components are

&'pr=pi =-E, (5-157)

n'pa=py =L, (5-158)

which are constant along the geodesics defined by p*. With this, eq. (5.155) is then
—m? = gUE? = 29"PEL + g*7L2 + "'p} + 28" pipo + 87pp- (5-159)

We will only work with geodesics in the equatorial plane of the source (it can be
shown that equatorial orbits are plane), so we fix 0 = 7r/2 and p? = 0. Hence,

po = gorp" = o (5.160)

and eq. (5.159) together with
—E = p; = gup' + SioP?, (5.161)
L=py= gt(ppt + g¢¢p¢’, (5.162)
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allow us to obtain (¢!, p’, p¢), or for a massive particle (mg—i, mr mi—‘f), in terms

drc’
of the constants E, L and the metric components.
Expressing the inverse metric functions g/ in terms of the metric,

tt = gﬂ, g¢¢ = &’ gtqb = gﬁ

8 ’ (gz = 8%¢ _gttgqbqb) ,

&2 -9 P
r— gﬁ 06 — & grg _ @ (gl :: gz g gee) (5163)
_gll —g1’ ) ’ 0 rr ’

the p® components can be solved from egs. (5.159), (5.161) and (5.162) and reduced
to

. 8poE + 8ol

- (5.164)
gt E + gttL
(r)zzi(_m2+&ﬂE2+zgﬂEL+&L2 , (5.166)
p 5
Srr 82 82 &2

which give all the information needed to integrate trajectories and orbits of parti-
cles moving in the equatorial plane. From them we get the expressions of dx®/dA

dt _ 8o E + &L

- 5 (5.167)
dp  SipE +gul
o 5 , (5.168)
2
d 1 - =z -
(l) = (—a 4800 S0 pr | &Lz) =V, (5-169)
dA 8rr &2 &2 &2

where, for time-like particles we take the proper time 7 as affine parameter A = 7,
a=1,L =L/mand E = E/m. For massless onesa = 0, L = L and E = E. Out of the
static case, neither for time-like or massless particles can eq. (5.169) get the form

2
dr
(ﬁ) = const — Vg(r) (5.170)

with an energy independent V.4 which would allow the intuitive analysis one
can make of orbits in Schwarzschild metric, but we can nonetheless study circular
orbits quite easily. Circular orbits satisfy

dr  d%r

a = ﬁ = O, (5171)

107



5. COMPARISON OF RESULTS WITH A NUMERICAL CODE

which in turn imply that, first,

V=0 (5.172)
Hence
Pr_ Vi _1av -
A2 Tdr dA 2dr 5173
o)
av =0 (5-174)
di’ - Y 5' 74

They are then located in a 7 = 7, such that V(r) = 0 and have an extremal value.
They will be stable(unstable) circular orbits when d?V/dr? is greater(lower) than
zero, and marginally stable when

a2V
e 0. (5.175)

This marginally stable circular orbit corresponds to the lower limit of 7, for stable
orbits and thus defines the radius of the innermost stable circular orbit (ISCO).
This is calculated in the exterior spacetime, and only when rigcg is bigger than ry,
will there be a real limit to the radii of circular stable orbits.

We can attempt to give egs. (5.172), (5.174) and (5.175) a simpler form. If we
write eq. (5.172) as

1
Ve—V'=0V"=0, (5.176)
8rr
then eq. (5.174) is equivalent to
d (1 -1 14dv: av av:
—|—V)=—V'+— =0 andthen —=0¢& =0 (5.177)
ar \g,, 2 gy dr dr dr
which in turn makes eq. (5.175) give
dadv d (-V*\d vV d? d 14v: 1 d*v*
—— =— & _ &m 22 + — =0 (5.178)
drdr dr\g,e | dr g, d* drg, dr g, dr?
so that
dZV_O@dZV*_O (5179)
dr2 2 5179

Now, using the expression of V* from eq. (5.169), these three conditions for the

location and existence of ISCO, denoting '5(7{ = fb), can be written together as
g&,]::2 + Zgl%l_-?i +g012—agd =0 (k=0,1,2). (5.180)

108



4. Physical properties compared

Next, we can analyse the solution to these equations for the time-like and massless
cases separately. In the case of particles with mass, where a = 1, the equations for
k = 0,1 can be solved in a quite compact form for E and L in terms of w4, defined
as

P =t (£ + worn?) (5.181)

so that wyy, = Z—f. If we write it in terms of E and L as

dpdr 8ipE + guL

=T = _ — 18
Yorb dA dt gtbqu + gtqu (5 b 2)

we can get E = E(w,y,, L) and use this to solve eq. (5.180) for k = 0 obtaining

_ + + ,

I-= 81 *+ 800 Orbz , (5.183)
\/ =8 — 2Wobg tp ~ Worb&pe

_ + + @

E= (gtt 8o orb) (5184)

\/ —&t Za)orbgtq‘) - a)(z)rb&qu

Substituting in eq. (5.180) for k = 1 we finally get that these equations give (E, L)
for a particle in a circular orbit when

—8tpr + \/(gtqb,r)z — 8tt,r8p¢,r
Worp = (5-185)
8o,
where the upper sign in egs. (5.183) to (5.185) corresponds to prograde orbits and
the lower one to the retrograde ones.

Expressions are actually equivalent in QI coordinates because we are only
dealing with orbits in the equatorial plane, so no g, component appears. Switch-
ing now to these coordinates, inserting eqgs. (5.183) to (5.185) into the k = 2 case
of eq. (5.180), we get, working in the equatorial plane, an equation for Rjg-o. The
equations for the pro- and retrograde cases are

1 .
E(ﬂl + R3/2ﬂ2) =0 (5186)
with
31 28 2 1 16 4 111 3 1
ay = A2+ ==Q%| + A2 ————n+87+ L (b —
2 R? 5 5 R 15 15 35 14 ) R2
18 1 AT 146 128n  6n? N 224 N 16m\ 1 N 11 1
R3 7 35 35 5 5 R 2R2
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|.976  72n 16n2 128 32n\1 (346733 128n 10n2) 1
105 105 "\15 15 )R "\ 20400 " 245 ~ 147 ) R
15592 36m) 1 5455 1| o), ,4f 27788 8338n 42321  148n°
+ + — Q7 r + A% - - - -
175 R3 T 224 R* 315 315 1575 1575
40176 66881 296n%\ 1 (231  33n) 1 1
+ + =t|—+— | = +12
175 175 JR \'5 10/R2 TR

+

+ — - - =
45 175 315 75 525 105 175 | R

6098614 11012261n 64432 67n%\ 1 21394+33368n +52n2 1
94325 9055200 11319 2058/ R2 49 1225 245

3828481 98197\ 1 404 1
= Q% 1} + O(A%, QY), 18
( 19600 1568)R4+ 7 R5] }* (A%, Q%) (5187)

2936 . 1836n . 752n%  8n3 . (51584 2176n 288n2) 1

+

+

240 513 1 5976 204n 361
=22 = e 223+ 3 (22 222 1 200
5 175 * 175 ' 5 R
4724 166n 1 (4425 2791m\ 1 2253 1]
— - + 6% +[—— - —+———|Q
175 175 ' CR \29 T 2450 | Re T 70 RO
532072 171320 191n2 (12492 5587\ 1 102 1
4 + + + —+— =
2625 ' 875 375 '\ 175 175 )R 5 Re

+[1076144 10034n  6773n? (10698 207n) 1 (957188417

6125 1225 12250 "\ 175 175 1836500

1080019n _ 174781907\ 1 (3571299 18171n) 1 56501 1]
134750 3773000 ) R2 '\ 12250 = 4900 | R® = 560 R*
+O(A%, Q%) (5.188)

We have not been able to find an approximate expression for it, so we have resorted
to make a numerical solution of the equation to get Rjg-o. The orbital frequency
depends on the ISCO positions through

N 11
Worb = R \/— + by) (5.189)
with by, b, given by
2Q) 91 16 2n 61
by — 82| = e 3|+ 52 _ Q
[ 5 +( 14R2) ] {( 7 35 SR)

1
3
176 3n 1 744 11n 11 1| 5
+l-—+—=+ = =+ ===|Q
105 35 R 245 RZ 7 R3
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18896 76n  34n? N 1788 N 72n\1 211

1575 75 1575 175 175) R 10R2

34889 494n  124n% (1482 38n\ 1 12079371 537n
+ (- + + + -—|=+|- +

3675 735 3675 175 175/ R 754600 1925

617712) 1 (2934 4n) 1 3277 1

4| | QB+ OV, D), :
+18865 R2+ 245 HETL R3 112OR4] }+ ( ) (5-190)

8 R2 510 2R |15 15 \56 560) R2

| asp (741 271n 53n? [ 63 9n\1 31
e [0 S KL el )
R 2R

31 7 31 4 15 51n) 1
bz:ﬁ(1+——02)+A3/2{—+£———+[——£+(———n)A

111

= + + —

16 R3 175 350 1400 10 20
s 1024 47n  11n? . 6+3n 1 93851 6277n  5197n2\ 1
525 105 350 5 10/ R \117600 19600 235200/ R2

+( 6541 33n) 1 969 1 ]QZ} LR {126992 80483n 3410312

72800 T 1120 ) R® T 896 k& 7875 15750 | 63000
. 248313 N (_4878 332n 6o3n2) 1 (g . 3_n) 1 51
126000 175 700 2800 /R \2 = 4)R2 4R3
. [98054 _1851n 3674n> _ 21n8 . (_2124 N 183n . 141n2) 1
7875 875 7875 1000 175 70 ' 700 | R
N (248086339 | 613761131 669976117 2167n3) 1 (_ 32256341
45276000 36220800 30184000 219520/ R 3528000

R2
1680891 211311/12) 1 (971793 10659n) 1 1965 1 ]QZ}

- + - + + — T T
588000 1411200/ R3 * \156800 = 62720 | R4 1792 RS
+ 0172, QY. (5.191)

In the case of massless particles 2 = 0 and eq. (5.180) becomes
8oV E? + 281, EL + g4MI? = 0, (k=0,1,2) (5.192)
which we can simplify focusing on L # 0 particles. Introducing b = L/E in the

k = 0 equation we get

K M\ k) k
_gt(;i (gté)) _gtt)ggb)(p

(5-193)

S| =

)
8o
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5. COMPARISON OF RESULTS WITH A NUMERICAL CODE

This reduces the k = 1 case of eq. (5.192) to a f(R) = 0 equation giving the position
of circular orbits. To get their frequency we start from eq. (5.182) and get
1 B Worb&te * &t

LR (5.194)
b 8o+ WorbSoo 5194

what allows us to solve for wy, as

—8tp £ (gtqn)z ~ 818 ¢¢

Onull = (5-195)

S
and hence, again, the upper signs corresponds to prograde orbits. The k = 2
equation gives the stability of the orbit. Since circular orbits of massless particles
are unstable (Bardeen et al., 1972), we can use it to discard unphysical solutions
to the previous equations. As we will see later in Section 6, time-like ISCOs ap-
pear only at quite high masses. We omit massless results here because, according
to them, there is no massless ISCOs for baryon rest masses below 2 M, and the
higher rotation frequency observed. Besides, they are rather problematic to com-

pute probably due to their closeness to R = 0.

5. CompPARISON WITH AKM RESULTS

With the EOS fixed through the p; parameters, using the procedure described in
Section 4.1 to obtain the value /(0) of the specific enthalpy on the p = 0 surface
and fixing two of its default output quantities (but the polar redshift z,), the AKM
code gives us the values of the rest of them. It also produces a file with the values
of the metric potentials in a grid of points near the source. Here we will compare
these two kinds of results with the corresponding CGMR values of the quantities
and metric functions.

The default AKM output parameters are listed in Table 5.2 (page 114) and de-
serve two comments. First, there is a quantity not yet defined. It is the mass-
shed parameter f that measures how close the source is to start losing matter at
the equator due to the fast rotation. Since it is only relevant in regimes of really
strong source deformation (at the onset of the mass-shedding a cusp appears at the
equator, a conjecture of Bardeen, 1971, confirmed first by Eriguchi and Sugimoto,
1981), we have not included it in our calculations. Second, although the default
AKM gives only these quantities, it actually computes four more and fortunately
we can make them appear on screen editing the source code.

Several of the physical properties of the source discussed in Section 4 are not
computed by AKM but are commonly found in other computations (see Cook
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5. Comparison with AKM results

et al., 1992, 1994; Nozawa et al., 1998). We will give their analytic expressions (as
well as the AKM comparison ones) and also their particular values for some of the
models discussed to ease possible future comparisons by others.

To obtain particular results from the analytical expressions of CGMR with a
fixed EOS it is enough to specify the value of w and r;. While the first one is a very
mainstream quantity as well as part of the AKM results and poses no problem, 7,
is, as we saw in Chapter 3 coordinate dependent and has a not very observational
definition, though. This could seem problematic, but to obtain a model for, let us
say, a certain (M,, w) combination, all we have to do is find the r, that gives the
desired value of M. In fact, this characteristic makes CMMR quite versatile since
every quantity depends on r; and hence a very wide range of parameters can be
used to adjust its value.

We start studying the behaviour of relative errors when we include further
approximation orders in CGMR. After that, we will compare a given AKM model
with results of CMMR using M, Reqs e and J1 to adjust the value of r, and see
what kind of adjustment gives better results. Then, we will analyze some relevant
constant density and simple MIT bag model configurations to check the range of
applicability of CMMR.

5.1. Relations between error and order of approximation

It is known that some other analytical approximation schemes (e.g., the post-
Newtonian) may display a weird oscillating behaviour of their error. This means
that going to higher orders in the approximation, in some intermediate steps it
may grow instead of decrease as one would expect (Arun et al., 2005). It is im-
portant to check if this happens for the kind of stellar models we will study later.
Besides this oddity, one may also wish to know the evolution of error while going
to higher approximation levels since it can tell us

¢ whether it is worthy undertaking the increasingly long calculations,
¢ the rate of change of the increment of precision and
¢ what are the applicability limits of CMMR.

Regarding the first point, the troubles generated by the calculations are two-
fold. There is the base difficulty of having to deal with increasingly long ex-
pressions in each iteration of the solution of the Einstein relaxed equations, what
gives us the next A-order. This translates in not only longer calculation times but
also—since manual calculation is truly unpractical in expressions with hundreds
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Quantity Definition

M, gravitational mass

w angular velocity

M, baryon rest mass

In Angular moment

B mass-shed parameter
—-Inyy  In of the surface potential

Zp polar redshift

Req equatorial QI radial coordinate

R, polar QI radial coordinate
Rp/Req  ratio of main QI radial coordinates

€. central energy density

Pe central pressure

Ube central baryon rest mass density

h, central specific enthalpy

B, central value of B (see eq. [5.11])

Evind binding energy

R ire circumpherential radius
M, proper mass
T gravitational energy
W rotational energy
/W gravitational vs rotational energies ratio

Table 5.2: Output parameters of the AKM numerical code. The first of them are given by the
default AKM code. The last four are also computed by default but not printed on screen.

of thousands of terms—really serious RAM memory consumption of the Mathe-
matica programs we use. The results of this Section make use of the O(A2, )P)
CGMR and a lot of depuration of the codes has been necessary. Even after that
and using remote Mathematica kernels on bigger linux machines for the worst parts
of the calculations, at least 3.5 Gb of RAM are necessary for these comparisons.
But all-in-all, this is essentially a “merely” resources issue and currently the ob-
tention of the next A-order is totally automatic. The other degree of difficulty
comes when trying to go to higher Q-orders. For this, the expansion of the homo-
geneous solution—egs. (2.47) and (2.53)—must include new harmonic spherical
tensors, and the surface ansatz eq. (2.75) additional Legendre polynomials. This
implies important modifications on the programs at many levels and is therefore
a more serious issue.

We consider first a static stellar model. It corresponds to a constant density
source of M, = 8 x 107* (we will use the AKM values of quantities to label the
models). This value—as any other unless otherwise stated—is giveninc = G =
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O(A?) O3 O(A%)
Quantity ~ AKM CMMR ¢ CMMR ¢ CMMR ¢

M, 793325, 7933, 00 79333, 554 793325, 2714
M, 8.00000_, 7995, 65, 7999, 50.5 799997, 3.8
M, 8.00000., 7995, 65, 79996, 505  7.99997 , 3.8
Ebind 6.67467_  6.156_s 7.8, 663504 595  6.67159, 4.6,

W 6.67467 ¢ 6156, 7.8,  6.6350¢ 59, 667159, 4.6,
Reire 574276, 5744, 17, 57429, 16.5 574277, 13

z, 141074, 1409, 14, 14106, 9.8 141073, 7.4,

~Inyy -140088., -1400_, 79, -14008, 535 -1.40087_, 3.8

Rp 5.66315_,  5.668_, 7.7_4 5.6634_, 5.0_5 5.66317_, 3.5

Req 5.66315_,  5.668_, 7.7_4 5.6634_, 5.0 5.66317_, 3.5
Rp/Req 1.00000 1.000 7.0_13 1.0000 7.0_13 1.00000 7.0_13

€. 1.00000 1.000 0.0 1.0000 0.0 1.00000 0.0

Pe 7.10379_5 7.0893 2.0_3 71027 5 1.6_4 7.10370_3 1.3_5

Hbe 1.00000 1.000 0.0 1.0000 0.0 1.00000 0.0

he 1.00710 1.007 14 5 1.0071 1.1 ¢ 1.00710 8.8_g

Table 5.3: Behaviour of relative error ¢ in CMMR with respect to AKM with increasing A-order
of the computation. Both AKM and CMMR values are given in ¢ = G = €5 = 1 units. This model
corresponds to the static configuration of a constant density sequence with My, = 8x 107, the w =0
version of the model in Table 5.5 (page 118). We use the shorthand notation 4, = a X 10°. The value
of the approximation parameter is A ~ 0.013.

€9 = 1 units. It is important to note that written in ¢ = G = 1 units, it is M}, =

8x 1074 651/ 2=8x10" yal/ Zand accordingly corresponds to widely different mod-
els, depending on the value of ug. In particular, if using the standard neutron star

density uy = 4 x 107 kgm™3, it is My, = 3.14 X 1072 My, too low to be interesting

for that kind of sources; however, if 1y = 1408 kg m~3, the mean solar density, it

corresponds to M, ~ 5.29 X 10° M,,, a more than fair amount of matter. In what

follows, tables will in general give c = G = €y = 1 values but in several situations

they will use more common units to ease the check of applicability of CMMR. In

that cases, the value of B or uy used will be given.

The reason for using the baryon rest mass My, as main parameter here instead
of the gravitational mass is that when one wish to compare configurations of the
same object for different values of w the amount of rotation increases the gravi-
tational mass while the number of baryons and accordingly M, is not modified.
This is the standard way to build evolutionary sequences (Miller, 1977).

Table 5.3 shows the AKM and CMMR quantities comparison for this model. It
gives the AKM value and the CGMR results with increasing A-order, from O(A?)
to O(A%) and the relative error with respect to AKM. It shows a consistent im-
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provement of more than one order of magnitude in the relative error ¢ in every
quantity except in Rp/Req, though it is rather artificial since the values of R, fol-
low the trend. The error is quite homogeneous, but bigger in W and Ey;,,q. These
two quantities are very sensitive to error because they are linear combinations of
other quantities (see egs. [5.104] and [5.113]) and in this case give rise to error two
orders of magnitude bigger than the ones of the quantities they are obtained from.
This will consistently happen in all the following models. The extremely low error
in M is artificial of course, since the CMMR model has been adjusted to give the
AKM value through r, fixing.

The O(A*, (%) results are comparable to the best ones in the numeric results
comparison of Table 5.1 (page 76) and the improvement rate is fairly constant up
to this point, so going further in A-order will probably give even better results.

Concerning the metric potentials, their relative errors in a sector around the
source are depicted in Fig. 5.2 (following page) with the lower left corner of each
graph corresponding to the source centre. They are plotted in LP coordinates
and correspond to g;; and ggg in the three different approximation levels. They
show the expectable spherical symmetry of a static configuration and their relative
error ranges from ¢, ~ 107 in the centre of the source and 200~ 107° at two
times g.q when using O(A?) results down to (e, 529eq) ~ (1077, 1078) with O(A*%)
data. These results are summarized in Table 5.4. Thus, the decrement in error
follows the same pattern as the one previously seen in the model properties of
Table 5.3 (facing page).

Now we put these same amount of matter in rotation to see how different its
error behaviour is. We take a M}, = 8 X 10™ and @ = 0.2 source. This angular
velocity inc = G = 1 units is w = 0.2;1(1)/ % and gives 2.14 times the solar rotation
rate for solar mean density or w = 164.5 Hz for standard neutron star density.

In Table 5.5 (page 118) we see that this model shows the same tendency of
the static one, with error dropping an order of magnitude per A-order in several
of them but in the step from O(A2, Q%) to O(A%2, 3®) this is not the case for all

8t 8RR
Approx. order e(o=0) (0 = 20eq) e(o=0) (0 = 20eq)
O(A?) ~1.8%x10° ~6.0x10° ~95x10° ~6.0x107°
O(A3) ~14%x10° ~48x107 ~70x10° ~46x107
O(A%) ~11x107 ~38x10% ~53x107 ~33x1078

Table 5.4: Evolution of relative error in metric functions g, and gy from Fig. 5.2 (following page)
at the source centre and at the ¢ = 2¢.4 sphere.
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Figure 5.2: Relative error in g;; and ggg, between AKM and CMMR for a constant density source
with My, = 8 X 107, w = 0 for different approximation orders, using M, to adjust r,. The first row
refers to O(A2), second row to O(A%) and third row to @(A*). The thin dotted lines represent the AKM
and CMMR surfaces (indistinguishable in this model).
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(9(/\5/2, Q3) (9(/\7/2’ QS) (9(/\9/2, Q3)
Quantity AKM CMMR € CMMR € CMMR €

M, 7.93347_4 79334 4146 793354 6.8_14 7.93347_, 4.1 44

@ 2.00000_1 2.000_4 2.0000_4 2.00000_,

J1 2.13498_; 2130, 213 21343 ; 3.0_4 213473 ; 1.1 4
M, 8.00000_y  7.995; 6.54 7.9996_, 4.9_s5 7.99997_4 3.5
M, 8.00000_y 7995, 6.54 7.9996_, 4.9_5 7.99997_4 3.5
Epind 6.65323_, 6136, 7.8, 66138 59, 665041, 42,

T 2.13498 ¢ 21303 213 213433 3.04 213473 114
14Y 6.67458_¢ 6.157_¢ 7.7, 6.6352_4 59_; 6.67176_, 4.2_4
/W 3.19867_3 3460_3 8.2, 3.2167_3 5.6_3 3.19965_; 3.1_4
R cire 5.76540_, 5766, 14, 57653, 255 5.76517_, 3.9_s5
Zp 1.41529 , 1413, 143 14151, 114 1.41526_, 2.0_5

-Inyy -140537., -1404, 80, -14053, 655 -140534, 1.6

Rp 5.61837_,  5.623_, 8.0_4 5.6189_, 8.5 5.61859_, 3.9_5

Req 568560, 5690, 7.3, 56856, 88, 568538, 38
Rp/Req 9.88177 1 98821 725 9.8825_1 7.7 9.88252 1 7.7_5

€ 1.00000 1.000 0.0 1.0000 0.0 1.00000 0.0
Pe 7.05840_5 7.045 53 2.0 7.0577 3 94 5 7.05876_3 5.1 5
Hbe 1.00000 1.000 0.0 1.0000 0.0 1.00000 0.0
he 1.00706 1.007 1.4 5 1.0071 6.6_; 1.00706 3.6_y

Table 5.5: Behaviour of relative error ¢ in CMMR with respect to AKM with increasing A-order
of the computation. Both AKM and CMMR values are given in ¢ = G = €, = 1 units. This
model corresponds to a constant density configuration of M, = 3.14 x 10?M,, w = 164.5Hz if
to = 4% 107 kgm™ (standard neutron star density), or M, ~ 529 X 10°M,, w = 9.7 x10°Hz
if 4y = 1408 kgm= (mean solar density). The value of the approximation parameters is (A, Q) ~
(0.013,0.097).

the quantities. In particular i, T, Pe, he and the surface quantities show a lower
decrement. It even grows in the case of R, and Req.

Fig. 5.3 (following page) shows also a quite different pattern from the corre-
sponding static case. Here the plots belong to g and g;, the g;; ones being quite
similar to gy, and again each row is the result of a increasingly higher A-order.
Looking at the first row we see that the error distribution is almost spherical again,
with only a little deviation from it in g;5. Now, if we had access to only this first
row, we could think that the rotation has little impact in both the shape of the
source and the error. The first is actually true if we check the value of R,/R.q from
Table 5.5. The second is not. In the second row, where (9(/\7/2, 03) are displayed,
the spherical symmetry in the error is clearly lost in g4, and this effect grows in
the the next row with ©(1%2, %) results, making itself evident even in g;. This
behaviour is totally different from the static case and thus a consequence of ro-

circ
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Figure 5.3: Relative error for constant density for the model M, = 8 x 107, w = 0.2 in (a): g4, (b)
8 using My to adjust r,. The first row refers to O(A%2, (%), second row to O(A”2, O*) and third row
to O(A%2, (O%). The thin dotted lines represent the AKM and CMMR surfaces (indistinguishable in
this picture size).
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5. COMPARISON OF RESULTS WITH A NUMERICAL CODE

tation. The error has now a lobular appearance that, together with the rotational
origin, points towards the truncation of the tensor spherical harmonics expan-
sion of the solution of the homogeneous post-Minkowskian system —egs. (2.47)
and (2.53)—and the surface as a cause. Hence, this lobular appearance is a direct
consequence of the Q-order of the approximation, and can be present even with
small source deformation. Nevertheless, in this case it is an effect that makes itself
apparent only at higher A-orders. From this series of results we see that the solu-
tion truncation in ) is the main source of error when the lobular pattern appears.
This is key to ascertain when going to higher Q)-orders may be more productive
than going forward in the post-Minkowskian approximation. Alternatively, when
the results can be substantially improved with ease going to the next A-order and
when it would involve cumbersome modifications in the Mathematica codes to get
a higher Q-order.

Concerning the values of the error, we see that similarly to what happens with
the quantities in Table 5.5 (page 118), it drops an order of magnitude from A% to
A72 but the drop is not homogeneous in the next iteration and it is smaller in the
equatorial and polar areas, what is likely the cause of the heterogeneous results
in the table.

MAKM = pEMMR RAKM - ROMMR pAKM = ;CMMR
Quantity AKM CMMR € CMMR € CMMR €
My 7.93325_4 7933254 2.7_14 7933174 11 7.93340_4 1.8_5
M, 8.00000_4 7.99997_4 3.8 7.99988_4 15_5 8.00012_4 1.5_5
M, 8.00000_4 7.99997_4 3.8 7.99988_4 155 8.00012_4 1.5.5
Ebind 6.67467_g 6.67159_5  4.6_4 6.67147_5  4.8_4 6.67179_¢ 4.3_4
w 6.67467 _¢ 6.67159_¢ 4.6_4 6.67147_¢ 4.8_4 6.67179_¢ 4.3_4
Rcire 5.74276_, 5.74277_, 13 5.74275_, 234 574281, 74
Zp 1.41074_, 1.41073_, 7.4 141071, 1.5 1.41074_, 5.1
~Inyy -1.40088_, -1.40087_, 3.8,  —-1.40086_, 1.1.5 -1.40089_, 85
R, 5.66315_, 5.66317_, 3.5 5.66315_, 7_13 5.66321_, 9.4
Req 5.66315_, 5.66317_, 3.5 566315, 1.2_34 566321, 9.4
Rp/Req 1.00000 1.00000 7.0_13 1.00000 713 1.00000 7_13
€. 1.00000 1.00000 0.0 1.00000 0 1.00000 0
Pe 7.10379_3 7.10370_3 1.3_5 7.10365_3 2.5 7.10379.3 0
Hbe 1.00000 1.00000 0.0 1.00000 0 1.00000 0
he 1.00710 1.00710 8.8 1.00710 14, 1.00710 2.2 96

Table 5.6: Comparison results for the model in Table 5.3 (page 115) of error between AKM and
O(A%, %) CMMR using different adjustments. The last three pairs of columns correspond to CMMR

results using M, R.q and p, to fix the value of r;, respectively.
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FAKM = fSMMR RAKM _ R%\AMR pAKM = ,CMMR JAKM _ JCMMR
Quantity CMMR e CMMR e CMMR € CMMR €
My 79335, 4144 79344, 124 79329, 745 79340, 6.8
) 2.0000_; 2.0000_1 2.0000_; 2.0000_1
i 21347 ; 114 21351; 8.1 21345, 24, 2.1350_; 1244
M, 8.0000_4 3.5 8.0009_y 114 7.999%4_, 785 8.0005_4 6.5_5
M, 8.0000_4 3.5 8.0009_y 114 79994, 785 8.0005_4 6.5_5
Ebind 6.6504_¢ 424 6.6517_¢ 234 6.6496_¢ 554 6.6512_¢ 314
T 21347 114 213513 815 213453 244 2.1350_g 8.4_1p
w 6.6718_¢ 424 6.6731_¢ 234 6.6709_¢ 554 6.6725_¢ 3.14
/W 319973 314 319973 314 319973 314 319973 314
Recire 5.7652_, 395 57654, 7.1y 5.7650_, 6.4_5 5.7653_, 1.7_5
Zp 14153_, 2.5 14154, 595 14152, 7.1 1.4153_; 2.6_5
~Inyy, -1.4053_, 165 -14055_, 6.3.5 -14053_, 6.6_5 -14054, 3_;
R, 5.6186_, 3.9 5.6188_, 7.7 56185, 155 56187, 6.1
Req 5.6854_, 3.8 5.6856_, 2.4_16 5.6852_, 6.2_5 5.6855_, 1.6_5
Rp/Req 9.8825; 7.7 9.8825; 775 9.8825_; 7.7 9.8825_; 7.7
€ 1.0000 0 1.0000 0 1.0000 0 1.0000 0
Pe 7.0588_3 515 7.0593_; 134 7.0584_3 O 705913 985
Hbe 1.0000 0 1.0000 0 1.0000 0 1.0000 0
he 1.0071 3.6_7 1.0071 9.2, 1.0071 2.2 46 1.0071 6.8_7

Table 5.7: Comparison results for the model in Table 5.5 (page 118) of error between AKM and
O(A*2, (®) CMMR using different adjustments. These are the CMMR values obtained using M,,
Req, p and J; to fix the value of 7.

5.2. Adjusting with different quantities

In the previous results we saw that relative error is generally bigger inside the
source. Also, the quantities more closely related with the source are the ones that
show a discordant behaviour when rotation starts to be a noticeable contribution
to error. Besides, the error plots for g, in Fig. 5.3 (page 119) seem to indicate that
it does not improve far from the source, contrarily to what happens with other
metric functions. We obtained all these results adjusting with M, i.e., choosing r,
so that the CMMR value of M, equalled the one provided by AKM. Doing this we
granted a good behaviour of g, at least far away from the source. Now the ques-
tion is, can we adjust with other parameters to lower the error inside the source?
Could we fix the strange behaviour of g, using J1 to adjust r, instead? Is there an
all-round better adjustment procedure? We check now these other adjustments
for the two models already discussed.

Table 5.6 (facing page) collects the comparisons using M, Req and p, to extract
the value of , for the static M}, = 8.0 x 107 model. There we see that at least in
this case adjusting with R.q gives also the best error in R, and using p, leads to
the best value of &, but the M, adjustment gives better results in general.

Table 5.7, which gives the data of the w = 0.2 model, is consistent with this
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Figure 5.4: Relative error between O(1%2, O*) CMMR and AKM for M, = 8.0 x 107, @ = 0.2 using
M, adjustment (first row) and J; adjustment (second row). Column (a) groups g components and
(b) g, Ones.

tendency, although in E,;,q we get a weird behaviour for R.q adjustment, since
it has the worst error in My and My, but the best value of E,;,4. Nevertheless,
we see here that the J; adjustment is comparable to the M, one. In this model and
using M, adjustment 8ty does not seem to tend to lower values far from the source,
contrarily to the rest of the metric components and what one would expect of post-
Minkowskian results for an asymptotically flat spacetime. The first row of graphs
in Fig. 5.4 shows that this is indeed the situation at least at up to a coordinate
distance of 6R.q. From the results in the second row, that collects g;; and g, for I
adjustment, we get that this is fixed using J, instead of M, to get r;. Additionally,
contrarily to what one could fear, it introduces no odd behaviour in g;;. It seems to
reduce its angular dependence, though it could be a consequence of the higher in
average error. Unless otherwise stated, we will use I8 adjustment in what follows.
In static models, M, adjustment will be the choice since J; = 0.
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5. Comparison with AKM results

5.3. Constant density models

We will study now some relevant configurations of gravitational mass and angular
velocity to get information on the range of applicability of CMMR.

We start using models containing a source of constant density. These are not
realistic (e.g., sound speed is infinite) but serve our purpose nonetheless. In the
first one we focus on stellar-like objects, so we take for it the same parameters
as the Sun, i.e., a gravitational mass of My = 1M, and an angular velocity of
@ =~ 4.56 X 107 Hz. Using the mean solar density py = 1408 kg m™>, this leads to
models where the c = G = ¢, = 1 values of M and @ must verify

3

1M~ ~ M —_, ( 1 6)
o} 0 G3}lo 5.19
\G
456 x 100 Hz ~ o Y2H0 (5.197)
27c
ie.,
My ~151x107, (5.198)
w ~9.35x 1072, (5-199)

Its compared data appear in Table 5.9 (following page). We see there that relative
error is ¢ ~ 107 or better except in Ey;,q. These are very good results, as could
be expected from the very low values the approximation parameters take here:
(A, Q) ~ (2.12x 1076, 4.57 x 1072).

Relative error in the metric functions—Fig. 5.5 (following page)—is accord-
ingly small as well, though far lower in g,, than in g;,. This, and the very clear
angular dependence in g;,, is related with the strong difference existing between
the approximation parameters.

Ho Quantity Value ¢ =G =1 units
M 1M 1.51x 107 2
Table 5. 1408 kgm™> 0 © H 12
29 8 ©  456x10Hz 935x102p12 P
- o -1
Table 511 4% 107 kgm™ My Mo 2.54x 1073 [.1(1)/2 p. 127
W 1.3Hz 1.58 X 107 g
- o -1p
Table 512 4 x 107 kgm™ My Mo 254 % 10_1 ‘u‘l)/z p. 128
350 Hz 426107

Table 5.8: Constant density models studied.
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Quantity AKM CMMR € CMMR,,y Units
M, 1.509790_g 1.509794_4 29  1.000003 M,
w 9.350770_,  9.350770_, 4.561591_ Hz
Ji 2.865059_1;  2.865059_;; 4.3 1.256899, GM?2/c
M, 1.509792_ 1.509796_¢ 2.9  1.000004 M,
M, 1.509792_ 1.509796_¢ 2.9  1.000004 M,
Epind 1.924035_15  1.920477_;5 1.8_; 1.272016_4 Mgyc
T 1.339525_15  1.339525_;5 6.7_14 8.872260_19 Myc
W 1.921804_15 1921817 15 6.6  1.272903_ Mgyc
/W 6.970145_,  6.970099_, 6.6_¢
Recire 7.122860_, 7122853, 1.1 6.9666795 km
Z 2122972 ¢ 2122975, 1.3
~Inyy  -2.122970_¢ -2.122973_¢ 1.3
R, 7.104249_, 7.104268_, 2.7 6.9485025 km
Req 7.122845_, 7.122837_, 1.1_¢ 6.9666645 km
Rp/Req 9.973893_4 9.973930_; 3.7
€. 1.000000 1.000000 0 7.898302_;3 MeV fm™
Pe 1.059269_ 1.059274_¢ 49, 1.322927, atm
Hbe 1.000000 1.000000 0 9.778020_4; MeV c? fm™3
h 1.000001 1.000001 52_1, 1.000001 =

Table 5.9: Relative error in the comparison for a constant density model of M, = 1 M, and solar
period using mean solar density and ©(A1%2, (%) results. The second and third columns givec = G =
€y = 1 values and the fifth one CMMR values corresponding to the convenient units of column six.
Here A ~2.12 X 10° and Q ~ 4.57 x 1072
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Figure 5.5: Relative error between AKM and O(1??, Q%) CMMR in metric functions for M, = 1M,
with solar mean density y, = 1408 kg m™ and solar rotation rate w ~ 4.56 x 107 Hz, the model of
Table 5.9.
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5. Comparison with AKM results

The error in the different quantities is comparable to the one obtained in the
previous tables, which correspond to M, ~ 5.29 X 10° M, and approximately two
times the solar period for this density. Hence, CMMR provides very accurate
results for objects in this order of compactness and angular velocity. The next
models cover the kind of compactness found in compact stars. In particular, we
take g to be the standard neutron star density, i.e., g = 4 x 10" kgm™. The
typical mass of compact stars is My = 1.4 M, although several observations are
compatible with lower masses (Lattimer, 2011). Their most common frequency
is close w = 1.3 Hz—see Fig. 5.6 (following page)—although it can reach much
higher values as in the case of millisecond pulsars, the fastest of them is J1748-
2446ad with a frequency w = 716 Hz (Hessels et al., 2006). Kaaret et al. (2007)
claimed to have found a 1122 Hz pulsar, but it has not been confirmed yet.

Table 5.11 (page 127) contains the data comparison for a source corresponding
to My = 1M, and @ = 1.3 Hz, which arises from the model family of

My ~254%x1072, (5.200)
w ~158x1073 (5.201)

inc = G = €y = 1units. There we see that relative error is in general ~ 1.5 X 102 ex-
ceptin the quantities that are obtained from linear combinations of others and thus
are more sensitive to errors. Regarding the metric functions—Fig. 5.7 (page 127),
also part of the summary in Table 5.10 (following page)—we have that g;; and g;,
show an almost completely spherical symmetry as well. This is in contrast with
what happens in Fig. 5.4 (page 122) because of two connected reasons. Here the
approximation parameters are (A, Q) = (0.107,7.72 x 107%), so contribution from
the post-Minkowskian part of the approximation is dominant here, and hides the
angular dependence of error that comes from the Q truncation. But additionally,
in Fig. 5.4 we got a higher value of Q = 4.57 x 1072 despite having a far lower
angular velocity. This comes from the relation of A and Q with r; (eqs. [2.61,
2.62]). For compacter sources m/r; gets higher thus increasing A but decreasing
Q. Hence, the compacter the source the faster it can spin before the contribution of the
slow-rotation approximation becomes dominant. In the last constant density case we
keep this My = 1 Mg, but increase the angular velocity up to w = 350 Hz. To study
it, we build the

My ~2.54 x 1072 (5.202)
w ~426x1071 (5.203)

family of models. It is a faster rotating version of the previous one with slightly
smaller M},. Table 5.12 (page 128) shows its comparison results. We see that al-
though the angular velocity is much bigger it affects very little the quality of the
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5. COMPARISON OF RESULTS WITH A NUMERICAL CODE

CMMR data. In Fig. 5.8 (page 128) we have the same situation, a slight angular
dependence in gy, but relative errors very close to those of w = 1.3 Hz.

This happens even though now A = 0.107, which is roughly the same as before,
but QO ~ 0.208, two orders of magnitude bigger than in Fig. 5.4 (page 122), and
actually twice the value of the current A. Hence, for models of this compactness
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Figure 5.6: (a): Number of pulsars in the ATNF Pulsar Catalogue for frequencies up to 10 Hz.
(b): Time derivative of the rotation period vs. rotation frequency for all the pulsars in the Cata-
logue. The scales are logarithmic. Data for both figures obtained from http: //www.atnf.csiro.au.
(Manchester et al., 2005). Colors code the kind of source; green for anomalous X-ray pulsars or soft
gamma-ray repeaters, blue for binary pulsars, purple for high energy sources and red for other
kinds.

(Mo, @): 1M,, 1.3Hz 1M, 350 Hz
(0F) el 03 Loy
gui  ~0.02 ~ 0.007 ~0019  ~0.0072

St ~ 0.044 ~0.014 ~0.044 ~ 0.015

Table 5.10: Relative error between AKM and O(A2, %) CMMR in the g, and g;, metric functions
for two configurations using the standard neutron star density 1, = 4 x 10”7 kgm™3.

126


http://www.atnf.csiro.au

5. Comparison with AKM results

Quantity ~AKM CMMR € Value Units
M, 2.545_, 2619, 29, 1.029 M,
w 1.581 3 1.581 3 1.300 Hz
J1 6.129 5 6.129 ; 69 16 9.465 4 GM3/c
M, 2.797_, 2842, 16, 1117 M,
M, 2797 , 2842, 16, 1117 M,
Epind 2.520_5 22373 11, 8793, Mg c?
T 4845, 4.845_;, 135 19044 My c?
144 2.520_5 22373 115 8793, M c?
/W 1.923 5 2.165_; 1.3,
R cire 1.825 4 1851, 14, 1.074 km
Zp 1.776_4 1.7651 6.6_3
—In 1/1): —1.635_1 —1.645_1 5.8_3
R, 1.560_, 1593, 22, 9246 km
Req 1.560_4 1593, 22, 9.246 km
Rp/Req 1.000 1.000, 339
€c 1.000 1.000 0 2.244, MeV fm=2
Pe 9.747 , 9499 , 26, 3.3705 atm
Hbe 1.000 1.000 0 2.778_3, MeVc? fm™
h¢ 1.097 1.095 235 1.095 =

Table 5.11: Relative error in the comparison for a constant density model of M, = 1M, and
w = 1.3Hz using py = 4 x 107 kgm™ and O(A%2, Q%) results. The second and third columns give
¢ = G = ¢ = 1 values and the fifth one has CMMR values corresponding to the units of column six.
Here A ~ 0.107 and Q ~ 7.72 X 107%.
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Figure 5.7: Relative error between AKM and O(1%2, %) CMMR in metric functions for M, = 1M,
and a period of 1.3 s using constant standard neutron star density, the model of Table 5.11.
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Quantity ~AKM CMMR € CMMR_,.v Units
M, 2545, 2619, 29, 1.029 Mg
w 4257 1  4.257_4 3.500, Hz
I 1695, 1.695, 1.6_14 26174 GM3/c
M, 2792, 2839, 17, 1115 Mg
M, 2792, 2839, 17, 1115 M,
Epind 2477 5 219953 11, 8.641, Mg
T 3.607_5 3.607_5 1314 14174 Mg
144 25133 22355 11, 8783, Mg c?
T/W 1435, 1614, 12,
R gire 1.851; 1877, 14, 1.089 km
Zp 1.803; 1791, 7.3
-Inyy -1.658_; -1.667_; 5.6_3
R, 1.509_, 1542, 22, 8949 km
Req 1583, 1617, 21, 9384 km
Rp/Req 9528, 9537; 934
€. 1.000 1.000 0 2.244, MeV fm=>
Pe 9461 , 9229, 25, 3.2745 atm
Hbe 1.000 1.000 0 2.778 3 MeV ¢? fm~3
h 1.095 1.092 213 1.092 =

Table 5.12: Relative error in the comparison for a constant density model of M, = 1M, and
w = 350Hz using yy = 4 x 10" kgm™ and O(A%2, %) results. The second and third columns give
¢ = G = ¢y = 1 values and the fifth one has CMMR values corresponding to the units of column six.
Here A ~ 0.107 and Q ~ 0.208.
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Figure 5.8: Relative error between AKM and O(1%2, %) CMMR in metric functions for My = 1 M,
and w = 350 Hz using constant standard neutron star density, the model of Table 5.12.

128
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and mass high rotation has little impact in the error when compared with the post-
Minkowskian truncation order and accordingly, these could be improved going to
higher A-orders, the easier way.

5.4. Linear EOS-strange matter models

We turn our attention now to models that make better use of the freedom of the
linear EOS (5.29). In particular, we choose n = 4, b = B models corresponding to
the simple MIT bag model energy-pressure EOS

€-3p=¢€y=4B (5.204)

that gives the approximate behaviour of strange matter. Willusec = G =B =1
units in general, as AKM does. This implies a little caveat.

Quantity AKM CMMR € CMMR_, Units
M, 1.81-1072  1.85-102 23-1072 141 M,
w 3.06-10°%  3.06-107° 1.30 Hz
fi 234-1077 234-107 23-107 1.36-1073 GM3/c
M, 230-102  226-102 17-102% 1.72 M,
M, 209-102  2.04-102% 25-102 155 M,
Epind 486-10°  4.05-102 1.7-107! 3.08-107! Mgy
T 358-1071" 358-1071 69.-10° 273-1078 Mgy
4% 273-10°  1.80-10° 34-107' 1.37-107! My c?
T/W 1.31-107  1.99-107 5.1-107!
R cire 956-102  1.01-10t 52-102 1.13-10! km
Zp 269-1070  241-107 1.1-107!
-Inyy -239-1000 -222-10! 6.8-1072
R, 7.64-10%  835-102 93-1072 9.38 km
Req 7.64-1072  835-102 93-102 9.38 km
Ry/Req 1.00 - 10° 1.00-10° 45-10°8
€c 6.94 5.57 2107 3.34 - 107 MeV fm=3
Pe 9.80-107!  6.38-107' 35-107' 6.04-10% atm
Hbe 7.43 6.15 1.7-1071  455-107%2 MeV? fm™3
h. 1.07 1.03 38102 1.03 &

Table 5.13: Relative error in the comparison for a simple MIT bag model of M, = 1.38 M, and
@ = 1.3Hz using €, = 4B = 4 X 60 MeV fm~ and O(1?2, (3%) results. The second and third columns
give c = G = B = 1 values and the fifth one has CMMR values corresponding to the units of column
six. Here A ~ 0.117 and Q =~ 7.48 X 107,
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Figure 5.9: Relative error between AKM and O(1??, Q%) CMMR in metric functions for M, =
1.38 M, and w = 1.3 Hz using constant standard neutron star density, the model of Table 5.13 (facing
page). The CMMR surface is the outer (lighter) pixeled line, slightly bigger than the AKM (darker)
one.

When ¢ is one of the three dimensional constants, with the others (c, G) fixed
to one so that r, = 7_’5661/ >and w = cDe(l)/ 2, the approximation parameters keep the
form they would take simply making €y = 1

4

4
A= 5711’360 = 571'0, (5.205)

Ts@ 3
Q= ﬁ = ,/Ed), (5.206)

because they are dimensionless. In the present case, €; is not one of the three di-
mensional constants and thus the expression of A and €2 changes, so that, when-
ever we are working with a third dimensional constant b definable as €y, = nb with
n a dimensionless constant,

4 4
A= gnrfeo = gnn?g, (5.207)

_rw [ 3
Q= m = Mﬂ) (5208)

Taking this into account we can proceed as in previous cases. We will analyse
first the model of a strange star with typical pulsar parameters M = 1.38 M, and
@ = 1.3Hz. If we take the common value for the bag constant B = 60 MeV fm™ or
equivalently

Lo = 4B = 4 x 1.067 X 107 kgm= (5.209)
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5. Comparison with AKM results

we have that this is a particular case of the family of models with

My ~1.81x1072B712, (5.210)
w ~ 3.06 x 103BY2, (5.211)

The comparison of quantities appears in Table 5.13 (page 129), where we see
that ¢ is in general located between orders 1071-1072. Something similar happens
in the metric functions on Fig. 5.9 (facing page), though falling quite fast to 10~
in ¢, and 1072 in 1o With bigger distances to the source. We can also see in this
case a noticeable difference between AKM and CMMR masses—recall that we
are using J; adjustment in non-static cases—and this is partly responsible for the
bigger radius of the CMMR surface, but not exclusively since it happens with M,
adjustment as well.

In this case error starts to be of importance, but again its distribution indicate
that is A dominated. Thus, it may be worthy to go to further A-orders for a rea-
sonable easy improvement of the results.

The previous 1.4 M, is a very common measured value for pulsars, and also
a value easily reachable with most neutron star EOS. Nevertheless, neutron and
strange stars have very different mass-radius (MR) relations. While neutron stars
increase their mass for lower radii, what imposes a minimum size for them, strange
star behave in the opposite way, with mass increasing with the radius. This gives
them totally different zones in a MR diagram—see Fig. 1.1 (page 7)—, with strange
stars favouring lower masses. There are at least two observed objects with esti-
mated masses substantially below the canonical 1.38 M, that in fact defy explana-
tion with most neutron star models, hinting towards SOM composition:

* 4U 1728-34. Li et al. (1999b) were the first to give an estimation for its mass
and radius, establishing an upper bound of M, < 1.1 M, for the first and
R < 10km for the second. Later, Shaposhnikov et al. (2003) gave estimates
depending on the distance to the source, ranging from My = 0.91 Mg, R =
8.66 km at 4 kpc to My = 1.61 M, R = 9.60 km at 5 kpc, the latter being prob-
ably the upper limit. Last, Majczyna and Madej (2005) gave M, = 0.407 M,
R = 45877km and M, = 0.63}2 My, R = 5.2771km as best fits and 1 - ¢
confidence ranges depending on the kind of atmosphere of the source.

* SAX J1808.4-3658. Li et al. (1999a) determined the allowed region of MR
configurations for this @ = 401 Hz source, showing it to be incompatible
with the neutron star EOS considered and favouring strange quark matter
ones. The latest MR estimation for this object is due to Leahy et al. (2008) to
our knowledge. It gives two different results. A first one, using bolometric
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light curves, gives a very wide 3-0 region ranging from the lightest config-
uration M, = 0.4 M, R = 6.5km to the heaviest M, = 1.4 M, R = 10.6km
with a best fit in My = 0.99 My, R = 4.87km. A second one, using only
two band light curves, gives a heaviest configuration with My = 1.1 My,
R = 5.4km and a lightest one with M, =0.8 My, R = 4km, with best fit in
M, = 0.96 My, R = 4.72km. This last one has much narrower confidence
levels, points towards SQM EOS and is in better agreement with the previ-
ous results of Poutanen and Gierlifiski (2003), where the quality of the fits
decreases rapidly for My > 1 Mg

Hence, this two objects probably have masses close to 1M or even lower.
Their frequencies are quite close (and high), too close to give rise to big differ-
ences between them. Taking this into account we are going to study now a model
corresponding to M = 1 Mg and one of their frequencies, w = 364 Hz, i.e., models
of the

My ~1.31x1072B7172, (5.212)
w =~ 0.857BY2, (5.213)

family. We will also calculate the

My ~1.31x1072B7172, (5.214)
w =~3.06 x 1073B2, (5.215)
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Figure 5.10: Relative error between AKM and O(A%?, %) CMMR in metric functions for M, =

1M, and w = 364 Hz using the simple MIT bag model and €, = 4B = 4 X 60 MeV fm3, the model of
Table 5.14(a) (following page).
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(a) w =364Hz
Quantity AKM CMMR € CMMR,_,, Units
M, 1.314-1072  1.339-102 1.8-102 1.018 M,
w 8571-1071  8571-107" 3.640 - 107 Hz
il 3.997-10° 3.997-10°5 1.7-107' 2313-107! GM3/c
M, 1.614-1072  1.608-1072 3.2-107° 1.224 M,
M, 14571072  1.448-102 6.1-10° 1.101 M,
Epind 2993-10°  2699-10° 9.8-102 2.054-107! Mgy
T 1.713-10° 1.713-10° 1.6-107'2 1.303-1073 Mgy
W 1.440-10°%  1.110-10% 23-107! 8.443-107? Mg c?
/W 1.189-102  1.543-102 3-107!
R eire 8913-102 9.158-1072 27-102 1.029-10! km
7 1.965-10"  1.868-10' 49-1072
—Inyy -1794-107' -1.744-107 2.8-1072
R, 7.236-102  7562-1072 45-102 8.49 km
Req 7.530-1072  7.874-1072 4.6-1072 8.846 km
Ro/Req ~ 9610-107"  9.604-107" 5.9-107*
€. 5.669 5.184 8.6-107%  3.103-10? MeV fm~3
Pe 5563-1071  4559-107' 1.8-107' 4.315-10% atm
Hoc 6.199 5.731 75-102  4.247-10732 MeV c? fm™3
he 1.004 9916-107! 1.3-102 9.916-107! e
b) w=0
Quantity AKM CMMR € CMMR, v Units
M, 1.314-102  1.314-102% 1.3-107'® 1.000 M,
My, 1.616-1072  1.580-1072 2.2-1072 1.202 M,
M, 1459-1072  1.422-102 25-1072 1.082 M,
Epind 3.016-10%  2.657-10° 12-107" 2.021-107! Myc
1% 1.447-10%  1.079-10% 25-107' 8.208-107? Mg c?
Reire 8.799-102  8988-1072 22-102% 1.010-10! km
Zp 1.942-107"  1.817-107' 6.4-1072
—Inyy -1775-107' -1.699-107% 4.2-1072
R, 7.426-102  7.737-1072 4.2-1072% 8.693 km
Req 7.426-102  7.737-1072 4.2-1072% 8.693 km
Rp/Req 1.000 - 10° 1.000 1.2-1071
€c 5.727 5.203 9.2-102  3.114-10? MeV fm~3
Pe 5.757-107"  4.622-107! 2107 4.375-10% atm
Hoc 6.257 5.751 81-10%2 4.262-10732 MeV c? fm™3
he 1.007 9.927-107' 15-102 9.927-107! e

Table 5.14: Relative error in the comparison for a simple MIT bag EOS model of M, = 1M,, in
the static and w = 364 Hz cases (1 ~ 1.067 X 1017 kg m™3, or equivalently €, = 4B = 4 x 60 MeV fm™3)
using O(A%?2, (%) results. The second and third columns give ¢ = G = B = 1 values and the fifth one
CMMR values corresponding to the units of column six. Here A ~ 0.102 and Q ~ 0.209; A ~ 0.101

in the static case.
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model leading to w = 1.3 Hz and the static case to see the influence of rotation:

* Table 5.14(a) (facing page) gives the quantities comparison for the M, =
1M, w = 364 Hz case, improving by roughly a % factor with respect to the
ones M, = 1.38 M, ones of Table 5.13 (page 129). Fig. 5.10 (page 132) shows
the familiar almost spherical error distribution, as well as closely fitted sur-

faces.

e In Table 5.14(b) (facing page) we list the results for the static case, with M
adjustment. It shows no big departure from the 364 Hz case, and something
similar happens with the metric functions of Fig. 5.11.

* Last, Table 5.16 (page 136) lists the ¢ for w = 1.3 Hz, with the metric functions
compared in Fig. 5.12 (page 136). The results are very similar to the static

ones.

Therefore for this frequency range the results show very little rotation depen-
dence and again can be significatively improved going to next post-Minkowskian
iteration, which should lead to ¢ ~ 10~ as general value. Table 5.15 (following
page) summarizes the error in the metric functions for these three angular veloc-

ities.

0012 0.15
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0,008

0.006)

0.004

0.002

(b) grr

0.10 0.15

Figure 5.11: Relative error between AKM and O(A*) CGMR in metric functions for M, = 1M,
using a static simple MIT bag model and €, = 4B = 4 X 60 MeV fm=, the model of Table 5.14(b)

(facing page).

134



6. Other results

(1\7[0, w): 1My, 0Hz 1My, 1.3Hz 1M, 350Hz
e (0, g) e (deq, g) e (0, g) e (2@eq, g) e (0, %) e (2@eq, g)
St ~ 0.003 ~ 0.0035 ~ 0.0077 ~ 0.0069 ~ 0.0075 ~ 0.0069
St ~0.13 ~ 0.024 ~0.13 ~0.025
err: ~0.12 ~ 0.0057 ~0.12 ~ 0.004 ~0.10 ~ 0.004

Table 5.15: Relative error between AKM and O(A%2, %) CGMR in the gy, 8, and ggg metric func-
tions for three configurations using the simple MIT bag model with €y, = 4B = 4 X 60 MeV fm™.

6. OTHER RESULTS

In Section 4 we introduced some quantities that, while the standard AKM code
does not compute, appear in different works. We list them for both their physical
relevance and to allow for a fast further comparison of our results.

In what follows, we use our analytical expressions to give values for these
quantities for the stellar models studied in the previous section.

¢ Table 5.17 (page 137) contains the data corresponding to constant density
sources with M, = 8 x 107, static and rotating at @ = 350 Hz.

* Table 5.18(a) (page 138) concerns My = 1M constant density models for
two different densities and solar, average and 350 Hz angular velocities.

¢ Table 5.18(b) (page 138) corresponds to the My = 1M, strange star models
rotating at w = 0, v = 1.3Hz and w = 363 Hz.

Among them, the data regarding the ISCO (or the circular orbit for massless
particles) deserves a more careful look. We did not find a way to expand its radial
coordinate coherently with the rest of the approximation; hence, the radii come
from the numerical solution of the k = 2 case of eq. (5.186) and the k = 1 one from
eq. (5.192). Fig. 5.13 (page 140) shows the behaviour of prograde and retrograde
ISCO of time-like particles for strange star sources of M}, ~ 0.11, 0.95 and 1.71 M,
corresponding to gravitational masses of approximately My ~ 0.1, 0.8 and 1.4 M,
and ranging from w = 0 to w = 2—slightly faster than the fastest spinning source
known, w = 1.7 2 716 Hz. In that Figure, the left column contains (9(A9/2, 03) re-
sults and the right one those of the ©O(1%2, ) approximation. To check accuracy,
the plots also display a dot at the position of the Schwarzschild ISCO, which is
Tsmd = 6M in Schwarzschild standard coordinates. Changing coordinates from
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Quantity AKM CMMR € CMMR,_,y Units
M, 1.314-1072 1.340-102 21072 1.020 Mg
w 3.061-10°  3.061-107° 1.300 Hz
J1 1.393-107  1.393-107 0 8.060 - 10~ GM3/c
M, 1.616-10%  1.612-102 23-10° 1.227 M,
M, 1459-102  1451-102 54-10° 1104 Mo
Eping 3.016-10°  2.721-10°% 9.8-102 2.070-107" M, c?
T 2.131-1071°  2.131-107%° 73-1072 1.621-1078 My c?
W 1.447-10°  1.111-10° 23-107' 84531072 M c?
T/W 1.473-1077 1.918-1077 3-107!
Recire 8.799-102  9.045-102% 28-102 1.016- 10 km
Zp 1.942-101  1.846-10' 49-1072
-Inyy -1775-107' -1.725-107' 2.8-1072
R, 7426-102  7.772-10 46-102 8731 km
Req 7426-1072%  7772-102 46-102 8731 km
Ry/Req  1.000-10° 1.000-10° 21078
€. 5.727 5.221 8.8-1072  3.125-10? MeV fm™3
Pe 5.757-107'  4.706-1071 1.8-107!  4.454.10% atm
Hbe 6.257 5.771 781072  4277-107%% MeVc?fm™
h, 1.007 9.943-1071  1.3-1072 9.943-107! &

Table 5.16: Relative error in the comparison for a simple MIT bag model EOS of M, = 1M, and
@ = 1.3Hz using €, = 4B = 4 x 60 MeV fm™ and O(1%?, (%) results. The second and third columns
give ¢ = G = B = 1 values and the fifth one has CMMR values corresponding to the units of column
six. Here A ~ 0.102 and Q ~ 7.48 x 107%.
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Figure 5.12: Relative error between AKM and ©(1%2, Q%) CMMR in metric functions for M, =

1M, and w = 1.3 Hz using the simple MIT bag model with €; = 4B = 4 x 60 MeV fm3, the model of
Table 5.16.

136



6. Other results

standard to isotropic ones with

Tstnd _ 2]VIO

Ystnd ~
R = ) 4 +\/s;n (rs’md_zMO)/

(5.216)

we get the position of the Schwarzschild ISCO in isotropic coordinates—which
are equal to the quasi-isotropic ones in the spherical limit—, i.e.

R = (3 + V6 . (5217
The behaviour is far better for low masses as expectable and shows a significant
improvement with the higher approximation. It is also apparent that with the
current results, the mass and/or angular velocity needed for the presence of an
ISCO (Risco > R eq) is still visibly higher than what the Schwarzschild result sug-
gest, though. The circular orbits of massless particles have always smaller radii
than ISCOs and do not lie above R, for any of the cases studied and we do not

w=0Hz w =350Hz
Quantity CMMR CMMR,,, CMMR CMMR_,, Unit
1o 5.663323_, 5.53915, 5.663395_,  5.539221, km
M, 0 0 -1.197716_g -2.386673;  MgR2..
I 0 0 -2.27517_1,  —3.002869 GM%R%HC/C
I 1.059112_¢  2.1270735 1.067488 s  2.1271715  MgRZ,.
ch/GM3 0 3.391625_;
My/MgR 0 —4.541685_,
*M,/G*PM; 0 -2.398147,
3 9.860889_; 9.745158_,
Zeq 9.860889_; 9.975755_,
Rizco 3.798184_;  3.714906, 8318422,  8.136035 km
R 3.798184_; 3.714906 9.537823_5  9.3287, km
R, 0 0 3.794365_;  3.71117, km
=il 0 0 4.236964_5  4.144065, km
R, 5.769543_, 5.643042; 5.724346_,  5.598836; km
C 3.608289_; 3.5291754 3.601286_;  3.5223254 km
Eproper 0 1.526887_;
Eint. 0 1.079286_,

Table 5.17: Some other quantities corresponding to the constant density models with M, =
8 x 107 of Table 5.3 (page 115) and Table 5.5 (page 118) using O(A%2, %) results. Each pair of
data columns lists the ¢ = G = ¢, = 1 value and its value in some convenient units when
to =4 x 107 kgm™.
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(a) Constant density models of Table 5.9 (page 124), Table 5.11 (page 1277) and Table 5.12 (page 128)
with My = 1 M, with mean solar density (first pair) and o = 4 x 1017 kg m™ (last two pairs).

@ =456 x 1070 Hz w=13Hz @ =350Hz
Quantity CMMR CMMR,,, CMMR CMMR,, CMMR CMMR_,, Unit
1o 7117, 6.9615 1.597_4 9.27 1596,  9.263 km
M, 798119 —1.042_5 -1.736_9 -1.993_; 12535 -1.398_, MQREM
B -1.08_4  —9.338_5 —2.808_15 —1.266_19 -5443_¢ 23873 GM2AR?, Jc
I 3.064_1 44 3.877_4 4.449_4 3981, 4442, MQREM
cJ1/GM?3 1.257; 8.937_4 24714
My/MoRZ, . -1.042_5 -1.936_, -1.359_,
AM,/GPM3  -2.319 -9.669_¢ —-6.977_4
3 9.999_; 8.465_; 7.659_4
Zeq 1 8.471_4 9.252_;
Risco 2.817 5 2.755, 1.021_4 5.925 1.049,  6.086 km
Risco 2.817_5 2.7554 1.022_, 5.933 1.368_;  7.938 km
i 3.047_¢ 2985 5.07_, 2.942 5221,  3.03 km
il 3.049_¢ 29835 5.076_, 2.946 6.716_,  3.897 km
. 7.104_, 6.9495 1.943_, 1.127; 1.881_;  1.092 km
Cy 4.47_5 4372 1.163 6.747, 1.153 6.692; km
Eproper 7.216_, 1.13_5 2.985_;
ot 5.104_, 7.84_4 2.084_,

(b) Simple MIT bag models of models of Table 5.14 (page 133) and Table 5.16 (page 136) with M, =
1M, using €y = 4B = 4 X 60 MeV fm™3.

w =363 Hz w=0Hz w=13Hz
Quantity CMMR CMMR.,, CMMR CMMR.,, ~CMMR CMMR_,, Unit
o 7.789_, 8751 7.756_, 8714 7.791_, 8.753 km
M, 131 -1.189_, 0 0 -1.673_1; -1.556_; MR, .
Js —2713.g -1.873_4 0 0 -1.238_4, -8.757_1 GMER2, e
I 46635  4.23_4 44095 4152, 4,549 _5 4234 MOREM
cJ1/GM3 22314 0 7.753_4
My/MoR%, . -1.167, 0 -1.526_;
AM,/G?M3 5464 4 0 -6.95_¢
23 7.597 4 8.411_4 8.386_;
Zeq 9.162_, 8.411_; 8.391_;
Risco 491, 5516 4698, 5278 4.761_, 5.349 km
Risco 6374,  7.161 4698, 5278 4767, 5.356 km
o 2.786_,  3.13 2838, 3.189 2.837_, 3.187 km
il 3.51_, 3.943 2.838_, 3.189 284, 3.19 km
o 9263,  1.041; 9454, 1.062; 9.52_, 1.07, km
G 5.646_;  6.343; 5.648_;  6.345; 5.683_; 6.385; km
Eproper 2.78_4 0 1.009_3
Bt 1.931_, 0 6.973_4

Table 5.18: Extra quantities of ©O(1%2, Q%) CMMR results. Each pair of data columns lists the
¢ = G = b =1 value and its value in some convenient units.
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present them. Additionally, some difficulties arise computing them, leading to an
increment the precision needed for the numerical treatment. We think that it is a
consequence of working relatively closer to R = 0 with a metric that is a multipole
expansion around infinity.

Last, a comment on ratios of quantities. In Tables 5.17 and 5.18 and Section 4
we have introduced several dimensionless ratios of physical properties of the sour-
ce without giving their analytical approximate expression. This is due to the fact
that, for each particular stellar model, obtaining first the value of the quantities
involved and then obtaining the ratio leads to a different value than the one pro-
vided making a series expansion of the quotient of the approximate expressions.
Actually, this last procedure can lead to expressions that depend on negative pow-
ers of A and Q or on which expansion is done first. Hence, we take the consistent
way of proceeding, computing ratios of values, despite loosing the goodness of
an analytical expression.

7. SUMMARY

In this Chapter we have chosen the AKM code to build exact numerical stellar
models to compare with our analytic approximate results. Studying first a con-
stant density source with My, = 8 X 10~*—which would correspond to My, = 3.14 X
1072 Mg if g = 4 X 107 kgm™ and My, ~ 5.29 X 10° M, if g = 1408 kg m3—we
saw that going from ©(A?) to O(A*) results,

¢ there is a consistent improvement in the relative error with respect to AKM
of the physical properties of our model of slightly more than one order of
magnitude after each new post-Minkowskian iteration. There is higher error
en W and Ep;,g—and also in subsequent models—because these quantities
are linear combinations of others;

¢ relative error in the metric functions shows the expectable spherical symme-
try of a static configuration and changes from ¢, ~ 107° in the centre of the
source and &5, ~ 107 at two times the radial coordinate of its equator to
(&e, ezgeq) ~ (1077, 1078) two iterations later.

For the same M, but including rotation with w = 0.2—2.14 times the solar
spin rate for its density and 164 Hz for neutron star density—we get the same
trend except in quantities more strictly related with the source, like J;, T, p. and
h., which have slightly higher errors. The error in metric functions shows a lobular
appearance that increases with each post-Minkowskian iteration. Itis related with
the error introduced by the truncation in tensor spherical harmonics that comes
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Figure 5.13: CGMR results for the radial coordinate of prograde and retrograde ISCO for massive
particles and the surface as a function of the angular velocity of the source. All the cases correspond
to n = 4 and h(0) = 0.899124. Plots on the left are obtained from ©(1%?, Q%) CGMR and the ones on
the right from O(1%2, Q%) CGMR.
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from the slow-rotation approximation. This lobular distribution indicates when
rotation is an important source of error.

The final check of the behaviour of error in CMMR was changing the pair of
parameters used to adjust the values of r; and w. We saw that the best quantity,
among My, pe, Req and J; is the last one, and next M,, which is the one to use in
static configurations.

After understanding the general behaviour of CMMR, we turned to see its
performance for interesting sources.

We started again with constant density models.

* Using typical solar parameters, we got ¢ ~ 107 in physical properties and
8ty inside and near the source, but much lower in gy, ¢ ~ 1071, This be-
haviour is similar to the one of the M, ~ 5.29 x 10° Mg model, hinting that
error depends more on compactness than in absolute mass.

¢ For average neutron star density and rotation—1.3 Hz—error is around
1.5x 1072, and its distribution in metric functions is nearly spherical. We
found that the compacter the source the faster it can spin before the slow ro-
tation approximation becomes dominant and results for spin rates of 350 Hz
are very similar.

Then, we studied a subcase of the linear EOS, n = 4, which corresponds to the
simple MIT bag model EOS of SQM.

e First, using B = 60 MeV fm~ for the common value of gravitational mass
M, = 1.38 M, and the most common rotation rate, 1.3 Hz, errors in physical
properties are in the 1071-1072 range, and similarly in the metric functions
but falling fast to 10 in g;; and 1072 in g;. Again, the distribution is very
spherical so dominated by error coming from the post-Minkowskian part of
the approximation.

¢ There are astrophysical objects with lower masses, and in particular such
lighter sources can be very relevant in the study of the SQM hypothesis.
There are strong indications that 4U 1728-34 and SAX J1808.4-3658 have
masses of My = 1 M, or less, and accordingly we have studied models with
this gravitational mass. Their rotation rates are very close, so we picked one
of the, 364 Hz. Here, error is a factor 0.5 better that with M, = 1.38 M.
We studied also the static and 1Hz cases without finding big differences.
For these models, the next post-Minkowskian iteration should give relative
errors of 107°.
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5. COMPARISON OF RESULTS WITH A NUMERICAL CODE

For the main cases of interest where error should be improved, the post-Minkows-
kian approximation is the main responsible. With the software developed in this
work, it is essentially automatic to obtain the next post-Minkowskian iterations
and hence, we expect to be able to improve our results with ease.

Beside the physical properties we compared with the ones AKM provides, we
have computed the value of several other for all these models to allow a fast com-
parison with other codes. Particularly relevant was the study of the ISCO radii,
for which we have not been able to find an analytical expression, but we intend to
do it in the future. We compared our results for it with the one of Schwarzschild’s
exterior for M, = 0.11 M, with very good agreement; for M, = 0.95 M we got an
error of ~ 20% and one of 23% in My, = 1.71 M. We have no checks for the effect
of rotation on it, though.
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Chapter Six

Model with a bilayer interior

We have already seen in Chapters 3 and 4 that the CGMR interior cannot be a
source of a Kerr exterior nor be an approximate Wahlquist if matched with the
asymptotically flat exterior. It seems that the perfect fluid restriction is important
in forbidding the Kerr exterior since anisotropic interiors for it have been found
(Wiltshire, 2012). We can check if a more complex structure, with two different
layers of perfect fluid can, keeping the isotropy of the stress-energy tensor, give
rise to Kerr, though. Similarly, an additional layer of fluid adds flexibility in the
matching so one could expect that this bilayer source could contain a inner one
corresponding to Wahlquist and yet be matchable with the asymptotically flat ex-
terior. These are the two main checks for this chapter, apart from the possible
application to more realistic compact stars.

We know of three kinds of compact stars: black holes, neutron stars and white
dwarfs. If the SQM hypothesis is right, a fourth, strange stars, should be added.
The intensity of gravity inside a compact star can lead to pressures of more than
ten times the one inside ordinary atomic nuclei and thus create an environment
with energy available to generate particles or structures very different from those
present in nuclear matter. In Chapter 5 we have already discussed one of such
compositions, i.e., strange quark matter. The pressure is not everywhere the same,
though, giving rise to stratified layers with different environments and particles,
like

¢ hyperon and baryon resonances,

¢ deconfined quark matter,

* boson condensates and

¢ the hypothesised strange quark matter

are to be expected in high pressure layers in the most general scenario.
The particular composition of a certain compact star depends mainly on its
mass-radius parameters, but also on the behaviour of its components. It is dom-
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6. MODEL WITH A BILAYER INTERIOR

inated by the strong interaction and thus currently subject of important undeter-
minacies regarding their EOS. Eventually, they all need to be consistent with the
observations, which in turn are not trivial at all. It leads to the present picture:
several different compact star models which researchers try to improve to lead to
discrepancies with the slowly increasing number of observational constraints in
order to gain insight on both astrophysical objects and behaviour of fundamen-
tal particles. Hence, multi-layer stellar models have a very interesting number of
practical applications.

In this chapter we build a global solution for a bilayer source. In both layers
the EOS is the familiar linear one, using different n, €y parameters. It may be used
to make a better approximation of bare SQM cores due to the extra freedom of
parameters, but the main purpose is to illustrate the procedure of layering within
the CMMR scheme.

1. THE SPACETIMES AND MATTER CONTENT

We want to study a rigidly rotating stationary perfect fluid source with two non-
convective layers of different composition immersed in asymptotically flat vac-
uum. We build this configuration up from three different spacetimes. The first
one, (V! gi) will form the inner layer of the source. A second one, (V?, g°) will
describe the outer layer and (V*, g¥) the asymptotically flat exterior. Each space-
time is stationary and axisymmetric and we can apply the CMMR approximation
scheme straightforwardly.
In V!, the EOS is
e+(l-mp=e (6.1)

and the ansatz for its surface is

Iy, =t [1 + ¢; Q?Py(cos 9)]. (6.2)

Figure 6.1: Configuration of spacetimes to study and their associated free parameters. From left
to right, the inner layer, exterior layer and exterior spacetime.
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1. The spacetimes and matter content

Note that we have dropped the o, factor that was present in eq. (3.36) because it
is not necessary.
Similarly, in V* we have

e+ (1—-m)p=ey, (6.3)
ry. =15 [1+ ¢, QPy(cos 0)]. (6.4)

With the EOS, we can integrate the simplified form of Euler’s equations eq. (2.71)
and obtain the p(1) relation in both spacetimes

p= ;_ |(cu¢)”” - 1], (@=1,2) (6.5)

where C, is the integration constant. In the outer surface, it must be adjusted so
that Y(p = 0) = 1,. This gives C, = 15 2 and hence, in the outer layer

_al(¥)"_
=2l 1) €9

On the inner surface, we define ¢/(r5,) := ;. The continuity of pressure on through
the surface gives then

€ ny € Yi "

Zﬂ@wﬂ—qzéﬂﬁ)_q' 7
Thus,

cln =y 2 ﬂn2—1 +1 (6.8)

LT ey [\ s .

and the pressure on V' is

" ny ; ny
(%) {eznl [(Lp_;) - 1] + (—:1712} — €Ny

p= . / (6.9)

with the energy densities of both layers obtainable from p through the EOS.
Regarding the post-Minkowskian approximation parameter, in the monolayer
case of Chapter 3, its definition was A = %nrgeo, essentially the Newtonian static
mass divided the characteristic length. Here we are interested in keeping a sim-
ple enough similar relation that allows us to recover the original parameter when

either €; = €, or r; = r;. One possible choice is then

4
A= 37 [r§€2 +7% (€1 - 62)]. (6.10)
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6. MODEL WITH A BILAYER INTERIOR

In particular, if €, = €1, we have

4 2
A= 37 [qr§ —(q - 1)r? ](—:1 (6.11)

that recovers the familiar expression A = %nr‘%el defining

1y = AlqrE = (g - 1)r? (6.12)

as characteristic length.

2. APPROXIMATE METRICS OF THE FLUID LAYERS

Next, we need the solution of the homogeneous part of the system (2.45) in the
three spacetimes, b, i and I . Recall that egs. (2.69) and (2.70) are, con-
sidering the symmetries, the most general of such solutions which are regular at
infinity and at r = 0, respectively. Hence, the expressions of h;, and ki are
identical to eq. (2.69) and eq. (2.70), replacing r; with r,. In the outer layer of the
source the general solution of the Laplace equation does not need to fulfil these
regularity conditions, since we work with a piece of spacetime that does not get
near infinity nor r = 0. Hence, the solution contains both positive and negative
powers of r with the same form the previous ones had, i.e.

m 3 ]l ji

A B,
+ E AQ) (rf,+3 En2 + 7 il ZE,) + 10?2 (ro—l-”z +b, 1—“0) +0OQY.  (6.13)
1=0.2

In this chapter we keep the notation of upper case letters {M;, J;, A;, B,} for the
exterior free coefficients of I ., lower case letters {my, j, a;, b,} for those in
and a barred combination of both depending on whether they multiply a positive
or negative power of r for the outer layer solution.

The remaining steps are not different from the ones in Chapter 3. The result-
ing general solutions of the full harmonic post-Minkowskian system appear in
Appendix G

3. LICHNEROWICZ MATCHING OF THE THREE SPACETIMES

We match the three separate spacetimes into the final one imposing Lichnerowicz
conditions. The procedure is again similar to the matchings in Chapter 3, taking
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3. Lichnerowicz matching of the three spacetimes

care of one surface at a time. We get first the conditions on the free coefficients in
the outer layer, obtaining all the outer layer constants {X;, ¥;} as functions of the
exterior ones ~ ~

Xp = XMy, ], Ay, By),

- (6.14)
X = XMy, 1, A, By).

Then we proceed in the same fashion on the inner surface, getting the relations

X = X(my, ji, ay, by),

. . (6.15)
X = xl(ml/ ]l/ ap, bZ)

In this way, we get the final system of equations that only involve the inner layer
constants and the exterior ones and is formally equivalent to, again, the one we
met in Chapter 3. This fixes the exterior and inner layer constants and through
egs. (6.14) and (6.15) those of the outer layer as well. The final values of X; and x;
appear in Appendix G. We also write the outer layer constants as functions of the
inner layer ones there.

3.1. Some subcases of the matching

As a check, we can take these matched coefficients and see how they behave when
r; = 1s. The exterior and inner layer constants of the O(A%2, (%) solutions are
reduced to

1 8 402
_ 2 _
M0—1+EA[Q (8—27’l1)+(42+37’ll)], AO_A(£+E),
1 1 47
M2=——+—/\(—74+5n1), AZZ——,
270 63 (6.16)
Ji 2+Qz+ 1/\[(22(176 9ny) + (240 + 6m;)], B, =0
= — —_— —_— —-Yn n , = ,
17573 "105 ! ! 2
1 1
=—Z 4+ —A(-14
Js = =5 + o=/ (-1488 + 55m;)
and the inner layer ones to
1.1, 202
m0=3+ZA[Q (4-2m) + (18 +3ny)], a0 =A(7+=),
1”( 29 3n1) 861
My = — =Rl dy = ===
35 14 105 (617)
202 1 )
i=2+ 5+ 55h [©92 (578 - 75ny) + (2058 + 105n)], b, =0,
2,1 A (=326 — 151;)
—=+ —=A(-326-15n
]3 7 245 1/
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i.e., the same values we found in Chapter 3. The situation is very different in the
outer layer. There, when r; = r; we obtain

4 21q qn qny (8 89 2n;y 2qn
My=1- q+/\[ 79+ 5 +5 > + 0 +Q + ,

(6.18)
M, = ——(q 1) (<2 + 3my,) + ﬁa [-2(283 - 9587 + 675¢2) + (95 — 145)n,
— 259(=5 + 3q)n, ], (6.19)
02 16 2n n
i=-2@-1+ —(q—1><—2+3m2>+A{——(q—1>+ S@-1g+ 2 -T2
3q°n, 7‘1”2 7°ny
+ 70 + 0?2 [ 525(q 1) + (q 1)g + 210( 27 +29q)ny - 710 + "
(6.20)
Ts ———( 1) (=2 + 311p) + —— A {1910 - 26109)n
=35 2 F 14100 v
— 7[3804 — 5954 + 215097 + 259(~7 + 3q)n |} (6.21)

2
2
0= /\[105(12 21q+9q)+ 2~ 2q)Q]

(6.22)
A, = 1 (—4 +7q - 3q2) A
27 63 ’

By = 22 (0 - 1)A
2= T35\ AN

9 27 3 942
o =3 3qmo+ 4 {5+ 18- 20 - 2y, - 202 g - L2

(6.25)
1
iy = (2-29+ 2 +3q)my) + —=A[116 — 4667 + 35042 + 5(6 + 29q)n; — 175¢%n, |
(6.26)
. .202 49 64 n
]1=2(q—1)+]1— (q 1)(2+3m2)+A{—§+ 5q 3¢ - ?l
1271 74
- —q( —4 + 3q)n, + O? [—— ﬂ

1
S5 S5 +g° + m(% - 58q)n, + 611(—4 + 3q)n2]} ,

(6.27)



3. Lichnerowicz matching of the three spacetimes

| A
f=ist 5 [2(9-1) 3m, - 2)] + s [5(6 + 29g)n; — 7 (-208 + 98 + 11042 + 25¢%n, )|,
(6.28)
2 2
dg=ag+A [—7 - 8q + 1547 + (—5 + Eq) Qz], (6.29)
86
ﬁz =ay; — ﬁ (q - 12) /\, (630)
by = by + (g —1)qA (6.31)

what gives a solution completely different from the inner layer one. Even if differ-
ent, one would expect the solution to vanish. We only recover a source with the
behaviour of the inner layer

MOZO/ MZZOI ]_]_:0/ ]3201
_ _ _ (6.32)
AOZO, AZZO, BZZO,

my =my, My =y, =i J3=Js

- 6.

ag = ay, ap = ap, by = b, (6:33)

when both g =1 and 1y = n,.
It is also interesting the behaviour of the three solutions when r; = 0. In the
outer layer we obtain

MO=O/ M2=Or ]_l:OI ]_3=0/

- ’ / 6.
Ay =0, Ay=0, By=0, (634)

for the coefficients of negative powers of r. This is the expected behaviour when
the source has only one layer. The rest of coefficients are

iy = myg, (6.35)
. A (-8 - 54q + 6242 + 25¢%n; — 25qn, )
iy = = (2-2q + 2+ 3g)my) + 20+ 307 , (6.36)
j1=]1, (6.37)
1, A (262 - 324q + 6297 + 254%n; — 25qn,)
=3 [3575 + 2(-1 + q) (-2 + 3my) | + 70+ 1057 , (6.38)
ay =4y, (6.39)
__6(1-gA
= —— 3 +ay, (6.40)
EZ = bZ/ (641)
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6. MODEL WITH A BILAYER INTERIOR

which depend on the inner layer constants. These inner constants become

Q% (-2
my = 3+A —% (6 + 7’12) (642)
—7+2q A[-60+204g — 43442 — 175¢%n; + 10(-3 + 13q) nz]
My = + (6.43)
2+3q 14(2 + 39)
, 202 49 n, (289 5n
]1—2+§+/\ €+?+Q (ﬁ—m (644)
2-7+2q)  —87547n; +2[-2576 — 20439 + 54497 + 25(-3 + 13q)n2] )
3= 7@ v3g) 2452 + 39)2 (6.45)
A7 + 207 (6.46)
ag = —_— .
0 3q 7 4
2(-401 + 1867)
= 6.
2= A 1052 + 39) (6:47)
bZ = O/ (648)
and the exterior ones are reduced to
1 14 1’12 8 21’12
=— + O — - 2 .
_ 1 A( ~74 + 5n2)
M, =- 2 + 0P (6.50)
2 o2 16 2m, ,( 176 31,
= 52 + 372 +A [7173/2 + 35752 + (105q5/2 - 35175/2) (6.51)
1 A(-1488 +55m))
]3 - _71/]7/2 + 2205q7/2 7 (652)
8 4002
AO =A (W + W), (653)
41
Ay = “63q72 (6.54)
B, = 0. (6.55)

Both of these two last sets become the expected CGMR results only when g = 1.

Last, the case g = 0, that can arise from having e, = 0, requires to work with
the full expression of the metric because q appears not only in the (X}, x;, X;, %)
constants. It gives the usual CGMR metric in the inner layer, transforms the outer
layer into the CGMR vacuum and the exterior is the CGMR one as well, as could
be expected. All these particular cases are summarized in Table 6.1 (following
page).

Regarding the surfaces, both 7; and 7, behave as one should expect: they be-
come the CGMR result imposing just r; = r,. Particularly, n; = 0 when r; = 0.
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4. REMARKS AND SOME IMPLICATIONS

Repeating the kind of analysis that lead us to conclude that the CGMR interior

can not be matched with a Kerr exterior (see Chapter 3, Section 4), here we have,
since MK = m(ia)!

ME™ = m = Ar,My, (6.56)

MEeT i= TR = g = A%2012),, (6:57)

the value of the next two multipole moments must be

(A32Qr2],)? ]12
MKerr — g2 = 20 "SIV 32002301 6.58
> ma Mo T M, (6.58)
T ]3
];)(e = —ma3 = —AS/ZS 231’3—12 . (659)

0

Thus, our M, and J3 should not have any O(A°) term, to begin with. None of the
subcases considered in the previous section allow this, not even the r; = 0 one,
where g seems to give some freedom but it is actually not the case because in this
situation q can be factored out of A and r, and exactly cancel the %2 denominators.
In can be checked in general using the formulae of Appendix G.

One can try to get a Kerr exterior introducing singularities in the source. We
actually managed to to this in (Cuchi ef al., 2011) inserting a singular term in the
inner layer, but it would be interesting to be able to turn the inner layer directly
into a singularity. Here we have worked with the EOS energy density parameters
€1, through g, but with this goal in mind it would probably be more convenient
to have the three solutions written explicitly in terms of the € ,.

Table 6.1: Subcases of the matching results of the three spacetimes considered in Section 3.1.

Inner layer Outer layer Exterior
=T CGMR results, x;(17) }fl (3, 12,.9) CGMR results, X;(17)
xl (7’11, n2/ 11)
Xl =0
;=0 xi(nq,no, _ X;(ny,
i (1,13, q) %11, 75, 4) 112, 9)
Xl = 0
g=1,n=mn, CGMR results =1 CGMR results
g=0 CGMR results CGMR exterior CGMR results
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Something similar happens when one tries to get the solution corresponding
to e; = 0, a kind of solution that includes the one that would represent an inner
layer of a photon gas (n; = 4) inside the outer layer of matter'. This value of €,
makes A = 0. This can be amended with a different choice of post-Minkowskian
parameter, though. Instead of building it as in eq. (6.11), one can start with the
Newtonian mass of the uniform fluid sphere

4
m=-m (elr? +ey(r3 - r?)) (6.60)
3
and introduce the relations
1 =TI €1 = K1l € 1= Koy (6.61)

with i the average density so that

m 4
A= V_s = gnrgyo. (6.62)

In this situation, not all the parameters are independent, but they keep the relation
K173 + 1y (1 - 73) =1 (6.63)

Building the metrics with these parameters gives a more direct control over the
densities, but one gets a similar problem if attempts to study subcases of different
radii values, which are now encoded in the 7 ratio. Having full control of the
energy density parameters of the EOS and the radii at the same time is possible,
but would increase the number of parameters and length of the solutions.

We can also analyze the inner layer in relation with the Wahlquist metric. Re-
call that this metric can not be matched with an asymptotically flat exterior but it
is possible that adding a perfect fluid layer around it gives us enough freedom to
allow a matching. In that case, Wahlquist’s solution could describe the inner layer
of some asymptotically flat sources. When n; = -2, the first terms of m;, and j; are

6(q — D)gr? = 10(q - 1)*r7r2 +29(2q - 7)r3
5(=3¢% + q+2) r3r2 + 9(q - qr? +2q(3q + 21
4[3(q - 1)gr} - 5(q - 1?12 + 929 - 7)r3]

. + O(A), 6.6
T PR T NE et R

my = + O(A)r (664)

'This case is curious because it would not be possible without the outer matter envelope.
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As we saw in Chapter 3, these two coefficients must verify eq. (3.91) for the metric
to be of Petrov type D and correspond to an approximation of Wahlquist’s solu-
tion. Here we have 3 parameters for two equations, a promising flexibility. Never-
theless, imposing the first of the Petrov type D conditions

My = g +0O() (6.66)

and solving it for g leads to

+1

8(3r7 = 51312 + 212)

q= (=12¢7 - 35r312 + 4713

+ \/ 144710 — 18007872 + 56257974 — 11281712 — 50507317 + 2209r30) (6.67)

what, introduced in eq. (6.65), gives

= 2 + O(A) (6.68)
]3 - 35 7 .
directly incompatible with the second type D condition j3 = % +0O(A), eliminating

all our parameter freedom. Hence Wahlquist cannot be the central part of a bilayer
configuration like ours when matched with and asymptotically flat exterior. The
type D condition is surprisingly restrictive.

Summing up, the process of matching an exterior to a source made up from
two different layers is quite straightforward within CMMR. The particular choice
of post-Minkowskian parameter is able to give results that are more suited to study
some specific configurations than others. In any case, with the different choices we
have worked with, a common characteristic is that the length of the expressions
is far bigger than with one layer, placing more stringent limitations to the com-
putation of the next orders of approximation than those present in the monolayer
source. Renouncing completely to write them anywhere, it should be feasible to
go up to the fourth A-order, though. In any case, if one is to undertake the work
needed, it would be more interesting to use a polytropic outer layer. Additionally,
a numerical check of these and eventual new solutions would also be worth the
effort, specially taking into account that there is an unpublished version of AKM
designed for multi-layer interiors.
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Chapter Seven

Conclusions

We have highlighted the main original results of this work in the final sections
of Chapters 3 to 6 and set up the context for the problem of analytical approxi-
mations for stellar models in GR in the Introduction. Now, we will summarise
the most relevant contributions made and fit them into the current knowledge on
the matter. The first two sections cover results of the monolayer interior model,
leaving the bilayer source for the last section to simplify the exposition.

1. ON THE PROPERTIES OF THE ANALYTICAL STELLAR MODEL

In this work we have expanded the use of the CMMR scheme in four ways. First,
we have provided a new approximate global model for a linear EOS, where pre-
vious uses of CMMR have focused on uniform density—which is a subcase of the
linear EOS—and a Newtonian polytrope. The two free parameters of this EOS
gives it a lot of flexibility. It contains the EOS of well-known exact solutions,
e.g. Schwarzschild interior (static) or the Wahlquist solution, but not exclusively.
Most if not all the rigidly rotating known exact solutions have a linear EOS, prob-
ably because it makes the integration of the field equations simpler (Senovilla,
1993). From them, the only one to correspond to our kind of interior is Wahlquist’s
solution, but if a new candidate is discovered it is likely to have this kind of EOS.
It is interesting because new testing grounds for the scheme can be found there
and it can be used again to ascertain some aspects of these exact solutions if they
are discovered. The versatility of the EOS concerns not only the field of exact so-
lutions. It also represents several physically realistic compositions, such as the
photon gas or the behaviour of strange quark matter in the simplest form of the
MIT bag model (Witten, 1984) and even modern realistic SQM EOS like the one
of Dey et al. (1998) finding appropriate fittings for the parameters (Zdunik, 2000;
Gondek-Rosinska et al., 2000). Recently, Bradley and Fodor (2009) have used in a
Hartle interior an even more flexible EOS with four parameters that includes the
linear one but also Newtonian and relativistic polytropes. Although in their work
the final solutions have to be numerically integrated as usual in the Hartle scheme,
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and considering that the polytropic case in CMMR (Martin et al., 2008) depends
on the zeros of the Lane-Emden function, this four-parameter EOS could be an
interesting possibility for future work taking into consideration that wide kinds
of degenerate matter are modelled with polytropes (more on this below). Sec-
ond, we have increased the complexity of the studied interior to include bilayer
configurations (see more about this below).

We have also improved the matching procedure originally used in previous
CMMR works. First, besides doing a Lichnerowicz matching and getting the fully
matched global metric in admissible coordinates, we have used Darmois-Israel
matching conditions to ensure the generality of the results. This has led us also to
study changes of post-Minkowskian parameter to get a coordinate independent
one to get rid of the apparent coordinate dependence in the multipole moments.
Second, we have analysed and solved the possible issues of loss of generality de-
rived from the use of coordinates in the ansatz of the zero pressure surface (Mars
and Senovilla, 1998).

Last, we have completed two post-Minkowskian iterations more than any pre-
vious CMMR calculation. Thankfully, the approximate expressions of the dif-
ferent physical quantities obtained are rather compact, and while the final ex-
pressions for the metric are lengthy, they are smaller than several intermediate
expressions. Handling this kind of calculations is unpractical without symbolic
computation software. We chose to work with Mathematica, and we have managed
to create a package of functions that makes the calculation of each new order of
the metric automatically. One handicap of going to higher approximation orders
is the extensive RAM consumption, but this has been solved parallelizing parts of
the computation to distribute this memory use through different machines. We
have made some improvements to the simplification function of Mathematica and
avoided procedures that take longer times, but it would be naive to think that the
computing times can not be improved.

This analytical approximation of a global model with a linear EOS source con-
tributes to fill an important gap in the range of stellar models available. In this
work we have not paid attention to spherically symmetric solutions because stel-
lar models need rotating sources, but the spherically symmetric exact solutions
that can describe interiors are numerous. Nevertheless, for this EOS such solu-
tion is only known in some cases of anisotropic fluid (Sharma and Maharaj, 2007;
de Avellar and Horvath, 2010), and even there, where the integration of Einstein’s
equations is by far simpler than in the rotating case, the energy density profile e(r)
of the source is enforced, overdetermining the problem.

'Publishing the code in written version in a traditional way is utterly unpractical these days.
Copies and support of the packages can be asked for at jecuchi@gmail.com
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1. On the properties of the analytical stellar model

Out of the fully analytical domain, for this EOS there is the already discussed
Hartle interior by Bradley and Fodor (2009) but mainly the options are non-appro-
ximate fully numerical models (Stergioulas et al., 1999; Gourgoulhon et al., 1999a;
Gondek-Rosinska et al., 2000; Ansorg et al., 2003; Lin and Novak, 2006) made to
study compact stars. Results from these modern codes can reach machine accu-
racy and are very consistent among them. Hence, they are more accurate than
those from our linear model, but they have disadvantages beyond those related
with the possibility to work with analytical expressions. To find a particular model
they must fix at least one of its EOS parameters when computing. The other, ¢,
can be used to build dimensionless variables and later, using the scaling laws
(Haensel et al., 1986; Cook et al., 1994), one can extract information for models with
any €y. Contrarily, in our final expressions the linear EOS is left complete general,
what gives our results an important advantage studying the consequences of the
linear EOS in a stellar model. Besides, when the numerical code needs an initial
configuration to find the GR model, as in the case of AKM, it is not trivial to ob-
tain it for any EOS. In particular, this code allows to obtain initial data for a certain
EQOS starting from initial data of another, but to make it so it must compute inter-
mediate sequences of stellar models. If any of these intermediate states does not
correspond to a physical possibility, the code fails to converge and one must find
appropriate physical parameters for the intermediate configurations, what can not
be trivial, at least in our experience.

This advantage of analytical models has led to interesting mixtures as of late,
consisting of exact or approximate analytical exteriors that are matched to numer-
ical interiors. Berti and Stergioulas (2004) used a three-parameter version of the
exact metric by Manko et al. (2000) successfully, although it cannot be matched in
slow-rotating cases, where one can use the approximate Hartle and Thorne (1968)
exterior (Berti ef al., 2005). Teichmiiller et al. (2011) built approximate exteriors
with an increasing number of parameters and unknowns related with the source
surface, and last of all, Pappas and Apostolatos (2013) used the exact two-soliton
solution of Manko et al. (1995), in the four parameter version, which contains the
three-parameter one of Manko et al. but works for any rotation rate. All these ap-
proaches are useful and give important analytical expressions, but they rely on the
information extracted from numerical interiors, and the matching is usually made
through the multipole moments, an approach not so well established as Darmois-
Israel conditions. Our approximate exterior could also be used in this way, al-
though the global character of our calculations allows us to give the full space-
time inside and outside the source prescribing—once the EOS is fixed—only two

2The possibility of discovering this issue one week before a conference presentation is danger-
ous
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parameters, what one expects intuitively and as a generalization of the theorem of
Rendall and Schmidt (1991). It is also worth noting that it would still depend only
on two parameters even if we included an arbitrary number of multipole moments
going further in the slow-rotation approximation.

1.1. Petrov classification of the CGMR interior metric

We have studied all the possible Petrov types of the monolayer interior. We found
that in the static case, the only possibilities are types D (n # 0) and O (n = 0),
in accordance with known results (Stephani ef al., 2003, p. 228; Collinson, 1976).
Also, the constant density case can only be of types I (if rotating) or O (if static),
and more generally, that for the linear EOS the only possible types are I, D or O.
This made us conjecture that exact solutions for the interior of stellar models may
not exist in the type II class, what is in accordance with current knowledge. We
have found recently that this result had already been reached by Fodor and Perjés
(2000), who established using a slightly modified Hartle interior that “circularly
and rigidly rotating perfect fluids of Petrov type II must reduce to the de Sitter
space-time in the slow-rotation limit” and hence no stellar models with EOS sat-
isfying the weak energy condition can be found to have Petrov type II. They also
found that a “slowly and circularly rotating incompressible perfect fluid space-
time with an asymptotically flat vacuum exterior cannot be Petrov type D”. Our
result on incompressible fluids possessing only types I and O is irrespective of the
matchability with the exterior, though. The overlap of results regarding type II
stellar models is somewhat dissapointing but interesting taking into account that
both results have been obtained through different schemes of analytical approxi-
mation.

2. COMPARISONS, PRECISION AND RANGE OF APPLICABILITY

2.1. Concerning Wahlquist's metric

Petrov type D constrains the value of some of the interior constants. These con-
straints are incompatible with the value the constants take when matched with
the asymptotically flat exterior, ruling out the n = -2 subcase, which must corre-
spond to Wahlquist (Senovilla, 1987), as the interior of a stellar model. This was,
again, already known from different approximate calculations, e.g., Bradley ef al.
(2000).

The Wahlquist metric served us to check if our interior can be cast into the
form a perturbative expansion of Wahlquist’s solution takes, though. Moreover,
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the type D constraints on the interior constants are automatically satisfied by this
form. This way we have given the CMMR interior a valuable test. In the process,
we had to identify a rotation parameter in Wahlquist. We found that 7, is the only
variable that can make Wahlquist’s twist vector to vanish everywhere and hence it
was the only possible candidate to be the rotation parameter of Wahlquist’s solu-
tion and we gave the relation between this parameter and well characterised quan-
tities in our scheme. Bradley ef al. (2000) and Sarnobat and Hoenselaers (2006) also
used r( as slow rotation parameter, and already in the original paper (Wahlquist,
1968) it was used to get the Whittaker metric—a static metric—through a singular
change of coordinates letting r; — 0, so it is not surprising and yet this limiting
procedure was the only hint of the relation of ry with the rotation before our work.
In fact, it seems that Wahlquist only considered it as the radial coordinate of a par-
ticular point in the spacetime. We have related it with our w which, although lack-
ing interpretability as angular velocity seen by an observer at rest with respect to
infinity when the interior can not be matched with an asymptotically flat exterior,
is also the only parameter that can make the twist vector of our interior zero.

2.2. Facing numerical results

After checking the interior with the approximate Wahlquist metric, we went on
to test the global character of the approximation confronting our results with ex-
act models—in the sense that they do not include any approximation and results
have machine accuracy—which we computed using the AKM numerical code. It
turned out that the exterior behaviour is better than the interior one, although
the obtained relative errors are quite close inside the source and the exterior near
zone.

Many of the original motivations behind this work were purely theoretical but
we have found the approximation gives very low error in several situations.

¢ For a model with uniform density and solar parameters of mass, average
density and angular velocity, we got relative errors of ¢ ~ 107° in the physi-
cal quantities compared, and in the ¢ ~ 107°-107® range for the metric com-
ponents inside and near the source.

¢ Constant density models with My = 1M, v = 1.3Hz and the typical neu-
tron star density 4 X 10 kg m™ gave relative errors mainly close to 1.5 X 1072
in compared physical quantities and ~ 2 X 1072-1073 in metric functions,
with spherical distribution of error meaning that error coming from the
post-Minkowskian part of the approximation is dominant. Results for a
350 Hz source are very similar, and we saw that the compacter the source
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the faster it can spin before the contribution of the slow-rotation approxima-
tion becomes dominant.

¢ With linear EOS models we analysed the typical configuration of M = 1.38 M,
and @ = 1.3Hz, getting a ¢ located in general between orders 1071-1072, al-
though falling quite fast in metric functions to 107 in g and 1072 in gy.

For My = 1M, and frequency w = 364 Hz, results improved roughly by a %
factor with respect to the M, = 1.38 M, ones. Results are similar with lower
frequencies and we concluded that, due to the small rotation dependence,
results for this frequency range can be significatively improved going to next
post-Minkowskian iteration, which should lead to ¢ ~ 1073. It is is worth
stressing that at least two of the strange star candidates—4U 1728-34. (Li
et al., 1999b); SAX J1808.4-3658. (Li ef al., 1999a)—have this masses or lower,
as we discussed in detail in Chapter 5

We have also obtained analytical approximate formulae for most of the stan-
dard quantities of AKM output and also many other parameters of astrophysical
interest obtained in other works (Cook et al., 1994; Nozawa et al., 1998; Gourgoul-
hon et al., 1999a). Our formulae have the advantage of not having any of the EOS
parameters fixed, as discussed above, contrarily to what happens using scaling
laws from numerical results. Modern numerical results are more accurate that
our predictions, though. The only important quantity where we have not been
able to obtain an analytical final result is the ISCO radii, where we have resorted
to numerical solution of the final equation. There is a number of analytical ap-
proximate expressions for it (Shibata and Sasaki, 1998; Abramowicz et al., 2003;
Bejger et al., 2010; Sanabria-Gémez et al., 2010), and as we saw in the Chapter 1
it is a very important observable in compact stars. It would be very interesting
to obtain an approximate expression, and we are already planning on using the
approach in Abramowicz et al. (2003) or Galindo and Mars (2013) to get it.

Currently, to obtain the final value from our analytical formulae we need to
specify the value of the angular velocity w and the r; parameter, which is not as
well defined. Its value must be obtained fixing one of the physical parameters, like
M, or J;, what gives us flexibility. At the same time we have seen that the com-
parison results vary slightly depending on which physical parameter one uses.
This can be a drawback in the cases when there is very little information on the
source, what can happen with astrophysical observations, and one is forced to
use a not optimal parameter. Fortunately, in Chapter 3 we saw how to modify the
post-Minkowskian parameter to release it from the r; dependence, changing it for
some physical property, in particular, the central pressure of the source.
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Last, in what regards to the different numerical codes available, it is worth
recalling that before the arrival of multi-domain codes like rotstar—the improved
version of BGSM (Bonazzola et al., 1993)—or AKM, density discontinuities in the
source, as happens naturally in the surface of uniform density models, gave rise
to Gibbs phenomena that affected precision near the surface (Nozawa et al., 1998).
It affects codes as widely used as rns. Our global models are totally free of this
kind of issues.

3. THE BILAYER INTERIOR AND ITS POSSIBLE USES

Finally, we have built a stellar model with two layers with linear EOS e+ (1-n;)p =
€;, 1 = 1,2. Behind this lies the quest for reasonable interiors that can be source
of a Kerr exterior. We have found that both the monolayer and this bilayer confi-
gurations of perfect fluid are impossible to match with Kerr, continuing the work
of the previous CMMR applications and a trend that probably started with the
numerical results of Bardeen and Wagoner (1971) which showed that for disks of
dust the quadrupole of the exterior is always bigger than the Kerr one unless the
disk is relativistic. Eventually, it was proved for the the exact disk of dust solution
(Neugebauer and Meinel, 1995; Klein, 2001), which stands as the only axysimmet-
ric perfect fluid source of Kerr known to date. Recently, Bradley and Fodor (2009)
showed that this difference between quadrupoles is a quite general feature of ro-
tating perfect fluids3 and Filter and Kleinwéchter (2009) have conjectured that this
can happen with every other multipole moment.

In other work (Cuchi et al., 2011), we explicitly included a singular term in the
inner layer solution, what allowed the matching with a Kerr exterior. Because of
the singularity it is not a viable stellar model though, as neither is the also Kerr-
matchable source of Wiltshire (2012), whose anisotropic stress-energy tensor is
composed by three different perfect fluid components and has ellipsoidal shape.
Our work deepens the belief that no spheroidal perfect fluid stellar model can
have a Kerr exterior, and also what kind of modifications to the simple perfect
fluid interior are key to allow it.

Also, we have found that despite the great freedom in the fully matched inner
layer, imposing a Wahlquist fluid and the type D conditions that if verified would
imply that the layer is an approximation of the Wahlquist metric, all the freedom in
the relevant metric constants m;, and j; is removed. The value they take is incom-
patible with the possibility of representing Wahlquist’s solution. Then, despite

3 One of the EOS they prove it for is the linear one. It is worth noting that our results on the
linear EOS where presented in Cuchi et al. (2008b,a).
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the matching flexibility that the extra layer provides, this important metric cannot
be the central layer of bilayer asymptotically flat sources of the kind discussed in
this work.

Finally, we saw in Chapter 5 that the linear EOS contains the one of the sim-
ple MIT bag model that has been frequently used to study strange quark matter.
These results are lengthier than those of monolayer interior and here we have only
reached the second order in the post-Minkowskian expansion. Whether it is worth
going to higher orders or not depends mainly on its applicability, and it depends
in turn on the main field of potential applicability of these metrics, i.e., compact
stars. We end up with a brief summary of future possible uses of the bilayer inte-
rior in the CMMR scheme in this field and what we have learnt building it.

¢ The EOS of white dwarfs is now well understood Baym et al. (1971) and can
be well approximated using two layers with polytropic equations. In the
outer one, where the electrons in the Fermi gas are not relativistic, the adia-
batic coefficientis I' = g In the inner layer, if the mass of the white dwarf is

. . . L . _ 4
big enough to give rise to relativistic electrons in the gas, I' = 3-

¢ In neutron stars, the structure is richer. Around the core, there is a crust,
which is divided in two layers. The outer crust is a solid lattice of neutron
rich nuclei neutralized by electrons (Alcock et al., 1986), and is well described
by the EOS by Baym et al. (1971) and Haensel and Pichon (1994). For both
of them, it behaves likea I' = ‘—é polytrope (see Haensel et al. (2006), pg. 156).
The inner crust starts when the crust reaches a density of ~ 10'! g cm™ that
releases the neutrons from the nuclei—neutron drip—. According to Read
et al. (2009), there is consensus in that this layer is well described by the EOS
of Douchin and Haensel (2001) and use three layers of polytrope to approx-
imate it with good results. Regarding the core, they have shown that many
predictions of physical EOS for the wide variety of possible compositions
can be reproduced using another three layers of polytrope. In some cases,
two layers is enough.

* Strange stars are simpler in composition because when matter falls into it, it
is converted in SQM. This seems to imply that these stars are always bare. It is
not necessarily the case, though. Models with a quark s mass m; > 200 MeV
have a non-zero density of electrons (Alford, 2001) that can escape some
hundreds of fm out of the surface, that together with the distribution of s
quarks creates an electric dipole in the surface with an outward directed field
of atleast 107 V ecm™! (Alcock et al., 1986). For my under that value there are
no electrons (Rajagopal and Wilczek, 2001), but the color-flavor locked phase
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in which the quarks are expected to be gives a positive charge on the surface
of a similar strength (Madsen, 2000, 2001; Usov, 2004). This Coulomb bar-
rier can sustain a levitating neutron star crust, but only the outer part since
the inner crust of free neutrons would be absorbed by the SQM. Hence, the
general strange star can be modelled with an EOS for quark matter and a
I'= % polytrope. The crust in this situation has a mass of ~ 10°M and a
thickness of not more than 300 m for stars of M = 1-1.4 M, (Haensel et al.,
2006).

¢ Finally, the SQM hypothesis allows for the existence of two new kinds of
white dwarfs, strange white dwarfs, which have a core of SQM. There is an
stability gap that makes that ordinary white dwarfs with densities bigger
than 10° g cm™ transitions to neutron or strange stars of 10 g cm™. In this
case, there is a wide layer of white dwarf over the SQM core. But the pres-
ence of a SQM core can also give stability to intermediate configurations,
with white dwarf matter containing nuclear matter up to the neutron drip
density on top of the SQM core (Glendenning et al., 1995). There is no new
phase in these stars, so they can be modelled again with a combination of
polytrope and quark matter EOSs.

Summing up, the whole spectrum of degenerate compact stars can be mod-
elled with layers of polytrope and MIT bag model EOS, which are within the kind
of metrics obtained by now with CMMR. In the particular case of strange stars
with crust, only two layers would be required. It could be argued that for small
mass stars it is too thin to really be worth the effort, but it deforms easier than the
SQM core at high angular velocities and can be of importance in the measurements
of ISCO (Zdunik et al., 2001).
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Appendix A

Perturbations and gauge

In order to calculate perturbations, we need to be able to make Taylor expansions.
We are going to deal with situations in which the metric of the spacetime de-
pends on a parameter and are such that when that parameter takes a particular
value (zero in general), the spacetime—the background—is known. We work then
with families of metrics and hence, families of different spacetimes. Nevertheless,
Taylor expansions need to be carried on a single spacetime and then, require an
identification map between the family of manifolds.

The idea of considering perturbations of a given background spacetime as a
uniparametric family of spacetimes and embedding all of them within a new 5-
dimensional manifold M (an approach started by Sachs 1964; Geroch 1969) al-
lowed a mathematically precise treatment of the problem. The key point in this
construction is to allow the separation of “standard” coordinate changes, in which
the points of all the different members of the spacetimes family are transformed
in the same way, from the changes of the identification map between the differ-
ent manifolds of the family. This second kind can be translated into infinitesimal
changes of coordinates on each manifold and corresponds to what one refers to as
gauge transformations.

Within linear theory, the framework was settled by Stewart and Walker (1974),
emphasising the importance (and difficulty) of finding gauge invariant quantities
in order to get rid of the spurious solutions introduced by gauge freedom. In
the context of perturbations of FRW cosmology, this was achieved by Bardeen
(1980) and later reworked in a covariant manner by Stewart (1990). Recently, with
the generalised increment in computational power and interest in high-sensitivity
measurements, higher order perturbation theory has won importance along with
the treatment of the gauge problem. Continuing the work of Stewart and Walker
(1974), the general mathematical formalism has been expanded to arbitrary order
in Bruni et al. (1997); Sonego and Bruni (1998); Bruni and Sonego (1999) and even
to two-parameter perturbation theory (Bruni et al., 2003)".

' Also, several gauge-invariant schemes have followed the first attempts (Nakamura, 2003, 2005,
2007; Ellis and Bruni, 1989; Bruni ef al., 1992; Giesel et al., 2010). See the last one for a comparison

165



A. PERTURBATIONS AND GAUGE

In what follows we will summarise the known formalism to see how this iden-
tification or gauge choice is supplied by a one-parameter group of diffeomor-
phisms, how the change of gauge requires the use of one-parameter families of
diffeomorphisms and its translation into the common language of (extended) in-
finitesimal transformations.

1. GAUGE CHOICES AND TAYLOR EXPANSIONS

Consider a smooth nowhere vanishing vector field X on M, with M the five di-
mensional manifold foliated by M, and transversal to every M,. A pointp, € M,
will be identified and considered the same as a point p,, € M, if it belongs
to the integral curve of X. Thus, the one-parameter group of diffeomorphisms
¢, : M — M defined locally by X is such that its restriction to M verifies

Palmy: Mo — My, (A1)

where My := M,-y. This ¢, is the identification map associated with X and a
choice of either of them is a choice of identification gauge.

Once we have a gauge choice, for a certain quantity Q defined on each manifold
M, we can make a Taylor expansion of its value on the background as (Bruni et al.,

1997)

+00 /\l
9Q = X 7 £xQl,, (A2)
=0 - 0

where the Lie derivative appears as a consequence of applying the Taylor expan-
sion around A = 0 to a pullbacked quantity. It is worth noting that this expression
makes explicit use of the properties of the one-parameter group. Then we get the
usual definition of the perturbation as the rhs of

¢3Q1 — Qo = AQW + 42Q® + O(A%) (A.3)

where Qy := Qly, and the first [-th order terms QW of the field Q with respect to
the gauge choice ¢, are, according to eq. (A.2)

1
QW= £xQly,»  Q¥:=3 £, - (A-4)

between them.
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2. CHANGING THE GAUGE

Once we have laid a precise framework for perturbations, we can handle the issue
of how their value changes when the gauge choice is modified. In the linear ap-
proximation the question is a simple one (Stewart and Walker, 1974). Indeed, if X
and Y are two different vector fields associated to identification maps on M, then
the respective linearized perturbations Q) and Q) are such that verify

AQY - AQY = A(ExQlym,~£yQlm,)
= AEx_y Qlm,
= £axQlm, - (A.5)

with X’ defined as the difference between the vector fields X — Y on M, which
actually belongs to TM,. What is happening from the geometric point of view is
that, if ¢, and ¢, are the one-parameter groups associated with Y and X respec-
tively, a point g on M, is pullbacked to p = ¢_,(9) and p = ¢_,(g). Now, to get the
difference between the values of the perturbation on p, first we need to pullback
the value of ¥_,(9) to p and Taylor expand. This step would have an equivalent
expression to eq. (A.2) if the map

(D/\:Mo—)MO

) (A.6)
pr—p=W_1°P))(p)

were a one-parameter group of diffeomorphisms. It is not the case unless X and
Y commute (Bruni et al., 1997) so we need a generalization of eq. (A.2) for one-
parameter families of diffeomorphisms to deal with gauge changes.

It can be shown (Bruni et al., 1997) that any @, can be approximated as a com-

position of different one-parameter groups qbf{)

0 () 1)
w0 Paiy © 0 Phap D) (A7)

for a suitably high I. Such a composition of n one-parameter groups qb(Al) is called
a knight diffeormorphism of rank n. With such a decomposition, the pullback of a
tensor field T can now be expanded around A = 0 as

+2m +200 E Ak1+2k2+~~-+lk1+~~
OIT = X
A PP e (IR Ky Ve Ky

k k k
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Applying it to the case T := qb*AQ| , we get that the value of ¢}Q| can be ex-
. MO . MO
panded in terms of the other gauge choice as

1
vial,, = 93l + 8 (@10l ) + A% (Evag +£ve) 612, +OR) (A9)

and now, introducing the Taylor expansions for ¢}Q|M and ¢3Q| ineq. (A.9),
the differences between the value of the perturbation at each order QW,Q®@, ...
due to the gauge change are

QW - QM = £v1)Qo, (A.10)
Q- QP = (£, + £viy) Qo + 2EvQ", (A1)
Q¥ - Q¥ = (£ + 3EvEve) + £v) Qo+

+3 () + £vip)) QY + 3£y Q@ (A.12)

with the first V(i) vectors

V(l) =Y- X, (A13)
V(Z) = [X/ Y]/ (A14)

V(3) = [2X - Y, [X, Y]]r (A15)

Now, in practical computations what one usually does is to choose a coordinate
system (x*, 1) on M and write eq. (A.3) in components, obscuring all the structure
behind it. In this situation, the effects of the gauge change can be directly trans-
lated into an infinitesimal change of coordinates. Considering them as a tensor on
M, its expression can be obtained from egs. (A.9) to (A.12), getting that the new
coordinates y* of a point p on each M, are

1
Yt =2 = AVE + 34 (VE V) - Vi) + - (A.16)

with V(; given by egs. (A.13) to (A.15) and expressed in the the coordinate system
x%. It is worth noting that because of how we have parametrized the identification
maps, the parameter of the infinitesimal transformation corresponding to a gauge
change is the same as the approximation parameter. This last fact can be unclear
without the full picture in mind.

Equation (A.16) can be generalised straightforwardly to a case of two param-
eter perturbation theory (Bruni ef al., 2003) like the one we use. Expressions are
messier, but only because gauge choices and changes involve then two-parameter
groups and families of diffeomorphisms, respectively.
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Solution of the homogeneous system

Here we find the general solution of the equations
Ahaﬁ = O,

B.a
(1o~ 30 =0, ®y

that arise in the harmonic post-Minkowskian approximation for both exterior and
interior stationary spacetimes. We start finding the general solution and then sim-
plify it using the axisymmetry of the spacetimes, Papapetrou’s structure of the
metric and finally the harmonic conditions.

1. EXPANSIONS IN SPHERICAL HARMONIC TENSORS

In this section we define a cobasis of spherical harmonic tensors suited to describe
metrics with Papapetrou’s structure and in harmonic gauge, taking the usual de-
composition of the general solution of Laplace’s equation into tracefree symmetric
tensors.

We start with some previous notation. We define r as the usual spherical-like
radial coordinate, x = x'e; as a Cartesian-like 3-vector such that 72 = xx; and
n = x/r, so that n; = x;/r. Round brackets around a pair of indices mean taking the
symmetric part, as usual.

Now, if we take successively d; derivatives with respect to the Cartesian-like

coordinates of the % function, using the shorthand 81] d; (9], we have

1 1
i ,, 21 (B.2)
( ]k) (B-3)
1 3 5 1 1 1
a]kp » 1’4 ( nimn, — 56]7(”;7 - gékpnj gépjnk) , (B4)
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(B.5)

(21 1)H
P (n;,n;, .. ;) S™F, (B.6)

1112 =(-1)

where the STF superindex means taking the symmetric and tracefree part of the
tensor.

The flat Laplacian of these derivatives is, since out of origin of coordinates we
have A% =0,

1 1
A (91‘11‘2...1',;) = 91‘11‘2...1'1A; =0, (B.7)

so these symmetric and tracefree tensors are solution of the Laplace equation
around infinity. Splitting the Laplacian in

2 29 12
A:ﬁ+;§_r_2 (B8)

where L? contains the angular derivatives, we get that
1
A g (i, nil)STF] 75 [10+ 1) - L2] (s, .. ST =0, (B.9)

leading us to the way L? operates on STF tensors
L2(n; n;, .. ny) ST = 11+ 1)(ny, ny, ... m;))°TF, (B.10)

what shows that STF tensors are actually spherical harmonic tensors as well.

We have now the basic tools to deal with the exterior problem. We need to find
solutions of the Laplace equation that work at r = 0 to deal with the interior, too.
Simplifying the notation

i = (g .ny)STE (B.11)
and using
Ax; i =0=A0rn; 1), (B.12)
we have
A (rlnilml-l) =2 [l(l +1) - Lz]nil...il =0. (B.13)

Again, n;,_; is solution of the angular part of the Laplace equation. In this way
the exterior (regular at infinity) and the interior (regular at the origin) solutions
differ only on the radial part. We will focus now in solving the exterior problem,
since the interior allows for a very similar treatment.
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It is well known that Einstein equations can be decomposed into three separate
and independent sets. When we deal with their homogeneous post-Minkowskian
expression the equations are

Ahgy =0, (B.14)
Ahg; =0, (B.15)
AI’ZZ] = O, (Bl6)

scalar, vector and tensor equations respectively. Summing up, we can state now
that the most general solution of the Laplace equation around infinity is

1 ..
oo = 24 My (Ba7)
1=0
1 iq.d
hoj = 23 ey M, (B.18)
1=0
1 iq..d
hij= 2 Mgt (B.19)
1=0

with 7! replacing @+ for the solution around the origin. Myg;, i, is a tensor with
constant components, which we will call scalar, vector and tensor depending on
the equation they are involved in. It is already symmetric and tracefree in the in-
dices which are contracted with the spherical harmonic tensor ones, but there are
free indices in the vector and tensor equations. We find a STF tensor decomposi-
tion for these parts in what follows.

1.1. Decomposition of M into STF tensors

We find now the STF decomposition of an arbitrary M tensor with constant com-
ponents of rank n + 2 . We will later use it to find its contraction with rank n
spherical harmonic tensors.

From now on, for the sake of clarity, we will denote STF tensors with calli-
graphic types and add a bracketed subindex stating the number of components
added or subtracted from with respect to n.

The scalar components already have the desired form

Kaky — Agler-k)E oy gkakn
M" =MW" = M[O] . (B.20)
Focusing now in the vectorial components, we start from
Mikike = Mtk (B.21)
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We can decompose it, as any other vector, in its symmetric and antisymmetric
parts. The main goal now is rewriting its antisymmetric part in terms of objects
check which are antisymmetric in their two (first) indices

M = MUkho) 4 [a"l Nk
+ ejkquq/klk(S'“kn + - 4+ ejknqu'kl‘“knfl , (822)
Nq,kz k, = EeqsklMS/klkz kn’ (B.23)
which, from its definition and the properties of the last n — 1 indices,

Nq/kZ' . 'kn — qu(kZ ' 'kn)TF,

Byr, NV2ks ks = 0, (B24)

are tracefree and then
Nk ) = Nk k) o o, (B.25)

We still need totally symmetric objects. We could keep on decomposing iteratively
in this way N7k

N#k2kn = N@kek) 4 2| (542 phiks:-k,
n
n qu?,lph’kzk‘ka" + - ’7 "Ph ky+ky1 (326)

in a process with 7 iterations. Nevertheless, taking into account that from its def-
inition

= Lpe (B.27)

the i index actually belongs to the original totally symmetric part. Hence, the
process truncates itself leading to

Phksky = pliks k)™ . 1/*[”[‘5”"" (B.28)
and then

s ky - ks,
Nke ke = 127 [eq Zhl/lf_i] l

(0]
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1. Expansions in spherical harmonic tensors

gks - hkoky--k, oy - hiks--k,
+¢€ 3}11/1[1_%4 + - +€ hl/lf_i] ', (B.29)

leaving the antisymmetric part of M/*1 %+ completely expressed in STF tensors.
Focusing now in its symmetric part, it can be decomposed as

. -k,
st ™, (B-30)

since the only non-zero traces are those involving the j index and the rest are sym-
metric. Note as well that the tracefree part is already in the desired form. Then,
substituting in the initial decomposition eq. (B.22), and taking into account that,
from its definition

MUKk = pfiki-k)™

1€ Piks- ko = glay it — kil iy (B.31)
we get that
ikyky — 20=D)| itk q K2 kn) (k- kn2 ok 1k
MiH == [(‘j]( 1’[/1[( 1 1/[ 1 Skn-1kn)
2n jki 2-kn)q
+ 2t jlfo]
vﬁl] 24216](](17/1(2 ) (B.32)
with the calligraphic components standing for
ok 1 gSkyeky,
UJ[(E” = ZMSS 2 (B33)
I = LMkt en (B.34)
Yk vk k)T (B.35)

(1
The decomposition is then complete. Inserting it in the solution of the vector
Laplace equation, its contracted with the spherical harmonics, leading to, for a
solution around infinity

‘ 1 1
kp-ok, 4n“+n-1 20 kn 5j
M] 1 (le 2 —(2n+1)(71+1)l/k & kz kn "
2n jki k.q 1
n+1e] ‘71{0] ‘9k1 kn
iy -k 1
+ V[ﬁ 3k1-~kn; . (B.36)

We can apply this kind of process to symmetrize any number of indices. In
particular, we must use it twice for the tensorial components M1 %« The first
decomposition leads to an expression similar to (B.36)

y 1 1
-k, - _  _4n“+n-1 Jeo -k, j - H H
MUk o-’kl"'kn ; = Wul 2" 8 2eeky - + (l d ])
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B. SOLUTION OF THE HOMOGENEOUS SYSTEM

K ikt r ..
+ ik k"qakl---k,,; + (i &)

n+1
" %Vi,]'klmk,,aklwkn% +({@ej), (B.37)
where
Uik = Ly ook (B.38)
Jikeknd o= % Mis kl(kz“'kneq)skl , (B.39)

Vidk ok = MGk

TF
)/

(B.40)

with no STF component yet. Now, noticing that index j already belongs to the STF
part, we can decompose again getting, for vk -k,

Vidki ok, — Qijkl"'k 4(n+1) 61(]Qk1 “ky)

2] 2n+3 [0]
(n+1) z(] ky--ky)q
+255 n+2 qQ[l]
with the STF base
Q?'Zk]r ko i)™ (B.42)
K1k
Q[ll] .= %Vr’s(klkz k”eq)rs; (B.43)
—— sy -k,
Q"= gV, (B-44)

so that, grouping terms,

1. Y T |
LV o) = O g,
n 1k k k,,]q 1 . .
" 2 ! Q[lz] akr"kn; + ()
2(4n +9n + 4) i K1k 1

oY n _
T T D+ 2)2n+3) Qo "k

n(4n +51n-2) iky -k, ] 1 . .
(n+1)(n+2)2n+ 3)Q[01 Py, T EO]) -
(B.45)

In the same fashion, we can write the J#2" %7 components as

iky K it s kud) 21 ilky ok kut)p
m o1 R Y€ Ro

]irkZ"'knq = R
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1. Expansions in spherical harmonic tensors

=170 ks kug) ky-+-k
i(k: 3 Knq i(ky---ky—q k.q)
e LA ] (B.46)
with the definitions
Ri i fda k" (B.47)
RI[(S] Knp . _ ]skz ks k,,qep)k ) (B.48)
ks-k, 1 sks-k,
Ry = (B.49)
and hence,
ikt ik 1 . ~ iky -k, 1 .
— 167 1q]l'k2 knqaklmkn; +(ie))= Lejkl Rl[li q8k1~~~kn_ +({@e))
2(n-1)4n* +n-1) cko ok kg 1
R g
n+ 12020+ 1) F - Tk TS
41’12 s ek 1
_ i kn -
o 1)25 R[O] Ky ok, p
2n(2n = 1) __iky--k, - 1 .
WR[O] 0 ky- "kn; + (Z Ll ]) . (B50)

Last, the decomposition of the remaining components U2 is

Uik = G2k 4(" 1) 5Z(k Sk3 k) 2(n-1) itk Sk3 k)
n

(0] 2n -1 [-2
[ itk Sffz k) Sal(ké] K2 gl 1k )] (B.51)
with the same notation as before for the basis
51[’8? Kn . _ u(i,kz~~kn)TF (B.52)
51‘3 kap . _ us alks- k) (B.53)
sks b i ot (B54)

so, finally,

4n2 +n-1

an? +n-1 iky -k ] 1 ) )
— P+ o))
n+1D)(2n+1)

2n—1)4n® +n-1) ke Sk3 k
nn+1)2n+1)

. o1
ueady g —+(io))=

‘ 1 .
nﬂia]kzmkn; +({e))
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B. SOLUTION OF THE HOMOGENEOUS SYSTEM

1
k3"'kn; .

4(4n® - 7n +2)(4n* +n - D) gk, 5
nn+1)Rn-1)2n+1) 2
(B.55)

Accordingly, the decomposition in STF tensors of any rank two tensor is

ij
ek, T

” 1 ks k
Ml]'klmk"akl---k,l_ =D )
r

iky kskaqqj Lo
. = Dy e P, TE])

i ek 1 ikyeky o [
+ UG O =+ HE Y —+(ieo
[0] kaeekn [0] ko kn (i o))

ik ook 1 . . iiky -k, 1
+é 1‘71]{12] ]q3k1~~kn; +(ie))+ ICEJZ]1 Bkl.,,kn; , (B.56)

where we have introduced the redefinitions

kyky . AAN2 —Tn+2)(4n? +n—1) k.,

D = B.
[-2] nn+ H2n-D@n+1) 2 7 (B-57)
ok ._ 2n-1)(@dn* +n-1) k.kyg 200 =1)En* + 1 =1) kg (B.58)
0T T v 12@n+1) U nn+ D@2n+1) w0
gkl'“kn o 2(4112 +9n+ 4) kyky 4n? ky---k,
0] (n+1n+2)2n+3) 0 (n+1)2° 1017
Hikz‘“kn o 11(4112 +5n - 2) iky---ky + 27’1(27’1 - 1) iky--ky,
O " m+1)n+2)2n+3) "0 (n+1)2 10
an? +n-1 ko -k
52, B.
n+DH2n+ 1) 0 (B-59)
2"'krzjq o— n k2"'knjq n ikz"'knq
I][<1] b ZQ[” + 1 R[1] , (B.60)
jiky -k, jiky -k,
Ky =0l (B.61)

1.2. STF decomposition and harmonic constraints

To solve the homogeneous system of equations of the harmonic Post-Minkowskian
approximation, we are looking for a general solution of Laplace’s equations which
also satisfies the linear part of the harmonic condition

1
dk (hka - thka) =0. (B.62)

We start with the scalar component eq. (B.20). The axisymmetry of the space-
time makes it time independent, so the first term of eq. (B.62) is already zero.
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1. Expansions in spherical harmonic tensors

Now, since it consists of only a STF tensor, the trace psealar — 0 a5 well. Thus, the
scalar component already complies with the linear harmonic condition.
The vector solution

. > 1 - | 1
KO (r,n) =2 121 €]k1p,_7pk2"'kl &klkz-nkl ; +0/ lz Uk1.-.k1 8k1-~k1 ; + IZ v]kz...kl &kz...kl ; , (B63)
= =0 =1
has null trace again. Its divergence is
hO] 2 Yhikz.-ki P k. k, (B.64)

and thus, since the linear harmonic condition for these components imposes 8]-h0j =
0, we have

Vakeki =, (B.65)

Regarding the tensor solution

. 1
Wi(r, n) = oY Egh k:ak k + ol EH])kz"'k’akz...k,—
B

I=1
1
+ 81] E Dkl kl&k k - + &(Z Zel)kl (Cﬂkz kl&klkz kl_
=0 I=1
ijks ...k, 1 ky (i 7i)gks..k 1
+Z y i 18 k—+€ D%s ngk kl (B66)
=2

whose divergence and trace are

1 1
Il = o/ ZQ’“ M0k~ + 5 5] EHklkz M0kt
1=0
1 K 1
+ E feikaks -k Itk = 4z Z ez]IkMka k13k1k2k3 e (B.67)
1=2 l 2
and
1 1
h= E( ~MEH 4 3Gy +2Hk1 N0~ (B.68)

1=0
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B. SOLUTION OF THE HOMOGENEOUS SYSTEM

respectively. This leads, imposing eq. (B.62), to

ch-ki = pghihi
Kclike-ki = 0, (B.69)
IklkZ"'kl — O.

1.3. Axial symmetry and Papapetrou’s structure

The last simplifications on the structure of the STF decomposition comes from the
symmetries. Calling ¢’ to the components of a vector d, such that

d, = eio"xi and ¢ =(0,0,1) (B.70)

and taking it to be parallel to the symmetry axis of the spacetime, the components
of a STF tensor can only be related with the basis through ¢*» terms, i.e.

7-k1...k, & (Ekl ek;)TF = ek1~~~k1 . (B.71)

These components appear contracted with the ones belonging to the spherical
harmonic tensors in two ways.

e The first one, 751~k N, ...k, Starting from

1 1 11
-k -
Tk 3k1...k,; o« el 3k1...k1; = (€k9k) P (B.72)
and using the definition of the Legendre polynomials and 73 = cos 0,
P(cos 6) P,1(cos 6)
ekakT =—(+ 1)+1rT . (B.73)

In particular,

1 9, Py(cos 9) _ _Pl(cos 0)

€k(9k; = ’ (B74)

r r2

11 Pi(cos 6
(¢90) = -1y 100, (B75)

so that these terms can be written as
1
Tk = 1’l+17k1"'k’ak1...k,; o« T} Py(cos 0) (B.76)
with T; a constant.
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1. Expansions in spherical harmonic tensors

e The other kind of contraction is € klep KoKy N,...k,» Working in similar fashion,
we have for them that

% 1 ik 1 ik I-1
¢ 1pok2"'k’f9k1...k,; o« € 1p€pk2"'k’t9k1...k,; = ¢ 1pef’0"k1 (gmam) (B.77)

= | =

Now, using a more convenient basis, an orthonormal cylindrical-like one,

dp = k'd; = cos ¢ dy —sin¢ 9,

1 ; .

Ez?q) =m'd; = sin¢ dy +cos¢ I, (B.78)
&Z = ei8i
we can write ‘
e]klpep = —2mlfagdl, (B.79)
Hence,
i -11 . . -11
€ peP oy, (em&m) ~=- (mklkf - mfkkl) 9, (em&m) p
. P;_1(cos )
= (=)l - 1)! k]mk18kllT (B.80)
‘ P;_ 0
+ (1) = 1) mikk g %
Pl(cos0) .
= (1)1 - 1) %rm, (B.81)
r
S0, summing up,
7k1"'k17’lk1,,,kl (S8 Tl Pl(COS 9), (B82)
ke o X, PY(cos 6) ml. (B.83)
with X; constants.
Finally, inserting these results in the three solutions we get that
1. the scalar solution is
e Ml

where we have redefined M, to correspond with the usual expression of the
multipole moments.
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. SOLUTION OF THE HOMOGENEOUS SYSTEM

180

. The vector solution is most easily written in the orthonormal spherical-like

basis. Being w? = pdd, we can use the previous results straightaway. Calling

&r = niBi ,
1 . B.8
: 9y =50, (B.85)

to the components of the orthonormal spherical-like basis, we have

U
W = % rl+lz[ (I +1)Py(cos O) 1/ + P} (cos 6)37]

—

-~

aj[UlP,(cos 0)/ri+1 ]

[se]

+§] l+1P,(cost9)m7 2} Pi4(cos 6),

and hence
W= g1 j + V| Py(cos 0 L (g 4 ) P cos o
_grl“ -(I+ )—n + 1(cos )+l§a o + Jym | Pj(cos O) .

(B.86)

Recalling Papapetrou’s structure, we must preserve only those components
which are proportional to #/. This, together with the linear harmonic con-
ditions, simplifies the vector solution and leads to

‘ S I ‘
Wi=2% —7Jp! O)ym B.8
ggrlﬂh i (cos O)m (B.87)

where again we have extracted a 2 factor so that J; correspond to angular
multipole moments.

For the tensor solution

00 S
+E{ [ 1+1Pl cos@)m]]}

I=1

Wil = Zav[ =P)(cos 0)

[S¢]

S
+61 )] —llpl(cos 0)+ Y, {al l —AP)_;(cos 9)]}

1=0 I=1



1. Expansions in spherical harmonic tensors

+ E{ L1pl (cos0) m]} Z _Pl 2(cos 0) , (B.88)
=2 =2
we have
Loy 1 D y w
W= o {(z + 1)r—21 [-67 + (1 + 3)ynin|
1=0
@ 5 3
Hpi ;
—+ 12 LG+ K}]}Pl(cos 0)
|
. r_l{ [cot 657 = nin) 21 + 2)ntis)]
1=0
= [—(l +2)Emm) + H, isf)] + Il(imj)} P} (cos 6)
© 1 (D .. o
+ ’Z(:] pr {715151 + Els(lm])} P?(cos0) . (B.89)

Again, since Papapetrou’s structure admits only terms proportional to nind,
n's, s's and m'm’ and the linear harmonic conditions eq. (B.69), we get

x 1 D .. ) H(Zn)
Wi = ; T {(l + 1)721 [-67 + (1 + 3)nin/ |- (1 + 1)

+ Glél]} P(cos 0)

o 1 1
+ IZ e { ! [cot 057 - nind) = 2(1 + 2)ntis) | + ~H| sf>} P}(cos 0)
+ Z WTSZS]PZ(COS 9) (B9O)

It is worth noticing that B.88 has some terms with a structure that corre-
sponds to a gauge change

Wi(r, 0) = E —LPy(cos 0) —d'wl — Jiw! (B.91)
1= —,_/
hgauge
with
. 1 1 D,
w = Z A HlPle + ﬁHlHPl w |+ dl Z 1:11 . (B.92)

l:O
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B. SOLUTION OF THE HOMOGENEOUS SYSTEM

Redefining the constants of this part

g‘ll - gll—ll " (B.93)
introducing the definitions
D := 6/iP)(cos 6), (B.94)
H .= (57 - 3¢ie/)P(cos 0), (B.95)
HM = (Kiel + Ke')P (cos 6), (B.96)
H? = (mimi - kik)P2(cos 0) (B.97)

and grouping for convenience the tensor basis as

E = S10-DH +(-DH - S HY, (122)

1 1 " 1y o (B.98)
F = Sl - 1D/ - cla+ +1)H EH} e DTy, 1>1)
we have then that the gauge part of the homogeneous solution is
(21 - 1)Al i Al + lBl ij
hgauge = 12_; HTEI + 2; P Fl . (B99)

Last, summing up the different components and regrouping the gauge part con-
stants into A; and B;, we get the expression we will use

Phom = Eo —1 (T) + Dy) + 2123 12+ z%z 3 (AIEI+2 +Bio Fz+z) (B.100)
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Appendix C

O(A>?2, (Y%) metric components after
Lichnerowicz matching
Here we give both metrics written in the orthonormal cobasis associated to {t, 7, 0, ¢}.

These result from the substitution of egs. (3.63) to (3.71) in egs. (3.14) and (3.17).
The exterior components are

1({ 1 1(28 2n 2
vh=-1+A=(2- Q2P| +22- {2+ L2
n n? nl5 5 7
16 4n 1({74 n 2
21202 (L2 2 e b om3, by, C.
[15 15+772( 35 7+17) z]}+ ( ) €
2

1
_ 132 Qpl Q3 _Pl_ Pl
Ve = [5 (3 Lo 3)]
+)L5/212 32 4n 4 QP! + O 352 6n 2 pl
n 7 35 577 105 35 3n

)P3]} + O, Q) (C.2)

1( 992 221 12
e e s
2\ 735 " 141 " 35
1 1 28 2 1 16
yh=1+A=(2- Q2P| + el il LR
n\" 7 n\\5 " 5 n 357
16 4 8 1( 74 1,
o] TR R P, |} + 0013, 0,
15 15 105%* 7?2 3577 n 21172
(C.3)
1 1
)/59 =1+ AE (2— FQZPZ)
Lplf® w18 6 _4n 4
nl5 5 n 3577 15 15 1051]2
1 4 1(74 n 5 4
et —— ==+ = - — - — | P, |} + (13, %), C.
6 63n* 1P ( 35 7 6n 9172) 2]} W0 (4



C. Tue O(A%2,()3) FULLY MATCHED METRIC

y@_A2Q21 (1 16
r

— - 2P o3, QY C.
1 1

+ :1+/\—(2——QZP)
Yoo a\oT

1((28 20\ 1 8 16 4n 4

P i) PR R i
" n{(5+5)+n+35n2+ [15 15 " 1057
1 4 1(74 no 7 20

R P O3, Q). C.6
TP e 2\ 37 6n 63172) Z]}+ ) (6

The results for the interior metric are

2

9 3n n 1 3n n n
2ot — 1+ <P+ | =+ = Q?1-=+(2 —
+A{ + ( + )17 +(10+20)Tl+ [ 2+( +n)3

+—§—£ A §—3—n+ §+5n P
57 10)1 T "3 )P
61 2
- _ 132 i 1 3 1__2
Yie = A 17[0(2 5 )P +Q (3P 7l P3)]
9 n (34 3n 27 3n
5/2 IR BT 1 1
A ’7{[5+2 (5+5)’7+(35 14)’7]QP
289 5n (8 2 3,3
o3| (28 _on n (2 n s
105 14 \15" 5 5" 14

123 (2o

} +0(A3,Q%, (Cry)

+
=

245 19 "\105 " 9
Vi =1+A(3-n? = nPQ%P,)

2 3 (23 n 17 3n
PED S (s RN I S (AL P
M { +4+( 5 2)’7+(70+20)'7
14 n ’ 9 ny 4
+l-=+2 |2+ [=-—=]|n

573 35 10

P (_E _an (21_1 N iZ) n )pz]} + O3, Y, (C.9)

23 3 26 37 3
sl (20 ” + il n*
4 5 2 70 20

n 32 n 2, 157 n 4
st =t 3Tt = 17
2 35 3 630 10

} +O\72, Q5), (C.8)
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105 14 \126 14

437 3 97 5
+ 722 (__ _ _1’1 ( + _1’1) r]2) PZ]} + (9(A3, 04),

4
Vio = AZQZUZ(Zl %)Pg + 013, Q)

Voo =1+ A (38— - 1PQ2P,)
23 3n
2 2
(e )v+

(37 3n) )
S 193
3 2 7105 " 630 ' 10

e (—E oy (167 5”) n )PZ]} + O3, Q).

105 14 126 14

(C.10)

(Ca1)

(Ca2)
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Appendix D

Reminder on the Petrov classification

The Petrov classification allows us to classify the spacetimes in an algebraic way,
working with the Weyl tensor in a point p of the manifold. The amount of sym-
metries and properties of the Weyl tensor is such that the apparently gruesome
task of classifying a four dimensional matrix of 4 indices can be reduced to study
the Jordan canonical form of a 3 X 3 matrix generally called the Q matrix. There
are several ways of determining the Petrov type; in Chapter 3 we use the most al-
gebraic one, though it is not easy to find a comprehensive review in the literature
so here we make a summary of it following closely the text of Hall (2004).

We start considering a general class of tensors W possessing the following
symmetries

Waﬁyé = _Wﬁaj/é = _Waﬁéyr

(D.1)
Waﬁyé = Wyéaﬁ
and
Wa/?)/c‘i + Wayéﬁ + Waéﬁy =0. (DZ)
They also imply W,g,s5) = 0. If we define the left and right Hodge duals as
* _ 1 eC *  _ 1 €eC
Waﬂyé - Eeaﬂelw yor Waﬁyb' - Ewaﬁ €y6eC (D3)
we can see that this tensors satisfy the Ruse-Lanczos identity
*Woisys + Wagys = 28aty Wels + 2851 Wyla (D.4)

where Wyg = W7, g, Waﬁ = Wop — %Wgaﬁ, and W = W¢,. This identity implies
*W*[ﬁyé] = 0 and also, noting that (D.3) implies

[24

**W“ﬁ?/é = _Waﬁyé’ and Wa*ﬁ;é = _Waﬁyél (D.5)

a contraction of (D.4) with the inverse metric gives the equivalent relations

Wi = ~Wagyo, (D.6)
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D. REMINDER ON THE PETROV CLASSIFICATION

*Waﬁyé = W:ﬁyér (D.7)

W,s =0. (D.8)

Ending this collection of properties of W, it is also worth noticing that the two in
(D.1) are enough to give the equivalent relations

Wa[ﬁyé] = O, W*aﬁaé =0. (D9)

The Riemann tensor is naturally among the tensors with the symmetries described
in (D.1). They are shared by the Weyl tensor, too, as it can be checked from its
definition

1
Cyo = Ry = — (R",8p + Ryo0f = Ry 05 — R85

R
C(m-1)(n-2) (85,05 - 8ps0%)  (D.10)

that is, the tracefree part of the R%g,s. This means C%4,5 = Cgs = 0, and then (D.4)
reduces to
*C:ﬁﬁ/é = _Caﬁyé and *Caﬁyé = C;ﬁyé (D.ll)

Using the second relation in (D.1) and the definition of Hodge duals, we can see
that *Cpp,5 = *C,s4p, S0 C* satisties (D.1) and then also, from (D.9),

Chipys) =0, and  C*¥g5 = 0. (D.12)

This means that that *C and C* share the W symmetries. From this, we can build
another tensor

+

Caﬁyé = Caﬁyé + i*caﬁyé (D13)

that also belongs to the W class besides é“ﬁaé = 0. Its Hodge left dual is *C =
-iC , which is the definition of the self-duality property (defining the complex

+

conjugated of this relation the anti-self duality), and thus C is called the complex
self-dual Weyl tensor. It will be key in the final steps of the classification.

Before that, we can make an important simplification if we use the antisym-
metry of W under interchange of indices inside the first and second pair (first
property in [D.1]). We can work in an antisymmetrized base for each pair of in-
dices, grouping

dx®dxPdx? dx® — daPdxdx? dx® — dx® A dxPdx? dx®

D.
dx@dxPdx? dx® — dx®dxPdx®dx? — dx*dxPdx® A dx” (D.14)
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and defining the 2-form cobasis

w =dx2 Adx®, w* =dxl AdxO,
w? =d3 Ndxt, @® =dx® AdxO, (D.15)
@’ =dx Adx?, @® =dxd AdxO,

we can write W as W5, where A and B are called p-form indices. For obvious
reasons, this is called 6 X 6 notation. One can also get a sense of where all this is
going noticing that W,z = Wp4, but first we need to introduce some notions.

A complex 2-form is a complex second order antisymmetric covariant tensor
whose real and imaginary parts are real 2-forms. We will call the set of complex
2-forms at a point p of the manifold CQ(p). It is a six dimensional vector space
and can be split in two subspaces defined by, for a complex 2-form H

He S*(p) © *H = -iH

D.16
HeS (p) & *H =1iH. (D-16)

Those 2-forms in S*(p) are called self-dual and those in S™(p) anti self-dual. We can
see simply writing out

1 1
H:E(H+1*H)+§(H—1*H) (D.17)
that S*(p) and S™(p) span the whole CQ(p) and

CQp)=S*(p)® S (p). (D.18)

Also, if we write H as H = A + iB, with A and B real 2-forms, conditions (D.16)
lead to B = *A if H € S*(p) and B = —*A in the case H € S™(p). This means also
that any complex 2-form has a uniquely associated real 2-form.

We can go on with the classification now. We have seen that we can write a
tensor belonging to the W class as the symmetric W 45 using 2-form indices. The
next step is to state that F is an eigen-2-form of W if

Waﬁbeyé = AFaﬁl A€ C, F“:B € CQ(p) (D19)

and A is the associated eigenvalue. Working in the 2-form cobasis we have C oz F? =
AF 4 and we can face the algebraic classification of C on the point p. We have al-
lowed F 4 to belong to the set of complex 2-forms CC)(p) because although C and
its eigen-2-forms are all real, if one regards it as a C®* — C°® map and notices that

*(CH) = *CH = (C*H) = C(*H) (D.20)
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D. REMINDER ON THE PETROV CLASSIFICATION

(what comes from the * definition and the property [D.12]) then C maps S*(p) —
S*(p) and S(p) — S (p). Then, considering (D.18), C is fully described by its
restrictions

Cy:S*(p) — S*(p) and

C2:57(p) — 57(p).
Furthermore, S*(p) and S™(p) are isomorphic under conjugation operation k, so
C, = ko Cy ok™! and their Jordan form is the same modulo conjugation. If we work

(D.21)

now a little with the self-dual Weyl tensor (+Z , We see

HeS*(p)= CH=(C+iC*)H=CH +iC (*H) = 2CH € S*(p),

. (D.22)
HeS (p)=>CH=(C+iC*)H=CH +iC(*H) =0.

Then the restriction of C to 57(p) is represented by the zero 3 X 3 matrix and it
is enough to know the Jordan form of C on its restriction to S*(p), él, to classify
it. Additionally, (+31 is just 2C; and hence the problem of the classification of the Weyl
tensor is reduced to computing the Jordan canonical form of the 3 X 3 matrix 6’1 (p).

Again, the symmetries of the problem will allow extra simplification. Now we
will show that it will not be necessary to compute the restriction (+31 (p). Writing
C g as the 6 X 6 matrix

T
M-N ) (D.23)

Cap = ( N P
where M, N and P are 3 X 3 matrices, M and P symmetric. The first Bianchi
identity (D.2) tells us that N is tracefree and, introducing an orthonormal frame to
compute C%g,5 = §7C, 305 = 0, we can also get that N = NT,P = -M and ttM =
0. Transforming €,p,5 and Gug,s = Za[pgyls—that rises and lowers indices of 2-
forms—to 6 X 6 notation, we get

(0 I 1L 0
€AB = (13 O) and GAB = E (0 _13) . (D24)

With this, for a 2-form F 4 = (Fy, F, F3, F4, F5, Fg) its dual is
*FA = 2€ABGBCFC (D25)

what means *F, = (-F,, —Fs, —Fg, F1, F, F3). Grouping each triple into R, S € C3
so that F4 = (R, S), then *F, = (=S, R) and we see that F € S7(p) & F4 = (R,iR)
and F € S (p) & F4 = (R,-iR). With the results for C in mind, the dual Weyl
tensor is

Cup = Cup +1*Cap = Cap + 2i€ 4cGPChpy (D.26)
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_(M—iN N+iM)

Q iQ
N+iM -M+iN ( ) (D-27)

Q -Q

and then

Cort=Cuore= (G Gl (3

_(QR-iS)\ _(D
“\QGR+9)] ~\iD] "

As we can see, (D, iD) € S*(p) reinforcing what we already knew and the fact that

(D.28)

any eigen-2-form of C with non-zero eigenvalue is self-dual. Furthermore, for any
of its self-dual eigen-2-forms F4 = (R, iR),

CpFP = eF, & QARP = ERB (D.29)
and the problem is then reduced to determine the canonical form of the complex
symmetric tracefree matrix Q.

Now, the possible Segre types of the matrix Q at a point p are

1. {111} with three different eigenvalues ¢; satisfying ¢; + ¢; + ¢35 = 0. This is
the so-called Petrov type L.

2. {(11)1}, two degenerate eigenvalues ¢; with unidimensional invariant sub-
spaces —the associated elementary divisor is simple- and ¢, satisfying 27 +
&g =0 —> &y = —2¢1. This is Petrov type D (for “degenerate 1”).

3. {(111)} implies the three eigenvalues are degenerate so ¢ = 0, and the ele-
mentary divisor is simple. This means Q = 0 and the Petrov type is O.

4. {(2)1}, two different eigenvalues with the degenerate one ¢; associated with
a two dimensional invariant subspace and again, ¢, = —2¢;. This is Petrov

type IL

5. {(21)} means only one eigenvalue, so ¢ = 0, but keeping a unidimensional
invariant subspace. This is Petrov type N (for “null II"”)

6. {3} with a only a three-dimensional invariant subspace and ¢ = 0. This is
Petrov type IIL
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Appendix E

Q matrix components

The result for the contraction C g, 0P0* = —Qyuy is

afyp

0 0 0 0

0 Coim + i\/:gcmij Cor2 + iﬁcozjs Cot03 + i\/—_gcmi
0 Coo01 —i4/-8C1 ; Co2o2 — Z\/%7(:0212 Co203 — i\/—_gco312
0 Cozon +14/=8Co1 © Cozoz +i4/=8Co2 "= Cozoz +iy/~8Co3

that leads, using a timelike unit vector v to the components of the Qi]- matrix up to
© ( AS/Z, QB)

Qay = (UO)Z (E.1)

2 2
Q112 = AQ2myP, + A2 {(‘g + g”) e

14 4n 52 11n 13m 11nm
+Qz |:(————)T]2+(—2b2—ﬂ0m2+772 (E'FH'F 7 z_ 14 2))P2]}

12
+ 1/13/2 (—gngpl + 12T]Q3]3P3)

+iA92 (Q [(—g + 6—”) 7+ (_12n5 b 12 Lomg 6nm0)]P1

7 5 5 5 5 5
Lo ] 48 24n N 27a, N 516m, N 6nm, N 6b,  6j1m;y P
T35 35 5 175 35 25 5 !
32 16n 80j;3 88m, 8nm,
3 9 + — —
[’7 (15 15 2773 "5 s

18b 6]
+7] (—Tz - 125!2j1 - 18a0j3 - 12j3m0 - ]15m2)]P3}) P (EZ)
1 9 3n (5 9n aghiy
r@T’S = ET]AﬂszP% + AZQZ {T]S |:§ + ﬁ + (; - %) ﬂ’lz] +1 [—bz - 5 ]} P%

9
+1iA%2 (—gnZQP% + 4nZQ3j3P§)
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E. Q MATRIX COMPONENTS

+MM@K_

33+15n 4Jr29nS
35 14 )7 7T |75

91)[0

%

5

7 "7 10 "\175
2 27a,  22j 23
+|nt e R B P
3'3 10 3 |25 2

6b,
+1” 5 4azjy = 6aoj — 4f3to —
/\sz P 9 31’[
@é:_7f£+ﬂw{47

L3R (_ggp% + 4Q3j3P§)
+iA5/2(Q{(—§ 12
+@ﬂftg‘%_
s

10
6b,
+ |- —4ayj
( 5 a2]1

5
275[2
10
22j
, 2
3

175
" (23 n
n_ =525

3

= 6agj3 — 4j3my —

8
+ [2192 + agiy + 12 (_‘

n n
__+(—l+—)
3 3 2

o
o)

(s—z—z) J

15n) 2+[%_9ﬂ
10

N 246+3n ) 4 63b,
14 2 25

9,
G

N
5

199 N 43n
105 210

. 6 / ]
+iAY? [gﬂQPl +03 (677]3P1 - 12’7]3P3)]

52|l 228 =
fals o] 523

3 48b,
Q1| =5~ 62/1 — 90j3 — 6jsMo

(52 26n  27a,
+1

3535 5 7
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61 3n

5

£

(12 24n
+ 4]3 s T E Py

+(-3-T)m

L)\, o (72
12) ™| T\ 25

ﬂomz

}Pz

o)) 7

9jamy
10

)

+13n
12 28)™

2ol

1
1

(E.4)



361, 52j;

[ 28 14n
R LA =Rt 3 +[2+

18b, ) ' '
+n T +12a5j; + 18agj3 + 12j3mg +

5

Q‘P 1,.2 — _1/1021’11 + iA3/2 é QP, — 6 Q3. P
s 2 2 5 /120 T OTRE]5

+Az{(¥_ﬁ)nz+gy[%_kmmu4_2(_101 13n

6j11m;

55 2 105 © 210
2 4 47’l+ 6+2n P
T\21 ™ ; 7 T M2) 2
6_3 6j1 (6
+ir2(Q(2 - )P4 |-22 6, (6
77 5 \5
4 2n 216 18n
03 Cl I T <16 lon
’ {|n ( 35 35 ]3*'( 175 © 35 )””)
425, , o
+n §+6a2]1 + 9agj3 + 6j3mg + P,

6j11m,
+3_i_ §+Em P
LT 25 t5)m2(Paq)-

2 9 28;j
15 5 3

(E.5)

1+3n
12 28"

o)l

(E.6)
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Appendix F

The O(A2, (3%) CGMR metric

1. MIEETRIC COMPONENTS

1.1. Exterior

The unmatched metric components of the CGMR exterior metric, in the orthonor-
mal spherical-like cobasis, are

1 1
yi=-1+A (251\/10 + 2¥QZM2P2)

1 1 1 1
+A2 {—EAOMO - z?Mg +0Q2 bMO (2B, - 4M,) + p (-3A,M, - 3A0M2)]P2}

1 1 41 1 44M.
+A3 3 — AfMy +2— AM§ +2— M3+Q2 ] —]12+—M% -4B, + 2
27T T 7 st TP

1
+ 5 (12A0A2M0 +6AZM,) + 7 (6A,M2 + My (~6A0B, + 8A0M2))) Pz]}

181 81 41 1
—AM; - =M+ Q?[-==A 2—JiM
5 M5 [3n of? - fh

81 261 222B, 58M 1 165
% Aoff == 5 IMo + 6%(%2—5ﬂ+7( — A8AM, - %m)
n
1889A,M,
105

71
+ A4 { — A3M — = — AZM -
Uk 21°

1 2
3 tom (-27A,4,M3

1
+$G—&W+W@M@—

+ M, (18A2B, - 18A3M, )) )PZ]} +0OM5QY (F1)

1 1 1 1
Vip = A¥? (ZFQhPu + 2¥Q3]3P31) + A% {Q (_$A0]1 - 2_3]1M0) Py

91 41 A 6B
+O? [(5177A2]1 nBzh)Pn ('7 ( ;]1 3A0]3) U( h = JsM, - ]1M2))P31]}

1 1
LA {Q (_ FAg]l + 2$A0]1M0 + ZFhM%) Py

27 1 1 3 12 1
+? [( 5 70 AoAzh P ( ngBzh - gAzflMo) + %Mo (‘532]1 T T35
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F. Tue O(A%?2,(2%) CGMR METRIC

1 1 12
+ ( (SAoAzh +6A ]3) ( ngBzh ( 52]1 + ZAofa) M, + 2Ao]1M2)

8 16]1M2
(2]3M0 + M, ( =B + 15 ))) P3l]}

7 1 18 1 81
+A9/2{ ( Ag]l 27 A%IIMO 5 7 thMz EhMg)Pn

381 1 1 174B,]; 248],M.
3 4 2 2J1 14V12
[( §A2)1 - 35 nﬁf 9ﬁA0A2]1M0 + ?Mo( 175 + 175 )

1 58
+ ? (5A2]1M5 + M, (—‘AoBzh + %AOIIMZ))) Py
81 1 13 1 9
+ (_E %]? + ﬁ ( —AFA) - Agfa) + ﬁ (6A532]1 + (—3A0A2]1 - §A5]3) M,

9 1 486B 2902];M
_EA%]1M2)+?(——]3M8+M%( 2J1 _ J1 2))

175 1575
1(( 7 34A
t s (( Aok - °]3)M% ( = AoBal1 - 3 AOIIMZ)))PN]}W(AW% ), (F2)
1 1 31 1 41
— 2 2
‘)/ﬁ, =1+A (21—]M0 + 2¥Q2M2P2) + /12 {E%AO - —4A0M0 + EFMO
87 1 64M. 1 ( 144 93A,M.
+ Q| = —AA —M 2B 2]+ = [-==A,B, - 34A,M, - —222|p
[ 7 P 02+’? 0( 2t o1 )+’?6( 35 21002 2o 35 2
11 1 91 12 1 21
A — A3+ AZMy — — <A M3 + = =M
’ {2n9°2n7 s e

534 1 1346 1 1 148B 44M.

+0? —5—412+ A §Ar+ =+ = Mj 24—
n n 315 n n° 35 15

1

1 (864 1272 2642
— | 2= A2B, + == AMp
o ( 35 0727 35 315

4 29AM
| B )
35
1

75 1 31 1 1 26 1 401
+A{ — AL - AZM, + —$A%M%———AOM8+QZ[@—7A0]12

54,
AghgMy + — AM, | + 7

4 2 0T 7o 5
;715 2M, + (729 17114 3A, - 1;1558 1 AoJ? + ;i? ’715 2M, + nl"Mg(zZégz . 223];/[2)
% ( s;o A2B, - 52;1 AZAM, - ?f A3M2)+ 7118 ( 461; A+ M%( 1;136A0B2
_ 3821:110M2)) + nl (zzi? A AMR + M, (224514 A28, + 508;;;\531\/12 ))) Pz]} .
(F.3)
mtoplsshome) - oS
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1. Metric components

31 1/(6 2A,M.
+ Q2|5 S AAy + — -2 AB, - T
27 7\ 5

451 1 64M. 24A,B 37A,M
+| = =ApA, + =M, (2B, + —2 S 022 _3A,My- —=222||P,
78 n* 21 n° 35

35
111 91 12 1 21
+ A3 == S AF+ - AfMy — — < AMp + S Mj
{ 2 p 0T gy T T et T gt
NCIEPRS —A3A, - L1, Typ(2l, 2Me
ntt 45 n* 5 5 15

57 , 8 3, 1(2 14 22A,M,
+77 75882 + 5 Ao AsMy + S ASM, * S AMG + Mo [~ Aoy - =2

198 1 814 1 1 92B, 12M 66 768
- A+ —— P+ MR 2 =2 — AZB, + — AgAM,
7 3154 T 35 5 35 35
12 1 ( 2138 94 1304A,M.
2 2 0+V22
+ —AOMZ) t o ( 15 AeMi MO( 2B~ —— ))) Pz]}
751, 311 ., 211 , , 261
+ /\ { 2 7712 AO - ?WAOMO + E%AOMO - ET’—AOMO

+ %Mg( 23059,4032 AOMZ) 171 ( 521 AZB, - 117A%A2M0 - §A3M2)
ni (11103A0A2M2 +M, (1;;714%32 + 15—7A%M2)) + (108iA3A2 gfi 17 AoJt
L o2 ) 3 (- - )
% ( 419 499 4 ve M2 (_ 1;4258 AqB, - 2051;4101\42))
171 (f?;l AgA;M2 + M, (43856 AZB, + %ﬁ%))) Pz]} + 013, QY), (F.4)
Vio = 1+A(2 My +2— QM2P2)+AZ{§1A2 — AM, + 2 12M
n UK n 37
+Q2 [—§ L ApA, + (6A°BZ M)
218 5 5
+ (676%/10/12 + %MO (232 + @2—“;42) + % (—EAOBZ - 3A,M, - 13A70M2))P2]}
BURE VIS AVETER EURYIS-EIv
b [12%A§A2 _ %%]ﬁ + % g(-% _ 21—1‘;[2)

1 3 1 (2 14A,B 22 AM.
+ ? (— OAZBZ 5 AOAZMO - EA%Mz) + ? (gAZM% +M0 (% + %))
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F. Tue O(A%?2,(2%) CGMR METRIC

=i+

( 366 1 24 1
+

24B, 8M 1 (93
- ARA, + M=+ 2+ = | =A2B,
7t 7 P \7

1
n° 7 3
1
7

478 58 340A,M:.
(——AZMg +M, (—7A0B2 - ¢)))P2]}
1

204 33
+ TAOAZM0 + —A%Mz) + o

75 1 311 211 26 1
+A4{—7 - =AMy + = S ARME - — — AMS
41 2 79 2 7P 157
513 1 148 1 41 1 2B, 8M
Q2 A3A, + 2M, + —M3 2,2
" [81} o2 ¥ 10570]1 et e 0( 15 105
1 (209A,B,
+ =M =22
s °( 35
1
o\
945 1 141 10 1
— A3A —A
( 4 e 27 3 oJf + 1 775

4173 1 4254 2939A,M.
2 3 3 M2 (- _ 02
28 —A AZMO AOMZ) + — 1]8 ( 63 AzM MU ( 245 AOBZ 241 ))

1 4430
63

1 (51 117
+ AOMZ) + = ( A3B, + — 1 — AZAM, + ZASMZ)
n*

147

113

1 82B, 82M 1 ( 453
Mo+ — M3 ( 2 2) ( ——A3B,
n°

35 105 ) g2

303 7169
AoAzMZ + MO ( AZBZ AzMz))) pz]} + O(AS, Q4), (Fs)

31 1 6 2A,M.
Vio = A2 [E %AoAz + % (—‘AoBz - 2)]1321

+ 1302 {—12%145142 Bl T+ (i %)
n 45 71 7 5
+ q_ (gAsz 8A0A2M0 + 3A0M2) T?1 [ = A,M2 + M, (——AO 2 ZZI:EMZ)]} Py
o (P e S e e[
%Mg ( 209A032 AOMZ) nl ( 51A332 n AgAzM0 - %ASMZ)
+ nil [113A0A2Mo +M, (114714232 A%Mz)]} Py +O(A%, Q). (F.6)

1.2. Interior components

The interior ones are

2 n 3 n 6 n 1 3n
2 - _ 2 - 4 4| _ -
+Q [(3+3)n +( 5 10)11 +1 (7+7 3a2+(7 14)m2)P2]}
1 3n n? 7 n 3n* a, 3na 1 3n
)22 % ),e al_2 = o, Y0 oo
A {(7 70 35)” M ( 0727205 10 +(10+20)m°)
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1. Metric components

QZ E+E+13n2 n6+174 1_7_11_3_1/12_%_%_%.’_”_']‘1.’__?_2 mg
525 7 420 15 15 20 5 5 5 5 5 5

1 11 17n% 4 2 4, 2nj; 27 4 2
+7?2( il n e O £ Ol W +( ”)mo)

— +
3 15 60 3 3 3 3 3
o 509 37n 5n* 3a, 9na, 38 n  5n?
+ — e — =t — 4 [ =t =+ —=|m,
1575 210 126 5 10 105 35 &4
- 3_n+n_2 12a0+2na0_3a_3m12_24b2_6nb2_%_2Lj1
7 14 7 7 22 3 3 35 7

N 23+n 3n2+26u0 3na, I 12+2n+3a N 47  3n 2\ p
35 14 28 35 14 ) 2 "°\7 7 " 7?U\3 14) 7))
Iy {( 177 649n  913n2 61 ) A (221 1297 31n?  3n® N 3a,

- - + + n — e+ —
1400 12600 50400 10080 350 350 280 70
9na, 3na, (2 3n ZnZ) )
== 0

70 35

27 67n 31n® 51n* 2la, 3na, 9n’a, a2 3nad

-t ——+t— - — + + + —
( 25 100 100 400 10 4 20 10 20

( 7 n 3n2) ( 1 3n) 2) 2( 41  67n 37n®> 83n® 6a
o=t =+ —|my+ n —

mi | +
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B ik R al s -k e 3 LM O L

o 158  117n  283n* n® g 137 N 148n . 1012 N 5n3
1575 700 6300 112)" 105 525 420 84

271a, . 3nag . 13n2a, . 58j;  13n%j, N 271 . 3n  13n?
i) 2O it P
175 7 140 525 210 175 7 140 0
. ( 13 33n 21n® 33n® 7ay 7nay, 9nla, 3a3 nad}
+1 +

— —

10 50 40 200 5 5 20 5 10
14j 2nj 3n?j 2a,j 1 2 2

1 n 11 + "1 oJ1 .1 T
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15 15 10 5 5 5 10

5 5 20 5 5 5 5 5 10
,(6 338n  26n* 101n° 11na, 17n’a, 203 na3
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3 24b2 6nb2 6n2b2 24a0b2 6 b 2nj1 nzjl 4a0j1
—Nagly — — — —= - ——= - —= — —ngyhy - — - — - ——
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timy | =+t —t— - -t | =t — - —|m,
7 14 7 7 35 7 35 35 14

56 139n  257n*> 5n® 509a, 37na, 5n’a, 24a, 3na,

WY AL o AL L
45 450 1260 126 525 70 42 5 2
9In? 3 9 2b b 11n2b 782j j
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— + +
35 70 25 70 140 875 35 35
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1. Metric components
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47ﬂ2j1 47]3 nj3 ﬂ0j3 27’[ nz 56110 2”(10 5]1 I/ljl
25 45 T18 7 9 Te T w)™
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1. Metric components
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F. Tue O(A%?2,(2%) CGMR METRIC

2. CONSTANTS OF THE SOLUTION OF THE HOMOGENEOUS SYSTEM AF-
TER LICHNEROWICZ MATCHING

First, we give the value of the constant factors of the exterior metric. The ones
associated with multipole moments are

14 n 8 2n 73 64n 3n®> (488 36n 8n?
SR BN et BT I RN (i L L L PN
5+5+( ) ]+ [7+35+35+(105 35 105) ]

/\3[13894 4169n  2116n%  74n® (1468 918n 376n? 4"3)92]

M0=1+/\

315 315 | 1575 1575 '\ 45 _ 175 315 75
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1 37 n 83927 128n 10n
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M = 2”( 35 " 14)” ( 22050 © 735 441)

4856219  476479n . 644312 N 67n°
282975 1697850 33957 6174
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2 @ 16 21 (176 3n
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Jo=-7+ A('ﬁ * M) * (_ 848925 | 5775 ' 169785)
. (_ 1396705292 _ 4293174 608000 104331
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and the gauge constants
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63 "\ 121275 ~ 24255 18393375 1003275 2207205)A O, ), (Fag)
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3. Changing to QI coordinates

In the interior, the constants take the values
9 3n n 458 9n  7n? 733  12n 1912
— . - 1-— 2 21 -7 - . = 2
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T+ — | +A2|—+ — -
3 15 30 15 15

1 53449 . 4043n N 1191n? N 295867 2649n  871n?
300 105 560 3150 140 420
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3. CHANGING TO QI COORDINATES

3.1. Exterior

The original spherical-like coordinates {r, 0} change to the QI (R, ®}as

1—1+A2L—4+QZ 1—2+ L +(—1—1+2 P
R~ 4R2  35R3 48R2  105R®  192R* 12R2  12R* " 21R5)?
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cos 0 = P, + A2()?

1
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(F.28)

where P, := P; (cos ®) and R = R/r,. This makes the y;;, 3, change to

11 28 2\1 3
=1+ A(2% - =P |+ A=+ = | = + —
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3. Changing to QI coordinates
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with the rest of the components changing straighforwardly through egs. (F.27)

and (F.28).

3.2. Interior

In the interior, the coordinates change as
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with, again, P; := P;(cos®) and R = R/r,. The r, 0 components of the interior
change to
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3. Changing to QI coordinates
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Appendix G

The bilayer interior model

1. MIEETRIC COMPONENTS

Here we give the unmatched metric components in orthonormal cobasis for the
source of the bilayer model. The unmatched exterior is the same as in CGMR and
appears in Chapter 3 and, to a higher post-Minkowskian order, in Appendix F.

1.1. Inner layer

. 1 3n
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G. THE BILAYER INTERIOR MODEL
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1.2. Outer layer
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1. Metric components
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2.4. Surfaces

The interior surface is
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The exterior surface is
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They both lead to the usual equation for the surface when either r; = r;org =1

and ny =np
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