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Abstract

The measurement of the degree of agreement in a group has recently attrac-
ted considerable attention by researchers from various fields. In this paper
we consider situations where each member of a population classifies a list
of options as either “acceptable” or “non-acceptable” (as in job committees
or elections by approval voting); either “agree” or “disagree” (as in polls or
surveys); either “guilty” or “not guilty” (as in jury courts); etc. In order to
measure the cohesiveness that the expression of such dichotomous opinions
conveys, we propose the novel concept of approval consensus measure (ACM),
which does not refer to any priors of the agents like preferences or other
decision-making processes. Then we give axiomatic characterizations of two
generic classes of ACMs. Finally, we focus on the 2012 presidential elections
in USA as a real scenario to put in practice these two proposals.

Keywords: Dichotomous opinions, Consensus measures, Tanimoto
similarity index, 2012 USA presidential elections

JEL classification: D70.

1. Introduction

Social Choice and Decision Making Theories try to give answers to many
daily real situations. The study, analysis, and testing of the way that individ-
ual preferences produce a “representative” collective choice is an important
research area. In particular, the measurement of the degree of agreement
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in a group has attracted growing attention although its study is essentially
complex and controversial (because it involves the treatment of individual
opinions, aggregation procedures or voting rules; it is conditional on the con-
text; etc), a handicap that is common to virtually all branches of the Social
Sciences. Both aspects -collective choice and group cohesiveness- have been
the subject of a joint treatment in [2] and [3].

In this paper we focus on the study of the degree of cohesiveness in situ-
ations where a group of agents express their opinions in a dichotomous way,
e.g., because they intend to apply approval voting (AV) in order to reach
a collective decision. Many successful theoretical and empirical works on
AV have studied this voting system from various points of view (see [10]
for a comprehensive analysis). We emphasize the interest of this particu-
lar field of application for two main reasons. In the first place, because AV
adapts to many real-world situations. Since the publication of Brams and
Fishburn [6, 7], many organizations and scientific societies use AV, to wit,
the Mathematical Association of America (MAA), the American Mathemat-
ical Society (AMS), the Institute for Operational Research and Management
Sciences (INFORMS), the American Statistical Association (ASA), the In-
stitute of Electrical and Electronic Engineers (IEEE), and other smaller so-
cieties such as the Society for Judgment and Decision Making, the Society
for Social Choice and Welfare, etc. (see [10]). In the second place, because
the conclusion that ‘the Approval Voting method is more likely to lead to
a consensus vote than polarizing the electorate’ (Alós-Ferrer and Granić [4,
p. 173]) makes dichotomous assessments worth investigating in relation with
the measurement of cohesiveness in a society.

Summing up on these arguments, we believe that the practical interest of
consensus models in social choice and decision making (as the recent reports
in [9]) makes it pertinent to perform a separate study of the degree of con-
sensus or cohesiveness when agents express themselves through dichotomous
opinions. In our proposal we proceed according to the following starting
points. Experts have to classify the alternatives e.g., as either “acceptable”
or “non-acceptable” (as in job committees or elections by AV); either “agree”
or “disagree” (as in polls or surveys); either “guilty” or “not guilty” (as in
jury courts); etc. Then, and following the approach initiated in Bosch [5],
we propose and characterize some classes of measures of the consensus or
cohesiveness that such expression of the individual assessments conveys. We
generically refer to them as approval consensus measures (ACMs), a novel
concept that we introduce in this paper in order to deal with such kind of
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situations.
ACMs play a role in Social Choice alike to that of “standard deviation”

for data sets. In our context, in the presence of a voting or polling situation
we can have a numerical indicator of how closely the votes or opinions are
clustered. The precise meaning of the term “closeness” produces alternative
candidate indicators. The suitability or unsuitability of a given index is
dependent on the context, and its descriptive analysis helps to discriminate
its field of application. In this seminal work we are interested in two essential
approaches, to wit, the s-Simple and the s-Simple Tanimoto ACMs.

We first give an axiomatic characterization of s-Simple ACMs (that mea-
sure the probability that a randomly chosen contraction of the set of candi-
dates to a subset with s elements produces unanimity). Then we reproduce
the analysis for a modification of the class of s-Simple ACMs, that intends
to lessen the influence of irrelevant alternatives (i.e., those whom nobody
approves of). To that purpose we draw inspiration from the Tanimoto sim-
ilarity index (see [12] and [13]) in order to define and characterize s-Simple
Tanimoto ACMs. This similarity index and others have been applied in dif-
ferent fields, especially in Biogenetics (see [8], [11] and [14] as a sample).
As a result, this variation of the s-Simple ACMs verifies an independence
of irrelevant alternatives property, which supposes a distinctive feature of s-
Simple Tanimoto ACMs. Finally, we focus on the forecasts made by polling
agencies about the 2012 presidential elections in USA as a real scenario to
put in practice these two proposals.

The paper is structured as follows. Section 2 is devoted to present stan-
dard basic terminology, as well as our original proposal of measurement of
consensus for the specific setting with dichotomous opinions, the approval
consensus measure. In Section 3 and Section 4 we set forth the characteriza-
tion and properties of two families of approval consensus measures, namely
s-Simple and s-Simple Tanimoto ACMs, respectively. Next, in Section 5
we present our illustrative real example. Finally, in Section 6 we give some
concluding remarks.

2. Notation and definitions

Let X = {x1, ..., xk} be the finite set of k options, alternatives or candi-
dates. It is assumed that X contains at least two alternatives, i.e., that the
cardinality of X is greater or equal than 2, |X| > 2. Abusing notation, on
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occasions we refer to option xs as option s for convenience. A population of
agents or experts is a finite subset N = {1, 2, ..., N} of natural numbers.

We consider that each expert can vote for or approve of as many options,
alternatives or candidates as he/she wishes, thus showing extreme and di-
chotomous opinions. As is standard, in order to formalize these assessments
we can take three alternative positions.

1. Let P(X) be the set of all subsets of X. For any expert i ∈ N,
let Bi ∈ P(X) be the set of alternatives that he/she approves of. We
write P = P(X)N for the set of all the assessments on X, i.e., an element
B1× . . .×BN ∈ P captures the sets of alternatives that the respective agents
approve of.

2. We can also capture the dichotomous opinions of expert i ∈ N on X
by means of Ai ∈ {0, 1}k, i.e., component j of Ai is 1 if and only if expert
i approves of alternative j. We write V = {0, 1}k× N...... ×{0, 1}k for the set
of all dichotomous experts’ opinions on X, thus A1 × . . .×AN ∈ V captures
the sets of alternatives that the respective agents approve of.

The elements of P can be identified with elements of V in a trivial manner.
3. An approval profile of the society N on the set of alternatives X is an

N × k matrix

M =

M11 . . . M1k
...

. . .
...

MN1 . . . MNk


N×k

where Mij is the opinion of the expert i over the alternative xj, in the sense

Mij =

{
1 if expert i approves the alternative xj,
0 otherwise.

We write MN×k for the set of all N × k matrices. Again, the elements of P,
resp. of V, can be identified with elements of MN×k in a trivial manner.

For one thing, and relating to past notation, row i of the profile M can
be identified with Ai ∈ {0, 1}k thus it describes the dichotomous assessment
of expert i over the alternatives. For another, column j of the profile M
captures the experts’ assessments on the alternative j. We denote it by M j.

Any permutation σ of the experts {1, 2, ..., N} determines a profile Mσ

by permutation of the rows of M : row i of the profile Mσ is row σ(i) of
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the profile M . Similarly, any permutation π of the alternatives {1, 2, ..., k}
determines a profile πM by permutation of the columns of M : column j of
the profile πM is column π(j) of the profile M .

For each approval profile M , its restriction to a subprofile on the alterna-
tives in I ⊆ X, denoted M I , arises from exactly selecting the columns of M
that are associated with the respective alternatives in I (in the same order).
In particular, and dropping brackets for simplicity, M{j} = M j is column j
of M , and M i,j is the two-column submatrix of M that consists of columns
i and j (in the same order). Abusing notation, M−j is the restriction of M
to the subprofile on X − {xj}. An s-restricted profile of M is the restriction
of M to a subprofile on s alternatives.

Any partition {I1, ..., It} of {1, 2, ..., k}, that we identify with a partition
of X, generates a decomposition of M into subprofiles M I1 , ... , M It .

For each approval profile M on k alternatives, by n0 we denote the num-
ber of alternatives that all agents disapprove of, and by n1 we denote the
number of alternatives that all experts approve of. Similarly, n = n0 + n1

denotes the number of alternatives the agents are unanimous on, i.e., the
number of columns of M that are constant. Strictly speaking, the notation
n(M), n0(M), n1(M) should be used in order to emphasize the dependence
of these amounts on the approval profile. We believe that dropping the ref-
erence to M does not cause any confusion thus we omit it.

The following example illustrates the use of the previous notation.

Example 1. Let X = {x1, x2, x3, x4} be a set of four alternatives, thus
k = 4 (we also use X = {1, 2, 3, 4} for simplicity). We suppose a population
of N = 3 agents, i.e. N = {1, 2, 3}, and the following approval profile M :

M =

 1 0 1 0
1 1 0 0
1 1 1 0


This abstract specification may capture different real situations. For ex-

ample, the agents could be a three-member court deciding if each of the
judgements x1 to x4 (like ‘the defendant did a certain action’ or ‘the defen-
dant is liable’) is true or false. Or they could be three performance appraisal
reviewers evaluating if an employee or department has reached certain goals
or not. Whatever the case, here we are not interested in how such assessments
are used subsequently.
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The information in M can also be expressed by setting B1 = {x1, x3},
B2 = {x1, x2} and B3 = {x1, x2, x3}, or alternatively, A1 = (1, 0, 1, 0),
A2 = (1, 1, 0, 0) and A3 = (1, 1, 1, 0). Besides, n0 = n1 = 1.

Suppose a permutation σ of the experts N = {1, 2, 3} given by

σ : N → N
1 3
2 2
3 1

, then row 1 of Mσ is row σ(1) = 3 of M , and so forth,

therefore Mσ =

 1 1 1 0
1 1 0 0
1 0 1 0

 .

Suppose a permutation π of the alternatives X = {1, 2, 3, 4} given by

π : X → X
1 2
2 3
3 4
4 1

, then column 1 of πM is column π(1) = 2 of M , and so forth,

therefore πM =

 0 1 0 1
1 0 0 1
1 1 0 1

 .

Let I1 = {1, 4} and I2 = {2, 3}, then M is decomposed into the following
two subprofiles:

M I1 = M1,4 =

 1 0
1 0
1 0

 and M I2 = M2,3 =

 0 1
1 0
1 1

 .

An approval profile M is unanimous if the set of approved alternatives
is the same across experts. In matrix terms, if the columns of M ∈ MN×k
are constant. Equivalently: if n = k, or if A1 = ... = AN . For convenience,
(1)N×k denotes the N × k matrix whose cells are universally equal to 1.

An extension of an approval profile M of the society N on X = {x1, ..., xk}
is an approval profile M̃ on X̃ = {x1, ..., xk, , xk+1, ..., , xk′} such that the
restriction of M̃ to the first k alternatives of X̃ coincides with M .
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An expansion of an approval profileM of the society N onX = {x1, ..., xk}
is an approval profile M̄ of a society N̄ = {1, ..., N,N + 1, . . . , N̄} on
X = {x1, ..., xk} such that the restriction of M̄ to the first N experts of
N coincides with M .

Inspired by the concept of a consensus measure in Bosch [5], we now
define approval consensus measures as follows:

Definition 1. An approval consensus measure (also ACM for simplicity) is
a mapping µ : MN×k → [0, 1] that assigns a number µ(M) ∈ [0, 1] to each
approval profile M , with the following properties:

i) µ(M) = 1 if and only if M is unanimous.

ii) Anonymity : µ(Mσ) = µ(M) for each permutation σ of the agents and
M ∈MN×k

iii) Neutrality : µ(πM) = µ(M) for each permutation π of the alternatives
and M ∈MN×k

Remark 1. The minimal set of conditions i) - iii) in Definition 1 does not
guarantee a good performance of the evaluation, and ACMs with a weird
behavior can be constructed easily. For example, suppose k > 1 and for each
approval profile M define

w(M) =


1 if n = k,
9/10 if n = 0,
0 otherwise.

Because w is defined as a function of n, anonymity and neutrality are trivial.
Condition i) is verifed by definition. However its behavior is clearly odd: it
says that for example, for k = 1000 the ‘consensus’ is higher when no option
produces a unanimous reaction (i.e. n = 0) than in the case where n = 999
options are unanimously accepted.

In view of this drawback, the researcher must attempt to avoid misspecifi-
cations by proposing restrictive forms for ACMs. Their respective normative
behavior must be studied for the purpose of validation. This is the aim of
the following sections.
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3. The class of s-Simple ACMs. Characterization and properties

In this section we introduce and analyze a class of approval consensus
measures that depend on a parameter k > s > 0. Intuitively, they measure
the probability that a randomly chosen s-restricted profile of a given profile
is unanimous. Formally:

Definition 2. The s-Simple approval consensus measure is the mapping
Cs : MN×k → [0, 1] given by

Cs(M) =
n(n− 1)....(n− (s− 1))

k(k − 1)....(k − (s− 1))
=

(
n
s

)(
k
s

) =
Cs
n

Cs
k

(1)

for each approval profile M on k alternatives, where n denotes the cardinality
of the set of alternatives the agents are unanimous on.

It is not difficult to check that these expressions produce approval consen-
sus measures. The key part is that their values lie in [0, 1], and particularly
that Cs(M) > 0 throughout. This holds true because when n > s the nu-
merator is a product of positive numbers, and when n < s one of the factors
in the numerator is 0.

Example 2. In the situation of Example 1 one has n = 2 thus C1(M) = 2
4
,

C2(M) = 1
6
, and C3(M) = C4(M) = 0.

We proceed to explore some general properties of the class of s-Simple
approval consensus measures. Afterwards we provide an axiomatic charac-
terization in our main result in Theorem 1. Because particular instances
of this class of approval consensus measures have specific interpretations we
also perform additional ad-hoc analyses of focal cases.

Let M denote an approval profile. The following properties hold true:

1. C1(M) > C2(M) > .... > Ck(M) because Cs(M) = 0 when s > n, and
for each index s such that s < k and s 6 n one has

Cs+1(M)

Cs(M)
=

( n
s+1)

( k
s+1)

(n
s)

(k
s)

=
n− s
k − s

6 1 since n 6 k
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2. Reversal invariance: If we define the complementary approval profile
M c ofM according to Aci = X−Ai (in matrix terms: M c = (1)N×k−M)
then Cs(M) = Cs(M c) because the set of alternatives the agents are
unanimous on does not change. This property is the analogue of Axiom
5 in Alcantud et al. [2] for the current setting.

3. The consensus measure does not change if agents are replicated in any
number. This is a strengthened version of the replication axiom (for the
analysis of societies with linear orders on the alternatives) in Alcalde
and Vorsatz [1].

4. Suppose that an agent N + 1 is added to the society N, and that this
agent approves, resp. disapproves, of all the alternatives in X. Then
the consensus measure does not rise.
We argue for the case where agent N + 1 disapproves of all the alterna-
tives in X, the other case being symmetrical. The expanded approval
profile M̄ that thus arises has n0 unanimously disapproved alterna-
tives and 0 unanimously approved alternatives. Therefore a comparison
must be made between the following two numbers:

Cs(M) =
Cs
n0+n1

Cs
k

, Cs(M̄) =
Cs
n0+0

Cs
k

thus Cs(M) > Cs(M̄) if and only if Cs
n0+n1

> Cs
n0

.

5. Suppose that an alternative k+ 1 is added to the set of alternatives X,
and that this alternative is unanimously approved, resp. disapproved,
by all agents. If M is not unanimous, and the introduction of the
new alternative does not affect the agents’ assessments of the original
alternatives, then the consensus measurement of the enlarged sets is
strictly higher than the original one.
The argument is as follows. Let M̃ be the extended profile, we want to
show that Cs(M) < 1 implies Cs(M) < Cs(M̃). Equivalently,

Cs(M) =
Cs
n

Cs
k

< Cs(M̃) =
Cs
n+1

Cs
k+1

which after some algebra is equivalent to k > n. This is true because
M is not unanimous.

6. Convergence to full unanimity can be established if we repeatedly in-
troduce alternatives with the property that all agents agree on their
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acceptability. Formally: Suppose that alternatives k + 1, ..., k + t are
added to the set of alternatives X, and that each alternative is either
unanimously approved or unanimously disapproved by all agents. If
the introduction of new alternatives does not affect the agents’ assess-
ments of past sets of alternatives, then the consensus measurement
of the extended approval profiles M̃ (t) approaches 1 when t tends to
infinity.
The argument is as follows. If n = k the claim is trivial, so we assume
n < k. Since M̃ (t) is the profile after enlarging the set of alterna-
tives with the k + 1, ..., k + t new alternatives, we want to show that

limt→∞(Cs(M̃ (t))) = limt→∞(
Cs

n+t

Cs
k+t

) = 1 for each s 6 k, n < k. Because

lim
t→∞

(
Cs
n+t

Cs
k+t

) = lim
t→∞

(n+t)!
(n+t−s)!
(k+t)!

(k+t−s)!

= lim
t→∞

(
(k + t− s)

(k + t)
...

(n+ t− s+ 1)

(n+ t+ 1)
)

and this is a finite product of constantly k−n sequences that converge
to 1 (when t tends to infinity), the thesis ensues.

7. The computation of the s-Simple ACM of a profile on k alternatives is
the average of the corresponding measures of (k−1)-restricted profiles:

Proposition 1. Let X = {x1, ..., xk} be a set with k alternatives, and
let M be an approval profile on X. Then

Cs(M) =
1

k

k∑
j=1

Cs(M−j)

Proof. If the agents are unanimous on exactly n alternatives of X, the
neutrality property of approval consensus measures permits to assume
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that these alternatives are {x1, ..., xn}. Then

1

k

k∑
j=1

Cs(M−j) =
1

k

(
n∑
j=1

Cs(M−j) +
k∑

j=n+1

Cs(M−j)

)
=

=
1

k

(
n
Cs
n−1

Cs
k−1

+ (k − n)
Cs
n

Cs
k−1

)
=

=
1

k

n (n−1)!
s!(n−1−s)! + (k − n) n!

s!(n−s)!
(k−1)!

s!(k−1−s)!

=

=

n!(n−s)
s!(n−s)! + n!(k−n)

s!(n−s)!
k!(k−s)
s!(k−s)!

=

n!
s!(n−s)!

k!
s!(k−s)!

=
Cs
n

Cs
k

= Cs(M)

�

3.1. Necessary and sufficient conditions for the s-Simple ACM

We characterize the s-Simple ACM in terms of the following two proper-
ties:

Definition 3. An approval consensus measure µ verifies:

i) s-triviality if and only if for each approval profile M on X and each
I ⊆ X with cardinality s,

µ(M I) =

{
1 if the agents are unanimous on every alternative in I,
0 otherwise.

ii) s-reducibility if and only if for each approval profile M on X,

µ(M) =
1

Cs
k

∑
I⊆X
|I|=s

µ(M I)

For a given s, s-triviality means that the application of µ to any s-
restricted profile behaves in a trivial manner: the profiles have an approval
consensus measure of 1 exactly when they are unanimous, the alternative
being approval consensus measure of 0. And s-reducibility means that the
approval consensus measure of a profile is the average of the approval con-
sensus measures of its s-restricted profiles.
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Theorem 1. Let µ be an approval consensus measure on X. Then µ = Cs
if and only if µ verifies s-triviality and s-reducibility.

Proof. Let Xu ⊆ X denote the set of alternatives for which the agents have
an unanimous opinion, thus n = |Xu|.

Let us first prove that Cs verifies s-triviality and s-reducibility for each
k > s > 0. For each approval profileM onX and each I ⊆ X with cardinality
s, let nI 6 s denote the number of alternatives of I for which the agents have

an unanimous opinion. Then Cs(M I) =
(nI

s )
(s
s)

equals 1 iff nI = s, i.e., iff M I

is unanimous; and it equals 0 otherwise.
To check for s-reducibility we just need to observe that∑
I⊆X
|I|=s
Cs(M I) = Cs

n because s-triviality implies that this sum is precisely

the number of subsets of X with cardinality s, such that the agents have an
unanimous opinion on their alternatives. In other words: It is the number of
combinations of n distinct elements taken s at a time. Formally:∑

I⊆X
|I|=s

Cs(M I) =
∑
I⊆Xu
|I|=s

Cs(M I) +
∑
I*Xu

|I|=s

Cs(M I) = Cs
n + 0

Conversely, let µ be an approval consensus measure that verifies s-triviality
and s-reducibility. Due to s-triviality,∑

I⊆X
|I|=s

µ(M I) = |{I ⊆ Xu : |I| = s}| = Cs
n

and now s-reducibility yields

µ(M) =
Cs
n

Cs
k

= Cs(M)

�

Focal instances of s yield special cases of s-simple ACMs that we proceed
to investigate further. The case s = 1 will be called the simple ACM. The
case s = k will be called the trivial ACM: it is equal to 1 when the profile
is unanimous, and 0 otherwise. In between we have the case s = 2, that we
call the Pareto ACM.
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3.2. The simple ACM. Futher properties
The expression of the 1-simple (or simple) ACM is C1(M) = n

k
for each

approval profile M on a set with k alternatives. It measures the probabil-
ity that all agents unanimously approve/disapprove of a randomly selected
alternative. Theorem 2 below gives an alternative characterization of C1 in
terms of the following property:

Definition 4. An approval consensus measure µ verifies convexity if and
only if for each approval profile M on X, and each decomposition of M into
two subprofiles M1 and M2, with k1 and k2 columns respectively,

µ(M) =
k1 µ(M1) + k2 µ(M2)

k

Convexity means that the measure of a profile is a weighted average of
the measures of any decomposition into subprofiles, their weights being given
by their respective relative sizes. A routine checking shows that C1 verifies
convexity.

Theorem 2. Let µ be an approval consensus measure on X. The following
statements are equivalent:

1. µ is the simple approval consensus measure.
2. µ verifies 1-triviality and 1-reducibility.
3. µ verifies 1-triviality and convexity.

Proof. Due to Theorem 1, we only need to check that conditions 1 and 3 are
equivalent. We already know that 1 implies 3. Let us assume that µ verifies
1-triviality and convexity. We proceed by induction on k to prove µ(M) = n

k

for each approval profile M on a set with k alternatives. The case k = 1 holds
by 1-triviality. Assume that the statement is true for sets with k alternatives
or lesser. Let X = {x1, ..., xk, xk+1} be a set with k + 1 alternatives, and let
M be an approval profile on X. Denote by M1 the restriction of the profile
M to {x1, ..., xk}. Convexity assures

µ(M) =
k µ(M1) + µ(Mk+1)

k + 1

and the induction hypothesis yields

µ(M) =
k C1(M1) + C1(Mk+1)

k + 1

Because C1 verifies convexity, the latter expression boils down to
µ(M) = C1(M). �
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3.3. The Pareto ACM. Futher properties

The expression of the 2-Simple ACM is C2(M) = n(n−1)
k(k−1) for each approval

profile M on a set with k alternatives. It measures the probability that a
shrink of the set of alternatives to two randomly chosen alternatives pro-
duces full consensus among the agents. This is related to a possible adapted
variation of Bosch’s Pareto measure [5, pp. 81-82], which “is based on the
number of pairs on which the voters agree”: here we interpret that the voters
agree on xi and xj when they are unanimous on xi and also on xj, i.e., when
the voters have exactly the same opinion about which of the two alternatives
must be approved.

A routine checking proves the following relationships between C1 and C2
for each approval profile M on a set with k alternatives:

C2(M) = C1(M)
k C1(M)− 1

k − 1

C1(M) =
1−

√
4 C2(M) k (k − 1) + 1

2k

Convexity explains the behavior of the simple approval consensus measure
when a new alternative is added without affecting the agent’s opinion on
the original alternatives. The following result gives the corresponding exact
relation for the Pareto ACM, which can be checked in a straightforward
manner:

Proposition 2. Let X = {x1, ..., xk} be a set with k alternatives, and let M
be an approval profile on X such that the agents are unanimous on n alterna-
tives. Denote by M̃ an extension of the profile M to X̃ = {x1, ..., xk, xk+1}.
Then

C2(M̃) =
k(k − 1)C2(M) + 2nC1(M̃k+1)

k(k + 1)
=
C2
k C2(M) + n C1(M̃k+1)

C2
k+1

4. The class of s-Simple Tanimoto ACMs. Characterization and
properties

In this section we introduce and explore a variant of s-Simple ACMs that
satisfies an independence of irrelevant alternatives criterion. It is inspired
in the Tanimoto similarity index (see [12] and [13]). At this point we have
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to introduce some additional notations. An alternative xj is called irrele-
vant on profile M if all agents disapprove of it, i.e Mij = 0 for all i ∈ N,
otherwise it is relevant. An approval profile M is irreducible if it lacks ir-
relevant alternatives. This means that each alternative is approved of by at
least one agent. Given a non-unanimous approval profile M , we denote by
MR its unique irreducible subprofile, i.e., MR arises from M after removing
irrelevant alternatives.

We now introduce the class of Simple Tanimoto approval consensus mea-
sures that depend on a parameter s. Intuitively, for each non-unanimous
profile they measure the probability that a randomly chosen s-set of relevant
alternatives are approved by all agents. Formally:

Definition 5. The s-Simple Tanimoto ACM is the mapping
Ts : MN×k → [0, 1] given by

Ts(M) =


1 if M is unanimous
0 if M is not unanimous and k − n0 < s
Cs

n1

Cs
k−n0

otherwise
(2)

for each approval profile M on k alternatives.

Since k − n0 > n1 it is immediate to check that the above expresion
provides an approval consensus measure.

Example 3. Continuing with Examples 1 and 2, one has T1(M) = 1
3

and
T2(M) = T3(M) = T4(M) = 0.

Now we proceed as in the previous section: we enumerate some general
properties of the class of s-Simple Tanimoto ACMs and then we give their
axiomatic characterization. Therefore, let M denote an approval profile.

1. T1(M) > T2(M) > . . . > Tk(M). If M is unanimous, k − n0 < s or
n1 < s, then the chain of inequalities is trivial. Otherwise
s 6 n1 < k − n0 yields

Ts(M)

Ts−1(M)
=

n1 − s+ 1

k − n0 − s+ 1
< 1
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2. Cs(M) > Ts(M). We only discuss non-trivial cases, that is,
s 6 n1 < k − n0. Exploiting the inequality x+1

y+1
> x

y
with x, y > 0

and x < y, we obtain

n− i
k − i

>
n− n0 − i
k − n0 − i

=
n1 − i

k − n0 − i
for 0 6 i 6 s− 1

From this, the assertion is straightforward.

3. The consensus measure does not change if agents are replicated in any
number.

4. Suppose that M is not unanimous, and that an agent N + 1 is added
to the society N. If this agent disapproves of all the alternatives in
X, then the consensus measure is zero. It suffices to observe that the
number of approved alternatives by unanimity is zero.
On the other hand, if the new agent approves of all the aternatives in X
the consensus measure does not rise. Let M̄ be the expanded approval
profile, then note that n̄0 = 0 6 n0, n̄1 = n1 and k̄ = k. We have either
k − n0 < s or k − n0 > s. In the first case, since M is not unanimous,
we get n̄1 = n1 < k − n0 < s and then Ts(M̄) = 0 = Ts(M). In the
second case, a simple computation arrives at:

Ts(M̄) =
n1(n1 − 1) . . . (n1 − s+ 1)

k(k − 1) . . . (k − s+ 1)

6
n1(n1 − 1) . . . (n1 − s+ 1)

(k − n0)(k − n0 − 1) . . . (k − n0 − s+ 1)
= Ts(M)

5. Suppose that M is not unanimous, that an alternative k + 1 is added
to set of alternatives X, and that this alternative is unanimously ap-
proved of by all agents. If the introduction of the new alternative does
not affect the agents’ assessments of the original alternatives, then the
consensus measurement of the enlarged sets does not decrease.
Let M̃ be the extended approval profile, we then have ñ0 = n0,
ñ1 = n1 + 1 and k̃ = k + 1. We distinguish two cases:

• Case 0 < k − n0 < s or n1 < s. This implies Ts(M) = 0 and then
Ts(M̃) > Ts(M).

• Case k − n0 > s and n1 > s. This implies k̃ − ñ0 > s and ñ1 > s.
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A simple computation gives

Ts(M̃) =
Cs
ñ1

Cs
k̃−ñ0

=
Cs
n1+1

Cs
k−n0+1

=
n1 + 1

k − n0 + 1

k − n0 + 1− s
n1 + 1− s

Ts(M)

(3)

Now, using the fact that x
y
> x+1

y+1
when x, y > 0 and x > y, we

infer

k − n0 + 1− s
n1 + 1− s

>
(k − n0 + 1− s) + 1

(n1 + 1− s) + 1
> . . . >

k − n0 + 1

n1 + 1
(4)

Combining (3) and (4) we obtain the desired assertion
Ts(M̃) > Ts(M).

6. The s-Simple Tanimoto ACM satisfies an independence of irrelevant
alternatives criterion. Suppose that M is not unanimous, that an al-
ternative k+ 1 is added to set of alternatives X, and that this alterna-
tive is unanimously disapproved of by all agents. Then the consensus
measurement does not change. This is trivial because ñ1 = n1 and
k̃ − ñ0 = k − n0.

7. Convergence to full unanimity can be established if we repeatedly intro-
duce alternatives that are unanimously approved. Formally: Suppose
that alternatives k + 1, ..., k + t are added to the set of alternatives X,
and that each alternative is unanimously approved by all agents. If the
introduction of new alternatives does not affect the agents’ assessments
of past sets of alternatives, then the consensus measurement of the ex-
tended approval profiles M̃ (t) approaches 1 when t tends to infinity.
The argument is analogous to that of Section 3 and so omitted.

We now characterize the s-Simple Tanimoto ACMs. We first introduce
the following definitions.

Definition 6. An approval consensus measure µ verifies:

i) Independence of irrelevant alternatives if and only if µ(M) = µ(MR)
for any non-unanimous profile.
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ii) s-reducibility on irreducible profiles if µ is a s-reducible measure on the
set of irreducible approval profiles, that is: for each irreducible approval
profile M on X

µ(M) =
1

Cs
k

∑
I⊆X
|I|=s

µ(M I)

iii) s-nullity if and only if the consensus measurement of any non-unanimous
profile that approves of less than s alternatives is zero.

The first property reveals that the unanimously disregarded alternatives
do not play any role in the consensus measurement. The second one is a
weak version of s-reduciblity at Section 3.2. Combining both properties we
infer that the consensus measurement of a profile M only depends on its
s-restricted profiles that are irreducible. The last property means that the
consensus only can be positive if the agents approve of at least s alternatives.

Theorem 3. Let µ be an approval consensus measure on X. Then µ = Ts
if and only if µ verifies s-triviality, independence of irrelevant alternatives,
s-reducibility on irreducible profiles and s-nullity.

Proof. Given an approval profile, let Xu(M), X1(M) ⊆ X(M) be the set
of alternatives for which the agents have an unanimous opinion and the set
of approved alternatives by unanimity, respectively. Thus n = |Xu(M)|, and
n1 = |X1(M)|.

Let us first prove that Ts verifies the four properties above. For each
approval profile M and each I ⊆ X with cardinality s, let nI0 and nI1 be
the number of alternatives of I that all agents disapprove of and approve of,
respectively. If M I is unanimous then it is obvious that Ts(M I) = 1. If M I

is not unanimous, we have either nI0 > 0 or nI0 = 0. In the first case it must
be the case that |I| − nI0 < s and then Ts(M I) = 0. In the second case we
deduce nI1 < s, therefore Cs

nI
1

= 0. Thus Ts(M I) = 0 irrespective of the case.

To prove that Ts satisfies independence of irrelevant alternatives it suffices
to note that an approval profile M and its associated irreducible profile MR

have the same number of approved alternatives and the same number of
approved by unanimity alternatives.

Note that s-nullity is a simple consequence of the definition of Ts.
We finally check for s-reducibility on irreducible profiles. Let M be

an irreducible profile, since n0 = 0 and Xu(M) = X1(M) we deduce by
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s-triviality that

Ts(M) =
1

Cs
k

∑
I⊆X(M)
|I|=s

Ts(M I)

Conversely, let µ be an approval consensus measure that satisfies the four
properties above. We can assume that M is not unanimous, because in other
case any measure provides consensus one. By independence of irrelevant
alternatives we have

µ(M) = µ(MR),

where the cardinality of the set of evaluated alternatives in MR is k − n0. If
k − n0 < s by s-nullity we deduce µ(M) = 0 = Ts(M).

We now analyze the case k− n0 > s. Due to s-reducibility on irreducible
profiles we infer

µ(MR) =
1

Cs
k−n0

∑
I⊆X(MR)
|I|=s

µ(M I
R)

Since Xu(MR) = X1(MR), using s-triviality we obtain∑
I⊆X(MR)
|I|=s

µ(M I
R) = Cs

n1
,

and we then arrive at the desired assertion

µ(M) =
Cs
n1

Cs
k−n0

= Ts(M)

�

5. Illustrative real example

In order to perform a practical exploration of our indexes, in this section
we develop an illustrative real example to visualize some differences among
s-Simple approval consensus measures (s-SACM) and s-Simple Tanimoto
consensus measures (s-STACM). Moreover, different values of the parameters
are considered in this applied exercise.

We focus on the predictions about the 2012 presidential elections in USA
made by polling agencies. For simplicity, we consider the forecast by three
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polling outfits, namely, PPP (Public Policy Polling), Rasmussen reports, and
SurveyUSA. Although these polls were performed nationwide, we only report
on their predictions for the following states: California (CA), Colorado (CO),
Connecticut (CT), New Jersey (NJ), Minnesota (MN), Missouri (MO), Ohio
(OH) and Washington (WA).

Table 1 gathers the polls results: we adopt the convention that ‘1’, res-
pectively ‘0’, means a prediction that the Democrats, respectively the Repu-
blicans, would win the state (see for example Colorado, where the PPP and
SurveyUSA agencies predicted a victory of the Democrats but the Rasmussen
agency predicted a victory of the Republicans).

Following the notation adopted in the paper, the number of states where
the agencies unanimously predicted a Democrat, respectively Republican,
victory are n1 = 6 and n0 = 1.

Table 1: Polls results

State
CA CO CT NJ MN MO OH WA

PPP(D) 1 1 1 1 1 0 1 1
Rasmussen 1 0 1 1 1 0 1 1

Survey USA 1 1 1 1 1 0 1 1
Total 3 2 3 3 3 0 3 3

Source: http://www.realclearpolitics.com/polls/

Table 2 shows that the degree of agreement about the electoral predic-
tions among the states for s-SACM and s-STACM decreases as parameter s
increases.

Remark 2. We insist that this section is a purely technical exercise. More
importantly, we do not advocate for the use of the s-STACM index in our
example: it makes no sense to stipulate ‘irrelevant alternatives’ in the current
setting. In addition, observe that the choice of the ‘0’ label is no more than
a technical code and can be freely attached.
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Table 2: Measures of the cohesiveness of the electoral surveys

s
1 2 3 4 5 6 7 8

s-SACM 7
8

3
4

5
8

1
2

3
8

1
4

1
8

0

s-STACM 6
7

5
7

2
3

3
7

2
7

1
7

0 0

6. Final comments and concluding remarks

In this paper we explore the problem of measuring the degree of cohe-
siveness in a setting where experts express their opinions on alternatives in
a dichotomous way. To that purpose we define the novel concept of approval
consensus measures (ACMs). In this initial contribution to the topic we
give the first necessary and sufficient conditions that characterize relevant
primary classes of ACMs, namely s-Simple ACMs and s-Simple Tanimoto
ACMs. Because we elaborate on approval consensus measures that adapt
to simple real-world situations, an obvious future development is the study
and characterization of other consensus measures that can be used to ana-
lyze complex situations more faithfully. Moreover, our approach (or other
similar proposals) could be applied in conflict resolution as a component of
a decision aid system.

It may appear that our model should bear comparison with other pro-
posals in the literature on consensus measures. In this regard, there is the
immediate intuition that dichotomous opinions on the elements in X can be
identified with complete preorders or weak orders (i.e., complete and tran-
sitive binary relations) on that set of alternatives. There are at least two
reasons to dissent from such view. A general objection is that by expressing
a dichotomous opinion only a part of the actual preference can be revealed,
provided that the agent has actually used such procedure to achieve his or
her classification of the alternatives. This may easily introduce arbitrariness
in any subsequent measure based on the revealed preference. A more par-
ticular objection is that our model is not limited to choice situations where
the agent must prioritize some alternatives, as the example in section 5 has
shown. Nevertheless, let us consider the only proposal to measure consen-
sus in collectives with weak orders on the alternatives that we are aware of,
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namely Garćıa-Lapresta and Pérez-Román [9, pp. 213-234]. Their procedure
is based on the adapted version of distance between linear orders to weak
orders, which requires to know the entire individual preference of each agent.
Here we find a technical reason that differentiates the latter model from ours,
which only needs knowing aggregate opinions on each issue. For many situ-
ations (e.g., opinion polls or surveys) the use of aggregate data seems more
realistic.
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