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Abstract

We study, by means of a Monte Carlo simulator, the hot phonon effect on the relaxation dynamics

in photoexcited graphene and its quantitative impact as compared to considering an equilibrium

phonon distribution. Our multi-particle approach indicates that neglecting the hot phonon effect

significantly underestimates the relaxation times in photoexcited graphene. The hot phonon effect

is more important for a higher energy of the excitation pulse and photocarrier densities between 1

and 3× 1012 cm−2. Acoustic intervalley phonons play a non-negligible role, and emitted phonons

with wavelengths limited up by a maximum (determined by the carrier concentration) induce a

slower carrier cooling rate. Intrinsic phonon heating is damped in graphene on a substrate due to

additional cooling pathways, with the hot phonon effect showing a strong inverse dependence with

the carrier density.
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Graphene features, among other properties, large carrier mobility at room temperature

along with gapless linear energy spectra for electrons and holes, that results in a linear op-

tical absorption with virtually no photon wavelength restriction,[1] making it a promising

material for the development of a wide range of highly efficient photonic and optoelectronic

applications, including those operating in the terahertz range. [2–4] Consequently, an in-

tense effort has been made in the recent years in order to get a good understanding of the

carrier dynamics involved during and after photoexcitation[5–14] from a purely theoretical

approach and also from an experimental point of view (pump–probe differential transmission

spectroscopy) accompanied by means of various modelling techniques. Right after photoexci-

tation, an ultrafast thermalization of the carriers takes place driven by Coulomb dual carrier

scattering.[13, 15, 16] Simultaneosly, the carriers partially cool by transferring their energy

to the graphene and substrate lattices by means of phonon cascade emissions.[5, 8, 11, 16]

As a result, a hot thermal distribution of electrons and holes is achieved in tens of fs.

[7, 8, 10] Later processes involve the cooling of the carriers as a consequence of scattering

with phonons in the tail of the energy distribution, at the same time that recombination

leads the system towards the full thermodynamic equilibrium.[5, 11] Several authors remark

the importance that the hot phonon (HP) effect would have on this dynamics. [6, 7, 17]

The ensemble Monte Carlo (EMC) technique has been employed to study the influence of

HP on the static transport properties of monolayer graphene under high–field conditions.[18]

This method has been proven also to be worthy in the study of ultrafast carrier dynamics

in a sub–ps time scale in other materials. For example, in GaAs this dynamics is examined

in a femtosecond scale by Zhow[19], while the effects of carrier screening are disentangled

by Osman[20] and the non stationary dynamics in THz sources are investigated by Kim[21]

with an EMC simulator coupled to a Poisson solver. Also, in more complex structures

such as superlattices[22], this technique has been employed to describe the carrier relax-

ation and transport. Parallel phonon and electron EMC simulations are used by Tea[23]

to examine the relaxation of carriers and phonons in highly excited polar semiconductors.

The transient characteristics of carbon nanotubes up to a few picoseconds are investigated

by Verma.[24] As it concerns graphene, ultrafast relaxation phenomena have been investi-

gated within a semiclassical framework by means of the Boltzmann transport equation; for

example, Kim[9] and Low[25] were able to predict the dynamics during and after photoex-

citation, and Satou[14] examined the effects of carrier–carrier scattering on photoinverted
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carriers in graphene for different substrates. On its behalf, the EMC technique has been

employed by Sano [13] to give insight into the carrier–carrier and carrier–phonon processes

in photoexcited graphene.

Nonequilibrium phonons have been previously accounted for in the study of photocarrier

relaxation dynamics[8, 12]. However, there is not yet a detailed analysis from a microscopic

point of view, about their impact during this process and which are the quantitative differ-

ences found with regard to considering a phonon distribution in equilibrium used in other

studies. [9, 13, 25] In this work, we address the HP effect during the thermalization and cool-

ing stages of the carrier relaxation dynamics, evaluating its impact for different photocarrier

concentrations and photon wavelengths. With this purpose the time interval is considered

up to 2 ps after photoexcitation, under the assumption that the carrier recombination is

negligible during this interval. [5]

The pertinent interactions included in our EMC model[26, 27] are the acoustic intravalley,

optical and acoustic intervalley phonons. The scattering rates for the TO/LO and TA/LA

phonon modes are calculated within an electron plane wave model within the deformation

potential approximation[28], which is a standard approach to determine the scattering rates

for numerical models in graphene. The physical parameters are adjusted in order to fit the

rates calculated from the first–principles density functional theory.[29, 30] It is known that

the Born–Oppenheimer approximation breaks down in graphene[31], however in the case of

photoexcited graphene the average energy of the electron system is typically much larger

than the Fermi energy in equilibrium during most of the relaxation timespan, so we do not

expect this approximation to be a severe restriction for the approach presented here. In ad-

dition, due to the strong coupling between carriers in graphene, short range carrier–carrier

scattering is taken into account through a static screened Coulomb potential model. [32]

In the case of graphene on a substrate, the additional surface polar phonon (SPP) modes,

which are also responsible for the carrier relaxation, are also included. [25] Screening is

accounted for in the Random Phase Approximation[33] by numerically calculating the Lind-

hard polarizability in its static limit from the energy distribution every time step in the

EMC simulation. Since the most relevant effect of considering dynamic screening is the sup-

pression of Auger processes[10], which are forbidden in our model, we consider that the use

of static screening should not severely compromise the study of the hot carrier and phonon

coupling. To examine the hot–phonon effect arising from the coupled carrier–phonon dynam-
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ics, the out–of–equilibrium populations of the considered phonons are treated dynamically

by accounting for the electron assisted emissions and absorptions resulting from the corre-

sponding scattering mechanisms that take place during each time step. The spontaneous

phonon decay is considered within the relaxation time approximation,[18] taking constant

mean phonon lifetimes of τOP = 2.5 ps and τAC = 5 ps, and τSPP = 5ps.[6, 34–36] The

scattering probabilities are recalculated every time step, which is set to 0.5 fs, considering

the updated phonon population and dielectric function. The number of simulated particles

ranges from 50000 to 1000000 depending on the carrier density.

Various pumping photon wavelengths and carrier concentrations (which would be the

result of different pump fluences) are considered, setting an initial electron distribution

according to the expression f(ε) = F(ε, T, µ) +ϕmax exp [−(ε− 1/2εphoton)2/2σ2], [10] where

the first member of the right hand side is the Fermi equilibrium distribution for undoped

graphene (µ = 0) at T = 300 K, and the second represents the excited carriers arising from

optical pumping of a light source with an energetic spectra peaked at εphoton, and where

σ = 0.1 eV accounts for the spectral bandwith of a Fourier limited pulse with a minimum

temporal full width at half maximum of around 8 fs. The parameter ϕmax is the maximum

occupation at ε = 1/2εphoton and relates the pumped concentration with the radiation fluence

and the pulse energy.

When carriers are in an out–of–equilibrium situation, as it is the case of photoinversion,

they lose energy by emitting phonons at a faster rate than they decay into other phonon

modes, thus driving their population out–of–equilibrium as well.[6, 17] The origin of the

HP effect in one of the cases under study is shown in figure 1. Tracking of the electron

scattering events with phonons reveals that phonon absorption for the optical mode is two

orders of magnitude higher for almost all the time span while no such a huge difference is

found for the emissions. For the acoustic intervalley mode, the phonon absorption scattering

rate discrepancy between the HP and BE models is not so severe as in the optical mode due

to its lower energy and coupling with hot carriers. As an overall consequence, the net power

dissipated by scattering with the lattice vibrations is reduced in comparison with the case

in which the phonons are in equilibrium.

To describe the temporal evolution of the ensemble, figure 2 represents the average elec-

tron energy considering both a hot carrier–hot phonon (HP) coupled system, 〈ε〉HP, together

with the average energy obtained with a Bose–Einstein (BE) equilibrium phonon occupa-
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tion, 〈ε〉BE, for comparison. The timespan of this process is limited up to the instant when

the average energy reaches the value corresponding to the thermal distribution with the

quasi Fermi level established by the pumped concentration. An energy decay that tends

towards a minimum thermal value is observed for all the cases under study. If the HP effect

is included, the energy decay rate is slower as compared with the BE case, standing out the

importance of this coupling, that prevents a faster relaxation. The insets shows the ratio

between the two quantities in order to discern the impact of the HP effect with the pulse

energy and the photocarrier density. In all cases under study, it is observed that the HP

effect tends to increase as the photon energy is larger. This is due to the fact that reaching

a fixed quasi Fermi level from an excitation state resulting from a larger photon wavelength

implies a larger number of phonon emissions per electron. In suspended graphene, the ef-

fect tends to be higher for concentrations between 1 and 3 × 1012 cm−2 (not shown in the

graphs) reaching its maximum for longer times than with higher concentrations. In the

case of graphene on SiO2 the energy ratio shows similar temporal trends for all cases, but

a stronger inverse dependence with the photocarrier density. This is explained through the

scattering probability of the intrinsic and SPP phonon modes, as for the firsts, the scattering

probability scales linearly with the carrier energy, while for the latter it rises quickly at low

energies and saturates for larger ones.

Time–tracking of the phonon occupation is shown in figure 3. The optical mode shows a

fast growth during the first 500 fs and then it drops linearly. The acoustic intervalley mode

manifest a less abrupt behaviour; the initial rise slope is less pronounced and in the time

frame considered there is no net reduction, although it tends to saturate around t = 2.0 ps.

When the monolayer graphene is supported on SiO2 it can be seen that the heating of the

intrinsic modes is more moderate. With regard to the substrate polar phonons, the SPP1

mode shows a trend similar to that of the intrinsic acoustic intervalley, while the SPP2 mode

resembles the trend of the intrinsic optical one. The origin of these differences are, in the

first place, the different electron-phonon couplings. These are, for the intrinsic modes, a con-

sequence of the distinct deformation potentials, making the intrinsic optical mode dominate

over the acoustic intervalley. With regards to the SPPs, electron–phonon coupling is propor-

tional to the phonon energy. Secondly, the larger phonon occupation in equilibrium for the

less energetic —i.e., the acoustic and SPP2— modes favours a bigger absorption/emission

proportion, and thus a slower and smoother heating. Finally, the shorter lifetime of the opti-
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cal mode drives the population towards equilibrium through phonon decay faster than in the

acoustic case. The evolution of the phonon population with the pumping pulse wavelength

and electron concentration supports the statements about the energetic evolution of the elec-

tron ensemble discussed in figure 2. Phonon population dependences with the photocarrier

density and the pulse energy can be seen in figure 4. Reduced intrinsic optical and acoustic

heating phonon for graphene on SiO2 as a consequence of the additional cooling pathways is

observed. The intrinsic optical mode is the most displaced from equilibrium, reaching mean

phonon occupations 60 times larger than in equilibrium, followed by the SPP2 mode (10×),

the acoustic intervalley (5×) and finally, the SPP1 mode, which barely heats (1.2×).

Let us now focus on the phonon momentum resolved dynamics as shown in figure 5. In

the graphs, only the evolution of the phonons as a consequence of scattering with electrons

is shown, although their natural decay within the corresponding lifetimes is considered

as well in the model. At low concentrations (figure 5–a), phonons start being emitted

with the highest rate during the first instants with a wavevector distribution focused in

the smallest possible required by the phonon energy |q| ≥ ωOP/vF . At around 600 fs the

electron distribution is close to equilibrium, and phonon emission is mostly forbidden by the

Pauli excussion principle, preventing energetic carriers to occupy already nearly full states

close to the Dirac point. Instead, these electrons are more likely to absorb the previously

emitted phonons, which gives rise to the net absorption rate with short wavevectors. This is

reflected in the area with a net destructive phonon rate that starts to appear at 500 fs and

is constrained to |q| ≤ 0.8 nm−1. In the high concentration case (figure 5–b), the phonon

emission stage is much briefer than in the previous case, ending at around 200 fs due to the

high degeneracy of the system. Then, phonons start to be absorbed with a wavevector extent

that grows with time, but reaches a limit at around |q| ≤ 1.3 nm−1. In both cases, it can be

seen that phonons with short wavelengths do not seem to be ever absorbed, and in fact they

are not, as such transitions are delimited by the energy of the carriers at late stages of the

process. Instead, they decay naturally, and only play a role in the early stages, absorbing

the energy of the electrons. Regarding the pumping wavelength only quantitative differences

can be noted in emission/absorption scales and in the range of the |q| involved, which is

longer the shorter is the pumping wavelength. It has to be pointed out that phonons with

wavevectors shorter than h̄ω/vF show no changes along the sampled time because interband

processes are ruled out in the simulations. However, HPs are expected to play a role in
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slowing down the recombination processes as well.

To summarize, we have studied the incidence of the transient dynamics of out–of–

equilibrium phonons and charge carriers in graphene during the thermalization and intra-

band cooling stages of the relaxation process after photoexcitation. The HP effect manifests

itself by reducing the energy transfer ratio from the carriers to the lattice. Its consequences

grow with the photon energy and for moderate photocarrier densities. Phonon dynamics

were also examined; the population of the intrinsic optical mode phonons reaches its max-

imum around 500 fs and decays thereafter, while the acoustic intervalley mode exhibits

much slower dynamics. Phonons with large wavevectors emitted right after photoexcitation

are difficultly reabsorbed when the thermal distribution is achieved by the electrons, while

those with long wavelengths account for the complete intraband cooling bottleneck. When

graphene lies on a substrate, intrinsic phonon heating becomes less severe and the HP effect

clearly increases inversely with the carrier concentration due to the accompanying heating

of the SPPs.
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FIG. 1. Temporal record of emission (solid line) and absorption (dotted line) scattering events

considering electron and phonon population coupling (HP, orange lines) and the equilibrium Bose–

Einstein distribution (BE, black lines) for ns = 2× 1012 cm−2 and εpump = 1.2 eV with the optical

mode (left) and acoustic intervalley (right) phonon modes.
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FIG. 3. Averaged phonon occupation in the FBZ as a function of time after photoexcitation for

(red–dashed lines) suspended graphene and (blue–solid lines) graphene on SiO2 with a photocarrier

density of 1012 cm−2.
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FIG. 5. Phonon creation rate as a function of the time after photoexcitation with εphoton = 1.2 eV

and |q| for ns = (a) 1012 cm−2 and (b) 5 × 1012 cm−2. Green areas stand for phonon creation,

while red areas for their absorption. Dashed lines indicate approximately the limits of each region.
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