
Localisation Focus Vol.12 Issue 1The International Journal of Localisation

Localisation Standards for Joomla!
Translator-Oriented Localisation of CMS-Based Websites

Jesús Torres del Rey1, Emilio Rodríguez V. de Aldana2
[1]Department of Translation and Interpreting

[2]Department of Computer Science and Automatics
University of Salamanca

Spain
jtorres@usal.es, aldana@usal.es

Abstract
For a localiser, the shift from static to CMS-based dynamic websites usually involves assimilating a new editing
environment, acquiring administrative rights for the site, and relinquishing the various benefits of using CAT tools.
However, the possibility of integrating CAT tools in the localisation process is now becoming a reality by means
of localisation standards (mainly ITS and XLIFF). In this paper, we introduce an experimental Java application we
have developed for the import/export of multilingual web content for the Joomla! CMS (with the FaLang
extension). We go through the workflow and explain the lessons learnt from our experiments with this and other
related tools. As our research is translator-oriented, we discuss some current limitations for localisers’ work in the
theoretical and practical approaches taken for the multilingual management and translation of CMS-based websites
and suggest some alternatives for the future.

Keywords: web localisation, localization, Content Management System, CMS, standards, Internationalization
Tag Set, ITS, XLIFF, roundtrip, interchange, Translation-Oriented Localisation Studies, communication, text,
meaning

4

1. Introduction

The development of websites has quickly evolved
over the last half decade, as Esselink (2002, p.5)
announced for digital content in general, from being
“traditionally written” using html editors, such as
Dreamweaver, FrontPage, Expression Web, Amaya,
Nvu or Kompozer, to being “dynamically built using
database driven publishing systems or content
management systems”, particularly thanks to the
boom of FOSS web CMSs such as Drupal, Joomla! or
Wordpress (Torres del Rey and Rodríguez V. de
Aldana 2011, 2014).

On the client side, it could be argued that things have
remained essentially the same for the last two decades
due to the consolidation of HTML as the main content
language and file type, and of browsers as the leading
web surfing application. Of course, user experience
has changed dramatically with the introduction of
more dynamic client-side technologies such as
Javascript and other scripting languages, Ajax or CSS,
the embedding of Java applets or flash animations
(Mata Pastor 2005, pp.197-198], the gradual move to
XML vocabularies and HTML 5, and so on. And yet,
the way end users experience web navigation
“macrostructurally” (Mata Pastor, pp.200-202),
“hyperstructurally” (Torres del Rey and Rodríguez V.

de Aldana 2014) or “superstructurally” (Jiménez
Crespo 2013, pp.92-94) still revolves around concepts
such as webpages as units, hyperlinks and forms as
the main functional devices, and document tree
structures stemming from a homepage and branching
out through a series of sections and subsections.

It is on the server side where the main revolution —as
far as developers and webmasters, but also translators
and localisers are concerned— has taken place. To
continue with Esselink’s words: “Where translators
could get started quickly by just working in Word or
importing the document into a translation memory
system, now often a localization engineer is needed to
produce a ‘translation kit’ from a series of complex
SGML or XML files containing the manual text”
(Esselink 2002, p.5. Emphasis added). It is here,
where the notions of whole documents and of
straightforward import-export processes via
translation memory systems are being challenged, that
we decided to focus our research, spurred by the
needs of our undergraduate localisation course at the
University of Salamanca.

2. Motivation and nature of our research

Our main interest in new localisation processes for

Localisation Focus Vol.12 Issue 1The International Journal of Localisation

dynamic webpages started in 2008, when we were
asked to translate our Faculty’s site from Spanish into
our other working languages, with the collaboration
of students. The website had been built with Joomla!
1.5, and was later made multilingual with the
Joom!Fish extension1. We were given editing rights to
this component, which allowed us to search for web
articles, menus and other translatable elements, and to
write or paste translated HTML content onto the
editor window. In order to replicate the localisation
process used for static HTML websites, client-side
webpages were saved as only-HTML files, translated
by means of a CAT tool with the aid of translation
memories, terminology management and other
integrated utilities, and the resulting HTML content
was pasted onto the appropriate Joom!Fish editing
environments.

Very soon, we decided we wanted to further explore
how dynamic website localisation processes could be
made more translator-friendly and, at the same time,
to integrate them as seamlessly as possible with the
whole development and publication cycle. However,
the main drive behind this was to be able to analyse,
understand and explain this evolving infrastructure
and the new localisation needs and opportunities in
order to enhance our localisation course, where
students had learnt advanced website localisation
concepts and strategies such as essential file types,
languages and technologies, website (super, macro,
micro and hyper) structures, including directory
organisation and hyperlink types, folder structure
cloning and hyperlink management, automation
strategies (search/replace with or without regular
expressions), etc.

In 2012, Joomfish was no longer available for the
newest Joomla! 2.5, so we moved to the Joom!Fish-
fork extension FaLang2, which was also compatible
with the more recent Joomla! 3.x version. It is
important to note that the main goal of these third-
party internationalisation extensions is to easily and
automatically duplicate, for each newly activated site
language, the monolingual web structure created with
Joomla!, and to enable the editing and publication of
translated content in all non-native languages.
However the process of localisation per se was only
facilitated when modules were created for the
export/import (interchange) of translatable data and,
particularly, when both technologies started to be
merged: multilingual management and localisation
interchange tools3.

For the purposes of our research and, particularly, for
our teaching practice, we adopted a twofold strategy:
to try and generalise common features in the

localisation of CMS-based websites and to illustrate
this general process by setting up appropriate
mechanisms and procedures to experiment it. We
started looking at the architecture of other CMSs such
as Drupal or Wordpress and the way
internationalisation and localisation extensions were
integrated. At the same time, we started developing an
experimental tool that allowed us to automate a
roundtrip export/import workflow for the Joomla!
CMS we used for our teaching, and to identify and
describe the main concepts, processes and possible
breakdowns for translators’ and localisers’ work. This
article mainly deals with our experiments in this
process, particularly with the tool we developed for
our teaching, the comparison with other available
tools, and some conclusions regarding the general
process of localisation and suggested basic translator
and localiser needs.

One of the crucial questions in our roundtrip between
the CMS and localisers’ workstations was the format
in which the interchange would take place, so,
naturally, we looked at the possibilities offered by the
two main standards in our field: the W3C
Internationalisation Tag Set (ITS) and the OASIS
XML Localisation Interchange File Format (XLIFF).
While versions 2.0 of both standards will undoubtedly
offer many new advantages to this process, at the time
of our experiments and of writing this article they
were still in draft status, so we used the latest
approved versions, ITS 1.0 (W3C 2007a) and XLIFF
1.2 (OASIS 2008).

We have already introduced the three main
components of our localisation research focus: 1. the
product and the underlying technology relevant to
localisation; 2. the interchange format for localisers to
process; 3. relevant translation-oriented technologies
for the processing of localisable texts, notably CAT
tools. Our approach, as mentioned earlier, has to do
with the integration of all three components in a way
that is translator- or localiser- oriented, since it is
these professionals who are in the best position to
account for the intercultural task of negotiating the
meanings, purposes, expectations and conventions
which come into contact (and often into conflict) in
the process of localisation, and to interpret objects,
texts and meanings not for their own sake but for
other people, users (at both –or the multiple– ends of
communication), for whom translation and
localisation is performed, for whom the translator is
ethically responsible, and which determine meaning
and transformations (Melby 1995, pp.122-132).
However, as advocated in our localisation courses, in
order for localisers to claim this expert position, they

5

Localisation Focus Vol.12 Issue 1The International Journal of Localisation

must acquire a basic knowledge of the nature and
mechanics of dynamic, CMS-based websites,
particularly in so far as the technology influences both
the communication production assemblage and
localisers’ own place in the development cycle.

In this regard, we feel that it is our duty to contribute
to the reversal of the current wave of
disempowerment for website localisers as we move
from static to dynamic websites. The three
components mentioned earlier empowered localisers
working with static websites by providing them with
(Torres del Rey and Rodríguez V. de Aldana 2011,
2014):

a high degree of visual and functional context;1
specialised productivity, QA-performing tools;2
the possibility of taking over engineering tasks3
for the multilingual restructuring of the overall
website;
the possibility of delivering publication-ready4
directories and files.

CMSs have made the editing of individual articles
within webpages and of interface items across the
website easier. This has provided some visual content
by allowing for (limited) in-context translation of
articles. However, translators need to process the texts
in the web product by means of their own tools in
order to take advantage of the consistency, analysis,
quality-check and terminology extraction functions
(among others) built into them, and, often, to
exchange the textual elements with other
collaborators, who may use different tools. In CMSs,
however, texts are still very much “locked” into
databases. Localisers would also need write-access
rights to the database and a multilingual component
installed in order to try and recover some of the
possibilities 3 and 4 above.

Even though automation seems to make the whole
multilingual generation and publication easier and
less error prone, any new web technologies and
content management systems affect the way content is
created and signifies. Localisers, as techno-linguistic
experts, should not be nudged aside. This deskilling
perspective, called the “idiot-proofing myth” by Adler
and Winograd, “is more concerned with how to keep
operators from creating errors than with enabling
operators to deal with the inevitable contingencies of
the work process”. However, translation and
localisation are all about dealing and negotiating with
(linguistic, cultural, technological, contextual)
dependencies, so we had better rise to the “usability
challenge” (emphasis in the original) of making new
technologies more effective by augmenting rather

than replacing skills of localisers, by making the most
of them (Adler and Winograd 1992, p.3).

3. Our experimental research

3.1 Overview
As indicated earlier, our main research goal was to
provide localisation students with the conceptual and
methodological tools to experiment with the process
of localising a CMS-based dynamic website, and to
do it on the basis of the three basic components for
this task, i.e. the product and its technology; the
interchange format; and the CAT tool. As we looked
into the way these could be integrated, we also
expected to draw insightful lessons for a translator-
oriented approach to the task at hand.

It is only very recently that XLIFF extraction/merge
tools have started being developed for Joomla! That is
the main reason why we decided to build our own
software, with the main purpose of experimenting
with the data that needed to be exported and the way
XLIFF could accommodate such data and the whole
localisation process. Our tool was based on the
multilingual extension to Joomla! developed by
FaLang. As the extraction and merge operations were
mainly made on the database tables created and
managed by this plugin, we called our software
FaLang2XLIFF.

FaLang2XLIFF4 has proved very useful for our
purposes, particularly considering our scarce
resources, both economically and in terms of our
available time. However, it has some limitations that
need to be taken into account. Most importantly, it has
been written in Java and is a stand-alone application
which, unlike other related tools, is not embedded into
the CMS as a module. Although this would make it
potentially applicable to other database structures,
both for Joomla! or other CMSs, it would also need to
be given access rights to the database or to be run in
the relevant network security zone or in a localhost.

Our application uses Schnabel’s XSL stylesheet from
his XLIFF Roundtrip tool5, which converts XML files
into XLIFF and back again. Drupal’s XLIFF Tools is
also based on that XSL file, so we briefly analysed its
extraction performance. However, the alternative tool
that we tested the most was JDiction6, a multilingual
management extension for Joomla! 2.5 which added
an XLIFF extraction/merge tool in March 2013.
Before describing the workflow of FaLang2XLIFF
we will present some relevant conclusions from our
analysis of JDiction.

All these tools, as well as our own, only deal with

6

Localisation Focus Vol.12 Issue 1The International Journal of Localisation

content stored in the CMS database, i.e. articles or
pages, modules (for instance, text in an add-on
calendar), categories and other small user interaction
elements, such as weblinks. The three main database
elements (stored in text fields) for these contents are
exported: web structure or interface (In Price and
Price’s terminology, cited in Jiménez Crespo 2013,
p.58]) elements, longer (X)HTML article contents,
and the technical parameters for the above elements.
At this point, we have not yet considered processing
dependent or linked files. Neither have we looked at
CMS administration or content editor interface text,
typically inserted in active pages (such as PHP, ASP
or JSP) or externalised to text files (e.g. INI, PO).

3.2 Other extraction strategies
Our tests with JDiction for Joomla! 2.5 revealed
certain problems for the localisation process. To start
with, this tool shares with other multilingual
managers, such as the current FaLang version, a
shortcoming in that the article that is cloned for the
target language cannot be edited in-context, on the
webpage itself. Instead, the translation must be

inserted in a separate environment, where the original
text is not shown in parallel7.

If we look at JDiction’s XLIFF extraction/merge tool,
we can appreciate considerable room for
improvement too. For instance, items cannot be
selected and exported individually; besides, this bulk
process is applied on any one content type (categories,
article contents, menus, menu items and modules)
indiscriminately, regardless of whether individual
elements are new, updated or they have previously
been translated and approved. Finally in our analysis,
all titles and article content receive “needs-
translation” state values, irrespective of their actual
status. On the other hand, parameters are always
marked as “translated” in JDiction (“final” in
Drupal’s XLIFF Tools), which may cause the
processing translation tool to edit unlocalisable
values, resulting in the corruption of the database.

What is more, all extracted elements are lodged inside
CDATA sections (Savourel 2001, pp.229, 298), which
would commonly prevent parsing of the (X)HTML
structure and segmentation based on it. This makes
the XLIFF export no different from its pre-existing
CSV export in JDiction. When filtered into CAT tools,

articles would be processed whole, and tags would be
mingled with actual text and unprotected. Even if, as
Virtaal does by means of regular expressions such as
<[^>]+/?>, tags are visually marked, translators
would have a hard time trying to mentally reconstruct
texts, identify and separate subtexts such as alt values,
or correctly assign functional or layout tags to the
appropriate words, phrases, sentences or paragraphs.
Not to mention the high risk of messing with the code
that this behaviour would entail.

CAT tools might alleviate the latter problem by
integrating a WYSWYG editor for HTML content,
which would also be triggered whenever the XLIFF
datatype attribute value is “htmlbody”, allowing users
to switch between raw source HTML text and the
visual representation of HTML tags on text. However,
one thing that must be taken into account with CAT
tools is that their XML filters are not always versatile
enough and too often they only allow for the use of
regular expressions to further filter translatable
content, internal or external tags, and so on. In fact,
XHTML should be processed with XML processors

(e.g. XPath processors), in order to help interpret
meaningful structures, which would produce shorter
segmentation for better matches and translation
memory leverage. This problem could be more easily
solved, nonetheless, if the XLIFF export was carried
out as HTML text and tags rather than plain text, or if,
previously, the database could actually manage XML
structures, as we will see later (see note no. 9).

3.3 Workflow of our experimental
application
Before using our tool, elements should be prepared
for translation by means of FaLang’s administrative
interface (step 1). Currently, there are two important
disadvantages in the behaviour of this extension:
elements need to be selected and opened one by one,
and the relevant source content must be copied onto
the target content window.

Once target elements have been created for
translation, it is the turn for our tool to connect to the
database (step 2), for which it is necessary to provide
the machine server name, the communication port
(usually, 3306 for standard TCP/IP connections), the
user ID having administrative rights, the user

7

Figure 1. An example of the three main database elements: title (structure),
introtext (content) and metakey (parameter).

Localisation Focus Vol.12 Issue 1The International Journal of Localisation

password, the name of the Joomla! database and the
prefix or alias typically added to Joomla! table names.

Our application queries FaLang tables (step 3) but
also the original content tables so as to check which
data is new (i.e. established as translatable by the
project manager by using the “Copy Source”
procedure described in the first paragraph of this
subsection) and which has been modified or updated
in the source website8. In order to identify both types
of data (new and modified), the MD5 hash code of
both the translation record in the FaLang table and the
corresponding record in the original content table are
compared. Updates are identified whenever the
source and target hash codes differ. On the other hand,
translation content is considered as “new” when two
conditions are met: source and target hash codes are
the same and the “published” field of the FaLang
record equals “0”, i.e., it has never been published
before, as otherwise it might mean that the source
content has consciously been transferred to the target
record (e.g. in the case of some proper nouns, trade
names, etc.). Once new and modified translatable data
are identified, their structural (e.g. titles) and content
elements are extracted, but not technical parameters,
as editing them may corrupt the database. However, in
the future we will further analyse extractable
parameters, as they may provide important contextual
information for the localiser.

It is important to mention that the Joomla! HTML
editor would have rewritten HTML fragments typed
by users as XHTML (i.e. as correct XML)9.
Nonetheless, our tool uses Jericho HTML Parser to
recheck it and then rewrites data if necessary to make
sure restricted characters in XML are escaped with
their corresponding predefined character entity
references (e.g. & for the & ampersand
characters) (Savourel 2011, pp.44-47), attribute

quotes are closed, and node hierarchies are kept. A
current limitation is that all unpaired tags found in the
XML hierarchy would be changed by our tool to self-
closing tags without further analysis.

At this point (step 4), we would generate both an
XML file with ITS rules and a temporary “simple”
XML file that would serve as the basis for conversion
to XLIFF by means of Schnabel’s XLIFF Roundtrip
XSL. It is worth noting that while intro and full texts
are stored as HTML (<tags> and text) in the database,
title fields contain only plain text and that no
HTML/XML entities are processed. This means that
we need to convert single characters, such as the
ampersand, that may appear in the title field to their
corresponding entity (& in this case) when
processing the XML files, and then back to the single
character when importing back to the database.

The XLIFF 1.2 file is successfully created (step 5) via
the simple XML file just mentioned: here, database
records are exported with <records_falang> as the
root node and two child tags (see Fig. 3):
<record_falang> carries, in its attributes, the
administrative data that are needed to be merged back
into the database; as a child node of the latter,
<value_falang> contains translatable text, including
HTML tags. We have adapted Schnabel’s
xml2xliff.xsl file used for the conversion so that the
source language is variable (by using the XPath
expression {./@xml:lang} as the value of the source-
language attribute of the root element <file>) rather
than just English (“en”). For clarity’s sake, we have
abbreviated some of the illustrated code by means of
the ellipsis symbol “(…)”.

However, we encountered several difficulties in the
processing of the XLIFF file in CAT tools, as we will
discuss later on. For that reason, after considering
what might solve the problems we had identified, we

8

Figure 2. FaLang2XLIFF Workflow.

Localisation Focus Vol.12 Issue 1The International Journal of Localisation

decided to produce a second version of the “simple”
XML file described earlier, injecting it with ITS 1.0
rules regarding the processing of translatable
elements and of segmentation-related text-element
relationships (W3C 2008), as follows (see Fig. 4):

We used global (not local) rules, directly•
embedded in the resulting XML file.
All <value_falang> nodes and their child nodes•
were made translatable; all other nodes are not
translatable10.
Within <value_falang> nodes, HTML attributes•
typically carrying text are made translatable.
Href attributes are also localisable when they
start with “http://” or “https://” (i.e., generally,
when they are external site references) 11.
HTML elements that can occur inside text•
sentences (such as <a> or) are
considered Within Text, which prevents
segmentation (see later).

The return trip to the database is also performed by
FaLang2XLIFF, so far irrespective of translation
status (e.g. nodes marked as “needs-translation” will
still be imported back to the database). Again, a
temporary XML file needs to be produced from the
XLIFF 1.2 file before SQL generation. The database
can be updated directly online, although an SQL file
will also be produced, in case the update is to be done
in batch mode.

3.4 Analysis and Discussion: interchange
problems
The application of general-purpose XSL
transformation files to specific mark-up languages
such as XHTML when written by CMS HTML
editors may present a series of limitations. One of the
consequences of this is that attribute values would
not be extracted to XLIFF <trans-unit> elements in
XLIFF. Take, for instance, the Joomla! article in Fig.
5, with the following source code:

9

Figure 3. XML file generated by FaLang2XLIFF.

Figure 4. ITS rules injected in the output XML file. Ellipsis (…) is used.

Localisation Focus Vol.12 Issue 1The International Journal of Localisation

10

<p><img alt=”Joomla! Spanish, versión•
2.5”>Usted tiene un sitio Joomla! 2.5 adaptado
y traducido por Joomla! Spanish</p>
<p>Joomla! es de <a•
href=”http://opensource.org” title=”Iniciativa
Open Source”>código abierto. Joomla!
hace que sea: <p>
<span style=”line-height:•
1.3em;”>Fácil crear y
construir un sitio web de manera que
quiera.
<span style=”line-height:•
1.3em;”>Bastante sencillo
de actualizar y
mantener.

The XliffRoundTrip transformations to XLIFF 1.2
are as follows:

tags without text are included in <group>•
elements (html tags without text; highlighted in
grey in our source code);
tags with text are inserted in <trans-unit>•
elements (in bold);
inline or within text tags are transformed into•
<g> </g> pairs or into <x/> xliff elements (in
italics).

The resulting XLIFF file would not include
translatable attribute values within <trans-unit>
nodes. Instead, inline tags would have an id reference
to said values, which would be kept in the skeleton
part of the file for later merging.

However, the XML file with ITS rules that
Falang2XLIFF generates would be processed more
effectively by a CAT tool – such as SDL Trados
Studio– that does support global and embedded ITS
rules for features Translate and Elements Within Text.

This would allow us to localise the alt, title and href
attribute values (provided the latter starts with http://
or https://). We could also transform this XML file to
XLIFF successfully by means of Okapi Rainbow,
which also supports global Translate, Elements
Within Text and LocNote ITS rules (W3C 2007b), and
then import it into any XLIFF-supporting CAT tool.

Another problem that could be averted with ITS rules
has to do with HTML overtagging, typically
produced by CMS HTML editors. If, for instance, we
are writing the above article in the CMS editor and
we undo the list item or the whole ordered list and
then change the paragraph configuration, Joomla!
would add pairs of tags with style attributes
around paired , or <a> tags including
text. According to the transformation rules for XLIFF
indicated earlier, that would produce undesired
oversegmentation, as text within new paired
elements would be included in their own <trans-unit>
nodes (i.e. in independent segments or translation
units). To sum up, many reformatting actions on the
CMS html editor cause html overtagging, which can
hardly be safely undone by CMS Clean-html
functions.

4. Towards translator-oriented localisation of
CMS-based websites

Solutions to the internationalisation and localisation
of CMS-based websites tend to focus rather narrowly
on the technical aspects related to the
extraction/merge roundtrip of translatable data or on
the user-friendliness of integrated multilingual
management and in-context article edition. However,
little or no attention is paid to the overall
communication needs that translators and localisers

Figure 5. Sample Joomla! article.

must address in order to do their job successfully
from the point of view of the pragmatic, intercultural,
interlinguistic exchange that they are commissioned
to perform.

It is true that the technical solutions mentioned earlier
bring the localisation process a step closer to human,
translation-oriented concerns:

by using an XLIFF file, translation data can be•
enriched with information on the localisation
process, objects, intentions, and so on;
by partaking in the roundtrip, the localiser may•
not be seen as a “dysfunctional” agent in the
technological process, but as an “enabler” in the
infrastructure of (multilingual) content
management;
by handling a standard interchange format,•
localisers can use their computer-assisted tools
and benefit from translation memories,
terminologies, quality control, and all other
integrated translation aids;
alternatively, by being provided a simple system•
to enable and manage the multilingual structure
of the website, they can devote more attention to
translation matters, including negotiating
contrastive conventions of web genres (Jiménez
Crespo 2013, Ch.4);
finally, by allowing localisers to place (and•
replace) translations in allocated webpage
spaces (for some CMS content types), they
benefit from a more contextualised approach to
the translation of web articles.

However, the above advantages are currently far
from being fully realised, particularly the
combination of in-context visual translation and
XLIFF support (which also show some limitations, as
we have seen in the previous section). In general, a
holistic view is missing as regards the part that the
different technological, textual and semiotic
components play in the task of the localiser, and how
they can be realised in the translation process.

A translator or localiser is an intercultural mediator
who makes sense of a text (or an interrelated series of
texts)12 that has been produced in a specific cultural,
professional and technological context, and creates a
version of that text in a different human language,
taking into account differences between source and
target contexts, the (explicit or assumed) purpose of
the textual exchange and foreseen effects of the
resulting text (in the target system or context, but also
as regards the source context of production), and

formal or informal norms and conventions regulating
translation and localisation, usually related to
culture-bound ideas of equivalence, adequacy,
comparativeness and functional adaptation.

All these contextual, cultural, technological, purpose-
bound considerations have a huge impact on the task
of the localiser, just as they implicitly or explicitly
condition the original text production process. The
intercultural mediator, furthermore, needs to stand
astride (or to constantly move across and back) the
source and the target cultures and language systems,
and to make informed decisions in order to
communicate or negotiate global and particular
meanings, functions, intertextual relations, purposes
and (intended or unintended) effects which have been
formed, structured and expressed in a linguistic
mould and in a cultural context which can never be
symmetric or equivalent with the target language and
culture.

The other major communication, sign-producing
system that greatly influences the production of
meaning is the technological – here, the website as a
product and the CMS as an agent mediating structure,
communication, document or text boundaries, and, in
general, the interaction of knowledge between users
(designers, contributors, consumers, “browsers-by”,
and so on), the web genre and the information to be
displayed.

However, web CMSs tend to gear their modus
operandi towards monolingual, monocultural
production, not only because multilingual
management extensions are often a later add-on (and
not as user-friendly or flexible as the interface for
original content editing), but also because there is a
source-oriented inherent assumption of direct,
objective, unproblematic, ungrounded semantic
correspondence (Winograd and Flores 1986, p.18;
Melby 1995, pp.122-132) between the genesis of
meaning and intention and the infrastructure and
applications enabling and conditioning their
expression. This kind of correspondence is circular
(meaning > production structure, materials and
mechanisms [language, writing and technological
systems] > meaning adjustment > system adjustments
> meaning, etc.) and is not recreated and rarely
unveiled for localisation. Thus, shockingly enough,
localisation tends to be left out of the meaning-
production cycle.

Localisers are usually provided small chunks of text
(either in the CMS editing environment or as
translation units in bilingual interchange files) for

Localisation Focus Vol.12 Issue 1The International Journal of Localisation

11

Localisation Focus Vol.12 Issue 1The International Journal of Localisation

ease of exchange and integration in the localisation or
publication technologies. Even if “experts most likely
develop strategies either in a pre-translation stage (by
acquiring prior knowledge of the global hypertext
[…]), or during the translation process ([…] from a
prototypical of the digital genre in question and [by]
negotiating the macro and microstructural levels) to
compensate for the lack of context” (Jiménez Crespo
2013, p.64), localisation efficiency can be severely
disrupted by forcing constant negotiation between
meaning-structure levels, context recreation, and,
particularly when “translating interaction”, i.e. when
texts and messages are not on the immediate surface
visible webpage layer.

Any web content is meaningfully integrated in a
larger information unit (e.g. a bigger article or a web
page), next to other subunits (or subgenres), and also
within a larger whole (the website, or even the World
Wide Web). Localisers usually receive only the small
subunits, with little or no information of relative
position, order or functional dependencies. However,
these units are coherently and cohesively (Jiménez
Crespo 2013, pp.59-62) inserted (at least) in:

the more general or particular communicative or•
performative functions they are part of;
the regions or positions they appear in, which•
also have communicative or semiotic
significance;
the hypertextual, interactive relationships they•
are part of or which they include;
macrostructural relationships (e.g. the particular•
location in the sitemap or the order they appear
within a group or element such as a menu);
the conventions for the type of element they are•
in (a more or less ephemeral article, a more
stable basic page, a module, a category
classifying blog entries, etc.);
potentially indexed search results.•

In this regard, CAT tools need to be able to offer
relevant contextual information to prevent localisers
from concentrating exclusively on the microtextual
level (Jiménez Crespo 2008, pp.5-6), and for this,
XLIFF development and CAT support (and
visualisation and interaction) of this interchange
format must grow closer together. However attractive,
in-context translation in the CMS editing environment
without the benefits of Computer-Aided Translation
Technology can be dangerously insufficient as it
would not profit from some of the main benefits of
CAT technology, if used properly:

translation and terminological consistency,•

particularly as regards specialised knowledge,
web genre conventions, brand or client-related
phraseology and terminology, and so on;
quality checks;•
productivity functions;•
filtering and transferring format and•
presentation;
language/knowledge building and annotation;•
team work and exchange functionality,•
particularly as large websites tend to be
localised by more than one professional.

An important step forward would be for web CMSs to
incorporate localisers and localisation into their
content management agents, definitions and
mechanisms, since the amount of content that
localisation handles and transforms is substantial. One
way to do this is to support and encourage the
generation of ITS 2.0 (W3C 2013) metadata for
translatable elements and attributes, text analysis
(content, structure, relations between parts), external
resources (e.g. relevant intertextual, intermedia
references, whether explicit or implicit, that are
important for overall meaning construction), size or
other restrictions, linguistic annotation and any other
features that may affect data interchange (via XLIFF
2.0 [OASIS 2013]).

Another complementary way would be to provide the
appropriate mechanisms for a localisation project
manager (PM) profile in CMSs. This user would be
able to annotate content and include relevant metadata
(e.g. specific localisable external links, localisation
notes, text analysis, and so on), or prepare localisation
interchange files, by grouping translatable content
with contextual non-translatable content, including an
html preview skeleton file, linking appropriate
XSL/CSS files for better visual contextualisation, or,
simply, providing URL links for each group of
localisable content.

5. Conclusions and future work

The declared purpose of CMSs is managing content
in a structured, knowledge-sensitive (and sensible)
way. Localisation should therefore be part of their
core concerns, and it would be sensible if CMSs
integrated the Internationalization Tag Set with their
content generation strategies, and XLIFF with their
multilingual content interchange mechanisms.

Particularly, localisation of whole or large sections of
websites (as opposed to periodic translation of
individual, more-or-less independent articles) and

12

Localisation Focus Vol.12 Issue 1The International Journal of Localisation

web localisation training would greatly benefit from
textual signposting and contextualisation strategies,
which could be included in internationalisation
metadata for the original content (by authors or
localisation PMs) and transferred or enriched in the
XLIFF files that localisers would process with their
CAT tools.

This is one of the avenues of experimental research
that we will pursue in the near future: the extraction
of contextual information that can be useful for CMS
website localisers and can be integrated in XLIFF
files for CAT work. At the same time, we will
intensify our analysis of other roundtrip tools (and
other possible localisation strategies) for web CMSs,
and the way these content management systems
design their interaction with web objects, concepts,
conventions, meaning and interrelationships. Finally,
we will continue to look into CAT integration of
current and future CMS-based web localisation
processes.

After all, we need to understand the way information,
knowledge and communication is conditioned and
shaped by technology (expanding some possibilities,
reducing others, creating new meanings) in order to
try and reach an understanding between the different
professional languages involved in dynamic web
localisation, to build (by assimilation, contact,
translation, etc.) common metaphors that may help
translators and localisers (and their trainers) to
“inscribe” translation values and meanings in the
operating system of CMS technologies (Torres del
Rey 2005, pp.105,121-134), often by means of
standard languages.

Acknowledgements

The work presented here has been carried out in the
framework of the research project “Regulación de los
procesos neológicos y los neologismos en las áreas
de neurociencias” (FFI2012-34596), which receives
funding from the Spanish Ministry of Economy and
Competitiveness.

References

Adler, P.S. and Winograd, T. (1992) ‘The Usability
Challenge’, in Adler, P.S. and Winograd, T., eds.,
Usability. Turning Technologies into Tools, New
York & Oxford: Oxford University Press.

Esselink, B. (2002) ‘Localization Engineering: The
Dream Job?’, Tradumàtica, (1), available:
http://www.fti.uab.es/tradumatica/revista/articles/bes

selink/art.htm [accessed 24 Oct 2013].

ISO/IEC (2011) Information technology —
Database languages — SQL — Part 14: XML-
Related Specifications (SQL/XML), 9075-14:2011
[online], available:
http://www.iso.org/iso/home/store/catalogue_tc/catal
ogue_detail.htm?csnumber=53686 [accessed 24 Oct
2013].

Jiménez Crespo, M.A. (2008) El proceso de
localización web: estudio comparativo de un corpus
comparable del género sitio web corporativo, Ph.D.
dissertation, Granada: Universidad de Granada.

Jiménez Crespo, M.A. (2013) Translation and Web
Localization, London & New York: Routledge.

Mata Pastor, M. (2005) ‘Localización y traducción
de contenido web’ in Reineke, D., ed., Traducción y
localización: mercado, gestión y tecnologías, Las
Palmas de Gran Canaria: Anroart, 187-252.

Melby, A.K. (1995) The Possibility of Language: a
discussion of the nature of language with
implications for human and machine translation,
Amsterdam/Philadelphia: John Benjamins.

OASIS (2008) XLIFF 1.2 Specification. OASIS
Standard 1 February 2008, available:
http://docs.oasis-open.org/xliff/xliff-core/xliff-
core.html [accessed 24 Oct 2013].

OASIS (2013) OASIS XLIFF Wiki Frontpage,
available: https://wiki.oasis-open.org/xliff/ [accessed
24 Oct 2013].

Savourel, Y. (2001) XML Internationalization and
Localization, Indianapolis: Sams.

Torres del Rey, J. (2005) La interfaz de la
traducción: formación de traductores y nuevas
tecnologías, Granada: Comares.

Torres del Rey, J. and Rodríguez V. de Aldana, E.
(2011) ‘La localización de webs dinámicas: presente
y futuro’, accepted for 1st International T3L
Conference, Universitat Autònoma de Barcelona,
June.

Torres del Rey, J. and Rodríguez V. de Aldana, E.
(2014, forthcoming) ‘La localización de webs
dinámica: objetos, métodos, presente y futuro’,
JoSTrans, (21), available: http://www.jostrans.org.

W3C (2007a) Internationalization Tag Set (ITS)
Version 1.0, W3C Recommendation 03 April 2007
[online], available: http://www.w3.org/TR/its
[accessed 24 Oct 2013].

W3C (2007b) ‘Test Suite’, in Internationalization

13

Localisation Focus Vol.12 Issue 1The International Journal of Localisation

Tag Set Version 1.0, Version: $Id: Overview.html,v
1.56 2007/02/27 06:20:03 fsasaki Exp $, available:
http://www.w3.org/International/its/tests/Overview.h
tml [accessed 24 Oct 2013].

W3C (2008) ‘5.1.4. Associating existing XHTML
markup with ITS’, Best Practices for XML
Internationalization, W3C Working Group Note 13
February 2008 [online], available:
http://www.w3.org/TR/xml-i18n-bp/#relating-its-
plus-xhtml [accessed 24 Oct 2013].

W3C (2013) Internationalization Tag Set (ITS)
Version 2.0, W3C Proposed Recommendation 24
September 2013 [online], available:
http://www.w3.org/TR/its20 [accessed 24 Oct
2013].

Winograd, T. and Flores, F. (1986) Understanding
Computers and Cognition: A New Foundation for
Design, Norwood (NJ): Ablex.

Notes
1 http://www.joomfish.net/

2 http://extensions.joomla.org/extensions/languages/
multi-lingual-content/18210.

3 Josetta (http://anything-digital.com/josetta/) is
another multilingual manager for Joomla. XLIFF
Tools (https://drupal.org/project/xliff) is both a
multilingual manager and an XLIFF roundtrip tool
for Drupal, just like WPLM (http://wpml.org) for
Wordpress.

4 http://diarium.usal.es/codex/desarrollo.

5 http://sourceforge.net/projects/xliffroundtrip.

6 http://jdiction.org.

7 In the case of FaLang, this seems to be a bug, as
the editing window for the target language does
work (and with the original text visible) but the
result is inserted in the native language tables.

8 For an analysis of the database tables and
attributes that are queried, see our article (Torres del
Rey and Rodríguez V. de Aldana 2014). As
mentioned earlier, an in-depth analysis of the way
other CMSs (or their multilingual managers)
organise tables and translatable elements would
allow us to extend the functionality beyond Joomla!
with FaLang.

9 XHTML elements should be stored in databases as
XMLElements, as recommended in ISO/IEC (2011).
Unfortunately, at the moment XML support is low
in MySQL, which is the favoured database
management system for CMSs. We believe that it
would be beneficial to adopt other systems with
more advanced XML functions such as PostgreSQL

or to press for further XMLsupport in MySQL.

10 “In case of conflicts between global selections via
multiple rule elements, the last selector has higher
precedence” (W3C 2007a, Sec. 5.4).

11 ITS 1.0 supports XPath 1.0, which does not
support regular expressions, which would have
made a few conditions simpler than with Xpath
syntax.

12 For the purposes of this article, “text” also means
hypertext and associated multimedia and interaction.
All technical adaptations that may be necessary in
the localisation process are considered as part of the
interpretation of the text as we have just defined,
and will not be covered here mainly because our
focus is on the export/import of textual material
from CMS-based websites.

14

