
Ferreira, A. S., Pozo, A. T. R., Goncalves, R. A. ACO-HH for the SCP

An Ant Colony based Hyper-Heuristic
Approach for the Set Covering Problem
Alexandre Silvestre FERREIRAa*; Aurora Trinidad 
R. POZOa; Richard Aderbal GONÇALVESb

aFederal University of Paraná, Department of Computer Science, Curitiba, Brazil
bState University of Centro-Oeste, Department of Computer Science, Guarapuava, Brazil.
*asferreira@inf.ufpr.br

KEYWORD ABSTRACT

ant colony;
hyper-heuristic; set
covering problem;
optimization

The Set Covering Problem (SCP) is a NP-hard combinatorial optimization
problem that is challenging for meta-heuristic algorithms. In the optimization
literature, several approaches using meta-heuristics have been developed to
tackle the SCP and the quality of the results provided by these approaches highly
depends on customized operators that demands high effort from researchers
and practitioners. In order to alleviate the complexity of designing meta-
heuristics, a methodology called hyper-heuristic has emerged as a possible
solution. A hyper-heuristic is capable of dynamically selecting simple low-level
heuristics accordingly to their performance, alleviating the design complexity
of the problem solver and obtaining satisfactory results at the same time. In a
previous study, we proposed a hyper-heuristic approach based on Ant Colony
Optimization (ACO-HH) for solving the SCP. This paper extends our previous
efforts, presenting better results and a deeper analysis of ACO-HH parameters
and behavior, specially about the selection of low-level heuristics. The paper
also presents a comparison with an ACO meta-heuristic customized for the SCP.

1. Introduction
The Set Covering Problem (SCP) is an important NP-hard combinatorial optimization problem (Cormen
et al., 2009) that can be used to model several other problems such as: scheduling, manufacturing, service
planning, information retrieval and delivery and routing problem (Lan et al., 2007). The SCP is described by
a binary matrix A with m x n dimensions where each element can assume binary values and each column has
an associated cost cj . It is said that a column j covers a line i if the associated matrix element ai,j = 1. The
goal is to choose a subset of columns that simultaneously covers all lines and minimizes the total sum cost
(Oliveira et al., 1999).

Mathematically, the SCP can be formulated as follows:

min =
n∑
i=1

cj · xj (1)

Regular Issue
Vol 4 n.1
http://adcaij.usal.es

1
Advances in Distributed

Computing and Artificial
Intelligence Journal

c©Ediciones Universidad de Salamanca / CC BY-NC-ND

http://adcaij.usal.es


Ferreira, A. S., Pozo, A. T. R., Goncalves, R. A. ACO-HH for the SCP

subject to:

m∑
i=1

aij · xj ≥ 1, j = 1..n (2)

xj ∈ 0, 1, j = 1..n (3)

where xj = 1 means that column j is in the solution. The restriction of Equation 2 defines that each line
has to be covered by at least one column and Equation 3 defines that all variables are binary.

Several exact (Fisher and Kedia, 1990; Balas and Carrera, 1996; Caprara et al., 2000) and meta-heuristic
(Jacobs and Brusco, 1995; Beasley and Chu, 1996; Lan et al., 2007; Ren et al., 2008; Mulati and Constantino,
2011) methods have been proposed to solve the SCP. Exact methods are recommended only for small instances
due to their time complexities. Thus, meta-heuristics have emerged as the main focus for solving this problem.
Despite their good results, meta-heuristics for the SCP are usually very complex to design (due to customized
operators), imposing huge drawbacks for its practical use. Furthermore, the best meta-heuristics proposed for
the SCP have to be greatly modified to solve similar problems (other scheduling or manufacturing problems,
for example).

The design of simple and flexible approaches avoiding such drawbacks is the main goal of hyper-heuristics.
Hyper-heuristics are commonly defined as heuristics to choose heuristics (Burke et al., 2013). They are
capable of collecting and exploring the information about simple low-level heuristics and selecting the most
appropriate one during its execution. A feature of hyper-heuristics is that they operate on the search space of
(low-level) heuristics, rather than on the search space of solutions. So, the problem of designing a complex
and efficient heuristic for a problem is transformed into the problem of choosing a good combination of
simple heuristics, greatly alleviating the design of a solver.

In a previous study (Ferreira et al., 2014), we proposed a hyper-heuristic approach based on Ant Colony
Optimization (ACO-HH) for solving the SCP, the approach presented promising results. This paper extends
our previous work by investigating the hypothesis that the performance of ACO-HH can be further improved
by an appropriate adjustment of its parameters. To investigate this hypothesis, firstly we conducted a study on
the impact of ACO-HH parameters. Next, we compared the performance of ACO-HH with results reported in
the literature by the Ant-Line algorithm (Mulati and Constantino, 2011). Results indicates that ACO-HH has
a good compromise between design and time complexity versus quality results. It also indicates that the use
of hyper-heuristic is a promising area, particularly for the SCP.

The remaining of this paper is organized as follows: the next section presents an overview of the researches
on hyper-heuristics. Some background concepts are described in Section 3. Section 4 presents the ACO-HH
algorithm. Experimental studies to calibrate the parameters of ACO-HH, as well as an empirical comparison
with the Ant-Line are reported in Section 5. Finally, Section 6 presents the conclusions.

2. Hyper-Heuristics
Hyper-heuristics were proposed to simplify and generalize the design of meta-heuristics. They can be defined
as heuristics for selecting or generating heuristics (Burke et al., 2010). A hyper-heuristic works with two
types of heuristics: high-level and low-level ones. High-level heuristics are responsible for choosing which
low-level heuristics to apply and what solutions to be accepted in the population (possibly composed of only

Regular Issue
Vol 4 n.1
http://adcaij.usal.es

2
Advances in Distributed

Computing and Artificial
Intelligence Journal

c©Ediciones Universidad de Salamanca / CC BY-NC-ND

http://adcaij.usal.es


Ferreira, A. S., Pozo, A. T. R., Goncalves, R. A. ACO-HH for the SCP

one individual) and are, theoretically, independent of the problem. On the other hand, low-level heuristics
are related to the problem being solved as they modify or generate solutions. High-level heuristics can be
meta-heuristics and such is the case in this work, where an ACO is used as a high-level heuristic. Low-level
heuristics are composed of local search and perturbative operators.

Burke et al (Burke et al., 2010) introduced a classification scheme that divides hyper-heuristics into two
categories: selection hyper-heuristics and generation hyper-heuristics. In the first category, the main idea is to
select at each step, from a pool of low-level simple heuristics, a good heuristic to be used by the algorithm
based on the historical information accumulated about each heuristic. In the second approach, a high-level
heuristic to build low-level heuristics from a pool of existing components is used.

Furthermore, based on the learning paradigm employed, hyper-heuristics can be classified as on-line or
off-line. In on-line hyper-heuristics, the learning process occurs during the optimization of the problem while
in off-line hyper-heuristics a set of benchmark instances is used for the learning process, which generally
results in an algorithm able to tackle different instances of the same problem. This paper focuses on on-line
selection hyper-heuristics.

Briefly, a hyper-heuristic operates as follows: the high-level heuristic selects the low-level heuristics
based on some measurement of the performance (e. g. solution improvement). Then, the selected low-level
heuristic is applied to the solution and the resultant performance is returned to the hyper-heuristic that uses
this result in an acceptance mechanism to decide whether to accept or not the new solution in the population.

Cowling (Cowling et al., 2001) proposed that a hyper-heuristic framework should have two dimensions:

1. The Hyper-heuristic: a high-level heuristic that evaluates and selects other heuristics and other functions
that are independent of the problem;

2. Problem Domain: is composed by the low-level heuristics, the evaluation function and any other
structure or operator, which needs information about the problem.

Between those dimensions, there is a conceptual barrier called ’Domain Barrier’ to block the exchange of
unnecessary information. Thus, the high-level heuristic (the core a hyper-heuristic) only has knowledge about
the number of heuristics and their performance values. Hence hyper-heuristics can be employed in different
problem domains without modifications, resulting in flexible approaches (Burke et al., 2013).

Overall, hyper-heuristics approaches have shown good results to solve optimizations problems and the
study about hyper-heuristics is an emergent field for research (Burke et al., 2013). The following subsection
briefly describes some studies on the area of selection hyper-heuristics with perturbative heuristics (the main
focus of this work). A more in depth review of hyper-heuristic can be found in (Burke et al., 2013).

2.1 Hyper-heuristics to select perturbative heuristics
A perturbative heuristic modifies a complete solution generating another complete solution, so, instead
of what happens in constructive heuristics, there is no partial solutions involved. Perturbative selection
hyper-heuristics aim to automatically select one perturbative heuristic from a set of perturbative heuristics
available and apply it to an existing candidate solution. Initial studies on this field considered only one
solution and focused on the selection mechanism. The two best-known selection mechanisms are the Choice
Function (Cowling et al., 2001) and Reinforcement Learning variants (Nareyek, 2004).

Regular Issue
Vol 4 n.1
http://adcaij.usal.es

3
Advances in Distributed

Computing and Artificial
Intelligence Journal

c©Ediciones Universidad de Salamanca / CC BY-NC-ND

http://adcaij.usal.es


Ferreira, A. S., Pozo, A. T. R., Goncalves, R. A. ACO-HH for the SCP

Recently, the interest on population-based hyper-heuristics have grown. Cowling et al (Cowling et al.,
2002) proposed an indirect genetic algorithm for solving a personnel scheduling problem. The approach can
be described as a hyper-heuristic that uses a GA as the heuristic selection mechanism (high-level heuristic).
This study was extended on (Han and Kendall, 2003) by including adaptive length chromosomes and guided
operators, producing promising results on the trainer scheduling problem when compared to both a direct
encoding genetic algorithm and a memetic algorithm. ACO was used as a hyper-heuristic in (Burke et al.,
2005) and (Chen et al., 2007) to address a personnel scheduling and a sports timetabling problem, respectively,
with promising results. Similarly, Ren et al (Ren et al., 2010) discussed an ant-based hyper-heuristic for
solving the p-median problem.

Moreover, different frameworks have been proposed to be used by multi-point-based search methods,
for example, the AMALGAM approach for continuous multi-objective optimization proposed by Vrugt and
Robinson (Vrugt and Robinson, 2007) that selects a set of population-based multi-objective algorithms. In
this approach, the number of new solutions produced by each low-level heuristic (operator) is proportional to
the percentage of previously created individuals that remains in the working population at each stage.

Grobler et al (Grobler et al., 2012) investigated the use of local search strategies to improve the
performance of a hyper-heuristic algorithm. The authors mixed a set of meta-heuristics including a genetic
algorithm, particle swarm optimization variants, CMA-ES and differential evolution variants under a hyper-
heuristic framework with good results.

Biazzini et al (Biazzini et al., 2009) combined several algorithms for numerical optimization such as
differential evolution and random search in a distributed framework based on the island model. Meignan
et al (Meignan et al., 2010) presented a self-adaptive and distributed approach based on agents and hyper-
heuristics. Several agents concurrently explored the search space using a set of operators. The approach was
applied to the vehicle routing problem.

One of the main purposes of the hyper-heuristics is to make possible the creation of heuristics that can be
applied on different domains with minimal modifications (preferably, none). In order to promote this purpose,
in (Ochoa et al., 2012) the authors developed a framework to compare high-level hyper-heuristics that control
a set of problem specific low-level heuristics. The set of low-level heuristics is different for each problem
domain. This framework was used for the CheSCH 2011 challenge where different hyper-heuristics were
compared. One hyper-heuristic that showed good results on the competition is the one proposed by Nunez
and Ceballos (Núnez and Ceballos, 2011), which is based on Ant Colony Optimization.

Based on the work of Nunez and Ceballos, we proposed a hyper-heuristic called ACO-HH for the
SCP (Ferreira et al., 2014). This problem, as far as we known, was not tackled by a hyper-heuristic approach
before. So, in this work, we extend our previous work with empirical studies to better understand the influence
of the different parameters on ACO-HH performance.

3. Ant Colony Optimization
Ant Colony Optimization (ACO) is an example of artificial swarm intelligence meta-heuristic, which is
inspired by the collective behavior of social insects (Dorigo and Socha, 2006). ACO is mainly based on the
concepts presented by the two bridge experiment conduced in (Deneubourg et al., 1990), that can be seen at
Figure 1. In this experiment, ants leave their nest without information about the location of food sources,

Regular Issue
Vol 4 n.1
http://adcaij.usal.es

4
Advances in Distributed

Computing and Artificial
Intelligence Journal

c©Ediciones Universidad de Salamanca / CC BY-NC-ND

http://adcaij.usal.es


Ferreira, A. S., Pozo, A. T. R., Goncalves, R. A. ACO-HH for the SCP

move randomly at the start of the experiment, and deposit a substance called pheromone on the ground.
Because ants probably prefer to follow a stronger pheromone trail, the bridge that has more pheromone will
attract more ants. Then, the pheromone trail will grow until the colony of ants converges toward the use of
the same bridge (shorter one). Therefore, the behavior that emerges is a group of relatively "not intelligent"
ants that interact through simple rules and dynamically self-organize maintaining their positions around
the shortest trails. So, the main idea is the cooperation between the agents through the environment using
pheromone.

In the ACO algorithm, artificial ants simulate the pheromone trail following behavior of real ants to
find the shortest route between a food source and their nest. The pheromone marks a trail, representing a
solution for a problem, which will be positively increased to become more attractive in subsequent iterations.
Therefore, the pheromone concentration indicates how useful a solution was, serving as a history of the best
ants previous movements. Besides the pheromone concentration, ants can use heuristic functions with useful
local information about the problem domain.

ACO is a constructive procedure where at each step the ant will select one component to be part of its
solution using a probability that is calculated using the pheromone information (cooperation) and the heuristic
information; At the end of each iteration the pheromone values are updated according to the quality of the
solutions that were built. Two mechanisms are used to update the pheromone: (1) the evaporation which avoid
the repetition of bad choices and (2) the pheromone deposit used to intensify (reinforce) the good choices. At
the end of the algorithm, the best solution found is returned.

Figure 1: (a) Both paths have the same distance the ants choose them equally. (b) One path has a bigger
distance than other, most of ants choose the shortest path.

4. ACO-HH
ACO-HH hyper-heuristic was proposed in (Núnez and Ceballos, 2011) for the CheSCH 2011 competition,
and can be classified as an on-line learning selection hyper-heuristic. ACO-HH follows the general guidelines
from the ACO meta-heuristic, but instead of generating solutions, ACO-HH creates a path of low-level
heuristics, i.e., at each step of the iteration a low-level heuristic is selected accordingly to its accumulated
pheromone.

In the ACO-HH approach, each ant has two structures: the problem solution s and the selection order

Regular Issue
Vol 4 n.1
http://adcaij.usal.es

5
Advances in Distributed

Computing and Artificial
Intelligence Journal

c©Ediciones Universidad de Salamanca / CC BY-NC-ND

http://adcaij.usal.es


Ferreira, A. S., Pozo, A. T. R., Goncalves, R. A. ACO-HH for the SCP

of heuristics A. Given an initial solution s, at each construction step, each ant chooses one of the available
heuristics to compose their heuristic order A and apply it to its current solution. If the generated solution is
the best found by an ant in the current iteration, it is set as the initial solution for the ant in the next iteration.
Figure 2 presents an example of two ants building their paths.

Figure 2: The ants build their paths by choosing heuristics and applying them to its solution (Núnez and
Ceballos, 2011).

The probability that an ant j chooses a heuristic h at the construction step k is given by Equation 4.

pkj (h) =
ταkh · η

β
kh∑H

l=1 τ
α
kl · η

β
kl

(4)

Where H is the number of low-level heuristics, τkh is the pheromone value associated with the heuristic h
at construction step k and ηkh is the heuristic information that is calculated by Equation 5.

ηkh =Mkh + 1−MIN {Mkl|l = 1..H} (5)

Mkh =

(
∑
h∈sij

(f(sk−1)− f(sk))) , if E > 0

0 , if E = 0

Where E is the number of ants that have the heuristic h in A, i.e. applied heuristic h in any step.
As on ACO,α and β control the influence of pheromone information and heuristic information, respectively.

The heuristic information associated with a low-level heuristic is based on its average local improvement.
The pheromone update mechanism is different from the one used on the classic ACO. It does not use

the evaporation and deposit mechanisms, building the pheromone matrix from the average of improvements
obtained by the historical information about the generated solutions. The update mechanism is shown in
Equation 6 (Núnez and Ceballos, 2011).

τkh =MCkh + 1−MIN {MCkl|l = 1..H} (6)

MCkh =

(
∑
h∈sij

(f(s0)− f(sn))) , if E > 0

0 , if E = 0

Where n is the size of A, f(s0) and f(sn) are the performances of the initial and final solution for an ant
i at the iteration j.

Following, a description of some implementation details of ACO-HH to solve the Set Covering Problem
is presented.

Regular Issue
Vol 4 n.1
http://adcaij.usal.es

6
Advances in Distributed

Computing and Artificial
Intelligence Journal

c©Ediciones Universidad de Salamanca / CC BY-NC-ND

http://adcaij.usal.es


Ferreira, A. S., Pozo, A. T. R., Goncalves, R. A. ACO-HH for the SCP

Algorithm 1: ACO-HH
Input: iterations, constructionSteps, antNumber, α, β, p1, a set of heuristics H

1 bestSolution←∞;
2 foreach ant in ants do
3 ant.setSolution(createInitalSolution()) ; /* using fitness proportionate selection */
4 ant.setBestIterationSolution(∞);

5 end
6 for i = 0; i < iterations; i++ do
7 for k = 0; k < constructionSteps; k ++ do
8 foreach ant in ants do
9 h← selectHeuristic() ; /* probabilistically according to Equation 4 */

10 s′ ← applyHeuristic(h, ant);
11 ant.addPath(h);
12 saveLocalImprovement(h, ant.getSolution(), s′) ; /* local heuristic improvement used in

heuristic information */
13 ant.setSolution(s′);
14 if ant.getSolution() < ant.getBestIterationSolution() then
15 ant.setBestIterationSolution(ant.getSolution());
16 end
17 end
18 end
19 foreach ant in ants do
20 if ant.getBestIterationSolution() < bestSolution() then
21 bestSolution← ant.getBestIterationSolution();
22 end
23 ant.setSolution(ant.getBestIterationSolution());
24 saveGlobalImprovment(ant) ; /* iteration ant improvement used in pheromone update */

25 end
26 foreach h in H do
27 updatePheromone(h) ; /* according to Equation 6 */
28 end
29 end
30 return bestSolution

4.1 ACO-HH for SCP
The pseudo-code for the ACO-HH is presented at Algorithm 1.

The problem solution s is represented by a binary vector of size columns equals to the number of columns
of the current problem instance; The value 1 for an index j of the vector means that the column j is part of the
solution. The heuristic order A is represented by an integer vector of size ant size, this size is a parameter of
the algorithm. The value h for an index k means that the heuristic h was selected by an ant at the construction
step k.

Firstly, the algorithm creates initial solutions for each ant. The solutions are built using a fitness
proportionate selection based on the heuristic information presented in Equation 7.

ηj =
kj
cj

(7)

Where kj is the cardinality of column j and cj is its cost. The cardinality of a column j is calculated by

Regular Issue
Vol 4 n.1
http://adcaij.usal.es

7
Advances in Distributed

Computing and Artificial
Intelligence Journal

c©Ediciones Universidad de Salamanca / CC BY-NC-ND

http://adcaij.usal.es


Ferreira, A. S., Pozo, A. T. R., Goncalves, R. A. ACO-HH for the SCP

the number of lines that j covers that are not covered by any other column in the solution.
After the construction of the initial solutions, the main iterations of the algorithm begin. At each iteration,

each ant builds its path by choosing a low-level heuristic (as show in Equation 4). The selected heuristic is
applied to the solution associated with the ant. Next, the generated solution substitutes the current solution of
the ant and the improvement obtained by the heuristic (difference between the new solution and the previous
one) is saved.

ACO-HH for the SCP utilizes the following low-level heuristics:

1. One Bit Flip (OF): The One Bit Flip heuristic randomly selects a column j from the ant solution where
v[j]=1 and reverse its value to 0. The goal is to remove a redundant column from the solution.

2. Scattered Crossover (SC): Given two solutions s1 and s2 a random bit mask with the size of the
solutions is created. If the value at position i of the mask equals 1 then the generated solution copies the
i-th value of solution s1 (s′[i] = s1[i]), otherwise the value is copied from solution s2 (s′[i] = s2[i]).

3. Fusion Crossover (FC): The fusion crossover used in this work is defined in (Beasley and Chu, 1996)
and is similar to SC but the number of ones in the mask is proportional to the relative quality between
solution s1 and s2, i.e. the better s1 is relative to s2 the more ones will the mask contain.

4. JB2 (JB): The JB Local Search 2 was implemented as defined in (Mulati, 2009). This heuristic always
generates a feasible solution and works as follows: given a solution the heuristic destroys a percentage
of it (defined by the parameter p1) and rebuild it using the heuristic information presented in Equation
7, but taking in account only the columns that have their cost less or equal to the max cost presented in
the solution.

At the end of each iteration, the best solution found for each ant is stored. Moreover, the best solution is
set as the initial solution for the next iteration. The improvement obtained in relation to the initial solution
is also saved. Afterwards, the best solution found so far is possibly updated and the pheromone matrix is
updated as show in Equation 6. Finally, after the maximum number of iterations is satisfied, the best solution
is returned.

5. Experimental Results and Analysis
This section presents the methodology, the results obtained and the comparison between ACO-HH and the
Ant-Line proposed in (Mulati and Constantino, 2011).

5.1 Methodology
The ACO-HH approach was developed using the C++ programming language and executed on an Intel Core
i7 of 3.40Ghz with 6Gb of memory running the Ubuntu Linux operational system. 65 SCP instances from the
OR-Lybrary were used (Beasley, 1990), these instances are presented at Table 1, where they are grouped by
class (C.SCP), their quantities between parentheses after the class name, the size of the instances is shown by
the (m x n) column of the table and the density of an instance is shown in column (De(%)).

Regular Issue
Vol 4 n.1
http://adcaij.usal.es

8
Advances in Distributed

Computing and Artificial
Intelligence Journal

c©Ediciones Universidad de Salamanca / CC BY-NC-ND

http://adcaij.usal.es


Ferreira, A. S., Pozo, A. T. R., Goncalves, R. A. ACO-HH for the SCP

C.SCP m x n De(%)
4(10) 200 x 1000 2
5(10) 200 x 2000 2
6(5) 200 x 1000 5
a(5) 300 x 3000 2
b(5) 300 x 3000 5
c(5) 400 x 4000 2
d(5) 400 x 4000 5

nre(5) 500 x 5000 10
nrf(5) 500 x 5000 20
nrg(5) 1000 x 10000 2
nrh(5) 1000 x 10000 5

Table 1: SCP Instances

For each instance 10 runs of the ACO-HH algorithm are performed, and the maximum, minimum and
average values obtained are reported as percentage differences (PD) of these values in relation to the optimal.
In order to statistically compare both algorithms the Friedman Rank Sum Test is performed on the average
and best values. The test was executed using the R functional language with 95% confidence.

PD is calculated as shown in Equation 8 where avg(value) is the average between the value and the
optimal and dif(value) is the difference between those values. The closer to 0.0 is the value of PD, the better
is the result obtained.

pd(value) =

(
dif(value)

avg(value)

)
· 100 (8)

5.2 Parameters Setup
In order to find a good configuration for the ACO-HH parameters, an empirical experiment was realized
starting with the parameters used in the previous paper (Ferreira et al., 2014): iterations = 10, k = 30,
antNumber = 15, α = 1, β = 2 and p1 = 0.3, the results for this parameters can be seen in Table 2. The
parameters were analyzed in order, one at a time.

During this parameters setup, five SCP instances were used, each one of a different class. The instances
used were: scp4.10, scpc.1, scpnre.1, scpnrf.1 and scpnrg.1. Again, for each instance 10 runs of the ACO-HH
algorithm were performed.

Number of Iterations: This parameter defines the number of times that the ants will build their paths and
the number of times that the pheromone is updated; we analyzed values for the iterations parameter ranging
from 10 to 30. The results of this experiment are presented in Table 3. Even though comparable values were
found for the smaller instances (scp4.10 and scpc.1), an improvement could be noticed when the number of
iteration is 30 on the best and average values for the bigger instances (like nrf1 and nrg.1). So the iterations
parameter was set to 30.

Parameter k: The k parameter defines the number of heuristics that will be selected by each ant on an
iteration. The values 35 and 40 were tested for this parameter. The results of this experiment are presented

Regular Issue
Vol 4 n.1
http://adcaij.usal.es

9
Advances in Distributed

Computing and Artificial
Intelligence Journal

c©Ediciones Universidad de Salamanca / CC BY-NC-ND

http://adcaij.usal.es


Ferreira, A. S., Pozo, A. T. R., Goncalves, R. A. ACO-HH for the SCP

Base Parameters
SCP WS(%) AS(5) BS(%)
4.10 15.17 9.52 1.56
c.1 12.78 7.13 4.31

nre.1 9.83 6.22 0.0
nrf.1 13.33 6.22 0.0
nrg.1 10.75 7.01 3.89

Table 2: Results of the parameters used in the previous paper. WS(%) is the PD of the worst solution, AV(%) is the PD of
the average of the solutions and BS(%) is the PD of the best solution found. All the PDs are in relation to the optimal
solution.

i = 20
SCP WS(%) AS(5) BS(%)
4.10 13.43 7.79 4.19
c.1 11.22 7.13 3.46

nre.1 6.66 3.05 0.0
nrf.1 6.89 5.55 0.0
nrg.1 10.85 7.01 2.80

i = 30
4.10 13.43 7.65 0.96
c.1 9.64 7.21 4.73

nre.1 6.66 2.04 0.0
nrf.1 6.89 4.19 0.0
nrg.1 11.76 6.64 2.80

Table 3: Result for parameter i.

in Table 4. The results suggest that ACO-HH has little sensitivity to the parameter k as there were little
differences between the results obtained with different parameters. Thus, we set k = 30 based on the better
results obtained by this value on our original work (Ferreira et al., 2014).

The antNumber parameter: this parameter defines how many solutions will be built on each iteration. The
values investigated for this parameter are 20 and 25. The results obtained are presented in Table 5. As the
performance didn’t improve, as the number of ants was incremented, this parameter was set to 25 in order to
have more solutions.

The parameter p1: defines the percentage of a solution that will be destroyed by the JB2 heuristic. This
parameter may have a great influence on the results because it is tailored to avoid local minimum. Because
this heuristic rebuilds the solution using heuristic information, in general, it produces good solutions. The
values used for the p1 parameter were 0.6 and 0.9. The results of the experiment are presented in Table 6.
The results showed that a high value for p1 is detrimental to the performance of the algorithm, rebuilding too
much of a solution; while a low value is not enough to escape local minima. So, this parameter was set to 0.6.

The tests for the α parameter ranges from 2 to 4 and the results obtained by the tests are presented in

Regular Issue
Vol 4 n.1
http://adcaij.usal.es

10
Advances in Distributed

Computing and Artificial
Intelligence Journal

c©Ediciones Universidad de Salamanca / CC BY-NC-ND

http://adcaij.usal.es


Ferreira, A. S., Pozo, A. T. R., Goncalves, R. A. ACO-HH for the SCP

k = 35
SCP WS(%) AS(5) BS(%)
4.10 12.92 7.72 4.0
c.1 15.44 7.87 4.73

nre.1 6.66 2.38 0.0
nrf.1 13.33 6.22 0.0
nrg.1 10.72 6.64 2.84

k = 40
4.10 12.92 7.83 2.87
c.1 14.69 7.99 1.76

nre.1 6.66 1.36 0.0
nrf.1 13.33 4.87 0.0
nrg.1 12.26 7.49 4.44

Table 4: Results for parameter k.

antNumber = 20
SCP WS(%) AS(%) BS(%)
4.10 23.67 12.68 4.76
c.1 13.93 8.07 3.88

nre.1 9.83 2.72 0.0
nrf.1 6.89 2.81 0.0
nrg.1 10.24 7.33 5.52

antNumber = 25
4.10 12.75 7.67 3.25
c.1 16.93 7.66 2.17

nre.1 9.83 6.05 0.0
nrf.1 6.89 3.50 0.0
nrg.1 10.24 6.59 2.80

Table 5: Result for antNumber.

Table 7. There was no significant difference for the smaller instances but, for larger instances, bigger values
of α produced worst results. Therefore, we set α to the minimum, 1.

β parameter: For the β parameter the values 2, 4 and 6 were tested. Table 8 shows the results obtained.
No significant difference were found between the choices and the value of β was set to 2, as in the original
version (Ferreira et al., 2014).

Overall, the majority of the parameters with exception to p1, has no great influence on the results. This
suggests that the low-level heuristics implemented are not very effective and get stuck on local optima pretty
early. After the setup tests, the final parameters values were set as follows: iterations = 30, k = 30,
antNumber = 25, α = 1, β = 2 and p1 = 0.6.

Regular Issue
Vol 4 n.1
http://adcaij.usal.es

11
Advances in Distributed

Computing and Artificial
Intelligence Journal

c©Ediciones Universidad de Salamanca / CC BY-NC-ND

http://adcaij.usal.es


Ferreira, A. S., Pozo, A. T. R., Goncalves, R. A. ACO-HH for the SCP

p1 = 0.6
SCP WS(%) AS(%) BS(%)
4.10 9.80 5.90 2.68
c.1 7.62 6.35 2.60

nre.1 0.0 0.0 0.0
nrf.1 0.0 0.0 0.0
nrg.1 6.06 3.89 2.80

p1 = 0.9
4.10 8.56 3.85 1.92
c.1 8.02 3.03 4.47

nre.1 0.0 0.0 0.0
nrf.1 0.0 2.96 0.98
nrg.1 10.24 2.27 2.80

Table 6: Results for p1.

α = 2
SCP WS(%) AS(%) BS(%)
4.10 12.2 6.91 3.62
c.1 10.04 5.19 2.17

nre.1 9.83 1.02 0.0
nrf.1 6.89 0.71 0.0
nrg.1 7.12 4.50 2.80

α = 4
4.10 11.02 5.61 0.96
c.1 9.64 3.10 3.03

nre.1 3.38 1.02 0.0
nrf.1 6.89 2.12 0.0
nrg.1 5.52 3.80 0.0

Table 7: Results for parameter α.

Regular Issue
Vol 4 n.1
http://adcaij.usal.es

12
Advances in Distributed

Computing and Artificial
Intelligence Journal

c©Ediciones Universidad de Salamanca / CC BY-NC-ND

http://adcaij.usal.es


Ferreira, A. S., Pozo, A. T. R., Goncalves, R. A. ACO-HH for the SCP

β = 4
SCP WS(%) AS(%) BS(%)
4.10 10.68 6.40 1.92
c.1 9.24 4.85 2.60

nre.1 9.83 1.70 0.0
nrf.1 13.30 3.50 0.0
nrg.1 8.17 5.95 3.89

β = 6
4.10 9.62 6.27 1.92
c.1 13.16 5.27 1.76

nre.1 6.6 1.36 0.0
nrf.1 13.33 6.22 0.0
nrg.1 7.65 5.25 2.80

Table 8: Results for parameter β.

5.3 Analysis of the Selection of low-Level Heuristics
The main operation of a selection hyper-heuristic is the mechanism to choose which low-level heuristic should
be applied at each step of the algorithm. Therefore, an understanding of the behavior of this mechanism is
important to have a better comprehension of the behavior of the hyper-heuristic as a whole.

One important point to be noted is that the overall behavior of the selection procedure was similar for all
instances independent of its characteristics, i.e. small or large, dense or sparse has no great influence in the
selection of the low-level heuristics. This fact came as a surprise, as one of the main characteristics of an
on-line learning hyper-heuristic, such as ACO-HH, is its capability to adapt to different characteristics of the
instances. This finding may also be important to the comprehension of the SCP, as it gives an approximate
good usage of each operator in order to solve it efficiently.

As the behavior of the selection mechanism was similar for all instances, Figure 3 shows the average
usage percentage on 10 runs for each low-level heuristic in ACO-HH per instance.

Accordingly to Figure 3, the ranking of usage for the low-level heuristics was JB, OF, FC and SC, from
the more used to less used heuristic. Furthermore, there is two classes of usage: JB and OF were used around
60% of the time with almost equal probability while FC and SC were used the remaining time in almost equal
proportion. FC and SC are very similar heuristics operating in a pair of solutions, the main difference between
them is that the latter uses an uniform mask while the former uses a mask based on the relative fitness between
the two solutions under operation. JB and OF operates in a single solution and while the first uses heuristic
information about the problem and modifies a great percentage of each solution, the second heuristic is very
simple and modifies only a single position. From these facts it is possible to infer that ACO-HH prefers
low-level heuristics that operates on single solutions but is blind to the information used but the heuristics.

Another point that was observed during the experiments was the inability of the low-level heuristics
to improve the solution during the final stages of the optimization process. This was expected, as the
best solutions found for this problem were found by constructive heuristics and ACO-HH only employs
perturbative heuristics due to the restriction that at each stage of the algorithm a complete solution has to be

Regular Issue
Vol 4 n.1
http://adcaij.usal.es

13
Advances in Distributed

Computing and Artificial
Intelligence Journal

c©Ediciones Universidad de Salamanca / CC BY-NC-ND

http://adcaij.usal.es


Ferreira, A. S., Pozo, A. T. R., Goncalves, R. A. ACO-HH for the SCP

FC

20.51%

SC

19.55%

OF
27.08%

JB

32.86%

Figure 3: ACO-HH heuristic percentage selection. Fusion Crossover (FC), Scattered Crossover (SC), One Flip (OF) and JB local
search (JB).

generated and evaluated in order to update the pheromone matrix. This constraint greatly limits the possible
low-level heuristics employed by ACO-HH and will be the focus of future researches.

5.4 Results
The results obtained for all instances of all classes are presented in Tables 9, 10 and 11, where SCP is the
instance used, AT(s) is the average time of the runs in seconds, WS(%) is the percentage difference between
the worst solution found and the optimal, AS(%) is the percentage difference between the average of the
solutions found and the optimal solution and BS(%) is the percentage difference between the best solution
found and the optimal solution. These tables have special lines that summarize the behavior of ACO-HH
through all instances of the same class.

The results for classes 4, 5 and 6 are presented in Table 9. The AS results for class 4 are around 6 while
the BS are inferior to 2 in most instances with only 3 exceptions. For class 5 most AS results are less than 6
and 7 of 10 BS results are less than 2. All BS results for class 6 are inferior to 2 with the only exception of
instance 6.3 (BS = 2.04) and all AS results are inferior to 5.

Table 10 shows and summarizes the results for classes a, b, c and d. ACO-HH obtained similar results for
classes a and c, with average AS of more than 5 and average BS of more than 1.80. For classes b and d the
results obtained by ACO-HH were very good: average BS of less than 0.60 and average AS of less than 5 in
both cases.

The results for classes nre, nrf, nrg and nrh are presented in Table 11. The results for classes nre and nrf
were very good with average BS of 0.00 for both classes and average AS of 2.48 and 3.96, respectively. For
class nrg the average AS was 4.15 and the average BS was 2.27 while for class nrh the average AS and BS
were 4.68 and 1.94, respectively.

5.5 Comparison
This subsection presents a comparison between the ACO-HH and the Ant-Line proposed in (Mulati and
Constantino, 2011) using the Friedman Rank Sum Test. Table 12 presents the PD results for both algorithms,

Regular Issue
Vol 4 n.1
http://adcaij.usal.es

14
Advances in Distributed

Computing and Artificial
Intelligence Journal

c©Ediciones Universidad de Salamanca / CC BY-NC-ND

http://adcaij.usal.es


Ferreira, A. S., Pozo, A. T. R., Goncalves, R. A. ACO-HH for the SCP

SCP AT(s) WS(%) AS(%) BS(%)
4.1 40.30 13.47 5.64 0.92
4.2 32.63 12.98 7.41 1.74
4.3 33.49 10.65 5.68 2.48
4.4 44.50 12.16 5.97 1.00
4.5 32.20 8.59 4.19 1.93
4.6 34.53 13.22 6.77 2.99
4.7 30.21 12.84 4.83 1.15
4.8 33.39 14.33 6.92 0.40
4.9 43.66 8.37 6.37 3.82
4.10 39.39 12.57 5.92 0.00
4(10) 36.43 11.92 5.97 1.64
5.1 34.89 12.24 7.23 1.95
5.2 32.44 14.35 9.43 4.21
5.3 31.03 11.27 6.09 1.31
5.4 27.43 13.22 5.97 1.23
5.5 27.30 11.18 5.97 1.41
5.6 27.76 14.37 4.09 0.00
5.7 35.21 9.43 5.92 2.69
5.8 47.76 11.45 5.63 1.03
5.9 31.75 8.24 4.03 0.00
5.10 38.41 11.72 8.45 3.70
5(10) 33.40 11.75 6.28 1.75
6.1 27.04 10.92 4.39 1.43
6.2 21.00 5.98 3.69 1.36
6.3 22.89 12.29 4.25 2.04
6.4 22.26 7.35 3.89 1.51
6.5 25.40 9.46 4.78 1.84
6(5) 30.51 9.86 4.20 1.74

Table 9: Results for instances from class 4 to 6.

Table 13 and Table 14 present a statistical comparison in relation to the average and best values respectively,
the table presents the SCP class that is being compared, the chi-square value, the p-value, the degree of
freedom and if there is a statistical difference with 95% confidence.

For the majority of classes, ACO-HH was much faster than the Ant-Line while the Ant-Line obtained
better results. Despite this, the results obtained for ACO-HH are promising, since there is no statistical
difference for the classes nre, nrf and nrh in relation to the best values. It is important to note that ACO-HH
is very similar to a classic ACO while the Ant-Line proposed in (Mulati and Constantino, 2011) has a good
amount of modification in order to solve SCP instances. Furthermore, ACO-HH can be easily modified to
solve other problems, the only change needed is the solution representation; and the use of a different set
of low-level heuristics. These modifications are related only to the problem domain and isolated from the

Regular Issue
Vol 4 n.1
http://adcaij.usal.es

15
Advances in Distributed

Computing and Artificial
Intelligence Journal

c©Ediciones Universidad de Salamanca / CC BY-NC-ND

http://adcaij.usal.es


Ferreira, A. S., Pozo, A. T. R., Goncalves, R. A. ACO-HH for the SCP

SCP AT(s) WS(%) AS(%) BS(%)
a.1 56.20 9.41 5.23 2.34
a.2 54.52 9.81 5.92 2.73
a.3 66.08 7.06 4.30 1.70
a.4 57.51 12.45 7.24 1.27
a.5 52.55 9.67 3.45 1.26
a(5) 57.37 9.68 5.23 1.86
b.1 45.70 9.65 4.39 0.00
b.2 50.80 12.34 4.00 0.00
b.3 45.11 9.52 3.68 0.00
b.4 50.69 10.77 5.53 2.50
b.5 45.84 5.40 1.65 0.00
b(5) 47.63 9.54 3.85 0.50
c.1 78.38 9.24 5.19 0.88
c.2 72.67 8.31 4.81 1.36
c.3 86.06 11.62 6.49 4.00
c.4 69.61 10.79 6.57 1.36
c.5 73.67 10.98 5.42 1.38
c(5) 76.08 10.19 5.70 1.80
d.1 68.74 12.50 4.24 0.00
d.2 71.56 7.29 4.73 0.00
d.3 73.17 9.27 4.21 1.37
d.4 70.37 9.23 4.41 0.00
d.5 70.85 12.30 6.80 1.62
d(5) 70.94 10.12 4.88 0.60

Table 10: Results for instances from class a to d.

high-level ACO heuristic used to select the low-level heuristics. On the other hand, the Ant-Line would have
to be redesigned in order to be applied to other problems. So, it is possible to infer that ACO-HH is more
flexible than the other algorithm.

6. Conclusion
Hyper-heuristics is a recent field of research that proposes techniques that are more flexible and, in many
cases, more simple than state-of-the-art meta-heuristics. A recent trend in the hyper-heuristics area is the use
of population-based meta-heuristics as a high-level heuristic. In this paper an ACO-based hyper-heuristic,
called ACO-HH, is proposed for the Set Covering Problem. To the best of our knowledge, ACO-HH is the
first hyper-heuristic approach for the SCP.

ACO-HH is very similar to a standard ACO, but it searches the space of the low-level heuristics instead
of the space of solutions. In this work 4 perturbative low-level heuristics are used: One Bit Flip, Scattered

Regular Issue
Vol 4 n.1
http://adcaij.usal.es

16
Advances in Distributed

Computing and Artificial
Intelligence Journal

c©Ediciones Universidad de Salamanca / CC BY-NC-ND

http://adcaij.usal.es


Ferreira, A. S., Pozo, A. T. R., Goncalves, R. A. ACO-HH for the SCP

SCP AT(s) WS(%) AS(%) BS(%)
nre.1 158.23 0.00 0.00 0.00
nre.2 173.52 6.66 4.24 0.00
nre.3 165.34 3.63 2.55 0.00
nre.4 162.34 6.89 3.85 0.00
nre.5 166.32 3.50 1.76 0.00
nre(5) 165.15 4.14 2.48 0.00
nrf.1 339.75 0.00 0.00 0.00
nrf.2 337.16 12.50 1.32 0.00
nrf.3 337.23 13.30 7.56 0.00
nrf.4 338.57 13.30 2.81 0.00
nrf.5 350.60 14.28 8.11 0.00
nrf(5) 340.66 10.68 3.96 0.00
nrg.1 226.55 4.98 3.13 0.56
nrg.2 253.57 6.28 4.25 2.56
nrg.3 226.55 8.09 3.55 3.55
nrg.4 281.12 9.09 4.65 1.76
nrg.5 212.26 7.44 5.16 2.93
nrg(5) 240.01 7.18 4.15 2.27
nrh.1 381.98 6.15 4.97 3.12
nrh.2 403.20 6.15 4.19 1.57
nrh.3 374.53 8.13 5.44 3.33
nrh.4 406.49 6.66 4.71 1.70
nrh.5 375.05 8.65 4.09 0.00
nrh(5) 388.25 7.15 4.68 1.94

Table 11: Results for instances from class nrfe to nrfh.

Crossover, Fusion Crossover and JB Local Search 2. The first one can be characterized as a mutation, the
following two are crossovers while the last one is a local search.

An experimental analysis of the sensitivity of the parameters was conducted in order to find good
parameters values. This analysis pointed out that the algorithm has a low sensitivity to the majority of its
parameters, which is a good characteristic for a hyper-heuristic.

The relative usage of each low-level heuristic was also investigated. It was concluded that, for the
Set Covering Problem, ACO-HH has similar behavior with respect to the choice of low-level heuristics
independently from the instance being solved. Furthermore, it was possible to infer that ACO-HH preferred
single point low-level heuristics (One Bit Flip and JB Local Search 2).

ACO-HH obtained good results for some instances of various classes of the SCP. When compared to
Ant-Line, it was considerably faster but obtained solutions with lower quality. So, the ACO-HH is recommend
for finding solutions with good quality in a short time while the Ant-Line is recommend if the quality of the
solutions obtained is the only important factor. Besides this, ACO-HH is more flexible: just the low-level
heuristics and the problem representation have to be modified in order to solve other problems (combinatorial

Regular Issue
Vol 4 n.1
http://adcaij.usal.es

17
Advances in Distributed

Computing and Artificial
Intelligence Journal

c©Ediciones Universidad de Salamanca / CC BY-NC-ND

http://adcaij.usal.es


Ferreira, A. S., Pozo, A. T. R., Goncalves, R. A. ACO-HH for the SCP

ACO-HH Ant-Line
C.SCP AT(s) WS(%) AS(%) BS(%) AT(s) WS(%) AS(%) BS(%)
4(10) 36.43 11.92 5.97 1.64 2.51 0.72 0.27 0.05
5(10) 33.40 11.75 6.28 1.75 13.73 1.06 0.41 0.03
6(5) 30.51 9.86 5.13 1.74 4.68 2.37 0.73 0.00
a(5) 57.37 9.68 5.23 1.86 101.16 1.06 0.57 0.34
b(5) 47.63 9.54 3.85 0.50 35.66 0.54 0.18 0.00
c(5) 76.08 10.19 5.70 1.80 243.00 1.75 0.64 0.00
d(5) 70.94 10.12 4.88 0.60 150.62 2.48 0.94 0.00

nre(5) 165.15 4.14 2.48 0.00 2166.76 2.12 0.99 0.00
nrf(5) 340.66 10.68 3.96 0.00 3377.26 4.39 3.24 1.43
nrg(5) 240.01 7.18 4.15 2.27 8578.34 2.53 1.36 0.73
nrh(5) 388.25 7.15 4.68 1.94 8640.48 4.34 2.51 0.98

Table 12: Comparison of the results obtained by the ACO-HH with the Ant-Line proposed in (Mulati and
Constantino, 2011).

SCP Class Chi2 P-value Df Difference
4 10 0.0015 1 TRUE
5 10 0.0015 1 TRUE
6 5 0.0025 1 TRUE
a 5 0.0025 1 TRUE
b 5 0.0025 1 TRUE
c 5 0.0025 1 TRUE
d 5 0.0025 1 TRUE

nre 3 0.0830 1 FALSE
nrf 4 0.0430 1 TRUE
nrg 5 0.0025 1 TRUE
nrh 5 0.0025 1 TRUE

Table 13: Results of the Friedman Rank Sum Test comparing the average values obtained by the two algorithms
per SCP class.

or not) using the ACO-HH algorithm. So, ACO-HH can be considered a promising approach.
The paper describes in details the project and evaluation of the algorithm. Four low-level heuristics were

implemented: OF, SC, FC and JB. In a first step, the study presents experiments to understand how the
different parameters affect the behavior of the algorithm.

Future work includes the investigation of ACO-HH in other problem domains, the use of other meta-
heuristics as high-level heuristics and the proposal of generation hyper-heuristics for the SCP.

Regular Issue
Vol 4 n.1
http://adcaij.usal.es

18
Advances in Distributed

Computing and Artificial
Intelligence Journal

c©Ediciones Universidad de Salamanca / CC BY-NC-ND

http://adcaij.usal.es


Ferreira, A. S., Pozo, A. T. R., Goncalves, R. A. ACO-HH for the SCP

SCP Class Chi2 P-value Df Difference
4 9 0.0027 1 TRUE
5 10 0.0015 1 TRUE
6 5 0.0025 1 TRUE
a 5 0.0025 1 TRUE
b 3 0.0830 1 FALSE
c 5 0.0025 1 TRUE
d 2 0.1600 1 FALSE

nre 2 0.1600 1 FALSE
nrf 1 0.3200 1 FALSE
nrg 5 0.0025 1 TRUE
nrh 1 0.3200 1 FALSE

Table 14: Results of the Friedman Rank Sum Test comparing the best values obtained by the two algorithms
per SCP class.

7. References
Balas, E. and Carrera, M. C., 1996. A dynamic subgradient-based branch-and-bound procedure for set

covering. Operations Research, 44(6):875–890.
Beasley, J. E., 1990. OR-Library: distributing test problems by electronic mail. Journal of the operational

research society, pages 1069–1072.
Beasley, J. E. and Chu, P. C., 1996. A genetic algorithm for the set covering problem. European Journal of

Operational Research, 94(2):392–404.
Biazzini, M., Banhelyi, B., Montresor, A., and Jelasity, M., 2009. Distributed hyper-heuristics for real

parameter optimization. In GECCO ’09: Proceedings of the 11th Annual conference on Genetic and
evolutionary computation, pages 1339–1346. ACM, New York, NY, USA. ISBN 978-1-60558-325-9.
doi:10.1145/1569901.1570081.

Burke, E., Kendall, G., Silva, D. L., O’Brien, R., L, D., Silva, A., and Soubeiga, E., 2005. An Ant Algorithm
Hyperheuristic for the Project Presentation Scheduling Problem. In In: Proceedings of the Congress on
Evolutionary Computation 2005 (CEC 2005). Volume 3, pages 2263–2270. IEEE press.

Burke, E. K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Ozcan, E., and Qu, R., 2013. Hyper-heuristics.
J Oper Res Soc, 64(12):1695–1724. ISSN 0160-5682.

Burke, E. K., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., and Woodward, J. R., 2010. A classification of
hyper-heuristic approaches. In Handbook of metaheuristics, pages 449–468. Springer.

Caprara, A., Toth, P., and Fischetti, M., 2000. Algorithms for the set covering problem. Annals of Operations
Research, 98(1-4):353–371.

Chen, P.-C., Kendall, G., and Berghe, G., 2007. An Ant Based Hyper-heuristic for the Travelling Tournament
Problem. In Computational Intelligence in Scheduling, 2007. SCIS ’07. IEEE Symposium on, pages
19–26. doi:10.1109/SCIS.2007.367665.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C., 2009. Introduction to algorithms. MIT press.
Cowling, P., Kendall, G., and Han, L., 2002. an investigation of a hyperheuristic genetic algorithm applied to

a trainer scheduling problem. In Proceedings of the Congress on Evolutionary Computation 2002, CEC

Regular Issue
Vol 4 n.1
http://adcaij.usal.es

19
Advances in Distributed

Computing and Artificial
Intelligence Journal

c©Ediciones Universidad de Salamanca / CC BY-NC-ND

http://adcaij.usal.es


Ferreira, A. S., Pozo, A. T. R., Goncalves, R. A. ACO-HH for the SCP

2002, pages 1185–1190.
Cowling, P., Kendall, G., and Soubeiga, E., 2001. A hyperheuristic approach to scheduling a sales summit. In

Practice and Theory of Automated Timetabling III, pages 176–190. Springer.
Deneubourg, J.-L., Aron, S., Goss, S., and Pasteels, J. M., 1990. The self-organizing exploratory pattern of

the argentine ant. Journal of insect behavior, 3(2):159–168.
Dorigo, M. and Socha, 2006. An Introduction to Ant Colony Optimization. Technical Report, No.

TR/IRIDIA/2006-010.
Ferreira, A. S., Pozo, A. T., and Gonçalves, R. A., 2014. Aplicação do Algoritmo ACO-HH para o problema

de cobertura de conjuntos. In Encontro Nacional de Inteligência Artificial e Computacional - ENIAC,
pages 342–346. Sociedade Brasileira de Computação - SBC. In Portuguese.

Fisher, M. L. and Kedia, P., 1990. Optimal solution of set covering/partitioning problems using dual heuristics.
Management science, 36(6):674–688.

Grobler, J., Engelbrecht, A., Kendall, G., and Yadavalli, V., 2012. Investigating the use of local search
for improving meta-hyper-heuristic performance. In Evolutionary Computation (CEC), 2012 IEEE
Congress on, pages 1–8. doi:10.1109/CEC.2012.6252970.

Han, L. and Kendall, G., 2003. Guided Operators for a Hyper-Heuristic Genetic Algorithm. In Proceedings of
AI-2003: Advances in Artificial Intelligence. The 16th Australian Conference on Artificial Intelligence,
pages 807–820.

Jacobs, L. W. and Brusco, M. J., 1995. Note: A local-search heuristic for large set-covering problems. Naval
Research Logistics (NRL), 42(7):1129–1140.

Lan, G., DePuy, G. W., and Whitehouse, G. E., 2007. An effective and simple heuristic for the set covering
problem. European journal of operational research, 176(3):1387–1403.

Meignan, D., Koukam, A., and CrÃl’put, J.-C., 2010. Coalition-based metaheuristic: a self-adaptive
metaheuristic using reinforcement learning and mimetism. Journal of Heuristics, 16(6):859–879. ISSN
1381-1231. doi:10.1007/s10732-009-9121-7.

Mulati, M. H., 2009. Investigação da Meta-Heurística de Otimização por Colônia de Formigas Artificiais
Aplicada ao Problema de Cobertura de Conjunto. Master’s thesis, Dissertação de mestrado, Universidade
Estadual de Maringá, Departamento de Informática.

Mulati, M. H. and Constantino, A. A., 2011. Ant-Line: A Line-Oriented ACO Algorithm for the Set Covering
Problem. In Proceedings of the 2011 30th International Conference of the Chilean Computer Science
Society, pages 265–274. IEEE Computer Society.

Nareyek, A., 2004. chapter Choosing Search Heuristics by Non-stationary Reinforcement Learning, pages
523–544. Kluwer Academic Publishers, Norwell, MA, USA. ISBN 1-4020-7653-3.

Núnez, J. L. and Ceballos, A., 2011. A general purpose Hyper-Heuristic based on Ant colony optimization.
Ochoa, G., Hyde, M., Curtois, T., Vazquez-Rodriguez, J., Walker, J., Gendreau, M., Kendall, G., McCollum,

B., Parkes, A., Petrovic, S., and Burke, E., 2012. HyFlex: A Benchmark Framework for Cross-domain
Heuristic Search, volume 7245 of LNCS, pages 136–147. Springer, Heidelberg.

Oliveira, N. V. d. et al., 1999. Problema de cobertura de conjuntos: uma comparação numérica de algoritmos
heurísticos.

Ren, Z., Feng, Z., Ke, L., and Chang, H., 2008. A fast and efficient ant colony optimization approach for
the set covering problem. In Evolutionary Computation, 2008. CEC 2008.(IEEE World Congress on
Computational Intelligence). IEEE Congress on, pages 1839–1844. IEEE.

Regular Issue
Vol 4 n.1
http://adcaij.usal.es

20
Advances in Distributed

Computing and Artificial
Intelligence Journal

c©Ediciones Universidad de Salamanca / CC BY-NC-ND

http://adcaij.usal.es


Ferreira, A. S., Pozo, A. T. R., Goncalves, R. A. ACO-HH for the SCP

Ren, Z., Jiang, H., Xuan, J., and Luo, Z., 2010. Ant Based Hyper Heuristics with Space Reduction: A
Case Study of the P-median Problem. In Proceedings of the 11th International Conference on Parallel
Problem Solving from Nature: Part I, PPSN’10, pages 546–555. Springer-Verlag, Berlin, Heidelberg.
ISBN 3-642-15843-9, 978-3-642-15843-8.

Vrugt, J. A. and Robinson, B. A., 2007. Improved evolutionary optimization from genetically adaptive
multimethod search. Proceedings of the National Academy of Sciences, 104(3):708–711. doi:10.1073/
pnas.0610471104.

Regular Issue
Vol 4 n.1
http://adcaij.usal.es

21
Advances in Distributed

Computing and Artificial
Intelligence Journal

c©Ediciones Universidad de Salamanca / CC BY-NC-ND

http://adcaij.usal.es

	Introduction
	Hyper-Heuristics
	Hyper-heuristics to select perturbative heuristics

	Ant Colony Optimization
	ACO-HH
	ACO-HH for SCP

	Experimental Results and Analysis
	Methodology
	Parameters Setup
	Analysis of the Selection of low-Level Heuristics
	Results
	Comparison

	Conclusion
	References



