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Abstract
The starting point of this thesis is the calculation of the five-point amplitude

for the scattering of two distinct scalars with the emission of one graviton in

the final state for Einstein-Hilbert gravity. We find that the result, expressed

in Sudakov variables, corresponds to the sum of two gauge invariant contribu-

tions written in terms of a new two scalar - two graviton effective vertex. A

similar calculation is carried out in Quantum Chromodynamics (QCD) for the

scattering of two distinct quarks with one extra gluon in the final state. The ef-

fective vertices which appear in both cases are then evaluated in the multi-Regge

limit (where the emitted on-shell graviton is well separated in rapidity from the

scalar particles) reproducing the well-known result obtained by Lipatov where

the Einstein-Hilbert graviton emission vertex from two off-shell gravitons can be

related to the product of two QCD gluon emission vertices. After this we invest-

igate tree-level five-point amplitudes in scalar-QCD (sQCD) expressed in terms

of Sudakov variables and find the equivalent “gravitational” counterparts using

the so-called color-kinematics duality proposed by Bern, Carrasco, and Johann-

son. Taking the multi-Regge limit in the gravitational amplitudes, we show that

those pieces in the coupling of two Reggeized gravitons to one on-shell graviton

directly stemming from the double copy of the vertex for two Reggeized gluons

to one on-shell gluon are universal and properly reproduced by the duality.

In the second part of the thesis we study the applicability of the color-

kinematics duality to the scattering of two now distinguishable scalar matter

particles with gluon emission in QCD, or graviton emission in Einstein gravity.

Our previous analysis suggested that a direct use of the Bern-Carrasco-Johansson

double-copy prescription to matter amplitudes does not reproduce the gravita-

tional amplitude in multi-Regge kinematics. However, minimal extensions of the
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calculation eliminate this obstacle. Here we present two approaches: introduc-

tion of a scalar contact interaction, or relaxing distinguishibility of the scalars. In

both cases new diagrams allow for a full reconstruction of the correct multi-Regge

limit on the gravitational side. Both modifications correspond to pure theories

obtained by dimensional reduction from higher-dimensional gauge theories.
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Chapter 1

Gauge Theories, Gravity, the

Regge Limit, and their Relations

In recent years there has been impressive progress in the understanding of the

structure of scattering amplitudes in gauge theories mainly motivated by collider

phenomenology but also by the anti de Sitter / conformal field theory (AdS/CFT)

correspondence [1, 2, 3]. The latter has boosted the activity towards calculations

in the N = 4 supersymmetric Yang-Mills (SYM) theory, which enjoys four di-

mensional conformal invariance and allows for calculations up to a large number

of quantum loops by reducing the problem to a small set of master topologies [4].

These results can then be directly used to obtain amplitudes in N = 8 super-

gravity, offering the possibility to investigate the renormalizability of the theory

at high orders in the gravitational coupling [5, 6].

However, there are some cases, like Einstein-Hilbert gravity [7, 8, 9], where

supersymmetry and string theory based calculational techniques are of little

help [10, 11, 12]. In this case one is forced to approach the calculations with

traditional Feynman rules [13, 14, 15]. At each order of perturbation theory the

task at hand grows tremendously due to the new multi-graviton vertices appear-
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ing and the problem becomes a combinatorial nightmare. To make progress in

this direction it is needed to find simplifying techniques besides using computer

algebra.

1.1 Weak field expansion of Einstein-Hilbert grav-

ity.

Our target is to perform quantum calculations in gravity using perturbation the-

ory in the Newton constant κ =
√

8πG
c2 . Since in gravity the field corresponds to

the metric, it is convenient to consider contributions around a flat background

(given by the Minkowski metric ηµν). This will allow us to define a graviton as

the remaining perturbation to the metric ηµν .

In more detail, we introduce the expansion gµν = ηµν + κhµν in the Einstein-

Hilbert action

S =
∫
d4x

√−g
2

(−2R
κ2 + gµν∂µφ∂νφ−m2φ2 + gµν∂µΦ∂νΦ−m2Φ2

)
(1.1)

The background field method [16] ensures that order by order our weak field

theory is a Lorentz invariant quantum field theory (QFT) and we can use the

metric ηµν to raise and lower indices. Moreover, coordinate invariance will only

hold up to the order we specify, and will have the interpretation of a gauge

transformation.

We follow the Misner, Thorne, and Wheeler sign convention [17] with a mostly
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minus metric

ηµν =




1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1




. (1.2)

The first step in our approach is to expand the inverse of the metric and its

determinant. For g−1
µν we use

gαµgµν = δαν (1.3)

and write down all the terms in gαµ that are consistent with Lorentz covariance,

we choose them so that we cancel h in (1.3) order by order, i.e.

gµν = ηµν − κ hµν + κ2(h · h)µν − κ3 (h · h · h)µν +O
(
κ4
)
, (1.4)

where we have used the notation hµαhαν ≡ (h · h)µν and Tr(h · h) = (h · h)νν .

To work out the determinant we use the relation:

det(A) = etr(log(A)) (1.5)

which is a corollary of Jacobi’s formula

√
|g| =

√
|det (ηµν + κhµν)| κ�1=

√
det

(
δνµ + κhνµ

)
= e

1
2 Tr(log(δνµ+κhνµ))

= e
κ
2 (h−κ2 Tr(h·h))+O(κ3) ≈ 1 + κ

h

2 + κ2

8
(
h2 − 2tr(h · h)

)
. (1.6)

After these preliminary steps we are now ready to calculate the Feynman rules

for scattering amplitudes with gravitons and scalars. We will write these down

later and focus here on a discussion of the quantization.

A crucial consequence of the coordinate invariance of the gravity Lagrangian is
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that perturbative quantum gravity is a gauge theory. The most general coordinate

transformation that leaves the perturbation field weak is of the form

∂xµ

∂x′ν
= δµν + κ∂νξ

µ. (1.7)

Diffeomorphism invariance imposes gauge conditions order by order in perturba-

tion theory. At leading order we require the amplitude to be invariant under the

gauge transformation:

h′λρ = hλρ − ∂λξρ − ∂ρξλ. (1.8)

Traditionally, it has been perceived that the main problem with perturbative

quantum gravity was its non renormalizability: the divergences generated order

by order by the loop integrals cannot be regularised by fixing a finite number

of parameters. These divergences are regularised by introducing counter-terms,

but counter-terms for divergences up to a certain order introduce divergences at

higher orders [18]. Here, if we consider the theory to be valid at all energies we

are forced to introduce an infinite number of counter-terms and lose all predictive

power. This might be a milder problem in supergravity theories [19].

However, if we consider gravity as an effective theory we can impose an energy

cut-off for the integrals and work at a fixed order in the perturbation expansion.

This is due to the fact that higher order operators are suppressed by inverse

powers of the cut-off, hence only a finite number of them contribute at a given

order in accuracy.

The cut-off represents the scale at which our effective theory is no longer valid.

We expect that this effective theory is what remains after integrating out the high

energy degrees of freedom from a renormalizable theory.
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1.2 Perturbation theory at high energies and

the need for resummation

We have seen that treating Einstein-Hilbert gravity as an effective theory allows

us to have a perturbative expansion that is well behaved. However, at high

center of mass energies s, powers of logarithms of the energy can render this

expansion invalid if κ
√
s ln s ≈ O(1) and it is mandatory to work with an all

order resummation. This problem has been studied in detail in Yang-Mills (YM)

theories where it has been shown that these large logarithms arise from the sum

of processes with inelastic multiple jet production with the outgoing jets strongly

ordered in rapidity. In terms of a total cross section for the high energy scattering

of two particles A and B

σtot(s = eyA−yB) s→∞= 1
s

∞∑

n=0

∣∣∣∣∣∣∣
B
yn, ki⊥

yi, ki⊥
A ∣∣∣∣∣∣∣

2

(1.9)

In more detail, one finds that these large logarithms αns lnn(s) ∼ αns (yA−yB)n are

generated by final state configurations with strong ordering in the rapidities of

the emitted particles, i.e.

yA ≫ y1 ≫ y2 ≫ . . .≫ yn ≫ yB, (1.10)

and with comparable transverse momenta

k2
i ≈ k2. (1.11)
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This limit, which is called Multi-Regge Kinematics (MRK) since it imposes the

Regge limit in every energy subchannel, allows us to resum these logarithms, since

the transverse and longitudinal space decouple from each other. Schematically,

we can integrate over the phase space of soft emissions where the strong ordering

in rapidities generates the same power in the coupling as in the logs of energy:

σLLtot =
∞∑

n=0
CLLn (k⊥)αns

∫ yA

yB
dy1

∫ y1

yB
dy2 . . .

∫ yn−1

yB
dyn

=
∞∑

n=0

CLLn (k⊥)
n! αns (yA − yB)n, (1.12)

where yA−yB is the rapidity difference between particles A and B. Moreover, one

can calculate the leading coefficients CLLn (k⊥) order by order using the “leading

logarithmic” (LL) Balitsky, Fadin, Lipatov, Kuraev (BFKL) formalism [20, 21,

22]. Next-to-leading corrections, which consist of energy logs with a power one

unit smaller than that of the strong coupling in each Feynman diagram, are

sensitive to the running of the coupling constant and any possible rescaling of the

energy variable in the resummed logarithms yA − yB = ln s
s0
→ ln s

s0eB

σtot =
∞∑

n=0

CLLn (ki⊥)
n! (αs −Aα2

s)n(yA − yB − B)n

= σLLtot −
∞∑

n=1

BCLLn (ki⊥) + (n− 1)ACLLn−1(ki⊥)
(n− 1)! αns (yA − yB)n−1. (1.13)

This multi-particle emission is encoded in the kernel of the BFKL equation. To

calculate the kernel one can use the optical theorem to obtain an infinite tower

of ladder diagrams:

σtot(s = eyA−yB) s→∞= 1
s

∞∑

n=0

∣∣∣∣∣∣∣∣∣∣
B
yn, ki⊥

yi, ki⊥
A ∣∣∣∣∣∣∣∣∣∣

2

(1.14)
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= 1
s

∞∑

n=0

B

A

n = 1
s
Im{Aelast(s, t = 0)}

The elastic amplitudes in this kinematical limit can be interpreted as the exchange

of an emergent particle, the hard “pomeron”. This pomeron can be seen as a

bound state of two “Reggeized” gluons in the t-channel.

Fig 1.1 defines our labeling convention for the rest of this thesis, where we

calculate this vertex in five point amplitudes. We now express these momenta

in terms of Sudakov variables, which have momentum conservation built in. We

begin by defining

k = k1 − k2 (1.15)

and expanding them in terms of

kµi = αip
µ + βiq

µ + kµi⊥, (1.16)

where p, q are the momenta of the incoming particles (which need not be gluons),

and ki⊥ · p = ki⊥ · q = p2 = q2 = 0 .

In Sudakov variables the MRK limit reads

1 ≫ α1 ≫ α2 ≈ k2
i⊥/s,

k2
i⊥/s ≈ β1 ≪ β2 ≪ 1. (1.17)

The absence of a hierarchy between the transverse momenta is what character-

izes BFKL evolution and enables the resummation of the dominant logarithmic

contributions. Lipatov’s MRK effective vertex for the coupling of two Reggeized
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Figure 1.1: Lipatov E�ective Vertex

gluons to an on-shell gluon in QCD [23, 24] will be calculated again in this thesis

�µ(k1, k2) =
A

–1 + 2k2
i‹

s—2

B
pµ +

A
—2 + 2k2

2‹
s–1

B
qµ ≠ (k1 + k2)µ‹. (1.18)

This vertex is non-local (some of the information of the amplitude is absorbed

into its denominators) and gauge invariant (it obeys the Ward identity):

(q1 ≠ q2)µ�µ(q1, q2) = 0. (1.19)

In gravity, it is also possible to get a glimpse of the all orders amplitudes if

they are evaluated in certain limits, with a remarkable example being the work

of Lipatov evaluating multi-graviton scattering processes in MRK. In this region

the amplitudes can be written in a factorized form which allows for the con-

struction of a high energy e�ective action,where the neglected modes are those

which contribute O(e≠|yi≠yi+1|) to the scattering amplitudes, from which to gen-

erate them [25]. The key ingredients in these calculations are the reggeization

of the graviton [26, 27] (which we will not discus in this thesis) together with

a full control of eikonal and double logarithmic contributions [23, 28, 29] (also

not discussed in this work where we focus on inelastic amplitudes at leading or-

der in the coupling). A remarkable result in Lipatov’s investigations is that the

graviton emission e�ective vertex can be "almost" written as a double copy of the

gluon emission e�ective vertex when both are evaluated in MRK and the latter

is calculated in QCD [20, 21, 22]. In more detail, in a similar fashion to the QCD
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gluons to an on-shell gluon in QCD [23, 24] will be calculated again in this thesis

Ωµ(k1, k2) =
(
α1 + 2k2

i⊥
sβ2

)
pµ +

(
β2 + 2k2

2⊥
sα1

)
qµ − (k1 + k2)µ⊥. (1.18)

This vertex is non-local (some of the information of the amplitude is absorbed

into its denominators) and gauge invariant (it obeys the Ward identity):

(q1 − q2)µΩµ(q1, q2) = 0. (1.19)

In gravity, it is also possible to get a glimpse of the all orders amplitudes if

they are evaluated in certain limits, with a remarkable example being the work

of Lipatov evaluating multi-graviton scattering processes in MRK. In this region

the amplitudes can be written in a factorized form which allows for the con-

struction of a high energy effective action,where the neglected modes are those

which contribute O(e−|yi−yi+1|) to the scattering amplitudes, from which to gen-

erate them [25]. The key ingredients in these calculations are the reggeization

of the graviton [26, 27] (which we will not discus in this thesis) together with a

full control of eikonal and double logarithmic contributions [23, 28, 29] (also not

discussed in this work where we focus on inelastic amplitudes at leading order in

the coupling). A remarkable result in Lipatov’s investigations is that the grav-

iton emission effective vertex can be “almost” written as a double copy of the
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gluon emission effective vertex when both are evaluated in MRK and the latter

is calculated in QCD [20, 21, 22]. In more detail, in a similar fashion to the QCD

case, one finds an effective vertex [25, 23, 28] given by

Γµν = ΩµΩν −N µN ν , (1.20)

with

N µ(qi, qi+1) = −2i
√
βiαi+1

(
pµ1
βi+1

+ pµ2
αi

)
(1.21)

where Ωµ is the effective vertex from QCD. The termN µN ν is interesting because

it breaks the simple factorization in terms of QCD amplitudes.

High energy scattering has also been studied in string theory both in the

closed string [30] and in the open string case [31]. In this latter reference the

multi-Regge limit of the amplitude was also investigated.

1.3 Color Kinematics Duality and BCJ

The relation between scattering amplitudes in gauge and gravity theories has been

the subject of extensive research in recent years (for reviews on the subject we

refer the reader to [32]). The fact that in a certain sense gravity can be regarded

as the “square” of a gauge theory is suggested by string theory where tree-level

graviton (closed string) amplitudes can be written as linear combinations of the

product of gluon (open string) amplitudes, as found by Kawai, Lewellen, and Tye

(KLT) [33, 34]. In the field theory limit they translate into similar relations for the

corresponding graviton and gluon amplitudes in quantum field theory [10, 11, 12]

Mgrav
n ∼ AYMi,n KijA

YM
j,n . (1.22)
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For example, at lower points these look like

Mgrav
3 ∼ AYM3 (1, 2, 3)AYM3 (1, 2, 3),

Mgrav
4 ∼ AYM4 (1, 2, 3, 4)AYM4 (1, 2, 4, 3), (1.23)

Mgrav
4 (1, 2, 3, 4, 5) ∼ s12s34A

YM
4 (1, 2, 3, 4, 5)AYM4 (2, 1, 4, 3, 5)

+ s13s24A
YM
4 (1, 3, 2, 4, 5)AYM4 (3, 1, 4, 2, 5). (1.24)

Unfortunately, no similar factorization is known for string loop amplitudes, due

to the coupling of left- ALi and right- ARi moving terms.

More recently, a surprising relation between gluon and graviton amplitudes,

dubbed color-kinematics duality, has been found by Bern, Carrasco, and Johans-

son (BCJ) [35] (see also [36, 37, 38, 39, 40]).

This prescription allows us to obtain graviton amplitudes from gluon amp-

litudes of two YM theories. The first step is to write the amplitude of a YM

theory F as a sum over all Feynman diagram topologies Γ with only trivalent

vertices:

A(F) = gn−2∑

i∈Γ

cini(F)
di

. (1.25)

The denominators di and color factors ci are given by those associated with the

corresponding trivalent vertices and propagators in the Feynman rules of F , and
g is the YM coupling constant. The numerators are given by the remaining factor

in each term. There is some freedom in choosing these numerators because not

all the color factors are independent, they are related by Jacobi identities

j(c)α = ci + cj ± ck = 0, (1.26)
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↗ p

↘ q

← r

µ

ν

ρ =⇒ gfabc
(

(q − r)µgνρ + (r − p)νgρµ(p− q)ρgµν
)

ρ

σ

µ

ν

=⇒ −ig2
(
fabef cde(gµρgνσ − gµσgνρ)

+facefdbe(gµσgνρ − gµνgρσ)

+fadef bce(gµνgρσ − gµρgνσ)
)

Figure 1.2: Feynman rules for the gluon vertices

which allow us to enforce analogous Jacobi identity-like equations

j(n)α = ni + nj ± nk = 0 (1.27)

for the numerators. When these equations hold we obtain a graviton amplitude

for a theory Z from two gluon amplitudes An(F),An(Y) in theories F ,Y with a

YM sector and the same color structure using the following prescription

M(Z) = i
(
κ

2

)n−2∑

i∈Γ

ni(Y)ni(F)
di

. (1.28)

where κ =
√

8πG
c2 . To write the YM amplitude in terms of trivalent graphs (which

is required by dimensional consistency) one has to rewrite the four gluon vertex as

two joined trivalent vertices. This is possible in YM because, as follows from Fig.

1.2, four-gluon vertices have the color structure of two three-gluon vertices joined

by a propagator cabcd4 ∝ ∑ fabidijfdej so we can recover the color and propagator
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b

a

c

d

fabe f ecd +

b

a

c

d

f bce

f eda

+

b

a

c

d

f cae

f ebd

= 0

Figure 1.3: The Jacobi identity

structure of an amplitude with only trivalent graphs by multiplying and dividing

by the appropriate factor1.

The overall color factors ci = ∏
f ......f ... for each trivalent diagram obey Jacobi

identities which they inherit from the Jacobi identity for the structure constants

fabif icd + f caif ibd + f bcif iad = 0. (1.31)

This expression can be understood diagrammatically by permuting the four legs

that attach to every internal leg, which generate all the Jacobi identities for ci as

can be seen in Fig. (1.3).

1That we can write YM amplitudes purely in terms of trivalent graphs can also be seen by
introducing a non-dynamic antisymmetric auxiliary field that removes the 4 gluon vertex in the
Lagrangian

L4 = −g
2

4 (fabcAµbAνc)2 = −1
2B

aµνBaµν + i
g√
2
fabcBaµνA

µbAνc. (1.29)

We can now integrate out the B-field which can in practice be done by taking its equations of
motion as it has quadratic couplings at most

δL
δBaµν

= 0 = −Baµν + i
g√
2
fabcAµbAνc. (1.30)
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1.3.1 Numerators that obey BCJ

To solve the BCJ equations, we transform the numerators

ni → n′i = ni + ∆i (1.32)

so that they obey the Jacobi identities

j(n)α = n′i + n′j ± n′k = 0, (1.33)

while leaving the YM amplitude invariant

A(n′i) = gn−2∑

i∈Γ

cin
′
i

di
= A(ni). (1.34)

For this to happen, the shifts ∆i must obey the condition

∑

i∈Γ

ci∆i

di
= 0. (1.35)

Because we only allow transformations that leave the amplitude invariant (1.34)

we call (1.32) “generalized gauge transformations” by analogy with gauge trans-

formations that shift the gluon polarization vectors εµ(k)→ εµ(k) +λ kµ, leaving

the amplitude invariant. As a matter of fact, gauge transformations are a par-

ticular case of (1.32). The existence of these shifts is made possible precisely by

the Jacobi identities, which allow the shift in one diagram to be compensated

somewhere else.

The full color dressed amplitudes A can be written in terms of color ordered

partial amplitudes A(1, σ(2), . . . , σ(m)), where m is the number of legs of the
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amplitude

Am(ni) =
∑

Sm−1

Tr(T a1T aσ(2) . . . T aσ(m))A(1, σ(2), . . . , σ(m))(ni). (1.36)

Cyclicity of the trace means that we only have to sum over (m − 1)! partial

amplitudes. However, not all of these are independent: the Kleiss-Kuijf [41]

relations bring the number of these down to2 (m− 2)!. We can recast (1.34) into

equivalent equations for the partial amplitudes

A(1, σ(2), . . . , σ(m))(n′i) = A(1, σ(2), . . . , σ(m))(ni). (1.37)

The existence of a solution to both these set of equations (1.33) and (1.34) is

non-trivial. This is because not all the equations are independent which places

constraints on the partial amplitudes and implies that the size of the independent

set goes down to (m − 3)!. It has been in fact proven that these solutions exist

for tree amplitudes for any number of legs. However, no such proof exists at loop

level.

Although the initial proof of the existence of solutions to the BCJ equations

at tree level, using string theory monodromy arguments [42], and later proofs

using field theory [43], focused on the existence of solutions, more recent proofs

are more compelling as they exhibit the relation between these solutions and the

double copy more clearly. In particular, a generalized set of KLT relations have

been found [44] which relate closed string (gravitational) to open string (gauge)

amplitudes at tree level at all points:

Mm = −i4
m−3∑

σ

∑

γ,β

Sα′
[
γ(σ(2), . . . , σ(j − 1))

∣∣∣σ(2, . . . , j − 1)
]
k1

2 Alternatively, one could use the color stripped coefficients of the trivalent color factors,
after solving the Jacobi identities the remaining independent set has (m− 2)! members.
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× Sα′
[
β(σ(j), . . . , σ(m− 2))

∣∣∣σ(j, . . . ,m− 2)
]
k1

(1.38)

×Am(1, σ(2, . . . ,m− 2),m− 1,m)

×Am(γ(σ(2), . . . , σ(j − 1)), 1,m− 1, β(σ(j), . . . , σ(m− 2))),

where the “string” momentum kernel Sα′ is given by

Sα′ [i1, . . . , ik|j1, . . . , jk]p ≡ (πα′/2)−k
k∏

t=1
sin


πα′


p · kit +

k∑

q>t

θ(it, iq)kit · kiq




 .

(1.39)

Here, α′ is the string slope and θ(it, iq) equals 1 if the ordering of the legs it and

iq is opposite in the sets i1, ..., ik and j1, ..., jk, and 0 if the ordering is the same.

To make the connection with BCJ clear, note that the sum in (1.38) runs over

(m−3)! permutations as three of the legs are held fixed. This connection is made

explicit by the annihilation property of the kernel

∑

σ

Sα′
[
σ(2, . . . ,m− 1)

∣∣∣β(σ(2), . . . , σ(m− 1))
]
k1
An(n, σ(2, . . . ,m− 1), 1) = 0

(1.40)

which leaves an independent set of (m− 3)! partial amplitudes.

The proof of (1.38) and (1.40) has been carried out using the Britto, Cachazo,

Feng, and Witten (BCFW) [45] recursion relations inductively by assuming it is

true up to m − 1 legs, making a BCFW shift taking two reference legs, and

applying it to every amplitude in the identity. These identities all extend to field

theory in the limit α′ → 0 where the kernel takes the form

S[i1, . . . , ik|j1, . . . , jk]p ≡
k∏

t=1


s1it +

k∑

q>t

θ(it, iq)sitiq


 . (1.41)

As we have already mentioned, for loop-level amplitudes the existence of solu-

tions to the BCJ equations remains an open problem. Solutions have been found
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for up to four loop amplitudes at the integrand level but a proof of the existence

of these solutions is yet to be found. This is harder at loop level due to the dif-

ficulty of finding consistent labeling for the loop momenta between graphs that

are related by their Jacobi relations.

1.3.2 BCJ at loop level

So far we have established the relation between BCJ and KLT, and the constraints

that BCJ puts on YM amplitudes. However, it is at loop level where BCJ becomes

really useful as it allows us to construct graviton integrands from YM ones, which

is beyond the applicability of KLT. Furthermore, one finds that it is possible to

build graviton amplitudes with varying degrees of supersymmetry by combining

the numerators of different supersymmetric YM amplitudes.

For two super Yang-Mills theories F ,Y with number of supersymmetries N =

f and N = y respectively, M(F ,Y , n) is an n-point amplitude in N = f + y

supergravity (SUGRA)

M(N = f + y, n) = gn−2∑

i∈Γ

ni(N = f)ni(N = y)
di

, (1.42)

if at least one set of numerators obey the BCJ equations (both sets must obey

(1.34), but due to this last property, only one set has to obey (1.33)). This is

plausible by counting the physical states of the theories involved, and has been

explicitly confirmed for f = 4, y = 0, 1, 2, 3, 4 resulting inN = 4, 5, 6, 7, 8 SUGRA

amplitudes respectively [46]. We should point out that both f, y can be zero. In

this case the gravity theory is the field theory limit of the bosonic string with

a graviton, an anti-symmetric tensor and a dilaton. So far solutions for BCJ

numerators have been found at loop level for up to three loops.

Although a full proof for BCJ at loop level remains elusive, one can remarkably
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prove that if one can find a solution for the BCJ equations at loop level, the double

copy amplitude is a gravity amplitude. More importantly this proof works at the

integrand level, proceeds by induction and uses generalized unitarity [47] to factor

an n point gravity into products of lower multiplicity gravity amplitudes (explicit

proofs for m point amplitudes at one and two loops have been constructed [48,

49, 50]).
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Chapter 2

Perturbative Einstein-Hilbert

Coupled to Scalars and the

Regge Limit

2.1 Constructing Effective Vertices

In the present chapter we take a bottom-up approach and evaluate inelastic amp-

litudes at tree level both in Einstein-Hilbert gravity and QCD. We obtain ex-

pressions valid in general kinematics and then go to MRK to reproduce Lipatov’s

results both in gravity and QCD. Our computations are performed using conven-

tional Feynman rules, with the aid of computer algebra [51] in the much more

complicated case of gravity.

In Section 2.3 a five-point amplitude is evaluated in QCD with two pairs of

distinct quarks plus an emitted gluon. We split the contribution of the three-

gluon vertex into two pieces which, when added to the diagrams corresponding

to gluon emission from the same fermion line, generate an effective vertex which
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is gauge invariant. In this way the amplitude can be simply decomposed into the

sum of two topologies constructed with this effective vertex. The MRK limit of

this sum coincides with Lipatov’s gluon emission vertex. In Section (2.5) a sim-

ilar calculation is performed in the case of Einstein-Hilbert gravity, where now

the five-point amplitude consists of two pairs of distinguishable scalars and one

emitted graviton. Operating in de Donder gauge we write the result for the exact

amplitude in a Sudakov decomposition of the participating momenta. Similarly

to the QCD case, a new effective vertex appears which allows to write the amp-

litude as the sum of two gauge invariant topologies written in terms of it. This

simplification occurs only after noticing a novel and subtle partial cancellation

between the two diagrams containing the two-scalar - two-graviton vertex, and

splitting the three-graviton vertex into two different pieces. When taking the

MRK limit of the sum of these two new effective diagrams we recover Lipatov’s

results for the graviton emission vertex [23, 28, 29]. We take then the MRK limit

of our exact calculation to check that it can indeed be written as the square of

the QCD gluon emission vertex previously calculated, plus a contribution needed

to keep consistency with the Steinmann relations. This structure is deeply con-

nected to the proposal that gravity can be understood as a “double copy” of a

gauge theory (see e.g. [52] for a review on the subject).

2.2 Feynman rules for perturbative quantum grav-

ity

In Chapter 1 we discussed how to make a perturbative expansion for quantum

gravity, here we will introduce the calculation of the Feynman rules we use to

calculate our amplitudes. Let us remark that we wil derive what, as far as we
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know, is the simplest form for the three-graviton vertex. To write the scalar-

graviton vertices we expand:

√
|g|gµν =

(
1 + κ

h

2 + κ2

8
(
h2 − 2Tr(h · h)

)) (
ηµν − κ hµν + κ2(h · h)µν

)
+O

(
κ3
)

= ηµν + κ

(
ηµν

h

2 − h
µν

)

+ κ2

2

(
2(h · h)µν − hhµν + ηµν

(
h2

4 −
1
2Tr(h · h)

))
+O

(
κ3
)
, (2.1)

from which we can obtain the two-scalar - one-graviton contribution

1
2κ

((
ηµν

h

2 − h
µν

)
∂µφ∂νφ−m2φ2h

2

)
(2.2)

with its corresponding Feynman rule

↗ p

↘ q

← k
αβ =⇒ − iκ2 (pµqν + pνqµ)

(
−ηµαηνβ + 1

2η
µνηαβ

)
. (2.3)

Similarly the two-scalar - two-graviton term gives

1
4κ

2
((

2(h · h)µν − hhµν + ηµν
(
h2

4 −
1
2Tr(h · h)

))
∂µφ∂νφ

)
, (2.4)

whose vertex is

↗ p

↘ q

αβ

σλ

=⇒ −iκ
2

4 (pµqν + pνqµ)
(
IαβρζIσλδγ + IαβδγIσλρζ

)

×
[
2ηγνηζδηµρ − ηγνηµδηρζ + ηµν

(
−1

2η
ζγηρδ + 1

4η
δγηρζ

)]
, (2.5)
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where we have introduced the symmetrizer

Iαβ;γδ = 1
2

(
ηαγηβδ + ηαδηβγ

)
. (2.6)

The scalar propagator is just given by

p→ =⇒ i

p2 + iε
. (2.7)

For the graviton propagator and three-graviton vertex we use the following iden-

tity ([53]):

√
|g|R[g] =

√
|g|gµν

(
ΓαµβΓβνα − ΓαµνΓ

β
αβ

)
+ total derivatives, (2.8)

where

Γλµν = 1
2g

λρ (∂νgρµ + ∂µgρν − ∂ρgµν) . (2.9)

We use the canonical de Donder or harmonic gauge fixing condition

F λ(h) = ∂αh
αλ − ∂λh

2 = 0, (2.10)

which is covariant and among its nice properties has that ghosts in the Faddeev-

Popov formalism do not feature at tree level due to its linearity. Using this

condition and integration by parts repeatedly we get the following expression for

the quadratic part

Lgrav,free,gf = 1
2hµν

−1
4
(
ηµαηνβ + ηναηµβ − ηµνηαβ

)
∂2hαβ
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= 1
2hµν

−1
4 Dµν;αβ∂2hαβ. (2.11)

To obtain the propagator we have to invert this, using D−1
µν;αβ = 2Dµν;αβ

p→αβ σλ =⇒ i

p2 + iε

(
ηασηβλ + ηαληβσ − ηαβησλ

)
. (2.12)

For the three-graviton vertex we obtain eight combinatorially distinct terms by

repeatedly using the de Donder condition and integration by parts:

√
|g|R[g]

∣∣∣∣
3gvertex

= −1
4 hab∂ah

cd∂bhcd + 1
8h

a
a∂bh

de∂bhde

+ −1
2 hab∂bha

c∂ch
d
d + −1

2 habηcd∂cha
e∂dhbe

+ 1
4h

abηcd∂chab∂dh
e
e + hab∂bhcd∂

dha
c

+ 1
2h

ab∂chbd∂
dha

c + −1
4 haa∂chbd∂

dhbc. (2.13)

This is an important result because as far as we know, it is the simplest form

for this vertex in the literature (compare, e.g., with [54] where it is claimed that

eleven is probably the smallest number of terms in this gauge).

↗ p

↘ q

← k

γδ

µν

αβ =⇒ iκ
(
pσqλIµνζξIγδ ρχIαβτυ + pλqσIγδ ζξIµνρχIαβτυ

+ kσqλIµνζξIαβρχIγδ τυ + kλqσIαβζξIµνρχIγδ τυ

+ kσpλIγδ ζξIαβρχIµντυ + kλpσIαβζξIγδ ρχIµντυ
)

× G λ;ζξ;σ;ρχ;τυ, (2.14)
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where the last factor, given by

G λ;ζξ;σ;ρχ;τυ = −1
2η

ζτηλχηξσηρν − 1
4η

ζτηλσηξνηρχ + 1
4η

ζσηλχηξρητν − 1
8η

ζρηλσηξχητν

− ηζχηλρηξνητσ + 1
2η

ζτηλσηξρηχν + 1
4η

ζρηλνητσηχξ + 1
2η

ζξηλρησνηχτ ,

(2.15)

captures all the physical information of the eight terms in the vertex whereas

the remaining terms just perform symmetrizations. When the vertex is fully

expanded it contains 3!× 23 × 8 = 384 terms.

2.3 Quark-quark scattering with gluon emission

Before we write down the calculations for gravity we will start with a QCD

calculation for comparison. We start by describing in this section the scattering

at tree level of two distinct quarks with the emission of a gluon in the final state.

Our notation for the different momenta reads

Q(p, j) +Q′(q, n) −→ Q(p′, i) +Q′(q′,m) + g(k, a), (2.16)

where j, n, i,m denote the (fundamental representation) gauge indices of the in-

coming and outgoing quarks and a the index of the outgoing gluon. At leading

order in the strong coupling constant, g, five diagrams contribute to the total

amplitude:

M ≡

(q, n) (q′,m)

(p, j) (p′, i)

(k, a) +

(q, n) (q′,m)

(p, j) (p′, i)

(k, a)
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+

(q, n) (q′,m)

(p, j) (p′, i)

(k, a) +

(q, n) (q′,m)

(p, j) (p′, i)

(k, a)

+

(q, n) (q′,m)

(p, j) (p′, i)

(k, a) (2.17)

whose respective contributions we denote by

M = M1 +M2 +M3 +M4 +M5. (2.18)

The evaluation of the individual diagrams gives the result [55]

M1 = − g
3

2t′u(p′)ε/T aik
p/′ + k/

p′ · k γ
µT bkju(p)u(q′)γµT bmnu(q), (2.19)

M2 = g3

2t′u(p′)γµT bik
p/− k/
p · k ε/T

a
kju(p)u(q′)γµT bmnu(q), (2.20)

M3 = −g
3

2tu(p′)γµT biju(p)u(q′)ε/T amk
q/′ + k/

q′ · k γµT
b
knu(q), (2.21)

M4 = g3

2tu(p′)γµT biju(p)u(q′)γµT bmk
q/− k/
q · k ε/T

a
knu(q), (2.22)

M5 = −ig
3

tt′
u(p′)γµT ciju(p)u(q′)γνT bmnu(q)f cba

×
[
(p− p′ − q + q′) · ε ηµν + (q − q′ + k)µεν + (p′ − k − p)νεµ

]
, (2.23)

where

t = (p− p′)2, t′ = (q − q′)2. (2.24)
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Following [56], we decompose the amplitude into two sets

M↑ = M1 +M2 +M ′
5, M↓ = M3 +M4 +M ′′

5 , (2.25)

where

M ′
5 = t

t− t′M5, M ′′
5 = t′

t′ − tM5. (2.26)

The full amplitude is then written as

M = M↑ +M↓. (2.27)

What makes this decomposition interesting is that M↑ and M↓ are gauge

invariant separately. Indeed, replacing the external polarization εµ(k) by kµ we

find that, after some algebra,

M1 +M2 −→ −
ig3

t′
fabcT cijT

b
mnu(p′)γµu(p)u(q′)γµu(q), (2.28)

whereas

M ′
5 −→

ig3

t′(t− t′)k · (p− p
′ − q + q′)fabcT cijT bmnu(p′)γµu(p)u(q′)γµu(q). (2.29)

When momentum conservation is imposed this last term cancels Eq. (2.28) and

leads to the partial Ward identity

kµM
µ
↑ = 0, (2.30)

where the notation M↑ ≡ εµ(k)Mµ
↑ has been used. A similar treatment of the
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second combination of diagrams generates the Ward identity

kµM
µ
↓ = 0. (2.31)

The main advantage of combining Feynman diagrams into these gauge invari-

ant contributions is that it allows to fix the polarization of the emitted gluons

independently for each of them, reducing the number of cross terms when eval-

uating higher order amplitudes by means of unitarity relations. In the present

work the existence of these two gauge invariant combinations offers the possibil-

ity to define effective vertices which can, eventually, be obtained from a suitable

effective action valid for general kinematics. In order to extract these vertices

from our representation of the amplitude we write the two subamplitudes as

M↑ =
[
εν(k)u(p′)Λµ,ν

ij;c,a(p, p′, k)u(p)
] −iηµσδcb

t′

[
u(q′)gγσT bmnu(q)

]
, (2.32)

M↓ =
[
u(p′)gγµT ciju(p)

]−iηµσδcb
t

[
εν(k)u(q′)Λσ,ν

ij;b,a(q, q′, k)u(q)
]
, (2.33)

where Λµ,ν
ij;a,b(p, p′, k) is given by

Λµ,ν
ij;d,a = −ig

2

2 T aikT
d
kjγ

ν p/
′ + k/

p′ · k γ
µ + ig2

2 T dikT
a
kjγ

µp/− k/
p · k γ

ν (2.34)

− g2

2k · (p− p′)f
adcT cijγ

α
[
(2p− 2p′ − k)ν δµα + (p′ − p+ 2k)αηµν + (p′ − p− k)µδνα

]
.

By construction it satisfies the gauge Ward identity

kνΛµ,ν
ij;a,b(p, p′, k) = 0. (2.35)

In writing this effective vertex a notation stressing the nonequivalence of the

indices has been used. Its non-locality is manifest by the presence of momenta in
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the denominators. Diagrammatically, we represent it by

Λµ,ν
ij;a,b(p, p′, k) =

p p′

a, ν, k

b, µ, p′ − p− k

(2.36)

where it should be kept in mind that, by definition, three of the four legs in the

vertex (those labeled by p, p′ and k) are on-shell, p2 = p′2 = k2 = 0. The process

QQ′ → QQ′g at tree level can thus be represented in terms of just two Feynman

diagrams, each containing a single effective vertex, i.e.

M =

q q′

p p′

k +

q q′

p p′

k (2.37)

This decomposition of the amplitude in terms of two topologies with a single

non-local effective vertex is exact, i.e. independent of the particular kinematical

regime considered.

2.4 Multi-Regge kinematics

The expression for our effective vertex simplifies when restricting the amplitudes

to MRK, where the limit s = (p+q)2 →∞ is taken while the momentum transfers

t and t′ are kept fixed, i.e. not growing with energy. These conditions translate
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into the constraints

s� sp′k, sq′k � t ∼ t′, (2.38)

where sp′k = (p′ + k)2 and sq′k = (q′ + k)2. This generalizes the standard Regge

limit in four-point amplitudes to the case of five-point amplitudes.

As we have already discussed in the introduction to this thesis, it is convenient

to introduce the momenta k1 and k2 to write

p′ = p− k1, q′ = q + k2, k = k1 − k2 (2.39)

and express them using the Sudakov parametrization of the form

kµ1 = α1p
µ + β1q

µ + kµ1,⊥, kµ2 = α2p
µ + β2q

µ + kµ2,⊥, (2.40)

where p2 = q2 = p · ki,⊥ = 0. In terms of the Sudakov parameters α1,2 and β1,2

the multi-Regge limit reads

1� α1 � α2 = −t
′

s
, 1� |β2| � |β1| =

−t
s
, (2.41)

which, for the emitted gluon, implies that

kµ ' sq′k
s
pµ1 + sp′k

s
pµ2 + kµ⊥, k2 ' sp′ksq′k

s
+ k2

⊥ = 0. (2.42)

An alternative way of looking at the limit (2.41) is to consider that it is

controlled by a counting parameter δ. This is because it should be understood
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that ratios of neighboring Sudakov variables are of the same order

α2

α1
= O(δ) = β1

β2
. (2.43)

This can be achieved by rescaling the Sudakov parameters

αi −→ δiαi,

βi −→ δ3−iβi. (2.44)

Under this rescaling, MRK is given by expanding in powers of δ and keeping the

lowest term.

The MRK limit, taken on the different contributions to the total amplitude,

gives the following expression for the effective vertex in Eq. (2.36):




p p− k1

a, ν, k1 − k2

b, µ, k2




∣∣∣∣∣∣∣∣∣∣
MRK

(2.45)

= 2g2

t− t′f
abcT cijp

µ

[(
α1 − 2t− t

′

sβ2

)
pν + β2q

ν − (k1 + k2)ν⊥
]
.

According to Eqs. (2.32) and (2.33), to use the effective vertex in the second

diagram in (2.37) one needs to replace pµ → qµ and p′µ → q′µ, with kµ unchanged.

In terms of the momenta and Sudakov variables appearing in the MRK vertex

(2.46), this amounts to

pµ ←→ qµ, α1 ←→ −β2, kµ1⊥ ←→ −kµ2⊥. (2.46)
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To recover Lipatov’s Reggeized gluon - Reggeized gluon - gluon effective vertex

at leading order in MRK we simply add the contributions of M↑ and M↓ in this

limit. Diagrammatically




q q′

p p′

k +

q q′

p p′

k




∣∣∣∣∣∣∣∣
MRK

=

q′

k

p′

q

p

, (2.47)

where the last effective Feynman diagram is given by

M = εν(k1 − k2)
(

2gpµT cij
)(−i

t

)
f cabΓνµσ

(−i
t′

)(
2gqσT bmn

)
, (2.48)

with

Γνµσ = igηµσ

[(
α1 −

2t
sβ2

)
pν +

(
β2 −

2t′
sα1

)
qν − (k1 + k2)ν⊥

]
. (2.49)

This effective vertex is universal in the sense that it is independent of the nature

of the external particles to which it couples. We have chosen two distinct quarks

for simplicity, but it would be the same for only external gluons, for example. We

follow a similar logic for the gravitational Einstein-Hilbert theory in the following

section.
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2.5 Scalar-scalar scattering with graviton emis-

sion

To minimize the number of contributing Feynman diagrams, in this section we

analyze the gravitational scattering of two distinct scalars Φ,Φ′ with the emission

of a graviton in the final state with polarization εµν(k):

Φ(p) + Φ′(q) −→ Φ(p′) + Φ′(q′) +G(k, ε). (2.50)

We proceed with the calculation of the corresponding amplitude using algebraic

codes [51] when expressions are lengthy. A novel exact effective vertex will be

obtained whose MRK limit will coincide with the one calculated by Lipatov in

his works on gravity. Our exact vertex for graviton emission depends on the

particular choice of external particles while its MRK limit is universal. The tree-

level amplitude involves the computation of seven Feynman diagrams:

M ≡

q q′

p p′

(k, ε) +

q q′

p p′

(k, ε)

+

q q′

p p′

(k, ε) +

q q′

p p′

(k, ε)

+

q q′

p p′

(k, ε) +

q q′

p p′

(k, ε)
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+

q q′

p p′

(k, ε) (2.51)

In the following we denote byMi (with i = 1, . . . , 7) the contribution of each of

these diagrams which we have calculated using the Feynman rules listed above.

In order to recast the long expressions in a more convenient way, we introduce

the momenta k1 and k2 defined in Eq. (2.39) and make use again of the Su-

dakov parametrization (2.40). Moreover, the graviton polarization tensor εµν(k)

is written as

εµν(k) = εµ(k)εν(k), (2.52)

where ε(k) · ε(k) = 0 and k · ε(k) = 0. Using the last condition to write

ε · k1⊥ = ε · k1⊥ −
1
2ε · k

= 1
2

[
ε · (k1⊥ + k2⊥)− (α1 − α2)ε · p− (β1 − β2)ε · q

]
, (2.53)

ε · k2⊥ = ε · k2⊥ + 1
2ε · k

= 1
2

[
ε · (k1⊥ + k2⊥) + (α1 − α2)ε · p+ (β1 − β2)ε · q

]
, (2.54)

the total amplitudeM can be shown to have the structure

M = [ε · (k1⊥ + k2⊥)][ε · (k1⊥ + k2⊥)]Akk + [ε · (k1⊥ + k2⊥)](ε · p)Akp

+ [ε · (k1⊥ + k2⊥)](ε · q)Akq + (ε · p)(ε · p)App + (ε · q)(ε · q)Aqq

+ (ε · p)(ε · q)Apq. (2.55)
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The six coefficients Aii appearing in this expression are rational functions of the

momenta whose explicit form is given in Appendix A. The results are independent

of the center of mass energy s = (p + q)2 and can be written solely in terms of

the Sudakov variables α1,2, β1,2.

Before proceeding any further, we should point out that the computed amp-

litude is gauge invariant, i.e. using momentum conservation we have

kµMµν = 0 = kνMµν , (2.56)

where we have writtenM = εµνMµν . As a further cross-check of our calculations,

we note that the total amplitude also satisfies the Steinmannn relations [57].

These are a consequence of unitarity and state that the amplitude cannot have

simultaneous singularities, or multiple poles in energy variables, in overlapping

channels. In our case the invariant masses associated with these two channels are

sp′k = (p′ + k)2, sq′k = (q′ + k)2, (2.57)

which, in terms of the Sudakov variables, take the form

sp′k = −s(α2 + β2), sq′k = s(α1 + β1). (2.58)

In a preliminary version of the expressions in Section A.1 it turned out that all six

coefficients Aii contained the potentially dangerous combination (α1 + β1)(α2 +

β2) in their denominators. We explicitly checked, however, that the numerators

vanish either when α1 → −β1 or α2 → −β2, canceling out one of the factors in

the denominator and leaving behind simple poles in sp′k or sq′k. We have finally

simplified our expressions to explicitly show the non-existence of these unphysical

poles. This fulfillment of Steinmann relations provides a highly nontrivial test of
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our results.

As in the QCD case analyzed above, our aim is to decompose the total amp-

litude in terms of gauge invariant combinations. Here we define

M↑ =M1 +M2 +M′ and M↓ =M4 +M5 +M′′, (2.59)

where

M′ = t

t− t′
(
M3 +M7

)
, M′′ = t′

t′ − t
(
M6 +M7

)
. (2.60)

The total amplitude can be written as

M =M↑ +M↓ +
(

t′

t′ − tM3 + t

t− t′M6

)
. (2.61)

Remarkably, after a long calculation one can show that the last term cancels

t′

t′ − tM3 + t

t− t′M6 = 0. (2.62)

To qualitatively understand this result we notice that both the scalar-scalar-

graviton and scalar-scalar-graviton-graviton vertices given earlier (2.2) are pro-

portional to the same kinematical factor pµqν + pνqµ. After working out all the

index contractions in M3 and M6 it is possible to find that the only difference

in the contributions of these two diagrams lies in the denominator of the inter-

changed graviton. Diagrammatically,

t′ ×




q q′

p p′

(k, ε)




= t×




q q′

p p′

(k, ε)



, (2.63)
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from where the cancellation in Eq. (2.62) follows.

We conclude that the amplitude can be written only in terms of the two

contributions shown in Eq. (2.59)

M =M↑ +M↓, (2.64)

where each of the partial amplitudes M↑, M↓ have the structure shown in

Eq. (2.55). Their corresponding coefficients are given in Appendix A.2. What

makes this decomposition interesting is that both terms on the right-hand side

are gauge invariant independently, i.e. they satisfy the Ward identities

kµMµν
↑ = 0, kµMµν

↓ = 0, (2.65)

whereM↑ ≡ εµνMµν
↑ andM↓ ≡ εµνMµν

↓ . As in the gauge theory case analyzed

above, we can write the two gauge invariant contributions in terms of an effective

vertex for the interaction of two on-shell scalars with one on-shell and one off-shell

gravitons. The pictorial representation would be:

M↑ =

q q′

p p′

(k, ε) M↓ =

q q′

p p′

(k, ε)(2.66)

We find this result very interesting and are currently investigating the gener-

alization of these effective diagrams to higher point amplitudes. If any iterative

structure for higher order effective vertices could be found it would drastically

36



help simplify loop calculations in Einstein-Hilbert gravity when using unitarity

techniques.

2.6 Gravity as a double copy of QCD in multi-

Regge kinematics

We are now ready to address a very interesting point which has attracted quite

a lot of attention in recent literature: in which sense are our effective vertices in

gravity and QCD related? It is not possible for us to answer this question directly

in general kinematics since, in order to simplify our calculations, we have operated

with very particular external states, scalars in Einstein-Hilbert and quarks in

QCD. This issue has been discussed by Bern and collaborators in a series of

works mainly involving the mapping of amplitudes with only gluons in one side

and only gravitons in the other [52, 36, 58, 37]. We can, however, investigate our

scattering amplitudes in multi-Regge kinematics and try to reproduce the results

by Lipatov [23, 28, 29] where he found that the gluon and graviton emission

vertices in MRK are indeed related as described in the following.

Let us make use of the relations k2
1 = β1s = t and k2

2 = −α2s = t′ to rewrite

the QCD MRK effective vertex of Eq. (2.49) in the form

Γνµσ = igηµσ

[(
α1 −

2β1

β2

)
pν +

(
β2 + 2α2

α1

)
qν − (k1 + k2)ν⊥

]
≡ igηµσΩν . (2.67)

When looking for gravity as a simple double copy of the gauge theory amplitudes

we find a difficulty in MRK. In this region, which corresponds to the limit of

Sudakov parameters described in Eq. (2.41), we have that sp′k = − (α2 + β2) s '
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−β2s and sq′k = (α1 + β1) s ' α1s, and can write

Ων '
(
sq′k
s

+ 2k2
1

sp′k

)
pν −

(
sp′k
s

+ 2k2
2

sq′k

)
qν − (k1 + k2)ν⊥. (2.68)

It is important to notice that, when written in this form, the naive double copy

ΩµΩν has explicit unphysical double poles of the form (sp′ksq′k)−1 which corres-

pond to simultaneous energy discontinuities in overlapping channels. The solu-

tion proposed by Lipatov was to introduce a subtraction term in order to fulfill

Steinmann relations which reads

N µ = 2
√
k2

1k
2
2

(
pµ

sp′k
− qµ

sq′k

)
' −2i

√
β1α2

(
pµ

β2
+ qµ

α1

)
, (2.69)

with the corresponding double copy being

N µN ν ' −4β1α2

(
pµpν

β2
2

+ qµqν

α2
1

+ pµqν + qµpν

α1β2

)
. (2.70)

What Lipatov showed is that the effective vertex for the emission of a graviton

in Einstein-Hilbert gravity can be written in MRK as the following combination

of QCD MRK effective vertices:

ΩµΩν −N µN ν = (k1 + k2)µ⊥(k1 + k2)ν⊥ +


(
α1 −

2β1

β2

)2

+ 4β1α2

β2
2


 pµpν

+
[(
β2 + 2α2

α1

)2
+ 4β1α2

α2
1

]
qµqν (2.71)

+
[(
α1 −

2β1

β2

)(
β2 + 2α2

α1

)
+ 4β1α2

α1β2

]
(pµqν + qµpν)

−
(
α1 −

2β1

β2

)
(pµkν + kµpν)−

(
β2 + 2α2

α1

)
(qµkν + kµqν) .

Let us see if this complicated structure is present in our exact calculations. For
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this purpose it is needed to find the corresponding coefficients in the expansion

of our Eq. (2.55) which now we write in the form

Mµν = (k1 + k2)µ⊥(k1 + k2)ν⊥ +App pµpν +Aqq qµqν +Apq (pµqν + qµpν)

+ Akp (pµkν + kµpν) +Akq (qµkν + kµqν) , (2.72)

where1 Aii = Aii/Akk.

Using the results for the exact gravitational amplitude given in the Appendix

and operating in the MRK of Eq. (2.41), the Taylor series expansion of each of

the coefficients in Eq. (2.72) is as follows:

App = α2
1 +O

(
α3

1

)
+ β1

[
−4α1

β2
+ 4α2

1
β2

+O
(
α3

1

)]

+ β2
1

[
4
β2

2
− 12α1

β2
2

+ 8α2
1

β2
2

+O
(
α3

1

)]
+O

(
β3

1

)

+ α2



− 2α1 +O

(
α3

1

)
+
[

8β2 + 4
β2

2
− (8β2 + 4)α1

β2
2

+O
(
α3

1

)]
β1

+
[

4 (β2 + 1)
β2

2α1
+ 4− 8β2

2
β3

2
+ 4α1

β2
− 4 (β2 + 1)α2

1
β3

2
+O

(
α3

1

)]
β2

1 +O
(
β3

1

)




+O
(
α2

2

)
' α2

1 −
4α1β1

β2
+ 4β2

1
β2

2
+ 4α2β1

β2
2

+ . . . (2.73)

Aqq = β2
2 +O

(
β3

2

)
+ β1

[
−2β2 +O

(
β3

2

)]
+O

(
β2

1

)

+ α2





4β2

α1
+ 4β2

2
α1

+O
(
β3

2

)
+
[

4− 8α1

α2
1

+ (4− 8α1) β2

α2
1

+O
(
β3

2

)]
β1

+O
(
β2

1

)


+ α2

2





4
α2

1
+ 12β2

α2
1

+ 8β2
2

α2
1

+O
(
β3

2

)

1The process dependent impact factors can be evaluated from the MRK limit of the nor-
malization factor Akk.
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+
[

4− 4α1

α2
1β2

+ 4− 8α2
1

α3
1
− 4β2

α1
+ 4 (α1 − 1) β2

2
α3

1
+O

(
β3

2

)]
β1 +O

(
β2

1

)




+O
(
α3

2

)
' β2

2 + 4α2β2

α1
+ 4α2β1

α2
1

+ 4α2
2

α2
1

+ . . . (2.74)

Apq = α1β2 +O
(
β2

2

)
+ (α1 − 2) β1 +O

(
β2

1

)

+ α2
[
2 + β2 +O

(
β2

2

)
+ β1 +O

(
β2

1

)]
+O

(
α2

2

)

' α1β2 − 2β1 + 2α2 + . . . (2.75)

Akp = −α1 + β1

[
2− 2α1

β2
+O

(
β2

2

)
+O

(
β2

1

)]
+O

(
α1

2

)

' −α1 + 2β1

β2
+ . . . (2.76)

Akq = −β2 +O
(
β2

2

)
+O

(
β1

1

)
+ α2

[
− 2
α1
− 2β2

α1
+O

(
β2

2

)
+O

(
β1

1

)]
+O

(
α2

2

)

' −β2 −
2α2

α1
+ . . . (2.77)

These coefficients calculated in MRK are therefore in exact agreement with those

of Eq. (2.71). This is a highly non-trivial check of our calculation which sheds

light on the deep relation between Einstein-Hilbert gravity and gauge theories.

The procedure we have followed in this work to cross-check our calculations

can be applied to amplitudes with an arbitrary number of loops and external

legs. We have found that the representation of the exact amplitudes in Sudakov

variables facilitates the application of the MRK limit and the comparison with the

iterated form of amplitudes valid in this region. This adds to the more standard

checks related to gauge invariance and agreement with the Steinmann relations.
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In this chapter we have evaluated the tree level five-point amplitude for the

scattering of two distinct scalars with a graviton in the final state considering

Einstein-Hilbert gravity as a usual gauge theory. The calculation has been per-

formed in exact kinematics with the final result expressed in Sudakov variables.

We have tested not only the gauge invariance of the full amplitude but also

the lack of simultaneous singularities in overlapping channels, in agreement with

Steinmann relations.

We have found the remarkable result that, due to the subtle cancellation

shown in Eq. (2.62), the full amplitude can be written as the sum of only the two

gauge invariant topologies given in Eq. (2.66), both written in terms of the same

effective vertex for graviton emission off a scalar line together with an off-shell

graviton connecting with the other distinct scalar line. A natural expansion for a

general five-point amplitude in gravity is given in Eq. (2.55) with the coefficients

for our full result being shown in Section A.1. The coefficients for the separation

into our two novel effective topologies are explicitly written in Section A.2. This

new structure in terms of effective vertices will be useful to simplify and streamline

the calculation of higher order corrections in gravity, reducing in a great amount

the number of possible topologies contributing to a given process. It is likely

that new effective topologies will appear as the number of external legs in the

amplitude increases. The possible relations of the new effective vertices with the

lower order ones will be the subject of our future investigations.

In order to investigate the interesting link between gravity and gauge theories

we have also offered a detailed derivation of the QCD amplitude with four external

quarks and one gluon. In this case a similar separation into effective topologies

as in Einstein-Hilbert gravity appears. We have reproduced the results obtained

by Lipatov many years ago [23, 25, 28, 29] by showing that the graviton emission

vertex in multi-Regge kinematics can be written as the product of two gluon
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emission vertices in QCD also in the same limit, with an additional subtraction

needed to fulfill the Steinmann relations.
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Chapter 3

Color-Kinematics Duality and

Scalar QCD

3.1 Extending the BCJ prescription

As explained in Chapter 1, a surprising relation between gluon and graviton

amplitudes, dubbed color-kinematics duality, has been found by Bern, Carrasco,

and Johansson (BCJ) [35] (see also [36, 38, 37, 39, 40]). Here we remind the

reader of the main features of this duality, introducing the notation to be used in

this chapter.

The tree-level n-gluon amplitudes have the general structure

A(1, . . . , n)tree = gn−2∑

i∈Γ

CiNi∏
α sα

, (3.1)

where the sum runs over all Feynman diagram topologies Γ, Ci are their color

factors, Ni the corresponding numerators, and sα the kinematic invariants asso-

ciated to the internal propagators of each diagram. Choosing the phases of the
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color factors properly, they satisfy Jacobi identities of the form

Ci + Cj + Ck = 0 (3.2)

for certain triplets of indices (i, j, k).

The amplitude (3.1) is invariant under generalized gauge transformations [35,

38] shifting the numerators in the form Ni → Ni + ∆i, where ∆i are functions of

the momenta satisfying

∑

i∈T

Ci∆i∏
α sα

= 0. (3.3)

These are generalizations of the standard gauge transformations shifting the gluon

polarization vectors εµ(k)→ εµ(k)+λ kµ, with λ being a function of the momenta.

This new freedom can be used to choose the numerators Ni such that they rep-

licate the Jacobi identities of the corresponding color factors shown in Eq. (3.2),

namely

Ni +Nj +Nk = 0, (3.4)

for the same triplets (i, j, k). The numerators obtained by the direct application of

the Feynman rules in QCD do not fulfill these BCJ duality relations. In Ref. [38]

a nonlocal action for the gluon field was constructed whose Feynman rules give

numerators satisfying (3.4) for the five gluon tree-level amplitude.

Color-kinematics duality provides a prescription to construct the amplitude

for the tree-level scattering of n gravitons from two copies of the tree-level amp-
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litude of n gluons as [35]

−iM(1, . . . , n)tree =
(
κ

2

)n−2∑

i∈Γ

NiÑi∏
α sα

. (3.5)

Here Ni, Ñi are two replicas of the numerators of the gauge theory amplitude

(3.1), one of them at least, satisfying the BCJ duality relations (3.4), and κ the

gravitational coupling. This hidden connection between gauge theories and grav-

ity amplitudes is very remarkable since, unlike the KLT relations, it is expected

to hold also for loop amplitudes before integration over the loop momenta.

Whenever possible it is important to test the validity of this intriguing duality.

Different kinematic limits of scattering amplitudes either in gauge or gravitational

amplitudes are known which can serve as a test ground for the BCJ procedure.

One recent example is the soft limit investigated in [59]. In Chapter 3 we focused

on the multi-Regge limit, which is well understood both in the gauge [20, 21, 22]

and gravitational sides [25, 23, 28, 29, 60, 24].

At loop level, N -supergravity amplitudes have been constructed from those

of Yang-Mills theories even in the case of non-maximally supersymmetric theor-

ies [61]. In [60] it has been shown that the four-graviton amplitudes at two loops

calculated using the BCJ duality for N ≥ 4 generate the correct Regge limit even

at double logarithmic (in energy) accuracy, which goes beyond the well-known

exponentiation of infrared divergences. In the same work predictions have been

made for graviton scattering in all supergravities and Einstein-Hilbert gravity to

arbitrary order in the gravitational coupling which should serve as a good test of

the color-kinematics duality at higher orders.

In Chapter 2 of this thesis we have carried out a study of exact inelastic

amplitudes both in QCD and Einstein-Hilbert gravity [24]. Using a representation

in Sudakov variables, we were able to reproduce the results of Lipatov for the
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emission of a graviton in MRK. It turns out that this limit can be related to that

of gluon production in QCD and an interesting double-copy structure emerges.

In what follows we investigate the color-kinematics duality in sQCD by studying

the scattering of two distinct scalars with the associated emission of a gluon in

MRK, in this way it is possible to understand which pieces are somehow universal

in the Regge limit and which ones are dependent on the matter content of the

gauge theory when applying the BCJ procedure [62].

3.2 sQCD and color-kinematics duality

Our starting point is the tree-level contribution to the scattering of two distin-

guishable massless scalar particles with the emission of one gluon in sQCD

Φ(p, j) + Φ′(q,m) −→ Φ(p′, i) + Φ(q′, i) + g(k, a, ε), (3.6)

where in brackets we indicated the momenta and color quantum numbers of the

involved particles, as well as the polarization vector in the case of the gluon. We

choose this amplitude in order to reduce the number of diagrams to be calculated

and to understand how the BCJ procedure fails when in the external states we

not only have gluons but also scalar fields. The amplitude receives contributions

from the following seven diagrams

A ≡

(q, n) (q′,m)

(p, j) (p′, i)

(k, a) +

(q, n) (q′,m)

(p, j) (p′, i)

(k, a)
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+

(q, n) (q′,m)

(p, j) (p′, i)

(k, a) +

(q, n) (q′,m)

(p, j) (p′, i)

(k, a)

+

(q, n) (q′,m)

(p, j) (p′, i)

(k, ε) +

(q, n) (q′,m)

(p, j) (p′, i)

(k, a)

+

(q, n) (q′,m)

(p, j) (p′, i)

(k, a) (3.7)

and has the general structure

A = g3
(
C1N1

t′sp′k
+ C2N2

t′spk
+ C3N3

t′
+ C4N4

tsq′k
+ C5N5

tsqk
+ C6N6

t
+ C7N7

tt′

)
, (3.8)

where the numbering corresponds to the order in which the diagrams appear in

Eq. (3.7). In writing the amplitude we have introduced the following kinematic

invariants

t = (p− p′)2,

t′ = (q − q′)2,

spk = (p+ k)2,

sp′k = (p′ + k)2, (3.9)

sqk = (q + k)2,
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sq′k = (q′ + k)2,

and color factors

C1 = T aikT
b
kjT

b
mn,

C2 = T bikT
a
kjT

b
mn,

C3 = T aikT
b
kjT

b
mn + T bikT

a
kjT

b
mn,

C4 = T bijT
a
mkT

b
kn, (3.10)

C5 = T bijT
b
mkT

a
kn,

C6 = T bijT
a
mkT

b
kn + T bijT

b
mkT

a
kn,

C7 = ifabcT bijT
c
mn,

with T aij being the generators of the representation in which the scalar fields

transform. They satisfy the Jacobi-like identities

C1 − C2 + C7 = 0,

C1 + C2 − C3 = 0,

C4 − C5 − C7 = 0, (3.11)

C4 + C5 − C6 = 0.

Applying the Feynman rules1 of sQCD, we find the following form for the numer-

ators Ni

N1 = 2i[(p+ p′ + k) · (q + q′)][p′ · ε(k)],

N2 = −2i[(p+ p′ − k) · (q + q′)][p · ε(k)],

1See, e.g., [63]. Notice, however, that in the conventions of this reference the gauge group
generators are anti-Hermitian, whereas we take them Hermitian.
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N3 = −i(q + q′) · ε(k),

N4 = 2i[(q + q′ + k) · (p+ p′)][q′ · ε(k)], (3.12)

N5 = −2i[(q + q′ − k) · (p+ p′)][q · ε(k)],

N6 = −i(p+ p′) · ε(k),

N7 = −i
{

[(q + q′) · (p− p′ + k)][(p+ p′) · ε(k)]

+ [(p+ p′) · (q + q′)][(p′ − p− q′ + q) · ε(k)]

+ [(p+ p′) · (q′ − q − k)][(q + q′) · ε(k)]
}
.

These numerators do not satisfy the BCJ duality relations derived from Eq. (3.11)

and are therefore not ready to apply the color-kinematic duality prescription. The

generalized nonlocal gauge transformation

N ′1 = N1 + sp′k

(
N3 −

N7

2t

)
,

N ′2 = N2 + spk

(
N3 + N7

2t

)
,

N ′3 = N3,

N ′4 = N4 + sq′k

(
N6 + N7

2t′
)
, (3.13)

N ′5 = N5 + sqk

(
N6 −

N7

2t′
)
,

N ′6 = N6,

N ′7 = N7,

recasts the amplitude in terms of only four color factors

A = g3
(
C1N

′
1

t′sp′k
+ C2N

′
2

t′spk
+ C4N

′
4

tsq′k
+ C5N

′
5

tsqk

)
, (3.14)
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satisfying the single Jacobi identity (derived from Eq. (3.11))

C1 − C2 + C4 − C5 = 0. (3.15)

These new numerators N ′i do not comply with BCJ duality. To fix this we perform

a further generalized gauge transformation of the form

N ′′1 = N ′1 + αt′sp′k,

N ′′2 = N ′2 − αt′spk,

N ′′4 = N4 + αtsq′k, (3.16)

N ′′5 = N5 − αtsqk,

where the function α is determined by requiring

N ′′1 −N ′′2 +N ′′3 −N ′′4 = 0. (3.17)

This gives

α = −N ′1 +N ′2 −N ′4 +N ′5
t′(spk + sp′k) + t(sqk + sq′k)

. (3.18)

After all these algebraic manipulations we have managed to write our amp-

litude in the form

A = g3
(
C1N

′′
1

t′sp′k
+ C2N

′′
2

t′spk
+ C4N

′′
4

tsq′k
+ C5N

′′
5

tsqk

)
, (3.19)

where the numerators satisfy (3.17). The next step is to apply the color-kinematics
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duality prescription to construct the gravitational amplitude, i.e.

−iM =
(
κ

2

)3
(
N ′′1 Ñ

′′
1

t′sp′k
+ N ′′2 Ñ

′′
2

t′spk
+ N ′′4 Ñ

′′
4

tsq′k
+ N ′′5 Ñ

′′
5

tsqk

)
. (3.20)

The graviton polarization tensor εµν(k) is reconstructed as

εµ(k)ε̃ν(k) −→ εµν(k), (3.21)

with εµ(k), ε̃µ(k) being the gluon polarization vectors contained in the numerators

N ′′i and Ñ ′′i .

At this point it is convenient to redefine the momenta according to

p′ = p− k1, q′ = q + k2, k = k1 − k2 (3.22)

and write k1 and k2 using Sudakov parameters

kµ1 = α1p
µ + β1q

µ + kµ1,⊥, kµ2 = α2p
µ + β2q

µ + kµ2,⊥. (3.23)

In this representation for the momenta, the amplitude

−iM≡ −iAkkMµνεµν(k) (3.24)

can be shown to have the following tensor structure

Mµν = (k1 + k2)µ⊥(k1 + k2)ν⊥ +Akp
[
(k1 + k2)µ⊥pν + pµ(k1 + k2)ν⊥

]

+ Akq
[
(k1 + k2)µ⊥qν + qµ(k1 + k2)ν⊥

]
+Apq

(
pµqν + qµpν

)
(3.25)

+ Aqqqµqν +Apppµpν .
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Let us point out that in Eq. (3.24) we have factored out the coefficient Akk of the

term proportional to (k1 + k2)µ⊥(k1 + k2)ν⊥. In the MRK limit

1� α1 � α2, 1� |β2| � |β1|, (3.26)

the prefactors Ai have the following form

App =
(
α1 − 2β1

β2

)2

+ 2α2β1

(
α1 + β2

β2
2

)
+ . . . ,

Aqq =
(
β2 + 2α2

α1

)2
− 2α2β1

(
α1 + β2

α2
1

)
+ . . . ,

Apq =
(
α1 − 2β1

β2

)(
β2 + 2α2

α1

)
+ . . . , (3.27)

Akp = −
(
α1 − 2β1

β2

)
+ . . . ,

Akq = −
(
β2 + 2α2

α1

)
+ . . .

We want to compare these results, obtained after applying the BCJ color-

kinematics duality, with the ones found in Section 2.5 using traditional Feynman

rules for the gravitational scattering of two different scalars with emission of a

graviton [24]:

Φ(p) + Φ′(q) −→ Φ(p′) + Φ′(q′) +G(k, ε). (3.28)

There we obtained that the tree-level amplitude in the MRK regime can be writ-

ten as (in the notation of Eq. (3.24))

Mµν = ΩµΩν −N µN ν , (3.29)
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where

Ωµ =
(
α1 −

2β1

β2

)
pµ +

(
β2 + 2α2

α1

)
qµ − (k1 + k2)µ⊥ (3.30)

is Lipatov’s MRK effective vertex for the coupling of two Reggeized gluons to an

on-shell gluon in QCD, and

N µ = −2i
√
β1α2

(
pµ

β2
+ qµ

α1

)
. (3.31)

As explained, the term N µN ν in Eq. (1.20) is responsible for the cancellation

of overlapping singularities in simultaneous channels required by the Steinmann

relations [57] (see also [64, 65] for a recent discussion). It is important to realize

that Eq. (3.27) does not reproduce the full structure indicated in Eq. (1.20). This

is an effect of applying the color-kinematics duality to an amplitude where some

of the external states are not gluons in the gauge theory side. However, we can

see that the term corresponding purely to the “square” of the gauge vertex, ΩµΩν ,

is correctly reproduced by the BCJ prescription in the Regge limit.

In order to show that, although the N µN ν terms are not given by BCJ color-

kinematic duality, the ΩµΩν contributions are indeed retrieved, we apply the

prescription to a set of numerators satisfying different BCJ duality identities.

Using the local generalized gauge transformation

N ′1 = N1 + sp′kN3,

N ′2 = N2 + spkN3,

N ′3 = N3, (3.32)

N ′4 = N4 + sq′kN6,

N ′5 = N5 + sqkN6,
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N ′7 = N7, (3.33)

the sQCD amplitude can be written in the form

A = g3
(
C1N

′
1

t′sp′k
+ C2N

′
2

t′spk
+ C4N

′
4

tsq′k
+ C5N

′
5

tsqk
+ C7N

′
7

tt′

)
. (3.34)

A further transformation

N ′′1 = N ′1 + αt′sp′k,

N ′′2 = N ′2 − αt′spk,

N ′′4 = N ′4 − βtsq′k, (3.35)

N ′′5 = N ′5 + βtsqk,

N ′′7 = N ′7 + (α + β)tt′,

is performed, where α and β are rational functions of the kinematic invariants

fully determined by the condition that the numerators N ′′i satisfy BCJ duality

N ′′1 −N ′′2 +N ′′7 = 0, N ′′4 −N ′′5 −N ′′7 = 0. (3.36)

We apply now color-kinematics duality to construct the amplitude:

−iM =
(
κ

2

)3
(
N ′′1 Ñ

′′
1

t′sp′k
+ N ′′2 Ñ

′′
2

t′spk
+ N ′′4 Ñ

′′
2

tsq′k
+ N ′′5 Ñ

′′
5

tsqk
+ N ′′7 Ñ

′′
7

tt′

)
, (3.37)

that has the structure given in Eqs. (3.24) and (3.25). The calculation of the

coefficients Ai in MRK gives

App =
(
α1 − 2β1

β2

)2

+ 4α2β1

(
α1

β2
2

)
+ . . . ,
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Aqq =
(
β2 + 2α2

α1

)2
− 4α2β1

(
β2

α2
1

)
+ . . . ,

Apq =
(
α1 − 2β1

β2

)(
β2 + 2α2

α1

)
+ . . . , (3.38)

Akp = −
(
α1 − 2β1

β2

)
+ . . . ,

Akq = −
(
β2 + 2α2

α1

)
+ . . .

Again, this correctly reproduces the part ΩµΩν of the MRK gravitational amp-

litude, but it falls short of reproducing the terms canceling the overlapping di-

vergences.

To conclude our analysis, we would like to investigate which topologies in the

original Feynman diagrams contribute to the different terms in the coefficients

obtained in Eq. (3.27). To trace each contribution, we rescale the original nu-

merators in Eq. (3.12) by some constants Di according to Ni → NiDi and study

the expansion in the MRK regime. This results in the following form for the

coefficients:

App = α2
1 − 2

(
D1 +D2

D7

)
α1β1

β2
+ 2

(
D2

1 +D2
2

D2
7

)
β2

1
β2

2
+
(
D1 +D2

D7

)
α2β1α1

β2
2

−
[
D2

1 − 3D2D1 + 3D4D1 + 2D2
2 + 3D2D4 − 4 (D1 +D2)D7

D2
7

]
α2β1

β2
+ . . .

−→
(
α1 − 2Db

D7

β1

β2

)2

+
α2β1

[
2D7Dbα1 − β2(6D2

b − 8D7Db)
]

D2
7β

2
2

. (3.39)

Note that, in the last line, we have simplified the expression collecting similar

topologies using the same constant for them, i.e. Db ≡ D1 = D2 = D4 = D5,

where with the subscript b indicates that they are associated with the diagrams

where the gluon is emitted by bremsstrahlung from a scalar line. D3,6 mark

the diagrams containing the scalar-scalar-gluon-gluon vertex and D7 the diagram
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with the three gluon vertex. The remaining results are

Aqq = β2
2 + 2

(
D4 +D5

D7

)
α2β2

α1
+ 2

(
D2

4 +D2
5

D2
7

)
α2

2
α2

1
−
(
D4 +D5

D7

)
α2β1β2

α2
1

+ . . .

+
[
D2

4 − 3D5D4 + 2D2
5 + (D4 +D5) (3D1 − 4D7)
D2

7

]
α2β1

α1

−→
(
β2 + 2Db

D7

α2

α1

)2
+ α2β1 (α1 (6D2

b − 8D7Db)− 2D7β2Db)
D2

7α
2
1

, (3.40)

Apq = α1β2 −
(D1 +D2)

D7
β1 + (D4 +D5)α2

D7
− (D1 +D2) (D4 +D5)

D2
7

β1α2

α1β2
+ . . .

−→
(
α1 − 2Db

D7

β1

β2

)(
β2 + 2Db

D7

α2

α1

)
, (3.41)

Akp = −α1 + (D1 +D2)
D7

β1

β2
+ . . .

−→ −
(
α1 − 2Db

D7

β1

β2

)
, (3.42)

Akq = −β2 −
(D4 +D5)

D7

α2

α1
+ . . .

−→ −
(
β2 + 2Db

D7

α2

α1

)
, (3.43)

Akq = −β2 −
(D4 +D5)

D7

α2

α1
+ . . .

−→ −
(
β2 + 2Db

D7

α2

α1

)
. (3.44)

It is remarkable that the MRK limit is blind to the constants D3,6 and therefore
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to the diagrams with the scalar-scalar-gluon-gluon vertex.

We have investigated the color-kinematics duality proposed by Bern, Car-

rasco, and Johannson for the construction of gravitational amplitudes as a formal

double-copy of equivalent amplitudes in gauge theories. In the gauge theory side

we work with scalar QCD, and study the scattering of two distinct scalars with

production of a gluon in the final state. We write the amplitude in two different

representations and construct the corresponding “gravitational” scattering amp-

litudes using the BCJ doubling prescription. Despite them being different, when

taking the multi-Regge limit of these amplitudes both BCJ representations re-

produce the part of the MRK gravitational vertex (with two Reggeized gravitons

and one on-shell graviton) which corresponds to the square of the MRK vertex in

QCD (with two Reggeized gluons and one on-shell gluon). The subleading terms

responsible for the fulfillment of the Steinmann conditions are not reproduced

correctly and are dependent on the choice of numerators satisfying BCJ duality

used to write the gauge amplitude. This has a likely origin in the external matter

states of the gauge amplitudes, for which the duality does not hold.
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Chapter 4

BCJ and Dimensional Reduction

4.1 Solving the puzzle

In the previous chapter, we studied color-kinematics duality in the context of

inelastic amplitudes involving scalar particles in multi-Regge kinematics (the re-

lation between multi-Regge kinematics [64, 65] and supergravity amplitudes in

the BCJ context has been explored in [60]). We showed that an initial application

of the BCJ duality to the scattering of two scalar particles with gluon emission

in scalar QCD only retrieves part of the gravitational amplitude. More precisely,

the part that was correctly obtained corresponds to the square of two Lipatov’s

QCD emission vertices [20, 21, 22]. The terms crucial for the cancellation of sim-

ultaneous divergences in overlapping channels [25, 23, 28, 29, 60, 24], as required

by unitarity (Steinmann relations [57]), were absent in this application of the

duality.

While the main line of studies of color-kinematics duality deals with pure

(super)-Yang-Mills theories in various dimensions, where the double-copy pre-

scription is proven [38], the calculation presented in the previous chapter incor-

porated additional minimally-coupled matter states in Yang-Mills theory. As this
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is a setup that is outside of the standard application of color-kinematics duality,

it is perhaps not unexpected that a refined double-copy prescription is needed.

Our aim in the present chapter is to study this problem from a new point of view,

approaching it with two different modifications [66]. Firstly, we consider the scat-

tering of two distinguishable scalars in Yang-Mills theory, where the scalars live

in the adjoint representation. As a crucial new element, we introduce the quartic

matter self-coupling characteristic of the bosonic sector of N = 2 supersymmetric

Yang-Mills theory. Secondly, we repeat the calculation of Section 3.2, only this

time considering identical adjoint scalars. In both cases, the color-kinematics du-

ality reproduces, in the Regge limit, the gravitational amplitude as computed in

Chapter 2, including those terms responsible for the fulfillment of the Steinmann

relations. The D = 4 Yang-Mills + scalar theories studied here are via dimen-

sional reduction directly related to pure Yang-Mills theory in D = 6 and D = 5

dimensions, respectively. Similarly, the theories are the bosonic sectors of the

N = 2 and N = 1 super-Yang-Mills theories. This explains why the inclusion of

matter in these cases is straightforward from the perspective of color-kinematics

duality.

4.2 Color-kinematics duality with scalar matter

We study gauge-theory scattering of two scalar particles with the emission of a

gluon; and later on, gravity scattering of two scalars with the emission of a grav-

iton. These have momenta p1, p2 (incoming scalars), p3, p4 (outgoing scalars),

and p5 (emitted gluon/graviton), which are all taken to enter the diagram. Be-

fore particularizing to the case of distinguishable or indistinguishable scalars and

matter self-interactions, we carry out a general analysis.

After resolving any quartic vertices into trivalent ones, the five-point gauge-
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theory amplitude can be written as a sum over 15 channels1,

A5 = g3
15∑

i=1

cini
di

, (4.1)

where ci are the color factors defined by

c1 = fa5a3bf ba4cf ca2a1 , c2 = fa5a4bf ba3cf ca2a1 ,

c3 = fa2a1bf ba5cf ca3a4 , c4 = fa5a1bf ba2cf ca3a4 ,

c5 = fa5a2cf ca1bf ba3a4 , c6 = fa5a3cf ca1bf ba2a4 ,

c7 = fa5a4bf ba2cf ca3a1 , c8 = fa5a4cf ca1bf ba2a3 , (4.2)

c9 = fa5a3bf ba2cf ca4a1 , c10 = fa5a1bf ba3cf ca2a4 ,

c11 = fa5a2bf ba4cf ca3a1 , c12 = fa5a2bf ba3cf ca4a1 ,

c13 = fa5a1bf ba4cf ca2a3 , c14 = fa2a4bf ba5cf ca3a1 ,

c15 = fa2a3bf ba5cf ca4a1 ,

with fabc being the structure constants. Finally, the denominators

di =
∏

αi

sαi , (4.3)

correspond to the product of the kinematic invariants associated with the internal

lines in the i-th diagram (the numbering is the one shown in Fig. 4.1).

Due to the Jacobi identities of the structure constants, the color factors satisfy

nine independent identities that we label as jα. They are

1Since, unlike in the previous chapter, we are considering here that all states are in the
adjoint representation, and all diagrams are trivalent, we revert to the notation of Chapter 1,
where both color factors and numerators are denoted by lower case letters.
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Figure 4.1: The fifteen three-vertex topologies contributing to the sum in the
amplitude (4.1). The labels 1-4 correspond to the scalars and 5 to the gluon.

j1 ≡ c12 − c9 + c15 = 0,

j2 ≡ c11 − c7 + c14 = 0,

j3 ≡ −c4 + c5 + c3 = 0,

j4 ≡ c1 − c2 − c3 = 0,

j5 ≡ −c10 + c6 − c14 = 0, (4.4)

j6 ≡ −c13 + c8 − c15 = 0,

j7 ≡ c4 − c10 + c13 = 0,

j8 ≡ c8 + c7 − c2 = 0,

j9 ≡ c6 + c9 − c1 = 0.

The numerators ni in Eq. (4.1) can be computed from the Feynman rules of

the theory. In general, they will not satisfy the Jacobi-like identities ±ni ± nj ±
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nk = 0, corresponding to jα with ci → ni. However, this can be cured after

performing a generalized gauge transformation, consisting of adding zero to the

original amplitude in the form

A5 =
15∑

i=1

cini
di

+
9∑

α=1
γαjα =

15∑

i=1

cin
′
i

di
, (4.5)

where the new numerators n′i are obtained by collecting the coefficients of each

color factor ci and multiplying by corresponding denominator: n′i = di∂ciA5. The

parameters γα are unknown functions of the momenta and gluon polarization.

They are determined by forcing the new numerators to satisfy the Jacobi identities

jα

∣∣∣∣
ci→n′i

= 0. (4.6)

These new numerators will be used to construct the corresponding gravitational

amplitude using the BCJ double-copy prescription

−iM =
(
κ

2

)3 15∑

i=1

n′iñ
′
i

di
, (4.7)

with κ being the gravitational coupling constant.

As usual we express the momenta in terms of Sudakov parameters. As a first

step we write

p3 = −p1 + k1, p4 = −p2 − k2, p5 = −k1 + k2, (4.8)

where in turn k1 and k2 are written as

kµ1 = α1p
µ
1 + β1p

µ
2 + kµ1,⊥, kµ2 = α2p

µ
1 + β2p

µ
2 + kµ2,⊥, (4.9)
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with ki,⊥ being vectors orthogonal to p1 and p2. Then, the gluon momentum

takes the form

pµ5 = (α2 − α1)pµ1 + (β2 − β1)pµ2 + kµ2,⊥ − kµ1,⊥. (4.10)

Finally, the multi-Regge kinematics regime is defined in terms of the Sudakov

parameters by

1� α1 � α2, 1� |β1| � |β2|. (4.11)

As in Chapter 2, the gravitational amplitude (4.7) can then be written as

−iM = −iAkkMµνεµν(p5), (4.12)

where εµν(p5) is the graviton polarization tensor

Mµν = (k1 + k2)µ⊥(k1 + k2)ν⊥ +Ak1

[
(k1 + k2)µ⊥pν1 + pµ1(k1 + k2)ν⊥

]

+ Ak2

[
(k1 + k2)µ⊥pν2 + pµ2(k1 + k2)ν⊥

]
+A12

(
pµ1p

ν
2 + pµ2p

ν
1

)
(4.13)

+ A11p
µ
1p

ν
1 +A22p

µ
2p

ν
2.

The parameters Ak1,Ak2,A12,A11,A22 are to be determined. The coefficient

Akk contains all the information about the coupling to external particles in the

amplitude. By factoring it out we isolate Lipatov’s graviton emission effective

vertexMµν , which in multi-Regge kinematics is independent of the states involved

in the collision and has the structure shown in Eqs. (3.29)-(3.31).
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4.2.1 Distinguishable scalars.

We first deal with the scattering of two distinguishable scalars Φ and Φ′. In

Chapter 3 we have analyzed this problem and found that the BCJ prescription

only reproduces the QCD-like part of the gravitational amplitudes; that is, the

ΩµΩν piece in Eq. (3.29). There we noted that the problem with the incorrect

N µN ν term is solved by embedding the Yang-Mills + 2 scalar theory into the

bosonic sector of N = 2 SYM theory, which amounts to taking both scalars to

transform in the adjoint representation and introducing a matter self-coupling for

the two scalars of the form

∆L = g2

2 Tr
(

[Φ,Φ′]2
)
. (4.14)

The corresponding Feynman rules then contain a new quartic scalar contact ver-

tex and we need to add four more diagrams to the ones shown in (3.7). Evaluating

all contributions, we find the following values for the numerators n′i

n′1 = (p1 + p2)2
[
− (γ9 − γ4)(p3 + p5)2 − 2p3 · ε(p5)

]
,

n′2 = (p1 + p2)2
[
− (γ4 + γ8)(p4 + p5)2 + 2p4 · ε(p5)

]
,

n′3 = (γ3 − γ4)(p1 + p2)2(p3 + p4)2,

n′4 = (p3 + p4)2
[
(γ7 − γ3)(p1 + p5)2 + 2p1 · ε(p5)

]
,

n′5 = −(p3 + p4)2
[
− γ3(p2 + p5)2 + 2p2 · ε(p5)

]
,

n′6 = −(p3 + p5)2
[
− (γ5 + γ9)(p2 + p4)2 + (p2 − p4) · ε(p5)

]

− 2(p2 − p4) · (p1 − p3 − p5)[p3 · ε(p5)],

n′7 = −(p4 + p5)2
[
(γ2 − γ8)(p1 + p3)2 + (p3 − p1) · ε(p5)

]

− 2(p3 − p1) · (p2 − p4 − p5)[p3 · ε(p5)],
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n′8 = (p2 + p3)2
[
(γ6 + γ8)(p4 + p5)2 + 2p4 · ε(p5)

]
, (4.15)

n′9 = −(p1 + p4)2
[
(γ1 − γ9)(p3 + p5)2 + 2p3 · ε(p5)

]
,

n′10 = −(p1 + p5)2
[
(γ5 + γ7)(p2 + p4)2 + (p2 − p4) · ε(p5)

]

− 2(p2 − p4) · (−p1 + p3 − p5)[p1 · ε(p5)],

n′11 = −(p2 + p5)2
[
− γ2(p1 + p3)2 + (p3 − p1) · ε(p5)

]

− 2(p3 − p1) · (−p2 + p4 − p5)[p2 · ε(p5)],

n′12 = (p1 + p4)2
[
γ1(p2 + p5)2 + 2p2 · ε(p5)

]
,

n′13 = −(p2 + p3)2
[
(γ6 − γ7)(p1 + p5)2 + 2p1 · ε(p5)

]
,

n′14 = −(p2 − p4) · (p1 + p3 − p5)[(p3 − p1) · ε(p5)]

− (p3 − p1) · (p2 − p4)[(−p1 + p2 − p3 + p4) · ε(p5)]

+ γ2(p1 + p3)2(p2 + p4)2 − γ5(p1 + p3)2(p2 + p4)2,

n′15 = (γ1 − γ6)(p2 + p3)2(p1 + p4)2.

Although, in principle, we have nine equations for the nine functions γα,

momentum conservation makes some of the nine conditions in Eq. (4.6) linearly

dependent. One convenient way to implement momentum conservation is to

express our momenta using the Sudakov parameters introduced above. Doing so,

we find that the equation system is described by a 9× 9 matrix that has rank 5

and the solution can be written in terms of 4 independent variables that we take

to be γ1, γ3, γ6 and γ7:

γ2 = (p2 + 2p3 + p4) · ε(p5)
sβ1

− γ1
1 + β2

β1
− γ3

−1 + α1 − α2 + β1 − β2

β1
,

γ4 = 2(p3 + p4) · ε(p5)
s

+ γ3(1− α1 + α2 − β1 + β2) + γ7(β1 − β2), (4.16)

γ5 = (−p2 + p4) · ε(p5)
sα2

− γ3
1− α1 + α2 − β1 + β2

α2
+ γ6

1− α1

α2
− γ7

β1 − β2

α2
,
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γ8 = 2(p2 + p3) · ε(p5)
s(α1 + β1) − γ1

1 + β2

α1 + β1
+ γ6

1− α1

α1 + β1
− γ7

β1 − β2

α1 + β1
,

γ9 = −2(p2 + p3) · ε(p5)
s(α2 + β2) + γ1

1 + β2

α2 + β2
− γ6

1− α1

α2 + β2
.

After applying the BCJ prescription (4.7), the four independent γ’s cancel

out of the gravitational amplitude, so we set them to zero from now on. Plugging

the five remaining γ’s back in the numerators of Eq. (4.15), we construct the

gravitational amplitude from Eq. (4.7). In the multi-Regge kinematics limit, the

coefficients in Eq. (4.13) take the form

A11 ' α2
1 −

4α1β1

β2
+ 4β2

1
β2

2
+ 4α2β1

β2
2

+ . . . ,

A22 ' β2
2 + 4α2β1

α1
+ 4α2β1

α2
1

+ 4α2
2

α2
1

+ . . . ,

A12 ' α1β2 − 2β1 + 2α2 + . . . , (4.17)

Ak1 ' −α1 + 2β1

β2
+ . . . ,

Ak2 ' −β2 −
2α2

α1
+ . . . ,

where the ellipsis denote subleading contributions in the multi-Regge limit. The

above coefficients correctly reproduce the full form of Lipatov’s effective graviton

emission vertex shown in Eq. (3.29), including the N µN ν piece that was not

correctly retrieved in the analysis of the previous chapter.

We note that away from the Regge-limit the amplitude obtained from Eq. (4.7)

is still a valid gravitational amplitude, however, it includes one additional contact

term of the form

∆L ∼ κ2gµνΦ′2∂µ∂νΦ2. (4.18)

This term typically appears in the bosonic sector of SUGRA theories, or in di-
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mensional reductions of D > 4 gravities. If desired, this contribution can be

subtracted from the amplitude, thus obtaining a gravity amplitude with minim-

ally coupled scalars.

4.2.2 Indistinguishable scalars.

A second possibility to amend the results of Chapter 3 is to consider two in-

distinguishable scalars transforming in the adjoint representation of the gauge

group. Again, the number of Feynman diagrams contributing to the amplitude

is larger than the original calculation, since all channels are allowed. Resolving

the diagrams containing four-leg vertices in terms of trivalent ones, we arrive at

the following form of the numerators in Eq. (4.1):

n1 = −(p3 + p5)2[(p2 − p1) · ε(p5)]− 2(p2 − p1) · (−p3 + p4 − p5)[p3 · ε(p5)],

n2 = −(p4 + p5)2[(p2 − p1) · ε(p5)]− 2(p2 − p1) · (p3 − p4 − p5)[p4 · ε(p5)],

n3 = −(p2 − p1) · (p3 − p4)[(p1 + p2 − p3 − p4) · ε(p5)]

− (p3 − p4) · (−p1 − p2 + p5)[(p2 − p1) · ε(p5)]

− (p2 − p1) · (p3 + p4 − p5)[(p3 − p4) · ε(p5)],

n4 = −(p1 + p5)2[(p3 − p4) · ε(p5)]− 2(p3 − p4) · (−p1 + p2 − p5)[p1 · ε(p5)],

n5 = −(p2 + p5)2[(p3 − p1) · ε(p5)]− 2(p3 − p1) · (−p2 + p4 − p5)[p2 · ε(p5)],

n6 = −(p3 + p5)2[(p4 − p1) · ε(p5)]− 2(p2 − p1) · (−p3 + p4 − p5)[p3 · ε(p5)],

n7 = −(p4 + p5)2[(p3 − p1) · ε(p5)]− 2(p3 − p1) · (p2 − p4 − p5)[p4 · ε(p5)],

n8 = −(p4 + p5)2[(p2 − p3) · ε(p5)]− 2(p2 − p3) · (p1 − p4 − p5)[p4 · ε(p5)],

n9 = −(p3 + p5)2[(p4 − p1) · ε(p5)]− 2(p4 − p1) · (p2 − p3 − p5)[p3 · ε(p5)],

n10 = −(p1 + p5)2[(p2 − p4) · ε(p5)]− 2(p2 − p4) · (−p1 + p3 − p5)[p1 · ε(p5)],

n11 = −(p2 + p5)2[(p3 − p1) · ε(p5)]− 2(p3 − p1) · (−p2 + p4 − p5)[p2 · ε(p5)],
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n12 = −(p2 + p5)2[(p4 − p1) · ε(p5)]− 2(p4 − p1) · (−p2 + p3 − p5)[p2 · ε(p5)],

n13 = −(p1 + p5)2[(p2 − p3) · ε(p5)]− 2(p2 − p3) · (−p1 + p4 − p5)[p1 · ε(p5)],

n14 = −(p2 − p4) · (p1 + p3 − p5)[(p3 − p1) · ε(p5)]

− (p3 − p1) · (−p2 − p4 + p5)[(p2 − p4) · ε(p5)]

− (p3 − p1) · (p2 − p4)[(−p1 + p2 − p3 + p4) · ε(p5)],

n15 = −(p2 − p3) · (p4 − p1)[(−p1 + p2 + p3 − p4) · ε(p5)]

− (p4 − p1) · (−p2 − p3 + p5)[(p2 − p3) · ε(p5)]

− (p2 − p3) · (p1 + p4 − p5)[(p4 − p1) · ε(p5)]. (4.19)

Remarkably, these numerators obtained from the application of the Feynman

rules automatically satisfy the Jacobi-like identities (4.6), so there is no need to

perform a generalized gauge transformation. We immediately proceed to con-

struct the gravitational amplitude using the BCJ prescription (4.7). After taking

the multi-Regge kinematics limit (4.11) we find the following value for the coef-

ficients in Eq. (4.13)

A11 ' α2
1 −

4α1β1

β2
+ 4β2

1
β2

2
+ 4α2β1

β2
2

+ . . .

A22 ' β2
2 + 4α2β1

α1
+ 4α2β1

α2
1

+ 4α2
2

α2
1

+ . . .

A12 ' α1β2 − 2β1 + 2α2 + . . . (4.20)

Ak1 ' −α1 + 2β1

β2
+ . . .

Ak2 ' −β2 −
2α2

α1
+ . . .

which again reproduce Lipatov’s effective vertex (3.29).
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4.3 The role of dimensional reduction

In this note we have addressed the problem of applying color-kinematics duality

to the scattering of two distinguishable scalar matter particles with gluon emis-

sion, or graviton emission. The calculation in Chapter 3 suggested that the BCJ

double-copy prescription only reproduced part of the gravitational amplitude in

multi-Regge kinematics. We have found two ways to remedy this mismatch. One

consists of introducing a contact interaction between the two scalar particles, as

suggested by the bosonic sector of N = 2 SYM theory. The second is to give up

distinguishability of the scalars. In both cases the introduction of new diagrams

contributing to the process recovers the correct gravity amplitudes from the BCJ

double-copy prescription, in the Regge limit.

The two cases can be thought of as the bosonic sectors of N = 2 and N = 1

SYM theory. Since fermions do not play any role in the tree-level amplitudes stud-

ied here, the obtained results can be fully explained by supersymmetry. However,

we note that supersymmetry is not a mandatory explanation of the results, nor

is it the most elegant one.

The interaction term (4.14) is generated by dimensionally reducing D = 6

pure Yang-Mills to D = 4, where the gauge field along the extra two dimensions

are interpreted as two scalars, Φ ≡ A4, Φ′ ≡ A5. The additional components of

the gauge field strength tensor are

Fµ4 = DµΦ, Fµ5 = DµΦ′, F45 = −ig[Φ,Φ′], (4.21)

with Dµ being the adjoint covariant derivative. The four-dimensional Lagrangian
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is then

L = −1
4Tr

(
FµνF

µν
)

+ 1
2Tr

(
DµΦDµΦ

)
+ 1

2Tr
(
DµΦ′DµΦ′

)
+ g2

2 Tr
(

[Φ,Φ′]2
)
.

(4.22)

Similarly, the tree-level scattering of two indistinguishable scalars with gluon

emission can be computed either from this Lagrangian or from the dimensional

reduction of D = 5 pure Yang-Mills to D = 4 dimensions, which results in Yang-

Mills theory with one adjoint scalar, where Φ ≡ A4. In the latter case there is no

quartic scalar term.

As a final remark, one can say that the successful application of color-kinematics

duality in the cases studied here directly stems from its validity in higher-dimensional

Yang-Mills theory and gravity [35, 67, 38, 68, 69, 70, 71]. Indeed, the dimensional

reduction that we have employed here has been used in loop calculations in gauge

and gravity theories with extended supersymmetry [72].

While the modified theories we have considered avoid the specific problem

observed in Chapter 3, the inclusion of general matter states and interactions in

the color-kinematics formalism is still an open problem [73]. Specifically, it would

be interesting to understand how to precisely relate tree amplitudes in Yang-

Mills theory with minimally-coupled matter, Ns scalars and Nf fermions, to that

of Einstein gravity with similar matter content. We expect that an extension

of the BCJ prescription is needed, which at intermediate steps embed the gauge

and gravity theories into their respective higher-dimensional versions. The results

presented here, with the help of the information gained by taking the multi-Regge



limit, were a first step towards understanding the general matter case.



Chapter 5

Conclusions and Outlook

The aim of this thesis has been to gain a deeper understanding of gravity as a

double copy of gauge theories at high energies, specifically in multi-Regge kin-

ematics. We have confirmed that the Regge limit of a gravity theory coupled

to scalars has the expected double copy structure ΩµΩν − N µN ν which is fur-

ther evidence that the Regge Limit in gravity is independent of the external

scattered particles at either end of the ladder diagrams that dominate interac-

tions in this limit. We have further written down the simplest form to date for

the three-graviton vertex and found exact gauge invariant effective vertices in

this amplitude that could be used to efficiently generate higher loop amplitudes

in gravity, drastically cutting down the number of topologies.

We later attempted to introduce BCJ into the picture. This was motivated

by the relation between BCJ, the double copy and the multi-Regge Limit. We

confirmed in Chapter 2 that the multi-Regge limit of a gravitational amplitude

coupled to scalars has a double copy-like form, with the added twist that the

quantity N µN ν above is difficult to identify in YM amplitudes.

We found that naive attempts to apply BCJ to scalar QCD amplitudes only

recover the ΩµΩν term in the Regge limit, which is to be expected given that
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we are essentially squaring the term that dominates the gauge theory amplitude.

This a strong indication that these naive double copies are not indeed gravity

amplitudes.

Initially guided by supersymmetry we carefully fine tune the scalar QCD

theory we choose to apply BCJ to. Using this insight, we do manage to find

examples of amplitudes that have non-trivial solutions to the BCJ equations,

and whose double copy gives the desired ΩµΩν −N µN ν , giving further evidence

that these are gravity amplitudes.

That these amplitudes containing scalars are BCJ compatible can be explained

in hindsight by the fact they can be obtained from pure Yang Mills by dimensional

reduction. Remarkably, the amplitude that one obtains by applying dimensional

reduction to the five dimensional Yang Mills pure-gluon amplitude, calculated

from the Feynman rules down to four dimensions, has the property that the

numerators already satisfy the Jacobi identities. This is the only case known for

a five-point amplitude and could provide insight into the structure of the space

of solutions of the BCJ equations. For all the successes of color-kinematics at

loop level, the current calculations are done by posing ansätze that obey all the

appropriate equations. One would hope that this result could shed some light on

how to construct BCJ solutions effectively at loop level.

Concerning the problem of building solutions to the BCJ equations, perhaps

the most promising avenue lies in exploring the invariant space of solutions under

the relabellings transforming the trivalent color factors of the amplitude into each

other. Additionally, they must also have the same symmetries as the correspond-

ing color factors. These are the solutions that have been called “virtuous” by

the authors in [74]. It seems natural to assume that one should be able to find a

kinematical vertex analogous to the structure constant which could be used as a

building block to construct these virtuous numerators.
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The advantage of this approach is clear: finding solutions to the BCJ equations

is difficult both at tree- and loop-level. Although solutions in the former case are

known to exist, they quickly become intractable as the number of legs grows.

At loop-level, the situation is greatly complicated by the necessity of finding

consistent labellings for the loop momenta in the integrand. Furthermore, the

problem of the existence of these solutions for loop amplitudes remains open.

This would provide a key understanding into the relation between gravity and

Yang Mills and ultimately into each theory individually. The first obvious hope

is that this might indicate that some modification of gravity that is finite and/or

renormalizable. Finding proof of the existence for the BCJ equations at loop

level could by itself provide enough insight into the structure, constraints and,

symmetries of the theory.

Finally, the discovery of BCJ has proven instrumental in uncovering struc-

tures in string theory, in particular between open and closed strings. Ideally

this understanding would also result on new calculation techniques that allow

us to overcome the limitations of perturbation theory applied to string and field

theories.
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Appendix A

Explicit Form of The

Gravitational Amplitude

A.1 The full five-point amplitude

To avoid cluttering the text with long expressions, in this Appendix we have

collected the full form of the coefficients of the amplitude shown in Eq. (2.55).

They are expressed in terms of the Sudakov decomposition for the momenta k1,

k2 given in Eq. (2.40)

Akk = iκ3

8





1
β1α2

− (1 + β1)
β1 (α1 + β1) −

(1− α2)
α2 (α2 + β2)



,

Akp = iκ3

8



−

(α1 − α2) 2

α1α2β1
− (α1 − 1) (α1 + α2)

α1 (α1 + β1) + (α2 − 1) (α1 + α2 − 2)
α2 (α2 + β2)



,

Akq = iκ3

8



−

(β1 − β2) 2

α2β1β2
− (β1 + 1) (β1 + β2 + 2)

β1 (α1 + β1) + (β2 + 1) (β1 + β2)
β2 (α2 + β2)



,

App = iκ3

8





(α1 − α2)3

α1α2β1
+ 4 (α1 − 1) (α1 − α2 − 1)

α2 (β2 − β1)
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− (α1 − 1) (α1 + α2)2

α1 (α1 + β1) + (α2 − 1) (α1 + α2 − 2)2

α2 (α2 + β2)



, (A.1)

Aqq = iκ3

8



−

(β1 − β2)3

α2β1β2
− 4 (β1 − β2 − 1) (β2 + 1)

(α1 − α2) β1

− (β1 + 1) (β1 + β2 + 2)2

β1 (α1 + β1) + (β2 + 1) (β1 + β2)2

β2 (α2 + β2)



,

Apq = iκ3

8


 (α1 + α2 − 2) (β1 − α2) + (α1 + α2) (α2 + β2)




×



α1 − α2

α1α2β1
+ 1− α1

α1 (α1 + β1) + α2 − 1
α2 (α2 + β2)



.

A.2 The two topologies contributing to the full

amplitude

Next we list the coefficients corresponding to the partial amplitudeM↑

A↑kk = iκ3

8





1
α2β1

− (β1 + 1)
β1 (α2 + β1) + α2 − 1

α2 (α2 + β2)



,

A↑kp = iκ3

8α2





(α2 − 1) (α1 + α2 − 2)
α2 + β2

− α1 + α2 (2α2 − 3)
α2 + β1



,

A↑kq = iκ3

8α2

{
1

α2 + β1
+ (1− α2)(α2 − β1)

(α2 + β1)(α2 + β2)

}
,

A↑pp = iκ3

8α2





(α2 − 1) (α1 + α2 − 2) 2

α2 + β2
+

(α1 − 3α2)
[
α2

2 + (α1 − 3)α2 + α1

]

α2 + β1

− 4 (α1 − 1) (1− α1 + α2)
β2 − β1



, (A.2)

A↑qq = iκ3

8α2
(β1 − β2)(β1 − β2 − 2α2)

{
α2 + 1
α2 + β1

+ (1− α2)(α2 − β1)
(α2 + β1)(α2 + β2)

}
,

A↑pq = iκ3

8





(α2 − 1)
[
β1(α1 + α2 − 2)− 2β2(α2 − 1)− α2(α1 − 4)− 3α2

2

]

α2(α2 + β2)
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+
α1

[
α2

2 + (β2 + 3)α2 + β2

]
+ α2

[
− 3β2 + α2(3α2 − β2 − 9)

]

α2(α2 + β1)





and those ofM↓

A↓kk = iκ3

8



−

1
α1β1

+ 1− α1

α1 (α1 + β1) + 1 + β1

β1 (α2 + β1)



,

A↓kp = iκ3

8



−

(α1 − α2) 2

α1α2β1
− (α1 − 1) (α1 + α2)

α1 (α1 + β1) + α1 + α2 (2α2 − 3)
α2 (α2 + β1)



,

A↓kq = iκ3

8




β1 (2β1 + 3)− β2

β1 (α2 + β1) − (β1 + 1) (β1 + β2 + 2)
β1 (α1 + β1)



,

A↓pp = iκ3

8





(α1 − α2) 3

α1α2β1
− (α1 − 1) (α1 + α2) 2

α1 (α1 + β1)

−
(α1 − 3α2)

[
α2

2 + (α1 − 3)α2 + α1

]

α2 (α2 + β1)



, (A.3)

A↓qq = iκ3

8



−

(β1 + 1) (β1 + β2 + 2) 2

β1 (α1 + β1) − 4 (β1 − β2 − 1) (β2 + 1)
(α1 − α2) β1

+
(3β1 − β2)

[
β1 (β1 + β2 + 3)− β2

]

β1 (α2 + β1)



,

A↓pq = iκ3

8





(β1 + 1)
[
β1 (−α2 + β2 + 4) + 2α1 (β1 + 1)− α2 (β2 + 2) + 3β2

1

]

β1 (α1 + β1)

+
α1

[
β2

1 − (β2 + 3) β1 + β2

]
+ β1

[
3β2 − β1 (3β1 + β2 + 9)

]

β1 (α2 + β1)



.
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