
University of Salamanca
Faculty of Science

Department of Computer Science and Automation

Evolutionary Visual Software Analytics
Ph.D. Dissertation

Antonio González Torres

Doctoral Advisors
Dr. Roberto Therón Sánchez

Dr. Francisco J. García Peñalvo

2015

Dr. D. Francisco José García Peẽalvo, Profesor Titular del Departamento
de Informática y Automática de la Universidad de Salamanca

Dr. D. Roberto Therón Sánchez, Profesor Titular del Departamento de
Informática y Automática de la Universidad de Salamanca

HACEN CONSTAR: Que D. Antonio González Torres, ha realizado
bajo nuestra dirección el trabajo de investigación y la memoria de la tesis
doctoral que lleva por título Evolutionary Visual Software Analytics, con el fin
de obtener el grado de Doctor por la Universidad de Salamanca con mención
de Doctorado Internacional. Asimismo manifestamos que dicho trabajo tiene
suficientes méritos teóricos contrastados, mediante las validaciones oportunas,
publicaciones y aportaciones novedosas. Por todo ello se considera que procede
su defensa pública.

Y para que surta los efectos oportunos firmamos en Salamanca, a 21 de
abril de dos mil quince.

————————————– ——————————————
Dr. Roberto Therón Sánchez Dr. Francisco J. García Peñalvo

Profesor Titular Profesor Titular
Universidad de Salamanca Universidad de Salamanca

University of Salamanca
Faculty of Science

Department of Computer Science and Automation

Evolutionary Visual Software Analytics
Ph.D. Dissertation

Doctoral Advisors

————————————– ——————————————
Dr. Roberto Therón Sánchez Dr. Francisco J. García Peñalvo

Ph.D. Candidate

———————————–
Antonio González Torres

To my brother Ricardo
and the loving memory of my mother María Eusebia.

Acknowledgments

Every journey is formed by stretches and stations, so to make a long trip,
several stretches must be walked and many stations should be reached. Thus,
I have arrived to this station after walking many stretches, where several travel
partners have made the trip less rough, and sometimes have also provided fresh
water in the way. Therefore, it will not be possible to acknowledge in this little
space to every travel partner I have had, but I want to express my gratitude
for being there when I needed them.

Some of my partners in the stretch towards this station have been my
doctoral advisors Roberto and Francisco, the members of the Department
of Computer Science and Automation of the University of Salamanca,
the scholarship programs of MICITT-CONICIT (Costa Rica), Banco
Santander-USAL, the Ministry of Education (Spain) and my research mates
and friends José Antonio, Cristián, Diego, Juan, Saddys, Joel, Carlos and
Vadim; and my friends Javier, Luis, Yanira, Olga, José (Pepe), José María,
Ricardo, Lourdes, José Miguel, Michel, Carolina, Victoria, Juanita, Carlos,
Estela, Carlomagno, Andrea, Gabriela, Neli, Nieves, María Jesús, Danny,
Edwin Aguilar, Néstor and many others. Other partners that have been on
this journey with me for a long time and several stretches are Teresa, Rodney,
Edwin Montero, Luis, Erika, Clarette, Alfonso and several people from the
UCR (ECCI and SRP), as well as many members of my family that have
been on my side all over the journey or in some critical stretches (Marielos,
Maricruz, Mauricio, Dayton, Karla, George, Gabriela, Marianela, Morayma,
Onocifero, Juana, Francisca, Maco and others).

Thank you to all of you!

Resumen

El desarrollo y mantenimiento de sistemas de software involucran a un gran
número de complejos procesos que se extienden por largos periodos de tiempo
(en algunos casos 10 años o más), e implican a grupos de personas (e.g.,
programadores y administradores de proyectos) que pueden encontrarse en
diferentes países. Por lo cual quienes participan en esos procesos requieren de
herramientas que les faciliten la comprensión de los sistemas, sus componentes
y las relaciones que se establecen entre estos en el tiempo.

La comprensión de los sistemas adquiere una relevancia especial cuando
se toma en cuenta la rotación de personal en las organizaciones y la frecuente
ausencia de documentación técnica de los sistemas. Por lo tanto, en esta
tesis se llevó a cabo un análisis detallado sobre las necesidades que tienen los
programadores y administradores de proyectos, se hizo un mapeo sistemático
de literatura y una revisión detallada de literatura; y se efectuó una encuesta
sobre el uso de herramientas de visualización en la industria de software
y departamentos de informática en la comprensión de los sistemas. Con
base en los resultados obtenidos de las actividades anteriores, se realizó la
definición y descripción del proceso de aplicación de la Analítica Visual a
la Evolución de Software (el cual recibió el nombre de Evolutionary Visual
Software Analytics).

La validación del proceso mencionado se llevó a cabo en tres etapas. En la
primera etapa se diseñó una arquitectura con el fin de verificar que mediante
el seguimiento de la descripción del proceso es posible diseñar herramientas de
Analítica Visual para facilitar la comprensión de la evolución de los sistemas
de software. En la segunda etapa se validó la arquitectura mediante la
implementación de Maleku (una herramienta basada en dicha arquitectura).
En la tercera etapa, se verificó la utilidad y usabilidad de Maleku en la
comprensión de la evolución de sistemas de software por medio de varios casos
de uso, un caso de estudio y un estudio de usabilidad.

Los resultados finales de este trabajo permitieron comprobar que la
aplicación de la Analítica Visual a la Evolución de Software, usando el
proceso descrito en esta investigación, puede contribuir con el desarrollo y
mantenimiento de software al facilitar la comprensión de los sistemas, y por
tanto, las preguntas de investigación de esta tesis fueron respondidas y los
objetivos planteados se cumplieron.

Palabras clave: Evolutionary Visual Software Analytics, Analítica Visual
Aplicada a la Evolución de Software, Analítica Visual, Visualización de
Software, Evolución de Software, Análisis de la Evolución de los Sistemas

Abstract

The development and maintenance of software systems involve a large number
of complex processes (that could be extended for long periods of time) and
people (e.g., programmers and project managers) who may be located in
different countries. Therefore, people involved in these processes require tools
to understand the systems, their components and the relationships established
between these in time.

Understanding systems becomes particularly relevant when taking into
account staff turnover in organizations and the frequent absence of technical
system documentation. Therefore, a detailed study on the needs of
programmers and project managers, a systematic mapping study, a detailed
literature review and a survey on the use of visualization tools in the software
industry and IT departments for system understanding were carried out in
this thesis. Based on the results of the above activities, the definition and
description on the application of Visual Analytics to Software Evolution
(which was called Evolutionary Visual Software Analytics) was performed.

The validation of this process was conducted in three stages. In the
first stage, an architecture was designed to verify that by following the
Evolutionary Visual Software Analytics process description it is possible to
design Visual Analytics tools to facilitate the understanding of the evolution
of software systems. In the second stage, the architecture was validated
by implementing Maleku (a tool based on this architecture). In the third
stage, the usefulness and usability of Maleku in understanding the evolution
of software systems was verified through various use cases, an usability study
and a case study.

The final results of this study allowed us to prove that the application
of Visual Analytics to Software Evolution, using the process described in this
research, can contribute to software development and maintenance to facilitate
the understanding of systems, and therefore the research questions of this
thesis were answered and the specified objectives were met.

Keywords: Evolutionary Visual Software Analytics, Visual Analytics,
Software Visualization, Software Evolution, Software Evolution Analysis,
Software Maintenance

Table of Contents

I Introduction 1

1 Introduction 3
1.1 Presentation . 3
1.2 Research Problem . 5

1.2.1 Big Data . 6
1.2.2 Software Development and Maintenance 7
1.2.3 Visual Analytics and Software Maintenance 9

1.3 Aims and Research Questions 11
1.4 Methodology and Outline . 13
1.5 Research lines of this thesis 14

II Background 17

2 Software Systems: Maintenance and Evolution 19
2.1 Introduction . 19
2.2 The Software Process . 20

2.2.1 Software Development Models 20
2.2.2 Iterative Process . 23
2.2.3 Global Software Development 23
2.2.4 The Role of Project Managers and Programmers 24
2.2.5 Software Maintenance 26

2.3 Software Evolution . 29
2.3.1 Software Configuration Management 30
2.3.2 Information Needs of Software Project Managers and

Programmers . 35
2.3.3 Software Evolution Analysis 42

2.4 Conclusions . 43

3 Visual Analytics 46
3.1 Introduction . 46
3.2 Overview . 47
3.3 Information Visualization . 51

3.3.1 Visualization Techniques 51
3.4 Human-Computer Interaction 60
3.5 Conclusions . 63

VIII Table of Contents

III Visualization and Visual Analytics for Software
Systems 65

4 Systematic Mapping Study 66
4.1 Introduction . 66
4.2 Methodology . 68

4.2.1 Research Questions . 68
4.2.2 Inclusion and Exclusion Criteria 69
4.2.3 Searching for Research Studies 70
4.2.4 Classification Criteria 70

4.3 Results . 74
4.3.1 Philosophical Research Studies 78
4.3.2 Solution Proposal Studies 81

4.4 Discussion . 106
4.5 Conclusions . 109

5 Understanding system architectures 111
5.1 Introduction . 112
5.2 Architecture Visualization . 114

5.2.1 City Metaphors . 114
5.2.2 Treemaps . 116
5.2.3 Grid Based Designs . 120
5.2.4 Node-link Diagrams . 123
5.2.5 3D Visualization . 124
5.2.6 Polymetric Views . 125
5.2.7 Circular Visualizations 129

5.3 Architecture Evolution Visualization 130
5.3.1 City Metaphors . 130
5.3.2 Grid Based Designs . 134
5.3.3 Animation . 134
5.3.4 Software Cartography 138
5.3.5 Graphs . 140
5.3.6 Radial Visualizations 140

5.4 Discussion and Conclusions 142

6 Team awareness and collaboration 146
6.1 Introduction . 146
6.2 Factors Involved in Global Software Development 147

6.2.1 Teamwork . 148
6.2.2 Cognition, Communication, Coordination and Control . 149
6.2.3 Team Situation Awareness 155

Table of Contents IX

6.2.4 Distributed Situation Awareness 158
6.3 Considerations in Designing Awareness Workspaces 159
6.4 Visualization for Team Awareness 162

6.4.1 Teamwork . 162
6.4.2 Situational Awareness 164
6.4.3 Collaboration and Socio-technical Relationships 169

6.5 Discussion and Conclusions 174

7 Survey on the Use of Visual Tools in Software Development
and Maintenance 177
7.1 Introduction . 177
7.2 Survey Description . 178
7.3 Questions and Results . 179

7.3.1 Data Collection . 180
7.3.2 Product Tools . 183
7.3.3 Process Tools . 186
7.3.4 Impediments to Adopting Tools 188

7.4 Discussion . 189
7.5 Conclusions . 192

IV Process Design and Validation 194

8 A Visual Analytics Process for Software Evolution 195
8.1 Introduction . 195
8.2 Visual Analytics Process . 198
8.3 Visual Analytics and Software Systems 203

8.3.1 Evolutionary Visual Software Analytics 204
8.3.2 Architecture Specification 207

8.4 Conclusions . 212

9 Visual Analytics Explorer for Software Evolution 213
9.1 Introduction . 213
9.2 Framework: situational awareness and collaboration 214
9.3 Visualization Designs and Use Case Scenarios 216

9.3.1 Granular Timeline: Analysis of Statistics on Revisions
and Contributions . 219

9.3.2 Gridmaster: Correlation of Project Structure, Software
Item Relationships and Metrics 224

9.3.3 Socio-Technical Graph: Visual Representation of the
Collaboration and Relationships between Programmers 238

9.4 Discussion and Conclusions 242

X Table of Contents

10 Revision Tree: A Case Study on PlasticSCM 245
10.1 Introduction . 245
10.2 Analysis of Existing Visualization Tools 246
10.3 Design of Revision Tree . 250

10.3.1 Features of Revision Tree 254
10.4 Analysis of the Evolution of Source Code Files 259
10.5 Discussion and Conclusions 265

11 User Assessment Test 270
11.1 Introduction . 270
11.2 Methodology . 271
11.3 Assessment results . 274

11.3.1 Tool functionality . 274
11.3.2 Visualization design . 276

11.4 Discussion . 283
11.5 Conclusions . 284

V Conclusions 286

12 Conclusions 287
12.1 Introduction . 287
12.2 Concluding Remarks . 287
12.3 Publications Related to the Thesis 292
12.4 Future Research . 294

A Papers Published per Venue 296

B Correlation of Research Approaches and Papers 303

C Resumen de la Tesis 307
C.1 Introducción . 308

C.1.1 Problema de investigación 309
C.1.2 Análitica Visual y Mantenimiento de Software 310
C.1.3 Objetivos y Preguntas de Investigación 314
C.1.4 Methodología y Organización de la Tesis and Outline . 315

C.2 Un Proceso de Analítica Visual para la Evolución de Software 317
C.2.1 Analítica Visual y Sistemas de Software 317
C.2.2 Evolutionary Visual Software Analytics 318
C.2.3 Architecture Specification 322

C.3 Diseños de las Visualizaciones y Escenarios de Uso 327

Table of Contents XI

C.3.1 Granular Timeline: Análisis de Estadísticas de las
Revisiones y Contribuciones de los Programadores . . . 329

C.3.2 Gridmaster: Correlación de Estructura, Relaciones y
Métricas . 333

C.3.3 Socio-Technical Graph: Representación de la
Collaboración y Relaciones entre Programadores 341

C.3.4 Diseño de Revision Tree 343
C.4 Conclusions . 351
C.5 Trabajos Futuros . 355

Bibliography 356

List of Acronyms 426

List of Figures

1.1 Methodology research outline. 15

2.1 A detailed version of the software development and
maintenance process (figure prepared by the author). 22

2.2 Management of changes in software maintenance [STA 2005]
(figure prepared by the author). 28

2.3 IEEE Standard for Software Configuration Management
plans [STA 2005] (figure prepared by the author). 31

2.4 Source code snapshots stored in the software
repository [Collins-Sussman 2004]. 34

2.5 Flowchart of activities involved in the operation of Software
Configuration Management (SCM)systems (figure prepared by
the author). 36

4.1 The x axis shows how researchers were organized in groups, in
terms of the number of participants, to carry out the research
works. In line with this, the y axis depicts the number of
research papers and its correlation with the investigation groups. 74

4.2 Correlation of researchers with the number of papers in which
they have participated as authors. 74

4.3 Researchers with highest participation in published papers. . . 75
4.4 Distribution of the total number of works carried per year and

category (Sys and Evol). 75
4.5 Number of papers per research approach and category (Sys and

Evol). 79
4.6 Philosophical Research: publications per year and category

(Sys and Evol). 81
4.7 Solution Proposals: publications per year. 82
4.8 Correlation of tasks with the number of papers published per

category (Sys and Evol). 86
4.9 Correlation of the types of data used by the research works

studied and the the temporal focus of these works (Sys and
Evol). 92

4.10 Correlation of visualization types and the number of papers
published by category (Evol and Sys). 96

List of Figures XIII

5.1 Visualization using a city metaphor [Wettel 2007,
Wettel 2008a]. (a) Use of levels to represent the elements
contained by other elements. (b) Visual representation of the
methods in a class using brick figures. (c) Visualization of a
complete software project. 115

5.2 System structure and metrics representation using a Treemap
based on Voronoi tessellations [Balzer 2005b]. 117

5.3 Visual representation of the system structure, and
software item details (including metrics, methods and
attributes) [García 2009b]. 118

5.4 Hybrid visualization that combines the use of a conventional
tree and treemaps [Zhao 2005]. 120

5.5 Top level view of the relationships among packages in JDK
1.4.2 using a hybrid visualization that combines a graph and
treemaps [Balzer 2005a]. 121

5.6 Characteristics of Lattix [Sangal 2005]. (a) Correlation of
dependencies between tasks (software items). (b) Expandable
features of the visualization and the number of dependencies
between software items contained in software packages. (c)
The package project is expanded and to depict the software
items that contain and the dependencies in which the items are
involved. 122

5.7 Design Rules: dependencies permitted, not permitted and
violations to the design of the system [Sangal 2005]. 123

5.8 Dependency relationships with Interactive Multi-Matrix
Visualization (IMMV) [Beck 2013]. 123

5.9 Visualization of dependency relations using Parallel Node-Link
(PNL) [Beck 2013]. 124

5.10 Representation of metrics in the Evolution Matrix
visualization [Lanza 2001a]. 125

5.11 Overview of the Evolution Matrix visualization [Lanza 2001a]. 126
5.12 Metrics representation in Polymetric Views [Lanza 2003]. . . . 126
5.13 Overview of Polymetric Views [Lanza 2003]. 127
5.14 Overview of the design of the Class Blueprint [Lanza 2001b]. . 128
5.15 Inheritance view of the Class Blueprint

visualization [Lanza 2001b]. 128
5.16 Overview of EXTRAVIS [Holten 2007]. 129
5.17 Visualization of two revisions of a software system [Wettel 2008a].130
5.18 Visual representation of the evolution of a software item and

its methods [Wettel 2008a]. 131

XIV List of Figures

5.19 EvoStreets: Evolution of the structure of a software
system [Steinbrückner 2013]. 132

5.20 H-V tree layout for the visualization of the structure of software
systems [González-Torres 2009]. 133

5.21 EvoStreets: Use of the levels in the visualization to show when
a new package is added. [Steinbrückner 2013]. 133

5.22 EvoStreets: The properties of the software items are
represented by the width, height and color of the
buildings [Steinbrückner 2013]. 133

5.23 Comparison of dependencies between two revisions of a software
system [Beck 2013]. 135

5.24 Animated visualization of the evolution of the architecture of
a software system using Yarn [Hindle 2007]. 136

5.25 Strip of animated visualizations [Beyer 2006]. 137
5.26 Use of lines and arrows to depict new node positions because

of changes in the dependencies [Beyer 2006]. 137
5.27 The process of building a map of a software system with

emphSoftware Cartography [Kuhn 2010a]. (a) Placement of
software items in the plane in accordance with the distance of
the terms. (b) Area of influence of the software items according
to their proximity and size measured by the number of lines.
(c) Height of the mounds calculated with reference to the size
of the system. 139

5.28 A series of four visual representations for the same number of
system revisions using Software Cartography [Kuhn 2010a]. . . 139

5.29 Succession of call-graph visualizations using
GEVOL [Collberg 2003]. 141

5.30 Visual representation of the logical coupling between packages
and files [D’Ambros 2006a]. 142

6.1 System Hotspots View: visualization of system structure
and metrics for supporting the collaboration between
programmers [Anslow 2010]. 163

6.2 SourceVis: a large interactive multi-touch table
for the interaction and collaboration between team
members [Anslow 2013]. 164

6.3 Representation of changes and ownership of the software
elements in Ownership Map [Gîrba 2005]. 165

6.4 Visualization of the patterns of behavior of programmers using
Ownership Map [Gîrba 2005]. 167

List of Figures XV

6.5 CodeTimeline: (a) Notes of the development team concerning
the Ownership Map visualization. (b) Visualization of the
frequency of terms for each revision by using word clouds and
notes from the development team [Kuhn 2012]. 168

6.6 Visualization of the activities carried out by
programmers [Ripley 2007]. 169

6.7 Representation of software items and changes that were made
by each developer [Ripley 2007]. 169

6.8 Share: Text Editor showing the pieces of source code that have
been reused and which represent by means of colors, the person
who has made the original contribution [Assogba 2010]. 171

6.9 Share: Browser of relationships using a radial layout to show
the relationships between software items according to the reuse
of source code [Assogba 2010]. 172

6.10 Share: Basic browser to show the relationships of a particular
software item [Assogba 2010]. 173

6.11 Visualization of a collaborative network between programmers
based on the software items that have been changed in
common [Jermakovics 2011]. 174

6.12 Buckets View: Visualization of changes made to software items
and the collaboration between programmers [Lanza 2010]. . . 175

7.1 Q1: Use of SCMtools. 181
7.2 Q2: Use of bug tracking tools. 182
7.3 Q3: Correlation of SCMand bug-tracking tools to make

relationships between bugs and changes. 183
7.4 Q4: Tools for metrics data collection. 183
7.5 Q5: Use of visualization tools for software debugging. 185
7.6 Q6: Use of visualization tools to navigate class hierarchies. . . 185
7.7 Q7: Use of visualization tools to navigate dependencies. 185
7.8 Q8: Use of visualization tools to find and analyze code clones. 186
7.9 Q9: Use of visualization tools to find source code fragments

after refactoring. 186
7.10 Q10: Use of a tool to measure and visualize individual

programmer contributions. 187
7.11 Q11: Use of visualization tools to show which developers change

which software items. 187
7.12 Q12: Use of visualization tool for metrics. 188
7.13 Q13: Use of visualization tools to help reduce software

development and maintenance time. 189

XVI List of Figures

7.14 Q14: Reason for not using visualization tools during software
development. 189

7.15 Q15: Perceived adoption blockers for visualization tools. . . . 190
7.16 Q16: Do you consider that software engineering courses should

include topics on the use of visualization tools? 190

8.1 Visual Analytics Process. 201
8.2 Overview of the Evolutionary Visual Software Analytics process.206
8.3 Overview of the architecture for Maleku 209

9.1 Framework for collaborative work in Software
Development, Maintenance and Evolution (SDME)processes
[González-Torres 2014]. 215

9.2 Knowledge discovery workflow in the Software Evolution
Visualization module of Maleku. 218

9.3 Granular Timeline (GT)showing statistics for revisions
committed for the jEdit source open software project spanning
14 years. 220

9.4 GTshowing statistics for revisions using treemap
representations for jEdit. 221

9.5 GTshowing statistics for JabRef. 222
9.6 JFreeChart : GTvisualization depicting statistics on revisions. . 223
9.7 Absolute representation of programmer’s contributions, project

structure and lifelines for jEdit, JabRef and JFreeChart. . . . 225
9.8 Relative representation of programmers’ contributions for the

projects jEdit, JabRef and JFreeChart. 228
9.9 Correlation of programmers with packages for the projects jEdit

and JabRef. 229
9.10 Inheritance and interface implementation relationships,

including expanded years and metric values, for the file
VFSBrowser.java in jEdit. 232

9.11 Software item inheritance and interface implementation
relationships for the file AbstractOptionPane.java in jEdit. . . 233

9.12 Implementation relationships for the interface Comparator of
the project jEdit. 234

9.13 OperatingSystem.java: file that contains 10 classes, which
makes intensive use of inheritance. 235

9.14 Relationships between software items of HelpViewer.java (jEdit).236
9.15 Inheritance and interface implementation relationships of

software items in BasePanel.java (JabRef). 237

List of Figures XVII

9.16 Socio-Technical Graph (STG)showing the contributions and
relationships between programmers based on the software items
they have modified in common. 239

9.17 Screenshot of STGfor jEdit and the year 2013. 240
9.18 Representation of STGfor the year 2014 (jEdit). 241
9.19 STGfor the overall evolution of JabRef. 241
9.20 Socio-techcnical relationships between programmers for the

year 2011 (JabRef). 242

10.1 PlasticSCM: Version Tree 3D [Therón 2007, Therón 2007]. . . 247
10.2 Visualization of the evolution of software items with Visual

Revision Control System (VRCS) [Koike 1997]. 248
10.3 Perforce: Visualization of the evolution of a software item with

Revision Graph [PerforceSoftware 2014]. 249
10.4 Design sketch of the Revision Tree. 251
10.5 Side to side comparison of (a) Version Tree 3D and (b) Revision

Tree [Therón 2007, Therón 2008]. 253
10.6 Timeline details [Therón 2007, Therón 2008]. 255
10.7 Correlation of the evolution of a software item with the

timeline [Therón 2007, Therón 2008]. 255
10.8 Revision Tree: polyphocal display. 256
10.9 Highlighting of main development line. 257
10.10Highlighting of a curve shape in the main development line. . 258
10.11Hiding of rows and columns. 258
10.12Visual representation of a software item with cluttered elements

and unordered rows. 260
10.13Visual representation of a software item with ordered rows. . . 261
10.14Control panel and additional details of the software item and

revisions. 262
10.15Collaboration between programmers during the evolution of

HelpViewer.java. 263
10.16Partial view of the evolution and collaboration between

programmers for VFSFileChooserDialog.java. 264
10.17View of the evolution of VFSFileChooserDialog.java after

applying some interaction techniques. 266
10.18Representation of several branches that have been created by

the same programmer in JFreechart.java. 267

11.1 Blockers for the adoption of the tool. 283

C.1 Descripción general del proceso Evolutionary Visual Software
Analytics. 319

XVIII List of Figures

C.2 Vista general de la arquitectura de Maleku 324
C.3 Flujo de descubrimiento de conocimiento en el módulo EVCES

de Maleku. 328
C.4 Visualización de datos estadísticos usando sobre las revisiones

de jEdit en un lapso de tiempo de 14 años utilizando GT. . . . 331
C.5 Representación visual de estadísticas sobre revisiones de jEdit

usando GTy treemaps. 332
C.6 Representación absoluta de las contribuciones de los

programadores, la estructura del proyecto y las líneas de
vida para jEdit. 334

C.7 Relaciones de herencia e implementación de interfaces,
incluyendo la expansión de los años y valores de métricas para
el archivo VFSBrowser.java de jEdit. 337

C.8 Herencia de un elemento de software y relaciones
de implementación de interfaces para el archivo
AbstractOptionPane.java en jEdit. 338

C.9 Relaciones de implementación para la interfaz Comparator del
proyecto jEdit. 338

C.10 OperatingSystem.java: este archivo contiene 10 clases, las
cuales hacen uso intensivo de herencia. 339

C.11 Relaciones entre los elementos de software de HelpViewer.java
(jEdit). 340

C.12 STGmostrando las contribuciones y relaciones entre los
programadores, con base en los elementos de software que han
cambiado en común. 342

C.13 Captura de pantalla de STGpara jEdit y el año 2013. 343
C.14 Bosquejo del diseño de Revision Tree. 344
C.15 Detalles de la línea de tiempo [Therón 2007, Therón 2008]. . . 347
C.16 Correlación de la evolución de un elemento de software con la

línea de tiempo [Therón 2007, Therón 2008]. 347
C.17 Revision Tree: vista polifocal. 348
C.18 Línea de desarrollo principal puesta de relieve. 349
C.19 Resaltado de una rama paralela a la rama principal. 350
C.20 Ocultado de filas y columnas. 350

List of Tables

1.1 Correlation of the methodology with Chapters and research
activities. 16

2.1 SCMsystems and architectures. 33
2.2 Terms and concepts used in Software Configuration Management. 36
2.3 Correlation of references with analysis methods. 43
2.4 Correlation of references with analysis results. 44

3.1 Application areas of Visual Analytics. 48
3.2 Correlation of references with theoretical approaches. 49

4.1 Classification scheme of investigations according to their
research scope. 71

4.2 General classification scheme. 77
4.3 Research approach+papers per year+technology

elements+research focus. 80
4.4 Task addressed+papers per year+research focus+validation type. 83
4.5 Task addressed+data used+runtime data. 87
4.6 Task addressed+visualization+view design. 98
4.7 Visualization+data used. 102

5.1 Data elements of software systems used in the tasks (a)
Understand system architectures and (b) Team awareness and
collaboration. 113

5.2 Visualization techniques used for the tasks supported by
research works: (a) Understand system architectures and (b)
Team awareness and collaboration. 114

6.1 Assumed benefits of adopting a Global Software Development
(GSD)approach. 147

7.1 Number of answers per role type. 179
7.2 Number of answers per company type. 180
7.3 Question group: Data collection. 181
7.4 Question group: Product tools. 184
7.5 Question group: Process tools. 187
7.6 Question group: Blocking factors. 188

XX List of Tables

8.1 Responsibilities and functions of the modules that make up the
Visual Analytics process. 198

8.2 Components of the Visual Knowledge Explorer module. 200
8.3 Responsibilities and functions of the modules that make up

the Evolutionary Visual Software Analytics (EVSA)process. . 204

10.1 Comparison of visualization tools for the evolution of software
items. 250

10.2 Visual elements and variables represented by Revision Tree. . 252

11.1 Background details of the participants in the usability study. . 272
11.2 Question group: Understanding software project evolution. . . 274
11.3 Question group: Collaboration among programmers. 275
11.4 Answers for closed-ended questions that assess the visual design

and easy to learn of the visualization. 276
11.5 Answers for closed-ended questions that assess the user

satisfaction with the visualization. 277
11.6 Question group: Granular Timeline visualization assessment. . 277
11.7 Question group: Gridmaster visualization assessment. 278
11.8 Question group: Socio-Technical Graph assessment. 279
11.9 Question group: Revision Tree assessment. 280
11.10Global assessment of VSEKE. 282

A.1 Papers published per venue. 297

B.1 Philosophical Research: Correlation of research approaches. . . 303
B.2 Solution Proposal: Correlation of research approaches. 305

C.1 Responsabilidades y funciones de los módulos que componen el
proceso Analítica Visual Aplicada a la Evolución de Software
(AVAES). 320

C.2 Elementos visuales y variables representadas por el Revision Tree.345

Part I

Introduction

Chapter 1

Introduction

Nevo prometió a Güindy que harían un viaje especial con destino
desconocido. El día del viaje, antes de que saliera el sol, Güindy

preparó de forma diligente los menesteres indispensables para
abrirse paso y sobrevivir en la selva. Con todo listo, emprendieron

el viaje junto a Cucho Comecuanduay, su perro. — El viaje de
Güindy, A.González

Contents
1.1 Presentation . 3

1.2 Research Problem . 5

1.2.1 Big Data . 6

1.2.2 Software Development and Maintenance 7

1.2.3 Visual Analytics and Software Maintenance 9

1.3 Aims and Research Questions 11

1.4 Methodology and Outline 13

1.5 Research lines of this thesis 14

1.1 Presentation

Software systems are almost omnipresent in daily life and used in almost all
devices which are utilized by people and businesses. Individuals use these
contrivances and the associated software to do the following things (among
many others): to work; to learn (take online courses, read and research topics
of interest); entertain themselves (play, watch TV or videos, listen to music);
communicate (friends, family, co-workers, participate in forums, collaborate
and work meetings),to buy things; to do paperwork (banking, taxes, and
other payments) and telecommuting [Charette 2005]. This has been the social
reality of the recent past; is current social reality; and will continue to be
everyday social reality in the future.

4 Chapter 1. Introduction

The omnipresence of technology has led some individuals and
organizations to become socially and economically dependent on software
systems [Boehm 1999b]. As a result, the percentage of profits that
companies invest annually in this area, on average, is greater than
4% [Charette 2005, Hall 2013], and the expenditure in software products
grows annually [Gartner 2013, Gartner 2014].

Given this environment, the software market is very attractive to investors
and competition between producers is intense. It is thus necessary to bear in
mind that a product is valuable if it enables or helps people and organizations
to achieve particular goals or objectives by means of its use [Boehm 1999b].
The software industry in general, and more specifically, internal software
development departments (being fully aware of this situation) seek to develop
products which meet the requirements and functionality demanded by users
with high standards of quality, in the shortest time and at the lowest cost
possible. This statement is also valid when talking about open source
software [Lee 2009].

At this point, it is appropriate to consider that the development and
maintenance of software are complex and that the possibility of failure is
present at all stages and levels of the process [Kraut 1995, Procaccino 2002,
Morisio 2002, Chow 2008]. Annual reports regarding this problem are
published [Group 2013] which evaluate the general performance of the software
industry and the success rates of particular projects. It must be mentioned
that studies have been published concerning famous cases of software
development projects whose failure has cost the loss of millions [Charette 2005]
and which led to a loss of prestige for some companies involved in these
projects.

With these examples in mind, great efforts have been made
to improve elements of the development process, such as the
calculation of costs and risks, planning, the reuse of software
components [García-Peñalvo 2000, Garcıa-Peñalvo 2002, Laguna 2003] and
system design and maintenance [Boehm 1999b, Sullivan 2001, Royce 2009].
Many of these efforts aim to improve the technical skills of individuals
and processes in order to obtain better economic results [Boehm 2000,
Colomo-Palacios 2013, Buxmann 2013, Colomo-Palacios 2014]. It is worth
noting that in economic terms, software engineering techniques have value if
they facilitate the development of more valuable software [Boehm 1999b].

Given this more general context, this thesis seeks to contribute to the
software economy by supporting the process of Software Development and
Maintenance (SDM) through the definition of a Visual Analytics (VA) process
in order to facilitate the analysis of software projects and their evolution.

Some factors that affect the success or failure of software projects that are

1.2. Research Problem 5

taken into account in this research are the following:

1. Control and monitoring of the quality of software by the use of
metrics [Niazi 2006, Lee 2009, Nasir 2011].

2. The importance of change control and configuration [Nasir 2011].
3. The distributed location (sometimes in different countries and

continents) of collaborators on the project and their level of awareness
of the activities and changes carried out by project staff [Niazi 2006,
Fabriek 2008].

4. The need for reliable automatic tools to obtain information about
the SDM process and the changes that have been made to the project
source code [Niazi 2006].

1.2 Research Problem

The objective of Software Evolution Analysis (SEA) is to support project
managers and programmers during the process of change and evolution of
software in separate geographical environments [Estublier 1999, Ogawa 2009].
Project administrators must have a general vision of the process which allows
them to control the quality of the software; evaluate productivity; reduce
implementation and maintenance risks as well as having the capacity to report
on all these activities to higher management levels. While programmers have
to learn the new code bases to understand structural changes, as well as the
changes in inheritance relationships and interface implementation. Moreover,
programmers need to understand the dependencies of software items and
comprehend the differences of source code revisions and have access to the
development history.

SEA actively looks to aid the improvement of the software process through
the analysis and support to continuous change, complexity, growth and quality
control [Lehman 1997]. However, SEA produces large and complex datasets,
due to the number of variables involved in the evolution process and the
intricacies of their relationships that are difficult to understand by humans.
For these aforementioned reasons, although SEA provides valuable elements
of information, it does not provide sufficient knowledge to satisfactorily carry
out the tasks of understanding the changes and evolution of the software.

Accordingly, the next sections discuss some key issues and concepts that
are related to the aforementioned problem. Firstly, Big Data is introduced and
the relationship with software evolution is established, secondly the software
development and maintenance process is explained and thirdly, the use of VA
to support software developers and managers is discussed.

6 Chapter 1. Introduction

1.2.1 Big Data

During the last decades several changes have taken place on how organizations
and individuals generate, process and share information. On the one
hand, the emergence of new devices, such as smartphones and tablets, and
the improvement in processing and storage capabilities of computers and
servers, has increased the abilities of individuals and organizations to create
new and different data content formats. While on the other hand, the
data generated can be shared in real time at high speeds, thanks to the
new technologies. Thus, data with more varied and complex formats is
created, collected and transmitted from numerous sources including sensor
networks, Global Positioning System (GPS), Radio Frequency Identification
(RFID) tags, Wireless Fidelity (Wi-Fi) networks, satellites, multimedia
streams and software used by mobile devices [Krishnan 2013]. Consequently,
individuals and organizations have access to more data than what they are
able to process and transform into knowledge and this is causing information
overload (in all areas of human endeavor).

In this context, the term Big Data is frequently used to make reference to
the volume, variety, velocity and complexity of data produced daily. The main
goal of Big Data related research and technologies is to manage and transform
available real-time and historical data into knowledge to inform decisions
according to organizational requirements and needs [Hemerly 2013]. Although
data characteristics have changed over time, many challenges associated with
Big Data are not new and have been discussed in the research arena for years,
even decades. Such challenges are related to the retrieval and integration of
heterogeneous data sources into large data volumes, its processing and storage
and the scalability of tools that perform automatic data analysis.

Although, Big Data represents a great opportunity for businesses to take
advantages of the Data Economy, in this context, analytics deserves special
attention in providing insight into large volumes of data [LaValle 2010], as it
is located at the top of the process stack that transforms data into knowledge.
According to Davenport [Davenport 2006], analytics has been an important
player in the definition of strategic plans, and has helped to drive, for decades,
the improvement of the ability of organizations to outperform competitors by
means of analyzing the available data.

VA is a natural evolution of analytics that exploits new computational
algorithms for data analysis and the ability to present and explore their results
by means of visual representations. VA is now widely accepted as an essential
tool in a wide range of domains such as Business Intelligence (BI), security,
marketing, life sciences, and social sciences.

The next section discusses the software development and maintenance

1.2. Research Problem 7

process and the involved data elements and their relationships, whereas
chapter 2 provides a detailed explanation of such process.

1.2.2 Software Development and Maintenance

One of the most critical problems for some companies is the frequent
job-hoping of software developers and project managers [Fallick 2006,
Laumer 2011, Owens 2011]. This causes the hiring and reallocation of
personnel to projects, either within their company or a client company.
Moreover, it implies that software developers and managers often have to
face the maintenance of large legacy applications and software projects that
they have not supported before. Nevertheless, the maintenance process
is usually compromised due to the lack of proper system documentation:
it is frequently incomplete, outdated or it is not present [Murphy 1997].
Under these circumstances, programmers and project managers require to
understand and comprehend the project at hand, its recent changes and
evolution, in a very short term for being able to carry out the most urgent
changes or maintenance tasks [Sharif 2009b].

An important consideration is that software development1 and
maintenance2 are dynamic tasks that conform to the basis of Software
Evolution (SE). Changes are made to software projects and those changes are
added to the change history of the project and therefore to its evolution. In
this process the changes made by a developer to a software item3 could affect a
number of associated software items in which other programmers are working.
Furthermore, two or more programmers could also be changing the same
software item simultaneously. This increases the problem of understanding
a system for someone that have just be assigned to the project, affecting its
ability to make changes.

SE is a cyclic process: changes are based on the understanding of the
current state of the software project, which is the accumulation of previous
changes [Mens 2008]. The change process and the tracking of changes are
usually managed with the assistance of a SCM tool.

A SCM tool uses revisions for storing details about changes, such as the
author who made the change, the date and time of the change, the project

1Software development is the process that involves the design, programming and testing
of software systems.

2Software maintenance is aimed to correct faults while improving the performance and
extends the life cycle of a software system [STA 2010]. Moreover, in the maintenance
phase, changes are classified as preventive (detect and correct latent faults), perfective
(improve performance or maintainability), adaptive (software functionality improvements
or additional requirements) and corrective [STA 2006].

3A software item is a source code piece (e.g., a module, file, class or interface).

8 Chapter 1. Introduction

structure before and after the change, and the source code and the changes
that were carried out on it [Estublier 2000]4.

A revision identifies the current state of the project at the moment that
the change has been committed. Revisions are stored by a software repository
under the control of a SCM tool and are associated to a revision number.
Consequently, SE is an iterative process conformed by the accumulation
of changes and revisions during software maintenance and development
[Fernandez-Ramil 2008].

SE usually expands through several years, generating thousands and even
millions of Lines of Source Code (LOC) [Kagdi 2007a], hundreds of software
components and thousands of revisions [D’Ambros 2008]. Furthermore,
within software projects exist relationships among software items in the
form of inheritance, interface implementation, coupling and cohesion. In
addition, source code is composed of variables, constants, programming
structures, methods and relationships among those elements. Besides logs,
communication systems, defect-tracking systems and LOC tools keep records
with dates, comments, changes made to software projects and associated users
and programmers [Hassan 2005].

Accordingly, SEA requires the assistance of automatic analysis tools for
aiding the understanding of a software project. It takes into account the
evaluation of individual revisions and the comparison of the output produced
by such evaluation for a given number of revisions or all the existing revisions
associated to the project. In this context, the analysis on an individual revision
includes the comprehension of the structural characteristics of the project, the
relationships among software items, the software quality metrics, source code
facts, and the comprehension of the socio-technical relationships derived from
the development process.

SEA also requires the retrieval of data from the source code, the software
project structure, communication systems, logs and the metadata5 records
from bug tracking and SCM tools [Garcıa-Peñalvo 2011]. Thus, it makes
use of a set of techniques that have the capability of recovering and
analyzing software projects looking to discover patterns and relationships and
calculating software quality metrics and fact extraction from the results of
comparing the analysis performed on revisions [D’Ambros 2008]. Although,

4The IEEE Standard 828-2005 [STA 2005] states that “SCM activities include the
identification and establishment of baselines; the review, approval, and control of changes;
the tracking and reporting of such changes; the audits and reviews of the evolving software
product; and the control of interface documentation and project supplier SCM. SCM is
the means through which the integrity and traceability of the software system are recorded,
communicated, and controlled during both development and maintenance.”

5Metadata contains descriptive details about the data.

1.2. Research Problem 9

SEA is powerful for uncovering SE details, it is not capable, per se, of
supporting successfully the understanding and comprehension of SE. It
still depends upon other techniques and methods, such as visualization
and interaction techniques, for supporting successfully software change and
maintenance tasks.

1.2.3 Visual Analytics and Software Maintenance

Although the result of analysis of the evolution of software elements provides
useful information, it does not provide sufficient information to carry out
the tasks of understanding changes in a satisfactory fashion and therefore
provide adequate support to software developers and project managers.
Therefore, research has taken into account the important role of Information
Visualization (IV) in recent years, providing insight from large and complex
data sets through visual representations combined with interaction techniques.
It is important to highlight that IV takes advantage of the human vision
broad bandwidth pathway to the mind, allowing experts see, explore, and
understand large amounts of information at once [Therón 2006b].

VA is a process whose goal is to provide insight into the vast amounts
of scientific, forensic, academic or business data that are stored in
heterogeneous data formats such as databases, HyperText Markup Language
(HTML), eXtensible Markup Language (XML) files, metadata and source
code. This process iteratively collects information, preprocesses data, carries
out statistical analysis [Peck 2011], performs data mining, and uses machine
learning [Witten 2005], knowledge representation [van Harmelen 2007], user
interaction [Sharp 2011], visual representations [Leung 1994a, Johnson 1991,
Robertson 1991], human cognition, perception, exploration and the human
abilities for decision making [Keim 2006, Llorá 2006].

VA has been applied comprehensively to problems as diverse as
avian flu [Proulx 2006], paleoceanographic conditions [Therón 2006c],
organization analysis [Card 2006], eLearning [Gómez-Aguilar 2009,
Gómez-Aguilar 2015b], decision making [Migut 2011, Savikhin 2008],
ontology engineering [García 2012, García-Peñalvo 2012c,
García-Peñalvo 2014], temporal patterns [Weaver 2006, Ziegler 2010],
social networks [Perer 2011], security analysis [Harrison 2011] and software
systems [Reniers 2012, González-Torres 2013b]. Therefore, one can say
that knowledge discovery is an intrinsic property of VA, as it is aimed
at supporting analysts and decision makers in gaining insight from large
multivariate datasets [Thomas 2005].

Consequently, VA may offer solutions to the problem of supporting
programmers and managers during the implementation process, taking into

10 Chapter 1. Introduction

account the fact that it is a process which offers a comprehensive approach
which includes everything from the retrieval of relevant information and
analysis to visual representation of the results of the analysis. It offers
the potential to explore different levels of detail by using multiple visual
representations, coordinated together and supported by the use of interaction
techniques [North 2000], thus facilitating the discovery of relationships and
knowledge by means of the analytic reasoning of the analyst.

Taking into account these positive factors, it can be said that one
of the properties of VA is the ability to provide support for decision
making [Savikhin 2008, Mane 2012] using the cognitive abilities of users, and
their application to the evolution of software can offer great opportunities
to support programmers and project managers. However, the application
of VA to the evolution of software is new and the tasks performed by
project managers and their information needs are complex [Forsberg 2005,
de Oliveira Barros 2004, Munch 2004, Paul 1999].

This implies that there are still a great number of challenges it must
overcome in order to successfully support project managers in decision making.
Amongst those challenges the following are key:

∗ To facilitate visual analysis and evaluation of the development process.
∗ To provide methods to visually monitor the evolution of the quality

of software elements (classes, packages and modules), taking into
consideration the use of software quality metrics; with the aim of
maintaining complexity and project evolution under control as well as
assuring quality control.
∗ To provide visual mechanisms to review the measurements of task

execution, and permit progress analysis and performance prediction.
∗ To assist, using visual methods, risk management, and to control the

size and complexity of the software product.
∗ To keep project managers informed on patterns of collaboration between

developers and about those elements which have been modified either
synchronously or asynchronously as well as the implications (in terms of
quality and functionality) of the changes which have been carried out.

While the challenges facing VA to support programmers in understanding
SE, according to their information needs [Sillito 2006b], are:

∗ Offer details about the software elements upon which their work
depends.
∗ Provide information about the software components that are being

simultaneously modified by other programmers.

1.3. Aims and Research Questions 11

∗ Allow programmers to understand the implications of the changes made
on the basis of relations (inheritance and interface implementation) and
the partnerships between software elements (composition, reference, and
coupling), as well as the effect on the collaboration between objects.
∗ Provide details about the creation of variables, access and modification

of data, by means of arguments in the methods, and global variables.
∗ Enable programmers analyze, and compare for two or more revisions,

flow control, execution and exception handling between revisions.
∗ Facilitate the identification of the differences between files, software

elements and types of software in several revisions.

It is worth to recall that SDM [Colomo-Palacios 2012] covers a
high percentage of the cost of modern software systems [Koschke 2003].
Program comprehension tasks [Koschke 2003] follow precisely the pattern of
sensemaking by hypothesis creation, refinement, and validation, common in
VA [Sun 2004, Thomas 2005, Thomas 2006]. Finally, program comprehension
tools rely on the same combination of software analysis [Koschke 2003] and
Software Visualization (SV) [Diehl 2007] components.

The application of VA to SE is a recent development, as it was mentioned
before. Therefore, a further challenge facing research devoted to studying the
application of VA to SE, is to define clearly the process and identification of
the factors, methods and techniques which contribute to it.

1.3 Aims and Research Questions

The intention of this research is to define a process to describe and explain
the application of VA to SE. The goal is to offer guidance in the design and
implementation of software tools to assist programmers and project managers
in software development and maintenance. Furthermore, this research
anticipates aiding in the communication and understanding of research carried
out by other scholars. Accordingly, the principal question posed by this
research is the following:

How can a process be adequately defined to describe and explain the
application of Visual Analytics to software evolution?

The definition of a process, as stated in the previous question, requires
on one hand an explanation of how VA is applied to SE; and on the other
hand, the identification of the roles, borders, interactions and relationships of
the components, methods and techniques involved in such process. Pursuing
this approach, the following are subsidiary research questions which help to
adequately explain and describe the process:

12 Chapter 1. Introduction

1. How do the components that informed the process of applying
visual analytics to software evolution interact and interrelate?

2. What is the composition of components in terms of methods
and techniques and their roles and interactions in the process of
applying visual analytics to software evolution?

The above research questions needed to identify the components, methods
and techniques involved in the process of applying VA to SE as well to
characterize the roles, relationships and interactions between these elements.
Additionally, the utility of this process in the design and implementation of
tools must be proved, as a necessary element in answering the main research
question posed. On the basis of the above, the following subsidiary research
question should be formulated thus:

3. How can it be proved that the description of the process can be
followed effectively in order to design and implement an architecture
to support the understanding of SE by programmers and project
managers?

In order to answer Question 3, an architecture needs to be implemented,
based on the process of applying VA to SE that will take into account
the problems described in previous sections regarding the needs of project
managers and programmers. Therefore, the implementation of this
architecture will address the following research questions:

3.1 How can software project managers be supported in their decision
making by deepening understanding of changes in software quality
metrics, and socio-technical and collaborative relationships during
project evolution or a particular time period?

3.2 How can programmers be assisted in their understanding of changes
in software quality metrics, software project structures, inheritance
and interface implementation for a given time period?

3.3 How can programmers and project managers be supported in their
understanding of changes during software project evolution utilizing
the comparison of time periods?

1.4. Methodology and Outline 13

Additionally, the architecture will be validated through a user assessment
test and use case scenarios. The objective of this validation is to test the
complete cycle of applying VA to SE in the design and implementation of a
tool to support programmers and project managers in the development and
maintenance of software.

1.4 Methodology and Outline

The research methodology used in this thesis is an adaptation of Action
Research model [Kemmis 2005] and followed the cycle detailed in Figure 1.1.
The phases of this methodology and its correspondence with the organization
of this study are shown in table 1.1.

The research model Action Research is a methodology that makes use of
iterations to create a series of progressions in order to obtain the solution to
a given problem. The goal of each iteration is to refine the solution and takes
into consideration collaborative aspects of the work and the participation of
the individuals interested in solving a particular problem [Kemmis 2005].

The research discussed in this thesis corresponds to the first cycle to
propose models and tools that contribute to supporting in an effective manner
the development and maintenance of software by means of the use of VA.
When considering Figure 1.1 it can be thus seen that the methodology consists
of 5 phases (Plan / Revised plan, Diagnose, Take action, Evaluate and Analyze
findings) which when completed leads to a new cycle of the process that starts
with a review of the research plan, goals, objectives, questions and research
problem. From there on, the following steps are executed taking into account
the elements of the previous iteration. Specifically, this research begins
with the phase Plan / Revised plan that corresponds to the introductory
chapter and chapters 2 and 3 (see table 1.1). In this phase, goals, objectives,
research questions and research problem are constantly defined and redefined.
Similarly, SE concepts, terms and the analysis process as well as the definition
of the VA process are revised in each methodology iteration. The goal
of chapters 2 and 3 is to define some building blocks which are aimed at
contributing the principal research question of this investigation.

The process continues with the Diagnose phase which seeks to analyze
the research papers which are published and that are related to the application
of visualizations and VA to software systems (and their evolution). During
this stage, surveys are conducted whose participants are professionals working
in the software industry in order to become more fully aware of the current
state of use of visualization tools. Subsequently, using the results obtained
and with the support of the relevant bibliographical references, a detailed
discussion on the state of research in this field and its impact on industry

14 Chapter 1. Introduction

(taking as a starting point the current use of visualization and VA to support
the process of development and maintenance) is carried out.

Figure 1.1 shows the relationship between the Diagnose phase and the
activities described. It is possible to appreciate the sequence of activities
described by means of observation of the dotted blue lines. The goal of this
phase (chapters 4,5, 6 and 7) is to identify the tasks supported by research,
and the data elements and visualizations in current use by the academy and
industry, and therefore diagnose the needs that should be addressed by the
characterization of the process of applying VA to SE.

Take action is the next phase of the process. In this phase, the process of
applying VA to the evolution of software is defined or redefined. Accordingly,
the specification of the architecture as well as the design and implementation
of the tool (which uses as a basis the specified architecture) are also defined or
redefined. The dotted blue lines in Figure 1.1 show the sequence in which each
one of these activities is carried out. Chapter 8 corresponds to this phase.

The next stage is Evaluate, which has as aim the indirect assessment
of the definition of the process of applying VA to SE. The goal of the
specification and implementation of the architecture is to carry out a test of
the applicability of the above process. As a consequence, the evaluation and
validation of the tool that makes use of this architecture is also the evaluation
and validation of the process of applying VA to SE. Chapters 9, 10 and 11
present the results of assessing the tool and is associated with this phase.

The culminating phase of a research cycle is Analyze findings. This
phase is responsible for analyzing the results of the entire cycle, and for the
preparation of the principal conclusions. On the basis of the results of this
phase, the plan for the next cycle is redefined. This phase is associated to
chapter 12.

1.5 Research lines of this thesis

This dissertation is concerned with SDM and VA and was carried as
part of a collaboration between the Interaction and eLearning Research
Group (GRIAL) [García-Peñalvo 2012b] and the Visualization Group of the
University of Salamanca (VisUSAL). Thus, it has a close relationship with
other research works that are framed by such collaboration relationship,
and which were focused in supporting eLearning [Gómez-Aguilar 2009,
Gómez-Aguilar 2014, Gómez-Aguilar 2015b, Gómez-Aguilar 2015a], ontology
engineering [García 2012, García-Peñalvo 2012c, García-Peñalvo 2014],
drugs development [Peláez 2008, García 2009a, Pérez 2013] and
bioinformatics [Santamaría 2009, Vicente 2010, Santamaría 2014] processes.

1.5. Research lines of this thesis 15

F
ig

ur
e

1.
1:

M
et

ho
do

lo
gy

re
se

ar
ch

ou
tl

in
e.

16 Chapter 1. Introduction

Table 1.1: Correlation of the methodology with Chapters and research activities.
Methodology Chapters Research elements
phases and activities

Goals
Objectives
Research questions

Introduction

Research problem
Description of the
software development
and maintenance processSoftware Systems:

Maintenance and Evolution Discussion of software
evolution concepts and
details

Plan/Revise plan

Visual Analytics
Description of the visual
analytics process and its
components
Classification of research
works
Identification of tasks, data
elements and visualizations
in use

Systematic Mapping Study

Analysis and discussion

Survey on the Use of Visual
Tools in Software Development
and Maintenance

Discussion and analysis of
results

Diagnose

Focused analysis and discussion
Detailed review of selected
research works
Process description
Architecture specification

Take action A Visual Analytics Process
for Software Evolution Tool design and

implementation
Use case scenarios
Case studyEvaluate Architecture Validation
User assessment test
Analysis of results

Analyze findings Conclusions
Conclusions

Part II

Background

Chapter 2

Software Systems: Maintenance
and Evolution

La selva era inhóspita, compleja; lenguajes y protocolos peculiares,
territorios, vasallos y reyes. Casi todo era alimento de algo o

alguien. Todo elemento era una rueda dentada que encajaba con
otra. Evolución natural sin reglas aparentes pero implícitas,

acatadas por voluntad o impuestas por la fuerza. — El viaje de
Güindy, A.González

Contents
2.1 Introduction . 19

2.2 The Software Process 20

2.2.1 Software Development Models 20

2.2.2 Iterative Process . 23

2.2.3 Global Software Development 23

2.2.4 The Role of Project Managers and Programmers . . . 24

2.2.5 Software Maintenance 26

2.3 Software Evolution . 29

2.3.1 Software Configuration Management 30

2.3.2 Information Needs of Software Project Managers and
Programmers . 35

2.3.3 Software Evolution Analysis 42

2.4 Conclusions . 43

2.1 Introduction

The objective of this chapter is to explain the process of analyzing SE and
how this may support the development and maintenance of software systems.
To accomplish this, some terms, concepts, techniques and methods relevant to

20 Chapter 2. Software Systems: Maintenance and Evolution

the processes of software development, maintenance and evolution (as well as
key aspects in the understanding of changes and their effects) are studied.
Moreover, user needs with respect to the comprehension of SE, and the
requirements for carrying out the analysis of SE are also identified. This
chapter thus seeks to answer the following research question:

How may the analysis of software evolution effectively support software
development, maintenance and change tasks?

This chapter therefore explains the software process (section 2.2), and
then presents the software maintenance process (section 2.2.5); next it
explains the SE process including the information needs of programmers,
the comprehension strategies for discerning details on changes, the basics
of SEA and SCM (section 2.3) and finally the main conclusions of the chapter
(section 3.5) are outlined.

2.2 The Software Process

This section explains and discusses some of the most relevant concepts
and elements that concern to this research regarding the software process.
Accordingly, it makes an introduction to software development models and
presents a variant of the waterfall model [Royce 1970] (section 2.2.1); next it
explains the iterative nature of the software process (section 2.2.2), then it
discusses the current scenario in which software development is carried out in
different geographical locations, cultures and timezones (section 2.2.3); after
that it carries out a discussion on the role, tasks and skills of project managers
and programmers (section 2.2.4) and finally it explains the importance of
software maintenance and software system changes 2.2.5.

2.2.1 Software Development Models

The development of software is a complex process that involves a large number
of activities [ISO 2014] such as:

1. Analysis of requirements.
2. System specification.
3. High and detailed level design.
4. Programming.
5. Unit testing.
6. System integration.
7. Testing system integration.
8. Training users.

2.2. The Software Process 21

9. Preparing technical documentation.
10. Maintenance and evolution.

However, not all software development models include all of the
aforementioned activities. According to Sommerville, although there are
many definitions of software development models, activities common to
all (with possible variations in names and the combination of several
steps into one) are: system specification, design and implementation
(activities 3 and 4), validation (activities 5, 6 and 7) and evolution (activity
10) [Sommerville 2011]. Therefore, the waterfall model [Royce 1970], which
is the best known software development model, also includes the activities
common to all software development models (with some variations).

In the context of this research, the spiral model [Boehm 1988,
Boehm 1999a] is of particular interest as it clearly exhibits the iterative and
evolutionary nature of software development and maintenance. However, to
explain the process and the components involved during the development and
maintenance of software according to the aims of this research a more detailed
depiction of the SDM process is required. Accordingly, Figure 2.1 shows a
description of the stages and components involved in such process (following
the focus of this research), which are explained as follows:

Requirement definition and analysis: This embodies activities such as
the gathering, specification and analysis of requirements. Moreover, at
this stage the development plan, standards, configuration management
plans and software quality assurance are defined.

Preliminary design: It focuses on the tasks of high level design as well as
the testing plan.

Detailed design: It is focused on designing the interface, structure and
components of the system, the database and the system testing cases.

Implementation and unit testing: During this stage the programming
and testing of units is carried out.

Integration and testing: Its goals are to integrate system units and test
the functionality of the complete system.

Operation and maintenance: This is the stage where users may require to
carry out changes to the system due to additional functionality needs or
changes in the requirements [Grubb 2003]. Moreover, other causes could
be derived from error detection or preventive maintenance to adapt to
changing conditions such as the velocity in the production of data or
the opening of new offices.

22 Chapter 2. Software Systems: Maintenance and Evolution

F
ig

ur
e

2.
1:

A
de

ta
ile

d
ve

rs
io

n
of

th
e

so
ft

w
ar

e
de

ve
lo

pm
en

t
an

d
m

ai
nt

en
an

ce
pr

oc
es

s
(fi

gu
re

pr
ep

ar
ed

by
th

e
au

th
or

).

2.2. The Software Process 23

2.2.2 Iterative Process

The stages listed in the previous section are carried out in the order in which
they appear. It is necessary to add that the stages of Implementation and unit
testing, and Integration and testing produce a series of reports detailing the
results of unit testing and integration. The results of each stage could be used
to correct errors found in the system components and the overall system, so
sometimes it becomes necessary to cycle back to one or more of the foregoing
stages to update or make corrections in the documentation and source code.

The error correction process and carrying out changes to the system gives
place to the evolutionary aspect of software development and maintenance.
Therefore one can say that software development and maintenance conforms
to the basics of SE.

Depending on the reasons why a change is made to the system, it may
be necessary to return to some of the earlier stages. When changes in the
requirements for additional functionality occur, such requirements for changes
need to be analyzed and then perform the modifications to the whole or a part
of the complete system, implement new source code and perform unit testing
and system integration. In the case of single error correction may only be
necessary to make changes to the code and unit testing and integration. With
regard to preventive maintenance, the changes which have to be made may
involve several different stages, depending on their size, and could involve the
whole process, including the definition of new requirements or merely carry
out small changes in implementation. The principal goal is that the system
remains capable of being maintained, and thus can evolve.

2.2.3 Global Software Development

In this context it is relevant to remark the current tendency to carry out
the development and maintenance of software projects1 in a distributed
form (with members of the development and maintenance teams located in
different geographical areas) [Estublier 1999, Herbsleb 2001b, Jiménez 2009,
Ogawa 2009], which impedes the fluidity of communication and understanding
of the state of the project and the activities which are carried out during
its implementation and maintenance [Prikladnicki1 2003, Herbsleb 2003,
Omoronyia 2010, Talaei-Khoei 2012].

In this regard, it is worth mentioning that the distances involved
are geographical, temporal, and socio-cultural and therefore that

1A software project complies with the general definition of any type of project because
of its temporary nature with a determinate beginning and end (when the objectives are
reached or there is no longer any need for the project [PMI 2002].

24 Chapter 2. Software Systems: Maintenance and Evolution

the challenges that need to be overcome involve problems of
communication, coordination and control [Carmel 1999, Herbsleb 2001a,
Conchúir 2009, Misra 2013, Colomo-Palacios 2012]. This requires the use
of effective mechanisms [Carmel 1999, Mockus 2001, Prikladnicki1 2003,
Colomo-Palacios 2014]:

∗ Documentation systems (requirements, specification, design and
manuals).
∗ Appropriate development methodologies.
∗ Email.
∗ Telephone.
∗ Instant messengers.
∗ Video conference facilities.
∗ Collaborative technology and tools for sharing details of the activities

carried out by team members.
∗ Team building strategies.

In this context, another factor that is present is the type of
organization used by GSD teams (independent of the organizational
structure [Mintzberg 1991] used by the company), the following being the
most common:

∗ Virtual teams [Karolak 1999, Carmel 1999].
∗ Coherent and collocated teams of fully allocated engineers [Ebert 2001a,

Ebert 2001b].
∗ Loosely coupled teams [Herbsleb 2001a, Pinelle 2005].
∗ Scattered software development [Vrhoveca 2013].

2.2.4 The Role of Project Managers and Programmers

Software development teams include personnel working the following roles:
project managers, analysts, designers, programmers, testers and manual and
documentation writers. However, this research takes into account all these
roles it usually makes reference to Project Managers (PMs) and programmers
as the former are the responsible of the success of software projects in
administrative terms and the latter are central to the software process as they
are in charge of performing the development, maintenance and evolution of
software systems and thus the recipients to which the designs, test results and
change requests are delivered in order for them to carry out the appropriate
actions. The following two sections thus discuss the tasks that these people
perform and the capacities which are required from them [Cegielski 2006] to
successfully carry out their duties.

2.2. The Software Process 25

Tasks and skills of PMs: According to Thayer project management is “a
system of procedures, practices, technologies, and know-how2 that
provides the planning, organizing, staffing, directing, and controlling
necessary to successfully manage an engineering project” [Thayer 1988].
Accordingly (and taking into account that the term know-how is referred
to the use of best practices in carrying out human activities) the
aforementioned tasks must be performed by adequately skilled and
trained individuals [Sarewitz 2008]. Thus, PMs are the individuals who
have the proper training and skills to carry out the project management
tasks. Consequently, the abilities of PMs, specially when working
in GSDs [Saldaña-Ramos 2014], should include:

∗ Team coordination.
∗ Management skills.
∗ Project monitoring and tracking.
∗ Result evaluation abilities.

Moreover, some desirable soft skills of PMs [Sukhoo 2005] are:

∗ Communication skills.
∗ Team building.
∗ Flexibility and creativity.
∗ Leadership.
∗ Organizational effectiveness.
∗ Stress management.
∗ Time management.
∗ Change management.
∗ Trustworthiness.
∗ Conflict management.

Tasks and skills of programmers: Software programmers are present in
nearly al the stages of the software process: programming, testing,
system integration, training users, preparing user and technical
documentation, and maintenance and evolution. Therefore, their
role is central to the software process. Some of the most common
tasks [Ko 2007] for which they are responsible are the following:

∗ Writing new source code.
∗ Testing and debugging source code.
∗ Carrying out system changes.
∗ Reproducing failures and fixing system bugs.

2The Merriam-Webster dictionary defines know-how as the “knowledge of how to do
something smoothly and efficiently” [Merriam-Webster Online 2009].

26 Chapter 2. Software Systems: Maintenance and Evolution

∗ Understand execution behavior.
∗ Maintaining and updating source code.
∗ Preparing user and technical documentation.
∗ Training users.

Consequently, the set of skills and knowledge that software
programmers require to carry out the tasks within their area of
responsibility [Tockey 1999] may include the following:

∗ Programming language concepts.
∗ Database system concepts.
∗ Software architectures.
∗ Requirements analysis.
∗ Software design.
∗ Code optimization.
∗ Debugging techniques.
∗ Software project audits.
∗ Software testing techniques.
∗ Customer support techniques.
∗ Abilities for writing user and technical documentation.
∗ Configuration management.
∗ Software quality assurance and metrics.
∗ Effective communication skills.

Moreover, a study conducted by Turley [Turley 1995] found that the
following competencies are attributes of exceptional software engineers:

∗ Mastery of skills and techniques.
∗ Maintains a big picture view.
∗ Desire to do/bias for action.
∗ Driven by a sense of mission.
∗ Help others.

In the next section we discuss in more detail the process of software
maintenance and its implications for the evolution of software systems.

2.2.5 Software Maintenance

The operation of many organizations depends on the proper functioning
of their systems and therefore the maintenance of these is a critical
element [Bennett 2000]. It is thus important the fact that software
maintenance usually takes place over several years, according to project size

2.2. The Software Process 27

and the role played in the organization, and demands more resources than
the implementation phase [Grubb 2003]. This makes it likely that during
maintenance multiple challenges will have to be confronted in order for it to
be carried out successfully. Some of these challenges are caused by factors
which are external to the organization while others are caused by internal
factors. The following are some of the most common challenges:

Frequent job-hoping: The software industry is very competitive and many
companies are engaged in attracting and hiring the most talented
employees in the market, thus job-hoping of software developers and
managers between companies is frequent and mostly motivated by better
job offers from the competing companies [Fallick 2006, Laumer 2011,
Owens 2011].

Frequent reallocation of personnel: It is common that programmers are
assigned to other projects, either within their own company or a client
company, according to organizational needs and priorities.

Maintenance of large legacy systems: Programmers and managers
frequently face the maintenance of large legacy applications and
software projects that they have not supported before.

Lack of proper system documentation: The maintenance process is
usually compromised because system documentation is frequently
incomplete, outdated or it is not present [Murphy 1997].

It is noteworthy in this context that software maintenance3 is a dynamic
process which begins from the moment in which a software system is conceived
and initiated.

The tasks performed by project managers, designers, architects and
programmers look to satisfy the organizational needs and requirements
by making preventive (for improving source code quality), adaptive (due
to software functionality improvements or additional requirements) and
corrective changes4 to the software system. Change management [STA 2005]
is, therefore particularly important and is opportune to take into account
Figure 2.2. Change management includes the following list of tasks:
Change requests: These must specify the type of change (corrective,

adaptive or perfective), its description, as well as justify the necessity
and urgency in carrying a change.

3According to the ISO/IEC/IEEE 24765 standard software maintenance is “the process
of modifying a software system or component after delivery to correct faults, improve
performance or other attributes, or adapt to a changed environment” [STA 2010].

4The ISO/IEC/IEEE 24765 standard defines a change as “the modification of an existing
application comprising additions, changes and deletions” [STA 2010]

28 Chapter 2. Software Systems: Maintenance and Evolution

F
ig

ur
e

2.
2:

M
an

ag
em

en
t

of
ch

an
ge

s
in

so
ft

w
ar

e
m

ai
nt

en
an

ce
[S

T
A

20
05

](
fig

ur
e

pr
ep

ar
ed

by
th

e
au

th
or

).

2.3. Software Evolution 29

Analysis and evaluation of changes: It consists in evaluating change
requests taking into account if the change is implementable, the
criticality of the area involved, the impact on current and subsequent
work, the size and complexity of the change, the available resources and
the projected cost of the change.

Approval or disapproval of changes: The request for changes is approved
or disapproved according to the analysis and evaluation carried out and
the organization priorities.

Implementation of changes: This is responsible for determining which
software items and the various versions that will be affected by the
changes. During this task one or more persons must be assigned to
make the change, the date by which it is expected that the change will
be completed must be specified, as must the identifier of the new version
which will originate the change as well as its date of verification.

In short, once a request for change has been made is analyzed and
evaluated, then based on the result of that evaluation the process will
proceed to its approval or disapproval. If the change is approved the
process continues to the implementation phase, otherwise the request is filed.
Taking into account the challenges mentioned above and the management
of changes, programmers and project managers require to understand and
comprehend the current project and its evolution in a very short time in
order to carry out the most urgent maintenance tasks. This involves an
understanding of the accumulation of changes, from the last point at which
accurate documentation was available and may involve hundreds of software
components as well a necessity to clarify the relationships between them in
the form of inheritance, interface implementation, coupling and cohesion.
Consequently, the understanding of changes and thus the evolution of software
projects is a crucial task for software maintenance.

Accordingly, the following section reviews related concepts in SE and
analysis that are necessary to take into consideration in order to effectively
support the process of understanding software systems during the performance
of task change.

2.3 Software Evolution

SE describes the process of software change and improvement over years
and releases [Bennett 2000]. This produces vast amounts of details which
is frequently collected using automated mechanisms that report the changes
made and the tasks carried out by means of Integrated Development

30 Chapter 2. Software Systems: Maintenance and Evolution

Environment (IDE), SCM, defect-tracking and system testing tools. The
collected data is stored in source control repositories, bug repositories,
archived communications, testing logs and deployment logs [D’Ambros 2009a].
However, it is often true that most of the tools and storage mechanisms
mentioned above are not fully integrated and the recording and access to
data has to be performed on an individual basis.

SEA is concerned with aiding the understanding of software changes: their
causes and effects [D’Ambros 2008]. Its principal objectives are to provide
information which contributes to the maintainability of the project thus
supporting its improvement through the analysis of continuous, increasing
complexity, continuous growth but causing quality to decline [Lehman 1997].
The goal, which is to allow the implementation of the appropriate actions to
make additional changes and whether monitor the quality or functionality
of the software project is compromised in the short or long term. In
summary, it seeks to support new changes because modifications are based
on the understanding of the current state of the software project, which is
the accumulation of previous changes made by the software development or
maintenance activity.

The main techniques that are commonly used to understand a software
project for a particular revision are outlined. Following this, the process of
automatic analysis, the main elements involved in it, and their relationship
to SEA are explored.

Consequently, section 2.3.1 describes the main concepts of SCM and how
it is used to collect data from the software development and maintenance
processes, next section 2.3.2 discusses the information needs of software
project managers and programmers, and finally Section 2.3.3 is concerned
with the process of software evolution analysis.

2.3.1 Software Configuration Management

SCM plays an important role because it controls the evolution of complex
systems [Estublier 2000] or in a more detailed fashion: it is the process that
manages the evolution of a software project, taking into account all the levels
of communication in the organization and including all modifications that
programmers have made to the code. Figure 2.3 shows the activities of SCM
plans according to the standard IEEE 828-2005 and its activities are the
following:

1. Configuration identification involves the identification and naming
of the configuration items to be controlled, as well as the repository
where they will be stored.

2.3. Software Evolution 31

F
ig

ur
e

2.
3:

IE
E

E
St

an
da

rd
fo

r
So

ft
w

ar
e

C
on

fig
ur

at
io

n
M

an
ag

em
en

t
pl

an
s

[S
T
A

20
05

](
fig

ur
e

pr
ep

ar
ed

by
th

e
au

th
or

).

32 Chapter 2. Software Systems: Maintenance and Evolution

2. Configuration control requires to take into account change requests,
the analysis and evaluation of requests, the approval or disapproval of
the requests and the implementation of changes if these are approved.

3. Configuration status accounting defines how information is
managed, from its collection to storage and protection, as well as the
reporting of the status of configuration items.

4. Configuration evaluations and reviews determines how
configuration items are managed and identify deficiencies and report
corrective actions.

5. Interface control coordinate changes between items under
management and items outside the management scope.

6. Subcontrator/contractor vendor control incorporates into the
management scope those items or software that have been developed
by contractors. It involves their monitoring, evaluation and acceptance.

7. Release management and delivery controls the build, release and
delivery of software products.

Consequently, SCM systems must provide services for managing the
software repository and assistance to the configuration control process.
According to the definition of the IEEE Standard 828-2005 [STA 2005] SCM
systems “provide methods and tools to identify and control the software
throughout its development and use”. Moreover, the same standard states
that SCM activities include “the identification and establishment of baselines;
the review, approval, and control of changes; the tracking and reporting of
such changes; the audits and reviews of the evolving software product; and
the control of interface documentation and project supplier”.

SCM systems use distributed or client-server architectures, and the latter
are the most common of the two nowadays.

Tools with client-server architectures provide each programmer with his
own workspace and repository into which software items are copied when she
checks elements out5 from the software repository to be modified. After the
changes have been made, the software item is copied back to the software
repository and the check-in6 operation is finalized. Where more than one
member of the team has worked on the same component, the combination
is performed on the copies of the component using the mechanism files
copy-modify-merge.

5A check-out indicates that a modification to a file is going to be performed, so that it
can make a copy and deliver it to the user.

6A check-in is executed to copy files into the repository to produce a new version.

2.3. Software Evolution 33

Alternatively, distributed software configuration architectures provide the
developer with a work environment with a complete repository of components.
So, when changes are made to components, these are copied from one
repository to the others [Estublier 2000]. Table 2.1 shows a summary of the
most popular open source and commercial SCM systems using client-server
or distributed architectures. Additionally, it is valuable to mention that the
selection of the right tool for individual needs could be assisted by frameworks
and methodologies that have been proposed previously, such as the one
proposed by Kilpi [Kilpi 1997].

Table 2.1: SCM systems and architectures.
Tool Architecture Open source/

commercial
Concurrent Versions Systems (CVS) Client-server Open source
CVSNT Client-server Open source
OpenCVS Client-server Open source
Subversion Client-server Open source
Vesta Client-server Open source
AccuRev Client-server Commercial
Aldon Client-server Commercial
AVS Client-server Commercial
Accrue Client-server Commercial
Alien brain Client-server Commercial
ClearCase Client-server Commercial
CollabNet Subversion Client-server Commercial
Perforce Client-server Commercial
Plastic SCM Client-server Commercial
Polarion Client-server Commercial
StarTeam Client-server Commercial
Telelogic Synergy Client-server Commercial
Team Foundation Server (TFS) Client-server Commercial
Aegis Distributed Open source
ARCS Distributed Open source
Bazzar Distributed Open source
Codeville Distributed Open source
Darcs Distributed Open source
Git Distributed Open source
Mercurial Distributed Open source
Monotone Distributed Open source
SVK Distributed Open source
BitKeeper Distributed Commercial
Code Co-op Distributed Commercial
TeamWare Distributed Commercial
Wandisco Distributed Commercial

34 Chapter 2. Software Systems: Maintenance and Evolution

Moreover, SCM tools have traditionally been used to record changes
in software repositories; including time, date, affected modules, how
long the modification took and information about who performed the
change [Estublier 2000].

The structure of software repositories vary from system to system: some
use relational databases whereas others use a file system. Two examples of
the latter are SVK and Subversion both of whom use a file system with a tree
structure. In these software repositories all the changes carried out to each file
and folder within the structure are recorded. Furthermore, each time SCM
tools read information from the software repository, they read the latest stored
revision, but they also allow access to all the previous revisions of the source
code base. In this structure the repository stores information from multiple
projects and each project is a subdirectory in the file system which means
that when the developer checks-out code, a copy is made of the subdirectory
of the project on which she was working in her workspace. Each time the user
updates the structure and sends the changes back to the repository a new
revision of the repository is created, in effect, that’s to say, a new snapshot of
the state of the repository is produced. Figure 2.4 shows an example of the
visualization of the repository used by Subversion [Collins-Sussman 2004]. In
the case of the tools mentioned earlier, as in many others, the management of
revisions is an atomic process in which the revision number is changed even
if only one file has been modified.

Figure 2.4: Source code snapshots stored in the software
repository [Collins-Sussman 2004].

2.3. Software Evolution 35

SCM systems provide a means of collaboration among software developers,
support the developer’s workspace and manage the collaboration among
multiple users who are trying to make changes to the same software item. The
most common methods for managing changes and the collaboration among
team members are:

1. Block simultaneous changes to the same software item. The
software item is blocked by a programmer who wishes to make changes.
Then, the software item is unblocked once it has been modified.

2. Allow simultaneous changes to the same software item. The
software item is changed simultaneously by several developers and the
changes are subsequently combined. If there is no conflict among the
changes, the tool combines them automatically, but if a conflict appears,
the tool will ask programmers to resolve the conflict.

The above methods are referred to the terminology coined by
Collins-Sussman et al. as lock-modify-unlock and copy-modify-merge. The
former method consists in blocking the software item, modifying it, and
then unblocking it, whereas the latter consists in copying the software item,
modifying it, and then combining the changes made by another programmer.

Figure 2.5 shows the activities of SCM systems. The activities that are
highlighted with dotted blue lines are activities that are performed according
to the decisions taken by the programmer for a particular situation or
according to the functionality of the specific system used. Finally, table 2.2
lists the key terms (and a brief explanation of these) which are used by the
process and SCM systems.

2.3.2 Information Needs of Software Project Managers
and Programmers

In this section it is assumed that in a large number of cases only source code
(which lacks supportive documentation) is made available to programmers
and managers. Therefore, there is a high likelihood that these individuals
could be confronted with three problems that the scope of this research takes
into account:

1. Old applications that require maintenance.
2. Being hired to do maintenance on another company’s applications.
3. Being hired by a company and thus having the need to understand the

existing applications for carrying out maintenance.

36 Chapter 2. Software Systems: Maintenance and Evolution

Figure 2.5: Flowchart of activities involved in the operation of SCM systems (figure
prepared by the author).

Table 2.2: Terms and concepts used in Software Configuration Management.
Term Concept
Version A system version number is an identifier for a group of elements that

have been changed successively during several revisions.
Revision It is a minor change which is made to the system or software items

that are identified by a number in the form X.Y where Y is the
revision number and X is the version number.

Continued on next page..

2.3. Software Evolution 37

Table 2.2 Terms and concepts – continued from previous page.
Term Concept
Baseline A baseline is used in a manner analogous to a version, with the

difference that it is applied to changes in the project structure.
Repository It is a data structure that stores the details of the evolution of projects

and software items.
Project A project is comprised by the source code of a program and related

documents to the requirements, design, development and testing.
Workspace This is the local working area that stores programmer software

items and project documents during the process of development and
maintenance.

Configuration
item

It refers to a basic component of software or software item, as a class,
interface or document managed by the SCM system.

Check-out This is an operation that allows software items to be copied from
the repository to the programmer’s workspace, at the same time the
attributes are changed from read-only to modify, in order to create a
new revision.

Check-in This operation sends updates from a group of software items to the
software repository and converts the revision which is generated when
a checkout is made into a regular revision.

Branch A branch is used to create editions of a program and to make changes
concurrently: each developer works in his own branch and then
integrates it into the main branch.

Main branch This is the main branch of the evolution of the project. It integrates
all branches or revisions of the evolution of the project and serves as
the main reference of the development.

Update Is the update of the working areas with the changes carried out by
other programmers and takes place at the programmer’s request in
order to allow the latest modifications to be taken into account.

Merge This is the fusion of multiple revisions of a software item that has
been modified in parallel by several programmers.

Integration It is the merger of two branches in which there have been several
revisions of a group of software items.

Rebase This is a very similar operation to merge, only that the revision
history is not associated with several branches but rather one branch
as a linear succession of revisions.

Accordingly, the next sections describe some common information needs of
programmers, project managers and both groups when these are confronted
with the problems mentioned above or with maintenance tasks that needs to be
carried under normal circumstances. Moreover, the strategies to understand
software systems using a manual approach are also discussed.

2.3.2.1 Information Needs of Project Managers

The information needs of PMs are diverse [Jedlitschka 2009] and evolve as
the overall software process is scrutinized and controlled by them. PMs need

38 Chapter 2. Software Systems: Maintenance and Evolution

information to understand high level details of the project in order to take
better quality decisions.

In the light of the above, programmers must cooperate and coordinate
their activities with one another in order to better understand the activities
which are carried out in order to be aware of the general state of progress
of the software project. Cooperation and coordination are essential to
the process of development and maintenance of software [Omoronyia 2010,
Talaei-Khoei 2012]. With regard to this subject, there are several studies that
indicate that adequate information is an essential requirement for those who
participate in software projects. The primary information that participants
require comes from the need to be fully aware of what the other people involved
in the project are doing [Ko 2007, Kim 2011]. This is true in the case of both
collocated and GSD settings, but is more relevant in the latter case because
of geographical, cultural and time differences.

Additionally, the execution of these projects which use
either of the aforementioned approaches (whether collocated
or GSDs [Colomo-Palacios 2012]) requires that the changes which are
made are both informed as well as adequately and continuously measured.
With regard to the continuous measurement of the development process, it is
worth mentioning that the results of the study conducted by Buse suggest
that PMs consider metrics to be the most important factor in decision
making and monitoring of the evolution of a project; above all with regard to
quality control. Furthermore, the same research suggests that PMs may have
become aware of the potential benefits of using analytical tools and they
would therefore be more willing to use them if these tools can satisfy their
requirements [Buse 2012].

Taking into account the current trends concerning GSD [Jiménez 2009]
(outlined in Section 2.2.3) as well as the results of the study conducted by
Buse [Buse 2012]; this research is of particular interest with regard to the
information needs of PMs whose concerns are the following: the efficient
management of human resources [Misra 2013]; collaboration between team
members [Rodríguez 2004, Servant 2010]; evolution of quality control; task
assignment [Predonzani 1998]; and the necessity to remain informed of all the
activities carried out by team members (awareness of activities carried out).
The following topics are thus of particular interest to project managers:

1. Information about the programmers that were championing the software
project in its early stages or at some point in the project evolution.

2. The programmers that have left the software project or company.
3. The names of the programmers who have worked on the software project,

a module or a software item derived from source code changes.

2.3. Software Evolution 39

4. The correlation of programmers and software items to determine who is
responsible of making changes in which software items.

5. The collaboration network that is formed by programmers which can be
inferred from the software items that have changed in common, and in
particular, which programmers have changed the most software items in
common.

6. The programmers that have committed most revisions or created most
files and software items during the evolution of the software project or
over a particular period of time.

Additionally, other topics concerning the information needs of PMs
are discussed in Section 2.3.2.3, as well as those that are of interest to
programmers.

2.3.2.2 Information Needs of Programmers

It is of great importance to understand the effects of the changes and meet the
specific needs of developers in order to enhance their effectiveness [Xu 2009,
Tao 2012]. In this respect, Sillito carried out two research studies to
thoroughly obtain details of programmer’s information needs when they carry
out tasks of change [Sillito 2006a, Sillito 2006c, Sillito 2008]. Thus, these
studies were aimed at investigating on the questions that programmers usually
ask while they work in change tasks. One of the studies was conducted with
programmers who were new to a given software project whereas the other
study was carried out with programmers that were familiar with the software
project they were given. The first group of programmers worked for the
study in a laboratory and the latter group in software industry settings. The
questions posed by participants were group into 5 set of questions, which are
summarized below:

Finding focus points: This group is composed of 5 kinds of questions that
were posed by participants with little or no previous knowledge about
the project. The questions were general and sought to find where errors
were located or a software item was located.

Expanding focus points: The questions in this group (15 kinds of
questions) were posed by participants that had some previous knowledge
of the project and were interested in finding more information relevant
to carrying out a change task. These questions focused on more specific
details such as class hierarchy, siblings location, composition, interface
implementation, class instantiation, access to variables, and method
calling and arguments.

40 Chapter 2. Software Systems: Maintenance and Evolution

Understanding a subgraph: The questions in this group (13 kinds
of questions) were concerned with building an understanding of the
software items involved in the change task and their relationships.
The goal of these questions was to determine how objects are created,
assembled and related, as well as their behavior, how control is passed
from one point to other and how data structures are passed and accessed
at different points in the code.

Questions over groups of subgraphs: These questions (11 kinds) were
asked by participants interested in understanding the interaction of the
subgraph, described in the previous question, and the rest of the system.
The aim of the questions in this group is to get insight on the direct and
indirect impact of a change and whether after carrying it out the problem
is completely solved or additional changes are needed.

Specifically, when programmers make a change or study the evolution of a
software project (correlating two or more revisions) are interested in obtaining
information about the following aspects [Ko 2007, Sillito 2008, Tao 2012,
Buse 2012]:

∗ Inheritance relationships.
∗ Siblings in the hierarchy.
∗ Interface implementation.
∗ Composition.
∗ Architecture and project structure changes.
∗ Reference relationships.
∗ Associations.
∗ Objects collaboration.
∗ Instances creation and access.
∗ Data access (methods arguments, variables and data structures).
∗ Data flow.
∗ Control flow, execution and exception handling.
∗ Source code differencing and comparison.
∗ Change ripple effects.
∗ Code cloning7.
∗ Direct, indirect and logical coupling.
∗ Program execution.
∗ Design patters in use.
∗ Details about the complexity of the software items and the overall

project.

7A clone is a segment of code that has been created through duplication of another
piece of code.

2.3. Software Evolution 41

∗ The cohesion and coupling between software items, measured with the
use of metrics.

It is also necessary to be aware of the dynamic behavior of the software
items and the program during its execution. Thus, programmers need to get
information about the effects produced by the changes in other software items
and other elements of the overall program.

2.3.2.3 Information Needs Common to Project Managers and
Programmers

It is important to highlight that while the needs of project managers and
developers may differ, both groups require methods and tools that enable them
to compare and correlate the evolution of the software project and derived
metrics. Taking this into account, the following list presents some of the
metrics that have received special attention from both groups, programmers
and managers:

∗ Code smells8 [Lanza 2005b].
∗ Complexity measures [McCabe 1976].
∗ Maintainability measures [Aggarwal 2005, Heitlager 2007].
∗ Evolution metrics [Lehman 1997, Mens 2001].
∗ Size measures [Lanza 2005b].
∗ Coupling: Direct Coupling Between Objects (CBO) [Chidamber 1994],

indirect and logical [Gall 2003, German 2006, D’Ambros 2009b].
∗ Lack of Cohesion Metric (LCOM) [Chidamber 1994].
∗ Depth of Inheritance Tree (DIT) [Sheldon 2002].

Additionally, both developers and project managers are interested
in details about the activities carried out on the project or software
items [Kim 2011] and therefore these details are of interest to both groups:

∗ The number of revisions associated to a software project.
∗ The time periods during the project evolution or other time period under

study which exhibit an abnormal level of activity due to a dramatic
increase or decrease in the number of commits.
∗ The time periods where the activity level demonstrates that the project

has become stable.
∗ The revision that does not adjust to the general pattern in terms of the

average of files created or updated.
8Code smells are characteristics of software that indicate that code may have a design

problem. These have been proposed as a way for programmers to recognize the need for
restructuring their software.

42 Chapter 2. Software Systems: Maintenance and Evolution

∗ The baseline that has most revisions associated with it.
∗ The branch that have most commits been carried out.

2.3.3 Software Evolution Analysis

The process of understanding the evolution of a software project can be carried
out using a comprehensive or partial approach, according to user’s profile
(software project manager or programmer) and the task she is performing.
Software project managers are interested in the comprehensive approach
for obtaining information to support decision making and assuring software
quality. Basically, they try to understand the overall evolution of the project
through the tracking of project advances and quality measurement, the
socio-technical relationships and the collaboration among software developers.
Software developers, on the other hand, are usually most interested in using
the partial approach. Their main concern is understanding only a small
number of the revisions to track recent changes and make modifications.

SEA requires data collected by adequate logging tools, such as IDEs using
plugins, SCMs systems, defect-tracking and system testing tools, during the
process of development and maintenance, and the mechanisms that these tools
provide to extract details of software repositories, databases and the logs they
use.

The analysis of the evolution of software, which can be static or dynamic,
consists in analyzing two or more versions of a software project individually
and then carry out a comparative analysis of the results. Such analysis can
be performed on one or more levels of granularity: source code line, class, file,
package or module and system level. Overall, one or more of the methods
listed in table 2.3 can be considered to carry out such analysis which may
produce results as those listed in table 2.4.

In this context, the process of extracting and analyzing data from
software repositories (known as software repository mining) has been an
active research area for several years [Kagdi 2007a]. Software repository
mining focuses on extracting details from metadata and source code for
analyzing software changes. It analyzes the dissimilarities between revisions
and changes to artifacts on different granularity levels, such as classes
and methods [Kagdi 2007b]. The results of software repository mining
are fed into SEA. At this point it is relevant to highlight the work of
Kagdi [Kagdi 2007a], which is a detailed survey of the literature on the
purpose of mining software repositories, the methodology employed in the
mining process and the evaluation of the mining approaches currently in use.
Hassan [Hassan 2005, Hassan 2006] also discusses in depth the extraction
of information from software repositories to assist developers and support

2.4. Conclusions 43

managers.

Table 2.3: Correlation of references with analysis methods.
Method References
Static source code analysis [Jackson 2000, Robillard 2003]

Metadata analysis [Kagdi 2007a, Gethers 2012]

Execution and system traces analysis [Fischer 2005, Gethers 2012]

Software metrics extraction [Lincke 2008, Vasa 2009]

Information retrieval methods [Baysal 2007, Gethers 2012]

Social network analysis [Scacchi 2004, Ducheneaut 2005, Sack 2006]

Association rules [Chawla 2003, Morisaki 2007]

Analysis of linked data sources [Keivanloo 2011]

Program and architectural slicing [Weiser 1981, Agrawal 1990, Hassine 2005]

Origin analysis and refactoring [Zou 2003, Godfrey 2005, Green 2011]

Therefore SEA has a closed relationship with software repository mining as
it is aimed at identifying relevant facts that could be used to provide support
to software developers and managers in the discovery and comprehension
of evolution details. It looks to support software developers and manager
tasks such as process improvement, fault prediction, productivity estimation,
comparing the actual and desired architectures of a product, and planning
future development activities. This type of analysis supports project managers
in decision-making, which is affected by factors such as the dynamics of
software quality measured by quality metrics; the need to control the
contribution frequency and contribution patterns of programmers to software
projects for team and productivity assessments; and reporting activities to
upper management.

2.4 Conclusions

Programmers and PMs are frequently confronted with projects for which little
or no adequate documentation is available and about which they have no
little or no prior knowledge. Moreover, as well as problems related to fully
understanding the projects when they are initially confronted with them, they
also need to understand the effects of changes which are made later during the
processes of change and maintenance [Benestad 2009]. The aim is to make the
changes which are necessary and that the project continues to evolve while
it is still subject to maintenance or capable of being maintained. It is thus
of great value to be aware of the information needs of project managers and

44 Chapter 2. Software Systems: Maintenance and Evolution

programmers during the process of evolution, which involves understanding
the project and the effects of the changes which are made to one or more of
the revisions.

Table 2.4: Correlation of references with analysis results.
Analysis results References

Defect classification [Chillarege 1992]

Contributions and socio-technical
relationships [Scacchi 2004, Ducheneaut 2005, Baysal 2007]

Software prediction models [Fenton 2000, Goulão 2012]

Metrics and evolution metrics
[Fenton 2000, Mens 2001, Meyers 2007]
[Vasa 2009]

Change classification and analysis [Bohner 2002, Hassine 2005, Gethers 2012]

Software item lifelines [Zou 2003, Godfrey 2005]

Dependencies [Bohner 2002]

Architecture/structure changes [Tu 1992, Zhao 2002, LaMantia 2008]

Exception structures [Robillard 2003]

Direct, indirect and logical coupling [Hitz 1995, Gall 1998, Gall 2003, Yu 2004]
[Yang 2005, Yang 2007, Meyers 2007]

Cohesion [Hitz 1995, Gall 1998, Meyers 2007]

Frequent patterns [Yu 2004, Kim 2006]

Source code differencing [Collard 2004, Maletic 2004, Fluri 2007]

Program and web services and
execution

[Pauw 2006, Treiber 2009]

Clone detection [Baxter 1998, Kamiya 2002, Roy 2009]

Code smells [Lanza 2005b]

Reverse engineering [Buss 1994, Gîrba 2004]

It has been discussed earlier in this chapter, when a large number of
changes have to be understood and multiple revisions of a software project
have to be correlated, it is not practical to use manual strategies and, as a
result, the use of automatic analysis methods, such as SEA, is required.

The analysis of software evolution is carried out using the information
which is recorded by tools that support the process of software development
and maintenance, and that allows the automatic extraction of relevant
knowledge facts9. The following are examples of these tools: software

9Knowledge Facts is a term used in this context for making reference to the results of
advanced data analysis.

2.4. Conclusions 45

repositories of SCM tools; bug tracking tools, existing revisions of the source
code of the system and information gathered by IDEs.

Therefore, taking into consideration the above and what has already
been said (with respect to the software process, the current trend towards
developing systems with teams distributed in different geographic areas as well
as the process of software maintenance and evolution), this type of analysis
may effectively support software development, maintenance and change tasks
when information needs of PMs and programmers are adequately addressed in
order for them to carry out their duties. In other words, the purpose of SEA is
to meet the information needs of project managers and programmers so that
they can develop and maintain software systems adequately.

Finally, it is worth mentioning that software evolution is usually difficult
to analyze due to the large volume of relevant facts extracted and the
large number of relationships between the elements involved. Thus,
carrying out SEA is often not sufficient to provide adequate support to the
development, maintenance and evolution of software systems. Consequently,
the following chapters discuss the next steps in the process of supporting
project managers and programmers in the tasks which enable the evolution
of software systems.

Chapter 3

Visual Analytics

Pero a pesar del entorno salvaje, la belleza era desbordante, los
ríos decoraban la selva y animaban el ambiente con sus cantos, al

que se unían el canto de las aves y los congos con sus gritos. Pero
lo que más llamó la atención de Güindy fue un río cuyas aguas

teñidas de celeste por un volcán cercano creaban pequeños y
misterios remolinos en los cuales se perdía su mirada. Era un

mundo de fantasía, en donde la naturaleza lo llenaba todo; todo lo
extasiaba con su creatividad. — El viaje de Güindy, A.González

Contents
3.1 Introduction . 46

3.2 Overview . 47

3.3 Information Visualization 51

3.3.1 Visualization Techniques 51

3.4 Human-Computer Interaction 60

3.5 Conclusions . 63

3.1 Introduction

The goals of this chapter are to introduce VA, and explain the underlying
processes that permit the transformation of data into a useful knowledge. The
aim is to contribute to answer the principal research question (see Section 1.3),
and in accordance with it the following contributory question is sought to be
answered:

How can the Visual Analytics process be defined from the interactions,
roles and composition (in terms of methods and techniques) of its
components?

3.2. Overview 47

Accordingly, this chapter describes and explains some of the techniques
and methods used by the VA components, with an special emphasis on those
of IV and Human-Computer Interaction (HCI). It therefore first presents an
overview of VA (section 3.2), next it describes some of the most well-known IV
techniques (section 3.3); then it discusses some elements of HCI (section 3.4)
and finally it outlines the main conclusions of the chapter (section 3.5).

3.2 Overview

The goal of VA is to transform data into knowledge. Accordingly, it iteratively
collects and preprocesses data, carries out statistical analysis [Peck 2011],
performs data mining, and uses machine learning [Witten 2005], knowledge
representation [van Harmelen 2007], user interaction [Sharp 2011], visual
representations [Leung 1994a, Johnson 1991, Robertson 1991], human
cognition, perception, exploration and the human abilities for decision
making [Keim 2006, Llorá 2006]. Therefore, one can say that knowledge
discovery is an intrinsic property of VA, as it is aimed at supporting analysts
in gaining insight from large multivariate datasets [Thomas 2005].

VA is partly based on the use of IV principles and techniques. Accordingly,
the definition of the VA process overlaps, partially, with that of IV:
both deal with data acquisition methods, data transformation, visual
representations, human computer interaction and human capacities for
decision making [Card 1999b, Chi 2000, Fry 2008]. However, VA makes
intensive use of automated data analysis, visualization and interaction
techniques to offer more comprehensive analysis possibilities and data
perspectives for aiding intelligent decision making by means of the analytical
human abilities [Keim 2008a].

In this context, Coordinated and Multiple Views (CMV) [Boukhelifa 2003]
is concerned with the use of several visualizations that are linked by a
model or architecture that coordinates the interactions among them and the
data that visualizations must represent, in accordance to the interactions
performed [Roberts 2007].

The use of CMV requires a combination of different visualization types
(hyperbolic trees, graphs, treemaps, radials, parallel coordinates and grids
to name but a few) in order to exploit the advantages that each one has
to offer [North 2000], and to provide analysts with different levels of detail.
Using CMV, analysts can understand relationships among elements located
in separate, but linked, visualizations. Additionally, they can explore data
from many different viewpoints and have available more interaction paths
that may lead to knowledge discovery. Moreover, CMV make VA tools more

48 Chapter 3. Visual Analytics

scalable, compared to IV itself, in terms of data, dimensionality, information
complexity and the dynamic feeding of new data [Andrienko 2007].

VA has been applied thoroughly to solve problems in several areas, as
shown in table 3.1, and many research projects have also been conducted
with the aim of contributing to the improvement of VA itself by the definition
of frameworks, architectures and methods (see table 3.2 for some references).

Table 3.1: Application areas of Visual Analytics.
Application areas References

Bioinformatics

[Santamaría 2009, Gribov 2010, Battke 2010]
[Agrafiotis 2010, Vicente 2010, Oeltze 2011]
[Cain 2012, Hasenauer 2012, Tyakht 2012]
[Peterson 2012, Schatz 2013, Santamaría 2014]
[Castellanos-Garzón 2013]

Biology [Shaverdian 2012]

City traffic [Pelekis 2012]

Construction [Wang 2010, Danese 2010, Batty 2013]

Customer analysis [Ko 2012]

Data center management [Hao 2010]

Document classification and
exploration

[Koch 2011, Lemieux 2011, Tomaszewski 2011]
[Koch 2011, Heimerl 2012]

Education and e-learning [Hyun 2009, Gómez-Aguilar 2009,
Gómez-Aguilar 2014]
[Gómez-Aguilar 2015b, Gómez-Aguilar 2015a]

e-Government, transparency
and political sciences [Rios-Berrios 2012, Kohlhammer 2012, Crouser 2012]

Emergency response [Livnat 2012]

Graphs and graph analysis [Chen 2010, Yang 2013]

History reconstruction [Andrienko 2012b]

Medicine
[Agrafiotis 2010, Maciejewski 2010, Chui 2011]
[Mane 2012, de Bono 2012]

Movement analysis [Ooms 2012, Andrienko 2013c, Andrienko 2013a]

Multimedia and video analysis [Chinchor 2010, Luo 2012]

Natural disasters and climate
changes

[Therón 2006c, Chung-Wong 2009, Yuan 2010]
[Kendall 2012, Kim 2012, Kasprzyka 2013,
Sun 2013a]

Network and security analysis [Pelekis 2012, Biersack 2012]

Neuroimaging [Li 2012]

Ontology engineering [García-Peñalvo 2012a,
García 2012][García-Peñalvo 2014]

Continued on next page.

3.2. Overview 49

Table 3.1 Application areas of VA – continued from previous page.
Application areas References

Pharmaceutical
[Peláez 2008, García 2009a, Agrafiotis 2010]
[Barlowe 2011, Pérez 2013]

Physical sciences [Gaither 2012]

Real state [Sun 2013b]

Risk assessment and analysis [Wang 2012, Migut 2012]

Simulations [Dransch 2010, Thakur 2011, Wei 2012, Meyer 2012]

Social networks
[Chen 2010, ah Kang 2011, Elmqvist 2012]
[Perer 2013, Schreck 2013]

Software understanding [Telea 2011, Reniers 2012, González-Torres 2013a]
[González-Torres 2013b]

Spatio-temporal and geospatial
[Amicis 2009, Hardisty 2010, Andrienko 2010]
[Chiara 2011, Guo 2011, Maciejewski 2011]
[Tomaszewski 2011, Schumann 2011]

Sports analysis [Therón 2010, Pileggi 2012]

Time series analysis [Wang 2011, Maciejewski 2011, Sips 2012, Dang 2013]

Table 3.2: Correlation of references with theoretical approaches.
Application area References

Architecture
[Maciejewski 2011, Willems 2010, Omer 2010]
[Tomaszewski 2011]

Collaborative Visual Analytics [Isenberg 2009, Isenberg 2012, Mahyar 2012]

Framework [Pelekis 2012, Andrienko 2010] [Andrienko 2013b]

Human-Computer Interaction
and cognition studies

[Gotz 2008, Chung-Wong 2012b, Pohl 2012]
[ah Kang 2012, Arias-Hernandez 2012, Healey 2012]
[Green 2012, Basole 2012, Roth 2012, El-Nasr 2013]

Methodology [Omer 2010, Bertini 2011, Andrienko 2012a]
[Streit 2012]

Techniques
[Dinkla 2011, Shaverdian 2012, Gaither 2012]
[Chung-Wong 2012b, Alsallakh 2012, Javed 2013,
Chen 2013] [Nam 2013, Dang 2013]

Consequently, any VA design should be centered on the user and should
intent to facilitate usability and reduce memory load on users [Hollender 2010].
Its ultimate goal should be to hide complexity details from users and provide
an environment for knowledge discovery through an outstanding human
experience [Takatalo 2008]. Hence, regardless of the complexity of the problem
at hand, the success of any VA solution lies on the appropriate design of the
visual representations and use of interaction techniques.

50 Chapter 3. Visual Analytics

VA combines the advantages of machines with the strength of humans
such as analysis, intuition, problem solving and visual perception. Therefore,
the human is at the heart of VA [Dix 2010] and HCI is a key component
for supporting knowledge discovery. It is a process whose goal is to provide
insight into Big Data conformed by scientific, forensic, academic or business
data that are stored by heterogeneous data sources such as databases, HTML
and XML files, text files, metadata and source code.

The future of VA involves several challenges related to the amount of
available data, algorithms, processing, user interaction and visualization
design and scalability. Some of these challenges were summarized by
Chung [Chung-Wong 2012a] and are listed below:

In-memory analysis: This implies the in memory processing of data when
it becomes available.

Interaction and user interfaces: Technology capabilities are increasing
constantly, whereas the human abilities change slowly and changes are
perceived in the long term [Thomas 2005].

Large-Data visualization: The scalability of the visualizations employed is
a serious limitation for representing Big Data [Basole 2012].

Databases and storage services: These have been moved into the cloud
increasing the access latency.

Algorithms scalability: Algorithms must be scalable for dealing with Big
Data and provide efficiency to users in terms of visualization.

Data transport and network infrastructure: Data availability is
increasing in geographical dispersed locations, which requires to moved
raw data or passing messages between locations if a High Performance
Computing (HPC) infrastructure is being used.

Data incompleteness and uncertainty: Uncertainty quantification and
the need to deal with incomplete datasets for providing real time analysis
needs the use of novel data analysis techniques.

Parallelism: It requires the redesign of current VA algorithms and the need
for new algorithms.

Libraries, frameworks and tools: VA requires new libraries and
frameworks for dealing with the challenges previously stated and the
increasing need for parallelism.

3.3. Information Visualization 51

Social, community and government engagements: This refers to the
need that governments and online-commerce vendors disseminate their
technologies to the society.

3.3 Information Visualization

Information Visualization (IV) deals with the representation and display
of a large number of data about events, and provides the visual elements
to help the interpretation of a data event through its relation with other
data events. It takes under consideration several techniques to support
navigation, interpretation of visual elements and understanding relationships
among items in their full context [Leung 1994b]. Tufte states that the visual
distinctions between visual elements should be as subtle as possible, yet clear
and effective [Tufte 1990] adding that information consists of differences that
make the difference [Tufte 1997].

There are many IV techniques, each one with its advantages and
disadvantages, so it is frequently required to use a sort of combination
to provide a real solution to end users. Spence [Spence 2000] and
Card [Card 1999a] provide excellent surveys on IV methods and techniques.
Therefore, the following section discusses on some of the classical visualization
techniques employed when designing VA tools.

3.3.1 Visualization Techniques

The principal problem of IV is how to depict a large quantity of information in
a very limited space. It is thus necessary to implement interaction mechanisms
that permit navigation of the data without losing sight of the context,
but which also provide tools that facilitate the interpretation of particular
elements [Leung 1994b].

When the design of a visualization is being carried out it is convenient
to take into account the large number of interesting and useful pre-existing
visualizations. This allows, when what is sought is the solution to a practical
problem rather than proposing an original visualization, to use an existing
visualization as the best solution for the representation of data. A combination
of visualizations with minor variations can also be used. However, from a
research perspective, the ideal is to design an original, interactive and intuitive
visualization that must requires little effort to learn. In this sense, it needs
to take into account that the design of new visualizations for managing large
volumes of information requires using spatial and temporal design techniques.

The techniques of spatial design utilize the distribution of space
and graphic design to present the information at one view, while the
temporal strategies use transitions to distribute the information between

52 Chapter 3. Visual Analytics

multiple views, where each view represents different moments in time.
It is therefore frequently necessary to use a combination of both design
strategies [Mackinlay 1991].

Following Leung, the techniques which are utilized to design visualizations
can be grouped into two general categories: distortion-oriented and those
which are not [Leung 1994b].

The distortion-oriented techniques are used in conjunction with
transformation functions that define how information will be presented to
the user and the interaction which will take place. They also allow users to
examine in a dynamic and interactive form the data in detail at the same time
that an overview of the space, in which that section is located, is provided
as a location map. This type of view is known as overview + detail because
it represents details in the main visualization space whereas the overview is
usually depicted in a small visualization on one of the corners of the view.
Thus, it contrast with the focus + context view that permits users to focus
in specific details using interaction techniques, such as selection or zoom,
while a complete representation is offered (the context visualization). Whilst
non-distortion-oriented techniques are adequate for text based small-scale
applications but do not provide an appropriate context to support browsing
large-scale information. Some distortion-oriented techniques that are further
discussed in detail1 are:

Bifocal and polyfocal: Fisheye [Furnas 1986], Table Lens [Rao 1994] and
Perspective Wall [Mackinlay 1991].

Timelines: Lifelines [Plaisant 1998] and Planning lines [Aigner 2005].

Hierarchies: Treemap [Johnson 1991], Cone trees [Robertson 1991] and
Hyperbolic spaces [Gra 2002, Pavlo 2006].

Radials: Information slices [Andrews 1998], Radial improved with focus +
context [Stasko 2000], Intering [Yang 2003], Ring Tree [Therón 2006b],
Hyperbolic spaces [Pavlo 2006].

Networks and graphs: These visual representations are very common in IV
and there exist many research papers that presents results regarding
their use. In this context the book of Battista [Battista 1998] is a great
reference to study the most common algorithms for the visualization
of graphs and the survey conducted by Gibson [Gibson 2013] provides
useful information on the use of networks and graphs in research works.

1A distorted view is created by applying a mathematical transform function to
an image without distortion. Magnification functions are functions derived from the
transform function and provides a profile of the factors associated to the magnification
or demagnification of the area of interest in the image without distortion.

3.3. Information Visualization 53

With respect to visualization techniques listed above, there are a number
of implementations that use them. The following sections provide an
introduction to some of them.

3.3.1.1 Bifocal and Polyfocal Techniques

Bifocal and polyfocal displays allow to review specific items of information
expanding an individual spot, vertically or horizontally, or by expanding an
area simultaneously in both directions (horizontally and vertically). This
technique originally was proposed by Robert Spence and Mark Apperley in
1982 [Spence 1982]. Some of the most representative visualizations that make
use of these techniques are the following:

Fisheye: An application of this technique was proposed by Furnas in 1986
using the name Fisheye [Furnas 1986]. This technique allows context
to be maintained while viewing a specific area and can be applied in
conjunction with any other visualization technique, whether textual,
tabular, hierarchical, circular or hyperbolic.

It is important to draw a distinction between the Fisheye technique
and ordinary geometric zoom. Ordinary geometric zoom allows the
user to specify the scale of the increase each time the size of the area of
interest is expanded or reduced and is usually set at a particular point
and does not seek to preserve the context, while the Fisheye technique
retains context.

The Fisheye technique contrasts with semantic zooming
[Cockburn 2009], which changes the form or context in which
information is presented. A very useful example for understanding the
semantic zoom is a digital diary represented as a calendar year. When
the user selects a month, this month opens and the corresponding days
appear. Then when the user selects a day of that month the times for
that day are shown, and if a time is selected, information is provided
about scheduled appointments or tasks for that time.

The application of visualization techniques to a particular area, such
as the Fisheye technique, can be very useful when navigating in a
dataset with a large number of elements. However, when it becomes
necessary to compare two or more elements the bifocal display is used
together with interaction techniques to amplify two or more areas at
the same time. This type of display is called polyfocal.

Table Lens: The visualization technique that is referred as Table Lens is a
type of the polyfocal display and support focus + context functions.
Therefore, it can be used very effectively with large quantities of

54 Chapter 3. Visual Analytics

information arranged in tabular form. This representation can expand
one or more rows and columns at the same time: column width can be
extended using the mouse, subgroups of columns can be created and
filtering can be performed on the data set.

Perspective Wall: Another visualization technique in this family is the
Perspective Wall [Mackinlay 1991]. This technique is based on a detail
+ context view to provide details using interactive 3D animation and
linearly structured information. It uses a front panel to display a detail
area and two side panels to present the context. This view was originally
proposed for managing documents and files, but its use can be extended
to any problem that contains a high temporal content.

3.3.1.2 Timelines and Temporal Events Representation

The discovery of the relationships between data items frequently is taken
into account when designing and creating timelines. Accordingly, this section
discusses some visual representations aimed in this regard.

Linear timelines: Semtime is a linear timeline which uses a set of stacked
timelines, visualizing the same or different time ranges. Moreover,
this visualization uses lines with arrows to represent the relationships
between data elements in the timelines [Jensen 2003]. This visualization
is of great value for comparing time periods and correlating data
elements in time.

Continuum is also a linear timeline which uses a scalable histogram
overview that allows the navigation through a complete hierarchical
dataset [André 2007] and moreover facilitates the comparison of events
in different time periods.

Some additional and interesting visualization examples are the
visual representations designed by Catherine Plaisant [Plaisant 1998]
and Wolfgang Aigner [Aigner 2005]. Plaisant addresses the problem
of visualization of a patient’s medical history with a display known
as LifeLines. This visualization relates a group of variables such as
notes, hospitalizations, tests, medications, treatments and vaccines
with temporal space. It also uses labels to identify each of the instances
of the variables mentioned.

An improvement of Lifelines is presented in [Bade 2004]. It uses
three timelines; one of them is a general timeline; the other timeline is
the result of the dates filtering carried out using the first timeline; and
the last timeline displays the information details. This visualization
uses an overview + details approach and the interaction with the

3.3. Information Visualization 55

details area provides a focus + context view of the results after applying
filters [Bade 2004].

Aigner proposed Planning Lines, a visual representation that is
aimed to visualize task planning in a form similar to Gantt diagrams.
To do so, semantics was added using colors to indicate the minimum
and maximum duration of tasks, and the use of lines to indicate
the premature beginning or later ending of tasks in accordance with
planning.

Radial timelines: Some timeline visualizations use radials and tree ring
metaphors. Therón et al. proposed a tree-ring metaphor, which
is named after Ring Tree, to represent hierarchical time based
structures and applied it to browse and discover relationships in
the history of computer languages [Therón 2006a] or phylogenetic
tree [Santamaría 2009].

Spiral Graph is another radial visual representation which uses a
spiral metaphor for representing a timeline with the end of supporting
the analysis and comparison of values and data sets, and the detection
of periodic behaviors and trends [Weber 2001]. Similarly, the Semantic
Spiral Timeline (SPT) [Gómez-Aguilar 2009, Gómez-Aguilar 2010]
allows time periods to be compared at a glance just by looking at
the appropriate region of the spiral and observing the details in
the successive circumferences. The comparison of time periods in
the SPT visualization is a similar approach to the one proposed
by [Hochheiser 2004], but the time periods are stacked instead of being
spread along the x axis.

Correlation of time with hierarchies: Several visualization that address
the correlations of time and hierarchies. Morris [Morris 2003] worked
on the visualization of temporal hierarchies plotting research documents
along a horizontal track in the timeline and placing related documents
according to the hierarchical structure produced by the clustering phase.

TimeTree is a relevant visual representation which was developed
by Card [Card 2006] and allows exploring hierarchies that change
with time. This visualization allows searches, navigation through
a hierarchical representation and the filtering of results with the
assistance of a time slider control.

Use of color coding: Other useful examples that show temporal events
without making explicit use of a timeline are those that, by using color or

56 Chapter 3. Visual Analytics

other elements, permits the addition of meaning, size and temporality to
the events [Therón 2013]. In this sense, Chen [Chen 2006] shows that the
use of color is very useful to depict the collaboration that has taken place
over time on a single file or directory. Finally, Viégas and Wattenberg
suggested a visualization to show the changes made to a document of
the online encyclopedia Wikipedia [Viégas 2004]. This representation is
interesting because you can see the lines of text that have been added
or deleted in time from a document.

3.3.1.3 Hierarchies

The presence of hierarchical data in business and academic environments
is abundant and has led to a great deal of research orientated towards its
adequate treatment and representation. Accordingly, the next visualizations
are some examples of the most common visual representations used for
depicting hierarchical data:

Treemap: A visualization technique considered classic in this area is
Treemap, which was suggested by Brian Johnson y Ben Shneiderman
in 1991 [Johnson 1991]. This visualization permitted the representation
of hierarchical information in a rectangular space in 2D, using 100%

of the available surface. It also provides interactive controls, facilitates
rapid information retrieval with low perceptual and cognitive load, while
providing an aesthetically pleasing presentation.

According to the authors, this visualization is suitable for
hierarchies in which structure is of great importance and the
information associated with the nodes is derived from their
descendants. The method involves matching hierarchical information
with the rectangular structure.

Voronoi Treemap: Another visualization which can represent
hierarchical data and which is a variant of Treemap is Voronoi
Treemap [Balzer 2005b]. This visualization uses polygons instead of
rectangles used in the original version. The reason the authors use to
advocate this variant is that by using polygons it is possible to cover
the area corresponding to each value required to be represented because
they can adapt better to the environment by having a variable number
of edges.

Bubble Treemap: Another variation of this visualization is that proposed
by Karl Wetzel [Wetzel 2004] for the visualization of files in a hard disk.
Instead of rectangles, squares and polygons, he proposes the use of color

3.3. Information Visualization 57

coded circular components. However, although this visualization turned
out to be appealing, it doesn’t use space to maximum advantage nor is it
possible to determine at first glance the hierarchical relation between the
components. An article which is useful in understanding this technique
is that of Teoh and Ma [Gra 2002].

Cone Trees: The visualization of hierarchical structures with
three-dimensional conical representations is visually appealing.
The Cone Trees technique is an example of this [Robertson 1991]. This
representation is a 3D animated visualization of hierarchical data.

The root of the structure is at the top of the presentation and the
descendants are drawn in the lower layers, always allowing interaction
to expand or collapse the elements when navigating through it, as well
as to select different items. In this visualization the size of elements
in the lower levels of the structure is reduced to ensure that the
representation conforms to the width of the display area. Also, when
a node is selected, the structure rotates to show the node selected and
the route towards the root of the hierarchy. An additional attribute of
the 3D visualization is that it provides a way to focus on one part of
the structure without losing the context.

The authors claim the 3D visualization is necessary because it
maximizes the effective use of the display area and displays the entire
structure. However, some results have shown that tracing elements
and relationships in three-dimensional conical structures is slower than
doing so with 2D tree visualizations [Cockburn 2000]. These results
showed that visualization diminish in utility and the performance
of computer equipment is significantly reduced when tree density
increases.

It is worth mentioning that this type of 3D visualization initially
aroused great enthusiasm among those who also tested the 2D solution.

Hyperbolic: Another very striking design representation is hyperbolic
visualization, which is a visual representation technique that supports
focus + context, capable of handling large information hierarchies.

This visualization initially displays a tree with its root as the central
element connected to a few nodes, using interaction techniques which
enable additional elements to be introduced, and may also represent
other elements were not initially displayed.

According to Lamping [Lamping 1995] hyperbolic visualizations
may allow the presentation up to 1000 nodes simultaneously, of which

58 Chapter 3. Visual Analytics

50 are located near the focus. Moreover, this visualization can also
display text labels with a meaningful context in a representation of
this density.

Hyperbolic visualization is a hierarchical representation technique
of great utility if properly combined with appropriate interaction
techniques. However, despite its visual appeal the temptation to carry
out developments in 3D must be avoided, because navigation in these
structures is complex and it is difficult to obtain useful information
quickly and easily.

3.3.1.4 Radials

Circular and semicircular techniques are used primarily to display hierarchical
information [Andrews 1998, Stasko 2000, Gra 2002, Yang 2003, Pavlo 2006].

These techniques use algorithms that divide the area according to the
weight of the elements and place these elements in concentric rings according
to their position in the hierarchy which results in the location of the root node
in the center of the structure. Next, the circular area is divided among its
descendants on the first level of the hierarchy which places them in the first
ring. The area assigned to each descendant is calculated based on its weight in
a manner analogous to pie charts. Then an element is taken from first level of
the hierarchy and the corresponding area is divided among its children, which
are located in the next ring of the structure. This process continues with the
rest of the hierarchical elements until all elements have been represented so
that the number of rings in the visualization is a function of the depth of the
tree. Some visualization examples that follows this kind of algorithm are the
following:

Treevolution: This uses a tree-ring metaphor to represent structures based
on temporal hierarchies [Therón 2006a, Santamaría 2009]. The purpose
of this visualization is to facilitate viewing, navigating and describing
relationships in the history of programming languages and in phylogenic
tree structures.

Sunburst: Sunburst was originally proposed with the goal of determining its
effectiveness in a usability study of radial visualizations which was aimed
to evaluate these type of representations. The study found that the main
disadvantage of such visualization was the difficulty of distinguishing
circular lines when used in the representation of large hierarchies. As a
result of this study, later three different types of Sunburst visualizations
were proposed: angular detail, external detail and internal detail.

3.3. Information Visualization 59

Further information information on radial visualizations is available in the
excellent survey that has been carried out by Draper in [Draper 2009].

3.3.1.5 Networks and Graphs

Network and graph visualizations are useful in decision making as they
successfully support the understanding and comprehension of complex
problems where inherent relations exist among data elements [Herman 2000].
They permit cause-and-effect analysis of phenomena that are often present
in data whose source is industry or academia. The graph representations are
used for a variety of purposes including: dependency hierarchies, relationships
between documents and genetic maps.

Graph visualization is usually carried out by means of radial or conical
structures, network or hierarchical drawings. Thus, many of the visualizations
that have been discussed in the previous sections represent hierarchical graphs,
where the structure is displayed implicitly or explicitly with the use of nodes
and lines. Some of the principal graph topologies are Squared, Radial,
Triangle, Cube, Squared mesh and Rectangular mesh [Battista 1998].

Graphs can also be classified as rooted or non-rooted tree types. For
example, radial and conical representations are rooted trees, while others
including electronic circuits and networks are non-rooted. The latter may
also be called series parallel digraphs. Important to mention also is the
fact that hierarchical visualizations make use of layering to position nodes
at appropriate hierarchical levels. The form in which graphs are drawn
is important and there are conventions for rendering such as Polyline,
Straight-line, Orthogonal, Grid and Planar.

A major challenge in drawing graphs is occlusion which occurs when
large numbers of elements are obscured by lines crossing when large datasets
are represented. Therefore, it is necessary to utilize sundry techniques and
strategies, one of which is planar graphs, which employs algorithms to obviate
lines crossing to make the drawings clearer.

In addition to the ways graph and topologies are drawn and utilized, it
is often necessary to use additional strategies to ferret out knowledge. For
example, to compare two graphs, both graphs are drawn with one on top
of the other; then one is drawn using and intense color whereas the other
is drawn using a less intensive color and an opacity effect. Likewise, it
can be advantageous to use force directed graphs to show closeness between
elements or groups of elements in the graphs [Battista 1998]. The commonest
algorithms in force-directed graphs are the following:

∗ Springs and electrical forces.

60 Chapter 3. Visual Analytics

∗ The barycenter method.
∗ Forces simulating graph theoretic distances.
∗ Magnetic fields.
∗ General energy functions.

Finally, it is important to mention that the tasks that can be performed
using graphs are usually based on topology, attributes, or simply displaying
an overview of the elements or by browsing the complete graph [Lee 2006]
and that many research papers have been published on the improvement of
algorithms and the layout of elements [Gibson 2013].

3.3.1.6 Multivariate Visualization

All visualization techniques discussed previously are capable of representing
multivariate data. To accomplish this, the principal elements used are colored
visual items and shapes. But the main problem facing all designs directed
at effective visualization is scalability, in terms of the sheer volume of data
along with the sheer number of variables which must be represented. A good
example of scalable visualization of numerical data, in the terms described
previously, is Parallel Coordinates [Inselberg 1985, Inselberg 2009].

Parallel Coordinates: This visualization is capable of representing a great
number of variables associated with a single element. It also permits
the representation of multiple elements at the same time, ranging from
hundreds to even thousands of elements.

The flexibility of the visualization permits the analyst to search,
highlight and group elements automatically or manually. In addition to
comparing and filtering elements easily. The result is the achievement
of maximum scalability and the avoidance of user information overload
while encouraging user interaction with the data elements.

Finally, it is important to mention that since the inception of
Parallel Coordinates [Gómez-Aguilar 2015b, Gómez-Aguilar 2015a],
similar approaches have gained attention and a wide variety of
refined approaches have arisen, including hierarchical [Fua 1999] and
circular [Long 2009].

3.4 Human-Computer Interaction

Hardware and software systems are usually conceived as processing units
that receive inputs from users, process such inputs (and retrieves additional
information from databases or other data sources when it is applicable)

3.4. Human-Computer Interaction 61

and produce outputs that are interpreted (or used) by users. However, the
interaction between users and systems is not as simple as it was described
when a complex problem is under consideration. Solving complex problems
requires several steps to be performed, and thus the active participation of
users is frequently needed to decide the course of actions to be followed.

Accordingly, the factors concerned with an effective and easy
communication between humans and systems include the effective design of
hardware and software systems, the appropriate design of usability elements
and the psychological and cognitive aspects that intervene when humans use
such systems. Therefore, HCI principles should be taken into account to create
successful systems that involve users in enjoyable, engaging and productive
interaction experiences.

The interactions of users with systems should be as engaging as it is
for them the discussion about some topics, such as football, soccer, politics
or religion. A conversation on these topics usually keeps the attention of
individuals during several hours: replies and opinions are expressed in an
animated interpersonal interaction. Likewise, the conversation between users
and systems needs opinions to be expressed in the form of userťs inputs, which
should be processed in a proper manner to produce replies (outputs) according
to the discussion topic and focus (user needs and expectations).

The interaction between users and systems underlies, mainly, in the easy
to use of interfaces (hardware and software), the inputs provided by users and
the usefulness of the outputs produced by systems. In general, the inputs
from users are needed at the initial processing stage as well as in intermediate
processing stages, until results are obtained in a refined or final form on the
basis of user requirements.

The input provided by users to software systems is usually carried out with
the use of keyboards, mice, touch screens, microphones, sensors, wired gloves,
retinal lectors, face readers, thermal and infrared scanners, and fingerprint
readers. Therefore, the design of visual representations may consider one or
several of these input devices to offer useful interaction experiences.

In the context of how users browse and navigate through visual
representations looking to solve complex problems by means of visual analysis,
several pieces of research have been conducted. Typically, users form a
hypothesis to solve a problem, collect and analyze data, and then accept
or reject their initial hypothesis. This was explained by Wehrend et al., who
defined a taxonomy of eleven actions that are carried out by users in visual
environments, as following: identify, locate, distinguish, categorize, cluster,
distribution, rank, compare within relations, compare between relations,
associate and correlate [Wehrend 1990]. Thereafter, one of the most notable
research in this field is summarized by the Shneiderman’s Visual Information

62 Chapter 3. Visual Analytics

Seeking Mantra (overview first, zoom and filter, then details-on- demand)
that outlines the tasks usually performed by users when navigating IV
visualizations [Shneiderman 1996].

Furthermore, Pirolli studied visual information foraging [Pirolli 2001] from
a visual attention and information foraging theory perspectives, where the
latter is concerned with search, exploration, location and evaluation of
information [Chen 2002].

Taking into account what has been stated so far, it is important to recall
that the design of visual representations of huge datasets is often difficult
because of the limited size of screens [Leung 1994b], which frequently makes
browsing and navigating capabilities challenging. So, some of the main
challenges on this regard were discussed by Chung [Chung-Wong 2012a], and
are listed below:

In situ interactive analysis: Users require smooth interactions and
rapid system responses, which usually requires in memory
analysis [Basole 2012].

User-driven data reduction: Users should be capable of controlling their
data and analytical needs.

Scalability and multilevel hierarchy: Keeping control of scalability and
hierarchy depth is a challenge that requires fast software response times
to satisfy user demand for fast answers [Basole 2012].

Representing evidence and uncertainty: The visual representation of
data analysis results requires of visual representations of the level of
uncertainty for informed decision making.

Heterogeneous-data fusion: This point refers to the analysis
of heterogeneous data sources and their interrelationships
aimed at extracting the required semantics needed in VA
applications [Basole 2012].

Data summarization and triage for interactive query: This implies
that I/O components must provide adequate response times for
providing timely query results [Reiss 2005, Lee 2011].

Analytics of temporally evolved features: The representation of
temporal data and events usually is challenging due to the time span in
which the events have taken place and the large number of associated
events. So, the representation of temporal data needs to consider the
human abilities for exploration, creating relationships and decision
making.

3.5. Conclusions 63

The human bottleneck: This challenge is related to the increase in
bandwidth, memory, storage and processing capabilities, confronted
with humans and their capabilities to scale their abilities in short periods
of time. Therefore, awareness of these human limitations must be
foremost in the minds of those whose task is to design useful and usable
solutions.

Consequently, the adequate use of interaction techniques is an important
element to design VA systems that are easy to use and permit fluid and
engaging communications with users. Therefore, interaction mechanisms to
support users in the exploration of details and the building and tracking
of relationships, should be considered. Thus, the use of these mechanisms
facilitate the interpretation of specific elements that could lead users to
discover knowledge or facts that enable them to arrive at useful conclusions.
Thereupon some of the interaction mechanisms commonly used by visual
representations are the following:

∗ Navigation [Wilkinson 2005].
∗ Brushing and selection [Buja 1996, Dix 1998, Wilkinson 2005].
∗ Drill down [Dix 1998].
∗ Filtering [Shneiderman 1996, Wilkinson 2005].
∗ Linking multiple views [Wilkinson 2005].
∗ Geometric and semantic zoom [Shneiderman 1996, Dix 1998,

Cockburn 2009].

Finally, it is worth to mention that interaction design patterns have been
designed for building general and repeatable visual designs [Pauwels 2010,
Tidwell 2011].

3.5 Conclusions

Nowadays, companies compete in a global market where successful strategies
are crucial in overcoming the widespread economic crisis. And since several
consulting firms have compiled large databases of business data from different
market segments, more and more companies now have access to market
intelligence databases and to their own historical transaction databases, which
together represent a rich data source for performing analytics, using modern
analytics tools and taking advantage of accumulated expertise. Additionally,
automated, analytic methods and techniques have become more complex and
powerful, which encourages firms to take advantage of automatic data analysis
with great precision advantaged by the constant increase in performance,

64 Chapter 3. Visual Analytics

processing capabilities, and reductions of costs of servers and computer
equipment.

The main developers of Enterprise Resource Planning (ERP) and BI
tools have taken a step forward in the current global crisis by adding VA
components to their data analysis tools with the aim of improving the
capabilities of managers to carry out analytics at different stages of their
business processes [Institute 2011, Zhang 2012, Skytree 2013].

The main reasons for incorporating VA components into BI and
management tools is to combine the capabilities of computers for performing
fast and precise calculations with the human strengths of intuition, critical
thinking, problem solving and visual perception. Moreover, the rise in the
use of VA is reinforced by increased research and published papers on the
application of VA to such diverse areas.

Consequently, this chapter has explained and described the main
components of VA, as elaborated from previous definitions of this area. The
purpose is to offer some guidelines that could aid software designers and
architects in designing and programming of VA tools and solutions. This
is particularly important in the current scenario described above, where
companies require - more than ever before - the transformation of available
data into knowledge to compete successfully in the global market, sometimes
with very particular requirements.

Part III

Visualization and Visual Analytics
for Software Systems

Chapter 4

Systematic Mapping Study

Cuando llegaron al valle multicolor de Orsi se detuvieron frente a
una encrucijada. Nevo cortó una gardenia y caminó en dirección

contraria, de vuelta a casa. Entonces murmuró, sin mirar a
Güindy, "ahora debes seguir solo". "¿Qué camino debo seguir?",
preguntó Güindy. "El que quieras, es tu camino", contestó Nevo,

al tiempo que besaba la gardenia.. — El viaje de Güindy,
A.González

Contents
4.1 Introduction . 66

4.2 Methodology . 68

4.2.1 Research Questions . 68

4.2.2 Inclusion and Exclusion Criteria 69

4.2.3 Searching for Research Studies 70

4.2.4 Classification Criteria 70

4.3 Results . 74

4.3.1 Philosophical Research Studies 78

4.3.2 Solution Proposal Studies 81

4.4 Discussion . 106

4.5 Conclusions . 109

4.1 Introduction

The aim of this chapter is to review in depth the current state of the
application of visualization and VA to software systems and their evolution
in facilitating the development and maintenance of software. The decision to
conduct a systematic mapping study was rooted in the possibility of carrying
out an analysis of greater depth and breadth; a study that would provide
further details on the work carried out and the trends that mark them. This

4.1. Introduction 67

chapter thus examines the use of IV and VA in the comprehension processes
of software projects and their evolution by means of a systematic mapping
study of research carried out in the last 7 years, from 2007 to 2013.

In order to do this, the tasks that this research sought to support were
identified as well as the different types of visualization, data types and
technologies that were used. Moreover, the types of validation used to test
the applicability of the proposed methods or solutions relative to the tasks
were also identified.

In order to carry out the systematic mapping study, all the papers of the
principal workshops, symposiums and conferences related to our field of study
for the period of analysis already mentioned were revised. Subsequently, two
specialized search engines (WorlCat and EBSCO Discovey Service (EDS)) as
well as Google searches were employed.

The items found were included or discarded according to their titles, a
quick review of the key words and the abstract. Once the articles had been
selected, the abstract and the introduction were more carefully examined in
order to extract information that would permit the paper to be classified
as a paper which searched for a solution to a specific problem, or one that
addressed theoretical or methodological issues.

Subsequently, an overview of the development of publications and
conclusions was made seeking accurate information about the task that the
paper sought to resolve or the research approach employed, as well as the
details of the answers given to the research questions (explicit or implicit).

The papers in both groups then went through another process of
classification: the former group being sorted into 22 categories according to the
tasks that the papers seek to support during the development and maintenance
of software and the latter group were classified in 11 categories according to
the research objetives that they address. Subsequently, several relationships
were created between the categories and research focuses identified and other
items which had relevance, depending on the particular group of papers under
analysis. Finally, the introduction and development of the chapter was revised
in detail in order to determine the visualizations used, the manner in which
data was represented, the number of views and the validation techniques
employed.

Accordingly, section 4.2 explains the methodology employed for conducting
the systematic mapping study; section 4.3 presents the results of the study;
Section 4.4 discusses some of the most relevant results of the investigation,
and finally Section 4.5 makes the conclusions of this chapter.

68 Chapter 4. Systematic Mapping Study

4.2 Methodology

This section presents and explains the research questions, the criteria utilized
to include or exclude research, strategies used to search for the research studies
and the classification criteria applied to such research work in order to carry
out the systematic mapping study described in this chapter.

4.2.1 Research Questions

The main objective of the systematic mapping study is to answer the following
research question:

How have visualization and visual analytics been used in software
development and maintenance tasks?

The following subsidiary research questions have emerged as a logical
consequence of research into this primary question:

1. Which tasks in the process of development and maintenance of software
systems are supported through the use of visualization and visual
analytics?

2. Which types of visual representation are used to support each of the
particular tasks identified?

3. What data derived from the analysis of software projects and their
evolution are visually represented?

4. What are the technologies used in the solutions proposed by the research
studied?

5. What types of validations are carried out in order to test the validity of
the proposed solution or technique?

6. What types of data and visual representations are used both to support
comprehension of the analysis of a revision as to support understanding
of the complete evolution of the software project (or over a period of
time)?

The analysis of the evolution of a software project involves the individual
analysis of each of the revisions under consideration, whose results are then
correlated in order to find relationships or facts which are relevant to the
particular task that is being undertaken.The discovery of useful knowledge
from the visual representation of the results of this analysis may require
the use of navigation and interaction techniques that provide different views

4.2. Methodology 69

and perspectives. In accordance with the above, this chapter seeks also to
investigate on the following subsidiary research question:

7. How are the multiple views and multiple linked views used by research
that is aimed at analyzing software evolution (several revisions or a
period of time of the evolution)?

4.2.2 Inclusion and Exclusion Criteria

The inclusion and exclusion criteria that were applied to the research reviewed
for this study are the following:

Time period of the study: The study included all the publications in the
last 7 years (2007-2013). However, in the case of 2007 only papers from
the proceedings of IEEE International Workshop on Visualizing Software
for Understanding and Analysis (VISSOFT) 2007 were included (as well
as a highly cited paper that could be considered an obligatory reference,
and which was published in the proceedings of the 2007 International
ACM Conference on Supporting Group Work).

Papers studied: A total of 219 papers were downloaded, but once they had
been filtered and revised, a final total of 149 papers were evaluated.

Relevance of papers: In this regard, the study took into account the
following criteria:

1. Only full papers were considered (with the exception of two short
papers included in the study because they were of special interest)

2. It was determined by the use of visualization and VA in order
to understand software systems and their evolution in general
terms and, more specifically, with the objective of supporting the
development and maintenance of software. The following factors
were taken into account in this regard:
Type of proposal or evaluation: Visualization designs, tools,

strategies, techniques, taxonomies, frameworks, validations,
theoretical or philosophical discussions (see Table 4.1 for a
definition), experience and survey papers have been proposed
or evaluated by the papers.

Types of data analysis supported: The research works may
have used static, dynamic or a combination of both types of
analysis.

70 Chapter 4. Systematic Mapping Study

Time period of data under analysis: The analysis performed
may have taken into account one, several or all of the system
revisions.

It is worth mentioning that this research took into account some patterns
that were detected in which research groups employ the same visual approach
with slight variations or change the focus of the publications using different
perspectives (e.g., comprehension of systems, structures and presentation of
frameworks) or making variations on how a previously proposed visual solution
is validated (e.g., using a case study or a usability study). Therefore, in
these cases, the study excluded those papers that are neither an extension
of, nor demonstrate significant progress in relation to a previous publication.
In the case of several publications related to the same research, where there
is a publication in a journal concerning the same research area, the research
published in the journal takes precedence over that which formed part of
conference proceedings.

4.2.3 Searching for Research Studies

A complete review was performed of all full papers, and two short papers
of special interest, which were presented from 2007 onwards in the ACM
Symposium on Software Visualization (SOFTVIS) and VISSOFT. Later
searches were carried out using the specialized search engines WorldCat
and EDS using the following search arguments:

Software visualization OR Software evolution visualization
OR
Visual software analytics OR Visual analytics
AND
(Software OR System)
OR
Software evolution

The result of searches carried out, plus the articles accepted in VISSOFT
and SOFTVIS, came to 219 papers in total, of which only 149 were included.
Annex A shows the complete classification of these works by publication venue
and date of publication.

4.2.4 Classification Criteria

The primary classification criterion is the research scope used by the
study research paper consideration. Thus a variant of the Wieringa

4.2. Methodology 71

and Peterson [Wieringa 2006, Petersen 2008] classification model, shown in
Table 4.1 was used. The application of these criteria of classification shows
that most of the research work belongs to either Philosophical Research (47)

or Solution Proposal (102) categories, which are opposite fields with regards
to theory/practice. This is why it was decided to group the results into 2

major groups, using those categories as a starting point for classification and
the others as additional criteria subject to both criteria. In this manner the
work done under the Philosophical Research category is associated with all the
categories present in Table 4.1, including the category denominated Solution
Proposal, whereby all work from the Solution Proposal category is associated
with the Evaluation Research and Validation Research categories.

Table 4.1: Classification scheme of investigations according to their research scope.
Category Description

Evaluation Research

A novel technique or solution proposal implemented and
evaluated in a real life scenario. Moreover, it may also take
into account an evaluation of third party tools or techniques in
a controlled or real life scenario. Evaluation also includes the
studies carried out to test something rather than validating
an approach.

Experience Papers
The personal experiences of authors and how something has
been carried out in practice are exposed.

Solution Proposal

A solution for a problem, either novel or a significant
improvement over an existing technique, is proposed. The
potential benefits and the applicability of the solution are
validated or discussed.

Philosophical Research

This category includes taxonomies, software frameworks,
conceptual frameworks, classification schemes, surveys, and
contributions to the theory, case studies on theoretical
foundations, and techniques or methods either novel or
improved.

Validation Research

A probe of concept of a solution proposal has been
implemented, but a real life implementation has not been
carried out. Therefore, the authors look to validate their
proposal via a case study, user evaluation, use case, examples
of use or a reasoned discussion.

Overall, this study seeks to present a comprehensive survey of the current
state of research into visualization and VA when used to solve problems or
support tasks in the software development and maintenance process. The
study also aims to show the theoretical advances in the area.

The research has thus been classified as Solution Proposal is that
whose visual representation may be a variation of existing techniques or
a combination of several existing techniques, while papers classified as

72 Chapter 4. Systematic Mapping Study

Philosophical Research are those which suggest new techniques, methods or
improvements to the aforementioned techniques, but without being restricted
to trying to resolve a specific problem but rather offer basic input from a
methodological or theoretical perspective.

The following classification criterion that was applied to the research
work was applied to the scope of the represented data and the supported
analysis. Therefore, a research work was classified as Sys1 or Evol2 according
to the number of system revisions that it has the capability to deal with.
Then, after classifying the papers using the above classification criterion, an
additional review of the documents was carried out to determine a secondary
classification criterion based on the content of the papers under study.
Accordingly, in the case of the research works in the Philosophical Research
category, this review has sought to determine which research approaches the
works are using, whereas in the case of the works in the Solution Proposal
category it looked to identify the tasks that the research work is intended
to support. In the case of work classified as Philosophical Research, the 11

research approaches on the following list were extracted from the papers under
consideration:

1. Case study
2. Classification scheme or taxonomy
3. Evaluation
4. Framework
5. Lessons learned
6. Novel technique
7. Reflections or discussion
8. Study
9. Survey

10. Systematic mapping study
11. Technique improvement

The number of tasks which the research in the Solution Proposal category
seek to support total 22 was determined by the aforementioned review, which
also lead to the conclusion that research work sometimes supports more than
one task. Therefore, research work supporting primary tasks (one task)
totaled 79, whereas the ones supporting secondary tasks totaled 23 (20 of them
support two tasks whereas the other 3 works support three tasks). However,

1A research work is classified as Sys if its application scope is the current system revision
or a single revision.

2Research works classified as Evol are those which take into account one, several or all
of the system revisions, in short are those works which study system evolution.

4.2. Methodology 73

the classification schemes under the Solution Proposal category only present
classification details for the primary tasks that are supported by research work.

Consequently, these schemes did not consider those tasks that only
received support from the research as secondary tasks, and thus were
excluded from the classification schemes. The decision to include only the
primary tasks in the classification schemes was based on the need to provide
information that could lead to accurate comparisons between tasks, and
which could be altered if works appeared to be associated with more than
one task. The secondary tasks that were not supported as primary tasks from
any of the research works studied were Source code porting, Source code reuse
and Support debugging. A complete list of tasks supported by the research
works under study is shown:

1. Detect design flaws
2. Distributed systems comprehension
3. Improve software quality
4. Improve source code security
5. Memory allocation analysis
6. Multithreading execution analysis
7. Parallel execution analysis
8. Performance analysis
9. Program execution analysis

10. Software design and modeling
11. Software ecosystem comprehension
12. Source code porting
13. Source code reuse
14. Support debugging
15. Support reverse engineering
16. System analysis and understanding
17. System refactoring
18. Software testing
19. Team awareness and collaboration
20. Understand dependencies
21. Understand software changes
22. Understand system architectures

Consequently, the previously mentioned criteria allowed for a basis
framework to be defined in order to permit a more detailed classification of
the works under analysis. The aforementioned classification was carried out
using five classification schemes, one of which is related to the investigations
under the Philosophical Research category and four of which are related to
the investigations from the Solution Proposal category.

74 Chapter 4. Systematic Mapping Study

The classification schemes include details on the number of works that
support systems classified as Sys and Evol. An important consideration to
be highlighted at this point is that supporting SE requires a greater effort
than that required for supporting only the current system revision or a single
revision.

4.3 Results

317 researchers were involved in the preparation of the 149 works, who mostly
worked in groups composed of two and three researchers, as Figure 4.1 shows.
Most of these researchers only contributed to one work (243) and the number
of those who participated in two (48), three (15) or more (11) studies was
very small relative to the total number of researchers (see Figure 4.2).

Figure 4.1: The x axis shows how researchers were organized in groups, in terms of
the number of participants, to carry out the research works. In line with this, the y
axis depicts the number of research papers and its correlation with the investigation
groups.

Figure 4.2: Correlation of researchers with the number of papers in which they have
participated as authors.

4.3. Results 75

The distribution of the authors who participated in a larger number of
works is shown in Figure 4.3. It is worth highlighting that among the authors
included, several authors participated in the same number of published works.
The four researchers with the most publications (Michele Lanza, Alexandru
Telea, Jürgen Döllner, and Stephan Diehl) appear as secondary authors in the
works.

Figure 4.3: Researchers with highest participation in published papers.

Figure 4.4 presents the distribution of the research works studied by
year. Accordingly with this figure the year that most research papers were
published, both in the category Evol and Sys, was 2010, followed by the year
2009. It is striking that in most of the years the number of research works
under the rubric Sys is highest that those classified in the category Evol, with
the exception of the years 2009 and 2012 in which the highest number of
research papers is under the rubric Evol.

Figure 4.4: Distribution of the total number of works carried per year and category
(Sys and Evol).

Based on the discussion in the previous section, table 4.2 presents some

76 Chapter 4. Systematic Mapping Study

general information about the studies analyzed. In this classification scheme,
the rows denominated Solution Proposal and Philosophical Research are the
primary criteria used for classification while the analysis type that has been
supported (Sys or Evol) serves as a secondary criterion. Starting from the
basis of these primary and secondary criteria, the research work is then
classified according to the following additional criteria:

1. Education: The papers classified in this category are those that seek to
support the educative processes of teaching and learning in programming
courses.

2. Static analysis: This category makes reference to papers that use static
analysis to obtain data to be used in visual representations.

3. Dynamic analysis: This category includes studies that use data obtained
by means of dynamic analysis techniques. These techniques render
the analysis of programs during their execution for a period that may
include, for example, be the time it takes to perform a particular task,
or a period determined by the analyst. However, when nothing more
than the analysis of one revision has been carried out, the works have
been classified under the rubric of Sys.

4. Use Visual Analytics: This category is used to classify research work
that makes use of Visual Analytics (VA) in the analysis of one or more
system revisions. Specifically, the application of VA approach to the
analysis of a software system revision is denominated as Visual Analytics
Software [Anslow 2009] and this research defines the application of VA
to the analysis of two or more software revisions as EVSA (which will
be discussed in more detail below).

5. Architecture: A paper classified in this category introduces the design
of an architecture, or the process that has been defined or employed
during the research. Frequently the architecture which is discussed in
the work is not original and what is sought to be presented here is the
interaction between the different components employed in the search for
the solution to a determinate problem.

6. Web: This category is used to classify the studies that have used web
technology to implement the visualizations featured.

7. 3D: Works that employ 3D visual representations are classified in this
category.

8. Plugin: The visualization tools proposed by the works classified in this
category can be integrated as extensions of the most well-known IDEs
which are commonly used both in educational and industrial settings.

4.3. Results 77

9. Animation: This category is used to classify works that use animation
to facilitate teaching processes in academic settings as well as the
development and maintenance of software in software development
departments and the software industry.

10. Views: The works studied may be classified as Single, Multiple or
Multiple Linked depending on the views that are used and the level of
integration between them. In visualization, the multi-view displays can
operate independently or be linked by interaction between them. The
works that employ multiple views and explicitly explain the interaction
between views were classified in the subcategory Multiple Linked.

According to the scheme in table 4.2 the number of papers that seek to
support teaching/learning in academic settings or business is reduced, because
only 10 out of 149 have that objective, and it can thus be concluded that the
purpose of most studies is to support the development and maintenance of
software in industrial settings.

Table 4.2: General classification scheme.

Technology Views

Category

A
na

ly
si

s
su

pp
or

te
d

E
du

ca
ti

on
or

ie
nt

ed

St
at

ic
an

al
ys

is

D
yn

am
ic

an
al

ys
is

U
se

V
is

ua
lA

na
ly

ti
cs

A
rc

hi
te

ct
ur

e

W
eb

3D A
ni

m
at

io
n

P
lu

gi
n

Si
ng

le

M
ul

ti
pl

e

M
ul

ti
pl

e
lin

ke
d

Sys 3 15 5 2 1 1 1 1 2Philosophical
Research Evol 4 27 2 3 1 7 4

Sys 3 28 36 9 1 7 2 12 42 14 7Solution
Proposal Evol 33 5 1 6 3 5 1 6 21 14 4

Totals 10 108 41 5 19 6 20 4 22 63 28 11

The type of analysis used to obtain data from software systems, 103

works use static analysis and 46 dynamic analysis. The use of static analysis
prevails both in the category Philosophical Research and also the category
Solution Proposal, which contain 42 and 61 works respectively. Static analysis
predominates in the Evol category, while dynamic analysis predominates in
the Sys category.

It is striking the very small number of works that make use of VA despite

78 Chapter 4. Systematic Mapping Study

their widespread dissemination in recent years. This result is reflected in
the column Use Visual Analytics which shows only 5 works classified in this
category. One element that probably reinforces this result is that there are
only a small number of papers that use multiple linked views (only 11 works
in total). In this study the use of multiple linked views is considered as an
essential prerequisite for a work to be classified in the VA category.

An important trend that can be observed in the results is the integration
of the proposed solutions in development environments by means of plugins
(22) and the use of web technology (6). The use of 3D is also striking due to
the significant number of work employing this approach (20) although its use
is not recent as the case of plugins and web technology

Works which make use of multiple views form an important group (28).
Some jobs that were classified in the category Views–> Multiple were placed
in that category and not in the category Views–> Multiple Linked category
because although they could have been classified in the former category, it
could not be established with clarity whether the visualizations were linked.
It should also be mentioned that the use of views was evaluated in the works
classified in the category Solution Proposal but it was not evaluated in the
works classified in the category Philosophical Research because of the nature of
these research (e.g., taxonomies, software frameworks, conceptual frameworks
and classification schemes).

Section 4.3.1 presents the classification details of the category
Philosophical Research, while Section 4.3.2 does the same for the category
Proposal Solution.

4.3.1 Philosophical Research Studies

The number of papers classified under this rubric was 47, which were further
subclassified into 11 different types of research. The resulting classification
scheme, shown in table 4.3, presents details on the distribution per annum
of the papers taken into account in this study (those published in a time
frame from 2007 to 2013), as well as the technological elements, the type of
validation and the research approach employed. Moreover, it also shows the
number of papers with an educational orientation. Complementary to this
scheme, Figure 4.5 shows the distribution of papers per research approach
and category (Sys and Evol).

The publication of papers concentrates on the years 2008, 2009 and
2011 with no special focus on any particular research approach during those
years. However, the Novel technique and Reflections or discussion approaches
received special attention in general as they totaled 20 out of 47, where the
former approach totaled 11 studies and the latter 9.

4.3. Results 79

Figure 4.5: Number of papers per research approach and category (Sys and Evol).

Furthermore, the number of papers that seek to validate results is high,
22 out of 47, including the use of case studies, user studies and use cases as
preferred validation methods. In this scheme the number of papers with an
educational orientation is also striking (6 out of 47) in relation to the schemas
presented and discussed and which are discussed in more depth later in the
research. Additionally, the integration of the resulting tools into IDEs as
plugins (6 out of 47) is highly relevant as is the relative importance of the
use of 3D visualizations (7 out of 47). This scheme also shows that the use of
web and animation technologies is not popular with the authors of the papers
classified under this category.

It is also relevant to highlight the fact that 29 out of the 47 research
works were classified under the rubric Evol and only 18 under the rubric
Sys. Figure 4.6 allows to observe that in all the years the number of papers
published under the Evol category was greater than the number of works
classified under the rubric Sys, except in the case of 2008. Figure 4.6 also
allows to observe that the highest level of activity took place in the years
2008, 2009 and 2011.

80 Chapter 4. Systematic Mapping Study
T
ab

le
4.

3:
R

es
ea

rc
h

ap
pr

oa
ch

+
pa

pe
rs

pe
r

ye
ar

+
te

ch
no

lo
gy

el
em

en
ts

+
re

se
ar

ch
fo

cu
s.

P
ap

er
s

p
er

ye
ar

T
ec

h
n
ol

og
y

V
al

id
at

io
n

ty
p
e

R
es

ea
rc

h
fo

cu
s

R
es

ea
rc

h
ap

p
ro

ac
h

Analysistype

2007

2008

2009

2010

2011

2012

2013

Totals

Web

Animation

3D

Plugin

Casestudy

Userstudy

Usecases

Experiments

Tooluse

Discussion

Experiencereport

Evaluation

Solutionproposal

Validation

Philosophical

Architecture

Dynamicanalysis

Education

Sy
s

1
1

1
1

1
C

as
e

st
ud

y
E

vo
l

Sy
s

C
la

ss
ifi

ca
ti

on
sc

he
m

e
or

ta
xo

no
m

y
E

vo
l

2
2

1
1

1
2

2
1

Sy
s

2
1

1
4

1
1

1
1

1
2

2
2

1
E

va
lu

at
io

n
E

vo
l

Sy
s

1
1

1
1

1
Fr

am
ew

or
k

E
vo

l
1

1
2

4
2

2
1

1
1

1
3

5
1

Sy
s

1
1

1
1

1
1

1
L
es

so
ns

le
ar

ne
d

E
vo

l
1

1
1

Sy
s

1
1

1
3

1
1

3
1

3
1

N
ov

el
te

ch
ni

qu
e

E
vo

l
1

2
2

2
1

8
1

2
1

5
1

3
1

7
8

8
1

Sy
s

1
1

1
3

1
1

1
3

1
1

R
efl

ec
ti

on
s

or
di

sc
us

si
on

E
vo

l
1

4
1

6
1

1
1

1
1

6
1

1
Sy

s
1

1
2

1
1

1
1

1
1

1
St

ud
y

E
vo

l
1

1
1

3
1

1
1

1
1

1
Sy

s
Su

rv
ey

E
vo

l
1

2
3

1
2

1
Sy

s
Sy

st
em

at
ic

m
ap

pi
ng

st
ud

y
E

vo
l

1
1

1
1

Sy
s

2
1

3
1

1
1

3
T
ec

hn
iq

ue
im

pr
ov

em
en

t
E

vo
l

1
1

1
1

1
Sy

s
2

8
3

1
3

1
1

18
1

1
2

3
3

2
2

2
1

1
2

3
8

15
1

5
2

E
vo

l
3

1
11

2
6

2
3

29
1

1
6

4
7

4
4

1
4

4
7

14
26

3
2

4
T
ot

al
s

5
9

14
3

9
3

4
47

2
1

7
6

10
7

6
3

2
5

1
6

10
22

41
4

7
6

4.3. Results 81

Figure 4.6: Philosophical Research: publications per year and category (Sys and
Evol).

In the case of publications classified under the rubric Evol it is interesting
to observe that publications demonstrate a wave pattern. This begins with a
low level of publications in 2007, which is further diminishes in 2008 to the
point where only one work was published. However, there is then considerable
growth in 2009 which again falls in 2010 and then rises yet again in 2011.
This pattern has continued with a fall in the number of publications in 2012

followed by a slight increase in 2013. The maximum growth in the number of
publications classified under the rubric Sys, occurs in the year 2008. However,
in other years the number of works does not even reach an average of two
publications per year.

The works that are classified under the rubric Novel technique include
papers which have proposed visualization techniques that have been
considered innovative due to the use of new or existing elements to create
a representation which possesses a high percentage of originality. Some of
the visual representations presented and discussed under the rubric Novel
technique are also referenced in the classification schemas of the next section,
when other works classified under the rubric Solution Proposal use any of
them. Finally, table B.1 in Annex B shows a correlation between research
approaches and the research works studied in this section.

4.3.2 Solution Proposal Studies

The classification schemas in this section are task centric and their function is
to correlate the tasks supported with the other classification criteria. The goal
of these schemes is to aid the identification of data, methods and techniques
used in research studies to support software development, maintenance and
evolution by means of visualization and VA.

It is important to highlight that some research work considered in these
classifications are aimed to support more than one task. However, the results
presented in this section are focused on only the primary task that these
studies aim to support (for more information see section 4.2.4). The total

82 Chapter 4. Systematic Mapping Study

number of works under consideration is 102: from which 76 support one task;
23 support two tasks; and 3 support three tasks. The correlation of the tasks
supported by the research studies, their temporal focus, and the papers in
which the results were published is shown in table B.2, annex B.

4.3.2.1 Distribution of papers by task addressed, year, research
approach and validation type

Taking into account the tasks outlined in section 4.2.4, the scheme from
table 4.4 classifies the investigations using, as a starting point, the temporal
focus (Sys or Evol). It then establishes relationships between such tasks and
the year of publication; the research approach (Solution Proposal, Evaluation
Research and Validation Research); the elements of technology and the type
of validation used by the research study (Case study, User study, Use cases,
Experiments, Pilot study, User feedback and Discussion).

Figure 4.7: Solution Proposals: publications per year.

Furthermore, the scheme in table 4.4 indicates whether an architecture
was used to implement the proposed solution and if these studies have an
educational orientation.

Of the 102 publications studied, 66 were classified as Sys and 36 as Evol.
As the results in Figure 4.7 demonstrate, the year in which the largest number
of entries is grouped is 2010, with 2013 in second place and in third place 2011.
Works classified under the rubric Sys follow a pattern similar to that of a Bell
Curve which begins to ascend in 2009, extending through 2010 and 2011, and
then begins to descend in 2012. In 2013, the curve begins to ascend again.
While the publications classified under the rubric Evol exhibits a wave pattern
which begins at an intermediate level in the 2007 and continues to oscillate
in the following years. Thus, the publications in this group do not follow a
stable pattern and although in the last 4 years the number of publications is
greater than in the first 3 years, there is no progressive increase in this group
from 2010 onwards.

4.3. Results 83

T
ab

le
4.

4:
T
as

k
ad

dr
es

se
d+

pa
pe

rs
pe

r
ye

ar
+

re
se

ar
ch

fo
cu

s+
va

lid
at

io
n

ty
pe

.
P
ap

er
s

p
er

ye
ar

F
oc

u
s

T
ec

h
.e

le
m

en
ts

V
al

id
at

io
n

ty
p
e

T
as

k
ad

d
re

ss
ed

Typeofpaper

2007

2008

2009

2010

2011

2012

2013

Totals

Solutionproposal

Evaluationresearch

Validationresearch

Web

3D

Plugin

Animation

Casestudy

Userstudy

Usecases

Experiments

Pilotstudy

Userfeedback

Discussion

Architecture

Education

Sy
s

1
1

1
3

3
3

1
1

1
1

D
et

ec
t

de
si

gn
fla

w
s

E
vo

l
1

1
1

1
1

1

Sy
s

1
1

1
1

1
5

5
2

4
1

3
1

2
2

D
is

tr
ib

ut
ed

sy
st

em
s

co
m

pr
eh

en
si

on
E

vo
l

Sy
s

1
1

1
3

3
3

1
3

2
1

Im
pr

ov
e

so
ft

w
ar

e
qu

al
it
y

E
vo

l
1

1
1

1
1

1

Sy
s

1
1

2
2

1
1

1
2

1
Im

pr
ov

e
so

ur
ce

co
de

se
cu

ri
ty

E
vo

l

Sy
s

1
1

3
1

2
8

8
1

6
1

3
1

4
M

em
or

y
al

lo
ca

ti
on

an
al

ys
is

E
vo

l

Sy
s

2
3

5
5

4
1

1
1

3
M

ul
ti

th
re

ad
in

g
ex

ec
ut

io
n

an
al

ys
is

E
vo

l

Sy
s

P
ar

al
le

l
ex

ec
ut

io
n

an
al

ys
is

E
vo

l
1

1
1

Sy
s

1
2

3
3

1
2

2
1

2
1

P
er

fo
rm

an
ce

an
al

ys
is

E
vo

l
1

1
1

1
1

Sy
s

1
4

4
2

1
12

9
3

8
3

4
3

1
2

1
1

2
P

ro
gr

am
ex

ec
ut

io
n

an
al

ys
is

E
vo

l
1

1
1

1
1

Sy
s

1
1

1
1

4
4

2
2

1
1

So
ft

w
ar

e
de

si
gn

an
d

m
od

el
in

g
E

vo
l

C
on

ti
nu

ed
on

n
ex

t
p
ag

e.

84 Chapter 4. Systematic Mapping Study
T
ab

le
4.

4
T
as

k
ad

d
re

ss
ed

+
p
ap

er
s

p
er

ye
ar

+
re

se
ar

ch
fo

cu
s+

va
li
d
at

io
n

ty
p
e

–
co

nt
in

u
ed

fr
om

p
re

vi
ou

s
p
ag

e.

P
ap

er
s

p
er

ye
ar

F
oc

u
s

T
ec

h
.e

le
m

en
ts

V
al

id
at

io
n

ty
p
e

T
as

k
ad

d
re

ss
ed

Typeofpaper

2007

2008

2009

2010

2011

2012

2013

Totals

Solutionproposal

Evaluationresearch

Validationresearch

Web

3D

Plugin

Animation

Casestudy

Userstudy

Usecases

Experiments

Pilotstudy

Userfeedback

Discussion

Architecture

Education

Sy
s

So
ft

w
ar

e
ec

os
ys

te
m

co
m

pr
eh

en
si

on
E

vo
l

1
1

2
2

1
2

1
1

2

Sy
s

1
1

2
2

1
2

1
2

2
2

Su
pp

or
t

re
ve

rs
e

en
gi

ne
er

in
g

E
vo

l
1

1
1

1
1

Sy
s

2
1

1
1

1
6

6
5

1
2

1
2

2
1

Sy
st

em
an

al
ys

is
an

d
un

de
rs

ta
nd

in
g

E
vo

l
1

1
2

4
3

3
2

1
1

1
1

Sy
s

1
1

1
1

1
Sy

st
em

re
fa

ct
or

in
g

E
vo

l
1

1
2

2
1

2
1

1
1

Sy
s

1
1

2
2

2
1

1
1

Sy
st

em
te

st
in

g
E

vo
l

1
1

1
1

1

Sy
s

1
1

1
1

1
T
ea

m
aw

ar
en

es
s

an
d

co
lla

bo
ra

ti
on

E
vo

l
2

1
2

1
2

2
10

9
1

8
1

3
4

2
2

1
2

Sy
s

1
1

2
2

2
1

U
nd

er
st

an
d

de
pe

nd
en

ci
es

E
vo

l

Sy
s

1
1

1
1

1
1

1
1

U
nd

er
st

an
d

so
ft

w
ar

e
ch

an
ge

s
E

vo
l

1
1

2
2

2
1

1

Sy
s

1
1

2
4

4
4

2
1

1
1

1
2

1
U

nd
er

st
an

d
sy

st
em

ar
ch

it
ec

tu
re

s
E

vo
l

2
3

1
1

4
11

9
1

10
1

4
1

1
4

2
3

4
1

Sy
s

7
6

10
17

10
2

16
64

61
8

51
1

7
12

2
14

15
16

3
2

2
17

9
3

E
vo

l
5

2
3

10
5

6
3

38
34

5
31

3
5

6
1

13
5

11
1

10
6

T
ot

al
s

12
8

13
27

15
8

19
10

2
95

13
82

4
12

18
3

27
20

27
4

2
2

26
15

3

4.3. Results 85

Figure 4.8 shows a correlation between the tasks and the number of
research works classified under the categories Sys and Evol. The aim is to
provide an outlook of the interest shown by researchers in these tasks and
the temporal analysis types. According to the results that can be observed in
table 4.4 researchers showed continuing interest in five tasks. These are the
following:

∗ Understand system architectures (15).
∗ Program execution analysis (13).
∗ Team awareness and collaboration (11).
∗ System analysis and understanding (10).
∗ Memory allocation analysis (8).

Moreover, Understand system architectures and Team awareness and
collaboration are the tasks with the highest percentage of studies devoted
to system evolution.

Similarly, a small number of works perform an evaluation research of a
proposed solution that has been published in other research paper, whereas
most of them contemplate some sort of evaluation, of which the most common
are case studies, use cases and user studies. It can be observed, that another
method that was extensively used in order to argue for the validity of the
proposals was the use of reasoned discussion. It is worth noting that such
discussions at times are exhaustive and in most cases they present weak and
subjective arguments that are not supported by empirical evidence.

The use of web technology in implementing proof of concept
implementations or implementations of finished tools is very limited, with
only 4 out of 102 works making use of these techniques. However, the number
of research papers which took into account the use of animation and 3D is
more significant. In the first case, 12 papers use animation; and in the second,
18 use 3D technology. In the case of 3D technology, its use is generally
more common in displaying information and has become more widespread as
software packages began offering more graphic applications. However, its use
is not sufficiently widespread because of a number of limitations which include
occlusion and handling. Similarly, the incorporation of the implemented visual
tools as an IDE plugin is relatively high: in 18 works was the development of
a plugin seen as a viable solution.

It should be highlighted that this scheme shows that 15 of the 102 works
classified under the rubric of Solution Proposal, offer details and explanation
concerning the architecture used. There are, however, a small number of works
which seek to support learning and teaching of programming and debugging
with the use of visualization as only 3 research studies offer some support for
educational purposes.

86 Chapter 4. Systematic Mapping Study

Figure 4.8: Correlation of tasks with the number of papers published per category
(Sys and Evol).

4.3.2.2 Classification by task and data type

The classification scheme in table 4.5 shows in detail the relationship between
the data used and the tasks identified, as well as an indicator regarding the
methods employed to obtain this data (static or dynamic). The information
contained in this scheme may facilitate further research as well as the design
of new tools.

4.3. Results 87

T
ab

le
4.

5:
T
as

k
ad

dr
es

se
d+

da
ta

us
ed

+
ru

nt
im

e
da

ta
.

V
is

u
al

iz
at

io
n
s

T
as

ks
ad

d
re

ss
ed

Analysistype

Numberofworks

Bugtrackingissues

Classhierarchy

Codeclones

Codesmells

Coupling

Dataflowdetails

Datastructures

Dependencies

Executiontraces

Itemrelationships

Logicalcoupling

Memoryallocation

Metrics

SCMMetadata

Socio-technical
relationships

Sourcecodechanges

Sourcecodeslicing

Structure

Testingdata

Vocabulary

UMLdiagrams

Workloadand
performance

Others

Runtimedata

Sy
s

3
2

1
1

D
et

ec
t

de
si

gn
fla

w
s

E
vo

l
1

1
1

1

Sy
s

5
2

2
2

1
3

D
is

tr
ib

ut
ed

sy
st

em
s

co
m

pr
eh

en
si

on
E

vo
l

Sy
s

3
1

2
1

1
Im

pr
ov

e
so

ft
w

ar
e

qu
al

it
y

E
vo

l
1

1
1

Sy
s

2
1

1
1

Im
pr

ov
e

so
ur

ce
co

de
se

cu
ri

ty
E

vo
l

Sy
s

8
3

1
8

8
M

em
or

y
al

lo
ca

ti
on

an
al

ys
is

E
vo

l

Sy
s

5
5

5
M

ul
ti

th
re

ad
in

g
ex

ec
ut

io
n

an
al

ys
is

E
vo

l

Sy
s

P
ar

al
le

l
ex

ec
ut

io
n

an
al

ys
is

E
vo

l
1

1
1

Sy
s

3
3

3
P
er

fo
rm

an
ce

an
al

ys
is

E
vo

l
1

1
1

Sy
s

12
1

1
10

12
P

ro
gr

am
ex

ec
ut

io
n

an
al

ys
is

E
vo

l
1

1
1

Sy
s

4
4

1
So

ft
w

ar
e

de
si

gn
an

d
m

od
el

in
g

E
vo

l

C
on

ti
nu

ed
on

n
ex

t
p
ag

e.

88 Chapter 4. Systematic Mapping Study
T
ab

le
4.

5
T
as

k
ad

d
re

ss
ed

+
d
at

a
u
se

d
+

ru
nt

im
e

d
at

a
–

co
nt

in
u
ed

fr
om

p
re

vi
ou

s
p
ag

e.

V
is

u
al

iz
at

io
n
s

T
as

ks
ad

d
re

ss
ed

Analysistype

Numberofworks

Bugtrackingissues

Classhierarchy

Codeclones

Codesmells

Coupling

Dataflowdetails

Datastructures

Dependencies

Executiontraces

Itemrelationships

Logicalcoupling

Memoryallocation

Metrics

SCMMetadata

Socio-technical
relationships

Sourcecodechanges

Sourcecodeslicing

Structure

Testingdata

Vocabulary

UMLdiagrams

Workloadand
performance

Others

Runtimedata

Sy
s

So
ft

w
ar

e
ec

os
ys

te
m

co
m

pr
eh

en
si

on
E

vo
l

2
1

2
1

2
1

Sy
s

2
1

1
1

1
1

1
Su

pp
or

t
re

ve
rs

e
en

gi
ne

er
in

g
E

vo
l

1
1

1
1

1

Sy
s

6
1

2
1

1
2

Sy
st

em
an

al
ys

is
an

d
un

de
rs

ta
nd

in
g

E
vo

l
4

1
2

2
1

1
1

2

Sy
s

1
1

Sy
st

em
re

fa
ct

or
in

g
E

vo
l

2
1

1
1

Sy
s

2
1

1
1

1
2

Sy
st

em
te

st
in

g
E

vo
l

1
1

1

Sy
s

1
1

1
T
ea

m
aw

ar
en

es
s

an
d

co
lla

bo
ra

ti
on

E
vo

l
10

1
1

1
2

2
6

3
2

3
1

1

Sy
s

2
2

1
U

nd
er

st
an

d
de

pe
nd

en
ci

es
E

vo
l

Sy
s

1
1

1
U

nd
er

st
an

d
so

ft
w

ar
e

ch
an

ge
s

E
vo

l
2

1
1

1
1

1

Sy
s

4
2

1
1

2
3

U
nd

er
st

an
d

sy
st

em
ar

ch
it

ec
tu

re
s

E
vo

l
11

1
1

1
1

1
1

6
1

9
1

Sy
s

64
2

1
3

3
3

9
24

4
8

10
1

2
10

2
4

1
2

37

E
vo

l
38

2
3

1
1

2
6

4
1

2
14

3
11

6
1

16
1

5
1

3
4

T
ot

al
s

10
2

2
5

2
4

2
3

3
15

28
5

2
8

24
3

12
8

1
26

3
5

4
2

5
41

4.3. Results 89

The similarities in the types of data used by the works classified under
the rubrics Sys and Evol can enable the development of works that focus
on supporting research with a greater capacity for analysis in both temporal
and general terms. However, these similarities are not sufficiently well-defined
to allow the design of research projects of the scope described, and so the
schemes in tables 4.6 and 4.7 are thus both complementary and useful in this
context. The data types that this research determined that were used by the
works analyzed are:

Bug tracking issues: These include the description of the problem,
registration date, the level of urgency assigned; the user who reported
the incident, the person responsible for handling the incident and the
change history of the incident.

Class hierarchy: Includes details about the ascendants and descendants of
a particular class of or item of software.

Code clones: These are segments of source code that have been replicated
(copied) in different software items. This renders the maintenance of
the systems more difficult because all the copies of the segment must
be changed and it is necessary to find their location within the project
structure. The information about the code clones must thus include the
code segment and its location in the project structure. Code clones are
a particular type of code smell.

Code smells: They are symptoms of inadequate design or system design
problems which are detected by means of metrics. These symptoms
may cause maintenance problems. The following are typical symptoms:
excessive length of classes or methods, excessive complexity and
cohesion, and dependence on access to data by means of external
classes [Lanza 2005b].

Coupling: They are measures of the dependencies between classes, according
to the methods that are called [Yang 2007, Briand 1999].

Data flow details: This type of data offers details about the manner in
which data flows through the system.

Data structures: These contain details about the dynamic behavior of data
structures at runtime and how these organize and manipulate data
elements.

Dependencies: They are details of the dependencies which exist between
system elements. These dependencies are similar to those measured by

90 Chapter 4. Systematic Mapping Study

coupling metrics. Thus information regarding the relationships which
are established is included but not information regarding the metrics.

Execution traces: This is information about what happens in the system
when it executes a task. It includes details about the parts of the
program which are run; the invocation of classes and methods; as well
as data access and the passing of data between the different elements
that are involved.

Item relationships: Dependencies and inheritance are both types of
relationships between software items. However, this type of data
also includes the implementation of interfaces and other types of
relationships that have not been clearly defined by researchers in their
papers.

Logical coupling: This type of data contains details of the dependencies of
software items according to the co-change patterns that are revealed
when the history of revisions is analyzed [Gall 1998, D’Ambros 2009b].

Memory allocation This consists of information about memory allocation
to processes and the duration of the above assignment.

Metrics: They are the result of measuring the characteristics of a software
system, such as the complexity and size of the elements of which it is
composed [Laird 2006].

SCM Metadata: This stores details about revisions and changes to the
system. Such details include the revision number, the name of the
programmer who initiated the revision, the date and time of the revision,
and the software elements that were affected by the revision.

Socio-technical relationships: In this context, this term refers to the
details of the network of relationships which is formed between software
items, programmers and the collaboration between programmers which
takes place whilst carrying out changes in the process of software
development and maintenance. [Scacchi 2004, Valetto 2007].

Source code changes: This provides specific details of the changes made in
each particular software item during each revision.

Source code slicing: This is the part of the program whose behavior is
worthy of study [Weiser 1981]. The works in this study used this
technique to extract details of the portions of source code that had
been changed during the evolution in order to study the behavior of the
changes.

4.3. Results 91

Structure: This contains information on how the project is structured
(packages, sub-packages, classes and interfaces) and also information
about how the structure undergoes changes.

Testing data: These are the results (which are stored in logs or databases)
obtained when testing the system automatically with the use of
specialized tools.

Vocabulary: This is the vocabulary used to denominate the elements of
the software system such as; software items, methods, parameters, and
identifiers, as well as the vocabulary used in the comments.

UML diagrams: These are the diagrams Unified Modeling Language (UML)
extracted automatically from the software project by means of reverse
engineering and the use of specialized tools. The metadata of these
diagrams are used as data in order to analyze the system and provide
visual elements that use additional elements and seek to provide better
support for the process of development, maintenance and evolution.

Workload and performance: These data provide information about the
workload generated by the execution of systems and performance
measures at runtime.

Others: The data types whose use was limited by the studies analyzed
are grouped. Among these types of data are included the evolution of
project documentation, software features, and details of aspects-oriented
systems [Kiczales 1997].

Of the 102 works studied, 61 used static analysis to obtain data whereas
the other 41 used dynamic analysis. Figure 4.9 shows the correlation between
the number of research works in the categories Evol and Sys and the types of
data used. This figure allows to observe at a glance the temporal and general
usage of each type of data. As one would expect, data obtained by means of
dynamic analysis was used in works that supported tasks like:

∗ Multithreading execution analysis.
∗ Parallel execution analysis.
∗ Program execution analysis.
∗ Memory allocation analysis.
∗ Debugging support.
∗ Performance analysis.

92 Chapter 4. Systematic Mapping Study

With regard to the other tasks, most of them used data obtained using
static analysis, although some tasks use data obtained with both types of
analysis (static and dynamic).

Figure 4.9: Correlation of the types of data used by the research works studied and
the the temporal focus of these works (Sys and Evol).

4.3. Results 93

The five types of data that, in general, received more attention in the
studies analyzed were:

∗ Execution traces (28).
∗ Structure (26).
∗ Metrics (24).
∗ Dependencies (15).
∗ Socio-technical relationships (12).

It ought to be recalled that 64 works were classified under the rubric
Sys while 38 were classified under the rubric Evol. More specifically, the
three categories classified under the rubric Sys which aroused most interest in
researchers were:

∗ Execution traces (24).
∗ Metrics (10).
∗ Structure (10).

With regard to the Evol category, the three types of data most frequently
used were:

∗ Structure (16).
∗ Metrics (14).
∗ Socio-technical relationships (11).

4.3.2.3 Classification by task, technique and visualization

The purpose of this classification scheme (see table 4.6) is to relate the tasks
with the visualizations and the type of views that were used in the research.
This was done in order to provide indicators about possible visual design
patterns which may be useful in developing new research and design solutions
for the aforementioned tasks.

The name of visualizations in the schemes (in some cases) is a label to
identify a group of the same type of visualization such as, for example, basic
charts and graphs. In the category of basic charts, histograms, bar charts, pie
charts and box plots were included whereas in the case of graphs, directed
indirected and weighted graphs as well as trees were taken into account.
Accordingly, the following visualization types were used by the research works:

Basic charts: This group of visualization types include histograms, bar
charts, pie charts, box plots.

Code browser: A window that displays source code with some basic
navigation elements and color.

94 Chapter 4. Systematic Mapping Study

Code city: A visual representation of project structure and metrics using
the metaphor of a city.

Color lines and map: A group of visual representations that use colored
lines and dots to represent and highlight patterns.

DSM3: A visualization that uses a matrix layout with the names of software
items in rows and columns that show their dependencies with marks in
the intersecting cells.

Hierarchical Edge Bundles (HEB): A radial visualization that
organizes concentric rings according to the project structure and
shows relevant associations with lines which interconnect ring segments.

Events lifeline: A simple visualization that shows where and event began
and when it finished.

Graphs: A family of different types of common graphs used in computer
science.

Heatmap: A green-red scaled color dot matrix representation that show
incidence patterns.

Matrix layout: A visualization that uses a squarified layout with rows,
columns and cells that show details of cells.

Parallel coordinates: A scalable multivariate visualization that shows data
values in the y dimension and relationships to several other variables in
the x dimension.

Parallel node-link: A visualization similar to the parallel coordinates that
shows the name of software elements in the y dimension and name of
data types in the x dimension.

Polymetric views: These show a large number of software items organized
in a tree structure, where the software items are represented by boxes
whose attributes correspond to metrics.

Radial graph: A graph that is depicted using a radial layout.

Software cartography: The vocabulary used during the project evolution
is mapped into layered mountains according to its usage in time.

Stacked chart: Represents data values using a color fill strap with varying
thickness as it is depicted in the x dimension. Straps are piled one on
top of each other.

4.3. Results 95

Sunburst: A visualization technique that depicts hierarchies and shows
details on the lower levels of the hierarchy as elements are selected in
the higher levels.

Tag cloud: This visualization is formed by the vocabulary used during the
software project evolution, where words are sized according to the
frequency of their use.

Timeline: This visualization technique is used to plot events or activities in
a linear fashion according to their temporal properties.

Treemap: A squarified or circular visualization technique used to display the
weights of the elements of a hierarchy or the proportions associated with
variables.

UML variant: This visualizations uses visualization elements that are
present in UML diagrams and additional visual features to create richer
representations.

Others: Some examples are classification bins, dendrogram, DotPlot, organic
visualization, ownership map, icicle plot and tree forest.

The correlation of the types of visualizations listed above with the number
of research works published under the rubrics Evol and Sys is shown in
Figure 4.10. Accordingly, the five most common type of visualizations are:

∗ Graphs (45).
∗ Basic charts (17).
∗ Events lifelines (14).
∗ Timelines (12).
∗ Code browser (11).

While the three most commonly used visualization types classified under
the rubric Sys were:

∗ Graphs (32).
∗ Event lifelines (13).
∗ Basic charts (8).

The visualizations most commonly used for works classified under the
rubric Evol were the following :

∗ Graphs (13).
∗ Basic charts (9).
∗ Timelines (7).

96 Chapter 4. Systematic Mapping Study

In computer science and software engineering, the use of graphs is common,
and thus programmers are accustomed to their use and interpretation. In
fact, their widespread use (indicated by the results shown in this study) was
predictable.

Figure 4.10: Correlation of visualization types and the number of papers published
by category (Evol and Sys).

The structure of software systems is like a tree, where the elements are
organized in modules or packages, but also by hierarchical relationships

4.3. Results 97

in terms of inheritance. Formally, a tree structure is a kind of graph.
Additionally, software elements are interrelated: they make use of the
functionality and attributes of other software items. There is thus a naturally
occurring graph of relationships between different software items. In addition,
the same source code forms an implicit graph whose elements transition from
one state to other to originate a finite state machine that is represented by a
graph.

The importance of graphs in general is not restricted to the field of
computational systems. In all the elements that exist in the world created by
humans and nature there exist relationships that usually are depicted using
the visual form of a graph. It is possible, for example, that the person making
a visual representation of a graph by chance on a piece of paper does not
know the technical name for such a representation, but knows how to both
draw and interpret it. Thus, in the field of visualization graphs are useful,
not only for their ability to represent knowledge by means of association and
relationships between elements of diverse types. Moreover, graphs are easy to
understand for which, as has been mentioned, makes them useful to general
users. The use of graphs in the present field of study are diverse. They were
used in the majority of tasks: equally in the case of studies classified under
the rubric Sys as those classified under the rubric Evol.

Basic charts were used to display statistics and metrics. As these graphics
are both simple and well-known, their interpretation is quick and easy thus
satisfying what is expected from a good visual design. In the majority of
cases, this type of chart was used and its use turned out to be appropriate.
The use of more complex visual designs for the type of data which these
charts typically represent may render the process of interpreting information
confusing and complex. The use of this type of visualization was also very
widespread, as the case of graphs, and they were used in work falling into
both of the categories Sys and Evol.

The use of Event lifelines is dominated by works classified as Sys because
14 works used this representation and 13 fell into the Sys category. The
works which used it made use of dynamic data obtained at runtime and use
was mainly related to the duration of the execution of a task or memory
allocation. The single work that used this visualization and was classified as
Evol represented an isolated case related to the time associated with changing
the source code of software items.

It should be noted that the works that used data obtained by dynamic
analysis at runtime were classified as Sys because they referred to the
execution of a project revision, which in many cases is the current revision.
However, studies that also used data collected with the application of dynamic
analysis to several project revisions were classified as Evol.

98 Chapter 4. Systematic Mapping Study
T
ab

le
4.

6:
T
as

k
ad

dr
es

se
d+

vi
su

al
iz

at
io

n+
vi

ew
de

si
gn

.
V

is
u
al

iz
at

io
n
s

V
ie

w
s

T
as

ks
ad

d
re

ss
ed

Analysistype

Numberofworks

Basiccharts

Codebrowser

Codecity

Colorlinesandmap

DSM

Edgebundles

Eventslifeline

Graphs

Heatmap

Matrixlayout

Parallelcoordinates

Parallelnode-link

Polymetricviews

Radialgraph

Soft.cartography

Stackedchart

Sunburst

Tagcloud

Timelines

Treemap

UMLvariant

Others

Single

Multiple

Multiplelinked

Visualanalytics

Sy
s

3
2

1
3

D
et

ec
t

de
si

gn
fla

w
s

E
vo

l
1

1
1

1

Sy
s

5
1

1
3

1
1

4
1

D
is

tr
ib

ut
ed

sy
st

em
s

co
m

pr
eh

en
si

on
E

vo
l

Sy
s

3
2

1
1

2
1

Im
pr

ov
e

so
ft

w
ar

e
qu

al
it
y

E
vo

l
1

1
1

1
1

Sy
s

2
1

1
1

1
1

Im
pr

ov
e

so
ur

ce
co

de
se

cu
ri

ty
E

vo
l

Sy
s

8
1

3
2

1
1

8
M

em
or

y
al

lo
ca

ti
on

an
al

ys
is

E
vo

l

Sy
s

5
1

3
1

1
1

3
1

3
2

M
ul

ti
th

re
ad

in
g

ex
ec

ut
io

n
an

al
ys

is
E

vo
l

Sy
s

P
ar

al
le

l
ex

ec
ut

io
n

an
al

ys
is

E
vo

l
1

1
1

1
1

Sy
s

3
1

3
2

1
1

1
P
er

fo
rm

an
ce

an
al

ys
is

E
vo

l
1

1
1

1
1

Sy
s

12
1

3
2

2
3

7
1

1
1

4
6

2
P

ro
gr

am
ex

ec
ut

io
n

an
al

ys
is

E
vo

l
1

1
1

1
1

Sy
s

4
3

1
4

So
ft

w
ar

e
de

si
gn

an
d

m
od

el
in

g
E

vo
l

C
on

ti
nu

ed
on

n
ex

t
p
ag

e.

4.3. Results 99

T
ab

le
4.

6
T
as

k
ad

d
re

ss
ed

+
vi

su
al

iz
at

io
n
+

vi
ew

d
es

ig
n
.

–
co

nt
in

u
ed

fr
om

p
re

vi
ou

s
p
ag

e.

V
is

u
al

iz
at

io
n
s

V
ie

w
s

T
as

ks
ad

d
re

ss
ed

Analysistype

Numberofworks

Basiccharts

Codebrowser

Codecity

Colorlinesandmap

DSM

Edgebundles

Eventslifeline

Graphs

Heatmap

Matrixlayout

Parallelcoordinates

Parallelnode-link

Polymetricviews

Radialgraph

Soft.cartography

Stackedchart

Sunburst

Tagcloud

Timelines

Treemap

UMLvariant

Others

Single

Multiple

Multiplelinked

Visualanalytics

Sy
s

So
ft

w
ar

e
ec

os
ys

te
m

co
m

pr
eh

en
si

on
E

vo
l

2
2

1
2

1
2

2

Sy
s

2
1

1
1

1
1

1
1

Su
pp

or
t

re
ve

rs
e

en
gi

ne
er

in
g

E
vo

l
1

1
1

1
1

Sy
s

6
1

2
1

2
1

1
1

1
3

3
Sy

st
em

an
al

ys
is

an
d

un
de

rs
ta

nd
in

g
E

vo
l

4
1

1
2

1
1

3
1

1
2

1
1

Sy
s

1
1

1
Sy

st
em

re
fa

ct
or

in
g

E
vo

l
2

2
2

Sy
s

2
1

1
2

Sy
st

em
te

st
in

g
E

vo
l

1
1

1

Sy
s

1
1

1
1

T
ea

m
aw

ar
en

es
s

an
d

co
lla

bo
ra

ti
on

E
vo

l
10

2
1

1
5

1
1

1
1

3
1

2
7

2
1

Sy
s

2
1

1
1

1
1

U
nd

er
st

an
d

de
pe

nd
en

ci
es

E
vo

l

Sy
s

1
1

1
1

1
U

nd
er

st
an

d
so

ft
w

ar
e

ch
an

ge
s

E
vo

l
2

1
1

1
1

2

Sy
s

4
1

2
1

2
2

2
U

nd
er

st
an

d
sy

st
em

ar
ch

it
ec

tu
re

s
E

vo
l

11
1

4
2

1
1

1
1

1
1

3
9

1
1

Sy
s

64
8

9
3

6
3

4
13

32
1

3
1

2
1

2
2

5
2

4
4

37
21

8

E
vo

l
38

9
2

4
1

4
1

13
1

1
1

3
2

2
3

1
4

7
4

8
20

12
4

1
T
ot

al
s

10
2

17
11

7
7

3
8

14
45

2
3

2
1

5
3

2
5

3
4

12
6

4
9

57
33

12
1

100 Chapter 4. Systematic Mapping Study

Visualizations of the type Code Browser were predominantly used for work
falling into the category Sys (9 out of 11). The use of this visualization (like
those mentioned above) is as diverse as the number of tasks for which it
was used. However, it was generally used to directly inspect the source code
with the support of colors, arrows or symbols which indicate characteristics,
conflicts or problems.

Contrary to what might be expected by simple deduction, Timelines was
used almost equally for works classified in Sys and Evol. It was used in
5 cases which fell into the former category and in 7 cases which fell into
the latter. Timelines was used in works classified as Sys to represent data
concerning program execution and events like memory allocation, for a single
revision of a system. This visualization was intended to facilitate navigation
of data obtained from multiple revisions of the system and the time interval
represented often last for months or years, when it was used for works in the
Evol category.

The usefulness of details in table 4.6 could be illustrated with an example of
a simple design for the task Distributed Systems Comprehension. The design
may include Basic charts to present statistics related to memory allocation
or disk writing during the execution of routines. Event lifelines can be used
to represent the duration of each one of these tasks and Graphs to show the
relationships that exist between software elements, and Timelines in order to
show the execution times and allow selective browsing examining execution
intervals which are of interest. The earlier exercise can be performed with
each of the tasks according to the type of knowledge which is sought to be
obtained and the data available (or which was planned to be obtained).

In the context of this thesis, a view is defined as a separate visualization
or a combination of several visualizations which can provide joint results as
they are inter-linked between themselves4.

Taking into consideration the results of the schema in table 4.2, the number
of papers which argue for the use of VA is small, totaling only 5 out of the
149 studies analyzed. Of these 5 works, 4 were classified under the rubric
Philosophical research, and one isolated work was classified under the rubric
Solution proposal (see Table 4.6). This work is associated with the task System
analysis and understanding and was classified under the Evol rubric. In this
context, it should be recalled that a desirable element in VA tools is the use
of multiple linked views.

With regard to the types of visualizations employed, 102 works were

4A linked view is a combination of two or more visualizations where the results of
the visualizations are affected by the interaction which the user carried out with the
associated visualizations. The bond or copula between visualizations can be unidirectional
or bidirectional.

4.3. Results 101

classified as Solution proposal and from these, 57 works used Single views,
33 Multiple views and 12 Multiple linked views. The tasks with the highest
number of works that used Multiple views, Multiple linked views were:

∗ Program execution analysis (13).
∗ System analysis and understanding (10).
∗ Multithreading analysis (5).

It draws attention that all the works which seek to support the task
Multithreading execution analysis make use of multiple views (2 research works
of 5 also used the views in a linked fashion). It is also interesting to note that
of the 6 works with two or more views classified as oriented to support the task
System analysis and understanding, 3 works were classified under the rubric
Sys and the other 3 as Evol, with one of the latter classified in the category
VA.

4.3.2.4 Classification by visualization and data type

The schema in table 4.7 presents the relationship between visualizations and
data types used by the research works. These relationships allow us to see
the data patterns which the visualizations represent and thus serve as an
orientation in the design of future research or new research tools which support
the process of developing and maintaining software.

Some patterns that can be extracted by analyzing the rows in the
aforementioned table are, for example, those related to Code city, Edge bundles
and Event lifelines.

In the case of Code city, it can be observed that it is a useful visualization
which allows the representation of data metrics and project structure for one
or more of the revisions and are thus classified in both the categories Sys and
Evol. The use of this visualization to represent these data types is natural
because it was designed for this purpose, but the pattern may serve as guidance
for a researcher in the future who is confronted with the problem of the design
of a tool without detailed knowledge of the field.

HEB is useful to represent the structure and dependencies between
software items, as well as execution traces, software item relationships, and
the presence of code clones in software items. The use of Edge bundles to
represent dependencies between elements may be obvious to a specialist in
the area, but its use in the detection of code clones is not so obvious at first
glance. In the case of code clones, the visualization is useful in indicating
elements where the same fragment of code is copied. Furthermore, it displays
the relationships between the software items that contain code clones, if such
relations do in fact exist.

102 Chapter 4. Systematic Mapping Study
T
ab

le
4.

7:
V

is
ua

liz
at

io
n+

da
ta

us
ed

.
D

at
a

el
em

en
ts

re
p
re

se
nt

ed

V
is

u
al

iz
at

io
n
s

Analysistype

Numberofworks

Bugtrackingissues

Classhierarchy

Codeclones

Codesmells

Coupling

Dataflowdetails

Datastructures

Dependencies

Executiontraces

Itemrelationships

Logicalcoupling

Memoryallocation

Metrics

SCMMetadata

Socio-technical
relationships

Sourcecodechanges

Sourcecodeslicing

Structure

Testingdata

Vocabulary

UMLdiagrams

Workloadand
performance

Others

Sy
s

8
2

4
1

B
as

ic
ch

ar
ts

E
vo

l
9

3
5

1
1

1
1

Sy
s

9
2

2
3

C
od

e
br

ow
se

r
E

vo
l

2
3

1
Sy

s
3

3
3

C
od

e
ci

ty
E

vo
l

4
6

5
Sy

s
6

1
3

1
1

1
C

ol
or

lin
es

an
d

m
ap

E
vo

l
1

1
1

1
Sy

s
D

SM
E

vo
l

3
3

3
Sy

s
4

3
1

E
dg

e
bu

nd
le

s
E

vo
l

4
1

3
1

3
Sy

s
13

11
3

E
ve

nt
lif

el
in

es
E

vo
l

1
1

Sy
s

32
1

1
3

2
6

11
1

3
1

2
3

1
G

ra
ph

s
E

vo
l

13
2

4
1

1
2

6
4

2
Sy

s
1

1
H

ea
tm

ap
E

vo
l

1
1

1
1

1
Sy

s
3

1
1

1
1

M
at

ri
x

la
yo

ut
E

vo
l

Sy
s

1
1

P
ar

al
le

l
co

or
di

na
te

s
E

vo
l

1
1

Sy
s

P
ar

al
le

l
no

de
-l
in

k
E

vo
l

2
1

2
1

1
1

1
1

C
on

ti
nu

ed
on

n
ex

t
p
ag

e.

4.3. Results 103

T
ab

le
4.

7
V

is
u
al

iz
at

io
n
+

d
at

a
u
se

d
–

co
nt

in
u
ed

fr
om

p
re

vi
ou

s
p
ag

e.
D

at
a

el
em

en
ts

re
p
re

se
nt

ed

V
is

u
al

iz
at

io
n
s

Analysistype

Numberofworks

Bugtrackingissues

Classhierarchy

Codeclones

Codesmells

Coupling

Dataflowdetails

Datastructures

Dependencies

Executiontraces

Itemrelationships

Logicalcoupling

Memoryallocation

Metrics

SCMMetadata

Socio-technical
relationships

Sourcecodechanges

Sourcecodeslicing

Structure

Testingdata

Vocabulary

UMLdiagrams

Workloadand
performance

Others

Sy
s

2
2

P
ol

ym
et

ri
c

vi
ew

s
E

vo
l

3
1

2
Sy

s
1

1
R

ad
ia

l
gr

ap
h

E
vo

l
2

1
1

Sy
s

So
ft

w
ar

e
ca

rt
og

ra
ph

y
E

vo
l

2
2

2
Sy

s
2

2
St

ac
ke

d
ch

ar
t

E
vo

l
3

2
1

2
Sy

s
2

1
1

Su
nb

ur
st

E
vo

l
1

1
Sy

s
T
ag

cl
ou

d
E

vo
l

4
1

3
Sy

s
5

5
T

im
el

in
es

E
vo

l
7

1
1

2
3

1
1

2
Sy

s
2

1
1

1
1

T
re

em
ap

E
vo

l
4

3
1

3
Sy

s
4

1
1

4
1

U
M

L
di

ag
ra

m
s

E
vo

l
O

th
er

Sy
s

C
ar

te
si

an
an

d
ra

di
al

ic
ic

le
pl

ot
E

vo
l

1
1

Sy
s

C
la

ss
bl

ue
pr

in
t

E
vo

l
1

1
1

Sy
s

1
1

D
at

a
flo

w
ch

ar
t

E
vo

l
C

on
ti

nu
ed

on
n
ex

t
p
ag

e.

104 Chapter 4. Systematic Mapping Study
T
ab

le
4.

7
V

is
u
al

iz
at

io
n
+

d
at

a
u
se

d
–

co
nt

in
u
ed

fr
om

p
re

vi
ou

s
p
ag

e.
D

at
a

el
em

en
ts

re
p
re

se
nt

ed

V
is

u
al

iz
at

io
n
s

Analysistype

Numberofworks

Bugtrackingissues

Classhierarchy

Codeclones

Codesmells

Coupling

Dataflowdetails

Datastructures

Dependencies

Executiontraces

Itemrelationships

Logicalcoupling

Memoryallocation

Metrics

SCMMetadata

Socio-technical
relationships

Sourcecodechanges

Sourcecodeslicing

Structure

Testingdata

Vocabulary

UMLdiagrams

Workloadand
performance

Others

Sy
s

D
en

dr
og

ra
m

E
vo

l
1

1
Sy

s
1

1
D

ot
pl

ot
E

vo
l

Sy
s

E
vo

lu
ti

on
ra

da
r

E
vo

l
1

1
Sy

s
1

1
O

rg
an

ic
vi

su
al

iz
at

io
n

E
vo

l
Sy

s
O

w
ne

rs
hi

p
m

ap
E

vo
l

1
1

1
Sy

s
1

1
Sm

el
ls

vi
ew

E
vo

l
Sy

s
So

ft
w

ar
e

vi
su

al
iz

at
io

n
st

or
y

lin
e

E
vo

l
1

1
Sy

s
T
re

e
fo

re
st

E
vo

l
2

1
1

1

4.3. Results 105

Event lifelines is mainly used in the context of analysis of the execution of
a program and the allocation of memory to tasks. This type of visualization
is thus associated with execution traces and memory allocation, and most
research papers were classified in the category Sys. However, this kind of
visualization can also be used to indicate the duration of any event or task,
in a form similar to that of Gantt charts.

In this scheme it can be noted that the use of Graphs has special relevance.
As had been mentioned in Section 4.3.2.3 a large number of works make
use of Graphs because of their ability to represent knowledge in terms of
relationships and partnerships. This makes it inevitable that they are used
to represent various data types about whose elements it is sought to extract
details about their relationships and interactions. In the corresponding row
for Graphs in the scheme (see table 4.7), it can observed that they were used
in the representation of most of the data types which were used in the works
that were studied.

Therefore, when analyzing the row corresponding to Graphs, it is not
possible to observe a clear pattern about their use with certain types of data.
However, their flexibility with regard to the representation of different data
types must be emphasized. A similar case is that of Basic charts, which are
used to represent various classes of statistical and quantitative data, which
makes it difficult to discern a clear usage pattern in the representation of
specific data types.

The approach used in the preceding discussion permits the extraction
of patterns with regard to the visualizations and the data types that they
represent, using as a reference the rows of she schema. However, if the
columns and data types are used as a reference it is possible to identify the
visualizations that are useful to represent a particular data type. An example
is the representation of the data related to the project structure, which
can be represented by Code city, DSM, Edge bundles, Graphs, Heatmaps,
Matrix layout, Radial graph, Sunburst and Treemap. The use of any of these
representations will depend on the variables related to the structure that the
tool designer seeks to represent. To represent the structure and metrics City
code can be used. To represent the structure and dependency between the
elements DSM and Edge bundles, for example, are useful.

It is thus possible to extract a large number of patterns from this scheme
(in table 4.7) about the types of data that can be represented by a single
visualization and the visualizations that can represent a particular data type.

106 Chapter 4. Systematic Mapping Study

4.4 Discussion

It is important to note that the identification of tasks on the basis of the
contents of the work was not a straightforward process because a large number
of the research works did not clearly state the problem they sought to resolve,
nor the goals and objectives they sought to pursue. Similarly, many woks
did not describe the data used nor how the data were represented by the
visualizations they used.

This occurs not only with tasks, but also with visualizations. A
large number of papers do not describe the characteristics of displays
adequately or provide clear information about the possibilities of interaction
or the opportunities they offer to facilitate the discovery of knowledge.
These problems extend to the description of the interaction between the
visualizations (when multiple visualizations are used) and only in a few cases
do the papers explain whether the visualizations are linked. Given these
limitations, it was not possible to determine with clarity in the case of
a significant number of research works whether the visualizations operated
separately or together.

This lack of information led, in many cases, to the deduction of some
important elements of the work as objectives, goals and the tasks that it
sought to support, because these were not enunciated in an explicit manner.
This could have led, eventually, (in the more ambiguous cases) to a situation
in which the clear identification of what a research work seeks to support or
resolve could have been carried out with little precision.

According to the analysis conducted, 23 studies support two or more
tasks and some of the tasks identified were designated as only secondary
tasks. As a result, these tasks were not included in any of the schemas that
have been discussed with the aim of making more precise comparisons and
quantifications although the complete list of tasks is shown in section 4.2.4.

The majority of the primary tasks were undertaken by works classified in
both the category Sys and Evol. However, some tasks only support works
in one of these categories. Thus tasks have been divided into two groups
in order to analyze them in more detail. These groups were made up with
those tasks that support research works under the rubric Sys and those which
support research under the Evol category. Consequently, the first group
is comprised by 6 tasks and the second group by only one task (Software
ecosystem comprehension). The tasks in the former group are the following:

1. Distributed systems comprehension.
2. Improve source code security.
3. Memory allocation analysis.

4.4. Discussion 107

4. Multithreading execution analysis.
5. Software design and modeling.
6. Understand dependencies.

It is important to remark that tasks 1, 3, and 4 from the above list used
data obtained at runtime. The aim of these tasks is to find defects and
facilitate the realization of improvements based on the data produced when a
given revision is used as the base for running the software project. Moreover,
the classification of these tasks in this group seems natural because of the
characteristics involved in the real-time execution of a system (the execution
of the current version), but the classification of other tasks in the category
Sys is not so obvious. Finally, this may be an indication that these tasks need
to be studied using an evolutionary approach to determine if different results
may be obtained to improve their contribution to the process of developing
and maintaining software.

Most of the works that are sought to support Performance analysis and
Program execution analysis felt into the category Sys, although each one of
these tasks is supported by a work which falls into the category Evol ; this
implied the analysis of data obtained during the execution of the system for
a given number of revisions in a limited period of time. These exceptions are
striking because are inline with the above regarding the use of dynamic data
for studying the evolution of the system.

With regard to the second group, Software ecosystem comprehension
is supported by works in the category Evol and is aimed to facilitate
understanding of the relationships between projects that are located in a
software repository, as well as the interactions of programmers with projects.
Other tasks which mostly are supported by research works under the Evol
category are Team awareness and collaboration, and Understand system
architectures, although a few number of works in the rubric Sys also supported
them. The task Team awareness and collaboration has as its aim the study of
awareness levels of team members and the intensity of collaboration between
them, ideally over a significant time period. Meanwhile, the task Understand
system architectures aims to understand the changes that have taken place
in an architecture during the several revisions which have taken place over a
period of time.

The results obtained demonstrate that the use of VA to support the process
of software development and maintenance is very limited. Of the 149 studies
analyzed, only 5 made use of VA while 144 works make use of SV and Software
Evolution Visualization (SEV). Of these 5 papers, 4 papers were sub-classified
in the category Philosophical research and were in turn then classified in the
categories Sys and Evol, with 2 works classified in each of those categories.

108 Chapter 4. Systematic Mapping Study

These results suggest that the application of VA is still undergoing a process
of evolution at both the theoretical and methodological levels.

With regard to the visualizations, work classified in the Sys and Evol
categories did not demonstrate any particular preference for a visualization,
except in very specific cases where the visualization was originally designed
to support one of these categories and then began to be used to support the
other. Among the specific cases which may be mentioned are, in the case of
the category Sys : DSM, Matrix Layout and some variants of UML. There were
special cases whose visualization design was intended for works classified in
the Evol category including: Code city, Software cartography and Timelines.

The pattern that has been analyzed up to now is similar to that which
the data used for the works follows. Some data types are used both for works
in the category Sys and works in the category Evol, but there are also types
of data which are exclusively used for one category or the other. However, it
is interesting to note that when the number of data types for each category
is accounted the difference in the use between one category and the other is
minimal, even though the number of research works in the category Sys is
greater than the number of those classified in the category Evol. This pattern
can be explained by the fact that visual representations which facilitate the
understanding of the evolution of software projects, seek to provide a greater
number of details in order to permit comparisons between revisions of the
system or show relationships. Therefore, research works in the Evol category
represent a higher number of data types.

According to the results obtained there are tasks that are supported by
works classified in both in the categories Sys and Evol, but there are also tasks
that are supported by works from just one of these categories. Similarly, some
visualizations and data are used by research in both categories, but in some
cases they are only used by works falling into one or the other category (Sys
and Evol).

This opens many possibilities which could lead to the exploration of better
results thus supporting the process of software development and maintenance
by extrapolating the use of elements that support one of both approaches (Sys
and Evol). As a concrete example, the first group of tasks (listed above) could
be employed more broadly to analyze the behavior of the project at runtime
for a given number of revisions or a reasonable period of time. This could be
used to calculate metrics which permit more precise knowledge to be applied
in order to make specific improvements as the project evolves. It is worth
recalling that one of the principal objectives of software project evolution is
to ensure maintainability.

4.5. Conclusions 109

4.5 Conclusions

This research conducted the analysis of 149 research papers. 47 of which
were classified in the category Philosophical Research (18 under Sys and 29

under Evol) and 102 were classified in the category Solution Proposal (64
under Sys and Evol). The results obtained were exhaustively discussed and
widely disseminated. The questions posed at the beginning of the research
were answered satisfactorily.

In general, the study allowed to become more fully aware of how
visualization and VA are used to support the development and maintenance
of software systems by taking into account the following:

1. Details of the tasks that were supported by the research.
2. The visualizations that were used to support these tasks.
3. The data types that were represented visually.
4. The mapping between the types of data and the visualizations.
5. The technologies employed by these works in the solutions proposed.
6. The different criteria of validation employed
7. The use of Single, Multiple and Multiple linked views.

It is worth to mention that the results allowed to answer progressively to
the first 6 research questions formulated in section 4.2.1. Regarding research
question 7, the results showed that the use of Single views, Multiple views and
Multiple linked views is proportionally distributed for works falling into the Sys
and Evol categories. Although from the results it was possible to ascertain
that the visualizations used by the works in the Evol category represent a
greater number of elements, in accordance with the number of data types used
by the scheme in Table 4.5. This could allow to further argue that research
in the Evol category requires the representation of data and relationships of
greater complexity and therefore the use of more sophisticated techniques,
as Multiple linked views. However, the results are clear and lead to the
conclusion that the research works studied do not showed notable differences
in the pattern of use of the views to indicate whether either category (Sys
or Evol) makes a predominant usage of a particular type of view. Thus, this
results could be showing that there is margin to improve the results of the
research works in the Evol category with the use of Multiple linked views and
further, with the use of VA principles.

This research has yielded a large number of interesting results, as can be
observed in the schemes that have been presented. Some of these results may
be details which were expected to be found, but in many others cases they
are not, and they reveal patterns which can be used for the design of new
research and tools. A critical analysis of the schemes, allows questions to be

110 Chapter 4. Systematic Mapping Study

raised about the areas that still have not been the subject of research and
also into modifying the focus of research in order to obtain additional results
that may eventually lead to better solutions. Furthermore, by studying the
classification schemes, it can be observed areas that could be extrapolated
from one category to another, speaking in terms of the classification of works
as Sys or Evol, in order to find new ways of using established techniques and
methods that have been tested on a closely related field.

It is worth noting that not all the information presented in these schemes
has been analyzed in this work; for reasons of time, space and the author’s
own biases, leaving, therefore, many details that have to be analyzed by the
readers themselves.

In this context, reference must be made to the work of Lima et
al. [Novais 2013]. This work consists of a systematic mapping study of SEV
and suggests that the number of published papers decreased in recent years.
Those results contrast with the ones obtained in this research with regard to
the application of SEV to software systems. This is because in this research
the number of publications published per year does not show a pattern which
allows to arrive to the same conclusions of that earlier study. In this regard,
it is appropriate to emphasize that the methodology used in the study was
carried out by Lima et al. differs from the methodology employed in this
study. Furthermore, the work done by Lima et al. examined studies were
published up to 2011 and the sources of the research works studied are different
from those used in this research.

Based on the results of this study and those presented by the work done by
Lima et al., concern arises as to the manner in which the results of research
of visualization and VA to support software development and maintenance
are being used in practice by internal software development departments
and the software industry. In this context, it deserves special attention the
dissemination and transfer of research results to industry in order to improve
their processes and thereafter provide feedback to help improve the quality
of the research being carried out. Accordingly, the following question, which
will be addressed in the next chapter, is posed:

How are software companies and software development departments using
visual tools to facilitate software development and maintenance?

Chapter 5

Understanding system
architectures

Güindy se quedó desconcertado. Al cabo de un rato se dio cuenta
que Cucho no estaba, se había marchado por uno de los caminos y

lo siguió. Más adelante se encontró con un hombre llamado
Rastin, al cual preguntó "¿a dónde conduce este camino?". "He

acompañado a varios hasta al final de este camino y cada uno ha
llegado a un lugar distinto", respondió.. — El viaje de Güindy,

A.González

Contents
5.1 Introduction . 112

5.2 Architecture Visualization 114

5.2.1 City Metaphors . 114

5.2.2 Treemaps . 116

5.2.3 Grid Based Designs . 120

5.2.4 Node-link Diagrams 123

5.2.5 3D Visualization . 124

5.2.6 Polymetric Views . 125

5.2.7 Circular Visualizations 129

5.3 Architecture Evolution Visualization 130

5.3.1 City Metaphors . 130

5.3.2 Grid Based Designs . 134

5.3.3 Animation . 134

5.3.4 Software Cartography 138

5.3.5 Graphs . 140

5.3.6 Radial Visualizations 140

5.4 Discussion and Conclusions 142

112 Chapter 5. Understanding system architectures

5.1 Introduction

The architecture of a software system is designed to display an abstract view of
the system and its design can be perceived as a number of layers with different
levels of detail. The level of detail of each layer depends on the purpose of
the system architecture, its requirements and the environment in which the
system will function.

A high-level architecture is useful in communicating an overview to
managers, project managers and users, while a low-level architecture is used to
guide the detailed design of the system and programmers when they have not
yet been familiarized with the system [Kazman 1996], to show, for example,
information about the relationships between the software items [Balzer 2005a]
and data structures used.

Given this, it is possible to make different architecture designs for the
system according to its purpose. This research adopts the definition provided
by Bass et al. [Bass 2003] with regard to the architecture of a software system:

The software architecture of a program or computing system is the
structure or structures of the system, which is comprised of software
elements, the externally visible properties of those elements, and the
relationships among them.

It is noteworthy that on the basis of the architecture it is possible to
understand how a system is organized in terms of: software modularity;
components; relationships between components; data structures; access to
data; physical distribution of the system components on servers and user
computers.

Modern software systems are developed using object-oriented languages
and consist of thousands of entities [Balzer 2005a]. Therefore, the
architectures of such systems are organized using hierarchical structures
(packages, classes, methods and attributes), which sometimes exceeds 20

levels, to adequately reflect their organization. Thus, this research is based
on the analysis of software systems developed within the object-oriented
programming paradigm and takes into account that for their comprehension
information at different abstraction levels is required.

Another consideration regarding the system architecture is that the
software quality assurance process uses metrics to measure the architecture
elements (e.g., size, complexity, dependencies and relationships), and that
the particular objective of evolution metrics is to allow the comparison and
evolution of the quality taking into account several revisions or time periods.

Ball and Eick assert that the three properties of software systems that can
be visualized are the structure, runtime behavior and source code [Ball 1996].

5.1. Introduction 113

However, in order to understand the processes of SDME surrounding a system
it is necessary to be aware of other relevant aspects such as the socio-technical
relationships that arise from the interaction of programmers with system
elements (e.g., to be aware which elements have been modified by each
particular programmer), the volume of contributions made by programmers,
the relationships that have been established between them, reported errors
and their relationship to system elements.

In accordance with the above, it should be remembered that the tasks
which received more attention in the results of the systematic mapping
study presented in chapter 4 were Understand system architectures and Team
awareness and collaboration. The research works which sought to support
these tasks gave attention to the types of data and visualizations presented in
tables 5.1 and 5.2. Research works that support both tasks have made use
of most data types which are shown in those tables.

Table 5.1: Data elements of software systems used in the tasks (a) Understand
system architectures and (b) Team awareness and collaboration.
Software architecture elements a b
Coupling and logical coupling x
Code clones x
Dependencies x x
Execution traces x
Metrics x x
SCM metadata (contributions and collaboration) x
Software item relationships (inheritance and interface
implementation)

x x

Structure x x
Socio-technical relationships x
Source code changes x x
Vocabulary x x

The results shown in table 5.1 and the obtained by Khan et al. [Khan 2012]
outline that the architectural elements that are most commonly visualized,
taking into account one or more revisions of the system, are the following:

∗ Coupling and logical coupling.
∗ Dependencies and relations among software items (e.g., inheritance and

interface implementation).
∗ Metrics and evolution metrics.
∗ Structure and changes in the structure.
∗ Vocabulary.

114 Chapter 5. Understanding system architectures

Table 5.2: Visualization techniques used for the tasks supported by research works:
(a) Understand system architectures and (b) Team awareness and collaboration.
Visualizations a b
Basic charts x x
Code browsers x
Code city metaphors x
Edge bundles x x
Graphs (including radial graphs, hyperbolic tree and cone tree
layouts)

x x

Heatmaps x
Iciplots x
Matrix layouts (including Dependency Structure Matrix (DSM) x
Parallel node-link x
Polymetric views x
Software cartography x x
Sunburst x
Tag clouds x
Timelines x
Treemaps (including Voronoi and circular treemaps) x

Consequently, this chapter and the next discuss the most relevant research
works which seek to support the tasks Understand system architectures and
Team awareness and collaboration. However, additionally other important
publications which are related to the above tasks are also studied in order
to provide a better picture of the state of the art of the research focused
on supporting these tasks. Therefore, the following sections are devoted
to review in detail the visual representation of the architecture of software
systems. Accordingly, section 5.2 is focused in analyzing research works
devoted to the visualization of the architecture of software systems for a single
revision, whereas section 5.3 is committed to study research conducted on the
representation of the evolution of the architecture of software systems.

5.2 Architecture Visualization

5.2.1 City Metaphors

The use of city metaphors has become popular in the visualization of software
in recent years, after Panas et al. proposed their use to represent the
architecture of software systems [Panas 2003, Panas 2005]. It should be noted
that this research refers to this type of visualizations using the term software
cities.

5.2. Architecture Visualization 115

Figure 5.1: Visualization using a city metaphor [Wettel 2007, Wettel 2008a]. (a)
Use of levels to represent the elements contained by other elements. (b) Visual
representation of the methods in a class using brick figures. (c) Visualization of a
complete software project.

The way how the software city representation is implemented differ
between researchers and research groups. For example, Panas et al. represent
a package making use of the full visualization and they use the districts to
represent the classes, and the buildings to depict methods. While the research
conducted by Wettel and Lanza use the districts and sub-districts to represent
packages and sub-packages, the buildings to depict software items (classes and
interfaces) and bricks to represent the methods [Wettel 2007, Wettel 2008a].

In general, these approaches use the height, width, and color of the
buildings to represent different types of metrics associated to software items.
Regarding the structure, the approach used by Panas et al. differs from the
one used by Wettel and Lanza only in that the former represents a package
while the latter represents the entire system. So that the visual structure of
the approach used by Panas et al. begins with the representation of the
sub-packages, while the approach used by Wettel and Lanza begins with
the visualization of the packages in the first level of the system. Thus in
the first approach, districts (sub-packages) and blocks (software items) are
branches of the tree, while the buildings (methods) are the leaves; while in the
latter approach the districts (packages), sub-districts (sub-packages), blocks
(sub-packages of the last level) and buildings (software items) are branches of
the tree, and the bricks (methods) are the leaves.

The implementation carried out by Wettel and Lanza of the software city

116 Chapter 5. Understanding system architectures

metaphor highlights the hierarchical order of the districts, sub-districts and
blocks using elevations, where the highest elevation represents the elements
that are found closest to the leaves on the tree structure. Figure 5.1 (a)
shows the use of levels to represent the hierarchical order of the software items
in a system (sub-packages that are part of other packages or sub-packages);
Figure 5.1 (b) illustrates the depiction of class methods and Figure 5.1 (c)
shows the complete representation of a software system.

The main advantages of the software city are the scalability and ability to
visualize the structure and metrics of large-scale software systems. This type
of visualization also provides valuable information at a glance and permits
the exploration and acquisition of additional details by using interaction
techniques.

It is relevant to note that a large number of research papers have introduced
additional variants of the software city metaphor which have been standalone
implementations mostly developed in Java. The research work done by
Limberger et al. [Limberger 2013] used web technologies to develop a tool
that implements this visual metaphor. The use of web technology has the
advantage that the resulting tool is hardware independent and only requires
a supported Internet browser.

It is also worth noting that software city visualizations can represent any
kind of hierarchical structure. So, it is a representation that can be used to
visualize any software system developed with a language that has this kind of
structure.

A research work carried out by Bentrand and Melasti [Bentrad 2013] shows
the potential of this type of visualization to represent the elements of a
software system developed with AspectJ, an aspect oriented language which
also is based on hierarchical structure. Such research proposes a tool that
is integrated into Eclipse as a plugin and uses the software city metaphor to
visualize the structure of a system as follows: the packages are represented
as districts, and the aspects and software items are represented as buildings.
Like other implementations of software city metaphors, the width, height and
color of the buildings are used for the representation of metrics.

5.2.2 Treemaps

Modern programming languages impose a hierarchical structure to the
architecture of software systems, which could successfully be represented
using treemaps, taking into account the hierarchical nature of such
visualizations [Johnson 1991]. Accordingly, Baker and Eick [Baker 1995]
implemented SeeSys, a tool that is based on a treemap representation to
depict metrics associated to software items.

5.2. Architecture Visualization 117

In this visualization the size of nodes is proportional to the value of the
metric associated to the software elements in the system structure. A similar
visualization was designed by Balzar and Deussen [Balzer 2005b] to represent,
making a better use of the visualization, the structure and metrics of software
systems using Voronoi tessellations (see Figure 5.2).

Figure 5.2: System structure and metrics representation using a Treemap based on
Voronoi tessellations [Balzer 2005b].

An interesting design that makes use of a treemap
representation [García 2009b] was carried out as part of this research
(see Figure 5.3). The aim of such design is to disclose system details such as
structure, class relationships, class coupling, class level metrics and source
code.

118 Chapter 5. Understanding system architectures

F
ig

ur
e

5.
3:

V
is

ua
l

re
pr

es
en

ta
ti

on
of

th
e

sy
st

em
st

ru
ct

ur
e,

an
d

so
ft

w
ar

e
it

em
de

ta
ils

(i
nc

lu
di

ng
m

et
ri

cs
,

m
et

ho
ds

an
d

at
tr

ib
ut

es
)

[G
ar

cí
a

20
09

b]
.

5.2. Architecture Visualization 119

The visualization proposed by García et al. makes use of
interaction techniques to support navigation, interpretation of visual
elements and understanding relationships among data elements in their full
context [Leung 1994a]. The user, by means of interaction techniques, can
filter, transform, browse and discover relationships, as well as inspect relevant
source code fragments and obtain insight of their relationships and coupling.
The data used was extracted from SCM tool repositories.

This visualization represents the hierarchy of classes, so the classes
and their parents are shown for inspection and analysis on the integrated
representation view (the treemap) as well as class level metrics and source
code. The visualization is conformed by four visual representations that are
layout from left to right in Figure 5.3 and are used to carry out analysis tasks
according to the following:

1. The system is loaded using information from a particular package or the
complete system, according to user selection, and displays a treemap
with the inheritance structure of the system or package.

2. The user selects a package from the treemap and the classes it contains
are displayed on a table lens that shows the values of the metrics for
each class.

3. Then, the user selects a class from the table lens and its content
(methods and attributes) is displayed by a browser of objects.

4. Finally, the user selects methods or attributes from the browser of
objects to review their content in an auxiliary view.

Moreover, this visualization tool offers the possibility to locate a specific
class using the search engine included or browsing the visual elements on the
treemap and the table lens representations. The selections made by the user
can be done using as reference the inheritance relationships or the values of
the metrics that are displayed in the table lens.

A common problem that is faced when designing a visualization tool is
the small space to represent a large amount of data and details, which is
accentuated when it is required to represent the structure and relationships
between component of large systems. Zhao et al. designed a hybrid
visualization that combines the use of trees and treemaps (see Figure 5.4) with
interaction techniques for browsing and knowledge discovery in hierarchical
structures [Zhao 2005]. The concept presented in this paper coincided with
the research made by Balzer and Deussen concerned with the use of a hybrid
structure that consists of a graph and treemaps [Balzer 2005a] (see Figure 5.5).

120 Chapter 5. Understanding system architectures

Figure 5.4: Hybrid visualization that combines the use of a conventional tree and
treemaps [Zhao 2005].

The visualization proposed by Zhao et al. uses graphs to represent the
relationships (e.g., inheritance) between the software items that make up the
system. In this visualization nodes represent packages whereas edges depict
the relationships between packages. The size of nodes indicates the degree
of connectivity of the element with other elements, while the width of edges
indicate the number of relationships between the software items of the involved
packages.

The paper published by Balzer and Deussen [Balzer 2005a] does not discuss
details of the interaction possibilities that are offered by the visualization, but
this representation could be further improve to obtain greater detail of the
relationship between software elements in the lower levels of the hierarchy if
the concepts discussed in the research presented by Zhao et al. are applied.

5.2.3 Grid Based Designs

The visualizations based on grid layouts have been used broadly to represent
the structure of systems because of their scalability capabilities and ease of

5.2. Architecture Visualization 121

Figure 5.5: Top level view of the relationships among packages in JDK 1.4.2 using
a hybrid visualization that combines a graph and treemaps [Balzer 2005a].

understanding. Sangal et al. [Sangal 2005] propose Lattix, a tool that extracts
the dependencies between software items from the source code using static
analysis and a DSM representation as a visualization method.

The method used by Lattix consists of placing the same software items
(e.g., packages and classes) in the rows as well as in the columns of the grid.
It creates a numbered list using as a reference the placement of the software
items in the rows and then takes the resulting list of numbers to enumerate
the column headings of the corresponding software items. This correlation
creates the cells of the grid, as elements in the rows and columns intersect.
Therefore, the dependency between two software items is shown in the cell
corresponding to the intersection between those items. Figure 5.6 (a) shows
the dependency between software marking a X in the appropriate cell.

122 Chapter 5. Understanding system architectures

The hierarchy of system structure (packages and software items) is
represented using a variable number of columns which depends on the number
of levels of the depth of the tree structure: each column is used to locate
elements corresponding to the hierarchy level as shown in Figure 5.6 (b). The
tree structure can expand and contract according to user needs and according
to screen space. When the visualization is representing the structure at
package-level, this indicates the number of dependencies between packages,
as can be seen in Figure 5.6 (b). However, when the structure has been
expanded up to the last level of the hierarchy, the values of the dependencies
between software items will be equal to 1, as can be observed in Figure 5.6 (c),
because the dependency relation has been formed between atomic elements of
the system.

Figure 5.6: Characteristics of Lattix [Sangal 2005]. (a) Correlation of dependencies
between tasks (software items). (b) Expandable features of the visualization and
the number of dependencies between software items contained in software packages.
(c) The package project is expanded and to depict the software items that contain
and the dependencies in which the items are involved.

Lattix provides the possibility of specifying rules to describe the
dependencies considered acceptable in accordance with the system design.
The visualization makes use of these rules to show possible breaches of the
design, indicating this using colored marks that are placed in the cells of
the grid: the green marks indicate that a relationship of dependency can be
established, black marks show that it is prohibited to establish a dependency
between the involved software items and red marks indicate the violation of
the rules that govern valid dependencies (see Figure 5.7).

The visualization of multiple types of relationships and dependencies
between software items is a difficult challenge to address. Graphs are limited in
their capacity to signal several relationships at the same time and furthermore
they suffer from problems to scale properly when trying to represent several
hundreds of relationships.

An approach based on an adjacency matrix that permits the
representation of various types of dependency is proposed by Abuthawabeh et
al. [Abuthawabeh 2013], and was denominated IMMV. This visualization uses

5.2. Architecture Visualization 123

Figure 5.7: Design Rules: dependencies permitted, not permitted and violations to
the design of the system [Sangal 2005].

an icicle-plot representation for the structure of the system and divides the
cells of the matrix into sub-cells that are filled with different colors in order to
represent different types of dependency. Therefore, when a type of dependency
relationship exists, a sub-cell is filled with the color which corresponds to the
type of dependency, as shown in Figure 5.8.

Figure 5.8: Dependency relationships with IMMV [Beck 2013].

5.2.4 Node-link Diagrams

Another alternative for the representation of dependencies is the visualization
proposed by Abuthawabeh et al. [Abuthawabeh 2013], that was named PNL,
which permits the representation of n dependency types. The number of
dependencies that PNL is capable to represent is constrained by the display
space of the screen.

The structure of a software system is depicted by PNL using an icicle-plot
representation, which is positioned on the left side of the visualization, similar
to the manner in which this is done by DSM. This representation allows to

124 Chapter 5. Understanding system architectures

expand software items to show their inner sub-structures. The expansion
of software items could be performed up to the deepest level of the system
structure.

PNL shows the dependency relationships between software items at
the level at which the structure has been expanded, and uses parallel
representations, one for each type of dependency. The dependencies are
shown by lines connecting the software items in the structure represented
by the icicle-plot and the software items in the parallel structures, as shown
in Figure 5.9.

Figure 5.9: Visualization of dependency relations using PNL [Beck 2013].

5.2.5 3D Visualization

Some software libraries are large, which makes difficult their comprehension
and the manner in which their development has been organized in terms of
work and team organization. Ali [Ali 2009] pointed out that currently a large
number of open source libraries are developed by programmers who contribute
voluntarily with the programming of modules and software items. This type
of development is performed using uncoupled coordination mechanisms, which
in some cases affects the organization of libraries and contrasts with the better
structure organization of libraries that are programmed using more rigorous
coordination mechanisms [Ali 2009].

Mudrik is a 3D system developed in Java and OpenGL in order to support
programmers in understanding external open source libraries (written in Java)
that are used by software projects, and with which software developers have
not been familiarized [Ali 2009].

5.2. Architecture Visualization 125

The structure of libraries is represented by Mudrik using 3 visualizations
to provide browsing and searching mechanisms with the aim of offering
information about the structure and functionality of the classes within the
library. The visualizations used by this tool are a complete tree representation
of the structure of the library (Class Browser), a Cone Tree visualization and
a DSM representation (both in 3D).

Class Browser is a simple visual representation of a tree (similar to
the Java JTree) showing the structure of the library (packages, classes and
interfaces). This visualization allows the user to select the items she wants
to explore in the Cone Tree representation. When a single software item
is selected in Class Browser (depending on the visualization option that
has been chosen) the system displays a view with its details, subclasses or
relationships it has with other elements. If the selected item is the root of the
library (the system permits the classes to be filtered out by means of a filter
control), the system displays the inheritance hierarchy of all classes (using
the Cone Tree visualization) or the relationships among all classes (using
a DSM representation with histograms in the cells to represent the number of
references in the dependencies).

5.2.6 Polymetric Views

CodeCrawler is a software visualization tool developed by Lanza et al. which is
language independent visualization that relies on the FAMIX metamodel and
was implemented on the top of Moose [Lanza 2005a]. One of the visualizations
that was designed as a component of this tool is Evolution Matrix. This
visualization uses simple rectangular shapes [Lanza 2001a] to depict software
items and 3 associated metrics (similarly to polymetric views), which can be
selected by users according to their analysis needs (see Figure 5.10). In general
terms, this visualization represents the evolution over time of the metrics of
software items, as it is shown in Figure 5.11.

Figure 5.10: Representation of metrics in the Evolution Matrix
visualization [Lanza 2001a].

Polymetric Views is part of CodeCrawler and uses a similar approach to

126 Chapter 5. Understanding system architectures

the one used by Evolution Matrix. However, it is able to represent the 5

metrics using the height, width, color and X and Y positions of rectangular
shapes [Lanza 2003], as it is shown in Figure 5.12. This visualization, unlike
the Evolution Matrix visualization, does not represent the evolution of metrics,
but does allow to visualize the relationship between software items (e.g.,
inheritance relationships or coupling between software items). Figure 5.13
illustrates a display of Polymetric Views in which metrics are depicted using
the size, color and position of the shapes and the relationships between
software items are also represented.

Figure 5.11: Overview of the Evolution Matrix visualization [Lanza 2001a].

Figure 5.12: Metrics representation in Polymetric Views [Lanza 2003].

In line with the visualizations previously discussed, Class Blueprint is a
visualization which shows the map of the internal structure of a class that
also depicts its inheritance relationships with other classes [Lanza 2001b,

5.2. Architecture Visualization 127

Ducasse 2005]. This visualization represents attributes, methods, and method
access and invocation from left to right using 5 layers (Initialization, Interface,
Implementation, Accessor and Attributes). Moreover, it uses a call graph to
represent access to attributes and the method calls, where the elements of the
left of the visualization are those that invoke or access the ones located on
the right, as shown in Figure 5.14. This visualization uses a similar approach
to the one used by the Evolution Matrix: the width, height and color of
rectangular shapes are used to represent metrics.

Figure 5.13: Overview of Polymetric Views [Lanza 2003].

The Initialization layer of the Class Blueprint visualization contains the
methods that are responsible for creating and initializing the values of new
objects, while the interface layer represents the public methods that the class
renders accessible to other classes or which are invoked by the methods in
the Initialization layer. Meanwhile, the Implementation layer depicts the
private methods that implement the functionality of the class and which are
invoked only by methods in the same class. With regard to the Accessor layer,
this layer is composed of those methods that are in charge of establishing or
obtaining the values of attributes, and the Attribute layer represents all the
attributes that are accessed by the other layers of the visualization.

Inheritance is represented in this visualization by means of node-link

128 Chapter 5. Understanding system architectures

Figure 5.14: Overview of the design of the Class Blueprint [Lanza 2001b].

diagrams, where each class (represented by a map like the one that was
described above) finds itself related to the other classes using a tree structure.
Figure 5.15 shows the representation of inheritance and allows to observe,
using the UML notation [Booch 2005], the inheritance relationship between
classes (black colored lines) and the access to attributes between classes and
subclasses (represented by cyan lines).

Figure 5.15: Inheritance view of the Class Blueprint visualization [Lanza 2001b].

5.2. Architecture Visualization 129

5.2.7 Circular Visualizations

Holten et al. designed EXTRAVIS [Holten 2007], a visualization tool that
consists of two linked visual representations, HEB and Massive Sequence View
(MSV), and a time control (see Figure 5.16).

HEB uses a series of rings to represent the hierarchy of software items,
so that the outer ring depicts the first level of the hierarchy and the following
rings render the next levels. To show the relationship between software items
it uses green and red coded lines (the green color indicates the caller and the
red color characterizes the callee) with an arrow to describe the direction of
the relationships. Whereas MSV uses an icicle plot to show the hierarchy
structure and green and red coded bars to display the relationships between
software items, similarly to HEB. With regard to the time control, this allows
to setup a time window for which the user wants to review the relationships
between software items.

HEB and MSV are linked together, so that when an item is selected in
one of the representations, the selection is reflected in the other representation
and viceversa.

Figure 5.16: Overview of EXTRAVIS [Holten 2007].

130 Chapter 5. Understanding system architectures

5.3 Architecture Evolution Visualization

5.3.1 City Metaphors

Understand a software system requires the comprehension of both the
evolution of the architecture and metrics associated to the elements of its
structure. In line with this, Wettel and Lanza [Wettel 2008a] support the
understanding of software evolution using software cities depictions with two
levels of representation: the system in general and software items in particular.
In order to represent the evolution of the system and the software items, a
succession of visualizations is used to highlight the changes that have occurred
between one revision and another. Figure 5.17 shows that between each
revision of the system the elements indicated by the arrows and the black
color circle have changed. In the case of specific software items, for each
revision the size and age of methods are shown by the height of buildings and
the use of colors (the darker color represents the oldest method) as illustrated
in Figure 5.18. Overall, these methods have scalability limitations to represent
a large number of revisions, even for small and medium scale systems.

Figure 5.17: Visualization of two revisions of a software system [Wettel 2008a].

The implementation of the software city metaphor that was carried out
by Wettel and Lanza [Wettel 2008a] calculates the system structure for all
revisions of the system from its creation up to a determinate point in time,
and then depicts the map according to the calculation performed. So, the
visualization is used as an exploration space to evaluate the changes that
have occurred between revisions or time periods, but does not contemplate
the possibility to incorporate changes to the structure after the map has
been calculated. Thus, the elements of the visualization and their positions
may require a rearrangement for the incorporation of changes to the system
structure. This implies that the mental model of programmers about the
system structure would be altered and could involve difficulties to carry out
comparisons between revisions and time periods.

5.3. Architecture Evolution Visualization 131

Figure 5.18: Visual representation of the evolution of a software item and its
methods [Wettel 2008a].

The difficulties mentioned earlier were described by Steinbrückner and
Lewerentz [Steinbrückner 2013], suggesting that the visualization of software
cities as metaphors intended to represent the evolution of systems suffer from
problems in dealing with the representation of changes in the structure of
systems. For this reason, they proposed a visualization called EvoStreets,
which is based also on the metaphor of a city that is built as the system
evolves.

The concept employed by EvoStreets revolves around the concept of the
streets of a city. In this visualization, the main street represents the entire
system, the secondary streets represent packages or sub-packages whereas
the buildings depict software elements. The width of the streets is inversely
proportional to the depth that the package or sub-package has in the hierarchy
of the structure of the system: streets located in deeper levels of the structure
have a narrower width that those located in the top levels. The size
of buildings is used, as in the other implementations of the software city
metaphor to represent properties or metrics of the software items. The main
elements that are represented by EvoStreets are packages, classes, inheritance,
dependencies, type and size of software items.

The visual representation employed by EvoStreets is built upon the
structure that is obtained from the accumulated analyzes of revisions that

132 Chapter 5. Understanding system architectures

have been made over the time period under analysis. The construction of
the visualization takes as baseline the structure of the system that existed
when the first revision was created. Accordingly, the coordinates of the visual
elements in the initial representation of EvoStreets are calculated and fixed.
Thus, the new elements which are added in the subsequent revisions are fitted
into the existing structure as part of an existing street or added to a new
street.

The layout of this visualization grows from the center outward. The main
street is located at the top of the system structure and in the next level it
is split into secondary streets. This process is repeated successively in all
subsequent levels of the structure. The streets get longer and extends to the
periphery of the visualization when new elements are added on both sides of
them (see Figure 5.19). Moreover, the addition of secondary streets is carried
out when new sub-packages are created.

The layout of this visualization is immutable, once software items are
added they can not be moved to another position; when an item is removed,
it is highlighted as such but it is not eliminated from the visual representation;
and when an item is changed to a new position it is highlighted as a removed
element and then it is added to its new position as a novel item. It is
relevant to mention that a similar approach to the one used by EvoStreets
was previously proposed by González et al. [González-Torres 2009] using a 2D
layout. Figure 5.20 shows a sequence of the evolution of a system structure
using this visualization design.

Figure 5.19: EvoStreets: Evolution of the structure of a software
system [Steinbrückner 2013].

The evolution of software systems is represented by EvoStreets using levels
and contours: the oldest items are located in the upper levels and the newest
at the lower levels. Figure 5.21 illustrates this feature: when package P is
added to the structure (Figure 5.21 (a)) a new level is created to place the

5.3. Architecture Evolution Visualization 133

Figure 5.20: H-V tree layout for the visualization of the structure of software
systems [González-Torres 2009].

element (Figure 5.21 (b)).

Figure 5.21: EvoStreets: Use of the levels in the visualization to show when a new
package is added. [Steinbrückner 2013].

The height, width and color of the buildings are used in EvoStreets to
indicate properties (see Figure 5.22) such as the names of programmers as
well as the number of changes that have been carried out, the coverage of
testing cases and metrics, for example.

Figure 5.22: EvoStreets: The properties of the software items are represented by
the width, height and color of the buildings [Steinbrückner 2013].

134 Chapter 5. Understanding system architectures

5.3.2 Grid Based Designs

Beck and Diehl [Beck 2013] proposed a visualization based on DSM to
identify the differences in structure, as well as dependencies between software
items, when comparing two revisions. This visualization displays the system
structure of the revisions under analysis in the left and top sections of the
grid: the structure of one revision is depicted in the left section whereas
the structure of the other revision is represented in the top section. The
possible differences between the structures are managed using an algorithm
which sorts the elements taking into account the parents and relatives that
are not common between one structure and another [Beck 2013].

Once the structures have been represented, a comparison between revisions
is performed using a color code: whenever there is a dependency relationship
between two elements, the cell representing this relationship is highlighted
by a particular color. The color code used by this visualization is composed
by the blue, purple and red colors. The blue color is used to indicate the
dependencies that exist in the first revision, while the purple color points
out existing dependencies in the second revision, and red is used to show the
dependencies that are common to both revisions (see Figure 5.23).

5.3.3 Animation

Yarn is a visualization that represents the evolution of the architecture of
software systems on the basis of changes in the source code and the use of
animation [Hindle 2007]. This visualization consists of a circular graph whose
nodes represent software items and whose edges use weights to indicate the
number of dependencies between the items. The evolution of the system is
presented as an animated graph that retains the position of its elements and
gradually shows the changes occurring in the dependencies.

The animation used by Yarn can emphasize the accumulation of changes
or only those changes that have occurred recently. To do this, it makes use
of colors and the thickness of the edges. Yarn allows the dependencies of
the complete system evolution to be known by means of a representation
that shows the accumulation of dependencies, which takes into account the
interval of time between the instant at which the dependencies were created
until the moment in which the last revision of the system has been committed.
It also allows information to be obtained about the dependencies that have
recently changed using colors to highlight them while darkening the oldest
dependencies. Additionally, the animation displays information about the
revision number and the date on which it was created (see Figure 5.24) when
it is played.

5.3. Architecture Evolution Visualization 135

Figure 5.23: Comparison of dependencies between two revisions of a software system
[Beck 2013].

Among the limitations of Yarn are its lack of capability to represent the
structure and relationships of large systems, due to the occlusion that is
caused by a large number of connections between software items. Additionally,
it should be taken into account the limited interaction capabilities of this
visualization as a result of providing information in its final form and thus
not allowing the possibility of interactive navigation and knowledge discovery.

Evolution Storyboard is a tool that shows the dependencies between
software items through a series of animated visualizations which is obtained
by combining the visual representations (e.g., frames in a movie) produced
when analyzing the changes which have been made to the system in a
determinate number of revisions over a period of time [Beyer 2006]. The tool
displays a strip formed by the animated visualizations, where each animated

136 Chapter 5. Understanding system architectures

Figure 5.24: Animated visualization of the evolution of the architecture of a software
system using Yarn [Hindle 2007].

visualization represents an interval in time (the time period of study is divided
into time slots), and allows the programmers to focus on the observation and
comparison of consecutive periods of time of the evolution of part or the whole
of the system.

The dependencies between software items are represented by a
force-directed graph whose nodes are colored depending on the package they
belong to and whose the distance is determined by the dependencies between
the software items. The relationship between the software items is not shown
explicitly by means of the edges, but rather by their location: the proximity
between software items represents the dependency ratio, the more closely two
nodes relate to each other, the greater the degree of dependence. The size of
the nodes indicates the number of changes that a software item has undergone
and a red colored ring shows that this element was changed during the time

5.3. Architecture Evolution Visualization 137

interval being studied. The thickness of the red colored ring represents the
number of changes made to the software item in the time interval.

Each one of the animations allows to observe the changes in the
dependencies of software items by using a line and a gray colored arrow which
indicates the previous position of a software item (gray colored node) and
its new position. Figure 5.25 illustrates a strip of animated visualizations
whereas Figure 5.26 shows the use of arrows to indicate the position change
of the nodes in a scenario that depicts a set of logical coupling dependencies
(co-change).

Figure 5.25: Strip of animated visualizations [Beyer 2006].

Figure 5.26: Use of lines and arrows to depict new node positions because of changes
in the dependencies [Beyer 2006].

138 Chapter 5. Understanding system architectures

5.3.4 Software Cartography

Khun et al. [Kuhn 2010a] like other researchers point to the need of preserving
the location of visual elements in time to render possible the comparison
of information. Bearing this in mind, Software Cartography was proposed.
Accordingly, the position in the space of visual elements in this visualization is
calculated using as a base the similarities of the vocabulary used when naming
software items. According to Khun et al., the lexicon used by software systems
tends to grow over time, but does not change as dynamically as its structure.
This permits a robust and consistent visualization layout to be created for
the representation of different aspects of software systems, including their
evolution. The aforementioned approach facilitates users the understanding
of the system to the users as they retain the same mental model over time.

The construction of the map of Software Cartography can be carried out
by processing all the revisions available or using an incremental approach that
adds individual revisions as required. The former method calculates the map
for the whole evolution while the latter calculates the map cumulatively as
each revision is processed. In either case, the result is a consistent map which
conserves the position of the elements throughout the evolution of the system.

The processing of the data to create the visualization takes into account
the terms that appear in system source archives, which are placed in a matrix
of occurrence of terms to be indexed and ranked in accordance with their
frequency of use. The terms of the lexicon include the names of classes,
methods, parameters, variables, invoked methods, words in comments and
literal values. Then, a distance is calculated among software items using as a
base the similarity of the terms.

Figure 5.27 allows to observe that during the process of building a Software
Cartography map:

1. Software items are placed in the plane in accordance with the distance
between the terms.

2. The area of influence of a software item is determined according to its
size and proximity with other software items.

3. The height of the mound is calculated based on the file size or class.
Mound height changes as the element size is reduced or increased, but
in any case the configuration of elements in the plane is not changed.

Figure 5.28 shows the succession of the representation of four system
revisions in which the consistency of the visualization as well as the variations
in the areas of influence and the height of the software items can be observed.

5.3. Architecture Evolution Visualization 139

Figure 5.27: The process of building a map of a software system with emphSoftware
Cartography [Kuhn 2010a]. (a) Placement of software items in the plane in
accordance with the distance of the terms. (b) Area of influence of the software
items according to their proximity and size measured by the number of lines. (c)
Height of the mounds calculated with reference to the size of the system.

Figure 5.28: A series of four visual representations for the same number of system
revisions using Software Cartography [Kuhn 2010a].

Software Cartography is a visualization that is integrated into Eclipse as
a plugin to provide the programmer with a tool easy to access within his
programming environment [Kuhn 2010b], and has the following objectives:

∗ Allow a quick exploration and understanding of the system.
∗ Facilitate the comparison of metrics.
∗ Support the construction of a framework that facilitates a common

understanding of the system and the collaboration between the team
members.
∗ Allow the connection between two or more programming environments

(IDEs) to provide each other with information on the activities carried
out in the software items.

It is important to highlight that a common characteristic of these
visualizations is their scalability in representing structures, dependencies and
metrics.

140 Chapter 5. Understanding system architectures

5.3.5 Graphs

As it was mentioned in section 3.3.1.5, graphs are useful for showing
relationships between elements, and in accordance with Gansner et al. these
are an ubiquitous structure in software engineering structure that is used for
the representation of the structure of systems and the relationships between
their components. In line with this, Gansner et al. proposed a library toolkit,
based on the specification of a common language, that have been used in
several areas of software engineering to create, filter, represent, animate and
interact with graphs [Gansner 2000].

One notable visualization for the representation of graphs over time is
GEVOL [Collberg 2003] from data extracted from CVS repositories. The
objectives of this visualization are to show details of the changes made to
systems, the inheritance of software items, method calls, the flow control of
programs, who made the changes, when these were carried out and how the
complexity of the system has changed over time(e.g., days).

GEVOL creates several graphs to represent changes for the points over an
evolution period of time. This representation layouts graphs into strips and
placed them next to each other. So, it creates a succession of graphs that are
based on the layout of their predecessors to maintain the mental map of users
(elements maintain their positionover time), in spite of changes such as the
addition or deletion of elements.

This visualization uses color coding to indicate the age of changes and
so, initially, all nodes of the graph are of the same color (e.g., red, yellow,
green.). However, the color of nodes that have not changed over time undergo
a color transition to become completely blue. But a node recovers its original
color when a change is made to the software item it represents. To depict
this feature, Figure 5.29 shows six snapshots of a call graph, which allows to
observe the color transition of nodes from red to blue. In quadrant A2 of this
figure, a purple box that shows a group of elements that have not changed
recently can be observed, as well as an area that portrays red elements that
have been recently modified. Thereupon, Figure 5.29 (B1) shows some graph
areas that have transitioned to blue, whereas other areas of the graph have
reappeared as red color to depict that elements in this area have recently been
changed (see the center of the graph).

5.3.6 Radial Visualizations

Evolution Radar [D’Ambros 2006a, D’Ambros 2006c, D’Ambros 2009b] is a
visualization that represents the logical coupling between packages and system
elements. Information on the logical coupling is obtained by identifying

5.3. Architecture Evolution Visualization 141

software items that have changed together, according to the revision history
and changes made to the system [Gall 2003]. This permits to obtain
information of the architecture of systems and may eventually support the
implementation of structural changes to improve the susceptibility of systems
to maintenance, and to facilitate the prediction of the evolution of the system.

Figure 5.29: Succession of call-graph visualizations using GEVOL [Collberg 2003].

This visualization consists of a radial representation that is divided into a
number of sectors that contain colored circles. Sectors in the representation
depict system packages, whereas circles represent to files. So, the number of
sectors in the visualization is proportional to the number of packages in the
system and the size of each sector is related to the number of files it contains.

The coupling relationships are represented by the relative distance between
a selected package and the files in other packages.

142 Chapter 5. Understanding system architectures

Figure 5.30: Visual representation of the logical coupling between packages and
files [D’Ambros 2006a].

Figure 5.30 allows to observe a package selected by the user (highlighted
by a light green circular shape in the center of the visualization) and that the
files of the other packages (whose colors range from blue to red) are located
at different distances of it, according to their coupling relationships (the files
close to the center have a stronger coupling relationship with the package).
Additionally, the use of colors reinforces the representation of coupling: the
deep red color indicates a stronger coupling with the selected package, while
the blue color indicates less coupling. Finally, the size and color of files (circles)
can also be used to represent different type of metrics

5.4 Discussion and Conclusions

The dynamic nature of software systems makes it difficult to precisely
anticipate the size and growth of the underlying architecture and structures.
This implies that the design of their visual representation must be scalable
and capable of accommodating both growth as well as changes over time

5.4. Discussion and Conclusions 143

(e.g., aggregation, deletion and relocation of elements). This means that the
visual representation must be consistent over time in order to maintain the
mental map of users: the elements must appear in the same position on the
visualization in all revisions of the system which are represented. This entails
that the removal or relocation of an element must be represented by visual
notations indicating the action taken and allow users to maintain the mental
map of the system.

Another aspect that must be taken into account is the representation of the
metrics and the relationships between software items. It is common that the
number of relationships between elements increases in accordance with the size
of the system, which adds an additional aspect to the problem of the design
of scalable visualizations and greatly increases the difficulty of achieving an
adequate design. This may have major implications when the full or partial
visualization of the evolution of a system is carried out. The temporal aspect
is linked to the identification of patterns related to differences or similarities
between revisions or periods of time and requires the representation of a larger
number of visual elements.

Additionally, it should be considered that the visual representation of
a system (or part thereof) should include elements that allow the rapid
identification of patterns of interest according to the problem to be solved.
As a result, it is necessary to make the representation on a single screen thus
permitting that, once a pattern has been identified, its review is conducted
on an additional visualization.

The analysis in this chapter shows that visualizations based on city
metaphors can allow the representation of architecture and metrics of
large software systems [Panas 2003, Panas 2005, Wettel 2007, Wettel 2008a,
Bentrad 2013]. However, the majority of studies that make use of this
metaphor are oriented towards representing only a revision and not the
evolution of a system. Some exceptions to this trend are the works carried out
by Wettel et al. [Wettel 2008a] and Steinbrückner et al. [Steinbrückner 2013].
Wettel et al. visualize several revisions using side by side representations,
while Steinbrückner et al. utilize only a representation in order to visualize
the evolution of system architecture, aggregation, deletion, the relocation of
elements and metrics.

Meanwhile, treemaps are scalable representations that can represent the
system structure [Baker 1995, Balzer 2005b], inheritance relationships and
metrics of large software systems [García 2009b], although these visualizations
suffer from limitations in the representation of other types of relationships such
as the coupling between software elements as well as the evolution of systems.
The visualization of relationships between software items can be overcome
by the combined use of treemaps with graph structures [Balzer 2005a], and

144 Chapter 5. Understanding system architectures

the representation of the evolution of systems can be achieved with the use
of side by side visualizations. However, the latter is impractical when the
representation of the evolution of a system for an extended period of time or
a large number of revisions is required.

The strength of Polymetric views is that they allow the efficient
representation of the metrics of software items for one [Lanza 2001b,
Lanza 2003, Ducasse 2005] or several revisions [Lanza 2001a]. The
representation of the relationships between the software items is carried
out in an acceptable fashion for these visualizations for a single revision,
although by using graphs and trees they may suffer from scalability
problems. In comparison, the representation of the structure of
systems and the relationships between software elements is accomplished
quite efficiently by PNL [Abuthawabeh 2013], Lattix [Sangal 2005],
IMMV [Abuthawabeh 2013] and EXTRAVIS [Holten 2007]. These
visualizations manage to represent a large number of elements and
relationships, but are unable to represent the addition, deletion AND
relocation of elements and metrics.

The animated visualizations that were studied in this chapter [Hindle 2007,
Beyer 2006] showed weaknesses in aspects of scalability and representation of
the evolution of software systems. Both Evolution Storyboard and Yarn are
visualizations that may be impractical to compare a large number of time
periods for systems that have evolved over long periods, but may be useful
when it is necessary to obtain knowledge about the changes that have been
recently made to the system. One of the main weaknesses that Storyboad
Evolution presents is the use of side by side representations in order to compare
time periods. Similarly, GEVOL [Collberg 2003] uses a succession of graphs
in order to visualize the relationships between software items and its main
limitation is its incapacity to represent large software systems.

Radial visualizations that were analyzed are capable of representing a large
amount of data in a very attractive and intuitive way, such as EXTRAVIS and
Evolution Radar [D’Ambros 2006a, D’Ambros 2006c, D’Ambros 2009b]. The
scalability of these visualizations is one of their principal advantages, provided
that adequate and appropriate representation and interaction techniques are
used to select and filter elements. It may also be worthwhile considering that
the use of these representations in the comparison of revisions or time periods
may be complex because of their circular configuration, to which it must be
added that the representation of a large number of aggregation, deletion and
relocation operations of elements may also present scalability issues and may
require the additional use of novel techniques and methods of visualization.

The above allow to conclude that the challenges that are implied in
representing the relationships between the software items in a scalable,

5.4. Discussion and Conclusions 145

compact (visual representations represent the system or part of it and its
evolution on a single screen), easy to understand (and use), and consistent
form over time (maintaining the mental map of the user about the position
of the elements over time) is a difficult challenge that none of the works
studied fully overcame. It is thus advisable to take into account the main
characteristics of each work studied, as well as others related to it, to carry
out the design of tools that manage to solve the challenges mentioned.

Chapter 6

Team awareness and collaboration

Rastin caminó junto a ellos y contó anécdota tras anécdota. Por
su parte Güindy reía mientras seguía a Cucho, quien al parecer

tenía más claro el camino. Al cabo de un rato, el hambre los
asaltó, llamaron al perro y se desviaron del camino en busca de

aves silvestres. Después de varios intentos sin atrapar ave alguna,
decidieron acorralar juntos a un cerdo salvaje que comía al lado
de un árbol gigante, el cual agitaba sus ramas y silbaba al ritmo

del viento. — El viaje de Güindy, A.González

Contents
6.1 Introduction . 146

6.2 Factors Involved in Global Software Development . . 147

6.2.1 Teamwork . 148

6.2.2 Cognition, Communication, Coordination and Control 149

6.2.3 Team Situation Awareness 155

6.2.4 Distributed Situation Awareness 158

6.3 Considerations in Designing Awareness Workspaces . 159

6.4 Visualization for Team Awareness 162

6.4.1 Teamwork . 162

6.4.2 Situational Awareness 164

6.4.3 Collaboration and Socio-technical Relationships 169

6.5 Discussion and Conclusions 174

6.1 Introduction

The development of software using GSD models has become a common
practice among companies which makes necessary the use of tools to support
collaboration and teamwork. The results of the study that was carried out in
chapter 4 showed that Team awareness and collaboration is a research subject

6.2. Factors Involved in Global Software Development 147

in which researchers have focused their attention with the goal of supporting
to the SDM processes.

This chapter deepens in the study of factors such as teamwork, cognition,
communication, coordination, control, Team Situation Awareness (TSA)
and Distributed Situation Awareness (DSA) (see section 6.2). Furthermore,
it also exposes the factors involved in the design of tools to support team
awareness and collaboration tasks (see section 6.3) and presents the analysis
of several visualization proposals that have been designed for supporting those
tasks during the SDM processes (see section 6.4).

6.2 Factors Involved in Global Software
Development

A large number of companies has been motivated to carry out the development
of software systems using GSD models motivated by the assumed benefits that
could be obtained [Carmel 1999, Herbsleb 2001b, Saldaña-Ramos 2014]. So,
it is advisable to consider the analysis made by Conchúir on the achievement,
in practice, of some of the benefits that are often considered as the most
important when these models are used [Conchúir 2009]. Conchúir found in his
research that some of the assumed benefits were partially met, whereas others
were myths that could not be verified as benefits in reality (see table 6.1).

Table 6.1: Assumed benefits of adopting a GSD approach.
Assumed benefit Reality
Reduced development costs Partial benefit

Leveraging time-zone effectiveness Mythical benefit

Cross-site modularization of development work Partial benefit

Access to large skilled labor pool Partial benefit

Innovation and shared best practice Mythical benefit

Closer proximity to market and customer Partial benefit

To better understand the potential impact that GSD models can have
in SDME processes, the study of Ågerfalk about the opportunities and threats
of these models must be considered [Agerfalk 2006]. His work makes a
correlation of the temporal, geographical and sociocultural factors with the
communication, coordination and control factors with the aim of showing
the opportunities and threats that are associated to these. In summary, the
main challenge that is faced by the software industry when using GSD models
consists in finding how to overcome the involved distances in the development

148 Chapter 6. Team awareness and collaboration

of global projects, according to the variables and correlations described in the
research mentioned.

6.2.1 Teamwork

As it was mentioned above, the development of a software system is a
complex process that usually is divided into several stages and tasks, that
are interconnected and can be performed using different approaches. The
development process may require several years and the involvement of a large
number of people, which are usually organized into teams of two or more
people (in some cases highly specialized), that frequently are distributed
globally [Kiekel 2011]. Therefore, it is necessary to keep in mind the difference
between a group of people and a team: a group of people is a collection of
people with functions that can vary considerably and whose work does not
necessarily depend of the other members of the group, while a team is formed
by a group of differentiated and interdependent individuals [Klimoski 1994].

In this context, it is also important to note that teamwork requires the
communication, interaction and coordination between individuals, and even
the mutual control of the work that is performed by others (with independence
of the role that is fulfilled by each team member). This differs from the work
focused on tasks, in which individuals carry out tasks with independence of
what is performed by other team members. However, the skills for teamwork
and work focused on tasks are complementary to achieve the objectives
assigned to the team [Salmon 2013].

Organizations have adopted teamwork for software development because
they believe that the effective functioning of teams can provide good
results [Fiore 2004a] due to the diversity of its members in terms of experience
and expertise. However, it must be pointed out that the differences of
nationality, culture and geographical location of individuals, when working
under GSD models, could become advantages or disadvantages according to
the management practices that are put in place [He 2007, Kiekel 2011].

Several arguments in favor of teams is that the work that is assigned
to them can be performed in a more effective, efficient and quick
manner [Fiore 2004a, Kiekel 2011] that a single individual, because:

∗ Can detect, recognize and solve problems faster.
∗ Can plan, acquire knowledge and design solutions or products in less

time.
∗ These can adapt quicker to changes.
∗ Are able to assess a situation, make better decisions, and consider the

combination of knowledge and experience of its members.

6.2. Factors Involved in Global Software Development 149

∗ Have the ability to better manage stress and tasks during periods of
heavy work loads.
∗ The coordinated action of teams, as one of their intrinsic properties,

makes them to act as a block when they face situations, and have a
greater reaction capacity to solve complex problems.

It is noteworthy to mention that for a team to work properly, its members
should be able to work together effectively [He 2007]. This is extensible to the
general context of software development, considering that the joint working
between teams is also needed, particularly when a GSD model is used. Thus,
teams and team members, need access to the information required to perform
their tasks [Kiekel 2011]. The bottom line is that at the end of the day the
modules and system elements must be integrated and work together, according
to the architecture of the system [Mockus 2001].

6.2.2 Cognition, Communication, Coordination and
Control

The factors of communication, coordination and control are closely
interrelated. It is important to add the variable cognition, taking as
a reference point the work done by Comfort [Comfort 2007]. Crisis
management [Comfort 2007] has several similarities with the (sometimes
unpredictable) changing and dynamic nature of the development of software
systems: software development necessitates that the actors be rapidly
adaptable reacting appropriately when new events occur and when new
scenarios arise, particularly when development is distributed. It should be
borne in mind that these activities can be carried out using a vertical or
horizontal approach. This implies that in the first case the project manager
carries out the appropriate action following a hierarchical approach; while
in the second case the action can be carried out by any member of the
team, an approach which takes into account the fact workers are professionals
who possess the skills and the capacity to react and take action whenever
they consider this to be appropriate [Carmel 2001]. These four factors are
discussed below as well as in the next section, their relationship with the
concepts of team cognition and team awareness is discussed and used to define
a framework for team awareness and collaboration.

Cognition: Using the definitions provided by Comfort [Comfort 2007] with
some slight modifications, cognition can be defined as a process that
depends upon a clear mental model of how the system under observation
should work and therefore it activates the processes of communication,

150 Chapter 6. Team awareness and collaboration

coordination, and control when discrepancies are detected between what
individuals view as normal performance and the change in status of key
indicators that alerts about potential process deviations.

Communication: The aim of communication is to communicate or to
make others participate in something by means of a common
language [Luhmann 1992, Dainton 2015].

The types of communication that can occur in the context of GSD
between individuals are diverse and include the following:

∗ Face-to-face and distance enabled (e.g., email, telephone,
video-conference).
∗ Synchronous and asynchronous.
∗ Formal and informal.
∗ Centralized and decentralized controlled communications.

The main problem during the development of software projects is the
lack of communication [Agerfalk 2006] among members of development
teams, regardless of the model used (collocated or GSD). David Parnas
(see sidebar in [Agerfalk 2006]) notes that poor communication is a
problem at several different levels between:

∗ Users and developers.
∗ Architects and programmers.
∗ Programmers and other programmers.

With regard to the lack of communication among members of
the development team, Ramesh [Ramesh 2006, Colomo-Palacios 2013,
Colomo-Palacios 2014] summarizes the following points:

∗ Difficulties in initiating communication.
∗ Lack of understanding
∗ Dramatic reductions in the frequency of communication between

members of the team.
∗ Increases in the cost of communication in terms of time, staff and

money.
∗ Time zone differences.

It is important to highlight that in a GSD environment the aspects
that have already been mentioned [MacMillan 2004, Mockus 2001] add
delay times to the tasks of the SDME process. So, additional measures to
mitigate the negative impact of such aspects are required [Mockus 2001,
Herbsleb 2001a, Herbsleb 2003], among which are the following:

1. Divide the tasks up optimally between different sites.

6.2. Factors Involved in Global Software Development 151

2. Increase communication between team members using appropriate
tools for that purpose.

3. Contract or identify staff internally with the skills and experience
necessary to carry out tasks efficiently.

4. Tools that maintain awareness of activities carried out between
team members.

Coordination: Coordination can be implicit or explicit. Implicit
coordination depends on the knowledge of the team and their
ability to make decisions in critical situations with a reduced level
of communication, so team members must adjust their behavior
dynamically to anticipate actions and address proactively the tasks
that require it [Khan 2010, MacMillan 2004]. This type of coordination
is associated with high performance teams which members clearly
understand the needs and responsibilities of its tasks, and provides
advantages when workload is high, because less communication is
required [MacMillan 2004]. Whereas explicit coordination is the
process of organizing things, people or groups to work together
properly [Godart 2001].

In order to carry out tasks related to coordination, it is
necessary to use mechanisms that permit the processes of effective
exchange of information and understanding in order to align priorities
and the actions of different actors in order to achieve a shared
goal [Comfort 2007, Kotlarsky 2008, MacMillan 2004].

The advantages and disadvantages of using either type of
coordination depend on the circumstances and the tasks that are
performed [MacMillan 2004]. It should be added that coordination
mechanisms acquire particular importance when a GSD approach is
used with regard to the distances (be they geographical, cultural and
distances of time) among the different sites involved in the development
of the project [Herbsleb 2003].

During software development, the process of coordination necessarily
implies that the people who are working on a project have agreed on
a number of elements, starting with the detailed design specifications
that will permit the construction and organization of the components
of a system. So, participants can work together based on the
user needs and the requirements of the organization. According to
Kraut [Kraut 1995] the following are factors that affect the coordination
of systems development:

Scale: Large-scale projects require the involvement of a large number of

152 Chapter 6. Team awareness and collaboration

people and it is not possible for one person or a small group to be aware
of all the details [Cataldo 2007]. The coordination of a project becomes
more difficult when its size and complexity increase [Kraut 1995],
leading to a necessary division and specialization of labor.

Time: The development of large software projects usually spans several
years and their maintenance may last for many more years, and
consequently the involvement of a large number of people will continue
to be necessary even when the development stage has been completed.

Uncertainty: The development of many software systems becomes an
unpredictable process for one or more of the following reasons:

∗ The system specifications are incomplete due to the loss of
information that occurs when translating the requirements of
users and business into specifications. This loss of information
occurs because, in many cases, analysts, architects and designers
are not specialists in the field to which the problem is related
and thus cannot understand all the details (or because even if
they have understood them they have not included them in the
specifications).
∗ A prototype has not been developed that allows the basic

functionality of the system to be captured so that subsequent
modifications can be carried out based on the specifications and
user feedback.
∗ The environment of organizations in general is changeable, so

system functionality requires change over time. This produces
changes in specifications during the process of development,
or subsequently when the system has already begun to
operate [Lai 2003, Cataldo 2007].
∗ Lack of a clear definition of the methodology, lack of quality

control, detection of problems, errors and failures (sometimes
belatedly) during the development of the project [Rook 1986].
∗ Problems with team members due to inadequate performance

or the number of participants (either too many or too
few) [Rook 1986].
∗ Differing points of views between different actors who intervene in

the development of the system.
∗ The complexity of a large-scale system which has to be developed

over a long period of time [Lai 2003, Cataldo 2007].

Interdependence: Systems are built on the basis of components (in
some cases thousands of components), which then have to be integrated

6.2. Factors Involved in Global Software Development 153

precisely and accurately.
Formal and informal communication: Efficient communication is
the key for achieving a good level of coordination between team
members and among the sub-groups that are scattered throughout
several different geographic locations. Given this, it is necessary to
use both formal and informal communication [Lai 2003] according to
the type of problem that is being addressed.

Kraut [Kraut 1995] enumerates a list of coordination techniques,
among which the following can be found:

∗ Formal impersonal procedures (project documents and memos,
modifications requests, error tracking procedures and data
dictionaries).
∗ Formal interpersonal procedures (status and design review

meetings, and code inspections).
∗ Informal interpersonal procedures (group meetings, collocation of

requirements and development staff).
∗ Electronic communication (email and electronic bulletin boards).

Control: Taking into account the diverse factors which cause uncertainty
during the software development process, control can be defined as
the ability to maintain actors and their actions focused on achieving
the goals and objectives which have been set [Comfort 2007] in order
to produce an appropriate software product; on time and within
budget [Rook 1986]. All this is in accordance with the requirements,
specifications, terms, costs, standards, policies, standards of quality and
other factors inherent in the process of software that if they are addressed
in a timely fashion, will make a successful resolution of the project much
more likely. Control is usually classified into two categories: formal and
informal.

Formal control consists of the monitoring and evaluation of behaviors
and outputs; whereas behavioral control consists of controlling how
people behave, and output control consists in measuring the effect
of people behavior on output of the process. In order to utilize
behavioral control appropriately, it is necessary to know precisely what
actions have to be performed during the process of project development;
transforming a set of inputs (e.g., requirements and designs) into outputs
(e.g., a system that functions adequately). It is thus necessary to
determine the actions which need to performed as well as evaluate
the actions carried out by individuals in order to determine whether
their actuation has been appropriate. While output control can be

154 Chapter 6. Team awareness and collaboration

used when it is feasible to measure the performance of individuals
according to the results produced and the results that were expected
to be produced, in a form independent of the behavior of these
individuals [Olchi 1978, Kirsch 1996].

Concerning informal control, the two best-known types are clan
control and self-control. A clan is a group of people with mutual
dependencies and shared goals, objectives, values, philosophy and
common beliefs; as well as a strong sense of identity and group belonging,
whose behaviors that are not known a priori, and whose results may
change over time. In this type of control, a group is a self-monitored
unit: supervision is carried out by each member of the group, and peer
pressure enforces the accomplishment of tasks according to the goals
of the group. Consequently, the individuals who participate in these
groups should be carefully selected and it is essential that they have
appropriate training. With regard to self-control, in this type of control
individuals set out their own goals, monitor their own performance,
evaluate their own progress and are motivated to carry out their work;
so this type of control is useful in tasks that require autonomy, creativity
and intellectual work [Kirsch 1996].

Drawing a parallel between the uncertainty that is present during the
development of software projects with crisis management, it is useful to
consider the approach employed by Comfort in relation to the individuals
and group actuation of the members of teams involved in control tasks.
Comfort [Comfort 2007] considers that control can be maintained in
highly complex, changeable situations if the following factors are present:

∗ Shared knowledge.
∗ Commonly acquired skills.
∗ Reciprocal adjustment of actions to fit the requirements of the

evolving situation.

The goal of control activity is to enable and facilitate decision-making
by comparing the information obtained (in the form of status and
progress reports) of the activities of project development, verification,
validation and testing, Software Quality Assurance (SQA) [Fischer 1978,
Kitchenham 1989, Kan 2002], SCM [Rook 1986], bug tracking, incident
and change control systems [Barbara 1987] with the results that are
expected to be obtained from the project in accordance with:

∗ System planning.
∗ Project procedures and standards.

6.2. Factors Involved in Global Software Development 155

∗ Models and risk analysis.
∗ Configuration management plans and procedures.
∗ System requirements.
∗ Top level and detail design.
∗ SQA requirements and plan.
∗ General and detailed test plans.

Control, in its ideal form, is a process of continuous feedback that
seeks to identify and eliminate potential hazards from:

Detection and control of unanticipated changes: This is devoted
to the detection of changes that must be made because of variations
in system requirements, in such a way that they have to be
controlled in order to maintain the integrity of the design and thus
should be incorporated in an orderly way.

Detection and error correction: One of the main objectives of the
control process is to detect and correct deviations or errors in order
to align the development in accordance with the requirements,
specifications, goals and objectives of the project.

Monitoring: It aims to measure the progress of the project by means
of meetings, specialized tools and the use of SQA such as metrics,
technical reviews, and walkthroughs.

Evaluation: It consists of analyzing the control information which
is available, carrying out an assessment of the consequences of
possible alternatives actions, choosing one of these alternatives
(decision- making) and plotting the course which should be
followed.

6.2.3 Team Situation Awareness

Teamwork allows members to familiarize themselves with the other members
of the team and learn about the knowledge, skills, experience, background,
personalities and habits of each other. That mutual knowledge varies
with time and increases as it passes, which enables better planning of
work [Fiore 2004a].

From a cognitive standpoint, teams build a mental model1. from the
shared understanding of tasks and involves knowing the procedures, actions
and strategies to implement them. Hence team members should have common
expectations and understanding of tasks [He 2007].

1The mental model of an individual is how knowledge and information are represented
by her mind and reflects the tendency to categorize what she knows [Klimoski 1994].

156 Chapter 6. Team awareness and collaboration

A shared mental model is the representation of knowledge in an organized
manner with respect to tasks, situations, response patterns, goals, strategies
and working relationships. So, one can say that the mental model of the
team is the way it thinks collectively and characterizes situations according
to beliefs, assumptions and common perceptions [Klimoski 1994].

However, a team mental model is not the sum of the mental models
of individuals. However, it takes the relevant knowledge of team members
and transform it into the team’s knowledge with the aim of guiding
decision-making and actions to achieve the goals and objectives of the
tasks entrusted to the team [Fiore 2004a]. In this context, Cooke noted
that the elements which may be included by the cognitive processes of
teams [Cooke 2013] are the following:

∗ Learning.
∗ Planning.
∗ Reasoning.
∗ Decision making.
∗ Problem solving.
∗ Remembering.
∗ Designing.
∗ Assessing situations.

Accordingly, team cognition is build up from the interactions between team
members [MacMillan 2004, He 2007] when they:

∗ Work together.
∗ Clarify their individual roles for each task.
∗ Distribute the sub-task to be carry out.
∗ Communicate by different means to build and maintain a shared mental

model of the team situation [MacMillan 2004].
∗ Meet in person or virtually to share view points and concerns.
∗ Coordinate project activities.
∗ Observe the work of others and learn from it.
∗ Monitor the progress of activities.

Team cognition is the ability of the team to acquire, process, store and
use knowledge when they perform tasks, especially when the collaboration
of a large number of people is required in realtime to resolve some urgent
situation [Kiekel 2011]. Some important features to consider regarding team
cognition [Fiore 2004a, Fiore 2004b, He 2007] are listed below:

∗ It is not the sum of the individual cognition of the team members, but
it does use of the individual cognition of members.

6.2. Factors Involved in Global Software Development 157

∗ It is the sum of the behaviors of the team during the communication,
coordination and control activities.
∗ The team makes use of metal models concerned with project and task

related aspects.
∗ Teams are aware of the goals and objectives of the work they perform

as well as the status of activities and tasks (Situation Awareness
(SA)) [MacMillan 2004].
∗ Team members exhibit behaviors and attitudes that offer evidence of

the coordinated action that takes place among them [Fiore 2004b].

Endsley defines SA as the perception of elements in the environment during
a given period of time, as well as the understanding and forecasting of these
elements in the near future [Endsley 1995, Stanton 2001, Salmon 2013]. In
this research SA is defined as the degree of knowledge about the status of tasks,
activities, changes and the resolution of problems related to SDME processes.
Furthermore, it also considers that situational awareness is important during
software processes at both the individual and team levels. Then, the following
points deserve special consideration:

Individual perspective: From an individual perspective, situational
awareness is the consciousness of the state of things of a particular
team member. The consciousness and knowledge of individuals with
regard to tasks, and the factors that affect their development, permit
the successful completion of these.

Team perspective: From a team perspective, SA is the consciousness and
knowledge shared by team members about the status of the project.
Each team member has specific awareness of the factors related to their
tasks but also has an overall perspective of the project, in terms of team
awareness, that allows its collaboration with other team members to
contribute to the project in general.

This kind of awareness is known as TSA. It is important to highlight
that TSA is closely related to mental models and team cognition, as it is
explained later. The construction of TSA, like the construction of shared
mental models and team cognition, is not the sum of the individual SA
of team members, but it is the composition that originates from each
individual perspective and the points of coincidence of team members
about the state of things of the overall project.

The way individuals process information and create mental models of
situational awareness depends on their goals, skills, experience, training and
the role they play in the project. So, project managers are interested in aspects

158 Chapter 6. Team awareness and collaboration

of higher level [Leinonen 2005] and programmers in specific details, as it was
discussed in chapter 2.

The experience of teams and individuals in similar projects is invaluable
in the construction of SA, including knowledge regarding to which are the
abilities of the other team members and team operation [He 2007]. However,
each project is unique because of the problem that seeks to solve, the
difference between the approaches that are used to solve specific issues and
the interdependence of internal system elements. So, while a software system
has common factors in relation to another, the problems that teams and
individuals must face and the variables to be considered, are different. Thus,
the construction of situational awareness requires time and the accumulation
of experience of the team and individuals during the development of a project.

6.2.4 Distributed Situation Awareness

A recent approach, that is complementary to the above, is known as DSA.
This approach is based on systems in which individuals and technological
elements are considered as agents that interact, have different purposes (for
the tasks and activities they carried out) and are in possession of their own SA
of the tasks they perform and the project in general. The idea behind is that
team members do not need to know every detail about the project on which
they work, but only those details that allow them to perform their tasks.
However, this implies that team members must be aware of the state of the
project, the tasks of which they are responsible, and the information that
others need to know to make it available [Stanton 2006].

It should be mentioned that access to the same information does not
produce an identical situational awareness in team members, because of their
particular goals, tasks, roles and experience, that leads them to use and
interpret information in different forms. Knowledge is distributed in the
environment and SA of an agent may be different but compatible with SA of
other agent. Therefore, the performance of certain tasks that are interrelated
requires the collaboration among agents, so the compatibility of the SA of
agentes is useful.

According to the DSA principles enunciated by Stanton et
al. [Stanton 2006], the following points are important:

∗ Both human and non-human agents have their own SA.
∗ Each agent has its own point of view about a given situation, but it

could be different to the point of view of other agents.
∗ Agents have leading roles in the development and maintenance of the SA

of other agents through the interaction that takes place among them.

6.3. Considerations in Designing Awareness Workspaces 159

∗ Agents compensate the lack of SA of one or more agents in certain
situations.
∗ The points of view of agents about the system could change over time,

according to the tasks they perform.
∗ The knowledge that makes up DSA is activated at different times in

accordance to the goals, objectives and requirements of situations, tasks
and activities that arise and are carried out in time.
∗ SA coincidences between agents depends on the goals these have.
∗ Communication between agents can be non-verbal and use electronic or

other custom mechanisms.
∗ DSA helps to the cohesion of loosely coupled systems.
∗ The perspective of agents may be redundant, but it is always

complementary in the context of collaborative environments.
∗ SA is an emergent property of the system and its parts, and not

something that exists in the minds of individuals (from a DSA
perspective).
∗ DSA can be seen in collaborative environments as the result that is

obtained from the interaction between agents and their behavior in the
environment.

6.3 Considerations in Designing Awareness
Workspaces

The design of a Situation Awareness Workspace (SAW) requires the
identification of the elements that an individual or team should be aware
of, in accordance with the goals and objectives of the project, and the tasks
or activities that have been assigned to them. Thus, to support software
maintenance, for example, it is useful that the SAW provides information to
help understanding the changes that are made to the system architecture and
which can help improve the performance of team members and the team in
general [Salas 1995, Fiore 2004a].

It is important to consider the points listed below when designing a SAW:

∗ It is common that the development of software systems is carried out
using a GSD model.
∗ The goal of a SAW is to facilitate the collaboration among team members

when carrying out tasks and activities which are their responsibility.
∗ SDME is a dynamic process that makes it difficult to keep up to date

information on the activities, tasks and patterns of interest that could
be considered during the design of SAW.

160 Chapter 6. Team awareness and collaboration

∗ Decisions must be taken immediately or in short periods of time
when dealing with complex and changing environments, such as those
of SDME, so having at hand updated information is always required.
∗ To have up to date information available on the current state of things

is important even when the members of the team perform trivial tasks.
∗ A SAW should provide information on the current state of things, but it

is necessary to consider those elements which can reveal future changes
about the state of the SDME processes with the aim of deciding the best
course of action to be carried out.
∗ Erroneous information about the state of the process can lead to

mistaken decisions.
∗ Team members need to be aware of what happens in relation to their

tasks and the project in general, and they also must be able to interpret
different situations according to the goals of the project so that they can
take decisions based on those goals and carry out the pertinent actions in
a timely manner (understand the situation -> take decisions -> perform
actions).
∗ The lack of training and skills of team members can lead to a

misinterpretation of SA [Salas 1995, Endsley 1995] and can lead to take
erroneous decisions.
∗ The formation of teams with cohesive structures in terms of knowledge,

skills and control of activities is a difficult objective to achieve.

The visualization of software systems and their evolution arises, then,
as a viable alternative to develop a SAW because of its ability to convey
information and provide mechanisms for interaction with users. The
information provided by visualizations about what is happening on the system
could lead to the activation of the cognitive processes of team members and
thus, initiate the communication, coordination and control tasks that are
required according to the particular situation and circumstances.

According to the focus of this research, the appropriate design of
visualizations should consider the perception, cognition and sensorial abilities
of users [Card 1999b]. Therefore, the use of visual elements to allow the
immediate comprehension of information (preemptive processing), without
previous training and independently of the culture or origin of PMs and
programmers should be taken into account. In order to do this, the use of
visual representations, patterns and colors based on international conventions
and the principles of Gestalt laws could also be considered [Ware 2004].

It is relevant to highlight that a large number of scientific papers make
reference to the elements that must be considered when designing visualization
tools to support the tasks involved in the SDME processes. Following

6.3. Considerations in Designing Awareness Workspaces 161

that line of research, Young and Munro [Young 1998] identified 6 factors to
be considered when designing tools using 3D technologies (representation,
abstraction, navigation, interaction, correlation and automation), which due
to its relevance could also be applicable to visualizations that have been
developed using 2D technologies. Maletic et al. [Maletic 2002] enumerated
5 additional aspects that is convenient to keep in mind (tasks, audience,
objective data, representation and method). Thus, taking as a reference the
factors identified by both research works, the design of a tool for visualizing
software systems requires to consider the items listed below:

Audience: During the design of a visualization tool it is convenient to take
into account the user characteristics, their needs and objectives with
the aim of determining the most appropriate visual representations and
interaction techniques to be used.

Tasks: The precise identification of the tasks that will be supported by the
visualization tool is a critical factor during its design. This identification
allows to define the use cases of the tool and determine the most
adequate visual representations for such tasks.

Target data: The identification of data is also a critical factor because
based on their characteristics, the audience and tasks, the design of
visualizations is carried out.

Correlation: This consists in the correlation of information from different
data sources, as well as the possibility of on linking visual elements with
documents and source code.

Representation: A fundamental problem in visualizing changes of software
systems is the appropriate selection of the graphic elements, metaphors
and colors as well as make an effective combination of these elements
to show different perspectives of data [Eick 2002]. This is of great
importance for designing an intuitive visualization which allows to
transfer information effectively while demanding a little efforts from
users in terms of cognitive complexity.

Abstraction: In order to convey and allow the effective interpretation
of information it is necessary to determine the level of information
detail that will be presented (the user could choose the level of
detail by means of interaction) as well as the representations and
visualizations that will be used.

Navigation and interaction: SDME processes generate large
amounts of information. The use of several visualizations linked
together and also that these visual representations are implemented
using navigation and interaction techniques (e.g., focus + context,
overview + detail, landmarks, zoom, search history and filtering).

162 Chapter 6. Team awareness and collaboration

The goal is that the user has the possibility to explore details
while these are properly placed in the context of the visualization
and the analysis that is carried out. As part of the interaction,
elements can be incorporated that allow users some flexibility in
customizing the visualization such as the possibility of choosing
colors.

Automation: Ideally, the visualization of large software systems
should be done automatically including the extraction of
information from the selected data sources, and is desirable
to incorporate new information as it is created. Young and
Munro [Young 1998] remark that the possibility of allowing users
to create the visualizations by means of interaction must be taken
into account. Using this approach the users could make decisions
regarding the system elements that will be represented, thus by
means of this practical exercise a better understanding of the
system under study could be achieved.

6.4 Visualization for Team Awareness

SCM tools are widely used by software development departments and,
consequently, by development teams and programmers to record source code
modifications. Thus, the interactions of programmers with software items are
reflected in the data that is collected with the use of these tools, which then
are accessed and analyzed using automatic mechanisms.

The aspects that visualization tools seek to support with the creation
of shared knowledge spaces (to facilitate communication, collaboration and
control) during the development and maintenance of software systems
are diverse. While some of these tools try to provide information to
other programmers, others are designed to assist project managers in
decision-making. It is thus necessary to take into account factors such as the
status of projects in terms of quality (measured using metrics) system changes
(including the source code, dependencies, relationships and structure),
understanding aspects of system design, socio-technical relationships and
collaboration between team members.

6.4.1 Teamwork

In a GSD environment the existence of small teams located in different
geographical locations is common. This makes necessary to design tools to
enable team members to work together effectively. In this scenario Anslow et

6.4. Visualization for Team Awareness 163

al. proposed two visualization tools, which were called System Hotspots View
(SHV) and SourceVis to support collaborative work [Anslow 2010].

Figure 6.1: System Hotspots View: visualization of system structure and metrics
for supporting the collaboration between programmers [Anslow 2010].

Some visualization tools such as System Hotspots View (SHV) have a
dual purpose: first to provide information on technical aspects of the systems
in order to facilitate their evolution (development and maintenance) and
secondly support the collaboration among team members. This visualization
tool is based on Polymetric Views and it is aimed to support the understanding
of the structure of a software system, as well as for the detection of structure
and quality problems through the use of metrics applied to packages, classes
and dependencies between software items. Its main contribution is to deploy a
large wall screen that allows sharing knowledge about the system with the aim
of facilitating the discussion, coordination and collaboration among members
of the development team (see Figure 6.1). This tool, therefore, can be used
by both programmers and project managers.

The effectiveness of SHV was tested by means of a user study. The results
of the study showed that participants enjoyed the visualization with the use of
large visual panel and the ability to observe a large number of details at once,

164 Chapter 6. Team awareness and collaboration

though they felt that the lack of tactile interaction with the representations
was a drawback. Some participants made comments about the height of the
screens; in some cases because the height of the users was very low and thus
they were not able to properly observe the top of the visualizations; and in
other cases because the participants were tall and they found it difficult to see
the information at the bottom of the screens. Another observation made by
the participants was related to the interruption of the continuity of the visual
representation by the edges of the screens.

SourceVis, meanwhile, is a visualization tool that allows the interaction
and discussion among collaborators by means of a large multi-touch
table [Anslow 2013]. This tool allows the simultaneous interaction of several
users and supports multiple visualization types such as SHV, Class Blueprint
and vocabulary views using word cloud representations. Figure 6.2 shows
to several users that are exploring dependencies among software items with
SourceVis.

Figure 6.2: SourceVis: a large interactive multi-touch table for the interaction and
collaboration between team members [Anslow 2013].

6.4.2 Situational Awareness

Ownership Map [Gîrba 2005, Hattori 2012] is a visualization that provides
information to project managers about the collaboration that has taken place
during system development. The purpose of this representation is to support
decision-making and provide details on:

∗ The number of programmers that have participated in the development
of the system.

6.4. Visualization for Team Awareness 165

∗ Modifications or parts of the system that have been developed by each
programmer.
∗ The behavior of programmers during development and maintenance of

the system.

Figure 6.3: Representation of changes and ownership of the software elements
in Ownership Map [Gîrba 2005].

Data used by Ownership Map were extracted from the logs of Concurrent
Versioning System (CVS) and took into account details of the relationship
between changes, at the level of source code lines, and programmers. Using
this data as a base, it can be determined which programmer is the owner
of a software item for a period of time or during the complete evolution of
that item. The visual representation of programmers and software items is
carried out using lines, circles and colors. So, lines depict software items
whereas circles represent the magnitude of the change that was made and
colors are associated with the programmers. Moreover, it alternates the
color of lines to show the time intervals and programmers who have been
responsible for a particular software item. Additionally, gray lines represent
an unknown programmers or the initial import of software items into the
software repository; a circle, that is painted using the color of a programmer,
at the end of a line indicates that the item has been deleted (see Figure 6.3).

The use of this visualization allows to identify different patterns that
are derived from the activities and collaboration between programmers, in
accordance with Gîrba et al.. The following list explains these patterns and
relates them, when it is applicable, with Figure 6.4:

Monologue: This pattern consists of the activity undertaken by a single
programmer in most of the files over a period of time. It can be seen
on the left side of the Figure 6.4, where the changes made by the
programmer associated to the green color (indicated by R5).

166 Chapter 6. Team awareness and collaboration

Familiarization: It shows how a programmer carries out changes
progressively in software items, until possession is taken of virtually
all software items, as it can be observed in inset R5 of Figure 6.4 (note
the pattern of the programmer depicted by the blue color).

Expansion: This pattern is associated with the addition of new files to the
system by a programmer, as it is the case of the programmer identified
by the blue color in accordance with the boxes R8 and R12 of Figure 6.4.

Edit: It is associated to changes related the rename of identifiers, the cleaning
of comments or other necessary changes that add functionality to the
system. This type of pattern can be observed as a vertical column of
changes carried out by the same programmer, as is indicated in the
Figure 6.4 by insets R7, R11 y R15.

Taking possession: The name of this pattern is derived from the fact that
the programmer takes possession of most software items in a very short
period of time, as is indicated by insets R13 y R14.

Teamwork: This pattern is identified where a group of programmers who
take ownership successively of multiple software items in a short period
of time. Figure 6.4 shows the involvement of multiple programmers in
multiple periods of time by means of the highlighting of insets R1, R3−4
and R12.

Correction of errors: It consists of a specific intervention of a programmer
to correct a mistake, and because of the few changes that this implies,
the programmer takes possession of the software item for a very short
period of time, (sometimes difficult to perceive) as depicted by the three
points shown in the representation where a yellow point is indicated by
a circle (see inset R10).

Cleaning: This pattern is the opposite to the Expansion pattern, and
involves the removal of a significant number of software items from the
system, as shown in inset R2.

Silence: It represents a period of time in which little or no change is shown.
It is identified as a rectangle where the software items do not change of
color.

CodeTimeline [Kuhn 2012] is a visualization tool that uses two visual
representations. One of these visualizations evolves the concept employed
by Ownership Map allowing developers to add notes and photographs with
comments about the visual representation, in those points of the evolution

6.4. Visualization for Team Awareness 167

Figure 6.4: Visualization of the patterns of behavior of programmers using
Ownership Map [Gîrba 2005].

where it is considered relevant to maintain the memory of events that have
occurred during the development process (see Figure 6.5). Whereas the other
visualization is a timeline that represents the terms and their frequency of use
in the source code. This is achieved by using word clouds for each revision of
the system, where the size of the words and the color represents the frequency
in which the term is used. The blue color, in this representation, represents
an increase in the frequency of use of the term and the red color a reduction
in its use. The size of the term reflects the extent of their use in relation to
the other terms in the cloud. Additionally, this visualization also allows to
use annotations (see Figure 6.5).

Another visualization which permits the display of activities carried out by
programmers is the activity viewer that Ripley et al. [Ripley 2007] built on the
basis of Palantír. This viewer was programmed using 3D technology, the logs
stored by SCM tools and the information obtained from the local workspaces
of each programmer as data sources. The activities about which information
is obtained and represented includes check-in and check-out operations; the
synchronization of the local workspaces with the software repository, as well
as the editing and deleting of software items of the local workspace of each
programmer.

This visualization displays information about the workspaces and the
active software items by means of two visual representations which use cylinder
graphs as their main graphical element. These representations focus on
visualizing the activities of programmers and show details about the changes
carried out in software items.

168 Chapter 6. Team awareness and collaboration

Figure 6.5: CodeTimeline: (a) Notes of the development team concerning the
Ownership Map visualization. (b) Visualization of the frequency of terms for each
revision by using word clouds and notes from the development team [Kuhn 2012].

The local workspace of each programmer is visualized using cylinder stacks,
where each cylinder represents a software item. The height of cylinder
stacks reflects the number of activities carried out by programmers (see
Figure 6.6).Cylinder stacks move forward or backwards in the visualization
depending on the time elapsed since the last changes that were made in the
workspaces that they represent. Then, cylinder stacks with the most recent
changes are placed at the front of the visualization, while those with the
earliest changes are located at the back of the visual representation.

Moreover, cylinder stacks are used to depict software items and the changes
made by each programmer. In this context, each cylinder corresponds to a
particular programmer and its size reflects the magnitude of the changes that
have been made, as shown in Figure 6.7. It is noteworthy that (generally

6.4. Visualization for Team Awareness 169

Figure 6.6: Visualization of the activities carried out by programmers [Ripley 2007].

speaking) when an element of Palantír is selected, it is possible to obtain
information about the magnitude of the changes carried out, as well as the
names of the corresponding programmers and the value of metrics.

Figure 6.7: Representation of software items and changes that were made by each
developer [Ripley 2007].

6.4.3 Collaboration and Socio-technical Relationships

In most of the cases, the objective of the tools that support the construction
of common knowledge spaces is to improve cooperation among team members.
This cooperation is usually necessary because collaborators work together on
a common project and the work of each one is related to the work of other
contributors. However, it is advisable to consider that cooperation among
individuals can also be present when several people contribute to the solution
of determinate problems, working of independent form and without having as

170 Chapter 6. Team awareness and collaboration

aim the achievement of common objectives or goals. A remarkable example
are the web sites used by programmers to ask for cooperation from other
programmers in solving particular problems [Assogba 2010]. Programmers
who participate in these type of sites share membership in a community of
individuals working on subjects over which they have knowledge, but which
are not necessarily part of their daily work.

Assogba and Donah [Assogba 2010] denominated this type of cooperation
as loosely bound cooperation and they defined it as “a form of cooperation,
sometimes indirect, between members of a community that gives them the
freedom to pursue their individual goals while allowing them to help each
other”. As a summary of the foregoing and the features that the researchers
stand out, the following are the main points of this type of cooperation:

∗ Individuals are not under any obligation to help others.
∗ Each participant has their own goals and most of them do not share

goals.
∗ The cooperation can range from casual to continuous and committed,

and involves the solution or development of a particular software item.
∗ The participants in this model of cooperation are part of a community

of individuals who actively practice their profession.

Assogba and Donah carried out the development of a visualization tool
which they denominated Share [Assogba 2010]. The aim of this tool was
to support the sharing of source code among members of a community of
programmers. In order to implement this tool, they used a client/server
architecture, which provides server-side authentication and data storage, while
the client side is a desktop application where the user carries out programming
tasks. Each programmer who uses this tool is assigned the same color in all
the projects in which is involved.

The client side of Share provides a file browser, a program editor, a
reference manager, a search engine, the visualization of the network of
relationships (relationships browser) and mechanisms for synchronization with
the server. The program editor and the visualization of the network of
relationships are of interest to this research and are thus further explained
below.

The program editor provided by Share uses the color assigned to each
developer to indicate who is the author of each piece of reused code that is
part of a program, but does not use any color for the new code that has been
developed within the program (see Figure 6.8).

The browser of relations of Share is aimed to facilitate the tracing of
reused source code, for which it uses a graph that depicts the correlation

6.4. Visualization for Team Awareness 171

Figure 6.8: Share: Text Editor showing the pieces of source code that have been
reused and which represent by means of colors, the person who has made the original
contribution [Assogba 2010].

user – user, user - software item and software item – software item. This
visual representation has two variants which allow to easily determine who
has contributed source code to a project and those who have reused that
code.

The first variant of the browser of relations utilizes a radial layout whose
central item is the one that have been selected by the user. This visualization
provides an overview of all contributions that has been made. Figure 6.9
depicts the contributions made by each developer and the reuse of source
code between software items by means of arrows, in which an arrow indicates
the item from which the source code has been reused. The second variant of
this browser is sought to provide information about which software items are
lending or borrowing a given software item, as illustrated by Figure 6.10.

The visualization of collaboration between programmers allows a
programmer to learn about those from whom they can expect collaboration
based on the items that have changed and the relationships that exist
between those software items. This type of visualization provides
information to project managers and assists them in making decisions about
which programmer can replace another programmer in case of sickness,
accident, resignation or dismissal. Moreover, it can also help in forming
teams according to past and current collaborative relationships between
programmers [Jermakovics 2011].

172 Chapter 6. Team awareness and collaboration

Figure 6.9: Share: Browser of relationships using a radial layout to show
the relationships between software items according to the reuse of source
code [Assogba 2010].

Jermakovics et al. [Jermakovics 2011] construct a network of the
collaboration that takes place among developers on the basis of the changes
that have been made to software items. This collaborative network emerges
as a product of the analysis of the similarities among developers based on
the software elements that they have changed in common. The network
that results from the analysis of changes is represented using a force directed
graph, where the nodes represent the programmers and the edges reflect the
relationships between them, on the basis of similarity. The size of the nodes
is used to represent the number of commits made by programmers, while the
forces of the graph are calculated in accordance with the similarity among
programmers and the number of connections between them.

The similarity measure is also used as a filtering criterion, which allows the
user to choose a threshold to filter edges that do not meet the criteria selected.
Another interesting aspect of this visualization is that in addition to providing
information about the relationship between programmers, it also provides
details about the membership of a working group of programmers and also
the relationship between these working groups, as illustrated in Figure 6.11.

A complementary approach to the above is that of Heller et al. [Heller 2011]

6.4. Visualization for Team Awareness 173

Figure 6.10: Share: Basic browser to show the relationships of a particular software
item [Assogba 2010].

concerning the representation of the collaboration among programmers, but
taking into account their geographical location. This visualization represents
data that is obtained from GitHub by means of a graph which is drawn over a
map to show the relationships among programmers, and this also allows the
density of programmers by country or region to be shown.

The development of strategies to increase the level of knowledge about
the activities that programmers can contribute to coordination in GSD
environments. Taking this into consideration, it should be recalled that SCM
tools have been widely disseminated and used to assist in the coordination
of parallel software development and that in distributed environments they
have been of great utility. In addition, due to the richness and the large
quantity of information that they manage, a large number of visualization
tools make use of this information. However, the disadvantage of SCM tools
is that developers do not realize of the changes made by other programmers
until they have been sent to the software repository by a check-in operation,
and not at the time at which the changes are made [Lanza 2010].

Considering this problem, Lanza et al. propose an architecture that uses
an Eclipse plugin to record and to transmit the source code changes made
by a programmer to the other programmers. The aim of such architecture
is to support the understanding of changes and to provide information for
programmers to react in time to changes that are made to the system.

Additionally they developed a tool, as well as an Eclipse plugin, which

174 Chapter 6. Team awareness and collaboration

Figure 6.11: Visualization of a collaborative network between programmers based
on the software items that have been changed in common [Jermakovics 2011].

consists of three simple visualizations that are updated in real time on each
IDE as changes are made [Lanza 2010].

Bucket View is a visualization that is part of this tool and uses a
metaphor of buckets: each software item is represented by a bucket that
contains small colored squared shapes. Every change that is made to the
system is represented by a colored square shape, where the color denotes the
programmer that carried out the change. Changes are sorted chronologically,
so the oldest updates are located at the bottom of the bucket and the most
recent ones are located on top.

This visualization uses color to identify the programmer that is considered
as the owner of a piece of software. Figure 6.12 shows that the software item
associated to bucket D has been changed by a single developer (associated
to the red color) which, therefore, is the owner of that item. While the item
associated to bucket A has been changed concurrently by two programmers,
where the programmer that is associated to the blue color is the owner of such
software item.

6.5 Discussion and Conclusions

Software development under GSD models requires the use of tools to support
teamwork and collaboration. Therefore, the role of software visualization was
discussed in this chapter as a central element of such tools, and in helping

6.5. Discussion and Conclusions 175

Figure 6.12: Buckets View: Visualization of changes made to software items and
the collaboration between programmers [Lanza 2010].

transform the huge amounts of information that are derived from the SDME
processes into knowledge. The importance of the previous discussion is rooted
in that the correct design of the architecture of these kind of tools should
pay special consideration to the geographical, temporal and cultural distances
involved. Thus, in order to facilitate collaboration among team members, the
design of these tools requires the use of mechanisms that allow reviewing in
real time the changes made to the system as well as details of who has carried
them out.

In this context, the vocabulary and terms that are used in the SDME
processes are commonly used globally (in different geographical areas
and countries), which facilitates the communication and collaboration.
However, the design of visualizations requires a careful selection of symbols,
representations and conventions.

The research discussed in section 6.4 looks for facilitating the obtention of
knowledge on the state of things during SDME processes, and in general their
goal is to support the collaboration among team members. In summary, the
research works that were studied focus on:

176 Chapter 6. Team awareness and collaboration

1. Sharing information about the architecture of systems and the metrics
associated with the software items which make it up.

2. Supporting the interaction and collaboration among team members.
3. Providing details on the patterns and collaboration networks that are

formed among programmers and which are derived from the software
items that have changed in common.

4. Supporting the identification of the relationships that are formed
between teams based on their interaction and collaboration.

5. Providing details on the collaboration of programmers in virtual
communities of voluntary cooperation.

6. Providing information on the ownership of software items on the basis
of the changes that have been made and the programmers who made
them.

At this point it is important to analyze the relationship between chapter 5
and this chapter. Chapter 5 focuses on the visualization of the architecture of
software systems with the aim of facilitating the understanding of the system
structure, the metrics associated to its software items and the changes that
are carried out. But it is desirable to take into consideration that this type of
visualizations also serves to support collaboration among team members and
to provide details on the state of things. So, the design of tools to facilitate
collaboration should not only consider the elements where the interaction
among team members is reflected, as most of the research works described in
this chapter do, but all those factors that provide insight of the activities that
occur around the system: through that knowledge is that different actors can
take action and initiate communication, coordination and control processes.

Finally, it should be highlighted that all the factors that could facilitate the
performance of teams though the appropriate support to individuals should
be considered. This is in line with the discussion presented in Section 6.2 and
it is aimed to improve the performance of teams in working environments that
operate under GSD models.

Chapter 7

Survey on the Use of Visual Tools
in Software Development and

Maintenance

Después de haber saciado el hambre, Rastin emprendió la vuelta a
casa, mientras Güindy y Cucho continuaron su camino. Esta vez

caminaron juntos, Güindy no seguía a Cucho, y después de varias
horas vislumbraron a lo lejos una luz intensa. Apresuraron el paso,
y al acercarse se dieron cuenta que habían llegado a una pequeña
ciudad con fábricas y chimeneas. Entraron a la ciudad de forma

tímida y silenciosa, y comprobaron que aunque la ciudad tenía
visos de modernidad, en realidad seguía siendo rústica para los

tiempos modernos que corrían. — El viaje de Güindy, A.González

Contents
7.1 Introduction . 177

7.2 Survey Description . 178

7.3 Questions and Results 179

7.3.1 Data Collection . 180

7.3.2 Product Tools . 183

7.3.3 Process Tools . 186

7.3.4 Impediments to Adopting Tools 188

7.4 Discussion . 189

7.5 Conclusions . 192

7.1 Introduction

In the last chapter, the results of a study were presented. The aim of the study
was to conduct an in-depth review of the current state of the application of

178
Chapter 7. Survey on the Use of Visual Tools in Software

Development and Maintenance

visualization and VA to software systems and their evolution in facilitating the
development and maintenance of software. It thus examined the use of IV and
VA in the comprehension processes of software projects and their evolution
by means of a systematic mapping study of research carried out in the last
7 years, from 2007 to 2013. Consequently, it identified the tasks that this
research sought to support as well as the different types of visualization, data
types and technologies that were used.

The research which has been carried out is limited to assessing the works
that have been published in the aforementioned time period and the results
do not provide insights regarding technology transfer between the research
community and industry. There has been concern about the spread, impact
and transfer of scientific results to industry. Consequently, this chapter
introduces and discusses the results of a survey that was answered by 113

participants working for 65 companies and who were living in 6 different
countries.

It would seem natural that visualization tools should have been adopted
by the software industry to support the development and maintenance process
taking into account the benefits and the increased use of visual tools in other
industries for knowledge discovery (see more details in chapter 3). However,
the research conducted in this chapter supports the opposing hypothesis:

How are software companies and software development departments using
visual tools to facilitate software development and maintenance?

Consequently, this chapter seeks to answer the above question by means of
a survey of the use of tools which support the software development process.
The outcome of this study provided important details on the availability of
data and blockage points that may be helpful for the design, implementation
and adoption of tools.

7.2 Survey Description

The survey was prepared using a powerful commercial web application
specialized in online surveys [Qualtrics, Inc. 2013] and distributed by email.
It was sent to the email list of the Computer Science graduates of a
large university (35,000 students) who are currently working in the software
industry. In addition, the survey was also sent to the email lists of professional
groups in the field of software development and maintenance.

This survey was aimed at programmers, team leaders, project managers,
architects, analysts, and SQA professionals. The survey questions were
branched according to the job position occupied by the person who was

7.3. Questions and Results 179

answering. Additionally, the questions were divided into four groups, as the
following list shows:

Data collection: These questions were aimed at surveying the use of tools
for collecting and storing data generated during software development
and maintenance. The goal of these questions was to determine the
availability of data that could be used by visualization and visual
analytic tools aimed at analyzing software systems.

Product tools: These questions were targeted at obtaining perspectives
on the use of visualization and visual analytic tools aimed at
analyzing software systems in product-related tasks, (e.g., debugging,
understanding the code structure (dependencies, inheritance, coupling,
cohesion)), and understanding code changes (refactoring).

Process tools: These questions were directed towards the use of
visualization and visual analytic tools aimed at analyzing software
systems in process-related tasks, e.g. project management and software
quality assurance (analysis and monitoring of team activity and quality
metrics).

Blocking points for adopting tools: These questions were aimed at
identifying obstacles for adopting visualization and visual analytic
tools aimed at analyzing software systems for supporting software
development and maintenance tasks.

Table 7.1: Number of answers per role type.
Position Answers
Programmer 41
Team leader 18
Project manager 8
SQA Specialist 3

Architect 2
Analyst 1
Totals 69

7.3 Questions and Results

The survey was completed by 113 participants. The answers from participants
which did not match the roles in Table 7.1, contradictory answers, and answers
which came from respondents whose job includes systems support (servers and

180
Chapter 7. Survey on the Use of Visual Tools in Software

Development and Maintenance

network) and carry out help desk and development tasks simultaneously1 (as
they do not work full time in software development and the survey seeks for
answers of full time software practitioners), were discarded.

After the filtering process, 69 answers remained. Table 7.1 shows the
professional roles of the survey participants considered. The participants
came from over 65 companies in 5 Spanish-speaking countries and one
Portuguese-speaking country, and were distributed into 11 market segments,
with the majority of companies coming from the software industry2 as shown
in Table 7.2. The respondents worked for companies whose headquarters
were based in 8 different countries. Of the 65 companies, 24 companies were
multinational and, among these, 19 were based in the United States, 2 in
Mexico, one in Germany, one in Nicaragua and one in Puerto Rico.

Table 7.2: Number of answers per company type.
Market segment Companies Answers
Software industry 43 46
Finance and banking 7 8
Government 3 3
Services 3 3
Telecommunications 2 2
Education and research 2 2
Energy 1 1
Agriculture 1 1
Manufacturing 1 1
Healthcare 1 1
Transportation 1 1
Total 65 69

The survey results are presented in the following sections, classified by
means of the groups mentioned in earlier sections of this work.

7.3.1 Data Collection

The first group of questions (as shown in table 7.3) was aimed at assessing the
availability of software-related Big data, and data-collection tools, within the
participants’ companies. Since data collection is the first step in the analytic
process, it may represent the first bottleneck on the road to implementing

1The answers revealed that most of these respondents work for small companies with 1

to 3 professionals in the IT department.
2Companies which main business is the development and commercialization of software

products.

7.3. Questions and Results 181

Table 7.3: Question group: Data collection.
Question Answer

Q1 Does your company use a SCM tool? Yes/No
If Yes, specify which SCM tools. Plain text

Q2 Does your company use a bug tracking tool? Yes/No
If Yes, specify which bug tracking tools. Plain text

Q3 Are the SCM and bug-tracking tools linked Yes/No
to connect bugs with changes?

Q4 Do you collect data for metrics calculation? Yes/No
If so, how do you collect metrics data? Plain text

IV and VA for the process of comprehension of software projects and their
evolution.

Question Q1: SCM tools are key componentes for data collection as they
record and manage source code versions and the metadata associated with
changes in software repositories. Figure 7.1 shows the answers to Q1. The 65

companies surveyed (100%) use at least one SCM tool; 24 companies (37%)

use at least two SCM tools; and 8 companies (12%) use up to 3 SCM tools.
Hence, the raw data required by the visual representations should be readily
available in all the cases surveyed.

Questions Q2 and Q3: Most bug tracking tools permit the creation of
relationships between bugs and changes recorded by SCM tools, integrated as
part of the tool or as a plugin. Such relationships are essential for corrective
maintenance [D’Ambros 2006b, D’Ambros 2007a, Sensalire 2008].

Figure 7.1: Q1: Use of SCM tools.

182
Chapter 7. Survey on the Use of Visual Tools in Software

Development and Maintenance

The answers to Q2, presented in Figure 7.2, show that 16 companies
(24.6%) do not use any bug tracking tool; 51 companies (78%) use one bug
tracking tool; and 13 companies (20%) use more than one tool. However, the
answers to Q3, shown in Figure 7.3 are not as encouraging as the ones in Q2

as only 16 companies (24%) have linked the bug tracking to the SCM tools.
This may limit the amount of insight that visualization tools can provide
because collected data does not reflect all the activity carried out during the
development and maintenance process.

Figure 7.2: Q2: Use of bug tracking tools.

Question Q4: This question was aimed at project managers, team leaders
and SQA specialists, as these are the typical stakeholders interested in quality
metric analysis during software development [Pinzger 2005, Lanza 2005b,
Telea 2009c]. These professional roles accounted for 29 respondents from
29 companies. The answers were divided up as follows (see Figure 7.4):
17 respondents (59%) collected data for calculating metrics; but the other
12 respondents (41%) did not. Of the 17 positive responses, 10 users
(59%) collected the metric data manually; 4 users (23%) used custom metric
tools (developed internally); and 3 users (18%) collected metric data using
commercial metric tools.

7.3. Questions and Results 183

Figure 7.3: Q3: Correlation of SCM and bug-tracking tools to make relationships
between bugs and changes.

Figure 7.4: Q4: Tools for metrics data collection.

7.3.2 Product Tools

The questions posed in this group focus on the use of visualization tools
for product-related tasks such as debugging, understanding the structure
and dependencies of a software project, and assessing cohesion and change
during development, and perfective and adaptive maintenance. The selected
questions are not exhaustive with regard to all tasks related to program
comprehension, but carry out and adequate sampling of most frequently
encountered activities of this type [Storey 1998, Maletic 2002, Sensalire 2008].
As such, their answers are a good indicator of the penetration of visualization
tools aimed at general-purpose program comprehension tasks. The questions
in this group are listed in table 7.4.

184
Chapter 7. Survey on the Use of Visual Tools in Software

Development and Maintenance

Question 5: Debugging is estimated to cover about 25% of software
maintenance costs [Storey 1998, Koschke 2003]. As such, it is worthwhile
evaluating whether visualization can effectively support debugging activities.
The answers to Q5 displayed in Figure 7.5 show that the debugging tools
included in IDEs are the favored option (59 answers, 91%). Visualization
tools, either third-party (4 answers, 6%) or in-house developed (2 answers,
3%) are a minority option.

Table 7.4: Question group: Product tools.
Question Answer

Q5 Which of the following tools IDE debugging functions /
do you use for debugging? Visualization tool or plugin (3rd party) /

In-house development) /
Other

Q6 How do you navigate class Built-in IDE visualizations /
hierarchies? (e.g., find ancestors Visualization tool or plugin (3rd party)/
or descendants of a given class) In-house development /

Manual text search /
Manual review of the class diagram /
Other

Q7 How do you navigate Built-in IDE visualizations /
dependencies?(e.g., find callers Visualization tool or plugin (3rd party)/
or callees of a given function) In-house development /

No specific tool is used /
Other

Q8 How do you find and examine Built-in IDE visualizations /
code clones? Visualization tool or plugin (3rd party) /

IDE search functions /
In-house development /
Manual search

Q9 Upon code refactoring, how Built-in IDE visualizations /
do you how do you find where Visualization tool or plugin (3rd party) /
old code has been moved? IDE search functions /

SCM logs review /
Manual search /
Other

Questions 6 and 7: These questions relate to the most frequent types
of relationships in program understanding – examining class hierarchies (Q6)
and review dependencies (Q7). For Q6 (see Figure 7.6), 43 respondents (66%)

answered that they use the basic visualizations included into IDE tools, 25
companies (38.5%) rely on manual searches and a single respondent (1.5%)

used a specialized visualization tool. For Q7 (see Figure 7.7), the answers are
similar: 49 companies (75.5%) used manual search; 14 companies (21.5%) use
built-in IDE visual functions; and only two companies (3%) used a specialized
visualization tool.

7.3. Questions and Results 185

Figure 7.5: Q5: Use of visualization tools for software debugging.

Figure 7.6: Q6: Use of visualization tools to navigate class hierarchies.

Question 8: Another important topic that respondents were asked about
was the detection of source code clones (see Figure 7.8). The results showed
that 27 companies (41.5%) carry out a manual search (some indicated that
they manually maintain records of the location of clones), 23 companies
(35.5%) use the IDE capabilities for searching clones, 14 companies (21.5%)

use the basic visualizations provided by recent versions of IDEs and only one
answered (1.5%) that they used a specialized visualization tool.

Figure 7.7: Q7: Use of visualization tools to navigate dependencies.

186
Chapter 7. Survey on the Use of Visual Tools in Software

Development and Maintenance

Figure 7.8: Q8: Use of visualization tools to find and analyze code clones.

Question 9: This question captures a typical task in software
understanding during perfective or adaptive maintenance: the relocation
of software items. When a software project undergoes refactoring, various
software items change location. An essential task is to find the new location of
such software items. The answers to Q9 (Figure 7.9) show that 38 companies
(58.5%) use the IDE capabilities to search for the new location of software
items; 14 companies (21.5%) find such locations manually; 8 companies
(12.5%) use the log of SCM tools for this; 3 companies (4.5%) use other
tools; and only 2 companies (3%) use a visual tool for this task.

Figure 7.9: Q9: Use of visualization tools to find source code fragments after
refactoring.

7.3.3 Process Tools

This question group covers the use of visualization tools for understanding
metrics related to project and process quality (Q10 and Q12) and
collaboration Q11. As such, Q10 and Q12 are aimed at project managers,
team leaders, and the SQA team (29 respondents from the same number of
companies), and Q11 is aimed at all respondents. The questions in this group
are shown in table 7.6.

7.3. Questions and Results 187

Table 7.5: Question group: Process tools.
Question Answer

Q10 Do you use a tool to measure Yes/No
and visualize individual
programmer contributions?

Q11 Do you use a visualization SCM visualization tools /
tool to track which Visualization tool or plugin (3rd party) /
users changed which In-house development /
software items? No specific tool /

Other
Q12 Do you use a tool to visualize Yes/No

metrics?
If Yes, specify which tool. Plain text

Question 10: Only 4 out of 29 respondents (14%) responded to this
question. Those who answered use a tool for monitoring programmer
contributions, and none of them used a visualization tool (see Figure 7.10).
This may indicate that in practice the use of metrics is limited. However an
analysis of this falls out the scope of the present work.

Figure 7.10: Q10: Use of a tool to measure and visualize individual programmer
contributions.

Question 11: This question was aimed at all participants. Therefore, 29
of the 65 companies (44.5%) used the basic version-tree visualization of SCM
tools (see Figure 7.11); a single user (1.5%) used a visualization tool developed
internally whereas the other 35 companies (54%) do not use any specific tool
for this task.

Figure 7.11: Q11: Use of visualization tools to show which developers change which
software items.

188
Chapter 7. Survey on the Use of Visual Tools in Software

Development and Maintenance

Question 12: Although 59% of the respondents (see section 7.3.1) collect
software metrics data, only 2 out of 29 companies (7%) use a visual tool
for software metrics (specifically, Excel); and also only 2 companies use the
same visual tool for tracking the evolution of such metrics through different
revisions or product releases (see Figure 7.12).

Figure 7.12: Q12: Use of visualization tool for metrics.

7.3.4 Impediments to Adopting Tools

The questions in this group are focused on determining the impediments to
the adoption of visualization tools that support software development and
maintenance tasks. The questions in this group are listed in table 7.6.

Table 7.6: Question group: Blocking factors.
Question Answer

Q13 Do you think that visualization tools Yes/No
help to reduce software development
and maintenance time?

Q14 What do you think is the main reason Don’t know such tools /
for not using visualization tools during No suitable tools found /
software development? Tools found not suitable

Q15 Which are your perceived adoption (see option list in
blockers for visualization tools? Figure 7.15)

Q16 Do you consider that software Yes/No
engineering courses should include
topics on the use of existing
visualization tools?

Question 13: This question was aimed at assessing the perception about
the experienced effectiveness of visualization tools in general, and not only
for software development and maintenance. As such, only those users who
already had used a visualization tool (44 out of 69) in any task were asked
this question. The majority (37 respondents, 84%) answered that they

7.4. Discussion 189

consider that tools like the ones they have used could help to reduce software
development time (see Figure 7.13). Negative answers were given by only 7

respondents (16.3%).

Figure 7.13: Q13: Use of visualization tools to help reduce software development
and maintenance time.

Figure 7.14: Q14: Reason for not using visualization tools during software
development.

Question 14: In contrast to Q13, this question was asked to all users (69
respondents), as shown by Figure 7.14. Interestingly, 73.9% of the responses
indicated that the subjects did not have information regarding the existence
of visualization tools. 14.5% of respondents indicated that they had tried
out visualization tools but decided not to use them as they did not fit in the
required tasks (table 7.6, Tools found not suitable). The remainder of 11.6%
respondents indicated that they had searched for suitable visualization tools
for their tasks, but these tools did not meet their expectations (table 7.6,
Tools found not suitable).

Question 15: This question was posed to those who answered Q14

and enquired about the perceived blockage points for the adoption of
visualization tools. The options offered to respondents are taken in line
with [Bresciani 2009]. Figure 7.15 shows the answers given to Q15.

Question 16: Finally, Q16 was posed to all respondents with regard to
teaching and learning about the existence and use of visualization tools in
software engineering courses and 71% answered this question positively, as
illustrated by Figure 7.16.

7.4 Discussion

The analysis of this survey has produced a wealth of information that cannot
be easily summarized in a few pages. The survey results provided details

190
Chapter 7. Survey on the Use of Visual Tools in Software

Development and Maintenance

about the availability of data from SCM and bug tracking tools in most of the
companies surveyed. The availability of data may thus facilitate the design,
development and implementation of visualization and visual analytic tools to
support software development and maintenance.

Figure 7.15: Q15: Perceived adoption blockers for visualization tools.

Figure 7.16: Q16: Do you consider that software engineering courses should include
topics on the use of visualization tools?

However, the survey results reveal that few companies have linked the
tools mentioned (16 out of 65) in order to obtain details of the correlation
between bugs and changes, limiting the utility of the data generated by the
same process of development and maintenance. Additionally, the collection of
metrics by means of specialized tools is only carried out by 7 companies while
10 companies collect metrics manually using Excel. The consequence of this
is that quality control of software products in most companies is not carried
out in a systematic manner during the software development process, as much
as during development and maintenance.

Moreover, the survey revealed that tasks such as debugging, navigation of
dependencies, detection of source code clones, refactoring, tracking changes
and contributions, and SQA metrics monitoring are carried out without the

7.4. Discussion 191

support of visualization tools. 66% of the respondents answered that they
use the basic visualizations included in IDE tools to examine class hierarchies
and navigating dependencies and 44.5% make use of the basic version-tree
visualization included in SCM tools.

This demonstrates that the majority of users use the tools that are
integrated in their working environment and are directly accessible by means
of SCM tools and IDEs. This is congruent with the arguments made by
Lintern et al. [Lintern 2003] regarding the design of visualization tools to
support the process of software development and maintenance. It is argued
that this is carried out without regard to the user environment in which tools
are used and without seeking their integration with existing tools.

This in turn leads us to consider that the integration of visualization tools
and VA to support the process of SE is a key aspect and that visual tools
must be integrated in the tools that developers use in their development
environments, such as IDEs and SCM, in the form of plugins. Therefore, there
exists a potential market for developing visualization tools that are integrated
into well known existing tools such as IDEs and SCM tools without burdening
users with unnecessary additional tools.

It is important to recall that the perception of respondents who had used
a visualization tool, in general context (and not only in a software systems
context) is positively high. However, when they were asked about the factors
which may block the adoption of these type of tools indicated the following:

∗ Visual stress factors caused by the visualizations.
∗ Inadequate design.
∗ The complexity of the visual representations.
∗ The time required to learn the tools.
∗ Requirement of previous knowledge.
∗ Aspects related to the lack of clarity and ambiguity of designs.

It is thus important to consider the requirements of users with regard to
the tasks which they seek to support and thus make them active elements of
the design process by means of brainstorming meetings and usability studies
to evaluate and improve the design of visualizations and of the tools in general.

Other points which are relevant in considering the factors which impede the
adoption of visualization tools are related to the awareness of tools available
to support the process of software development and maintenance. 75% of
the respondents (69 in total) indicated that they did not have information
available concerning the existence of visualization tools to support tasks of this
process. When respondents were asked if they considered it appropriate to
include the teaching of these type of tools in software engineering courses,71%
answered positively.

192
Chapter 7. Survey on the Use of Visual Tools in Software

Development and Maintenance

Furthermore, some comments made by respondents highlighted factors
such as, the absence of a culture of using visualization tools in software
development and maintenance, the cost of tools, difficulties in calculating the
return of the investment, information cluttering and the scalability of tools.

As a result, software companies and software development departments
make limited use of visualization tools to facilitate processes as they only
use the basic visualizations included in the IDEs and SCM tools. It is
thus clear that more complex visualization tools are rarely used by software
companies and software development departments. Finally, clues offered by
the survey results indicate the integration of more complex visualization tools
into well known and accepted tools currently used in software development
and maintenance.

7.5 Conclusions

The survey results provide important details concerning the availability of
data, the use of visualization tools in product and process related tasks,
and the identification of impediments which could be used positively for the
design, implementation, and adoption of tools. These results show the need
to integrate bug tracking and SCM tools and other tools to capture and store
information from the process of software development and maintenance. This
should be done in order to obtain better data which permit better tracking of
the progress of the project in order to allow it to be supported more effectively.

The results obtained also show that the visualizations which are being
used by programmers are those which are integrated in the tools they use in
their daily tasks, such as SCM tools and IDEs. It is thus desirable that new
versions of these tools allow for the use of visualizations of greater complexity
and utility that the ones that currently these tools include; but also that the
more specialized visualization tools which are developed are integrated in the
tools mentioned in the form of plugins. With regard to this last proposition,
it is noteworthy that a large number of recent studies are considering the use
of plugins in their proposals, according to the results of chapter 4.

Two points that deserve special consideration are related to the
improvement of awareness of the existence of these tools and the promotion
of their development. It would thus be appropriate to include their use in
software engineering courses in order to raise awareness of their benefits. It
may also be advisable to incorporate courses or seminars in graduate programs
that address the design and development of tools applied to SV systems, taking
into account not only the technical aspects but also aesthetic aspects, ease to
learn, interaction and integration in programmers working environments.

7.5. Conclusions 193

Accordingly, an important step in facilitating the processes of learning
and teaching, the design and development of these tools is the clear definition
of a process which describes in detail the major components, methods and
techniques involved in the process of transforming system data into useful
knowledge that will facilitate a better understanding of the dynamics of
systems development, their maintenance and evolution.

Part IV

Process Design and Validation

Chapter 8

A Visual Analytics Process for
Software Evolution

Cuando algunos habitantes notaron la presencia de Güindy y
Cucho, se mostraron amables, algunos incluso ofrecieron

alojamiento y comida. Al sentirse tan bien acogidos decidieron
quedarse algunos días. Pero no transcurrieron muchas horas para

que un lugareño ofreciera trabajo a Güindy, el cual aceptó sin
hacer muchas preguntas. El primer día de labores Güindy fue
sorprendido, su principal tarea sería diseñar relojes de arena.

— El viaje de Güindy, A.González

Contents
8.1 Introduction . 195

8.2 Visual Analytics Process 198

8.3 Visual Analytics and Software Systems 203

8.3.1 Evolutionary Visual Software Analytics 204

8.3.2 Architecture Specification 207

8.4 Conclusions . 212

8.1 Introduction

This research has so far discussed the fact that Software engineering is
concerned with a set of processes that cover the entire life-cycle of software
systems: ranging from requirement analysis and design up to development,
testing, release, and maintenance. The results of the previous chapters showed
that a large number of research works have been conducted with the aim
of supporting software development and maintenance related tasks. It is
evident from these results that pertinent data is collected by most companies
during SDM processes and that the visualizations which are most frequently

196 Chapter 8. A Visual Analytics Process for Software Evolution

used in these processes are those that are built into the tools that developers
use in their daily activities, such as IDEs and SCM tools.

Furthermore, according to the results in chapter 7 and what was previously
discussed, the data collected during software development and maintenance
share many commonalities with typical Big Data:

∗ Large amounts of data with missing values (e.g., millions of lines of
source code [Baker 1995, Kagdi 2007a, Petre 1998] and thousands of
software components [D’Ambros 2008]).
∗ Complex and hybrid datasets (e.g., large databases of program

metrics, design documents, test results, execution logs, and bug
reports [Hassan 2005, Lanza 2005b], attributes of numerical, categorical,
and textual types, interconnected by a wide variety of types of
relationship such as inheritance, hierarchy, and call, control, and
dataflow dependencies).
∗ Evolving datasets with thousands of versions of the software system

stored in the software repository [Mens 2008, Mahoney 2009].

Therefore, to provide methods that facilitate the comprehension of
software projects it is necessary to carry out a detailed analysis of the data
generated during software development and maintenance over a specific period
of time and (in exceptional cases) for the entire evolution of the project. This
form of analysis is known as SEA, and its principal objectives are to provide
information that contributes to the understanding of the SE process, and
thus supports the improvement of the development process (including project
management). However, as has already been discussed in chapter 2, SEA is
sought to reduce the size of the Big Data produced SDM processes but it also
produces large and complex datasets, due to the number of variables involved
in the process of source code change and the complexity of their relationships
which makes it difficult for users to carry out an adequate analysis. Hence,
although the result provides useful information, it does not provide the
information necessary to carry out the tasks of understanding changes and
project evolution in a satisfactory fashion and thus provide adequate support
for decision-making that will lead to future changes and system improvement.

Given this situation, research efforts have focused on the use of visual
representations combined with interaction techniques in order to gain insight
into using such large and complex datasets (see chapter 3 for a reference
on information visualization). These research efforts have concentrated
on SV [Diehl 2007] and SEV [González-Torres 2009, Voinea 2007]; although
more recently some research has been carried out into the application of VA
to software systems [Telea 2011] with the aim of providing better results.

8.1. Introduction 197

The goal of this research is to support the process of understanding SE and
improve the design and implementation strategies of tools designed to satisfy
the analysis needs of both programmers and managers (see chapters 5 and 6
for a focused discussion on visualization in SE).

At this point, it is worth mentioning that VA combines the advantages
of machines with human strengths such as analysis, intuition, problem
solving and visual perception. Therefore, human beings are at the heart
of VA [Dix 2010] and HCI is a key component for supporting knowledge
discovery.

The results shown by chapter 4 portrayed that the number of research
projects that use VA to support the process of software development and
maintenance is quite low. Additionally, the analysis carried out in chapter 4
showed the absence of a detailed definition of the process involved in the
application of VA to software systems and their evolution. It is thus
appropriate to define this process with the aim of providing guidance to both
new researchers and software tool engineers. The definition of this process
may also be used in accordance with the recommendations of chapter 7, with
regard to the inclusion of instructional content about these tools in software
engineering courses.

Consequently, the principal objective of this chapter is to define the process
of applying VA to SE and attempts to answer the following research question:

How should the process of applying visual analytics to the evolution of
software systems be defined?

Accordingly, the definition of such a process requires, on the one hand
a description of the process of applying VA to SE; and on the other hand,
the identification of the roles, borders, interactions and relationships between
modules, components, methods and techniques involved in this process.
Therefore, the arguments presented in chapter 2, the discussion carried out in
chapter 3 as well as the results in chapter 4 and 7 will be taken into account.

Furthermore, in order to obtain the results that will meet and answer
the research question formulated in line with this objective, it is necessary
to design and implement an architecture that demonstrates the usefulness
of the application of VA to SE. The definition of the architecture will be
carried out taking into consideration the results of chapter 7 that show that
visualization tools that are used by those involved in the process of developing
and maintaining software are those that are integrated into tools VA and IDEs.
The implementation of this architecture will thus be carried out using an
Eclipse plugin.

The rest of this chapter proposes the definition of the VA process (see
Section 8.2), explains the relationship between VA and SE and defines

198 Chapter 8. A Visual Analytics Process for Software Evolution

the EVSA concept, specifies an architecture for applying VA to SE and finally
defines a framework for situational awareness and collaboration on the base
of using EVSA for that purpose.

8.2 Visual Analytics Process

The functions and responsibilities of the modules that comprise the VA process
are explained in Table 8.1. It takes into account the analytical process
proposed by van Wijk [van Wijk 2005], the adaptation for VA of the Visual
Information - Seeking Mantra [Shneiderman 1996] that was introduced by
Keim [Keim 2006, Keim 2008b] (analyze first, show the important, zoom,
filter and analyze further, details on demand), the IV model proposed by
Card [Card 1999b], the visualization process proposed by Chi [Chi 2000] and
the seven visualization stages identified by Fry for visualizing data [Fry 2008].

Table 8.1: Responsibilities and functions of the modules that make up the Visual
Analytics process.
Module Description

Extraction,
Transformation
and Load (ETL)

This module has the function of performing the connection
to data sources and data retrieval using predefined criteria.
Then it cleans and merges data and loads it into a data
warehouse.

Advanced Data
Analysis (ADA)

The function of this module is to make use of one or more
analysis techniques in order to extract Knowledge Facts and
store them into a database.

Visual Knowledge
Explorer (VKE)

This module is made up of three components: the IV,
the Views Linker and Facts Analyzer (VLFA), and
the Visualization Abstractions and Coordination Support
(VACS) components. This module has the responsibility of
the visual representation of Knowledge Facts and conforms
to the fundamentals of CMV [North 2000, Card 1999b], and
must provide the visualization, interaction and coordination
mechanisms for knowledge discovery.

The VA process has been defined using a modular-based approach, where
each module is a collection of components. The use of such approach
allows for greater process comprehension, flexibility, ease of change and
specialization through the development of specific components that can
be tested individually. Consequently, the process is constituted by three
modules: Extraction, Transformation and Load (ETL) [Vassiliadis 2002,
Vassiliadis 2009, El-Sappagh 2011], the Advanced Data Analysis (ADA)

8.2. Visual Analytics Process 199

and the Visual Knowledge Explorer (VKE) modules. Accordingly, this
modular-based approach facilitates to extend architectures based on the VA
process through the addition of new components such as data analyzers and
visualization components.

The VA is a data transformation process that could be thought like a
funnel, where raw data are analyzed and filtered in several steps, until these
are converted into knowledge. Therefore the output of the process is a
reduction, in terms of volume, of the original input, that contains all the
required elements to inform decision making.

ETL is the first module that intervenes in this process and is comprised
by several components aimed at retrieving, cleansing and integrating data
from data sources such as spreadsheets, legacy systems, databases, text, XML
and HTML files, logs, email communications, data streams, sensors and any
other data source.

The aim of the ADA module is to produce Knowledge Facts using, for
example, data mining, genetic algorithms, neural networks, statistical analysis
and support vector machines. The ADA module carries out intermediate steps
in the process of transforming data into knowledge. Its results provide very
important information that could lead to decision making, but the results are
still unmanageable, because of the large volume, when dealing with Big Data.
So, the presentation of thousands or even millions of Knowledge Facts, in the
large, is not feasible and still requires additional steps for providing usable
knowledge that could be successfully employed in informed decisions. This is
achieved with the use of IV and HCI.

The other component of the VA process is VKE, which is integrated
by three components: the IV, the VLFA, and the VACS components (see
table 8.2).

The IV component plays a central role for this module and consists of
a set of visualizations. This component makes use of the VLFA component
to define the associations between Knowledge Facts and the visualizations,
and to define how the visualizations are linked together. In addition, the
VLFA component carries out an automatic selection of the Knowledge Facts
that will be visually represented in accordance with the requirements of the
visualizations. VKE also makes use of the VACS component for the creation
and management of data models, data structures and visual mappings, besides
to keeping track of the interaction and coordination between visualizations for
deciding on the data to be visualized according to the interactions and the
linking between visualizations.

IV makes use of several theories, methods and techniques such as
usability principles, multidimensional and multivariate visualization, HCI and
information design theories among others.

200 Chapter 8. A Visual Analytics Process for Software Evolution

The VA process (see Figure 8.1) starts with the retrieval of data, relevant to
the problem under study, from heterogeneous data sources such as logs, email
communications, text files or databases(Extract, Arrow 1). Following this,
the data is cleaned and integrated, and then stored in the Data Warehouse
(Load, Arrow 2). Thereafter, the ADA module reads data from the Data
Warehouse (Read data, Arrow 3) and uses knowledge extraction techniques
for discovering, representing and managing knowledge. In turn the derived
results are Knowledge Facts that are stored in the Knowledge Facts Database
(Produces Facts, Arrow 4).

Table 8.2: Components of the Visual Knowledge Explorer module.
Components Description

Information Visualization
(IV)

This component is the most important element
of the VKE module and the VA process: it
provides the visual representations and interaction
mechanisms for supporting users in the knowledge
discovery process. Basically, one can say that the
aim of any other module or component of the
process is to support the aims and tasks of the IV
component.

Views Linker and Facts
Analyzer (VLFA)

This should provide an interface for allowing users
to create associations between visualizations and
Knowledge Facts. Moreover, it must support
the definition of the linking and coordination of
visualizations based on common attributes of facts
(e.g., an approach based on a relational data
model [North 2000].)

Visualization Abstractions
and Coordination Support
(VACS)

The responsibility assigned to this component is to
create the required data models, data structures
and visual mappings for supporting the creation
and operation of the visualizations. It also has the
function of coordinating the data to be displayed
by the visualizations.

The VKE module makes use of the graphical user interface component
of VLFA for creating the relationships between facts and visualizations and
for defining the linking relationships between visualizations. This is carried
out by the tool designer before handing out the tool to the analysts that will
be the final users.

8.2. Visual Analytics Process 201

F
ig

ur
e

8.
1:

V
is

ua
lA

na
ly

ti
cs

P
ro

ce
ss

.

202 Chapter 8. A Visual Analytics Process for Software Evolution

When the analyst starts using the VA tool, the IV component asks to
perform the initial analysis of facts to the VLFA component (First Analysis,
Arrow 5), according to the linking relationships, visualization features and
requirements. Next, the VLFA component reads facts from the Knowledge
Facts Database (Reads Facts, Arrow 6) and process them appropriately,
and optionally performs clustering or summarization, depending on the
visualization requirements.

After this, the VACS component takes the analysis results from the VLFA
component (First Analysis Results, Arrow 7) and creates the appropriate data
model, data structures and visual mappings required by the IV component
to display the most important results (Shows the Important, Arrow 8).
Then, the IV component permits users to explore relationships and discover
knowledge using a combination of visualization and interaction techniques
(Zoom, Filter, Interact, Arrow 9).

It is important to take into account the fact that the processes performed
by the ETL and ADA modules usually deal with large and complex datasets,
and require the use of complex algorithms, thus demanding considerable
processing capacity and many hours or even days for task completion.
Therefore, the results produced by these modules are usually visualized once
their execution has been successfully completed. The processes performed by
the ETL and ADA modules should run automatically, when new data is added
to the data sources, to generate new Knowledge Facts that are stored into the
facts database in order to automatically update the visualizations.

The aforementioned process is iterative and requires additional details as
the user interacts, explores and discovers knowledge through the creation of
associations and relationships among visual elements in the IV component
(Request of Details on Demand, see Arrow 10). Thus, the IV component
automatically requests additional information for providing more details to
users, and if the requested data is unavailable from the VACS component it
requests a further analysis from the VLFA component (Analyze Further,
Arrow 9). Consequently, the results of the further analysis process are
passed to the VACS component (Further Analysis Results, Arrow 7) and
added to the data model, data structures and visual mappings and cache
elements. Finally, the corresponding details are visually represented in the IV
component (Details on Demand, Arrow 8) and the user continues working on
the knowledge discovery process until the decision to stop is taken once the
proposed goals have been reached.

In this context, the fact that analysts are strongly influenced by
factors such as their experience, education, cultural values [Heuer 1999]
and cognition [Drigas 2011] has to be taken into consideration as a central
element of the VA process because these allow them to gradually acquire

8.3. Visual Analytics and Software Systems 203

strategies for remembering, understanding, decision making, and solving
problems [Academies 2000]. Thus, it can be reasonable supposed that users
form a hypothesis to solve a problem, then collect data, analyze such data
and then accept or reject the initial hypothesis.

8.3 Visual Analytics and Software Systems

The application of VA principles to software systems [Telea 2010,
Reniers 2012] is known as Visual Software Analytics (VSA) [Anslow 2009,
Telea 2011]. The use of VA in this context is an improvement relative to
SV, considering VA as a comprehensive process which includes advanced data
analysis and the use of multiple linked views.

Furthermore, the application of VA principles to SE shares common
elements with VSA, but the principal difference between the two is that the
former takes into account two or more revisions, while the latter only takes
into account the analysis of only one revision of the software project. The
application of VA to SE entails carrying out an individual analysis of each
revision and then requires an additional analysis in order to compare and
correlate the results in an endeavor to discover relationships, similarities and
dissimilarities between these relationships, as well as taking account additional
factors such as:

∗ Visualize different types of data in different time scales (years, months,
hours days) and also correlate these different scales.
∗ Although much work has been done regarding graph animation and

graph evolution, the visual representation of software structural changes
is still a difficult endeavor.
∗ Developers and managers must be much more skillful and cautious in

noting relationships and differences when more than one software project
revision is required to reach a solution.

Therefore, the application of VA to SE is a specialization of VSA. A
practical analogy is that VSA is like a movie frame while the application
of VA to SE is a movie that is composed of multiple movie frames temporally
ordered and interrelated. Consequently, this research defines the process of
applying VA to SE as EVSA. The conceptual definition of this process is the
following:

Evolutionary Visual Software Analytics is the process of applying Visual
Analytics to software evolution to enhance understanding of software
system changes with the active participation of users by means of
Human-Computer Interaction.

204 Chapter 8. A Visual Analytics Process for Software Evolution

8.3.1 Evolutionary Visual Software Analytics

The EVSA process is described in Figure 8.2 and, in general terms, it is
shared by the VSA and the VA processes (see Figure 8.1). Therefore, the
process uses a modular-based approach, where each module is a collection of
components that are in turn formed by methods and techniques. Accordingly,
the main modules of the EVSA process are: ETL, Advanced Software
Evolution Analysis Engine (ASEA) and Visual Knowledge Explorer for
Software Evolution (VKESE) (see Table 8.3), whose functionality is similar
to their counterparts in the VA process.

The overall functionality of the module VKESE is similar to that of its
analogue in the VA process, which was described in section 8.2. The main
difference between the two is rooted in the components of visualization and
data types that they represent. It is thus recommended that Figure 8.1 and
Table 8.2 be revised if greater details are sought. It is worth mentioning that
the visualization components of the SEV sub-module (see Figure 8.2) are the
visualizations which were identified in chapter 4.

Table 8.3: Responsibilities and functions of the modules that make up the EVSA
process.
Module Description

Extraction, Transformation
and Load (ETL)

This module has the function of performing
the connection and data retrieval from software
repositories, defect-tracking systems, emails,
source code revisions, testing systems, logs and
any other available data source. When the data
is retrieved, it is cleaned, merged and loaded into
a data warehouse.

Advanced Software Evolution
Analysis Engine (ASEA)

This module is comprised of analysis
techniques [Hassan 2005, Hassan 2006,
Kagdi 2007a] that could be used in a individual
basis or combined in order to extract knowledge
facts. For further details on these techniques
see chapter 4 and Figure 8.2.

Visual Knowledge Explorer
for Software Evolution
(VKESE)

This module is made up of three components:
SEV, VLFA and VACS.

The steps followed by the EVSA process were organized into phases and
listed as follow:

Phase I: Data Retrieval and Loading It retrieves and carries out an
initial data processing, after which it stores them into a data warehouse.

8.3. Visual Analytics and Software Systems 205

Data retrieval: According to the type of task that the researcher or
designer seeks to support the retrieval process can be performed in
software repositories, defect-tracking system logs, emails, source
code and testing system logs. Techniques used in recovering
data may include source code retrieval, structural queries, pattern
matching and text retrieval (Extract, Arrow 1).

Data warehouse: Once the data has been recovered, it is then cleaned,
integrated and correlated and then stored in a data warehouse
(Load, Arrow 2).

Phase II: Data Analysis This phase analyzes and extracts SE facts and
then proceeds to store the results in a database.

Analysis and facts extraction: When new data is available in the
data warehouse, ETL reads the data (Read data, Arrow 3)
and then ASEA proceeds with the analysis, using one or more
analytical techniques, depending on the task being undertaking.
The analysis techniques include origin and contribution analysis,
frequent patterns mining, defect classification and refactoring
analysis.

Storage of evolution facts: Once the analysis has been carried out,
the evolution facts are then stored in the Software Evolution Facts
database (Produce facts, Arrow 4).

Phase III: Structure Loading and Visualization Mapping The tasks
of this phase include loading SE facts, creating the data structures and
visual mappings, and loading the visualizations.

Visualization loading: The user launches the SEV component that
uses linked visualizations. Some of the visualizations that can be
used are shown in Figure 8.1.

Data fact structures request: When the SEV component is loaded,
the data fact structures required by the visualizations are requested
by the VLFA component (First analysis, Arrow 5 and Read Facts,
Arrow 6).

Facts loading: The VLFA component read facts from the Software
evolution Facts Database and pass them to the VACS component
(First analysis results, Arrow 7).

Structures and visual mappings: The VACS component creates
and passes the appropriate data model, data structures and visual
mappings to SEV (Show what is important, Arrow 8).

206 Chapter 8. A Visual Analytics Process for Software Evolution

Figure 8.2: Overview of the Evolutionary Visual Software Analytics process.

Phase IV: User Interaction and Details on Demand This phase is the
final stage of the process of transforming data into knowledge. After
the retrieval, analysis and visual mapping of information, this phase
makes possible a feedback loop between the user and the system: the
user requests additional data to the system by means of the available
interaction possibilities, and the system provides the requested data.
According to user interactions the knowledge discovery process is refined
and progresses towards the finding of useful knowledge and answers.

User interaction: During the process of knowledge discovery, the user

8.3. Visual Analytics and Software Systems 207

browses, filters and explores different perspectives on the data,
selecting elements from one or more of the visualizations (Zoom,
filter, interact, Arrow 9).

Requesting details: According to the needs and the interactions of
the user, the visualization requests new data fact structures and
visual mappings to provide additional information to the user
in accordance with the selected options (Request of details on
demand, Arrow 10).

Additional details: If the additional details that have been requested
are available in the form of data fact structures and visual mappings
are passed to the SEV component (Details on demand, Arrow 8).
However, if these details are not available, a request is passed to
the VLFA component (Further analysis, Arrow 11) which reads the
additional facts, (Read facts, Arrow 6), transforms the details and
then (Further analysis results, Arrow 7) passes them to the VACS
component so it can proceed to create data fact structures and
visual mappings.

Discovery of knowledge: The user continues to interact with the
system until the necessary knowledge is obtained or it is considered
that it is impossible to reach a determinate conclusion using the
available data and representations.

8.3.2 Architecture Specification

Defining the architecture of software tools is a very complex task that
requires careful analysis. It is a challenge to determine which techniques
to use and how these will be interrelated. This section seeks to contribute
to the specified objectives, answer the research question formulated in
section 8.1 as well as support tool design in situations where VA is applied to
SE. Accordingly, using as a reference the EVSA process, an architecture
for a tool denominated Maleku was defined [González-Torres 2011,
González-Torres 2013b, González-Torres 2013a].

Maleku seeks to support both programmers and software project
managers when correlating metrics, project structure, inheritance, interface
implementation and socio-technical relationships. Such architecture has been
implemented in Java and tested on open source software projects, and the test
results are presented in chapters 9 and 10.

The modules of the architecture (see Figure 8.3) are similar to those
of the process described in the previous section and have been given the
same name. The operation of the modules ETL and ASEA is synchronous
while the operation of VKESE is asynchronous, in relation to the other two

208 Chapter 8. A Visual Analytics Process for Software Evolution

modules. The architecture is based in the client/server model, in which the
modules ETL and ASEA are executed by the server and VKESE is an Eclipse
plugin executed by the client. The different modules and components of the
architecture are described in the following order: data retrieval, data analysis
and visual representation.

The ETL module comprises a sub-module (SM) and two components (C),
as shown in the following list:

Data Source (C):1 The data sources used by the implemented architecture
consist of the SCM software repositories of software projects. The
information that is extracted from these repositories include the
metadata associated with changes to source code, programmers
activities, project structure and source code.

Sensor of New Revisions (C): The Sensor of New Revisions is a process
that continuously monitors the addition of new revisions to software
projects and notifies to the Data Extractor.

Data Extractor (SM):2 The function of this sub-module is to extract the
data required in order to carry out an analysis, whose results are used to
feed the visualizations of the VA tool. It is made up of the Architecture
and structure retrieval, Source code retrieval, and the Metadata retrieval
components, described as follows:

Architecture and structure retrieval (C): This component is
responsible for extracting details of the project structure for each
revision, with particular interest on the packages of the system
and their organization.

Source code retrieval (C): It is responsible for recovering the source
code for each of the system revisions and for storing classes with
basic information about their location in the system architecture.

Metadata retrieval (C): The data that this component is responsible
for retrieving, includes the logs of each revision and its associated
details: the date on which the revision was carried out, which
programmer carried it out and which elements were affected.

The sub-modules that conforms ASEA are Source Code Analyzer and
Metadata, Software Evolution Analysis and Correlation Engine, whose
components and descriptions are explained next.

1C makes reference to component.
2SM refers to a sub-module.

8.3. Visual Analytics and Software Systems 209

F
ig

ur
e

8.
3:

O
ve

rv
ie

w
of

th
e

ar
ch

it
ec

tu
re

fo
r

M
al

ek
u

.

210 Chapter 8. A Visual Analytics Process for Software Evolution

Source Code Analyzer (SM): This sub-module is responsible for carrying
out analysis of the revisions of the source code of the project using the
following components:

Metrics detection (C): This component is responsible for detecting
and calculating metrics using details from the parsed source code.
Some of the metrics that can be calculated by this component
include LOC, Number of Methods (NOM) and Cyclomatic
Complexity.

Item relationships analysis (C): The functions of this component
include the detection of inheritance (parent-child and child-parent)
and interface implementation (implementing and implemented by)
relationships.

Source Code Parser (C): It reads each source code file, line by line, in
order to identify classes, interfaces, methods and declarations, and
applies parsing rules. It allows to calculate metrics and to identify the
relationships between software items.

Parsing rules database (C): Source Code Parser applies parsing rules,
which are stored in text archives. Some of these rules are generated
automatically while others are created manually.

Metadata, software evolution analysis and correlation engine (SM):
This is invoked by the sub-module Source Code Analyzer when it
terminates the segment of analysis apportioned to it. Its function is to
identify socio-technical relationships and determine the contributions
made by individual programmers, as well as analyzing the architecture
and structure of the project for each revision under analysis. The
components of this sub-module are:

Contribution analysis (C): Based on the metadata of SCM
repositories, a cumulative calculation of the elements changed for
each revision and programmer is carried out.

Socio-technical analysis (C): Using the metadata of SCM
repositories the relationships between programmers and software
items are examined as well as the relationships which are created
between programmers using as a basis the elements which have
been changed in common.

Architecture and structure (C): The results produced by Source
Code Analyzer and the information obtained from the metadata of
SCM repositories are used to correlate software project structure,
metrics and relationships between software items. It further

8.3. Visual Analytics and Software Systems 211

gathers information about the creation of software items and their
life-line during the project.

Software evolution facts database (C): This database stores the
analysis results produced by other sub-modules and components of
ASEA. In order to do this, it uses a database design that emulates the
structure of software projects: project –> revision –> package –> file
–> software item.

The sequence of steps that follows the process of data retrieval and analysis
(made up of ETL and ASEA modules) are:

1. The user enters the connection parameters of the SCM repository and
database where data of the particular project that needs to be analyzed
will be stored.

2. When the process has been initiated, the retrieval components included
in the sub-module Data extractor (Architecture and structure retrieval,
Source code retrieval and Metadata retrieval) carry out the task of data
retrieval (Extract, Arrow 1)

3. Once data has been retrieved, it is loaded into the Data Warehouse
(Load, Arrow 2). Data loaded into the Data Warehouse are used as
benchmarks for later retrieval processes.

4. When project data have been retrieved, the Sensor of new revisions
will be responsible for monitoring the availability of new revisions in
the SCM repository and to notify retrieval modules in a timely manner.

5. As data is retrieved, ETL informs ASEA that new data is available to
perform the respective analysis concordant with the analysis components
available.

6. The sub-module Source Code Analyzer reads the Data Warehouse in
the ETL module (Read source code, Arrow 3) in order to detect and
calculate metrics for classes and methods, and analyze the relationships
between software items such as the hierarchy of classes and interface
implementation.

6.1. To carry out its tasks, Source Code Analyzer requires to parse
the source code and then the Source Code Parser component is
notified. (Call parser, Arrow 4).

6.2. The component Source Code Parser reads the parsing rules from
its own database (Read parsing rules, Arrow 5) and perform the
parsing of the source code.

212 Chapter 8. A Visual Analytics Process for Software Evolution

7. When the sub-module Source Code Analyzer has finished carrying
out the analysis, it stores the results in the Software Evolution Facts
Database and notifies the Metadata, Software Evolution Analysis and
Correlation Engine (Call second level analysis engine, Arrow 6).

8. The sub-module Metadata, Software Evolution Analysis and Correlation
Engine reads evolution facts from the Software Evolution Facts
Database, metadata, project structure and evolution details from the
database of the ETL module (Read metadata, project structure and
evolution details, Arrow 7). Using this information the module
then carries out a more profound analysis regarding socio-technical
relationships, analysis of the contribution of programmers and the
architecture and structure of the software project under consideration.

9. The process which carries out the ETL and ASEA modules runs
indefinitely for each of the projects configured until the analysis for one
or more projects is stopped by the user.

The design of the architecture permits the addition of new components
to modules and sub-modules to allow connections to be made to new data
sources, perform other types of data analysis and visualize the results of the
analysis with new visual representations. The steps followed by ASEA are the
same as those that were described in section 8.3.1 with regard to this module,
so that the explanation of these steps is omitted.

8.4 Conclusions

The process explained builds on the visual analytics process which is described
in section 8.2 and deepened by means of the design and implementation
of an architecture which follows this process, referred to as Evolutionary
Visual Software Analytics (EVSA). The detailed design of the architecture
identifies and explains the roles, border and interactions between the modules,
components, methods and techniques used.

Therefore, the feasibility of the implementation of the architecture
presented in this chapter, and thus the applicability of the EVSA process
is discussed in the next chapters.

Chapter 9

Visual Analytics Explorer for
Software Evolution

Sorprendido por la tarea que le había sido encomendada, Güindy
preguntó a Azul, el dueño de la fábrica, "¿por qué quieres que
diseñe nuevos relojes, si los que fabricas son famosos por su

precisión?". "Son famosos porque son los mejores que se conocen,
pero tu trabajo será hacer otros mejores", respondió Azul. Güindy

se quedó desorientado y ansioso, aunque antes de adentrarse en
esta aventura vivía en una gran ciudad, no conocía de relojes y

nunca había trabajado en una fábrica. — El viaje de Güindy,
A.González

Contents
9.1 Introduction . 213

9.2 Framework: situational awareness and collaboration 214

9.3 Visualization Designs and Use Case Scenarios 216

9.3.1 Granular Timeline: Analysis of Statistics on Revisions
and Contributions . 219

9.3.2 Gridmaster: Correlation of Project Structure, Software
Item Relationships and Metrics 224

9.3.3 Socio-Technical Graph: Visual Representation of the
Collaboration and Relationships between Programmers 238

9.4 Discussion and Conclusions 242

9.1 Introduction

The aim of this chapter and chapter 10 is to explain the features of the
visualizations that conforms the VKESE module (see section 8.3.2 and
Figure 8.3 for further details), their use in supporting situational awareness
and collaboration and in the analysis of patterns in software projects.

214 Chapter 9. Visual Analytics Explorer for Software Evolution

Accordingly, the following section presents a framework for explaining
how situational awareness supports GSD and collaborative work, as well
as the relationships of this framework with the VKESE module of Maleku.
Thereafter, the next sections explain the decisions that were taken for
designing the visual representations that comprises VKESE and how
those visualizations contribute to knowledge discovery and decision making
processes in the context of software project management. Furthermore, the
sections in chapter 10 are committed to explain the design decisions that
were taken concerning the design and implementation of Revision Tree (RT)
(a visualization that is integrated into VKESE), a case study linked to the
software industry on the use of this visualization and its use in analyzing
source code files of open source software projects.

9.2 Framework: situational awareness and
collaboration

SDME processes are complex, dynamic, unpredictable and it is common
that they are carried out in different geographical locations and for several
years, as it was mentioned in chapter 6. This makes it essential that team
members establish collaborative relationships, be they long term or one-off,
to accomplish tasks and solve specific problems. Thus, when a task has been
completed or a problem has been solved the individuals will go on to work on
the next task on the agenda which is based on project planning or on the list
of pending problems. This implies the collaboration is not always conducted
among the same members of the team, but rather in terms of expertise and
the tasks being undertaken at any particular moment.

Collaboration among members of a team can begin in a number of different
situations, which implies that there is no relation between aspects of teamwork
(see Section 6.2.1). Accordingly, the framework illustrated in Figure 9.1 aims
to provide guidance on a possible configuration of the relationship between
these aspects as well as define the role they can play in the process of
collaboration. In Figure 9.1, the composite labels (e.g., activates / supports)
on lines with bidirectional arrows are read following a descending / ascending
order. The descending order is initiated with the concept at the top end of
the line and ends with the concept at the lower end (e.g., Distributed Team
Cognition –> Activate –> Collaboration), while in the case of ascending order,
the reverse order is followed (e.g., Collaboration –> supports –> Distributed
Team Cognition).

The framework of Figure 9.1 has been defined taking into account a
distributed cognition approach in which the members of the teams use their

9.2. Framework: situational awareness and collaboration 215

individual cognition, according to their specialization and experience, and
which is complemented with the cognition of the other individuals to act in
the performance of tasks and problem solving. On this basis, the collaborative
process can be triggered by one or several members of the team using their
cognitive abilities when required to perform a task or when a situation is
detected about which it is necessary to act.

To make collaboration possible among team members, communication,
coordination and control among team members may be required. It is
important to note that collaboration among individuals requires information
to facilitate the distribution of tasks and to determine the actions that should
be followed according to the status of the project. So, the capacities and
information provided by SAWs on the evolution and status of the processes,
tasks, activities and changes that have been made to the software items can
be very useful. The relationship between the process of collaboration and the
communication, coordination and control activities is reciprocal, as shown in
Figure 9.1.

Figure 9.1: Framework for collaborative work in SDME processes
[González-Torres 2014].

In an analogous manner one or more members of the team may activate
the communication, coordination and control activities, so in turn the process

216 Chapter 9. Visual Analytics Explorer for Software Evolution

of collaboration between the appropriate individuals could be initiated, and
if necessary the capabilities of SAWs can be used.

With regard to this point it is worth mentioning that the goal of a SAW
is to provide information about the processes, tasks, activities and artifacts
of software systems, but also provide the possibility of interaction for users
who can annotate visualizations during the communication, coordination and
control activities (see Figure 9.1). The purpose of the SAWs is to support the
collaboration and decision making processes, so its design can consider some
of the following objectives:

∗ Provide information on the state of the system to facilitate the
completion of a task or to solve a maintenance problem.
∗ Facilitate the construction of individual and group cognition based

around the processes of SDME of a software project to provide tracking
information on the status of the system.
∗ Show patterns of unexpected behaviors derived from system changes to

trigger collaboration mechanisms among team members.
∗ Support project managers in decision-making processes that may be

related to the allocation of tasks to team members as well as to activities
and tasks in progress or very specific technical details of software system
elements.
∗ Provide details about the progress of work being done by other team

members and the general state of the project to assist programmers in
the fulfillment of their tasks, goals and objectives.

It should be noted that coordination and control activities have direct
effects on the processes, activities and software items, which are the data
source used to feed the visualizations of SAWs tools.

Finally, it is worth to mention that the visualizations that comprise
the VKESE module of Maleku are targeted to serve as a SAW for facilitating
the comprehension of the evolution of software systems and hence to support
the SDME processes.

9.3 Visualization Designs and Use Case
Scenarios

The main view of VKESE and the visualizations that it includes are shown
in Figure 9.2: GT (displayed at the left bottom corner), Gridmaster (located
at the right top panel), STG and RT1 (the last two are located at the right
bottom panel).

1The design and features of the RT are explained in detail in chapter 10.

9.3. Visualization Designs and Use Case Scenarios 217

The visualization outcomes that are presented in the remaining sections of
this chapter are the result of applying GT, Gridmaster and STG to data from
the evolution of jEdit, JabRef and JFreeChart, three open source projects
written in Java which are described below:

1. jEdit is an open source text editor for programmers that is available at
http://sourceforge.net/projects/jedit and whose development started on
December 1999. This study takes into account nearly 1212 classes and
5801 revisions that were carried out between September 2001 and April
2014.

2. JabRef is a bibliography reference manager, released on November 2003
and available in http://jabref.sourceforge.net. The evolutionary data
under consideration includes 3719 revisions and 1236 software items that
were created during 9 years (from October 2003 to November 2011).

3. JFreeChart is a chart drawing library (http://www.jfree.org/jfreechart),
under the responsibility of a single programmer, that started being
developed in February 2000. This study takes into account 916 revisions
of this project and 1130 software items distributed from 2007 to 2010.

GT provides an overview of project activities; Gridmaster, STG, and
RT depict specific details regarding the correlation of project structure,
associations, collaboration and time at different granularity levels of the
project structure. Thus, after the visualizations are launched from the
contextual menu of the Eclipse’s Package Explorer view (located at the left
top panel and pointed out by the number 1), the knowledge discovery workflow
(as indicated by the numbers and arrows in Figure 9.2) begins with the
analysis of the programmers’ contribution patterns in GT, and the selection,
for further analysis in the Gridmaster, of one or more time units from the
radial view. Afterwards, the user can select either one of these two options
from Gridmaster :

1. A software item in the tree located in the left hand side of Gridmaster to
obtain details regarding the collaboration during the evolution of such
item (using RT).

2. A time unit in Gridmaster for presenting the associated socio-technical
relationships in STG.

The SE facts that have been taken into account for the visualizations
presented later are the following: software item lifelines, evolution metrics,
socio-technical relationships and some architectural/structural relationships
such as, for example, inheritance, interface implementation and the correlation
of structural data with metrics.

http://sourceforge.net/projects/jedit
http://jabref.sourceforge.net
http://www.jfree.org/jfreechart

218 Chapter 9. Visual Analytics Explorer for Software Evolution

F
ig

ur
e

9.
2:

K
no

w
le

dg
e

di
sc

ov
er

y
w

or
kfl

ow
in

th
e

So
ft

w
ar

e
E

vo
lu

ti
on

V
is

ua
liz

at
io

n
m

od
ul

e
of

M
al

ek
u.

9.3. Visualization Designs and Use Case Scenarios 219

9.3.1 Granular Timeline: Analysis of Statistics on
Revisions and Contributions

GT uses a modified circular ring chart layout to show an entire overview of
the temporal dimension of a project (Figure 9.3). Concentric rings convey
the different time scales that record change events, from coarse (years, outer
ring) to fine grain (hours or finer, innermost ring). A related layout was
used by Holten et al. to depict software project hierarchies [Holten 2007,
Cornelissen 2007]. This type of layout compactly presents large quantities of
data and provides an overview + detail strategy.

GT can be used to represent any kind of quantitative data produced
over time, given its nature to depict numerical values and statistic results.
However, it is utilized in this research to represent statistics based on the
commits of revisions and programmer contributions, as it is explained below.

Statistics on revisions: The space within each chart cell is used to embed
different types of visualizations for representing the number of revisions
at the level of detail of a particular cell. The years ring cells insert bar
charts that show the number of revisions for each month for each year.
The months ring embeds a height plot chart presenting the number
of committed revisions per day of month. Next, the days ring shows
revisions in each day, so this ring has 28, 29, 30 and 31 cells (according
to the number of days in the month that is selected), and the revisions
at this level are depicted by bar charts or treemaps according to user
selection (see Figure 9.4 for the treemap representation). In each cell, a
matrix dot plot is drawn in polar (ρ, ϕ) coordinates, where ρ maps the
hour at which a revision was created. The innermost hours ring shows
revisions made each hour, so it has 24 cells, and represents the revisions
by means of bar charts or treemaps.

The bar chart representation provides details about the number of
contributions at each granularity level. However, the representation of
data at the days and hours granularity levels does not take full advantage
of the small graphic area available. Thus, treemaps were applied as they
employ a space filling algorithm, which makes better use of space, and
additionally permits better highlight of individual revisions.

Statistics are displayed in the center of the visualization as the time
units are selected. Note that time unit selections begin in the outer ring
that corresponds to ’years’ and follows the sequence months –> days –>
hours (e.g., 2008 –> June 2008 –> June 3th, 2008 –> June 3th,2008 at
22), as highlighted in Figure 9.3.

220 Chapter 9. Visual Analytics Explorer for Software Evolution

Figure 9.3: GT showing statistics for revisions committed for the jEdit source open
software project spanning 14 years.

Programmer contributions: The contributions of programmers are color
coded, where each color is matched to a particular programmer. In
general the use of color can permit the acquisition of information related
to statistics of committed revisions and those who have carried out such
revisions, information that can be observed at first glance.

It is thus easy to extract patterns concerning the programmers who
intervened in the development of a project. This visualization is simple
and intuitive and can be used with little change in the representation of
any type of statistics, as it was previously remarked.

9.3. Visualization Designs and Use Case Scenarios 221

Figure 9.4: GT showing statistics for revisions using treemap representations for
jEdit.

Figure 9.3 allows to observe at first glance that the evolution of jEdit has
been carried out since 2001 to 2014 and accounts 14 years. Moreover, it easily
conveys details concerning the years with more revisions (2008 and 2012) and
the collaboration patterns of programmers. Thus, spestov (turquoise) is the
developer that contributed the most to the project during the first 5 years
(2001, 2002, 2003, 2004 and 2005), and later other programmers such as ezust
(orange) and kpouer (yellow) led the programming of the system, according
to the information derived from the number of revisions.

Although some software projects follow a similar pattern to the one of
jEdit (e.g., a lead programmer contributes to the project during its first years
of life), the arrangement of programmer contributions varies from one project
to other. This is the case when comparing the output of GT for jEdit, JabRef

222 Chapter 9. Visual Analytics Explorer for Software Evolution

Figure 9.5: GT showing statistics for JabRef.

and JFreeChart (see Figures 9.5 and 9.6).
The contributions of mortenalver (green) in JabRef (Figure 9.5) are

distributed throughout the evolution of the project and are not concentrated
at the beginning of the development. Furthermore, the contributions of
other programmers such as coezbek (dark purple), jzieren (brown) and kiar
(yellow) are interleaved with those made by mortenalver. But in contrast,
JFreeChart (Figure 9.6) is a system that has been developed, mostly, by a
single programmer with some small collaborations of other two developers.
So, most of the contributions depicted by GT (see Figure 9.6) are colored
blue: the color used to represent to mungady, the username of the project
leader. Thus, the pattern of contributions of JFreeChart differs from the one
of jEdit and JabRef, which have been developed by several programmers.

9.3. Visualization Designs and Use Case Scenarios 223

Figure 9.6: JFreeChart : GT visualization depicting statistics on revisions.

Another relevant feature of this visualization is its capability for uncovering
contributions patterns. Figure 9.5 makes evident that programmers made
revisions several times per hour, as can be noted in the innermost ring (the
hours ring). This can lead to many questions from the project manager,
among which are: Why has this programmer made so many commits? Has
this programmer corrected errors on previous commits, then fixed them and
commit again? Is this programmer accustomed to make commits as an analogy
to saving changes to the project? Moreover, this visualization permits project
managers to obtain insight on contribution patterns associated to the working
hours of programmers: one can select a given day and review the hours in
which programmers have made commits, revealing the working pattern of
developers.

224 Chapter 9. Visual Analytics Explorer for Software Evolution

The answer to the previous questions could help the project manager to
make decisions regarding the compliance of human resources to rules and
training. A relevant decision for project managers, after this analysis, is the
one concerned with the programmers that require training and the contents
of such training.

GT is a visualization that conveys details on the evolution of software
projects for long time periods and which offers interaction mechanisms to
follow a path that starts at coarse grained levels and allows to move into finer
grain levels of details. Similar to the outcomes shown for jEdit in Figure 9.4,
the results displayed in Figures 9.5 and 9.6 allow to quickly grasp general
information about the years of the evolution of JabRef and JFreeChart, as
well as details concerning the time period that is under study and the months
with more contributions (in terms of the number of revisions).

9.3.2 Gridmaster: Correlation of Project Structure,
Software Item Relationships and Metrics

Gridmaster is based on a tree and a grid representation, two structures widely
known by programmers as these are common in computer programming (see
Figure 9.7). The tree structure is made up of all the packages and software
items that have been added to the project during its evolution, whereas the
grid layout is created by the intersection of rows and columns: the packages
and software items are placed in the tree structure and associated to rows, and
the time units are linked to columns. The use of the tree and the grid permits
the correlation of all the software items involved in the evolution process
with programmer contributions, the creation of software items, architectural
relationships changes such as the addition or removal of inheritance and
interface implementation, and metrics.

Accordingly, some of the features of Gridmaster permit to extract
collaboration details at different granularity levels similar to GT. However,
Gridmaster was designed to be a complementary view of GT. In this sense,
GT was sought to offer an overall picture as well as top-down statistics
views concerning the revisions of a software system, while Gridmaster was
designed to correlate programmerś contributions with software items. Thus,
Gridmaster can be used to depict the socio-technical relationships between
software items and programmers as well as the lifeline of software items for
the entire evolution of a system or a particular period of time that is selected
from GT. The representation of these features is carried out by means of
colors, as it is explained below.

9.3. Visualization Designs and Use Case Scenarios 225

F
ig

ur
e

9.
7:

A
bs

ol
ut

e
re

pr
es

en
ta

ti
on

of
pr

og
ra

m
m

er
’s

co
nt

ri
bu

ti
on

s,
pr

oj
ec

t
st

ru
ct

ur
e

an
d

lif
el

in
es

fo
r
jE

di
t,

Ja
bR

ef
an

d
JF

re
eC

ha
rt

.

226 Chapter 9. Visual Analytics Explorer for Software Evolution

In this visualization colors are assigned to programmers and the area
associated to each programmer depends on the number of contributions made
(in terms of committed revisions) as well as on the representation that has been
chosen from the contextual menu: whether relative or absolute (see Figure 9.7
for screenshots on these characteristics). In this context, ε = ∆/η is the area
assigned to any time unit in the visual representation, where ∆ is the size of
the graphic area in pixels and η is the number of time units (years, months or
days) in the visual representation. Thereafter, for the relative representation,
α = ε/τ is the area assigned to a programmer contribution, where τ is
the number of contributions for the time unit with the most contributions.
Therefore, the area assigned to a given programmer for a given time unit is
Λ = α ∗ β, where β is the number of contributions made by the programmer
during that particular time unit. In the case of absolute representation, the
area assigned to a programmer contribution is different for each time unit.
Thus, γ = ε/ω, where ω is the number of contributions for the time unit
under consideration.

The purpose of the absolute representation is to depict the lifeline of
software items and packages using an intuitive approach. Figure 9.7 (a) shows
that the activities performed on the package bsh of jEdit were carried out
between 2001 and 2006. It also displays that this package currently is not
part of the latest version of the project, which is corroborated when reviewing
the structure of jEdit on the Eclipse workbench. Moreover, Figure 9.7 (a)
allows to note that other packages such as com, gnu, macos y macosx either
are part of the first level of the project structure (although macos and macosx
were moved into other packages located at a lower hierarchy level, and hence,
they continue being part of the project).

The pattern described in the previous paragraph is similar to the one
illustrated in Figure 9.7 (b), where the packages antlr and osxadapter from
JabRef are not part of the system structure in the latest revision that is
under analysis. This contrasts with the structure of JFreeChart that is shown
in Figure 9.7 (c) which does not exhibit changes after some years of evolution.

In summary, the lifelines of software items are depicted by colors and the
relationship between programmer’s activities and the structures of the project
are established.

The aim of the relative representation is to permit the comparison of the
activity carried out in packages and the volume of programmer’s contribution,
as the area assigned to a contribution is the same for all time units in the
visualization. It can also be viewed as a linear representation of the statistics
on contributions and collaboration shown by GT.

The relative representation supports to correlate with precision the time
periods with programmer’s contributions and aids to the identification of

9.3. Visualization Designs and Use Case Scenarios 227

packages that play a key role in the system, using as basis the concentration
of high volumes of activity in their evolution. Therefore, the characterization
of programmers contributions shows that years 2008 in jEdit, 2005 in JabRef
and 2008 in JFreeChart are the years with a higher volume of activity in the
corresponding project (see Figures 9.7 (b), 9.7 (b) and 9.7 (c)), and hence are
used as the reference year for calculating the area of each individual revision.
Moreover, figures 9.8 (a), 9.8 (b) and 9.8 (c) portray a pattern in which the
activities carried out during the evolution of jEdit, JabRef and JFreeChart
concentrate in one package: org, net and source, respectively. Accordingly, it
should be highlighted that these packages contain several sub-packages and
most of the classes in the system they are part of (this can be concluded after
expanding and examining the content of the package and its sub-packages).

Contribution patterns could be observed in GT as well as in the
Gridmaster, where colors are also used to show the volume of contributions
made by programmers for one or more time units. Furthermore, the
Gridmaster correlates contributions with the project structure down to the file
level, providing details of the software items that have been changed by each
programmer. The aim of this feature is to assist software project managers
in the assignment of programming tasks to programmers, according to their
previous experience based on the changes made to software items.

Accordingly, Figure 9.9 (a) shows a partial screenshot of Gridmaster for
jEdit which depicts that spestov has made changes to all packages displayed
in the figure through the year 2001 to 2005, which practically made him
indispensable for error correction and maintenance during that period of time,
being the only exception the year 2005 where other programmers (e.g., ezust
(orange) and kpouer (yellow)) started contributing to some of the packages
shown. Thereafter, the contributions to packages have been split between
two or more programmers, with a predominance of ezust during the years
2006 and 2008 and kpouer on 2007, and from 2008 tol 2012. It is relevant to
highlight that after the year 2006 the packages in the figure that concentrate
the activity of a higher number of programmers are browser, bsh and buffer,
which could lead to the conclusion that this packages are of great interest to
the community of collaborators.

In line with the previous analysis, Figure 9.9 (b) shows a screenshot of
JabRef to depict that mortenalver (green) has made changes to all packages
in the project, except antlr, which was created and changed only by jzieren
(brown). Moreover, it shows that coezbek (dark purple) also contributed to
most packages in the project during years 2006, 2007, 2008 and 2009, hence
he could have substituted to mortenalver in case of an eventuality.

228 Chapter 9. Visual Analytics Explorer for Software Evolution

F
ig

ur
e

9.
8:

R
el

at
iv

e
re

pr
es

en
ta

ti
on

of
pr

og
ra

m
m

er
s’

co
nt

ri
bu

ti
on

s
fo

r
th

e
pr

oj
ec

ts
jE

di
t,

Ja
bR

ef
an

d
JF

re
eC

ha
rt

.

9.3. Visualization Designs and Use Case Scenarios 229

F
ig

ur
e

9.
9:

C
or

re
la

ti
on

of
pr

og
ra

m
m

er
s

w
it

h
pa

ck
ag

es
fo

r
th

e
pr

oj
ec

ts
jE

di
t

an
d

Ja
bR

ef
.

230 Chapter 9. Visual Analytics Explorer for Software Evolution

Figure 9.9 (b) also shows a similar pattern for the year 2011, in which
olly98 (light purple) has contributed significantly to some important packages
and therefore, he could take over some tasks assigned to mortenalver. The
packages modified by olly98 are net, spl and tests, from which net is the core
package of the system and tests is the package associated to system’s tests
cases. Hence, the assignment of tasks to programmers can be carried out
taking into account not only the functionality of the first level elements of the
project structure but also considering the lower level elements.

The GT also uses a relative representation to show the contributions of
programmers precisely, so Gridmaster is an analogous visualization in that
sense under this context. It allows details which are at different granularities
of time to be examined and this means, in practice, that it is possible to select
a particular year in order to analyze the distribution of monthly activities, or
amplify a particular month in order to revise the levels of daily activity.

Figure 9.10 shows years 2006 and 2008 in expanded form so that changes
in inheritance relationships and modifications of metrics can be observed,
and their monthly distributions examined. Furthermore, the use of GT and
Gridmaster can lead to similar conclusions when carrying out an analysis of
the collaboration of programmers, as it can be grasped from the contributions
of spestov (turquoise), who is the programmer with most activity in the period
from 2001 to 2005.

The tree structure used by Gridmaster is a scalable representation based
on a foldable tree to depict packages, within which are the archives, which
in their turn contain classes, interfaces, enumerations and annotations (the
four basic elements of Java). In this context classes are denoted by a small
square symbol, while interfaces are depicted by a small circle, enumerations
are represented by a triangle and annotations are drawn using a small star
symbol. When the foldable structure expands it is possible to see the contents
of the files and details on the establishment and termination of inheritance
and interface implementation relationships, as well as metrics.

Figure 9.10 points out the associated software items that intervene in
inheritance and interface implementation relationships by means of red
colored legends that indicate their locations (Java Application Programming
Interface (API), current project or external API library). Furthermore, the
establishment of these relationships is depicted by a green oval while its
termination is represented by a red oval. The algorithm used to determine
whether an associated software item is included in the current project, Java
or an external API library is shown by Algorithm 9.3.1.

Concerning metrics, these are represented in the rows that corresponds
to software items (the rows associated to packages, inheritance and interface
relationships are not used for this purpose) using bar charts with the aim of

9.3. Visualization Designs and Use Case Scenarios 231

highlighting changes (see Figure 9.10). The values of metrics are displayed
when a commit of a software item has been carried out, regardless of
whether the metric value has changed or remained the same. Similar to the
representation of programmer contributions, metrics are represented using
absolute and relative areas. Absolute representation takes into account the
software item with the highest metric value to calculate the chart height.
However, the relative representation only takes into consideration the highest
metric value associated with the software item. The design of the visualization
only permits the representation of one metric at a time so the user must select
the metric which is sought to be visualized.

Algorithm 9.3.1: Extraction of software item dependency.(repos)

repository ← repos
while n < repository.lastRevision()

do



revisionClasses← DataExtractor.getRevisionItems(n)
for each item ∈ revisionItem

do



if item.hasParent()

then



parent← item.getParent()
self ← Analyzer.isParentOnProj(parent)
if project
then location← Project
else java← Analyzer.isParentOnJava(parent)

if java
then location← Java
else location← Library

package← Analyzer.getClassPackage(parent)
extends(x) = (parent location package)
vector.add(extends)

if item.hasImplements()

then



interfaces← item.getInterfaces()
for each interface ∈ interfaces

do



self ← Analyzer.isIntOnProj(interface)
if project
then location← Project
else java← Analyzer.isIntOnJava(interface)

if java
then location← Java
else location← Library

package← Analyzer.getIntPackage(interface)
implements(x) = (parent location package)
vector.add(implements)

return (vector)

Gridmaster represents the inheritance relationship both for parents to
children as children to parents. Thus when selecting an item, the software
elements which it has inherited over time can be observed as well as those
software items which have been inherited from the item selected.

232 Chapter 9. Visual Analytics Explorer for Software Evolution

F
ig

ur
e

9.
10

:
In

he
ri

ta
nc

e
an

d
in

te
rf

ac
e

im
pl

em
en

ta
ti

on
re

la
ti

on
sh

ip
s,

in
cl

ud
in

g
ex

pa
nd

ed
ye

ar
s

an
d

m
et

ri
c

va
lu

es
,

fo
r

th
e

fil
e

V
F
SB

ro
w
se

r.
ja

va
in

jE
di

t.

9.3. Visualization Designs and Use Case Scenarios 233

Accordingly, inheritance is represented by Gridmaster in the following
form : Parents <– Selected software item –> Children. Figure 9.11 depicts
the relationships that AbstractOptionPane has established with other software
items: it inherits from JPanel, implements the interface OptionsPane and has
8 subclasses.

Figure 9.11: Software item inheritance and interface implementation relationships
for the file AbstractOptionPane.java in jEdit.

The representation of interface implementation is carried out in a
similar manner to the representation of inheritance relationships and depicts
the interfaces that are implemented by a particular class (from a class
perspective) and which classes implement a specific interface (from an
interface perspective). This feature is shown in Figure 9.12, which highlights
with a red oval the interface Compare and depicts that this interface
inherits from the interface Comparator and is implemented by the classes
MenuItemCompare and StringCompare (highlighted by blue circles).

The use of Gridmaster during the analysis of jEdit and JabRef permitted
to unveil that a common pattern in these projects is that a large number of files
contain several software items. Moreover, it also showed that the intensive
use of inheritance and interface implementation is also a common pattern.
However, these patterns are not common in JFreeChart as most files in this
project do not contain more than one software item (e.g., JFreeChart.java is
one of the few files that contains two classes) and inheritance is rarely used in
comparison with the other two projects (jEdit and JabRef).

Figure 9.13 shows that the file OperatingSystem.java (located in the
package installer of jEdit) contains 10 classes and several inheritance

234 Chapter 9. Visual Analytics Explorer for Software Evolution

Figure 9.12: Implementation relationships for the interface Comparator of the
project jEdit.

relationships (none of the classes is implementing an interface). Moreover,
it depicts a hierarchy tree in which OperatingSystem is a class with four
sub-classes (HalfAnOs, Unix, VMS and Windows) from which other classes
can inherit from, such as the case of the class MacOS that inherits from
the class Unix. Furthermore, Figure 9.13 shows that most classes in the file
OperatingSystem.java established inheritance relationships during the year
2003, and also depicts that metrics for the classes Unix, Windows and OSTask
had some slight variations during the same year.

Figures 9.14 and 9.15 demonstrate similar patterns on the evolution of the
structure of the files HelpViewer.java (jEdit) and BasePanel.java (JabRef),
in terms of the inheritance and interface implementation relationships of the
software items they contain (the analysis of the evolution of these files with
the use of RT is discussed in chapter 10).

HelpViewer.java has evolved since the year 2002 up to April,
2014 (a partial view of this lifeline is shown in Figure 9.14) and
contains 6 classes (HelpViewer, LinkHandler, KeyHandler, ActionHandler,
PropertyChangeHandler and AsyncHTMLEditorKit) that have established
inheritance or interface implementation relationships. Accordingly, 3 of these
classes have established inheritance relationships with other classes whereas
4 of them have implemented interfaces. In addition, the value of the NOM

9.3. Visualization Designs and Use Case Scenarios 235

Figure 9.13: OperatingSystem.java: file that contains 10 classes, which makes
intensive use of inheritance.

metric associated to 5 out of the 6 classes have not changed with time, with
the exception of the values for the class HelpViewer (see years 2003, 2005 and
2007 in Figure 9.14).

An important detail to be noted is that there were an intensive
activity concerning the establishment or change of inheritance an interface
relationships during the years 2006, 2007 and 2008 in jEdit, as it can be
observed in Figures 9.10, 9.11, 9.12, 9.13 and 9.14. Therefore, this
could indicate that a restructuring had undergone during those years, and
particularly during 2007 that is the year that shows more activity on this
regard.

Figure 9.15 shows that the file BasePanel.java (located in the package
net.sf.jabref) contains 6 classes, from which 5 of them (BasePanel,
UndoAction, BaseAction, RedoAction and LocalEditsListener) have an
inheritance or interface implementation relationship with other classes.

236 Chapter 9. Visual Analytics Explorer for Software Evolution

F
ig

ur
e

9.
14

:
R

el
at

io
ns

hi
ps

be
tw

ee
n

so
ft

w
ar

e
it

em
s

of
H

el
pV

ie
w
er

.ja
va

(j
E
di

t)
.

9.3. Visualization Designs and Use Case Scenarios 237

F
ig

ur
e

9.
15

:
In

he
ri

ta
nc

e
an

d
in

te
rf

ac
e

im
pl

em
en

ta
ti

on
re

la
ti

on
sh

ip
s

of
so

ft
w

ar
e

it
em

s
in

B
as

eP
an

el
.ja

va
(J

ab
R
ef

).

238 Chapter 9. Visual Analytics Explorer for Software Evolution

The evolution of BasePanel.java has extended from 2003 to 2011 (the last
year taken into account in this study). Accordingly, the classes RedoAction
and UndoAction inherit from BaseAction, whereas the class BasePanel
inherits from JPanel and implements the interfaces ClipboardOwner and
FileUpdateListener ; and in addition, the class LocalEditListener implements
the interface UndoableEditListener. Other important detail depicted in
Figure 9.15 is that most relationships established by the software items
mentioned above were performed in July, 2007.

Finally, it is worth to highlight that Gridmaster makes use of several
interaction techniques that include the possibilities of zoom-in and zoom-out,
fisheye distortion, and the capacity to filter out nodes from the structure.
In addition, it supports year selection from the timeline for depicting data
according to associated months and the user has the possibility to choose how
the metrics and the programmers are represented by selecting between relative
and absolute value representations.

9.3.3 Socio-Technical Graph: Visual Representation
of the Collaboration and Relationships between
Programmers

STG is a complementary view (see Figure 9.16) that is based on a graph
representation and displayed when a time unit (e.g., a year or month) is
selected from Gridmaster. This visualization is aimed at depicting the
contributions of programmers (in terms of number of files and revisions
committed) and the relationship among them, and built upon the software
items they have changed in common. Accordingly, nodes depict the
contributions of programmers and colors are associated to the username of
programmers, whereas edges represent the collaboration relationships that
have been established between programmers from the changes they have made
to software items.

The size of nodes in STG conveys the number of contributions made by
programmers which are determined by the number of files that have been
modified in each commit (the computation of node weights differs from the one
made by Jermakovics et al. [Jermakovics 2011] that only takes into account
the number of commits). Therefore, the contributions weight, w, is the sum
of the number of files committed per programmer and per commit, and is
calculated as following:

∑c
i=1 Fi, where c is the number of commits made by the programmer

and Fi is the number of files for the commit i.

9.3. Visualization Designs and Use Case Scenarios 239

Figure 9.16: STG showing the contributions and relationships between programmers
based on the software items they have modified in common.

The thickness of edges represents the number of software items that the
associated programmers have changed in common. Thus, the strength of the
collaboration relationship between two programmers can be deduced from the
thickness of edges. Therefore, this visualization is useful in scenarios where
programmer’s tasks need to be redistributed due to an unexpected situation
or organizational change, where hypothetically, programming tasks performed
by programmer A may be eventually taken over by Programmer B.

The design described in the previous paragraphs is demonstrated by
Figure 9.16 (a screenshot of STG) which depicts the contributions of
programmers and their collaboration relationships between the years 2001

to 2014 for the project jEdit. This figure allows to note that for the given
time period the programmer with more contributions is spestov (turquoise),
followed by ezust (orange), k_satoda (light yellow), and daleanson (light
purple). Moreover, it also permits to deduce that spestov has intervene in
the modification of most software items in jEdit as it is the programmer
that has more connections to other programmers (highlighted by the red
colored edges). Furthermore, the precise identification of the software items
that spestov modified in common with other programmers could be achieved
through the inspection of the correlations between programmers and software
items in Gridmaster. Although the participation of spestov was very intensive
during the first years of the evolution of jEdit (see sections 9.3.1 and 9.3.2)
his contribution to this project stopped in 2005.

240 Chapter 9. Visual Analytics Explorer for Software Evolution

Figure 9.17: Screenshot of STG for jEdit and the year 2013.

A relevant aspect to be noted is that the relationships between
programmers were minimal during 2013 (see Figure 9.17), where shlomy
(purple) concentrated most of the relationships to ezust (orange), kpouer
(yellow), daleanson (light purple) and Vampire0 (brown), some of which
has been contributing to jEdit for several years. Furthermore, thomasmey
(light green), who made a relative large number of contributions during 2013,
established a weak relationship with kpouer according to the software items
that have changed in common (this can be further investigated in Gridmaster
after expanding the packages org–>gjt–>sp–>jedit and org–>gjt–>sp–>util).

The situation described in the previous paragraph is accentuated during
the first 4 months of 2014 (January through April), as it is depicted
by Figure 9.18. 3 of the 4 programmers that have contributed to jEdit
during 2014 do not have connections with other programmers and the only
relationship that has been established (between ezust and daleanson) is too
weak to be considered relevant in terms of collaboration.

The use of STG is further demonstrated by Figure 9.19 in relation to
JabRef, where the larger node represents mortenalver (green) the programmer
who has made more contributions to the project, whereas the other
programmers with also important contributions are coezbek (dark purple),
kojiyokota (dark orange), mspiegel (yellow), jzieren (brown) and olly98 (light
purple) and nbatada (pink).

9.3. Visualization Designs and Use Case Scenarios 241

Figure 9.18: Representation of STG for the year 2014 (jEdit).

Figure 9.19: STG for the overall evolution of JabRef.

The advantage of STG is its capability to represent in a small screen area

242 Chapter 9. Visual Analytics Explorer for Software Evolution

several years of data, as shown in Figure 9.19 where 9 years of information
has been summarized. While this visualization represents the complete
development and maintenance period, it is valuable for understanding the
contributions made to the project and the interactions between programmers.
Hence, the software project manager requires a representation of a recent
and shorter time period for deciding on programmers’ substitutions and
the collaboration relationships between programmers. Demonstrating this,
Figure 9.20 is based on the year 2011 (the last year that the JabRef team
actively used Subversion as their SCM tool) and depicts that mortenalver
(green) was the programmer with most contributions to the project during
that year. So, according to the relationships between the programmers,
kojiyokota (dark orange) was the most suitable programmer for substituting
olly98 (light purple) in most tasks (the relationships between the other
programmers is not even represented because it is extremely weak).

Figure 9.20: Socio-techcnical relationships between programmers for the year 2011

(JabRef).

9.4 Discussion and Conclusions

This section focuses on knowledge discovery from socio-technical relationships
and looks to answer questions regarding the contributions made by
programmers (who has led the development of the software project or has
contributed the most?), the contribution patterns of programmers (why has
the programmer made so many contributions in such a short time?), the
relationship among software items and programmers (who has modified a

9.4. Discussion and Conclusions 243

given software item?), and the software items programmers have changed in
common (which software items have programmers changed in common?).

According to the previous sections in this chapter, the visualizations that
conform the VKESE module of Maleku convey important details on the
socio-technical relationships that are derived from the interactions between
programmers and software items as well as architectural patterns. Therefore,
the representation of the socio-technical relationships included views at the
system and software item levels, and took into account the representation of
the following:

1. Statistics on the number of revisions for different granularity levels of
time (e.g., years, months, days and hours) and programmers.

2. Socio-technical relationships between programmers and software items.
3. Relationships between programmers according to the software items that

they have changed in common.

The representation of the statistics that is carried out by the GT,
Gridmaster and STG offers a different view of the data. Although some
of the functionality of GT and Gridmaster is similar as both depict details
on the number of revisions for different granularity levels of time and the
contributions made by programmers, Gridmaster correlates the number of
revisions and programmers with software items at the package and file levels.
This correlation permits to determine which software items have been changed
by each programmer. Hence, it could assists software project managers in the
assignment of programming tasks and staff substitutions (due to unexpected
situations or staff turnover), according to the previous experience of developers
changing specific software items.

Accordingly, STG is a complementary view that allows to get insight on
the collaboration between programmers during the development process for
a time period, and not on the basis of the software items that programmers
have changed in common, which also contributes to the assignment of tasks.

The analysis of jEdit, JabRef and JFreeChart with GT and Gridmaster
permits to observe that a leading programmer exists during a time interval or
the complete development of the project, but also that such leading function is
alternated between programmers. Therefore, an hypothesis that arose on this
regard is that open source projects are led at the beginning of the development,
and sometimes during a large period of time, by the programmer that took the
initiative to start the development of a project, but then the leading function
is assumed or alternated with other programmers. However, the scope of this
research does not take into account a further exploration on this hypothesis.

Section 9.3.2 discussed the features of Gridmaster and showed that the
use of this visualization allows to uncover the following structural details:

244 Chapter 9. Visual Analytics Explorer for Software Evolution

1. The active elements of the project structure based on the contribution
patterns and the structure shown by Gridmaster.

2. Key packages and software items according to contribution patterns.
3. Classes contained by files.
4. The establishment of inheritance and interface implementation

relationships in time.

The depiction of the lifelines of software items permits to convey details
of the elements that are under active development. This feature portrayed
the current structure of the system and offered clues regarding which software
items could require attention to understand the latest changes made to the
system. Moreover, it also allowed to identify the key packages and software
items of the systems, which could be of great value to draw the attention of
programmers and project managers into the more active structural spots of
the project. Therefore, this characteristic can help to project managers and
programmers to concentrate in the examination of the elements that could
constitute the core of the system.

The use of Gridmaster also allowed to corroborate its capabilities for
depicting details on the software items that are contained by files, as well
as information concerned with the evolution of their inheritance and interface
implementation relationships. This information is useful for programmers in
the understanding of systems and particularly of their structure when they
are new to a project.

Chapter 10

Revision Tree: A Case Study on
PlasticSCM

Como era costumbre en los momentos de incertidumbre y
dificultad, apareció Cucho moviendo la cola y lo arrastró por el

pantalón a una gran sala llena de diseños de relojes y piezas para
fabricarlos. Güindy se quedó perplejo por un rato, hizo un giro de

bailarina para ver en derredor, se sentó en el piso, se volvió a
poner de pie, brincó, lanzó un grito ahogado, hasta que finalmente
comenzó a revisar documentos, dibujar y juntar piezas de relojes,

de las tantas que habían en el lugar. — El viaje de Güindy,
A.González

Contents
10.1 Introduction . 245

10.2 Analysis of Existing Visualization Tools 246

10.3 Design of Revision Tree 250

10.3.1 Features of Revision Tree 254

10.4 Analysis of the Evolution of Source Code Files 259

10.5 Discussion and Conclusions 265

10.1 Introduction

The origin of RT is rooted in a partnership between the VisUsal
and GRIAL [García-Peñalvo 2012b] research groups of the University of
Salamanca (Spain) and Codice Software1. These research groups have
conducted several research projects concerned with IV, VA and HCI in the
past few years.

1Codice Software is a software company that was founded in year 2005 in Valladolid
(Spain) to design and develop SCM tools.

246 Chapter 10. Revision Tree: A Case Study on PlasticSCM

Therefore, VisUsal and GRIAL were engaged by Codice Software to design
a visualization tool based for the representation of the evolution of source code
files. Accordingly, these research groups determined that a visualization tool
for this purpose should offer focus + context views and provide the following
information details regarding the evolution of source code files:

1. Duration of the evolution of a source code file.
2. Number and name of programmers that are participated in coding the

software items within the file.
3. Name of the programmer with more contributions to the evolution of

the source code file.
4. Number and details (e.g., id, date and time of creation) of the baselines

and revisions that constitute the evolution process of the file.
5. Association of the baselines and revisions to branches.
6. Details on the merging of revisions.
7. Patterns of activity during a particular time period.
8. Comparison of activities associated to multiple time periods.

Thereafter, an analysis of Version Tree 3D (VT3D) (a 3D visualization that
was included at that time by PlasticSCM), VRCS [Koike 1993, Koike 1997]
and Revision Graph (Perforce) [PerforceSoftware 2014] was carried out to
identify additional requirements and visual features for RT (section 10.2).

One the design of RT was performed, its development took two different
paths. On the one hand, VisUsal and GRIAL improved the design
(section C.3.4), developed the tool and tested it using source code files from
open source projects to evaluate its usefulness in the comprehension of their
evolution (section 10.4). In the other hand, Codice Software developed its
own version and incorporated it into PlasticSCM. Thus, the original design
that is presented in this chapter was partially adopted by Codice Software and
named it Version Tree.

Consequently, the final design and the tests that are presented in this
chapter were carried out with independence of the initial relationship between
the VisUsal and GRIAL research groups and Codice Software.

Finally, it is worth to mention that section 10.5 presents the discussion
and conclusions of this chapter.

10.2 Analysis of Existing Visualization Tools

The visualization tool included in the first version of PlasticSCM was named
as VT3D. According to Codice Software its development was performed in 3D
because they considered that the use of three dimensions could make it look

10.2. Analysis of Existing Visualization Tools 247

Figure 10.1: PlasticSCM: Version Tree 3D [Therón 2007, Therón 2007].

more striking and interesting, and moreover because its design could allow to
understand, in an easy and intuitive manner, the way how a given file has
evolved.

VT3D used a line to represent the main line of the development and green
arrows to show the merge of revisions associated to a software item. Along
with the nodes, it uses labels to indicate information about the baselines and
revisions. To illustrate the application of VT3D to the evolution of a file,
Figure 10.1 shows two views: the view on the left hand side allows to observe
the complete depiction of the evolution of a file, while the view on the right
side of the figure shows a partial view of the evolution of the same file using
a close up.

However, after a careful analysis it was determined that VT3D has a
number of drawbacks:

1. It is a static representation: the user can only change the point of view
or choose how far is looking at it (i.e, it was only possible to turn around
the tree and zoom into a region to get closer to a node or area).

2. The use of the zoom in functionality increases the size of nodes and it
is harder to manipulate the tree, and the context is lost because the
visualization lacked a focus + context view.

3. If the user zooms out the visualization, the tree becomes a 3D shape
with no special meaning in the context of SCM.

248 Chapter 10. Revision Tree: A Case Study on PlasticSCM

4. After zooming in, it is difficult to see all the information represented due
to occlusion; the front nodes hide the other nodes representing revisions.

Based on the above and the tests performed with this visualization, it was
possible to corroborate that users could get disoriented when using the zoom
functionalities, and that the interaction possibilities offered by the tool do not
allow to obtain information by means of an intuitive approach.

According to the information provided by Codice Software, the opinions of
customers were divided after some time of having released the first version
of VT3D: some of them considered it an attractive tool, whereas it was
not attractive to the others. The main objections of customers were the
complexity to use and understand evolution details with the use of VT3D
(this criteria was different depending on the industry sector of the user).

Similarly, VRCS (illustrated in Figure 10.2), a 3D visualization
comparable to VT3D, try to represent the evolution of source code files.
However, whereas VT3D is oriented towards the visualization of the evolution
of a single file using a tree structure, the objective of VRCS is to depict
the evolution of all the software items within a system by means of a graph
structure.

Figure 10.2: Visualization of the evolution of software items with VRCS
[Koike 1997].

The main concerns with VRCS [Koike 1993, Koike 1997] are the lack of
a focus + context view, the navigation possibilities through the structure,
how it can behave with the presentation of complex systems due to the
high processor and memory demands of 3D visualizations and the common
occlusion problems in this type of representations. The visualization of large
revision histories for one software item using 3D version trees has some

10.2. Analysis of Existing Visualization Tools 249

limitations, being scalability one of the most important. Therefore, the
visualization of large repositories with many software items containing lots
of baselines and revisions would result in a very large and hard to navigate
visualization, which probably would not provide, within a short time, the
information required by the user.

Figure 10.3: Perforce: Visualization of the evolution of a software item with Revision
Graph [PerforceSoftware 2014].

After this comparison, it is important to highlight that a large number
of SCM such as Tortoise and Subversive include 2D visualizations to represent
the evolution of software items. However, the design of Revision Graph (see
Figure 10.3), the visualization offered by Perforce [PerforceSoftware 2014],
offers an attractive overview + detail approach that shows information about
branching and merging as well as details on the date and time of revisions
when clicking over the nodes and reviewing the information on the Details
tab on the left panel.

However, Revision Graph does not provide information about the
programmers contributing to the development of the software item, how long
the developers have been working on the item, nor in regards to periods
without activity. Furthermore, it is not possible to compare two baselines
or see the timeline at a first sight. In conclusion, this visualization is static
and does not offer interaction possibilities.

Consequently, table 10.1 compares the results of the analysis carried out
to the features of VT3D, VRCS and the Revision Graph of Perforce using as

250 Chapter 10. Revision Tree: A Case Study on PlasticSCM

base the requirements that were portrayed in section 10.1.

Table 10.1: Comparison of visualization tools for the evolution of software items.

Questions Version
Tree 3D

VRCS
Revision
Graph

Does the visualization provide a overview +
detail view?

x

How many developers are participating in the
development of the software item?
Who are the developers contributing to the
evolution?
Who is the programmer with more
contributions to the evolution of the item?
How many baselines constitute the whole
evolution process?

x x

Does the tool offer information about dates
and times of the creation of baselines and
revisions?

x

Is there a revision without been merged after
a long time?

x

How long has been the development of the
item?

x x x

Which baseline has more branches and
revisions?
Which branch has more modification activity? x
Which is the period of time that does not
show any activity?
Is there a period when the item was stable and
then suddenly started having a lot of activity?
Is it possible to compare baseline activity?

10.3 Design of Revision Tree

The design of RT came forth as a result of the requirements presented in
section 10.1, the analysis of VT3D, VRCS [Koike 1993, Koike 1997] and
Revision Graph [PerforceSoftware 2014] and following the study of those
characteristics desirable in this type of visualization tools [Therón 2007].

RT combines a grid, a timeline and a tree structure to convey the evolution
details of a software item, as it can be observed in Figure 10.4 and table 10.2.

10.3. Design of Revision Tree 251

F
ig

ur
e

10
.4

:
D

es
ig

n
sk

et
ch

of
th

e
R

ev
is

io
n

T
re

e.

252 Chapter 10. Revision Tree: A Case Study on PlasticSCM

Table 10.2: Visual elements and variables represented by Revision Tree.
Visual
element

Description Representation

Authors Names of the developers.
Label with the name
of the developer.

Baseline Number of the baselines. Is displayed in the
timeline.

Date Indicates the creation date of branches,
baselines and revisions.

Label with the date.

Day column

This is the graphical space for the
representation of a day having activity in
the creation of branches, baselines and
revisions.

A dark blue line with
arrows on both ends.

Time
Shows the time when a new branch or
revision has been created in the main
branch or any other branch.

Label with the time.

New main
branch

Indicates the creation of the main branch. Purple large oval.

New branch Shows the creation of a new branch. Yellow large oval.
Main branch
line

Highlights the main branch. Orange arrows.

Arches Connects the branches and revisions in the
main branch.

Green arches.

Main branch
revisions

Revisions created in the main branch. Blue nodes.

Branch line

The branch line connects the main branch
with other branches and the revisions
within that branch or between two
branches.

Green line.

Revision This symbol represents the creation of a
new revision of the software item.

Yellow nodes.

Merge
A merge occurs when one or more
branches are combined with the main
branch.

Lines coming from
other branches into
the main branch.

RT shows a large number of details that include the name of programmers,
their participation in performing changes, the ownership of a source code file
(based on the changes made) at particular periods of time, the id and date
of baselines and revisions, and details about branches such as their creation
and when these were merged onto the main branch, and the collaboration
between programmers in time. This can be observed in Figure 10.5, which
shows a side by side comparison of this visualization and VT3D using as
reference the complete evolution of a source code file.

10.3. Design of Revision Tree 253

F
ig

ur
e

10
.5

:
Si

de
to

si
de

co
m

pa
ri

so
n

of
(a

)
V

er
si

on
T
re

e
3D

an
d

(b
)

R
ev

is
io

n
T
re

e
[T

he
ró

n
20

07
,T

he
ró

n
20

08
].

254 Chapter 10. Revision Tree: A Case Study on PlasticSCM

This figure allows to see that RT makes details evident at first glance
without the need of performing intricate interaction operations, whereas the
same details are not possible to be appreciated with VT3D due to the lack of
identifiable elements and the occlusion caused by the hiding of nodes in the
back layers of the visual plane.

10.3.1 Features of Revision Tree

The evolution of each source code file implicitly holds a temporal attribute,
which is the most important element in understanding the development
process of any system. Therefore, the visualization of the evolution of files
presented several challenges that were addressed by RT. Some of these
challenges were associated to the correlation of baselines and revisions and
the use of interaction techniques to uncover relevant facts. So, the challenges
that were addressed with this design are the following:

∗ The representation of large revision trees, where the baselines have
several branches and each branch many revisions.
∗ The navigation through the version tree offering a focus + context view.
∗ Support of interactivity to enable the inspection of more than one

baseline at a time and exhibit the collaboration of developers to every
baseline.
∗ The relationships between baselines.
∗ The hierarchical association between baselines and revisions and

correlate all the information with the timeline.

Accordingly, the following sections explains the design details of this
visualization and the interaction possibilities it offers.

Grid layout: RT uses a grid-based structure to provide an intuitive
mechanism to visualize the working relationship between programmers and
baselines by using the rows to represent the programmers and the columns
for the baselines (when changes expand during a number of baselines, the
column is named after this interval of baselines). Moreover, grid and matrix
structures are familiar to developers and the cells can be used as containers for
the drawing of nodes of the directed graph representing the flow of revisions
for the file.

Timeline: The timeline of RT depicts variable width columns to
accommodate the revisions in each baseline (see Figure 10.6). The distribution
of the rows is uniform in the timeline and it is made up of two rows, with the
first row being used for baseline numbering and the second row representing
the temporal attributes about the creation of the revisions (hour and date).

10.3. Design of Revision Tree 255

Moreover, the second row includes additional visual elements such as the
horizontal blue lines with arrows on both ends to emphasize a particular
day and the vertical black lines to indicate the end of a day; the rounded
rectangular nodes are used to emphasize the creation of branches and the
orange line connecting the blue ovals to outline the main code version.

Figure 10.6: Timeline details [Therón 2007, Therón 2008].

RT lays outs revisions, baselines and branches accordingly, based on the
timeline information and the developers which are working on revisions and
branches. Revisions are located in the intersection between rows (depicting
programmers) and columns (representing specific points in the timeline).
The revisions are represented by ovals and the revision number is aligned
horizontally if it has one digit and vertically if it has more than one. The
blue ovals are revisions within the main branch and the others are revisions
within branches. The orange line connecting the blue ovals delineates the
main code versioning and the green line the branches. However, when there
are duplicated branches and where the revisions belongs to more than one
branch, the line connecting revisions is composed of more than one color;
where each color represents a specific branch.

This representation allows to see all the baselines and revisions at a glance
as well as the relationships among baselines and the hierarchical association
between branches and revisions.

Figure 10.7: Correlation of the evolution of a software item with the
timeline [Therón 2007, Therón 2008].

256 Chapter 10. Revision Tree: A Case Study on PlasticSCM

F
ig

ur
e

10
.8

:
R

ev
is

io
n

T
re

e:
po

ly
ph

oc
al

di
sp

la
y.

10.3. Design of Revision Tree 257

Figure 10.7 shows a partial view of RT where the color coding of two
branches sharing some of their revisions can be seen; the small square at the
top right of the figure shows a zoom of a segment of this branch and allows
two different colors to be observed, one for each branch.

Bifocal and polyphocal display: RT uses a focus + context technique
that relies on bifocal and polyfocal displays, with rows of the same height and
columns of variable width, depending upon the number of revisions in the
baselines.

The bifocal display is the capacity of the visualization to expand a row
or column of interest, whereas the polyfocal display has the same distortion
behavior but allows to focus on more than one area (several rows, columns
or a combination of both). Figure 10.8 allows the polyphocal display to be
appreciated: two rows and one column are expanded (highlighted by colored
red rectangles and numbers 1, 2 and 3) while the other rows and columns
shrink. When this interaction is carried out, the visualization keeps on the
screen all the versioning information of the software item and allows the user
to concentrate on the area in which the software item have registered more
activity.

Interaction: RT allows users to select the main branch or regular
branches in the visualization as a means of uncluttering complex history trees.
So, when the main branch of the evolution is selected at some point of the
representation the remaining path of such branch is highlighted, as shown
in Figure 10.9, and in the case of regular branches the remaining path is
highlighted until it is merged with the main branch. This feature is even
more valuable when there is a branch parallel to the main branch and it is
necessary to highlight the connection between revisions or the merge point of
one of these branches, as shown in Figure 10.10.

Figure 10.9: Highlighting of main development line.

258 Chapter 10. Revision Tree: A Case Study on PlasticSCM

Figure 10.10: Highlighting of a curve shape in the main development line.

Moreover, this visualization supports many other interaction techniques to
generate new visualization perspectives and allow the discovery of information
that is not visible at first glance. Figure 10.11a shows a normal view, while
Figure 10.11b shows the hiding of one developer row and Figure 10.11c shows
the hiding of one developer row and one baseline column. This may be useful
to have the same representation for a restricted period of time, or to include
only the information concerning selected developers. The user can thus select
from the entire period of the evolution of the software item or a more restricted
period of time to be the object of the study and hide columns of baselines that
do not wish to appear in the representation.

Figure 10.11: Hiding of rows and columns.

An additional feature of RT is the exchange of rows. Figure 10.12 shows
the evolution of a software item in which some elements are cluttered and not
clearly visible, whereas Figure 10.13 displays the same representation after

10.4. Analysis of the Evolution of Source Code Files 259

the order of rows was changed. Thus, the perspective of the representation in
the latter figure provides a more appealing and clearer depiction that allows
to convey information effectively.

Furthermore, when analysis tasks are carried out, this visualization allows
to focus on the areas of interest by filtering dates and uses a control panel
to display details of the software items, the programmers that intervene in
its evolution, as well as details of the baselines and revisions (revision id,
date, time, developer, log and relative path of the item), as it is illustrated in
Figure 10.14.

10.4 Analysis of the Evolution of Source Code
Files

This section is aimed at demonstrating the use of RT in the analysis
of the evolution of source code files from open source projects.
Accordingly, the evolution of VFSBrowser.java, VFSFileChooserDialog.java
and JFreechart.java is studied, where the first two files are part of jEdit and
the last file is a component of the projectJFreechart [2015].

HelpViewer.java is a file that contains 6 classes (see section 9.3.2 and
Figure 9.10 for further details) whose evolution has been carried by 7 different
programmers for nearly 12 years, 40 revisions and 34 baselines distributed
between September 2002 and July 2012. Moreover, the contributions to
this file (see Figure 10.15)have been made under the main branch and the
frequency of revisions lies, mostly, into separate days with only a few ones
been carried out together during the same day (baselines 1, 14, 23, 26, 30 and
34).

It is important to highlight that the tests conducted with RT showed
that it has some drawbacks to represent more than 80 revisions, so to deal
with a larger number of revisions date filtering and, column (baselines and
revisions) and row hiding (programmers) are required to avoid occlusion
and cluttering. Therefore, the evolution corresponding to HelpViewer.java
can be easily shown in a standard laptop screen of 15 inches, although the
partial view of the evolution of this file in Figure 10.15 only display details of
revisions carried out after June 2004 to have a readable screenshot in a small
printed page (which does not provide interaction support as the computer
visualization does). Furthermore, the decision of filtering out the revisions
created previously to 2004 was also supported by the fact that spestov was
the owner of the file up to that year, and hence the visualization can reveal
more interesting patterns of collaboration from that point onwards as the
interaction between programmers with the file is more intensive.

260 Chapter 10. Revision Tree: A Case Study on PlasticSCM

F
ig

ur
e

10
.1

2:
V

is
ua

lr
ep

re
se

nt
at

io
n

of
a

so
ft

w
ar

e
it

em
w

it
h

cl
ut

te
re

d
el

em
en

ts
an

d
un

or
de

re
d

ro
w

s.

10.4. Analysis of the Evolution of Source Code Files 261

F
ig

ur
e

10
.1

3:
V

is
ua

lr
ep

re
se

nt
at

io
n

of
a

so
ft

w
ar

e
it

em
w

it
h

or
de

re
d

ro
w

s.

262 Chapter 10. Revision Tree: A Case Study on PlasticSCM

Figure 10.14: Control panel and additional details of the software item and revisions.

The programmers which have contributed to the evolution of
HelpViewer.java (see Figure 10.15) are Vampire0, spestov, ezust, karik-af,
kpouer, olearyni and shlomy (Vampire0 and kpouer have duplicated users
as it can be noted in the rows of this figure). However, according to what was
already stated, before carrying out the filtering of revisions it was possible
to observe that spestov was the developer with most of the contributions
during the first years of the development, followed by ezust ; who has taken
the ownership of the file during some periods of time of the evolution. These
results are coincidental with regard to what was made evident by GT and
Gridmaster based on the information derived from the number of committed
revisions: spestov was the developer that contributed the most to jEdit during
the years 2001, 2002, 2003, 2004 and 2005, and later ezust was the developer
who led the programming of the system.

The activity carried out on the file is continuous during the time period
shown in Figure 10.15 as there exist revisions in all years present, although
it can be noted that during the year 2010 a higher number of revisions were
committed. Therefore, HelpViewer.java is continuously evolving and does not
appear to be a file which have reached a stable development point.

Figure 10.15 highlights the baselines and revisions from the evolution
of HelpViewer.java that were hidden, as well as the interaction between
programmers, which hence depicts how the ownership of the file changes
during the highlighted period of time. Furthermore, it can be noted that the
rows corresponding to spestov, ezust, kpouer and kerik-sf have been expanded
to give more visual space to the programmers that have committed more
revisions during the evolution of the source code file. Therefore, the ability to
hide, expand and reduce the size of columns and rows as well as the possibility
of highlighting branches aid the focus + context capabilities of RT as it can
maintain the context information while it allows to focus the attention in
particular details. Furthermore, the evolution of other files of jEdit such as
OperatingSystem.java, VFSFileChooserDialog.java and VFSBrowser.java is
similar to that of HelpViewer.java in terms of collaboration and ownership
patterns, according to the details revealed from the analysis carried out with
RT.

10.4. Analysis of the Evolution of Source Code Files 263

F
ig

ur
e

10
.1

5:
C

ol
la

bo
ra

ti
on

be
tw

ee
n

pr
og

ra
m

m
er

s
du

ri
ng

th
e

ev
ol

ut
io

n
of

H
el

pV
ie

w
er

.ja
va

.

264 Chapter 10. Revision Tree: A Case Study on PlasticSCM

F
ig

ur
e

10
.1

6:
P
ar

ti
al

vi
ew

of
th

e
ev

ol
ut

io
n

an
d

co
lla

bo
ra

ti
on

be
tw

ee
n

pr
og

ra
m

m
er

s
fo

r
V

F
SF

ile
C
ho

os
er

D
ia

lo
g.

ja
va

.

10.5. Discussion and Conclusions 265

However, programmers made contributions to OperatingSystem.java,
VFSBrowser.java and HelpViewer.java using a main development branch
(orange colored) whereas in the case of VFSFileChooserDialog.java they
created multiple branches (see Figure 10.16). Therefore, one can think that
according to the type of source code file, development branches could be used
in different manners.

The development of VFSFileChooserDialog.java between the years 2008 to
2012 is portrayed in Figure 10.16, and excludes the first 7 years of evolution
of the file (from which spestov was the predominant contributor during the
initial 5 years). During the time period under consideration the programmers
that contributed to the file are Vampire0, shlomy, ezust, kpouer, kerik-sf,
thomasmey, k_satoda, evanpw, elberry and kog13.

Figure 10.16 exhibit a large number of branches that were created by
almost all programmers, with the exception of kerik-sf, thomasmey and
evanpw (highlighted with red circles) who only contributed to the source
code file under the main development branch. Therefore, some interaction
operations where applied to the visualization to show a clearer representation
(see Figure 10.17). So, baselines 57, 58, 61, 62, 65, 66, 69 and 70 and the rows
corresponding to elberry and kog13 were hidden; the position of some rows
were exchanged (e.g., the rows corresponding to ezust, kpouer and Vampire0),
and the row corresponding to ezust was expanded whereas the height of the
row associated to shlomywas reduced; and in addition the main branch was
highlighted in the section that depicts the evolution period when no secondary
branches were created.

The collaboration and evolution patterns that have been discussed so far
portrayed the interactions of several programmers with the same file. Thus,
one could think that this type of interactions should be simpler in JFreeChart,
but Figure 10.18 shows that the interactions of mungady with JFreeChart.java
are complex: mungady created three branches since the first revision of the
file and he has been contributing in parallel to these; however he contributed
to the branch that is highlighted in red up to the revision 679, and never
merged such branch onto the main branch.

10.5 Discussion and Conclusions

It is important to recall that the design of the VKESE module is based on
a focus + context approach. Therefore, GT is a context view that is linked
to Gridmaster, which in turn is complemented by STG and RT to provide
specific details of the evolution of software systems. Thus, RT is concerned
with the evolution of individual source code files and meets

266 Chapter 10. Revision Tree: A Case Study on PlasticSCM

F
ig

ur
e

10
.1

7:
V

ie
w

of
th

e
ev

ol
ut

io
n

of
V

F
SF

ile
C
ho

os
er

D
ia

lo
g.

ja
va

af
te

r
ap

pl
yi

ng
so

m
e

in
te

ra
ct

io
n

te
ch

ni
qu

es
.

10.5. Discussion and Conclusions 267

F
ig

ur
e

10
.1

8:
R

ep
re

se
nt

at
io

n
of

se
ve

ra
lb

ra
nc

he
s

th
at

ha
ve

be
en

cr
ea

te
d

by
th

e
sa

m
e

pr
og

ra
m

m
er

in
JF

re
ec

ha
rt

.ja
va

.

268 Chapter 10. Revision Tree: A Case Study on PlasticSCM

the role of a detail view (focus), although it also uses a focus + context
design to offer different levels of details of the information it represents.

Therefore, the results of the analysis of the evolution of source code files
carried out with the use of RT and presented in this chapter were congruent
with the outcomes of GT and Gridmaster discussed in chapter 8, but at
a different granularity level in terms of the collaboration pattern between
programmers. Thus, RT showed the interaction of programmers with a
particular file, and how these take ownership of it during a time period and
create branches for taking responsibility of the development or modification
of a specific feature that is implemented by the software items within such
source code file.

The analysis carried out in this chapter allowed to corroborate that RT is
capable of displaying a large number of details to follow up the contributions
of programmers to the development of source code files in a small screen, and
satisfy information needs of users upon patterns of interest and time periods
with the support of interaction techniques. Furthermore, this visualization
assists users to carry out the analysis tasks through an integrated view that
allow them to focus on particular details while the representation continues
to display information that maintain the context. Moreover, it is worth to
mention that the careful checking of each visualization detail in the control
panel offers a great deal of additional information. So, the use of interaction
and visualization has permitted to confirm the usefulness of these techniques
to aid users in knowledge formation and then in decision making.

Accordingly, it was possible to verify that RT provides useful information
for project managers with regard to the evolution of source code files because
they can become aware of:

∗ Evolution details of source code files such as the number of baselines,
revisions, dates and times.
∗ The programmers that have been working the most on the development

of a source code file.
∗ If someone has quit or been fired from the company based on the pattern

of contributions.
∗ Discover if the last revisions made by a programmer that is leaving the

company were merged.
∗ The associations between programmers, branches and revisions.
∗ Branch merges that have never been done.
∗ The periods of time with higher levels of activity in the file.
∗ If a file is stable, due to the fact that frequent changes have not been

made.

Concerning the relationship of RT with PlasticSCM, the release of

10.5. Discussion and Conclusions 269

PlasticSCM v4 included a 2D visualization tool that was based on some of the
design elements of RT. According to Codice Software the feedback provided
by most users in relation to the incorporation of the 2D visualization was
positive because they considered it a simple and easy to understand tool (that
provides good interaction capabilities), and therefore it was considered more
useful than VT3D that was harder to manipulate and produced occlusion
between elements.

Consequently, PlasticSCM currently includes the 2D visualization tool and
a new version of VT3D will be incorporated in future releases of the system.
This addition is targeted to some groups of users such as video game developers
who recently have increased their interest on PlasticSCM. So, this decision is
not based on functionality aspects with regard to the 2D visualization, but as
an alternative to show the evolution of source code files and add an attractive
feature to the targeted users.

It is worth to mention that although with the use of RT is possible to
obtain a great deal of information, it is recommended to use interaction
techniques (e.g., hiding rows and columns and filter by time periods) to make
the information more readable. According to the tests that were conducted,
when more than 100 revisions are represented possible occlusion issues could
occur, which eventually affects the clear depiction of details.

Future improvements to RT include the explicit indication of the software
items within a file that are affected by particular revisions and the magnitude
of changes carried out by each revision to software items.

Chapter 11

User Assessment Test

Después de algún tiempo, talvez meses o años, Güindy logró
fabricar varios modelos de reloj. El día que los presentaron a los

clientes, Cucho brincaba, caminaba de lado, de frente, hacia atrás,
se echaba y se veía fijamente en el espejo, al tiempo que exhibía

uno de esos modelos en su cuello. Al parecer todos parecían felices
con los modelos de reloj y su precisión, pero ni Güindy ni Azul

lucían felices. Los dos pensaban que las cosas siempre pueden ser
mejores. — El viaje de Güindy, A.González

Contents
11.1 Introduction . 270

11.2 Methodology . 271

11.3 Assessment results . 274

11.3.1 Tool functionality . 274

11.3.2 Visualization design 276

11.4 Discussion . 283

11.5 Conclusions . 284

11.1 Introduction

The assessment of tools is a process that collects data systematically
concerning the fulfilling of objectives [Sharp 2011] for which a tool was
designed. This type of assessment usually measures the usefulness, efficiency,
effectiveness, user satisfaction, learnability and accessibility features of
tools [Rubin 2008] with the goal of finding design problems to improve their
functionality and usability.

The design of Maleku takes into account the three components of the
Human Performance Model [Bailey 1989] in order to achieve the functionality
and usability required to perform the tasks it aims to support. Maleku is
targeted to programmers and project managers (the human) who are engaged

11.2. Methodology 271

in tasks related to software development and maintenance (the activity) within
a software development department or a software company (the context).

The purpose of this chapter is to assess VKESE using an assessment
test [Rubin 2008] to verify its design, functionality and usability. The selection
to this test is based on its usefulness in a intermediate development stage of
a tool, as in the current state of Maleku. It should be noted that the evidence
presented in this chapter are part of an iterative approach to design, implement
and test tools, so that the results presented here are part of the first iteration
of this iterative process.

The objective of this evaluation is to verify the degree of satisfaction and
fulfillment of user expectations [Nielsen 14, Sharp 2011], based on the goals
and tasks that the tool is intended to support. Accordingly, this test seeks to
confirm that VKESE:

1. Offers statistical information about the revisions performed during the
development of a software system.

2. Makes it possible to determine the contributions made by programmers
using as a basis their commits (revisions).

3. Provides details about the evolution of the project structure.

4. Permits to identify the lifelines of software items (including packages,
files, classes and interfaces).

5. Offers details about the evolution of inheritance and interface
implementations.

6. Supports the monitoring of the quality of software systems during their
development and maintenance through the use of evolution metrics.

7. Provides details on the collaboration between developers in source code
programming.

11.2 Methodology

The research question that the user assessment test is sought to answer, and
the steps required to carry out such assessment are outlined in this section.
Accordingly, the following is the research question of the user assessment test:

Does the design and the integrated use of the visualizations in VKESE
and their results, satisfy users expectations regarding usability and the
support offered to SDME processes?

272 Chapter 11. User Assessment Test

Table 11.1: Background details of the participants in the usability study.
Experience

Professional
Current

Position Industry Age Degree

position
Total

VA

Programmer
Financing

37 Master 15 15 0

32 Master 1 7 5

Software company 38 Ph.D. 1 15 0.5

University 35 Ph.D. 2 8 6Research and
development Software company 34 Ph.D. 1 12 5

Architect Mining 41 Master 9 19 0.5

Team leader Financing 39 Master 7 16 0

Average years of experience 37 5.14 13.14 2.29

The steps to carry out the assessment test were the identification of
users and tasks, the preparation of the questionnaire and the setup of test
environment.

1. Identification of users and tasks: The first step in designing the
assessment was the identification of experienced users in programming
tasks, and preferably with some knowledge in VA. Therefore, the
assessment test was carried out with 7 potential users with an average
of 13 years of professional experience in programming tasks and 2 years
of experience working on the research and development of VA tools.
Whereas all the users hold at least a master degree and were distributed
as following: 3 hold a master degree, 1 is a VA Ph.D. student and the
other 3 hold a Ph.D. (the dissertation of two of them was on VA). All
the participants are currently working part-time or full time carrying out
programming tasks within software development departments, software
companies or research and development departments of universities or
multinational companies. The background details of the participants
are presented in table 11.1 .

2. Tasks carried out by users: The second step consisted in the
definition of representative tasks to be carried out by the users and the
definition of questions. The tasks that users were asked to undertake
are the following:

(a) Explore the tool for 15 minutes to familiarize themselves with its
general operation and the interaction between views.

(b) Search for two software items in the project under analysis and
identify the inheritance and implementation relationships using the

11.2. Methodology 273

visualizations.

(c) Review the activity of the software project for a given period of time
to comprehend its general evolution behavior in terms of which are
stable and active software items.

(d) Explore the activities carried out by programmers to understand
their contributions and the socio-technical relationships that they
have established with the software items. Participants were also
asked to obtain details about who has led the project under study
and which programmers are actively participating or have ceased
its participation in the development of the system.

(e) Carry out an assessment of the visualizations, based on the type of
representation used and their ease of understanding and learning.

3. Preparation of the questionnaire: The third step involved the
preparation of a questionnaire that included 50 questions, from which
21 were closed-ended questions, using a Likert [Likert 1932] scale, and
29 were open-ended questions. The questions were split into tool
functionality questions (13) and visualization questions (37). On the
one hand, the tool functionality questions were split into questions
concerned with the understanding of the project evolution (6 questions)
and questions related to management tasks and the comprehension of
the collaboration among programmers (7). On the other hand, the
visualization design questions were further split into specific questions
for each individual visualization (28 questions in total and 7 per
visualization) and for the tool in general (9).

4. Setup of test environment: The fourth step consisted on carrying out
the assessment test on a individual basis, because the users were located
in different countries and cities. To this end, users needed to use a
software for video conferencing [Skype Communications SARL 2013] as
well as a remote access software [TeamViewer GmbH 2013] for accessing
a small server, where the tool was running. The usability test required
between 90 and 120 minutes to be completed, and it was started with a
15 minutes presentation to explain the tool features and functionality.
Then the users were given the names of two software items, a class and
an interface, which they needed for using the tool and answer the online
questionnaires [Qualtrics, Inc. 2013].

274 Chapter 11. User Assessment Test

Table 11.2: Question group: Understanding software project evolution.
Question Correct

answers
Q1. Which interfaces have been implemented by the given class 7

during the project evolution?
Q2. Which classes have inherited from the given class during the 6

project evolution?
Q3. How the inheritance relationship of the given class with 7

its superclasses have changed during the project evolution?
Q4. Which classes have implemented the given interface during the 7

project evolution?
Q5. What is the package that is currently under intensive 6

development and which packages did not changed the last year?
Q6. How have metrics changed during the project evolution for 7

the given class?

11.3 Assessment results

11.3.1 Tool functionality

The target of the questions in this group was to assess the functionality
of Maleku in tasks related to the understanding of the project evolution
and the comprehension of the collaboration among programmers, where
the former looks to assist programmers and the latter to aid project
managers. Accordingly, this group of questions was further subdivided into
two subgroups: Understanding software project evolution and Comprehension
of the collaboration among programmers for aiding management tasks.

11.3.1.1 Understand software project evolution

The goal of the questions in this group was to assess the capabilities of the tool
for providing information about changes in inheritance and implementation
relationships, as well as in software metrics. To this end, the participants
were given the name of two software items, an interface and a class, to
locate them in the project structure and answer the questions in Table 11.2,
which were open-ended questions. The number of correct answers to these
questions is shown in the aforementioned table. 4 questions out of 6 were
answered correctly by all participants, whereas 2 were answered incorrectly.
It is relevant to highlight that the incorrect answers were provided by the
same participant. Overall, the results on these questions were positive, as
the average of correct answers was 6.66 out of 7 (92.23%). On average the
time required to answer these questions was 15 minutes, for an average of 2.5

11.3. Assessment results 275

minutes per question.

Table 11.3: Question group: Collaboration among programmers.
Question Results

Q7. Who is the programmer that has created more revisions 4

during the project evolution?
Q8. Who is the programmer that led the software project in its 5

early stages?
Q9. Select a time period in Gridmaster, see the results in the 7

Socio-Technical view and correlate them with the ones in
Gridmaster. Then, based on the software items that
programmers have changed in common, describe the
relationship among them.

Q10. Select the year 2012 in the Gridmaster and review the results 7

in the Socio-Technical view. Based on those results, who is
the programmer with more contributions in 2012?

Q11. Based on the volume of revisions, who are the programmers 7

that have taken most of the project responsibility during the
year 2012?

Q12. Based on the number of revisions in 2012, who are the 7

programmers that could substitute the leading programmer
in any eventuality?

Q13. Who is one of the programmers that could have left the 4

project in the past year?

11.3.1.2 Comprehension of the collaboration among programmers

The questions in this group were focused on the comprehension of the
relationship among programmers for supporting managers and team leaders
in decision making.

The answers to this set of questions were not as accurate as those for
questions in the previous group. Questions Q9, Q10, Q11 and Q12 were
answered correctly by all participants, whereas questions Q7, Q8 and Q13

were answered incorrectly by all participants. It is noteworthy that to answer
questions Q7, Q8 and Q13 only one visualization is required, and not several,
which contrasts with the other questions in the group that require the use
of more than one visualization. In addition, it is also interesting that these
questions are related to the contributions of programmers and their continuity
in the project.

The participants who answered incorrectly questions Q7, Q8 and Q13

showed confusion because they did not understand which visualization should
be used to answer the questions. Their feedback points out that there were

276 Chapter 11. User Assessment Test

no explicit indications in the screen about which visualization to use for
accomplishing each particular task, neither the steps that could be followed.
This could indicate that the design of VKESE is not intuitive enough and
that its learning requires training to understand better the visualizations
that compose it (the training that was offered to participants was of only
15 minutes).

The average of correct answers for this group of questions was 5.86 out
of 7 (83.67%), which compared to the previous group, are 11.56% inferior.
The questions and the results for this group are listed in table 11.3. The
average time required by each user to answer these questions was 25 minutes
on average, 3.57 minutes per question.

11.3.2 Visualization design

This group of questions was asked after the users had used the tool, looked
for details and answered the group of questions of the previous section. It
is composed by closed-ended and open-ended questions that are aimed to
evaluate the visualization design of the tool in general and each visualization
in particular. Accordingly, the questions in this group are split into 5 smaller
groups and the corresponding answers are discussed in the following sections,
starting with the individual visualizations and continuing with the results of
the overall tool evaluation. Closed-ended questions are graded between 1 and
5, and the results are presented in the corresponding tables as an average value
of the answers provided, whereas the entry values provided to open-ended
questions are shown in each section as edited comments.

The closed-ended questions assess the visual design, ease to learn and user
satisfaction with regard to the visualization. The options available to evaluate
the design and ease to learn are shown in table 11.4, while options to evaluate
user satisfaction are presented in table 11.5. The average time used to answer
questions from these groups was approximately 48 minutes.

Table 11.4: Answers for closed-ended questions that assess the visual design and
easy to learn of the visualization.

Weights Answers
1 Strongly disagree
2 Disagree
3 Neither agree or disagree
4 Agree
5 Strongly agree

11.3. Assessment results 277

Table 11.5: Answers for closed-ended questions that assess the user satisfaction with
the visualization.

Weights Answers
1 Not at all satisfied
2 Not satisfied
3 Partially satisfied
4 Satisfied
5 Highly satisfied

Table 11.6: Question group: Granular Timeline visualization assessment.
Question Question Results

type
Q14. Are the time units of this visualization clearly Design and 4.28

enough represented? learning
Q15. Is the use of concentric rings easy to understand Design and 4.14

for getting insight into the hierarchical learning
relationship between time units

Q16. Is the visualization easy to learn, use and Design and 4.14

understand? learning
Q17. Which is your satisfaction degree with this Satisfaction 3.85

visualization?
Q18. Which are positive aspects of this visualization Open-ended
Q19. Which are negative aspects of this visualization Open-ended
Q20. Please add any extra comments you have. Open-ended

11.3.2.1 Granular Timeline

The questions in this group are listed in table 11.6 and cover the evaluation
of the Granular Timeline visualization. Questions Q14, Q15, Q16 and Q17

are closed-ended questions, whose results are displayed in table 11.6. The
average assessment value received for those questions is 4.1 out of 5 (82%).
The answers to question Q14 show that participants assessed positively the
representation used, while the answers provided to questions Q15 and Q16

make evident that they considered that the visualization is easy to understand
and learn. Whereas the answers to question Q17 point out that the satisfaction
degree with this visualization could be improved, taking into account the
comments offered in questions Q19 and Q20. With regard to questions Q18,
Q19 and Q20, which are open-ended questions, their answers are summarized
as follows:

Question 18: The information is compacted and the radial layout
improves the distribution of elements. It allows to represent a large number of
elements. The visualization is innovative and allows to explore the information

278 Chapter 11. User Assessment Test

at different granularities.
Question 19: The visualization could get cluttered when representing

a large number of years. The user needs some time for understanding the
representation and it lacks of customizable features such as color coding.

Question 20: The menu options are only visible when right-clicking and
the area for each time unit is not re-sizeable for allowing users to focus in a
area of his/her interests.

Table 11.7: Question group: Gridmaster visualization assessment.
Question Question Results

type
Q21. Is the relationship between the project Design and 4.14

structure and the time line units clearly enough learning
represented in this visualization?

Q22. Does the matrix layout facilitate getting insight Design and 4.00

of the relationship between the software items learning
and the time line units?

Q23. Is the visualization easy to learn, use and Design and 3.57

understand? learning
Q24. What is your satisfaction degree with this Design and 3.57

visualization? learning
Q25. Which are positive aspects of this visualization? Open-ended
Q26. Which are negative aspects of this visualization? Open-ended
Q27. Please add any extra comments you have. Open-ended

11.3.2.2 Gridmaster

This group of questions is focused on evaluating the Gridmaster visualization
and is listed in table 11.9. Similar to the set of questions in the previous
section, the first four questions of this group (Q21, Q22, Q23 and Q24) are
closed-ended questions. The answers to these questions, although they are
good, are not entirely positive.

Answers to questions Q21 y Q22 reflect that participants consider that
the visualization represents, acceptably, the relationships between software
items, but the answers to question Q23 indicate that the visualization can be
improved to facilitate its learning and ease of use. Concerning question Q24,
the level of satisfaction of participants shows that it is required to take actions
to improve the visualization, which could be achieved by taking into account
the answers to Q23 and the comments provided in questions Q26 y Q27. The
average assessment qualification for questions Q21, Q22, Q23 and Q24 is 3.82
out of 5 (76.4%). The answers provided to questions Q25, Q26 and Q27 are
the following:

11.3. Assessment results 279

Question 25: The use of a tree to represent software projects gives the
user a clear overview of the hierarchy. The colors allow the user to clearly
distinguish programmers and associated changes. Moreover, the design is
user friendly and allows to easily correlate project structure changes with
time. The response time of this visualization is good and allows to navigate
easily through the project structure.

Question 26: The visualization does not have an option for searching and
it requires to navigate the tree structure. Moreover, the visualization does not
provide details of context concerning to the point where the user is located
in the visualization and thus, it complicates the navigation. Additionally,
the visualization of metrics is difficult to interpret and it does not allows to
navigate into the source code. The layout of the visualization could support
more features that the ones that it currently supports.

Question 27: The navigation of this visualization needs to be improved
to find classes and also to display the associated source code.

Table 11.8: Question group: Socio-Technical Graph assessment.
Question Question Results

type
Q28. Is the relationship between programmers and Design and 4.14

contributions represented in this visualization learning
with enough clarity?

Q29. Are the relationships among programmers represented Design and 4.42

in this visualization with enough clarity? learning
Q30. Is the visualization easy to learn, use and Design and 4.42

understand? learning
Q31. Which is your satisfaction degree with this Design and 3.57

visualization? learning
Q32. Which are positive aspects of this visualization? Open-ended
Q33. Which are negative aspects of this visualization? Open-ended
Q34. Please add any extra comments you have. Open-ended

11.3.2.3 Socio-Technical Graph

The set of questions in this group was aimed at assessing STG and it is listed
in table 11.8. The average assessment value to questions Q28, Q29, Q30 and
Q31, which are closed-ended questions, is 4.14 out of 5 (82.75%).

The pattern of answers from participants is very similar to that of the
above groups of questions. The results for the first three questions (Q28,
Q29 and Q30), show that participants believe that the visualization displays
information properly and that its learning is simple, although the answers

280 Chapter 11. User Assessment Test

to question Q31 warn that user satisfaction with the visualization must be
improved. The commented answers for questions Q32, Q33 and Q34 are the
following:

Question 32: This view is easy to understand and accomplish the goal of
representing the relationships among programmers and their contributions.

Question 33: The label for programmer’s name is not easy to find and
the visualization lacks from a rich user interaction and filtering support.

Question 34: This is a nice visualization complement, although it is not
an original visualization.

Table 11.9: Question group: Revision Tree assessment.
Question Question Results

type
Q35. Does the visualization shows clearly the Design and 5.00

branches and collaborations of programmers learning
in the item evolution?

Q36. Are the revisions correlated adequately with Design and 4.42

their temporal occurrence? learning
Q37. Is the visualization easy to learn, use and Design and 3.57

understand? learning
Q38. Which is your satisfaction degree with this Design and 3.57

visualization? learning
Q39. Which are positive aspects of this visualization? Open-ended
Q40. Which are negative aspects of this visualization? Open-ended
Q41. Please add any extra comments you have. Open-ended

11.3.2.4 Revision Tree

The questions in this group were focused on evaluating RT. Similar to the
questions in the other groups, the first 4 questions (Q35, Q36, Q37 and Q38)
are closed-ended questions. The average value of the rate received for these 4

questions is 4.14 out of 5 (82.8%). The pattern of answers is similar to that
of the three groups discussed above: participants considered that the design
of the visualization is acceptable and give it a 4 or higher rate. However, the
answers of participants exhibit that the visualization is not as easy to learn
and use as they rate this factor with (3.57 out 5), which is the same rate for
their satisfaction with the visualization design (3.57 out of 5).

User comments suggest that RT has many interaction options, but these
options are not evident and therefore users have no way of knowing the
available options. These comments also make observations about the occlusion
that occurs when a large tree is shown, and about the difficulties to use the

11.3. Assessment results 281

interaction option that permits to expand rows and columns. Thus, the
difficulty to learn and use RT, indicated by the rates obtained by question
Q37, may be due to aspects related to the interaction options, and the low
satisfaction with the visualization design (question Q38).

The summary of answers to questions Q39, Q40 and Q41 is the following:
Question 39: The use of a grid structure and a tree representation

makes this visualization easy to understand. It allows to easily review
which programmers have participated in the development of a software item.
Moreover, the possibility to exchange the rows of the visualization is a nice
feature.

Question 40: The interactions that can be carried out in the visualization
are not clear. When the tree is loading, before performing a filtering, it is not
possible to see, clearly, the complete evolution of the software item. The
possibility to expand rows and columns is complicated and impractical.

Question 41: The visualization is nice and has lots of interaction options,
but the user has to guess which are the available options, because these are not
evident at first glance and no clues about them are offered. The representation
of large evolution trees is nor clear neither useful.

11.3.2.5 Evaluation of the tool

The goal of the questions in this section is to assess VKESE, in general.
This group includes 9 questions (see table 11.10), where questions Q42, Q43,
Q44, Q45 and Q46 are closed-ended questions and questions Q47, Q48, Q49

and Q50 are open-ended questions. Questions Q42 and Q43 assess the visual
design, question Q44 how easy to learn, use and understand is the tool and Q45

the satisfaction degree. By contrasting the rating given to question Q42 with
the answers to the questions listed in table 11.3, it can be noted that there is a
significant discrepancy between the answers. The reason for this discrepancy
could be a misinterpretation of this question, due to conceptual issues, because
multiple users did not understand the notion of the term socio-technical clearly
enough.

Concerning the answers to question Q43, these are satisfactory because this
question was aimed to rate some of the key elements that VKESE sought to
support. Meanwhile, the rating obtained by question Q44 is not positive when
a correlation with the comments offered to question Q49 is made: participants
suggested to improve several aspects regarding the ease to learn of VKESE.

One aspect that stands out is that the rating that participants gave to
question Q45 is higher than the score given to similar questions for the 4

individual visualizations. The average rate for questions Q42, Q43, Q44 and
Q45 was 4 out of 5 (80%), as listed in table 11.10.

282 Chapter 11. User Assessment Test

Table 11.10: Global assessment of VSEKE.
Question Question Results

type
Q42. Is the tool clear enough to provide insight into Design and 3.85

the socio-technical relationships among learning
programmers and software items?

Q43. Are the tool and its visualization clear enough Design and 4.28

to provide insight into the project structure, learning
software item relationships (inheritance and
interface implementations) and metrics made
through the time?

Q44. Is the visualization easy to learn, use and Design and 3.71

understand? learning
Q45. What is your satisfaction degree with this Design and 4.14

visualization? learning
Q46. Which of the following were disadvantages of

see Figure 11.1
the tool evaluated?

Q47. Which of the following were disadvantages of
Open-ended

the tool see Fig. 11.1 evaluated?
Q48. Which are positive aspects of this visualization? Open-ended
Q49. Which are negative aspects of this visualization? Open-ended
Q50. Please add any extra comments you have. Open-ended

The answers provided for question Q39 are shown in Figure 11.1 and
revealead that the main concerns of participants for adopting these kind of
tools are User overload, Ambiguity, Over-complexity, Difficulty to understand,
training and resources demands and the requirement of previous knowledge.
With regard to questions Q47, Q48, Q49 and Q50, the text entry comments
provided are the following:

Question 47: The integration of the tool as an IDE plugin is one of the
strongest points of this toolset, because it allows to have everything in the
same programming environment. However, the performance of the tool needs
to be improved.

Question 48: The tool allows to analyze intuitively the life cycle of a
project and it could be useful for software maintenance. The tool is simple,
easy to learn and allows to represent large datasets cleanly.

Question 49: The interaction between the visualizations needs to be
improved, as well as the performance of the tool. Learning the features of the
tool requires some time, as it is a specialized tool. Furthermore, the volume of
details displayed to the users could easily overload them. The visualizations
also lack from customizable features.

11.4. Discussion 283

Figure 11.1: Blockers for the adoption of the tool.

Question 50: The tool requires to improve the performance of data
loading.

11.4 Discussion

The usability testing was divided into two sections: tool functionality and
visualization design.

Tool functionality: The aim of the questions that evaluated the tool
functionality was to measure if the tool accomplishes the intended goals. These
questions were open-ended questions and were prepared taking into account
the main tasks for which the tool was designed. Therefore, the first group of
questions was aimed at evaluating the functionality of the tool for providing
details for understanding the evolution of the project structure and metrics
during a period of time or the complete evolution. Whereas, the objective of
the second group of questions was to measure the support offered by the tool
to project managers and team leaders. The results for this evaluation were
positive: the average grading for the tasks in the first group of questions was
95.23% and 83.67% for the second group of questions.

However, it is worth to highlight that questions Q7, Q8 and Q13, which

284 Chapter 11. User Assessment Test

are related to the contributions of programmers, obtained poor ratings. Thus,
the aspects of VKESE to be improved should be reviewed carefully, so users
can obtain information more efficiently. However, overall, the answers of
participants show that the tool meets the functionality goals that are pursued
with its design.

Visualization design: The goal of the assessment of the visualization
design was to measure the satisfaction of users when using the tool for
finding relevant details to accomplish a given tasks. In this context,
several closed-ended questions were used to gather information on the overall
satisfaction of users and open-ended questions were used to get further
information to improve the functionality and usability of the tool. The results
obtained from closed-ended questions in the usability group, in general, were
positive, as the average answer was 4 out 5 (80%).

The questions that received the lowest rating in the evaluation, taking
into account all the visualizations and the tool in general, are those related
to the degree of satisfaction of participants with visualization design (Q17,
Q24, Q31, Q38 and Q45). This rating appears to be related to the ease of use
and learn of visualizations and the tool in general, the answers to the relevant
questions in that section (Q16, Q23, Q30, Q37 and Q44) reflect the second
lowest rating in the assessment. Therefore, although participants considered
that information is adequately represented by each visualization, according to
the answers to the relevant questions, this does not imply that it was easy for
them to use the visualizations and extract useful knowledge.

Finally, most of the comments from users pointed out on the improvement
of the tool performance, the addition of searching and navigation features, the
need for additional functionality to get more project details and the inclusion
of custom features such as the ability to customize color coding. Another
detail to be considered is that the interaction options are not clear to users,
so it is advisable to develop strategies to make more intuitive the interaction
possibilities of the visualizations. Moreover, the evaluation also allowed to
detect some minor bugs that were not previously detected.

11.5 Conclusions

This chapter has presented and discussed the results of the evaluation
of VKESE using an assessment test to verify its design, functionality and
usability. According to these results, VKESE meets the goals and objectives
that were raised during its design to support SDME processes. Thus,
the visualizations that constitute this tool represent and provide relevant
information in a appropriate form, although the degree of satisfaction and

11.5. Conclusions 285

fulfillment of expectations of users when using them is positive it is not optimal
and requires attention in the next iteration of the design and implementation
process.

Consequently, the implementation of Maleku and VKESE, using an
architecture based on the EVSA process has demonstrated the usefulness of
the application of VA to SE and therefore, the applicability of such process
to the design of tools to support SDME processes.

Part V

Conclusions

Chapter 12

Conclusions

A los días Güindy y Cucho decidieron seguir con su aventura,
abandonaron la fábrica y la ciudad. En su nueva travesía tomaron

un camino pedregoso, cruzaron varios ríos, subieron y bajaron
montañas, hasta que se encontraron frente a un precipicio que

parecía ser el inmenso cráter de un volcán. Buscaron la forma de
llegar al otro lado para continuar su camino, una opción era

bordear, pero la espesura de la selva no les permitía ver qué había
más allá, en el horizonte. — El viaje de Güindy, A.González

Contents
12.1 Introduction . 287

12.2 Concluding Remarks 287

12.3 Publications Related to the Thesis 292

12.4 Future Research . 294

12.1 Introduction

This chapter is aimed to present and discuss the concluding remarks of this
thesis (section 12.2), the research papers that have been published and are
related to this research (section 12.3) and the future works that will be carried
out (section 12.4), following the results presented in the previous chapters,
in the next iteration of this research work and according to methodology
described in Chapter 1.

12.2 Concluding Remarks

Developers and project managers need to understand the software systems
they are developing and maintaining, in particular when they have no prior
knowledge or documentation of those systems. This situation acquires greater
importance with the fact that SDME is a process which usually extends

288 Chapter 12. Conclusions

throughout several years and produces data that shares many of the typical
characteristics of Big Data. This data are in the form of lines of code,
software components, variables, methods, programming structures and details
about the relationships between software elements. Thus, the capacities of
programmers and project managers are particularly limited when they need
to analyze large projects, for several revisions over an extended period of time,
and are not able to extract useful information. Accordingly, this research has
taken into account that:

1. Software developers and project managers require to understand
software systems and the changes that are produced during SDME
processes.

2. There is an evident need to use methods of analysis to reduce the volume
of data that needs to be examined and studied by programmers and
managers.

3. The use of software analysis or SEA, depending on the number of
revisions or the time period under study, could lead to the generation
of useful knowledge.

4. It is often the case that the results of software analysis and SEA are
too voluminous and complex to produce knowledge that could lead to
effective problem solving.

Therefore, the previous observations and the positive results of the
application of VA to different areas of knowledge (as discussed in chapter 3)
motivated to study and analyze their use in the understanding of software
systems and their evolution in research (see chapters 4, 5 and 6) and software
industry settings (see chapter 7). Consequently, the conclusions from this
analysis were the following:

1. There is a large number of research papers that show evidence of the
application of IV to software systems and their evolution, but the
number of research works that utilized VA for the analysis of software
systems is reduced.

2. Most research that is concerned with the application of VA to software
systems are focused on theoretical and methodological issues, although
do not outline processes, models or architectures that could facilitate
the design of tools to carry out the analysis of one or multiple system
revisions.

3. A large number of research implement their proposals as plugins of some
of the most popular IDEs, such as Eclipse.

4. The number of tool proposals that made use of web technologies is
reduced (e.g., only one of the research papers that were reviewed in
the course of this investigation use those type of technologies).

12.2. Concluding Remarks 289

5. The use of single views is the preferred option of most research, whether
classified under the Sys or the Evol rubric.

6. Proportional similarities exist between the research classified as either
Sys or Evol on the use of Multiple and Multiple linked views, although
research works classified in the category Evol represent a greater number
of data elements and more complex relationships when compared to
research classified under the rubric Sys.

7. Companies use SCM and bug tracking tools to record and manage data
related to SDME processes, and some of them use these tools in an
integrated manner in order to have correlated information from bugs
and revisions that could lead to better tracking of changes and project
evolution.

8. The curriculum of several university courses does not include contents
about the tools that are used empirically in software engineering
processes.

9. There is no substantial evidence about the diffusion and transference of
the results of research to industry, concerning the application of IV to
software systems and their evolution.

10. Most of the simple visualizations used by the software industry or
businesses are, in their majority, integrated into SCM and IDE tools,
but programmers are not aware of the options that these tools have
available.

11. Tasks such as debugging, the navigation of dependencies, the detection
of source code clones, refactoring, tracking changes and contributions
and SQA metrics monitoring are carried out in the industry without the
support of visualization tools.

12. There exist many general descriptions of the process followed by SEV,
but a process for the application of VA to SE has not been described.

Following these conclusions, the EVSA process was defined to fulfill the
absence of an adequate description of the process involved in the application
of VA to SE [González-Torres 2013b, González-Torres 2013a]. This process
was subsequently validated by means of implementing an architecture that
followed its description. Accordingly, the description of the EVSA process
and its validation was divided into three stages:

1. The definition of basic pieces that made possible to construct the
characterization of the EVSA process. These building pieces included
the explanation of SE terms and concepts, the advanced data analysis
process and the definition of the VA process.

2. A detailed analysis and discussion of the use of visualization in software

290 Chapter 12. Conclusions

systems which allowed to determine the tasks supported, data elements
and visualization types used in industrial and academic settings.

3. The definition, description and validation of the EVSA process.

The definition of the EVSA process provided details about the principal
components (and how they are interrelated and interact together), methods
and techniques involved in the transformation of data derived from the
analysis of the evolution of software systems into useful knowledge in order to
facilitate a deeper understanding of the dynamic that occurs during SDME
processes.

Based on the description of the EVSA process, the architecture of
Maleku was designed and implemented to test whether its implementation
was feasible and whether it could be used as a basis for the definition of
tool architectures to support SDME processes (see chapter 9). The design
of Maleku identified and explained the roles, boundaries and interactions
between modules, components, and some of the methods and techniques
that could be utilized by such process, and allowed to answer the subsidiary
research questions.

Thereafter, the validation of Maleku was conducted in three steps and
had as its main goal the verification of compliance with objectives and
functionality, congruent with the design of its architecture. This verification
allowed to demonstrate the usefulness of the tool. The three steps of the
validation process were carried out as follows:

1. Test the tool in use case scenarios to evaluate its functionality
(chapter 9).

2. Case Study on RT and its relation with an commercial SCM tool
(chapter 10).

3. User assessment test with expert users (chapter 11).

This provided proof that the description of the process can be followed
effectively and thus permit the design and implementation of an architecture
to promote the understanding of SE by programmers and project managers,
and to support SDME processes according to the goals, tasks and objectives
specified.

Furthermore, this ended up confirming the validity of the architecture
implemented by means of use case scenarios, a case study and a user
assessment test. Stated briefly, the aim of this validation (which was
to validate the complete cycle of applying VA to SE in the design and
implementation of a tool to support developers and project managers in the
development and maintenance of software) was fulfilled and the main research
question was answered.

12.2. Concluding Remarks 291

Overall, the usefulness of Maleku was demonstrated in providing statistical
information in an appropriate manner about the revisions as well as the
contributions made by programmers, the evolution of the project structure,
the lifelines of software items (including packages, files, classes and interfaces),
the evolution of inheritance and interface implementations, evolution metrics,
and programmer collaborations. The results of the validation of Maleku
showed its usefulness to:

1. Aid the comprehension of changes in software quality metrics as well
as socio-technical and collaboration relationships during the project
evolution or a particular period of time.

2. Assist in the process of understanding changes in software project
structures, inheritance and interface implementation for the complete
project or a given time period.

3. Support the understanding of changes during software project evolution
by comparing time periods.

Consequently, it can be concluded that the definition and description
of the EVSA process and its validation were both satisfactory, but it
is also important to take into account the following conclusions for the
implementation of tools based on this process:

1. The design of tools based on the EVSA could experience several
challenges to adequately represent the evolution of software systems.
The correlation of information in time adds many additional dimensions
to the visual representation that are in correspondence with the number
of time units that needs to be depicted. The representation of
inheritance for a single system revision requires to model the inheritance
tree once, whereas the representation of multiple system revisions
could require to compare the inheritance tree to show the differences
between each particular revision. Thus, this represent a challenge
which complexity is proportional to the size of the inheritance tree and
the number of revisions that are involved in the analysis. Although
the representation of the temporal dimension in Maleku was addressed
successfully, the design of the visualizations required to carry out several
tests to verify its scalability and usefulness in the analysis of large to
medium size open source systems.

2. The design and implementation of tools similar to Maleku needs to be
prepared for the analysis of large datasets associated to the evolution
of systems. The understanding of legacy systems whose evolution has
been carried for several years implies that historical data needs to be
analyzed and compared. Thus, this type of analysis could take several

292 Chapter 12. Conclusions

hours or even days. In addition, an architecture design should also be
prepared to incorporate new data and visual elements when revisions
are created, and to address the aggregation of data in a proper manner.

3. Some possible reasons that may have an adverse effect on the adoption
of these type of tools are visual stress caused by the visualizations,
inadequate design, the complexity of the representations, the time
needed to learn how to use the tools; the requirement of prior knowledge
and experience of visual tools, as well as aspects related to the lack of
clarity and ambiguity of the designs. Therefore, it is recommended
that users become active participants throughout the design process
of visualization tools on this regard: beginning with requirement
elicitation, then design, and later brainstorming reviews, evaluations
and usability studies.

Finally, the use of visual tools for assisting programming and management
tasks needs to be sponsored by key players in the software industry
(e.g., Microsoft, IBM and Borland), incorporating complete toolsets into
their IDEs,SCM and bug tracking tools and creating training courses and
technical documentation that takes them into account as central elements.

12.3 Publications Related to the Thesis

The research carried out has produced several publications in international
conferences and journals that support the work presented in this dissertation.
The list of these publications is the following:

Journals

1. González-Torres, A., García-Peñalvo, F. J., Therón, R. Human
Computer Interaction in Evolutionary Visual Software Analytics.
Computers in Human Behavior, vol. 29, no. 2, pages 486-495 (March
2013) ISSN: 0747-5632 (Impact Factor: 2.273).

2. González-Torres, A., García-Peñalvo, F. J., Therón, R. How
Evolutionary Visual Software Analytics Supports Knowledge Discovery.
Journal of Information Science and Engineering, vol. 29, no. 1, pages
17-34 (January, 2013) ISSN: 1016-2364 (Impact Factor: 0.333).

3. García, J., Gómez-Aguilar, D. A., González-Torres, A., García-Peñalvo,
F. J., Therón, R. A Middleware Framework to Create Data Structures
for a Visual Analytics Object Oriented Approach. International Journal

12.3. Publications Related to the Thesis 293

of Knowledge and Learning, Vol. 6, no. 2/3 pages 256-267 (2010) ISSN:
1741-1009.

Master Thesis

1. González-Torres, A. Representación Visual de Sistemas de Software:
Evolución y Colaboración. Master’s thesis, Universidad de Salamanca,
June 2014.

Conferences, Symposiums and Workshops

1. González-Torres, A., García-Peñalvo, F. J., Therón, R. A Framework
for the Evolutionary Visual Software Analytics Process. In Information
Systems, E-learning, and Knowledge Management Research. Series:
Communications in Computer and Information Science. Berlin,
Heidelberg: Springer Verlag. VOL. CCIS 278, pages 439-447 (2013).
ISBN 978-3-642-35878-4.

2. González-Torres, A., Therón, R., García-Peñalvo, F. J., Wermelinger,
M., Yijun, Y. Maleku: An Evolutionary Visual Software Analytics Tool
for Providing Insights into Software Evolution. In Proceedings of the
27th IEEE International Conference on Software Maintenance (ICSM),
USA, pages 594-597 (September 2011) ISBN: 978-1-4577-0663-9.

3. García, J., Gómez-Aguilar, D. A., González-Torres, A., Therón, R.,
García-Peñalvo, F. J. A Visual Analytics Tool for Software Project
Structure and Relationships among Classes. In Proceedings of the
10th International Symposium on Smart Graphics, SG’09, Berlin,
Heidelberg: Springer-Verlag. LNCS 5531, pages 203-212 (2009). ISBN
978-3-642-02114-5.

4. González-Torres, A., Therón, R., Telea, A., García-Peñalvo, F.
J. Combined Visualization of Structural and Metric Information
for Software Evolution Analysis. In Proceedings of the Joint
International and Annual ERCIM Workshops on Principles of Software
Evolution (IWPSE) and Software Evolution (Evol) Workshops,
IWPSE-Evol’09, New York, NY, USA, ACM. pages 25-30, (2009).
ISBN: 978-1-60558-678-6.

5. González-Torres, A., Gómez-Aguilar, D. A., Segrera-Francia, S.,
Therón, R., Moreno-García, M. N., García-Peñalvo, F. J. Uncovering
the Relationships among Clases and Packages in Software Evolution. In
Proceedings of the Web Mining and Semantic Web Workshop, MiWebSe
’08, Departamento de Informática y Automática, Universidad de
Salamanca. pages. 11-20, (September 2008). ISBN: 978-84-691-5945-3

294 Chapter 12. Conclusions

6. Therón, R., González-Torres, A., García-Peñalvo, F. J. Supporting
the Understanding of the Evolution of Software Items. SoftVis
’08: Proceedings of the 4th ACM symposium on Software
visualization, Ammersee, Germany, ACM. pages 189-192, (October
2008). ISBN:978-1-60558-112-5.

7. Therón, R., González-Torres, A., García-Peñalvo, F. J. The Use
of Information Visualization to Support Software Configuration
Management. Berlin, Heidelberg: Springer-Verlag. LNCS 4663, pages
317-331, (2007) ISBN13: 9783540747994 ISBN10: 3540747990.

8. Therón, R., González-Torres, A., García-Peñalvo, F. J. Visualización
de la Colaboración en la Evolución de un Ítem de Software y la
Estructura de las Baselines. VIII Congreso Internacional de Interacción
Persona-Ordenador, Interacción 2007 (AIPO), II Congreso Español de
Informática CEDI’2007, Zaragoza, Spain. pages 69-78, (September
2007). ISBN 978-84-9732-596-7.

9. González-Torres, A., Therón, R., García-Peñalvo, F. J. Visualización
de la Colaboración en la Evolución de Items de Software con
Base en los Repositorios de las Herramientas SCM. Informe técnico
DPTOIA-IT-2007-002, Departamento de Informática y Automática,
Universidad de Salamanca. Septiembre (July 2007)

12.4 Future Research

Cloud computing has become popular in the past few years and in
consequence, many services based on the cloud are currently being offered.
So, a great number of companies are using these services to perform different
business tasks. The software industry is not an exception and recently several
cloud based IDEs have been made available (e.g., Codenvy, Cloud 9 and Code
Anywhere). This kind of tools could also be considered in a near future
as an alternative to support GSD processes. However, there is no reliable
information available about the use of these IDEs at a current time neither
about projections of their future use.

An additional point to be taken into account is that web based versions
of SCM and bug tracking tools have been in place since many years, and thus,
these could be migrated to the cloud or communicated with cloud based IDEs
using software interfaces.

The aforementioned trend opens an opportunity to contribute with
programmers and project managers that use software development tools

12.4. Future Research 295

based in the cloud. Accordingly, future work will be carried out to
design and implement an architecture based in the EVSA process to be
integrated as a plugin into a selected cloud IDE (this architecture could
include some components from Maleku). Two fundamental requirements of
such architecture is that its design will be responsive and use restful web
technologies. Furthermore, it will take into account the use of tools of the
Hadoop ecosystem to process and store data in a timely and secure fashion.

In addition, the architecture will support the dynamic analysis of system
at run-time, when it is applicable because of the programming language of
the system under analysis. Moreover, data analysis modules will support at
least three of the most common programming languages in use nowadays. The
comments made by participants in the usability study in this research will be
used as an input for the design of the visualizations (or re-implementation of
visualizations used in Maleku), interaction support and the tool in general.

Concerning the systematic mapping study presented in chapter 4, it will be
expanded to cover research works that have been published since the inception
of SEV. Similarly, a detailed study of research projects related to methods
and techniques for data extraction and analysis, taking as a reference point
the work of Kagdi [Kagdi 2007a], will be carried out.

Finally, the use of visualization tools (during the development and
maintenance process) in both the software industry and software development
departments of enterprises, will be monitored. To this end, an improved
version of the survey introduced in this research will be conducted every
two years. The improved survey will include a greater number of topics and
participants.

Appendix A

Papers Published per Venue

297

T
ab

le
A

.1
:

P
ap

er
s

pu
bl

is
he

d
pe

r
ve

nu
e.

V
en

u
e

P
u
b
li
ca

ti
on

ve
nu

e
A

cr
on

ym
Y

ea
r

T
ot

al

20
07

20
08

20
09

20
10

20
11

20
12

20
13

Journal

C
om

pu
te

r
G

ra
ph

ic
s

Fo
ru

m
C

G
F

1
2

3

C
om

pu
ta

ti
on

al
St

at
is

ti
cs

C
O

M
P

U
ST

A
T

1
1

E
le

ct
ro

ni
c

N
ot

es
in

T
he

or
et

ic
al

C
om

pu
te

r
Sc

ie
nc

e
E

N
T

C
S

2
2

E
m

pi
ri

ca
l

So
ft

w
ar

e
E

ng
in

ee
ri

ng
E

SE
1

1
2

In
te

rn
at

io
na

l
Jo

ur
na

l
of

C
om

pu
te

rs
C

om
m

un
ic

at
io

ns
&

C
on

tr
ol

IJ
C

C
C

1
1

In
te

rn
at

io
na

l
Jo

ur
na

l
of

So
ft

w
ar

e
E

ng
in

ee
ri

ng
an

d
It

s
A

pp
lic

at
io

ns
IJ

SE
IA

1
1

2

In
te

rn
at

io
na

l
Jo

ur
na

l
on

So
ft

w
ar

e
T
oo

ls
fo

r
T
ec

hn
ol

og
y

T
ra

ns
fe

r
IJ

ST
T

T
1

1

In
fo

rm
at

io
n

an
d

So
ft

w
ar

e
T
ec

hn
ol

og
y

IS
T

1
1

2

In
fo

rm
at

io
n

T
ec

hn
ol

og
y

Jo
ur

na
l

IT
J

1
1

In
fo

rm
at

io
n

V
is

ua
liz

at
io

n
IV

2
1

1
6

10

Jo
ur

na
l

of
So

ft
w

ar
e

M
ai

nt
en

an
ce

an
d

E
vo

lu
ti

on
:

R
es

ea
rc

h
an

d
P

ra
ct

ic
e

JS
M

E
1

1
2

C
on

ti
nu

ed
on

n
ex

t
p
ag

e.

298 Appendix A. Papers Published per Venue
T
ab

le
A

.1
P
ap

er
s

p
u
b
li
sh

ed
p
er

ve
nu

e
–

co
nt

in
u
ed

fr
om

p
re

vi
ou

s
p
ag

e

V
en

u
e

P
u
b
li
ca

ti
on

ve
nu

e
A

cr
on

ym
Y

ea
r

T
ot

al

20
07

20
08

20
09

20
10

20
11

20
12

20
13

Jo
ur

na
l

of
V

is
ua

l
L
an

gu
ag

es
&

C
om

pu
ti

ng
JV

L
C

2
1

1
4

Sc
ie

nc
e

of
C

om
pu

te
r

P
ro

gr
am

m
in

g
SC

P
1

1
2

So
ft

w
ar

e
&

Sy
st

em
s

M
od

el
in

g
So

Sy
M

1
1

A
C

M
T
ra

ns
ac

ti
on

s
on

C
om

pu
ti

ng
E

du
ca

ti
on

T
O

C
E

2
1

3

IE
E

E
T
ra

ns
ac

ti
on

s
on

So
ft

w
ar

e
E

ng
in

ee
ri

ng
T

SE
1

1
2

IE
E

E
T
ra

ns
ac

ti
on

s
on

V
is

ua
liz

at
io

n
an

d
C

om
pu

te
r

G
ra

ph
ic

s
T

V
C

G
2

2
4

T
ot

al
jo

u
rn

al
p
ap

er
s

43

C
on

ti
nu

ed
on

n
ex

t
p
ag

e.

299

T
ab

le
A

.1
P
ap

er
s

p
u
b
li
sh

ed
p
er

ve
nu

e
–

co
nt

in
u
ed

fr
om

p
re

vi
ou

s
p
ag

e

V
en

u
e

P
u
b
li
ca

ti
on

ve
nu

e
A

cr
on

ym
Y

ea
r

T
ot

al

20
07

20
08

20
09

20
10

20
11

20
12

20
13

Conference

A
us

tr
al

as
ia

n
C

om
pu

te
r

Sc
ie

nc
e

C
on

fe
re

nc
e

A
C

SC
2

2
4

A
si

a
-

P
ac

ifi
c

So
ft

w
ar

e
E

ng
in

ee
ri

ng
C

on
fe

re
nc

e
A

P
SE

C
1

1

In
te

rn
at

io
na

l
W

or
ki

ng
C

on
fe

re
nc

e
on

A
dv

an
ce

d
V

is
ua

l
In

te
rf

ac
es

A
V

I
1

1

C
an

ad
ia

n
C

on
fe

re
nc

e
on

E
le

ct
ri

ca
l

an
d

C
om

pu
te

r
E

ng
in

ee
ri

ng
C

C
E

C
E

1
1

C
on

fe
re

nc
e

on
H

um
an

Fa
ct

or
s

in
C

om
pu

ti
ng

Sy
st

em
s

C
H

I
1

1

E
ur

op
ea

n
C

on
fe

re
nc

e
on

So
ft

w
ar

e
M

ai
nt

en
an

ce
an

d
R

ee
ng

in
ee

ri
ng

C
SM

R
1

1

A
nn

ua
l

C
om

pu
te

r
So

ft
w

ar
e

an
d

A
pp

lic
at

io
ns

C
on

fe
re

nc
e

C
O

M
P

SA
C

1
1

In
te

rn
at

io
na

l
C

on
fe

re
nc

e
on

Su
pp

or
ti

ng
G

ro
up

W
or

k
G

R
O

U
P

1
1

In
te

rn
at

io
na

l
C

on
fe

re
nc

e
on

In
fo

rm
at

io
n

V
is

ua
lis

at
io

n
IC

IV
1

1

In
te

rn
at

io
na

l
C

on
fe

re
nc

e
on

P
ro

gr
am

C
om

pr
eh

en
si

on
IC

P
C

2
1

1
4

C
on

ti
nu

ed
on

n
ex

t
p
ag

e.

300 Appendix A. Papers Published per Venue
T
ab

le
A

.1
P
ap

er
s

p
u
b
li
sh

ed
p
er

ve
nu

e
–

co
nt

in
u
ed

fr
om

p
re

vi
ou

s
p
ag

e

V
en

u
e

P
u
b
li
ca

ti
on

ve
nu

e
A

cr
on

ym
Y

ea
r

T
ot

al

20
07

20
08

20
09

20
10

20
11

20
12

20
13

In
te

rn
at

io
na

l
C

on
fe

re
nc

e
on

So
ft

w
ar

e
E

ng
in

ee
ri

ng
IC

SE
1

2
1

4

In
te

ra
cç

ão
-

C
on

fe
rê

nc
ia

In
te

ra
cç

ão
P
es

so
a-

M
áq

ui
na

IN
T

E
R

A
C

C
A

O
1

1

W
or

ki
ng

C
on

fe
re

nc
e

on
So

ft
w

ar
e

V
is

ua
liz

at
io

n
V

IS
SO

F
T

V
IS

SO
F
T

/
SO

F
T

V
IS

9
9

W
or

ki
ng

C
on

fe
re

nc
e

on
R

ev
er

se
E

ng
in

ee
ri

ng
W

C
R

E
1

1
2

In
te

rn
at

io
na

l
C

on
fe

re
nc

e
on

3D
W

eb
T
ec

hn
ol

og
y

W
E

B
3D

1
1

T
ot

al
co

n
fe

re
n
ce

p
ap

er
s

30

C
on

ti
nu

ed
on

n
ex

t
p
ag

e.

301

T
ab

le
A

.1
P
ap

er
s

p
u
b
li
sh

ed
p
er

ve
nu

e
–

co
nt

in
u
ed

fr
om

p
re

vi
ou

s
p
ag

e

V
en

u
e

P
u
b
li
ca

ti
on

ve
nu

e
A

cr
on

ym
Y

ea
r

T
ot

al

20
07

20
08

20
09

20
10

20
11

20
12

20
13

Symposium

Sy
m

po
si

um
on

So
ft

w
ar

e
V

is
ua

liz
at

io
n

SO
F
T

V
IS

15
19

34

In
te

rn
at

io
na

l
Sy

m
po

si
um

on
th

e
Fo

un
da

ti
on

s
of

So
ft

w
ar

e
E

ng
in

ee
ri

ng
F
SE

1
1

1

Sy
m

po
si

um
on

A
pp

lie
d

C
om

pu
ti

ng
SA

C
1

1

In
te

rn
at

io
na

l
Sy

m
po

si
um

V
is

ua
l

In
fo

rm
at

io
n

C
om

m
un

ic
at

io
n

V
IN

C
I

1
1

In
te

rn
at

io
na

l
Sy

m
po

si
um

on
V

is
ua

liz
at

io
n

fo
r

C
yb

er
Se

cu
ri

ty
V

IZ
SE

C
1

1
2

T
ot

al
sy

m
p
os

iu
m

p
ap

er
s

40

Workshop

In
te

rn
at

io
na

l
W

or
ks

ho
p

on
V

is
ua

liz
in

g
So

ft
w

ar
e

fo
r

U
nd

er
st

an
di

ng
an

d
A

na
ly

si
s

V
IS

SO
F
T

16
7

9
32

In
te

rn
at

io
na

l
W

or
ks

ho
p

on
C

oo
pe

ra
ti

ve
an

d
H

um
an

A
sp

ec
ts

of
So

ft
w

ar
e

E
ng

in
ee

ri
ng

C
H

A
SE

1
1

2

W
or

ks
ho

p
on

M
an

ag
in

g
T
ec

hn
ic

al
D

eb
t

M
T

D
1

1

W
or

ks
ho

p
on

P
ro

gr
am

A
na

ly
si

s
fo

r
So

ft
w

ar
e

T
oo

ls
an

d
E

ng
in

ee
ri

ng
P
A

ST
E

1
1

C
on

ti
nu

ed
on

n
ex

t
p
ag

e.

302 Appendix A. Papers Published per Venue
T
ab

le
A

.1
P
ap

er
s

p
u
b
li
sh

ed
p
er

ve
nu

e
–

co
nt

in
u
ed

fr
om

p
re

vi
ou

s
p
ag

e

V
en

u
e

P
u
b
li
ca

ti
on

ve
nu

e
A

cr
on

ym
Y

ea
r

T
ot

al

20
07

20
08

20
09

20
10

20
11

20
12

20
13

T
ot

al
w

or
ks

h
op

p
ap

er
s

36

T
ot

al
nu

m
b
er

of
p
ap

er
s

p
er

ye
ar

17
17

26
30

24
17

18
14

9

Appendix B

Correlation of Research
Approaches and Papers

Table B.1: Philosophical Research: Correlation of research approaches.
Research approach Analysis References

type

Sys [Sundararaman 2008]
Case study

Evol

Sys
Classification schema
or taxonomy

Evol [Myller 2009, Xu 2009]

Sys [Sensalire 2008, Xie 2008, Xie 2009, Ruan 2010]

Evaluation Evol

Sys [Gallagher 2008]
Evol [von Pilgrim 2008, Pilgrim 2009, Telea 2011]

Framework [Madhavi 2011]

Sys [D’Ambros 2011]
Lessons learned

Evol [Sensalire 2009]

Sys [Holten 2007, Parnin 2008, Caserta 2011b]
Novel technique Evol [D’Ambros 2009b, Parnin 2010, Ogawa 2010]

[Beck 2011, Burch 2011, Erra 2012a]

[Erra 2012b, Minelli 2013]

Sys [Parnin 2007, Béron 2008, Moons 2009]

Reflections or discussion Evol [Rilling 2007, D’Ambros 2009a, Ogawa 2009]

[Park 2009, Petre 2010, Walny 2011]

Sys [Sharif 2009a, Sharif 2013]

Evol [Boccuzzo 2007, Teyseyre 2009]Study

[Feigenspan 2013]

Sys
Survey

Evol [Kienle 2007, Caserta 2011a, Ben-Ari 2011]

Systematic mapping Sys

study Evol [Novais 2013]

Continued on next page.

304 Appendix B. Correlation of Research Approaches and Papers

Table B.1 Correlation... – continued from previous page.

Research approach Analysis References

type

Sys [Eichelberger 2008, Ploeger 2008]

[Rufiange 2012]
Technique improvement

Evol [Laval 2009]

305

Table B.2: Solution Proposal: Correlation of research approaches.

Research
approach

Analysis
type References

Sys [Wettel 2008b, Murphy-Hill 2010,
Murphy-Hill 2013]Detect design flaws

Evol [Garousi 2010]

Sys [Cosma 2007, Zeckzer 2008, Pauw 2009,
Femmer 2011, Pauw 2013]Distributed systems

comprehension Evol

Sys [Erdemir 2011, Risi 2012, Gouveia 2013]Improve software
quality Evol [Bohnet 2011]

Sys [Liebrock 2009, Goodall 2010]Improve source code
security Evol

Sys
[Moreta 2007, Reiss 2009, Aftandilian 2010,
Myers 2010, Robertson 2010,
Choudhury 2011, Kelley 2013, Rosen 2013]

Memory allocation
analysis

Evol

Sys [Trümper 2010, Reiss 2010, Karran 2013,
Sigovan 2013, Reiss 2013]Multithreading

execution analysis Evol

Sys [Sigovan 2013]Parallel execution
analysis Evol [Bernardin 2008]

Sys [Schaeckeler 2009, Pauw 2010, Zimmer 2010]
Performance analysis

Evol [Alcocer 2013]

Sys

[Deelen 2007, Bohnet 2009a, Telea 2009b,
Cornelissen 2009, Noda 2009, Helminen 2010,
Lin 2010, Wu 2010, Bennedsen 2010,
Maoz 2011, Cisar 2011, Ishio 2012]

Program execution
analysis

Evol [Adamoli 2010]

Sys [Kagdi 2007b, Harel 2008, Frisch 2010,
Frisch 2013]Software design and

modeling Evol

SysSoftware ecosystem
comprehension Evol [Lungu 2010, Neu 2011]

Sys [Cottam 2008, Shi 2011]
Software testing

Evol [Chan 2010]

Continued on next page.

306 Appendix B. Correlation of Research Approaches and Papers

Table B.2 Correlation... – continued from previous page.

Research
approach

Analysis
type References

Sys [Telea 2008, Quist 2011]Support reverse
engineering Evol [Telea 2009a]

Sys [Wettel 2007, Bohnet 2007, Shah 2008,
Zhang 2009, Islam 2010, Deng 2011]System analysis and

understanding Evol [Telea 2009c, Novais 2011, Novais 2012,
Servant 2012]

Sys [Hermans 2013]
System refactoring

Evol [Servant 2010, Vanya 2012]

Sys [Assogba 2010]

Team awareness and
collaboration Evol

[de Souza 2007, Ripley 2007, Nestor 2008,
Kuhn 2010b, Gómez 2010, Jermakovics 2011,
Hattori 2012, Kuhn 2012, Anslow 2013,
Benomar 2013]

Sys [Holmes 2007, Cassell 2011]Understand
dependencies Evol

Sys [Broeksema 2011]Understand software
changes Evol [D’Ambros 2007b, Bohnet 2009b]

Sys [Ali 2009, Anslow 2010, Bentrad 2013,
Luo 2013]

Understand system
architectures Evol

[Sawant 2007, Hindle 2007, Beck 2010,
Kuhn 2010a, Steinbrückner 2010,
Wettel 2011, Reniers 2012, Limberger 2013,
Beck 2013, Abuthawabeh 2013,
Steinbrückner 2013]

Appendix C

Resumen de la Tesis

Estando Güindy y Cucho al borde del precipicio, decidieron subir
a una pequeña montaña que habían dejado atrás hacía unos

minutos. Al llegar a la cima se estiraron, gritaron y aúllaron.
Volvieron a ver el camino por el que habían venido, luce como una
serpentina entre árboles. Vuelven a gritar y aullar, Cucho no sabe

por qué, pero lo cierto es que Güindy se había dado cuenta que
podrían haber llegado al mismo sitio tomando un camino tres

veces más corto. — A.González

Contents
C.1 Introducción . 308

C.1.1 Problema de investigación 309

C.1.2 Análitica Visual y Mantenimiento de Software 310

C.1.3 Objetivos y Preguntas de Investigación 314

C.1.4 Methodología y Organización de la Tesis and Outline . 315

C.2 Un Proceso de Analítica Visual para la Evolución de
Software . 317

C.2.1 Analítica Visual y Sistemas de Software 317

C.2.2 Evolutionary Visual Software Analytics 318

C.2.3 Architecture Specification 322

C.3 Diseños de las Visualizaciones y Escenarios de Uso . 327

C.3.1 Granular Timeline: Análisis de Estadísticas de las
Revisiones y Contribuciones de los Programadores . . 329

C.3.2 Gridmaster: Correlación de Estructura, Relaciones y
Métricas . 333

C.3.3 Socio-Technical Graph: Representación de la
Collaboración y Relaciones entre Programadores . . . 341

C.3.4 Diseño de Revision Tree 343

C.4 Conclusions . 351

C.5 Trabajos Futuros . 355

308 Appendix C. Resumen de la Tesis

C.1 Introducción

Los sistemas de software son elementos que están omnipresentes en la vida
cotidiana y se utilizan en casi todos los dispositivos que son usados por las
personas y las empresas. Las personas usan estos dispositivos y el software
asociado para hacer algunas de las siguientes cosas [Charette 2005]:

1. Trabajar.
2. Aprender (asistir a cursos en línea, leer e investigar temas de interés).
3. Entretenerse (jugar, ver televisión o videos, escuchar música).
4. Comunicarse (amigos, familia, compañeros de trabajo, participar en

foros, colaborar y reuniones de trabajo).
5. Hacer compras.
6. Hacer trámites (bancarios, impuestos y pagos).
7. Teletrabajo.

Esta ha sido la realidad social de los últimos años, es la realidad social
actual y seguirá siendo la realidad social cotidiana en el futuro.

La omnipresencia de la tecnología ha llevado a algunos individuos y
organizaciones a ser social y económicamente dependientes de los sistemas
de software [Boehm 1999b]. Como resultado, el porcentaje de presupuesto
que las empresas invierten cada año en esta área, en promedio, es mayor de
4% [Charette 2005, Hall 2013], y el gasto en productos de software crece cada
año [Gartner 2013, Gartner 2014].

Dado este entorno, el mercado de software es muy atractivo para los
inversores, lo cual tiene como consecuencia que la competencia entre los
productores sea intensa. Por tanto, es necesario tener en cuenta que un
producto es valioso si permite o ayuda a las personas y las organizaciones a
lograr sus metas y objetivos particulares por medio de su uso [Boehm 1999b].

La industria del software en general, y de forma más específica, los
departamentos de desarrollo de software internos (que son conscientes de
esta situación) buscan desarrollar productos que cumplan con los requisitos y
funcionalidad demandadas por los usuarios, con altos estándares de calidad,
en el menor tiempo y al menor costo posible. Esta afirmación también es
válida en relación con el software de código abierto [Lee 2009].

En este punto, es conveniente tener en cuenta que el desarrollo y
mantenimiento de software son procesos complejos en los cuales la posibilidad
de fallo está presente en todas las etapas y niveles del proceso de [Kraut 1995,
Procaccino 2002, Morisio 2002, Chow 2008]. Al respecto, existen informes
anuales que se publican con respecto a este problema [Group 2013] con el fin
de evaluar el desempeño general de la industria del software y las tasa de
éxito de los proyectos en particular. Se debe mencionar que se han publicado

C.1. Introducción 309

estudios sobre casos famosos de proyectos cuyo fracaso ha costado la pérdida
de millones de dólares [Charette 2005] y que además han provocado la pérdida
de prestigio de algunas empresas que han participado en esos proyectos.

Con estos ejemplos en mente, se han hecho grandes esfuerzos para
mejorar los elementos del proceso de desarrollo, tales como el cálculo de
costos y riesgos, la planificación, la reutilización de los componentes de
software [García-Peñalvo 2000, Garcıa-Peñalvo 2002, Laguna 2003] y el diseño
y mantenimiento de sistemas [Boehm 1999b, Sullivan 2001, Royce 2009].

Muchos de estos esfuerzos tienen como objetivo mejorar la capacidad
técnica de las personas y los procesos con el fin de obtener mejores
resultados económicos [Boehm 2000, Colomo-Palacios 2013, Buxmann 2013,
Colomo-Palacios 2014]. Cabe indicar que en términos económicos, las técnicas
de ingeniería de software tienen valor si facilitan el desarrollo de software más
valioso [Boehm 1999b].

Teniendo en cuenta este contexto más general, esta tesis pretende
contribuir a la economía del software mediante el apoyo al proceso Desarrollo
y Mantenimiento de Software (DMS) a través de la descripción del
proceso Análitica Visual (AV), con el fin de facilitar el análisis de los sistemas
de software y su evolución.

Algunos factores que influyen en el éxito o fracaso de los proyectos de
software que se tienen en cuenta en esta investigación son los siguientes:

1. Control y seguimiento de la calidad del software por medio del uso de
métricas [Niazi 2006, Lee 2009, Nasir 2011].

2. La importancia del control y la configuración de cambio [Nasir 2011].
3. La ubicación distribuida (a veces en diferentes países y continentes)

de los colaboradores en los proyectos y su nivel de conocimiento de
las actividades y los cambios llevados a cabo por el personal del
proyecto [Niazi 2006, Fabriek 2008].

4. La necesidad de contar con herramientas automáticas confiables para
obtener información sobre el proceso DMS y los cambios que se han
realizado en el código fuente del proyecto [Niazi 2006].

C.1.1 Problema de investigación

El objetivo de Análisis de la Evolución de Software (AES) es apoyar a
los administradores de proyectos y programadores durante el proceso de
cambio y evolución de los sistemas de software en diferentes localidades
geográficas [Estublier 1999, Ogawa 2009]. Los administradores de proyectos
deben tener una visión general del proceso que les permita controlar la calidad
del software; evaluar la productividad; reducir los riesgos de implementación

310 Appendix C. Resumen de la Tesis

y mantenimiento, así como tener la capacidad informar sobre todas estas
actividades a los niveles superiores de dirección. En tanto los programadores
necesitan aprender las nuevas bases de código para entender los cambios
estructurales, así como los cambios en la herencia y la implementación
de interfaces. Por otra parte, los programadores necesitan entender las
dependencias de los elementos de software y comprender las diferencias de
las revisiones de código fuente y tener acceso al historial del desarrollo.

AES tiene como fin contribuir de forma activa con los procesos de software
a través del análisis y apoyo a la realización de cambios, comprensión de
la complejidad, el crecimiento y control de la calidad [Lehman 1997]. Sin
embargo, AES produce conjuntos de datos grandes y complejos, debido a
que el número de variables que intervienen en el proceso de evolución y las
complejidades de sus relaciones son difíciles de entender por parte de los
seres humanos. Debido a los motivos expuestos, conviene considerar que
aunque AES proporciona elementos valiosos de información, no provee de
conocimiento suficiente para llevar a cabo de forma satisfactoria las tareas de
comprensión de los cambios y la evolución del software.

C.1.2 Análitica Visual y Mantenimiento de Software

Aunque el resultado del análisis de la evolución de los sistemas de software
proporciona información útil, no ofrece información suficiente para llevar
a cabo las tareas de comprensión de los cambios al sistema de una
manera satisfactoria para apoyar de forma adecuada a los desarrolladores
y administradores de proyectos. Por lo tanto, esta investigación ha tenido
en cuenta el importante papel que ha tenido Visualización de la Información
(VI) en los últimos años al proporcionar conocimiento a partir de grandes
y complejos conjuntos de datos mediante el uso de representaciones visuales
combinadas con técnicas de interacción.

Debido a lo anterior, los esfuerzos de un sector de la comunidad científica
que investigación sobre métodos de ingeniería de software se han centrado
en el uso de representaciones visuales con técnicas de interacción para
facilitar la comprensión de los sistemas de software y su evolución. Estos
esfuerzos de investigación se han centrado en el uso de Visualización de
Software (VS) [Diehl 2007] y Visualización de la Evolución de Software
(VES) [Voinea 2007]; aunque de forma más reciente algunos esfuerzos de
investigación se han centrado en la aplicación de AV a los sistemas de
software1.

1La aplicación deAV a los sistemas de software se conoce comoAnalítica Visual de
Software (AVS) [Telea 2011], y de forma más reciente también se ha aplicado a la evolución
de los sistemas de software [González-Torres 2013a, González-Torres 2013b], con el objetivo

C.1. Introducción 311

En este punto, merece la pena mencionar que AV combina las fortalezas
de las máquinas con las humanas, como la capacidad de análisis, la intuición,
la resolución de problemas y la percepción visual. Por lo tanto, las personas
están en el corazón de AV [Dix 2010] y Interacción Persona-Ordenador (IPO)
es un componente clave para apoyar el descubrimiento de conocimientos.
Este es un proceso cuyo objetivo es proporcionar conocimiento a partir de
la enorme cantidad de datos científicos, forenses, académicos o de la empresas
que son almacenados por formatos heterogéneas como bases de datos, archivos
HTML, XML, metadatos y código fuente.

Este proceso recopila información de forma iterativa, realiza el
preprocesamiento de datos, efectúa análisis estadístico [Peck 2011], lleva
a cabo minería de datos, usa aprendizaje automático [Witten 2005],
representación del conocimiento [van Harmelen 2007], interacción del
usuario [Sharp 2011], representaciones visuales [Leung 1994a, Johnson 1991,
Robertson 1991], la cognición y percepción humana, la exploración y las
capacidades humanas para la toma de decisiones [Keim 2006, Llorá 2006].

AV se ha aplicado de forma amplia a problemas tan diversos como la
gripe aviar [Proulx 2006], las condiciones paleoceanográficas [Therón 2006c],
el análisis organizacional [Card 2006], eLearning [Gómez-Aguilar 2009,
Gómez-Aguilar 2015b], la toma de decisiones [Migut 2011, Savikhin 2008],
ingeniería de ontologías [García 2012, García-Peñalvo 2012c,
García-Peñalvo 2014], patrones temporales [Weaver 2006, Ziegler 2010],
las redes sociales [Perer 2011], el análisis de la seguridad [Harrison 2011] y
los sistemas de software [Reniers 2012, González-Torres 2013b]. Por lo tanto,
se puede decir que el descubrimiento de conocimiento es una propiedad
intrínseca de AV, debido a que está destinada a apoyar a los analistas y
tomadores de decisiones en la obtención de conocimiento a partir de grandes
conjuntos de datos multivariantes [Thomas 2005].

En consecuencia, AV puede ofrecer soluciones al problema que conlleva
brindar apoyo efectivo a programadores y administradores de proyectos
durante los procesos de implementación de sistemas, teniendo en cuenta que
es un proceso que ofrece un enfoque integral que incluye desde la recuperación
de información y análisis hasta la representación visual de los resultados del
análisis. Además, ofrece la posibilidad de explorar diferentes niveles de detalle
utilizando múltiples representaciones visuales, enlazadas y coordinadas entre sí
mediante el uso de técnicas de interacción [North 2000]. Esto permite facilitar
el descubrimiento de relaciones y conocimiento por medio del razonamiento

de proporcionar mejores resultados. El objetivo de la investigación en esta área es apoyar
el proceso de comprensión de los sistemas de software y mejorar el diseño y estrategias
de implementación de herramientas dirigidas a satisfacer las necesidades de análisis de los
programadores y administradores de proyectos.

312 Appendix C. Resumen de la Tesis

analítico del analista.
Teniendo en cuenta estos factores positivos, se puede decir que una de

las propiedades de AV es la capacidad de proporcionar apoyo a la toma de
decisiones [Savikhin 2008, Mane 2012] utilizando las capacidades cognitivas
de los usuarios, por lo cual su aplicación a la evolución de software ofrece
grandes oportunidades para apoyar tanto a los programadores como a los
administrador de proyectos. Sin embargo, la aplicación de AV a la evolución
del software es nueva y las tareas y necesidades de información de los
programadores y administradores de proyectos son complejas [Forsberg 2005,
de Oliveira Barros 2004, Munch 2004, Paul 1999].

Esto implica que todavía existe un gran número de desafíos que deben ser
superados para apoyar con éxito a los administradores de proyectos en la toma
de decisiones. Entre esos retos se encuentran los siguientes:

∗ Facilitar el análisis visual y la evaluación del proceso de desarrollo.
∗ Proporcionar métodos para controlar visualmente la evolución de la

calidad de los elementos de software (clases, paquetes y módulos),
teniendo en cuenta el uso de métricas de calidad del software. Lo anterior
con el objetivo de mantener la complejidad y la evolución del sistema
bajo control, así como asegurar el control de calidad.
∗ Proporcionar mecanismos visuales para revisar las medidas de ejecución

de tareas, y permitir el análisis de rendimiento y la predicción de los
avances.
∗ Apoyar mediante el uso de métodos visuales la gestión de riesgos, el

crecimiento y complejidad del ăă producto de software.
∗ Mantener informados a los administradores de proyectos sobre los

patrones de colaboración entre desarrolladores y sobre los elementos
que se han modificado de forma sincróna o asincróna, así como sobre las
consecuencias (en términos de calidad y funcionalidad) de los cambios
que se han llevado a cabo.

Mientras que los desafíos que enfrenta AV para apoyar a los programadores
en la comprensión de Evolución de Software (ES), de acuerdo con sus
necesidades de información [Sillito 2006b] son las siguientes:

∗ Ofrecer detalles de los elementos de software a los que están efectuando
cambios.
∗ Proporcionar información sobre los componentes de software que son

modificados de forma simultánea por otros programadores.
∗ Permitir que los programadores comprendan las implicaciones de los

cambios realizados con base en las relaciones (herencia y implementación
de la interfaz) y asociaciones entre los elementos de software

C.1. Introducción 313

(composición, de referencia, y de acoplamiento), así como el efecto de la
colaboración entre los objetos.
∗ Proporcionar detalles sobre la creación de variables así como el acceso y

modificación de datos por medio de argumentos a los métodos y variables
globales.
∗ Facilitar que los programadores analicen y comparen para dos o más

revisiones el control de flujo, la ejecución y la gestión de excepciones
entre revisiones.
∗ Facilitar la identificación de diferencias entre archivos, elementos de

software y tipos en varias revisiones.

Merece la pena recordar que DMS [Colomo-Palacios 2012] cubre un alto
porcentaje del costo de los sistemas de software modernos [Koschke 2003].

Los conjuntos de datos que se derivan del mantenimiento de software
comparten muchos puntos en común con los conjuntos de datos de Big Data:

1. Grandes volúmenes de datos que pueden contener campos sin valores
(e.g., millones de líneas de código fuente [Baker 1995, Kagdi 2007a] y
miles de componentes de software [D’Ambros 2008]).

2. Conjuntos de datos con tipos híbridos y complejos (e.g., grandes bases de
datos de métricas de programas, documentos de diseños, resultados de
pruebas, logs con registros sobre la ejecución de los sistemas, reportes de
fallos [Hassan 2005, Lanza 2005b], atributos numéricos, de categorías o
texto, interconectados por numerosos tipos de relaciones como herencia,
jerarquía de la estructura, y flujos de llamadas, control y dependencias).

3. Conjuntos de datos que evolucionan con el tiempo (e.g., las revisions
de los sistemas de software almacenados en los repositorio de
las herramientas Administración de la Configuración de Software
(ACS) [Mens 2008].

Las tareas de comprensión de los programas [Koschke 2003] siguen
un patrón preciso para la construcción de sentido mediante la creación,
refinamiento y validación de hipótesis, algo común en común enAV [Sun 2004,
Thomas 2005, Thomas 2006]. Finalmente, las herramientas para la
comprensión de programas se basan en la misma combinación de elementos
que se basa el análisis de software [Koschke 2003] y los components de
VS [Diehl 2007].

La aplicación de AV a ES es un desarrollo reciente, y se requería describir
con claridad dicho proceso e identificar los factores, métodos y técnicas que
contribuyen con él.

314 Appendix C. Resumen de la Tesis

C.1.3 Objetivos y Preguntas de Investigación

La intención de la investigación es definir un proceso para describir y explicar
la aplicación de AV a ES. El objetivo es ofrecer orientación en el diseño e
implementación de herramientas de software para ayudar a los programadores
y administradores de proyectos en el desarrollo y mantenimiento de software.
Además, esta investigación también busca contribuir con la comunicación y
la comprensión de la investigación llevada a cabo por otros investigadores
mediante la descripción de dicho proceso. En consecuencia, la pregunta de
investigación principal que plantea esta tesis es la siguiente:

¿Cómo se puede definir de forma adecuada un proceso para describir y
explicar la aplicación de la Analítica Visual a la Evolución del Software?

La definición de un proceso, como se indica en la pregunta anterior,
requiere, por un lado la explicación de como se aplica AV a ES, y por otro
lado, la identificación de los roles, fronteras, interacciones y relaciones de los
componentes, métodos y técnicas que intervienen en dicho proceso. Siguiendo
este enfoque, las siguientes son las preguntas de investigación subsidiarias para
ayudar a explicar y describir de manera adecuada dicho proceso:

1. ¿Cómo están interrelacionados e interactúan los componentes que
conforman el proceso de aplicación de la Analítica Visual a la
Evolución de Software?

2. ¿Cuál es la composición de los componentes (en términos de
métodos y técnicas, funciones e interacciones) en el proceso de
aplicación de la Analítica Visual a la Evolución del Software?

Las preguntas de investigación anteriores son necesarias para identificar los
componentes, métodos y técnicas que intervienen en el proceso de aplicación
de AV a ES, y para caracterizar los roles, relaciones e interacciones entre estos
elementos. Además, la utilidad de este proceso en el diseño e implementación
de herramientas debe ser probada, como un elemento necesario para responder
a la pregunta de investigación planteada. Sobre la base de lo anterior, la
siguiente pregunta de investigación subsidiaria ha sido formulada:

3. ¿Cómo se puede probar que la descripción del proceso se puede
seguir de manera efectiva al diseñar e implementar una arquitectura
para apoyar la comprensión de ES por parte de los programadores
y administradores de proyectos?

C.1. Introducción 315

Para responder a la pregunta 3, es necesario implementar una arquitectura,
con base en el proceso de aplicación de AV a ES. Dicha arquitectura debe
tener en cuenta los problemas descritos en las secciones anteriores en cuanto
a las necesidades de los administradores de proyectos y programadores. Por
lo tanto, la implementación de esta arquitectura debe abordar las siguientes
preguntas de investigación:

3.1 ¿Cómo pueden los administradores de proyectos de software ser
apoyados en la toma de decisiones mediante la comprensión de los
cambios en los indicadores de calidad del software, y las relaciones
socio-técnicas y de colaboración durante la evolución del proyecto
o un período de tiempo determinado?

3.2 ¿Cómo pueden los programadores ser apoyados en la comprensión
de los cambios en los indicadores de calidad de software, las
estructuras del sistema de software, la herencia y la implementación
de interfaces para un periodo de tiempo determinado?

3.3 ¿Cómo pueden los programadores y administradores de proyectos
recibir apoyo en la comprensión de los cambios durante la evolución
de los proyectos de software mediante la comparación de períodos
de tiempo?

Además, la arquitectura debe ser validada a través de una prueba de
evaluación de usuario y escenarios de casos de uso. El objetivo de esta
validación es probar el ciclo completo de la aplicación AV a ES en el diseño
e implementación de una herramienta para apoyar a los programadores y
administradores de proyectos en el desarrollo y mantenimiento de software.

C.1.4 Methodología y Organización de la Tesis and
Outline

La metodogía utilizada en el desarrollo de la presente tesis es una adaptación
del modelo de Investigación Acción [Kemmis 2005]. Las fases de esta
metodología que fueron seguidas en esta investigación son 5 y se relacionan
con los capítulos de la tesis de la siguiente forma:

Planificación y revisión de la planificación: Esta fase corresponde a la
introducción de la tesis, así como a los capítulos 2 y3. En esta fase,
las metas, los objetivos, preguntas de investigación y problema de
investigación se definen y redefinen de forma constante. Del mismo

316 Appendix C. Resumen de la Tesis

modo, los conceptos, términos y el proceso de análisis de ES, así como
la definición del proceso de AV se revisan en cada iteración de la
metodología. Es importante destacar que el objetivo de los capítulos 2
y 3 es definir algunos elementos básicos que tienen por objeto contribuir
a responder la pregunta principal de la presente investigación.

Diagnóstico: En esta fase se lleva a cabo un análisis de los trabajos de
investigación que han sido publicados y están relacionados con la
aplicación de visualizaciones y AV a los sistemas de software (y su
evolución). Durante esta etapa, se realizan encuestas a profesionales
que trabajan en la industria del software. El objetivo de esta encuesta
es obtener información con relación a la situación actual sobre el
uso de herramientas de visualización. Posteriormente, utilizando los
resultados obtenidos en dicha encuesta, y con el apoyo de las referencias
bibliográficas pertinentes, se llevó a cabo una discusión detallada sobre
el estado de la investigación en este campo y su impacto en la industria
(tomando como punto de partida el uso actual de la visualización y AV
para apoyar el proceso de desarrollo y mantenimiento).

En esta fase (chapters 4,5, 6 and 7) se identifican las tareas que son
apoyadas por los trabajos de investigación en esta área, los elementos de
datos y visualizaciones que son utilizadas en la academia y la industria,
y por lo tanto, tiene como objetivo efectuar el diagnóstico de las
necesidades que deben ser abordadas por la caracterización del proceso
de aplicación de AV a ES.

Tomar acción: En esta fase, se define o redefine (de acuerdo con la iteración
de la metodología) el proceso de aplicación de AV a ES. La especificación
de una arquitectura, así como el diseño e implementación de una
herramienta (que utiliza como base la arquitectura especificada) también
se definen o redefinen en cada ciclo.

Evaluación: Tiene por objetivo llevar a cabo la evaluación indirecta de
la definición del proceso de aplicación de AV a ES. La meta de
la especificación e implementación de la arquitectura es probar la
aplicabilidad de este proceso. Como consecuencia, la evaluación y
validación de la herramienta que hace uso de esta arquitectura también
evalúa y valida el proceso de la aplicación de AV a ES. Los capítulos 9, 10
and 11 presentan los resultados de la evaluación de la herramienta y
están asociados a esta fase.

Análisis de los hallazgos: Esta es la última fase de un ciclo de
investigación, y tiene por fin analizar los resultados de todo el ciclo

C.2. Un Proceso de Analítica Visual para la Evolución de
Software 317

para presentar las principales conclusiones. Con base en los resultados
de esta fase, se redefine el plan para el siguiente ciclo del proceso de
investigación. Esta fase del modelo se asocia con el capítulo 12 de la
presente tesis.

La investigación que se presenta y discute en esta tesis corresponde
al primer ciclo de un proceso para proponer modelos y herramientas que
contribuyan de manera eficaz con los procesos de desarrollo y mantenimiento
de software mediante el uso de AV. De acuerdo con la metodología descrita,
cuando se termina un ciclo del proceso de investigación los resultados
conducen a un nuevo ciclo del proceso que inicia con una revisión del plan de
investigación, las metas, objetivos, preguntas y el problema de investigación.

C.2 Un Proceso de Analítica Visual para la
Evolución de Software

En esta sección se resume la definición del proceso de aplicación AV a ES, la
cual tiene por objetivo responder a la siguiente pregunta de investigación:

¿Cómo definir el proceso de aplicación de la Analítica Visual a la
Evolución de Software?

C.2.1 Analítica Visual y Sistemas de Software

La aplicación de los principios de AV a los sistemas de software [Telea 2010,
Reniers 2012] se conoce como AVS [Anslow 2009, Telea 2011]. El uso de AV
en este contexto es una mejora con respecto a VS, sobretodo si se tiene en
consideración a AV como un proceso integral que incluye el análisis avanzado
de datos y el uso de múltiples vistas vinculadas.

Por otra parte, la aplicación de los principios de AV a ES comparte
elementos comunes con AVS, pero la principal diferencia entre ambos radica
en que el primero tiene en cuenta dos o más revisiones, mientras que el segundo
sólo tiene en cuenta el análisis de una revisión del proyecto de software.

La aplicación de AV a ES implica efectuar el análisis individual de cada
revisión y luego requiere realizar un análisis adicional para comparar y
correlacionar los resultados con el fin de descubrir relaciones, similitudes y
diferencias entre estas relaciones, pero además tiene en cuenta que es necesario
considerar los siguientes factores adicionales:

∗ Visualizar los diferentes tipos de datos en diferentes escalas de tiempo
(años, meses, días y horas) y correlacionar los datos en estas escalas.

318 Appendix C. Resumen de la Tesis

∗ La representación visual de los cambios estructurales de los sistemas de
software es una tarea muy compleja.
∗ Los desarrolladores y los administradores de proyectos deben ser hábiles

y prudentes para poder notar las relaciones y diferencias cuando se
requiere analizar varias revisiones del proyecto para llegar a la solución
de un determinado problema.

De acuerdo con lo anterior, es posible resaltar que la aplicación de AV
a ES es una especialización de AVS. Una analogía práctica es que AVS es
como un fotograma de una película, mientras que la aplicación de AV a ES
es una película que se compone de un gran número de fotogramas ordenados
e interrelacionados de forma temporal. En consecuencia, esta investigación
define el proceso de aplicación de AV a ES como AVAES, cuya definición
conceptual es la siguiente:

Evolutionary Visual Software Analytics es el proceso de aplicación de
la Análitica Visual a la Evolución de Software con el fin de mejorar la
comprensión de los cambios del sistema de software con la participación
activa de los usuarios por medio de la Interacción Persona-Ordenador.

C.2.2 Evolutionary Visual Software Analytics

El proceso AVAES se describe en la figura C.1 y, en términos generales,
esta descripción es compartida por los procesos AVS y AV. Por lo tanto,
el proceso utiliza un enfoque modular, donde cada módulo es una colección
de componentes que se encuentran conformados por métodos y técnicas. En
consecuencia, los principales módulos de este proceso son: ETL, Motor de
Análisis Avanzado de la Evolución de Software (MAAES) y Explorador Visual
de Conocimiento para la Evolución de Software (EVCES) (ver tabla C.1).

Es importante mencionar que los componentes de visualización del
submódulo VES en la figura C.1 fueron identificados en en esta investigación.

Los pasos que sigue el proceso AVAES se organizaron en fases y se
enumeran a continuación:

Fase I: Recuperación y Carga de Datos Recupera y lleva a cabo el
procesamiento inicial de los datos, para luego almacenarlos en un
almacén de datos.

Recuperación de datos: De acuerdo con el tipo de tarea que el
investigador o diseñador buscan apoyar el proceso de recuperación
se puede llevar a cabo usando los repositorios de software, registros
de seguimiento de defectos del sistema, correos electrónicos, código
fuente y registros del sistema de prueba. Las técnicas utilizadas en

C.2. Un Proceso de Analítica Visual para la Evolución de
Software 319

la recuperación de datos pueden incluir la recuperación de código
fuente, consultas sobre la estructura del sistema, búsqueda de
patrones y recuperación de texto (Extraer, flecha 1).

Figure C.1: Descripción general del proceso Evolutionary Visual Software Analytics.

Almacén de datos: Una vez que los datos han sido recuperados, se
limpian, integran y correlacionan y guardan en un almacén de datos
(Cargar, flecha 2).

Fase II: Análisis de Datos En esta fase se lleva a cabo el análisis y

320 Appendix C. Resumen de la Tesis

Table C.1: Responsabilidades y funciones de los módulos que componen el
proceso AVAES.

Módulo Descripción

Extraction, Transformation
and Load (ETL)

Este módulo tiene la función de realizar
la conexión y recuperación de datos de los
repositorios de software, sistemas de seguimiento
de defectos (bug tracking), correos electrónicos,
revisiones de código fuente, sistemas de pruebas,
registros y cualquier otra fuente de datos
disponible. Cuando se recuperan los datos, se
limpian, fusionan y cargan en un almacén de
datos.

Motor de Análisis Avanzado
de la Evolución de Software
(MAAES)

Este módulo se compone de técnicas
de análisis [Hassan 2005, Hassan 2006,
Kagdi 2007a] que podrían ser utilizadas de
forma individual o combinadas con el fin de
extraer hechos de conocimiento.

Explorador Visual de
Conocimiento para la
Evolución de Software
(EVCES)

Este módulo está formado por tres componentes:
VES, Analizador de Hechos y Enlazador de
Vistas (AHEV) y Abstracciones Visuales y
Apoyo a la Coordinación (AVAC).

extracción de hechos de ES y luego se procede a almacenar los resultados
en una base de datos.

Análisis y extracción de hechos: Cuando se han agregado nuevos
datos en el almacén de datos, ETL lee los datos (Leer, flecha 3) y
luego MAAES procede con el análisis utilizando una o más técnicas,
dependiendo del objetivo con el cual este está siendo efectuado.

Almacenamiento de hechos de evolución: Una vez que el análisis
se ha llevado a cabo, los hechos de la evolución se almacenan en
la base de datos Software Evolution Facts (Producción de hechos,
flecha 4).

Fase III: Carga de Estructura y Mapeo Visual Las tareas de esta fase
incluyen carga de hechos de ES, la creación de las estructuras de datos
y los mapeos visuales, así como la carga de las visualizaciones.

Carga de la visualización: El usuario inicia el componente VES que

C.2. Un Proceso de Analítica Visual para la Evolución de
Software 321

utiliza visualizaciones enlazadas.
Solicitud de estructuras de datos con hechos: Cuando se ha

cargado el componente VES, las estructuras de datos con los
hechos que son requeridas por las visualizaciones son solicitados
por AHEV (Primer análisis, flecha 5 y Leer hechos, 6).

Carga de hechos: El componente AHEV lee los hechos de Software
evolution Facts Database y los pasa al componente AVAC
(Resultados del primer análisis, flecha 7).

Estructuras y mapeo visual: AVAC crea y pasa el modelo de datos
apropiado, así como las estructuras de datos y mapeos visuales
a VES (Mostrar lo importante, flecha 8).

Fase IV: Interacción del Usuario y Detalles por Demanda Esta fase
es la etapa final del proceso de transformación de datos en conocimiento.
Después de la recuperación, el análisis y mapeo visual de la información,
esta fase hace posible un bucle de retroalimentación entre el usuario y el
sistema: los usuarios realizar solicitudes de datos adicionales al sistema
por medio de las posibilidades de interacción disponibles, y el sistema
proporciona los datos solicitados. De acuerdo con las interacciones
del usuario el proceso de descubrimiento de conocimiento es refinado
y avanza hacia el hallazgo de conocimiento y respuestas útiles.

Interacción del usuario: Durante el proceso de descubrimiento de
conocimiento, el usuario navega, filtra y explora diferentes
perspectivas de los datos, selecciona los elementos de una o más
de las visualizaciones (Acercar, filtrar, interactuar, flecha 9).

Solicitar detalles: De acuerdo con las necesidades e interacciones del
usuario, la visualización solicita nuevas estructuras de datos con
hechos y mapeos visuales para proporcionar información adicional
al usuario, conforme con las opciones seleccionadas (Petición de
detalles por demanda, flecha 10).

Detalles adicionales: Si los detalles adicionales que han sido
solicitados están disponibles en forma de estructuras de datos con
hechos y mapeos visuales, se pasan a VES (Detalles por demanda,
flecha 8). Sin embargo, si estos detalles no están disponibles, la
solicitud se pasa a AHEV (Análisis posterior, flecha 11), para que
lea los hechos adicionales, (Leer hechos, flecha 6), transforma los
detalles y luego los pasa a AVAC (Resultados posteriores, flecha
7) para que pueda proceder a crear las estructuras de datos con
hechos y los mapeos visuales.

322 Appendix C. Resumen de la Tesis

Descubrimiento de conocimiento: El usuario continúa
interactuando con el sistema hasta que obtiene el conocimiento
necesario o considera que no es posible llegar a una conclusión
usando los datos y representaciones disponibles.

C.2.3 Architecture Specification

La definición de la arquitectura de herramientas de software es una tarea
compleja que requiere un análisis cuidadoso. Es un reto determinar qué
técnicas utilizar y cómo van a estar interrelacionadas. En esta sección se
pretende contribuir con los objetivos especificados, responder a la pregunta
de investigación formulada en la sección C.1.3, así como apoyar el diseño
de herramientas en situaciones donde se ha decidido aplicar AV a ES.
Por lo que tomando como referencia AVAES, se diseñó una arquitectura
para una herramienta denominada como Maleku [González-Torres 2011,
González-Torres 2013b, González-Torres 2013a]

Maleku busca apoyar a los programadores y administradores de proyectos
de software al correlacionar métricas, la estructura del proyecto, las relaciones
de herencia e implementación de interfaces y las relaciones socio-técnicas.
Dicha arquitectura se implementó en Java y probó en proyectos de código
abierto.

Los módulos de la arquitectura (ver figura C.2) son similares a los módulos
del proceso descrito en la sección anterior y se les ha dado el mismo nombre.
El funcionamiento de los módulos ETL y MAAES es síncrono, mientras que la
operación de EVCES es asíncrona, en relación con los otros dos módulos. La
arquitectura se basa en el modelo cliente / servidor, en el que los módulos ETL
y MAAES son ejecutados por el servidor y EVCES es un plugin de Eclipse
ejecutado en el lado cliente. Los diferentes módulos y componentes de la
arquitectura se describen en el siguiente orden: recuperación de datos, análisis
de datos y representación visual.

ETL contiene un sub-módulo (SM) y dos componentes (C), como se
muestra en la siguiente lista:

Fuente de Datos (C):2 Las fuentes de datos utilizadas por Maleku consisten
en los repositorios ACS de los proyectos de software. La información que
se extrae de estos repositorios incluyen los metadatos asociados con los
cambios en el código fuente, las actividades de los programadores, la
estructura del proyecto y el código fuente.

Sensor de Nuevas Revisiones (C): El Sensor de Nuevas Revisiones es un
proceso que monitorea de forma continua la adición de nuevas revisiones

2C hace referencia a componente.

C.2. Un Proceso de Analítica Visual para la Evolución de
Software 323

a los proyectos de software y envía notificaciones al Extractor de Datos.

Extractor de Datos (SM):3 La función de este sub-módulo es extraer los
datos necesarios para llevar a cabo el análisis, cuyos resultados se utilizan
para alimentar a las visualizaciones de la herramienta de AV. Los
componentes de este sub-módulo se describen a continuación:

Recuperación de arquitectura y estructura (C): Este
componente se encarga de extraer los detalles de la estructura del
proyecto para cada revisión, con especial interés en los paquetes
del sistema y su organización.

Recuperación de código fuente (C): Es responsable de recuperar
el código fuente de cada una de las revisiones del sistema y de
almacenar clases con información básica acerca de su ubicación en
la arquitectura del sistema.

Recuperación de metadatos (C): Los datos que este componente
es responsable de recuperar, incluye los logs de cada revisión y
sus detalles asociados: la fecha en cual se hizo la revisión, el
programador que la llevó a cabo y los elementos afectados.

Los submódulos que conforman MAAES son el Analizador de Código
Fuente y el Motor de Correlación de Metadatos y Análisis de la Evolución
de Software, cuyas descripciones se presentan a continuación.

Analizador de Código Fuente (SM): Este sub-módulo se encarga de
llevar a cabo el análisis de las revisiones del código fuente del proyecto
usando los siguientes componentes:

Detección de métricas (C): Este componente se encarga de detectar
y calcular métricas usando detalles del código fuente analizadO.
Algunas de las métricas que pueden ser calculadas por este
componente incluyen LOC, NOM y la Complejidad Ciclomática.

Análisis de relaciones de elementos (C): Las funciones de este
componente incluyen la detección de herencia (padre-hijo y
hijo-padre) y las relaciones de implementación de interfaces.

Parser de código fuente (C): Este módulo lee cada archivo de código
fuente, línea por línea, con el fin de identificar las clases, interfaces,
métodos y declaraciones, y aplica reglas de análisis. Además calcula
métricas para identificar las relaciones entre los elementos de software.

3SM se refiere a sub-módulo.

324 Appendix C. Resumen de la Tesis

F
ig

ur
e

C
.2

:
V

is
ta

ge
ne

ra
ld

e
la

ar
qu

it
ec

tu
ra

de
M

al
ek

u
.

C.2. Un Proceso de Analítica Visual para la Evolución de
Software 325

Reglas de análisis (C): El Parser de código fuente aplica reglas de análisis,
que se almacenan en archivos de texto. Algunas de estas reglas se
generan de forma automática, mientras que otras son creadas de forma
manual.

Correlación de Metadatos y Análisis de la Evolución (SM): Este
sub-módulo es invocado por el sub-módulo de Analizador de Código
Fuente cuando se termina de ejecutar el análisis. Su función es
identificar las relaciones socio-técnicas y determinar las contribuciones
hechas por cada programador, así como efectuar el análisis de la
arquitectura y la estructura del proyecto para cada revisión que se
analiza. Los componentes de este sub-módulo son:

Análisis de contribuciones (C): Con base en los metadatos de los
repositorios ACS se lleva a cabo un cálculo acumulativo de los
elementos que han sido cambiados por cada revisión y programador.

Análisis socio-técnico (C): Utiliza los metadatos de los repositorios
ACS extraer información sobre las relaciones entre los
programadores y los elementos de software, así como sobre
las relaciones que se crean entre los programadores tomando como
base los elementos que han cambiado en común.

Análisis arquitectura y estructura (C): Los resultados producidos
por el Analizador de Código Fuente y la información obtenida de los
metadatos de los repositorios ACS se utilizan para correlacionar la
estructura del proyecto de software, las métricas y las relaciones
entre los elementos de software. De forma adiciona, recopila
información sobre la creación de los elementos de software y su
línea de vida durante el proyecto.

Base de datos de hechos de la evolución (C): Esta base de datos
almacena los resultados de los análisis que son producidos por otros
sub-módulos y componentes de MAAES. Para eso utiliza un diseño que
emula la jerarquía de los proyectos de software: proyecto –> revisión
–> paquete –> archivo –> elemento de software.

La secuencia de pasos que sigue el proceso de recuperación y análisis de
datos (compuesto por ETL y MAAES) son los siguientes:

1. El usuario introduce los parámetros de conexión del repositorio ACS y
la base de datos donde se almacenarán los datos del proyecto que será
analizado.

326 Appendix C. Resumen de la Tesis

2. Cuando el proceso se ha iniciado, los componentes de recuperación que
están incluidos en el sub-módulo de Extractor de Datos llevan a cabo la
recuperación de los datos (Extraer, flecha 1).

3. Una vez que los datos se han recuperado son cargados en el almacén de
datos (Cargar, flecha 2). Los datos cargados se utilizan como referencia
para los procesos de recuperación posteriores.

4. El Sensor de Nuevas Revisiones es el responsable de la supervisión de
la disponibilidad de nuevas revisiones en los repositorios ACS, así como
de notificar a los módulos de recuperación de manera oportuna.

5. Conforme los datos son recuperados, ETL informa a MAAES que los
nuevos datos están disponibles para realizar el análisis de acuerdo con
los componentes de análisis disponibles.

6. El sub-módulo de Analizador de Código Fuente lee datos del almacen
de datos del módulo ETL (Leer código fuente, flecha 3) con el fin de
detectar y calcular métricas para las clases y métodos, y analizar la
relaciones entre los elementos de software, tales como la jerarquía de
clases y la implementación de interfaces.

6.1. Para llevar a cabo sus tareas el Analizador de Código Fuente
requiere analizar el código fuente y luego notifica al componente
Parser de código fuente (Llamar parser, flecha 4).

6.2. El componente Parser de código fuente lee las reglas de análisis de
su propia base de datos (Leer reglas de parsing, flecha 5) y realiza
el análisis del código fuente.

7. Cuando el sub-módulo de Analizador de Código Fuente ha terminado
de hacer el análisis, almacena los resultados en la base de datos Hechos
de la Evolución de los Sistemas y notifica al Motor de Correlación de
Metadatos y Análisis de la Evolución de Software (Llamada al motor de
análisis de segundo nivel, flecha 6).

8. El sub-módulo de Motor de Correlación de Metadatos y Análisis de la
Evolución de Software lee los hechos de evolución de la base de datos
Hechos de la Evolución de los Sistemas, así como metadatos, detalles de
la estructura del proyecto y la evolución del almacén de datos de ETL
(Leer metadatos, estructura del proyecto y detalles de evolución, flecha
7). Con esta información el módulo lleva a cabo un análisis más profundo
de las relaciones socio-técnicas, las contribuciones de los programadores
y de la arquitectura y la estructura del proyecto de software.

9. El proceso que llevan a cabo ETL and MAAES se ejecuta de manera
indefinida para cada uno de los proyectos configurados, hasta que el
análisis es detenido por el usuario.

C.3. Diseños de las Visualizaciones y Escenarios de Uso 327

El diseño de la arquitectura de Maleku permite la adición de nuevos
componentes a los módulos y sub-módulos para permitir nuevas conexiones
a otras fuentes de datos, realizar otros tipos de análisis y visualizar los
resultados del análisis con nuevas representaciones visuales. Los pasos
seguidos por MAAES son los mismos que los que se describen en la
sección C.2.2, de modo que se omite la explicación de esos pasos.

C.3 Diseños de las Visualizaciones y Escenarios
de Uso

La vista principal de EVCES y las visualizaciones que incluye se muestran en
la figura C.3: GT (ver esquina inferior izquierda), Gridmaster (situada en el
panel superior derecho), STG y RT (estas dos últimas se muestran en el panel
inferior derecho).

GT proporciona una vista general de las actividades de un proyecto de
software, mientras que Gridmaster, STG y RT representan detalles específicos
sobre la correlación de la estructura del proyecto, asociaciones, la colaboración
entre los miembros del equipo de desarrollo en el tiempo y en diferentes niveles
de granularidad de la estructura del proyecto.

Las visualizaciones que incluye EVCES son iniciadas al realizar su selección
de un menú contextual en el Explorador de Paquetes de Eclipse (situado en
el panel superior izquierdo, como es indicado por el número 1). Una vez que
las visualizaciones han sido iniciadas, el flujo de trabajo (indicado por los
números y flechas en la figura C.3) comienza con el análisis de los patrones de
los aportes de los programadores al sistema haciendo uso de GT, y la selección
en esa visualización de una o más unidades de tiempo para su posterior análisis
en Gridmaster. Después, el usuario puede seleccionar cualquiera de estas dos
opciones desde Gridmaster :

1. Un elemento de software en el árbol situado en el lado izquierdo de
Gridmaster para obtener detalles acerca de la colaboración durante la
evolución de ese elemento (utilizando RT).

2. Una unidad de tiempo en Gridmaster para la representación de las
relaciones socio-técnicas asociadas en STG.

Los hechos sobre ES que han sido tomados en cuenta por las visualizaciones
son los siguientes:

1. Líneas de vida de los elementos de software.
2. Métricas de evolución.
3. Correlación de los datos estructurales con métricas.

328 Appendix C. Resumen de la Tesis

F
ig

ur
e

C
.3

:
F
lu

jo
de

de
sc

ub
ri

m
ie

nt
o

de
co

no
ci

m
ie

nt
o

en
el

m
ód

ul
o

E
V

C
E
S

de
M

al
ek

u.

C.3. Diseños de las Visualizaciones y Escenarios de Uso 329

4. Relaciones socio-técnicos.
5. Algunas relaciones arquitectónicas / estructural, como, por ejemplo, la

herencia, la interfaz la implementación.

En la presente tesis se estudiaron tres proyectos de código libre escritos en
Java haciendo uso de 9:

1. jEdit es un editor de texto de código abierto para programadores que
se encuentra disponible en http://sourceforge.net/projects/jedit y cuyo
desarrollo comenzó en diciembre de 1999. En esta investigación se
tomaron en cuenta cerca de 1212 clases y 5801 revisiones, las cuales
fueron realizadas entre septiembre del 2001 y abril del 2014.

2. JabRef es un gestor de referencias bibliográficas que fue
liberado en noviembre de 2003 y se encuentra disponible en
http://jabref.sourceforge.net. Los datos sobre la evolución de dicho
proyecto que son considerados en esta tesis incluye 3719 revisiones
y 1236 elementos de software que fueron creados durante 9 años (de
octubre de 2003 a noviembre de 2011).

3. JFreeChart es una biblioteca para crear gráficos cuyo desarrollo es
efectuado por solo un programador (http://www.jfree.org/jfreechart) y
comenzó en Febrero de 2000. Esta investigación toma en cuenta 916

revisiones de este proyecto y 1130 elementos de software que han sideo
pgoramados entre el 2007 y el 2010.

Sin embargo, en este resumen solo se presentarán ejemplos de jEdit para
describir las visualizaciones de EVCES.

C.3.1 Granular Timeline: Análisis de Estadísticas de las
Revisiones y Contribuciones de los Programadores

GT utiliza un diseño gráfico de un anillo circular modificado para mostrar
una visión general de la dimensión temporal de un proyecto de software
(figura C.4). Los anillos concéntricos representan las diferentes escalas de
tiempo en las cuales se registran los eventos de cambio, la granularidad
de dicha escala de tiempo va de las unidades grano grueso (años, anillo
exterior) a las de grano fino (horas, anillo más interno). Una representación
circular similar fue utilizada por Holten et al. para visualizar la jerarquía
de los proyectos de software [Holten 2007, Cornelissen 2007]. Este tipo de
representación compacta permite presentar grandes cantidades de datos y
proporciona una estrategia del tipo vista general + detalle.

GT es una visualización que representa datos sobre la evolución de los
proyectos de software por largos periodos de tiempo y que ofrece mecanismos

http://sourceforge.net/projects/jedit
http://jabref.sourceforge.net
http://www.jfree.org/jfreechart

330 Appendix C. Resumen de la Tesis

de interacción que permiten seguir un camino que se inicia en los niveles de
granularidad gruesa y permite pasar a los niveles de detalle de grano fino.

GT puede ser usada para representar cualquier tipo de datos cuantitativos
producidos en el tiempo, dada su naturaleza para representar valores
numéricos y resultados estadísticos. Sin embargo, en esta investigación se
utiliza para representar las estadísticas de los commits y las contribuciones de
los programadores, tal como se explica a continuación.

Estadísticas sobre revisiones: El espacio dentro de cada celda de la
visualización se utiliza para integrar diferentes tipos de visualizaciones
que representen el número de revisiones en el nivel de detalle de una celda
particular. De forma que las celdas del anillo years insertan gráficas de
barras que muestran el número de revisiones para cada mes por cada año.
Mientras que las celdas del anillo months incrusta un gráfico de barras
para presentar el número de revisiones realizadas por cada día del mes.
El siguiente anillo a continuación, days, muestra las revisiones para cada
día del mes, por lo que este anillo tiene 28, 29, 30 y 31 celdas (según
el número de días del mes que ha sido seleccionado), y las revisiones
en este nivel se representan mediante gráficas de barras o treemaps, de
acuerdo con la selección del usuario (ver figura C.5 para la representación
usando treemaps). Por último, el anillo más interno, hours, muestra las
revisiones conforme con la hora en que ha sido realizadas, por lo que
tiene 24 celdas, y representa las revisiones por medio de gráficos de
barras o treemaps.

La utilización de gráficas de barras proporciona detalles sobre el número
de contribuciones en cada nivel de granularidad. Sin embargo, la
representación de los datos en el nivel de granularidad days y hours
no saca el máximo provecho de la pequeña área gráfica disponible. Por
esa razón se ofrece la posibilidad de representar los datos utilizando
treemaps. Este tipo de visualización permite aprovechar mejor el
espacio, y además, permite resaltar mejor las revisiones individuales.

De forma adicional, algunas estadísticas se muestran en el centro de la
visualización conforme se seleccionan las diferentes unidades de tiempo.
Observe que la selección de las unidades de tiempo comienza en el anillo
exterior que se corresponde con el anillo years y sigue la secuencia
months –> days –> hours (e.g., 2008 –> junio de 2008 –> 3 de junio
de 2008 –> 22 : 00 horas del 3 de junio de 2008), como se encuentra
resaltado por las selecciones que se muestran en la figura C.4.

C.3. Diseños de las Visualizaciones y Escenarios de Uso 331

Figure C.4: Visualización de datos estadísticos usando sobre las revisiones de jEdit
en un lapso de tiempo de 14 años utilizando GT.

Contribuciones de los programadores: Las contribuciones de los
programadores están codificados por colores, donde cada color se
corresponde con un programador particular. En general, el uso del
color permite la adquisición de información de estadísticas sobre las
revisiones y quien las ha llevado a cabo a simple de vista.

Por lo que es fácil extraer patrones de los programadores que intervienen
en el desarrollo de un proyecto. Esta visualización es simple e intuitiva
y se puede utilizar con pocos cambios en la representación de cualquier
tipo de estadísticas.

332 Appendix C. Resumen de la Tesis

Figure C.5: Representación visual de estadísticas sobre revisiones de jEdit usando
GT y treemaps.

La figura C.4 permite observar a primera vista que los datos de la evolución
de jEdit representados comprende el periodo que va del año 2001 al año
2014. Además, permite ver detalles relativos a los años con más revisiones
(2008 y 2012), así como patrones de colaboración de los programadores.
Por lo tanto, spestov (turquesa) es el desarrollador que más contribuyó al
proyecto durante los primeros 5 años (2001, 2002, 2003, 2004 y 2005), y luego
otros programadores como ezust (naranja) y kpouer (amarillo) lideraron la
programación del sistema, de acuerdo con el número de revisiones.

Aunque algunos proyectos de software siguen un patrón similar al de jEdit
(e.g., un programador principal contribuye con un proyecto al inicio de este),
la disposición de las contribuciones de los programadores en el tiempo varía
de un proyecto a otro.

C.3. Diseños de las Visualizaciones y Escenarios de Uso 333

C.3.2 Gridmaster: Correlación de Estructura,
Relaciones y Métricas

Gridmaster se basa en una representación de un árbol y una matriz, dos
estructuras ampliamente conocidas por los programadores (ver figura C.6).
La estructura de árbol visualiza todos los paquetes y elementos de software
que se han agregado al proyecto durante su evolución, mientras que la matriz
es creada por la intersección de filas y columnas: los paquetes y elementos de
software se colocan en la estructura de árbol y son asociados a las filas, y las
unidades de tiempo están vinculadas a las columnas.

El uso de un árbol y una matriz permite la correlación, de todos los
elementos de software, con las contribuciones de los programadores, la creación
de los elementos, los cambios en las relaciones arquitectónicas, la adición o
eliminación de una relación de herencia y la implementación de interfaces, y
las métricas.

En consecuencia, algunas de las características de Gridmaster permiten
extraer detalles de la colaboración en los diferentes niveles de granularidad,
de forma similar a GT. Sin embargo, Gridmaster fue diseñada para ser una
vista complementaria de GT. En este sentido, GT fue pensada para ofrecer
una visión de conjunto, así como estadísticas en diferentes niveles sobre las
revisiones de un sistema de software, mientras que Gridmaster fue diseñado
para correlacionar las contribuciones de los programadores con los elementos
de software. De ahí que Gridmaster puede ser usada para representar las
relaciones socio-técnicas entre los elementos de software y los programadores,
así como la línea de vida de los elementos para toda la evolución de un sistema
o un determinado período de tiempo a partir de su seleción en GT.

En esta visualización los colores se asignan a los programadores y el
área asociada a cada programador depende del número de aportaciones
realizadas en términos de revisiones y de forma relativa a la unidad de tiempo
representada (ver la Figura C.6).

Este tipo de representación permite delinear la línea de vida de los
elementos de software y los paquetes utilizando un enfoque intuitivo. La
figura C.6 muestra que las actividades realizadas en el paquete bsh de jEdit
se llevaron a cabo entre el 2001 y el 2006. También muestra que este paquete
en la actualidad no forma parte de la última revisión del proyecto, lo cual se
puede corroborar al revisar la estructura de jEdit en Eclipse.

La figura C.6 también permite observar que otros paquetes tales como
com, gnu, macos y macosx forman parte del primer nivel de la estructura del
proyecto en la visualización aunque sus líneas de vida no registran actividad
reciente para macos y macosx, por lo cual se puede intuir que fueron movidos
a un nivel de jerarquía inferior, o fueron eliminados del proyecto.

334 Appendix C. Resumen de la Tesis

F
ig

ur
e

C
.6

:
R
ep

re
se

nt
ac

ió
n

ab
so

lu
ta

de
la

s
co

nt
ri

bu
ci

on
es

de
lo

s
pr

og
ra

m
ad

or
es

,l
a

es
tr

uc
tu

ra
de

lp
ro

ye
ct

o
y

la
s

lín
ea

s
de

vi
da

pa
ra

jE
di

t.

C.3. Diseños de las Visualizaciones y Escenarios de Uso 335

La figura C.7 muestra los años 2006 y 2008 en forma expandida, de modo
que los cambios en las relaciones de herencia y modificaciones de las métricas
se pueden observar, y sus distribuciones mensuales pueden ser examinadas.

La estructura de árbol utilizada por Gridmaster es una representación
escalable que está basada en un árbol plegable para representar paquetes,
dentro de los cuales se encuentran los archivos, los cuales a su vez contienen las
clases, interfaces, enumeraciones y anotaciones (los cuatro elementos básicos
de Java). En este contexto las clases son denotadas por un pequeño símbolo
cuadrado, mientras que las interfaces son representadas por un pequeño
círculo, las enumeraciones por un triángulo y las anotaciones por estrella.
Cuando la estructura plegable se expande, es posible ver el contenido de
los archivos y los detalles sobre el establecimiento y la terminación de las
relaciones de herencia e implementación de interfaces, así como las métricas
asociadas a los elementos.

La figura C.7 señala los elementos de software que intervienen en las
relaciones de herencia e implementación de interfaces por medio de leyendas
de color rojo que indican su ubicación (la API de Java, el proyecto que está
siendo analizado o una API externa). Además, representa el establecimiento
de relaciones por medio de un óvalo verde, mientras que la terminación de
relaciones es representada por un óvalo rojo. El procedimiento utilizado
para determinar si un elemento de software está incluido en el proyecto bajo
análisis, Java o una API externa es mostrado en el algoritmo C.3.1.

En cuanto a la métricas, estas son representadas en las filas que
corresponden a los elementos de software (las filas que están asociadas a los
paquetes, relaciones de herencia e implementación de interfaces no se utilizan
para este propósito) utilizando gráficas de barras con la finalidad de destacar
los cambios (ver la figura C.7).

Los valores de las métricas se muestran cuando se lleva a cabo el commit de
un elemento de software, con independencia de que los valores hayan cambiado
o no. Es importante mencionar que el diseño de la visualización sólo permite
la representación de una métrica a la vez, por lo que el usuario debe seleccionar
cual métrica quiere visualizar.

Gridmaster representa las relaciones de herencia tanto de los padres hacia
los hijos como de los hijos hacia los padres. Así, cuando un elemento
es seleccionado, se pueden observar las relaciones de herencia que se han
establecido con el tiempo.

En consecuencia, la herencia se representa Gridmaster de la siguiente
forma: padres <– elemento de software seleccionado –> hijos. La figura C.8
representa las relaciones que AbstractOptionPane ha establecido con otros
elementos de software: esta clase hereda de JPanel, implementa la interfaz
OptionsPane y tiene 8 subclases.

336 Appendix C. Resumen de la Tesis

Algorithm C.3.1: Extracción dependencias de elementos(repos)

repository ← repos

while n < repository.lastRevision()

do



revisionClasses← DataExtractor.getRevisionItems(n)

for each item ∈ revisionItem

do



if item.hasParent()

then



parent← item.getParent()

self ← Analyzer.isParentOnProj(parent)

if project

then location← Project
else java← Analyzer.isParentOnJava(parent)

if java

then location← Java
else location← Library

package← Analyzer.getClassPackage(parent)

extends(x) =
(

parent location package
)

vector.add(extends)

if item.hasImplements()

then



interfaces← item.getInterfaces()

for each interface ∈ interfaces

do



self ← Analyzer.isIntOnProj(interface)

if project

then location← Project
else java← Analyzer.isIntOnJava(interface)

if java

then location← Java
else location← Library

package← Analyzer.getIntPackage(interface)

implements(x) =
(

parent location package
)

vector.add(implements)

return (vector)

La representación de la implementación de interfaces se lleva a cabo de una
manera similar a la representación de las relaciones de herencia y representa
las interfaces que han sido implementadas por una clase particular (desde la
perspectiva de una clase) y que clases implementan una interfaz específica
(desde la perspectiva de una interfaz). Esta característica se muestra en la
figura C.9, la cual destaca con un óvalo rojo la interfaz Compare y representa
que esta interfaz hereda de la interfaz Comparator y es implementado por las
clases MenuItemCompare y StringCompare (resaltada por los círculos azules).

C.3. Diseños de las Visualizaciones y Escenarios de Uso 337

F
ig

ur
e

C
.7

:
R

el
ac

io
ne

s
de

he
re

nc
ia

e
im

pl
em

en
ta

ci
ón

de
in

te
rf

ac
es

,i
nc

lu
ye

nd
o

la
ex

pa
ns

ió
n

de
lo

s
añ

os
y

va
lo

re
s

de
m

ét
ri

ca
s

pa
ra

el
ar

ch
iv

o
V

F
SB

ro
w
se

r.
ja

va
de

jE
di

t.

338 Appendix C. Resumen de la Tesis

Figure C.8: Herencia de un elemento de software y relaciones de implementación de
interfaces para el archivo AbstractOptionPane.java en jEdit.

Figure C.9: Relaciones de implementación para la interfaz Comparator del proyecto
jEdit.

La figura C.10 muestra que el archivo OperatingSystem.java (ubicado en
el paquete installer de jEdit) contiene 10 clases y varias relaciones de herencia

C.3. Diseños de las Visualizaciones y Escenarios de Uso 339

(ninguna de las clases está implementando una interfaz). Por otra parte dicha
figura representa una jerarquía en la cual OperatingSystem es una clase que
tiene cuatro sub-clases (HalfAnOs, Unix, VMS and Windows) de las cuales a
su vez heredan otras clases, como es el caso de la clase MacOS que hereda de
la clase Unix. Además, la figura C.10 muestra que la mayoría de las clases del
archivo OperatingSystem.java establecieron relaciones de herencia durante el
año 2003, y también muestra que las métricas para las clases Unix, Windows
y OSTask tienen algunos ligeros cambios durante el mismo año.

Figure C.10: OperatingSystem.java: este archivo contiene 10 clases, las cuales hacen
uso intensivo de herencia.

El archivo HelpViewer.java ha evolucionado desde el año 2002 hasta el
mes de abril de 2014 (una vista parcial de esta línea de vida se muestra en
la figura C.11) y contiene 6 clases (HelpViewer, LinkHandler, KeyHandler,
ActionHandler, PropertyChangeHandler y AsyncHTMLEditorKit) que han
establecido relaciones de herencia o de implementación de interfaces. En
consecuencia, 3 de estas clases han establecido relaciones de herencia con
otras clases mientras que 4 de han implementado interfaces.

340 Appendix C. Resumen de la Tesis

F
ig

ur
e

C
.1

1:
R

el
ac

io
ne

s
en

tr
e

lo
s

el
em

en
to

s
de

so
ft

w
ar

e
de

H
el

pV
ie

w
er

.ja
va

(j
E
di

t)
.

C.3. Diseños de las Visualizaciones y Escenarios de Uso 341

Además, el valor de la métrica NOM asociada a 5 de las 6 clases no han
cambiado con el tiempo, con la excepción de los valores de la clase HelpViewer
(ver los años 2003, 2005 y 2007 en la figura C.11).

Un detalle importante a destacar es que durante los años 2006, 2007 y
2008 se registró una intensa actividad en el establecimiento o modificación de
las relaciones de herencia o de implementación de interfaces en jEdit, como se
puede observar en las figuras C.7, C.8, C.9, C.10 and C.11. Por lo tanto, esto
podría indicar que durante esos años se llevó a cabo una restructuración del
sistema, y de forma particular durante el año 2007, que es el año para el cual
se muestra una mayor actividad en este sentido.

Por último, merece la pena resaltar que Gridmaster utiliza varias técnicas
de interacción que incluyen las posibilidades de hacer zoom-in y zoom-out, la
distorsión de ojo de pez, y la capacidad de filtrar los nodos de la estructura.
Además, permite selecciomar un año de la línea de tiempo para representar
los datos de acuerdo con los meses de ese año.

C.3.3 Socio-Technical Graph: Representación de la
Collaboración y Relaciones entre Programadores

STG es una vista complementaria (ver figura C.12) que se basa en una
representación gráfica y muestra cuando una unidad de tiempo (e.g., un año
o un mes) es seleccionada de Gridmaster. Esta visualización está dirigida a
la representación de las contribuciones de los programadores (en términos del
número de archivos y revisiones) y la relación entre ellos que se deriva de
los elementos de software que han cambiado en común. En consecuencia, los
nodos representan las contribuciones de los programadores y los colores están
asociados a los nombres de usuario de los programadores, mientras que las
aristas representan las relaciones de colaboración que se han establecido entre
los programadores a partir de los cambios que han hecho a los elementos de
software.

El tamaño de los nodos ganglios en STG representa el número de
aportaciones realizadas por los programadores, las cuales están determinadas
por el número de archivos que han sido modificados en cada commit (el cálculo
de los pesos de los nodos difiere del cálculo realizado por Jermakowicz et
al. [Jermakovics 2011] que sólo tiene en cuenta el número de commits).

El espesor de las aristas representa el número de elementos de software
que los programadores asociados han cambiado en común. Por lo tanto,
la fuerza de la relación de colaboración entre dos programadores se puede
deducir a partir del espesor de la arista que los une. Por lo tanto, esta
visualización es útil en situaciones en las cuales es necesario redistribuir
las tareas de un programador debido a una situación inesperada o a

342 Appendix C. Resumen de la Tesis

Figure C.12: STG mostrando las contribuciones y relaciones entre los
programadores, con base en los elementos de software que han cambiado en común.

cambios organizacionales, donde hipotéticamente, las tareas de programación
realizadas por el programador A pueden ser llevadas a cabo por el programador
B.

El diseño descrito se muestra en la figuraC.12 (una captura de pantalla de
STG), y representa las contribuciones de los programadores y sus relaciones
de colaboración entre los años 2001 y 2014 para jEdit. Esta figura permite
observar que para el período de tiempo dado los programadores con más
contribuciones son spestov (turquesa), ezust (naranja), k_satoda (amarillo
claro), y daleanson (violeta claro).

Dicha figura también permite deducir que spestov ha intervenido en la
modificación de la mayoría de los elementos de software en jEdit debido a
que es el programador que tiene más conexiones con otros programadores
(resaltadas por las aristas de color rojo). De forma adicional, la identificación
precisa de los elementos de software que spestov ha modificado en común con
otros programadores podría lograrse mediante la revisión de las correlaciones
entre los programadores y los elementos de software en Gridmaster. Aunque
la participación de spestov fue muy intensa durante los primeros años de la
evolución de jEdit su contribución al proyecto se detuvo en el año 2005.

Un aspecto relevante es que las relaciones entre los programadores fueron
mínimas durante el año 2013 (ver figura C.13), donde shlomy (violeta)
se concentró la mayor parte de las relaciones con ezust (naranja), kpouer
(amarillo), daleanson (violeta claro) y Vampire0 (marrón); algunos de los

C.3. Diseños de las Visualizaciones y Escenarios de Uso 343

Figure C.13: Captura de pantalla de STG para jEdit y el año 2013.

cuales han contribuido a emph jEdit por muchos años. Además, thomasmey
(verde claro), que hizo un número alto de contribuciones, en términos relativos,
durante el año 2013, estableció una relación débil con kpouer de acuerdo
con los elementos de software que han cambiado en común (esto puede
investigarse más a fondo en Gridmaster después de expandir los paquetes
org–>gjt–>sp–>jedit and org–>gjt–>sp–>util).

La situación descrita se acentuó durante los primeros 4 meses de 2014

(enero a abril), como es representado por la figura C.13. 3 de los
4 programadores que han contribuido con jEdit durante 2014 no tienen
conexiones con otros programadores y la única relación que se ha establecido
(entre ezust y daleanson) es demasiado débil para ser considerada relevante
en términos de la colaboración.

C.3.4 Diseño de Revision Tree

El diseño de RT se realizó como resultado de un análisis de requerimientos
que se llevó a cabo para este tipo de herramientas, así como las características
deseables para este tipo de herramientas de visualización que fueron
identificadas por Therón et al. [Therón 2007].

RT una estructura de matriz, una línea de tiempo y un árbol para
representar los detalles de evolución de un elemento de software, como se
puede observar en la figura C.14 y la tabla C.2.

344 Appendix C. Resumen de la Tesis

F
ig

ur
e

C
.1

4:
B

os
qu

ej
o

de
ld

is
eñ

o
de

R
ev

is
io

n
T
re

e.

C.3. Diseños de las Visualizaciones y Escenarios de Uso 345

Table C.2: Elementos visuales y variables representadas por el Revision Tree.

Elemento
visual

Descripción Representación

Autores Nombres de los programadores.
Etiqueta con
el nombre del
programador.

Baseline Número de las baselines.
Se despliega en la
línea de tiempo.

Fecha
Indica la fecha de creación de las ramas,
baselines y revisiones.

Etiqueta con la
fecha.

Columna del
día

Este es el espacio gráfico para la
representación de un día con actividad
en la creación de ramas, baselines y
revisiones.

Una línea de color
azul oscuro con
flechas en los
extremos.

Hora
Muestra la hora en la cual se ha creado una
nueva rama o revisión en la rama principal
o cualquier otra rama.

Etiqueta con la hora.

Nueva rama
principal Indica la creación de la rama principal. Óvalo violeta.

Nueva rama Muestra la creación de una nueva rama. Óvalo amarillo.

Línea rama
principal Resalta la rama principal. Flechas naranja.

Arcos
Conecta las ramas y revisiones en la rama
principal. Archos verdes.

Revisiones
rama
principal

Revisiones creadas en la rama principal. Nodos azules.

Línea de
rama

La línea de las conectan a la rama
principal con otras ramas y las revisiones
en esa rama o entre dos ramas.

Línea verde.

Revisión
Representa la creación de una nueva
revisión de un elemento de software.

Nodos amarillos.

Combinación
Una combinación o merge occure cuano
uno o más ramas son combinadas con la
rama principal.

Línea entrantes en la
rama principal.

346 Appendix C. Resumen de la Tesis

RT muestra un gran número de detalles que incluyen el nombre de los
programadores, su participación en la realización de cambios, la propiedad
de un archivo de código fuente (basado en los cambios realizados) en
determinados períodos de tiempo, el id y fecha de baselines y revisiones, así
como detalles sobre la creación y fusión de las ramas, y la colaboración entre
programadores en el tiempo.

C.3.4.1 Características de Revision Tree

La evolución de cada archivo de código fuente contiene implícito un atributo
temporal, que es el elemento más importante en la comprensión del proceso de
desarrollo de cualquier sistema. Por lo tanto, la visualización de la evolución
de archivos presenta varios desafíos que fueron abordados por RT. Algunos de
estos desafíos se asociaron con la correlación de las baselines y las revisiones,
así como con el uso de técnicas de interacción para descubrir hechos relevantes.
Así, los retos que se abordaron con este diseño son los siguientes:

∗ La representación de grandes árboles de revisiones, donde las baselines
tienen varias ramas y cada rama muchas revisiones.
∗ La navegación del árbol de versiones mediante una vista del tipo foco +

contexto.
∗ Soporte a la interacción para permitir la inspección de más de una

baseline a la vez y mostrar la colaboración de los desarrolladores en
cada baseline.
∗ Las relaciones entra las baselines.
∗ La asociación jerárquica entre las baseline y las revisiones, y la

correlación de toda la información con la línea de tiempo.

En consecuencia, las siguientes secciones explican los detalles del diseño
de esta visualización y las posibilidades de interacción que ofrece.

Diseño de matriz: RT utiliza una estructura basada en una matriz
para proporcionar un mecanismo intuitivo para visualizar la relación entre
programadores y baselines mediante el uso de las filas para representar a los
programadores y las columnas para las baselines. Además, estructuras de
matriz resultan familiares a los desarrolladores y las celdas se pueden usar
como contenedores para dibujar los nodos del grafo dirigido que representa el
flujo de revisiones para el archivo.

Línea de tiempo: La línea de tiempo de RT utiliza columnas de ancho
variable para acomodar las revisiones en cada baseline (ver figura C.15). La
distribución de las filas es uniforme en la línea de tiempo y se compone de dos
filas, la primera fila se utiliza para la numeración de las baselines y la segunda
fila para representar los atributos temporales sobre la creación de las revisiones

C.3. Diseños de las Visualizaciones y Escenarios de Uso 347

(hora y fecha). Por otra parte, la segunda fila incluye elementos visuales
adicionales, tales como las líneas azules horizontales con flechas en ambos
extremos para enfatizar un día en particular y las líneas negras verticales
para indicar el final de un día; los nodos rectangulares redondeados se utilizan
para hacer hincapié a la creación de ramas y la línea naranja que conecta los
óvalos azules para delinear la rama principal .

Figure C.15: Detalles de la línea de tiempo [Therón 2007, Therón 2008].

RT representa las baselines, revisiones y ramas de acuerdo con la
información de la línea de tiempo y los desarrolladores que están trabajando
en las revisiones. Las revisiones se encuentran en la intersección entre las
filas (que representa a los programadores) y las columnas (que representan
puntos específicos en la línea de tiempo). Las revisiones están representadas
por óvalos y el número de revisión está alineado de forma horizontal si se
compone de un dígito y verticalmente si tiene más de un dígito. Los óvalos
azules son las revisiones de la rama principal y los demás óvalos son revisiones
dentro de las ramas de desarrollo secundario. La línea naranja que conecta los
óvalos azules delinea la rama principal y la línea verde a las ramas secundarias.
Sin embargo, cuando el programador trabaja en varias ramas y donde las
revisiones pertenecen a más de una rama, la línea que conecta las revisiones se
compone de más de un color; donde cada color representa una rama específica.

Esta representación permite ver todas las baselines y revisiones de un
vistazo, así como las relaciones entre las baselines y la asociación jerárquica
entre ramas y revisiones.

Figure C.16: Correlación de la evolución de un elemento de software con la línea de
tiempo [Therón 2007, Therón 2008].

348 Appendix C. Resumen de la Tesis

F
ig

ur
e

C
.1

7:
R

ev
is

io
n

T
re

e:
vi

st
a

po
lif

oc
al

.

C.3. Diseños de las Visualizaciones y Escenarios de Uso 349

La figura C.16 muestra una vista parcial de RT. En un pequeño recuadro
en la esquina superior derecha de la figura se puede observar el uso de la
codificación de colores en la representación de dos ramas que comparten
algunas de sus revisiones. El recuadro mencionado muestra el acercamiento a
un segmento de las ramas y permite observar dos colores diferentes, uno para
cada rama.

Vista bifocal y polifocal: RT utiliza una técnica de foco + contexto que
se basa en vistas bifocales y polifocales, con las filas de la misma altura y las
columnas de ancho variable, según el número de revisiones en las baselines.

La vista bifocal ofrece la posibilidad de expandir una fila o columna,
mientras que la vista polifocal ofrece la misma posibilidad pero permite
concentrarse en más de una área (varias filas, columnas o una combinación de
ambas). La figura C.17 permite apreciar la visualización polifocal: dos filas
y una columna están expandidas (resaltadas por rectángulos de color rojo y
los números 1, 2 y 3) mientras que las otras filas y columnas se encuentran
reducidas. Cuando esta interacción se lleva a cabo, la visualización mantiene
en la pantalla toda la información de las versiones de un elemento software y
permite al usuario concentrarse en la zona en la cual el elemento de software
ha registrado mayor actividad.

Figure C.18: Línea de desarrollo principal puesta de relieve.

Interacción: RT permite que los usuarios seleccionen la rama principal
o las ramas secundarias para resaltarlas y tener una mejor visión de la
información cuando la visualización aparece saturada al representar árboles
de evolución complejos. Por lo tanto, cuando la rama principal es seleccionada
en algún punto de la representación, se pone de relieve el camino restante de
dicha rama, como se muestra en la figura C.18, y en el caso de las ramas
secundarias el camino restante es resaltado hasta que se fusiona con la rama

350 Appendix C. Resumen de la Tesis

principal. Esta característica es aún más valiosa cuando existe una rama
paralela la rama principal y es necesario poner de relieve la conexión entre
revisiones o el punto de combinación con la rama principal de una de estas
ramas, como se muestra en la figura C.19.

Figure C.19: Resaltado de una rama paralela a la rama principal.

Esta visualización es apoyada por varias técnicas de interacción adicionales
para generar nuevas perspectivas de visualización y permitir el descubrimiento
de información que no es visible a simple vista. La figura C.20a muestra
una vista normal de RT, mientras que la figura C.20b muestra una vista
en la cual la fila que corresponde a un desarrollador ha sido ocultada y la
figura C.20c presenta una vista en la cual un programador y una baseline han
sido ocultadas.

Figure C.20: Ocultado de filas y columnas.

Lo anterior puede ser útil para tener la misma representación para un
período limitado de tiempo (sin hacer filtrado por fechas), o para incluir

C.4. Conclusions 351

solamente la información relativa a los desarrolladores seleccionados. El
usuario puede seleccionar de este modo todo el período de la evolución del
elemento de software o un período más limitado de tiempo y ocultar columnas
de baselines que no desea que aparezcan en la representación.

C.4 Conclusions

Los desarrolladores y administradores de proyectos necesitan comprender los
sistemas de software que están desarrollando y brindando mantenimiento, en
particular, cuando no tienen conocimiento previo o documentación de esos
sistemas. Esta situación adquiere mayor importancia al considerar que los
procesos Desarrollo, Mantenimiento y Evolución de Software (DMES) por lo
general se extienden a lo largo de varios años y producen grandes volúmenes
de datos. En consecuencia, esta investigación ha tenido en cuenta que:

1. Los desarrolladores de software y administradores de proyectos requieren
comprender los sistemas de software y los cambios que se producen
durante los procesos DMES.

2. Existe una evidente necesidad de utilizar métodos de análisis para
reducir el volumen de datos que necesita ser examinado y estudiado
por los programadores y administradores de proyectos.

3. El uso del análisis de software o AES, en función del número de revisiones
o el período de tiempo de estudio, puede dar lugar a la generación de
conocimiento útil.

4. Es frecuente que los resultados del análisis de software y AES sean
voluminosos y complejos para producir conocimiento que permita llevar
a cabo la resolución de problemas de forma eficaz.

Por lo tanto, las observaciones anteriores y los resultados positivos de la
aplicación de AV a diferentes áreas del conocimiento (como se explica en el
capítulo 3) motivó el estudio y análisis sobre su uso en la comprensión de los
sistemas de software y su evolución en investigaciones académicas (capítulos 4,
5 and 6) y en la industria del software (véase el capítulo 7). En consecuencia,
las conclusiones de este análisis fueron las siguientes:

1. Existe un gran número de trabajos de investigación que muestran
evidencia de la aplicación de VI a los sistemas de software y su evolución,
pero el número de trabajos de investigación que utilizan AV en el análisis
de sistemas de software es reducido.

2. La mayor parte de la investigación que se ocupa de la aplicación de
AV a los sistemas de software se centran en cuestiones teóricas y

352 Appendix C. Resumen de la Tesis

metodológicas, pero no definen procesos, modelos o arquitecturas que
faciliten la elaboración de herramientas para llevar a cabo el análisis de
uno o múltiples revisiones de los sistemas.

3. Un gran número de investigaciones implementan sus propuestas como
plugin de algunos de los IDE más populares, como por ejemplo Eclipse.

4. El número de propuestas de herramientas que hacen uso de las
tecnologías web es también reducido (e.g., sólo uno de los trabajos de
investigación que fueron revisados en esta investigación utilizan ese tipo
de tecnologías).

5. El uso de vistas individuales es la opción preferida de la mayoría de
trabajos de investigación clasificados tanto como Sys como Evol.

6. Existen similitudes proporcionales entre la investigación clasificada como
Sys y Evol en el uso de Vistas Múltiples y Vistas múltiples Vinculadas,
aunque los trabajos de investigación clasificados en la categoría de
Evol representa un mayor número de elementos de datos y relaciones
más complejas en comparación con la investigación clasificada bajo la
categoría Sys.

7. Las empresas utilizan herramientas ACS y de control de errores (bug
tracking) para registrar y gestionar los datos relacionados con los
procesos DMES, y algunas de estas además utilizan estas herramientas
de forma integrada con el fin de contar con información correlacionada
sobre los errores o fallas con las revisiones. El principal objetivo de esto
último es que podría conducir a un mejor seguimiento de los cambios y
la evolución del proyecto.

8. El plan de estudios de muchos cursos universitarios no incluyen
contenidos sobre las herramientas que se utilizan de forma empírica en
los procesos de ingeniería de software.

9. No existe evidencia sustancial sobre la difusión y transferencia de los
resultados de investigación a la industria, con respecto a la aplicación
de VI a los sistemas de software y su evolución.

10. La mayoría de las visualizaciones que son utilizadas por la industria de
software o empresas son sencillas y están, en su mayoría, integradas en
las herramientas ACS y los IDE. De forma adicional, los programadores
no son conscientes de las opciones de herramientas de este tipo que
tienen disponibles los IDE.

11. Tareas como la depuración, navegación de dependencias, detección de
copias de código fuente, refactorización, el seguimiento de los cambios
y contribuciones y el seguimiento de los cambios en las métricas de
calidad se lleva a cabo en la industria sin el apoyo de herramientas de
visualización.

12. Existen muchas descripciones generales del proceso seguido por VES,

C.4. Conclusions 353

pero no se ha descrito el proceso para la aplicación de AV a ES.

A partir de estas conclusiones, se definió el proceso AVAES para satisfacer
la necesidad de efectuar una descripción adecuada de los procesos involucrados
en la aplicación de AV to ES [González-Torres 2013b, González-Torres 2013a].
Este proceso validado por medio de la implementación de una arquitectura
que siguió su descripción. En consecuencia, la descripción de dicho proceso y
su validación se dividió en tres etapas:

1. La definición de los básicos que hicieron posible la construcción de la
caracterización de AVAES. Estos elementos incluyen la explicación de
los términos y conceptos de ES y el proceso de análisis avanzado de
datos.

2. El análisis y discusión del uso de la visualización en los sistemas de
software permitió determinar las tareas que son apoyadas, así como los
elementos de datos y tipos de visualización utilizados en los entornos
industriales y académicos.

3. La definición, descripción y validación del proceso AVAES.

La definición de AVAES proceso proporciona detalles acerca de los
principales componentes (y la forma en que se interrelacionan e interactúan
entre sí), métodos y técnicas que intervienen en la transformación de los
datos derivados del análisis de la evolución de los sistemas de software en
conocimiento útil para facilitar una comprensión más profunda de los procesos
de DMES.

Con base en la descripción de AVAES, la arquitectura de Maleku fue
diseñada e implementada para probar si la aplicación de este proceso
era factible y si podría ser utilizado como base para la definición de
arquitecturas de herramientas para apoyar los procesos de DMES. El diseño
de Maleku identificó y explicó los roles, límites e interacciones entre módulos,
componentes, y algunos de los métodos y técnicas que podrían ser utilizados
por dicho proceso, y permitió responder a las preguntas de investigación
subsidiarias.

A partir de ahí, la validación de Maleku fue llevada a cabo en tres pasos y
tenía como principal objetivo la verificación del cumplimiento de los objetivos
y funciones de acuerdo con el diseño de su arquitectura. Esta verificación
permitió demostrar la utilidad de la herramienta. Los tres pasos del proceso
de validación que se llevaron a cabo son los siguientes:

1. Probar la herramienta mediante escenarios de uso con el fin de evaluar
su funcionalidad.

354 Appendix C. Resumen de la Tesis

2. Caso de estudio sobre RT y su relación con una herramienta ACS
comercial.

3. Prueba de evaluación con usuarios expertos.

Esto permitió probar que la descripción de AVAES se puede seguir
de manera eficaz y por lo tanto permite el diseño e implementación de
arquitecturas para ayudar a comprender los datos derivados de ES por parte
de los programadores y administradores de proyectos, y por lo tanto permite
apoyar los procesos de DMES conforme con las metas, tareas y objetivos
especificados.

Además, este terminó de confirmar la validez de la arquitectura
implementada mediante el uso de escenarios, un caso de estudio y una
prueba de evaluación de usuario. En síntesis, el objetivo de esta validación
(que fue validar el ciclo completo de la aplicación AV a ES en el diseño
e implementación de una herramienta para apoyar a los desarrolladores y
administradores de proyectos en el desarrollo y mantenimiento de software)
se cumplió y la pregunta principal de investigación fue respondida.

En general, la utilidad de Maleku se demostró en el suministro de
información estadística sobre las revisiones, así como las aportaciones que
han realizado los programadores, la evolución de la estructura del proyecto,
las líneas de vida de los elementos de software (incluyendo los paquetes,
archivos, clases e interfaces), la evolución de la herencia y la implementación
de interfaces, métricas de evolución, y colaboraciones de programador.
Los resultados de la validación de Maleku mostraron la utilidad de esta
herramienta para:

1. Ayudar en la comprensión de los cambios en las métricas de calidad de
software, así como las relaciones socio-técnicos y de colaboración durante
la evolución del proyecto o un periodo de tiempo determinado.

2. Ayudar en el proceso de comprensión de los cambios en las estructuras
del proyecto de software, la herencia y la implementación de interfaces
para el proyecto completo o un período de tiempo determinado.

3. Apoyar la comprensión de los cambios durante la evolución del proyecto
de software mediante la comparación de los períodos de tiempo.

Por último, el uso de herramientas visuales para ayudar a las tareas de
programación y de gestión debe ser patrocinada por jugadores clave en la
industria del software (e.g., Microsoft, IBM y Borland). Podría ser utilidad
la incorporación de herramientas visuales completas en sus IDEs, ACS y
herramientas de gestión de errores, así como la creación de cursos de formación
y documentación técnica que las tome en cuenta como elementos centrales.

C.5. Trabajos Futuros 355

C.5 Trabajos Futuros

La computación en la nube se ha popularizado en los últimos años y como
consecuencia, actualmente se están ofreciendo muchos servicios basados en la
nube. Así, un gran número de empresas están utilizando estos servicios para
llevar a cabo diferentes tareas de negocio. La industria del software no es una
excepción y, recientemente, un gran número de IDEs basados en la nube se
encuentra disponibles (e.g., Codenvy, Cloud 9 y Code Anywhere). Este tipo
de herramientas también se pueden considerar en un futuro cercano como una
alternativa para apoyar los procesos GSD. Sin embargo, no existe información
fiable sobre el uso de estos IDEs ni proyecciones sobre su uso futuro.

Un punto adicional a tener en cuenta es que las versiones basadas en web
de herramientas ACS y de gestión de errores han estado disponibles desde
hace muchos años, y por lo tanto, éstas herramientas podrían ser migradas a
la nube o utilizar interfaces de software para conectarlas con los IDE basados
en la nube.

La tendencia mencionada abre una oportunidad para contribuir con los
programadores y administradores de proyectos que utilizan herramientas de
desarrollo basadas en la nube. En consecuencia, como trabajo futuro se llevará
a cabo el diseño e implementación de una arquitectura basada en AVAES que
será integrada como un plugin en un IDE en la nube seleccionado (esta
arquitectura podía incluir algunos componentes de Maleku). Dos requisitos
fundamentales de esta arquitectura es que su diseño debe ser responsive y
utilizar tecnologías restful. Además, tendrá en cuenta el uso de herramientas
del ecosistema de Hadoop para procesar y almacenar datos de manera
oportuna y segura.

Además, la arquitectura apoyará el análisis dinámico de los sistemas en
tiempo de ejecución, cuando sea aplicable de acuerdo con el lenguaje de
programación del sistema bajo análisis. Además, los módulos de análisis de
datos apoyarán al menos tres de los lenguajes de programación más comunes
hoy en día. Los comentarios realizados por los participantes en el estudio de
usabilidad en esta investigación serán utilizados como insumo para el diseño
de las visualizaciones (o la re-implementación de las visualizaciones utilizadas
en Maleku), la interacción y la herramienta en general.

Por último, el uso de herramientas de visualización (durante el proceso de
desarrollo y mantenimiento), tanto en la industria del software y como en los
departamentos de desarrollo de las empresas, será objeto de seguimiento. Con
este fin, una versión mejorada de la encuesta introducida en esta investigación
se llevará a cabo cada dos años. La versión mejorada de la encuesta incluirá
un mayor número de temas y participantes.

Bibliography

[2015] JFreeChart. http://www.jfree.org/index.html/, 2015. [Online;
accessed 28-March-2012]. 259

[Abuthawabeh 2013] Ala Abuthawabeh, Fabian Beck, Dirk Zeckzer and
Stephan Diehl. Finding structures in multi-type code couplings with
node-link and matrix visualizations. In First IEEE Working Conference
on Software Visualization (VISSOFT), 2013, pages 1–10, 2013. 122,
123, 144, 306

[Academies 2000] The National Academies. How people learn: brain, mind,
experience, and school. National Academy Press, 2000. 203

[Adamoli 2010] Andrea Adamoli and Matthias Hauswirth. Trevis: a context
tree visualization analysis framework and its use for classifying
performance failure reports. In Proceedings of the 5th international
symposium on Software visualization, SOFTVIS ’10, pages 73–82, New
York, NY, USA, 2010. ACM. 305

[Aftandilian 2010] Edward E. Aftandilian, Sean Kelley, Connor Gramazio,
Nathan Ricci, Sara L. Su and Samuel Z. Guyer. Heapviz: interactive
heap visualization for program understanding and debugging. In
Proceedings of the 5th international symposium on Software
visualization, SOFTVIS ’10, pages 53–62, New York, NY, USA, 2010.
ACM. 305

[Agerfalk 2006] Pär J. Agerfalk and Brian Fitzgerald. Flexible and Distributed
Software Processes: Old Petunias in New Bowls? Communications of
the ACM, vol. 49, no. 10, pages 26–34, October 2006. 147, 150

[Aggarwal 2005] K.K. Aggarwal, Yogesh Singh, Pravin Chandra and
Manimala Puri. Measurement of Software Maintainability Using a
Fuzzy Model. Journal of Computer Sciences, vol. 1, no. 4, 2005. 41

[Agrafiotis 2010] Dimitris K. Agrafiotis and John J. M. Wiener. Scaffold
Explorer: An Interactive Tool for Organizing and Mining
Structure-Activity Data Spanning Multiple Chemotypes. Journal
of Medicinal Chemistry, vol. 53, no. 13, pages 5002–5011, 2010.
PMID: 20524668. 48, 49

http://www.jfree.org/index.html/

Bibliography 357

[Agrawal 1990] Hiralal Agrawal and Joseph R. Horgan. Dynamic program
slicing. In Proceedings of the ACM SIGPLAN 1990 conference on
Programming language design and implementation, PLDI ’90, pages
246–256, New York, NY, USA, 1990. ACM. 43

[ah Kang 2011] Youn ah Kang, Carsten Görg and John Stasko. How Can
Visual Analytics Assist Investigative Analysis: Design Implications
from an Evaluation. IEEE Transactions on Visualization and
Computer Graphics, vol. 17, no. 5, pages 570 –583, may 2011. 49

[ah Kang 2012] Youn ah Kang and John Stasko. Examining the Use of a
Visual Analytics System for Sensemaking Tasks: Case Studies with
Domain Experts. IEEE Transactions on Visualization and Computer
Graphics, vol. 18, no. 12, pages 2869–2878, 2012. 49

[Aigner 2005] Wolfgang Aigner, Silvia Miksch, Bettina Thurnher and Stefan
Biffl. PlanningLines: Novel Glyphs for Representing Temporal
Uncertainties and Their Evaluation. In Proceedings of the Ninth
International Conference on Information Visualisation, IV ’05, pages
457–463, Washington, DC, USA, 2005. IEEE Computer Society. 52,
54

[Alcocer 2013] Juan Pablo Sandoval Alcocer, Alexandre Bergel Stéephane
Ducasse and Marcus Denker. Performance evolution blueprint:
Understanding the impact of software evolution on performance.
In First IEEE Working Conference on Software Visualization
(VISSOFT), 2013, pages 1–9, 2013. 305

[Ali 2009] Jauhar Ali. Cognitive support through visualization and focus
specification for understanding large class libraries. Journal of Visual
Languages & Computing, vol. 20, no. 1, pages 50 – 59, 2009. 124, 306

[Alsallakh 2012] Bilal Alsallakh, Wolfgang Aigner, Silvia Miksch and
M. Eduard Groller. Reinventing the Contingency Wheel: Scalable
Visual Analytics of Large Categorical Data. IEEE Transactions
on Visualization and Computer Graphics, vol. 18, no. 12, pages
2849–2858, 2012. 49

[Amicis 2009] Raffaele De Amicis, Giuseppe Conti, Bruno Simões, Raimondo
Lattuca, Nicolò Tosi, Stefano Piffer and Giuseppe Pellitteri.
Geo-visual analytics for urban design in the context of future internet.
International Journal on Interactive Design and Manufacturing, vol. 3,
pages 55–63, 2009. 10.1007/s12008-009-0060-1. 49

358 Bibliography

[André 2007] Paul André, Max L. Wilson, Alistair Russell, Daniel A. Smith,
Alisdair Owens and m.c. schraefel. Continuum: designing timelines
for hierarchies, relationships and scale. In UIST ’07: Proceedings
of the 20th annual ACM symposium on User interface software and
technology, pages 101–110, New York, NY, USA, 2007. ACM. 54

[Andrews 1998] Keith Andrews and Helmut Heidegger. Information
Slices: Visualising and Exploring Large Hierarchies using Cascading,
Semi-Circular Discs. Late Breaking Hot Topic Paper, IEEE
Symposium on Information Visualization (InfoVis’98), 1998. 52, 58

[Andrienko 2007] Gennady Andrienko and Natalia Andrienko. Coordinated
Multiple Views: a Critical View. International Conference on
Coordinated and Multiple Views in Exploratory Visualization, vol. 0,
pages 72–74, 2007. 48

[Andrienko 2010] Gennady Andrienko, Natalia Andrienko, Sebastian Bremm,
Tobias Schreck, Tatiana Von Landesberger, Peter Bak and Daniel
Keim. Space-in-Time and Time-in-Space Self-Organizing Maps for
Exploring Spatiotemporal Patterns. Computer Graphics Forum,
vol. 29, no. 3, pages 913–922, 2010. 49

[Andrienko 2012a] Gennady Andrienko, Natalia Andrienko, Michael Burch
and M Daniel Weiskopf. Visual Analytics Methodology for Eye
Movement Studies. IEEE Transactions on Visualization and Computer
Graphics, vol. 18, no. 12, pages 2889–2898, 2012. 49

[Andrienko 2012b] Gennady Andrienko, Natalia Andrienko, Martin
Mladenov, Michael Mock and Christian Pölitz. Identifying Place
Histories from Activity Traces with an Eye to Parameter Impact.
IEEE Transactions on Visualization and Computer Graphics, vol. 18,
no. 5, pages 675 –688, may 2012. 48

[Andrienko 2013a] Gennady Andrienko, Natalia Andrienko, Christophe
Hurter, Salvatore Rinzivillo, and Stefan Wrobel. Scalable Analysis of
Movement Data for Extracting and Exploring Significant Places. IEEE
Transactions on Visualization and Computer Graphics, vol. 19, no. 7,
pages 1078–1094, 2013. 48

[Andrienko 2013b] Natalia Andrienko and Gennady Andrienko. A visual
analytics framework for spatio-temporal analysis and modelling. Data
Mining and Knowledge Discovery, vol. 27, no. 1, pages 55–83, 2013. 49

Bibliography 359

[Andrienko 2013c] Natalia Andrienko and Gennady Andrienko. Visual
analytics of movement: An overview of methods, tools and procedures.
Information Visualization, vol. 12, no. 1, pages 3–24, 01 2013. 48

[Anslow 2009] Craig Anslow, James Noble, Stuart Marshall and Ewan
Tempero. Towards Visual Software Analytics. In Proceedings of the
Australasian Computing Doctoral Consortium (ACDC), Wellington,
New Zealand, 2009. 76, 203, 317

[Anslow 2010] Craig Anslow, Stuart Marshall, James Noble, Ewan Tempero
and Robert Biddle. User evaluation of polymetric views using a large
visualization wall. In Proceedings of the 5th International Symposium
on Software visualization, SOFTVIS ’10, pages 25–34, New York, NY,
USA, 2010. ACM. XIV, 163, 306

[Anslow 2013] Craig Anslow, Stuart Marshall, James Noble and Robert
Biddle. SourceVis: Collaborative software visualization for co-located
environments. In First IEEE Working Conference on Software
Visualization (VISSOFT), 2013, pages 1–10, 2013. XIV, 164, 306

[Arias-Hernandez 2012] Richard Arias-Hernandez, Tera M. Green and
Brian Fisher. From Cognitive Amplifiers to Cognitive Prostheses:
Understandings of the Material Basis of Cognition in Visual Analytics.
Interdisciplinary Science Reviews, vol. 37, no. 1, pages 4 – 18, 2012.
49

[Assogba 2010] Yannick Assogba and Judith Donath. Share: a programming
environment for loosely bound cooperation. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, CHI
’10, pages 961–970, New York, NY, USA, 2010. ACM. XV, 170, 171,
172, 173, 306

[Bade 2004] Ragnar Bade, Stefan Schlechtweg and Silvia Miksch. Connecting
time-oriented data and information to a coherent interactive
visualization. In CHI ’04: Proceedings of the SIGCHI conference on
Human factors in computing systems, pages 105–112, New York, NY,
USA, 2004. ACM. 54, 55

[Bailey 1989] Robert W. Bailey. Human performance engineering: Using
human factors/ergonomics to achieve computer system usability (2nd
ed.). Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1989. 270

360 Bibliography

[Baker 1995] Marla J. Baker and Stephen G. Eick. Space-filling Software
Visualization. Journal of Visual Languages & Computing, vol. 6, no. 2,
pages 119 – 133, 1995. 116, 143, 196, 313

[Ball 1996] Thomas Ball and Stephen G. Eick. Software visualization in the
large. Computer, vol. 29, no. 4, pages 33–43, Apr 1996. 112

[Balzer 2005a] Michael Balzer and Oliver Deussen. Exploring Relations within
Software Systems Using Treemap Enhanced Hierarchical Graphs.
In 3rd IEEE International Workshop on Visualizing Software for
Understanding and Analysis, 2005. VISSOFT 2005., pages 1–6, 2005.
XIII, 112, 119, 120, 121, 143

[Balzer 2005b] Michael Balzer, Oliver Deussen and Claus Lewerentz. Voronoi
treemaps for the visualization of software metrics. In SoftVis ’05:
Proceedings of the 2005 ACM symposium on Software visualization,
pages 165–172, New York, NY, USA, 2005. ACM Press. XIII, 56, 117,
143

[Barbara 1987] A. Kitchenham Barbara. Controlling software projects.
Electronics and Power, vol. 33, no. 5, pages 312–315, May 1987. 154

[Barlowe 2011] Scott Barlowe, Yujie Liu, Jing Yang, Dennis R. Livesay,
Donald J. Jacobs, James Mottonen and Deeptak Verma. WaveMap:
Interactively Discovering Features From Protein Flexibility Matrices
Using Wavelet-based Visual Analytics. Computer Graphics Forum,
vol. 30, no. 3, pages 1001–1010, 2011. 49

[Basole 2012] Rahul C. Basole, Mengdie Hu, Pritesh Patel and John T.
Stasko. Visual Analytics for Converging-Business-Ecosystem
Intelligence. IEEE Computer Graphics and Applications, vol. 32, no. 1,
pages 92 –96, jan.-feb. 2012. 49, 50, 62

[Bass 2003] Len Bass, Paul Clements and Rick Kazman. Software architecture
in practice, second edition. Addison-Wesley Professional, April 2003.
112

[Battista 1998] Giuseppe Di Battista, Peter Eades, Roberto Tamassia and
Ioannis G. Tollis. Graph drawing: Algorithms for the visualization of
graphs. Prentice Hall PTR, Upper Saddle River, NJ, USA, 1st édition,
1998. 52, 59

[Battke 2010] Florian Battke, Stephan Symons and Kay Nieselt. Mayday -
integrative analytics for expression data. BMC Bioinformatics, vol. 11,
pages 121 – 130, 2010. 48

Bibliography 361

[Batty 2013] Michael Batty. Visually-Driven Urban Simulation: exploring fast
and slow change in residential location. Environment and Planning,
vol. 45, no. 3, pages 532–552, 2013. 48

[Baxter 1998] Ira D. Baxter, Andrew Yahin, Leonardo Moura, Marcelo
Sant’Anna and Lorraine Bier. Clone Detection Using Abstract Syntax
Trees. In Proceedings of the International Conference on Software
Maintenance, ICSM ’98, pages 368–, Washington, DC, USA, 1998.
IEEE Computer Society. 44

[Baysal 2007] Olga Baysal and Andrew J. Malton. Correlating Social
Interactions to Release History During Software Evolution. In
Proceedings of the Fourth International Workshop on Mining Software
Repositories, MSR ’07, pages 7–, Washington, DC, USA, 2007. IEEE
Computer Society. 43, 44

[Beck 2010] Fabian Beck and Stephan Diehl. Visual comparison of software
architectures. In Proceedings of the 5th international symposium on
Software visualization, SOFTVIS ’10, pages 183–192, New York, NY,
USA, 2010. ACM. 306

[Beck 2011] Fabian Beck, Radoslav Petkov and Stephan Diehl. Visually
exploring multi-dimensional code couplings. In 6th IEEE International
Workshop on Visualizing Software for Understanding and Analysis
(VISSOFT), 2011, pages 1–8, 2011. 303

[Beck 2013] Fabian Beck and Stephan Diehl. Visual comparison of software
architectures. Information Visualization, vol. 12, no. 2, pages 178–199,
04 2013. XIII, XIV, 123, 124, 134, 135, 306

[Ben-Ari 2011] Mordechai Ben-Ari, Roman Bednarik, Ronit Ben-Bassat Levy,
Gil Ebel, Andrés Moreno, Niko Myller and Erkki Sutinen. A
decade of research and development on program animation: The Jeliot
experience. Journal of Visual Languages & Computing, vol. 22, no. 5,
pages 375 – 384, 2011. 303

[Benestad 2009] Hans Christian Benestad, Bente Anda and Erik Arisholm.
Understanding software maintenance and evolution by analyzing
individual changes: a literature review. Journal of Software
Maintenance and Evolution: Research and Practice, vol. 21, no. 6,
pages 349–378, 2009. 43

[Bennedsen 2010] Jens Bennedsen and Carsten Schulte. BlueJ Visual
Debugger for Learning the Execution of Object-Oriented Programs?

362 Bibliography

Transactions on Computing Education, vol. 10, no. 2, pages 8:1–8:22,
June 2010. 305

[Bennett 2000] Keith H. Bennett and Václav T. Rajlich. Software
Maintenance and Evolution: A Roadmap. In Proceedings of the
Conference on The Future of Software Engineering, ICSE ’00, pages
73–87, New York, NY, USA, 2000. ACM. 26, 29

[Benomar 2013] Omar Benomar, Houari Sahraoui and Pierre Poulin.
Visualizing software dynamicities with heat maps. In First IEEE
Working Conference on Software Visualization (VISSOFT), 2013,
pages 1–10, 2013. 306

[Bentrad 2013] Sassi Bentrad and Djamel Meslati. Visualizing and Analyzing
the Structure of AspectJ Software under the Eclipse Platform.
International Journal of Software Engineering and Its Applications,
vol. 7, no. 3, pages 353–376, May 2013. 116, 143, 306

[Bernardin 2008] Tony Bernardin, Brian C. Budge and Bernd Hamann.
Stacked-widget visualization of scheduling-based algorithms. In
Proceedings of the 4th ACM symposium on Software visualization,
SoftVis ’08, pages 165–174, New York, NY, USA, 2008. ACM. 305

[Béron 2008] Mario Béron, Daniela da Cruz, Maria João Varanda Pereira,
Pedro Rangel Henriques and Roberto Uzal. Evaluation Criteria
of Software Visualization Systems used for Program Comprehension.
In Universidade de Évora, editeur, Interaccão’08 – 3Âł Conferência
Interaccão Pessoa-Máquina, Oct 2008. 303

[Bertini 2011] Enrico Bertini and Giuseppe Santucci. Improving visual
analytics environments through a methodological framework for
automatic clutter reduction. Journal of Visual Languages and
Computing, vol. 22, no. 3, pages 194 – 212, 2011. 49

[Beyer 2006] Dirk Beyer and Ahmed E. Hassan. Evolution Storyboards:
Visualization of Software Structure Dynamics. In 14th IEEE
International Conference on Program Comprehension, 2006. ICPC
2006., pages 248–251, 2006. XIV, 135, 137, 144

[Biersack 2012] Ernst Biersack, Quentin Jacquemart, Fabian Fischer,
Johannes Fuchs, Olivier Thonnard, Georgios Theodoridis, Dimitrios
Tzovaras and Pierre-Antoine Vervier. Visual analytics for BGP
monitoring and prefix hijacking identification. IEEE Network, vol. 26,
no. 6, pages 33–39, 2012. 48

Bibliography 363

[Boccuzzo 2007] Sandro Boccuzzo and Harald Gall. CocoViz: Towards
Cognitive Software Visualizations. In 4th IEEE International
Workshop on Visualizing Software for Understanding and Analysis,
2007. VISSOFT 2007., pages 72–79, 2007. 303

[Boehm 1988] Barry W. Boehm. A spiral model of software development and
enhancement. IEEE Computer, vol. 21, no. 5, pages 61–72, May 1988.
21

[Boehm 1999a] Barry Boehm, Alexander Egyed, Dan Port, Archita Shah,
Julie Kwan and Ray Madachy. A Stakeholder Win to Win Approach
to Software Engineering Education. Annals of Software Engineering,
vol. 6, no. 1-4, pages 295–321, April 1999. 21

[Boehm 1999b] Barry W. Boehm and Kevin J. Sullivan. Software economics:
status and prospects. Information & Software Technology, vol. 41,
no. 14, pages 937–946, 1999. 4, 308, 309

[Boehm 2000] Barry W. Boehm and Kevin J. Sullivan. Software Economics:
A Roadmap. In Proceedings of the Conference on The Future of
Software Engineering, ICSE ’00, pages 319–343, New York, NY, USA,
2000. ACM. 4, 309

[Bohner 2002] Shawn A. Bohner. Extending Software Change Impact Analysis
into COTS Components. In Proceedings of the 27th Annual NASA
Goddard Software Engineering Workshop (SEW-27’02), SEW ’02,
pages 175–, Washington, DC, USA, 2002. IEEE Computer Society.
44

[Bohnet 2007] Johannes Bohnet and Jürgen Döllner. Facilitating Exploration
of Unfamiliar Source Code by Providing 21/2D Visualizations of
Dynamic Call Graphs. In 4th IEEE International Workshop on
Visualizing Software for Understanding and Analysis, 2007. VISSOFT
2007., pages 63–66, 2007. 306

[Bohnet 2009a] Johannes Bohnet, Martin Koeleman and Juergen Doellner.
Visualizing massively pruned execution traces to facilitate trace
exploration. In 5th IEEE International Workshop on Visualizing
Software for Understanding and Analysis, 2009. VISSOFT 2009., pages
57–64, 2009. 305

[Bohnet 2009b] Johannes Bohnet, Stefan Voigt and Jürgen Döllner.
Projecting code changes onto execution traces to support localization of
recently introduced bugs. In Proceedings of the 2009 ACM Symposium

364 Bibliography

on Applied Computing, SAC ’09, pages 438–442, New York, NY, USA,
2009. ACM. 306

[Bohnet 2011] Johannes Bohnet and Jürgen Döllner. Monitoring code quality
and development activity by software maps. In Proceedings of the 2nd
Workshop on Managing Technical Debt, MTD ’11, pages 9–16, New
York, NY, USA, 2011. ACM. 305

[Booch 2005] Grady Booch, James Rumbaugh and Ivar Jacobson. Unified
modeling language user guide, the (2nd edition) (addison-wesley object
technology series). Addison-Wesley Professional, 2005. 128

[Boukhelifa 2003] Nadia Boukhelifa and Peter J. Rodgers. A model and
software system for coordinated and multiple views in exploratory
visualization. Information Visualization, vol. 2, no. 4, pages 258–269,
December 2003. 47

[Bresciani 2009] Sabrina Bresciani and Martin J. Eppler. Identität und
vielfalt der kommunikations-wissenschaft, chapitre The Risks of
Visualization: a Classification of Disadvantages Associated with
Graphic Representations of Information. UVK Verlagsgesellschaft
mbH, 2009. 189

[Briand 1999] Lionel C. Briand, Jürgen Wüst and Hakim Lounis. Using
Coupling Measurement for Impact Analysis in Object-Oriented
Systems. Proceedings IEEE International Conference on Software
Maintenaince (ICSM ’99), 1999. 89

[Broeksema 2011] Bertjan Broeksema and Alexandru Telea. Visual support
for porting large code bases. In 6th IEEE International Workshop
on Visualizing Software for Understanding and Analysis (VISSOFT),
2011, pages 1–8, 2011. 306

[Buja 1996] Andreas Buja, Dianne Cook and Deborah F. Swayne. Interactive
High-Dimensional Data Visualization. Journal of Computational and
Graphical Statistics, vol. 5, no. 1, pages 78–99, 1996. 63

[Burch 2011] Michael Burch, Corinna Vehlow, Fabian Beck, Stephan Diehl
and Daniel Weiskopf. Parallel Edge Splatting for Scalable Dynamic
Graph Visualization. IEEE Transactions on Visualization and
Computer Graphics, vol. 17, no. 12, pages 2344–2353, 2011. 303

[Buse 2012] Raymond P. L. Buse and Thomas Zimmermann. Information
Needs for Software Development Analytics. In Proceedings of the 34th

Bibliography 365

International Conference on Software Engineering, ICSE ’12, pages
987–996, Piscataway, NJ, USA, 2012. IEEE Press. 38, 40

[Buss 1994] E. Buss, R. De Mori, W. M. Gentleman, J. Henshaw, H. Johnson,
K. Kontogiannis, E. Merlo, H. A.Müller, J. Mylopoulos, S. Paul,
A. Prakash, M. Stanley, S. R. Tilley, J. Troster and K. Wong.
Investigating Reverse Engineering Technologies for the CAS Program
Understanding Project. IBM Systems Journal, vol. 33, no. 3, pages
477–500, July 1994. 44

[Buxmann 2013] Peter Buxmann, Heiner Diefenbach and Thomas Hess.
The software industry: Economic principles, strategies, perspectives,
chapitre Economic Principles in the Software Industry, pages 19–53.
Springer Publishing Company, Incorporated, 2013. 4, 309

[Cain 2012] Aurora A. Cain, Robert Kosara and Cynthia J. Gibas. GenoSets:
Visual Analytic Methods for Comparative Genomics. PLoS ONE,
vol. 7, no. 10, pages 1 – 9, 2012. 48

[Card 1999a] Stuart K. Card, Jock Mackinlay and Ben Shneiderman.
Readings in information visualization: Using vision to think. 1999.
51

[Card 1999b] Stuart K. Card, Jock D. Mackinlay and Ben Shneiderman,
editeurs. Readings in information visualization: using vision to think.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1999. 47,
160, 198

[Card 2006] Stuart K. Card, Bongwon Suh, Bryan A. Pendleton and Jeffrey
Heer. TimeTree: exploring time changing hierarchies. In IEEE
Symposium on Visual Analytics Science and Technology 2006 (VAST
2006), Baltimore; MD; USA. Piscataway NJ, 2006. IEEE Computer
Society. 9, 55, 311

[Carmel 1999] Erran Carmel. Global software teams: Collaborating across
borders and time zones. Prentice Hall PTR, Upper Saddle River, NJ,
USA, 1999. 24, 147

[Carmel 2001] Erran Carmel and Ritu Agarwal. Tactical Approaches for
Alleviating Distance in Global Software Development. IEEE Software,
vol. 18, no. 2, pages 22–29, March 2001. 149

[Caserta 2011a] Pierre Caserta and Olivier Zendra. Visualization of the Static
Aspects of Software: A Survey. IEEE Transactions on Visualization
and Computer Graphics, vol. 17, no. 7, pages 913–933, 2011. 303

366 Bibliography

[Caserta 2011b] Pierre Caserta, Olivier Zendra and Damien Bodénès. 3D
Hierarchical Edge bundles to visualize relations in a software city
metaphor. In 6th IEEE International Workshop on Visualizing
Software for Understanding and Analysis (VISSOFT), 2011, pages 1–8,
2011. 303

[Cassell 2011] Keith Cassell, Craig Anslow, Lindsay Groves and Peter
Andreae. Visualizing the Refactoring of Classes via Clustering. In
Mark Reynolds, editeur, Australasian Computer Science Conference
(ACSC 2011), volume 113 of CRPIT, pages 63–72, Perth, Australia,
2011. ACS. 306

[Castellanos-Garzón 2013] José A. Castellanos-Garzón, Carlos Armando
García, Paulo Novais and Fernando Díaz. A visual analytics framework
for cluster analysis of DNA microarray data. Expert Syst. Appl.,
vol. 40, no. 2, pages 758–774, 2013. 48

[Cataldo 2007] Marcelo Cataldo, Matthew Bass, James D. Herbsleb and Len
Bass. On Coordination Mechanisms in Global Software Development.
In Second IEEE International Conference on Global Software
Engineering, 2007. ICGSE 2007., pages 71–80, Aug 2007. 152

[Cegielski 2006] Casey G. Cegielski and Dianne J. Hall. What Makes a Good
Programmer? Communications of the ACM, vol. 49, no. 10, pages
73–75, October 2006. 24

[Chan 2010] Brian Chan, Ying Zou, Ahmed E. Hassan and Anand Sinha.
Visualizing the Results of Field Testing. In IEEE 18th International
Conference on Program Comprehension (ICPC), 2010, pages 114–123,
2010. 305

[Charette 2005] Robert N. Charette. Why software fails [software failure].
IEEE Spectrum, vol. 42, no. 9, pages 42–49, Sept 2005. 3, 4, 308, 309

[Chawla 2003] Sanjay Chawla, Bavani Arunasalam and Joseph Davis. Mining
Open Source Software (OSS) Data Using Association Rules Network.
In Kyu-Young Whang, Jongwoo Jeon, Kyuseok Shim and Jaideep
Srivastava, editeurs, Advances in Knowledge Discovery and Data
Mining, volume 2637 of Lecture Notes in Computer Science, pages
461–466. Springer Berlin Heidelberg, 2003. 43

[Chen 2002] Chaomei Chen, Timothy Cribbin, Jasna Kuljis and Robert
Macredie. Footprints of information foragers: behaviour semantics of

Bibliography 367

visual exploration. International Journal of Human-Computer Studies,
vol. 57, no. 2, pages 139–163, August 2002. 62

[Chen 2006] Chaomei Chen. CiteSpace II: Detecting and visualizing emerging
trends and transient patterns in scientific literature. Journal of the
American Society for Information Science and Technology, vol. 1,
no. 57, pages 359–377, 2006. 56

[Chen 2010] Chaomei Chen, Jian Zhang and Michael Vogeley. Making sense of
the evolution of a scientific domain: a visual analytic study of the Sloan
Digital Sky Survey research. Scientometrics, vol. 83, pages 669–688,
2010. 10.1007/s11192-009-0123-x. 48, 49

[Chen 2013] Chaomei Chen. Hindsight, insight, and foresight: a multi-level
structural variation approach to the study of a scientific field.
Technology Analysis and Strategic Management, vol. 25, no. 6, pages
619–640, 2013. 49

[Chi 2000] Ed H. Chi. A Taxonomy of Visualization Techniques Using
the Data State Reference Model. In Proceedings of the IEEE
Symposium on Information Vizualization 2000, INFOVIS ’00, pages
69–, Washington, DC, USA, 2000. IEEE Computer Society. 47, 198

[Chiara 2011] Davide De Chiara, Vincenzo Del Fatto, Robert Laurini, Monica
Sebillo and Giuliana Vitiello. A chorem-based approach for visually
analyzing spatial data. Journal of Visual Languages and Computing,
vol. 22, no. 3, pages 173 – 193, 2011. 49

[Chidamber 1994] Shyam R. Chidamber and Chris F. Kemerer. A Metrics
Suite for Object Oriented Design. IEEE Transactions in Software
Engineering, vol. 20, no. 6, pages 476–493, June 1994. 41

[Chillarege 1992] Ram Chillarege, Inderpal S. Bhandari, Jarir K. Chaar,
Michael J. Halliday, Diane S. Moebus, Bonnie K. Ray and Man-Yuen
Wong. Orthogonal Defect Classification-A Concept for In-Process
Measurements. IEEE Transactions in Software Engineering, vol. 18,
no. 11, pages 943–956, November 1992. 44

[Chinchor 2010] Nancy A. Chinchor, James J. Thomas, Pak Chung-Wong,
Michael G. Christel and William Ribarsky. Multimedia Analysis +
Visual Analytics = Multimedia Analytics. Computer Graphics and
Applications, IEEE, vol. 30, no. 5, pages 52 –60, sept.-oct. 2010. 48

368 Bibliography

[Choudhury 2011] A.N.M. Imroz Choudhury and Paul Rosen. Abstract
visualization of runtime memory behavior. In 6th IEEE International
Workshop on Visualizing Software for Understanding and Analysis
(VISSOFT), 2011, pages 1–8, 2011. 305

[Chow 2008] Tsun Chow and Dac-Buu Cao. A Survey Study of Critical
Success Factors in Agile Software Projects. Journal of Systems and
Software, vol. 81, no. 6, pages 961–971, June 2008. 4, 308

[Chui 2011] Kenneth K. H. Chui, Julia B. Wenger, Steven A. Cohen
and Elena N. Naumova. Visual Analytics for Epidemiologists:
Understanding the Interactions Between Age, Time, and Disease with
Multi- Panel Graphs. PLoS ONE, vol. 6, no. 2, pages 1 – 8, 2011. 48

[Chung-Wong 2009] Pak Chung-Wong, L. Ruby Leung, Michael J. Scott
Ning Lu, Patrick Mackey, Harlan Foote, James Correia Jr.,
Z. Todd Taylor, Stephen D. Unwin Jianhua Xu and Antonio
Sanfilippo. Designing a Collaborative Visual Analytics Tool for
Social and Technological Change Prediction. Computer Graphics and
Applications, IEEE, vol. 29, no. 5, pages 58 –68, sept.-oct. 2009. 48

[Chung-Wong 2012a] Pak Chung-Wong, Han-Wei Shen, Christopher R.
Johnson, Chaomei Chen and Robert B. Ross. The Top 10 Challenges
in Extreme-Scale Visual Analytics. IEEE Computer Graphics and
Applications, vol. 32, no. 4, pages 63–67, 2012. 50, 62

[Chung-Wong 2012b] Pak Chung-Wong, Han-Wei Shen and Valerio Pascucci.
Exploratory Visualization Involving Incremental, Approximate
Database Queries and Uncertainty. IEEE Computer Graphics and
Applications, vol. 32, no. 4, pages 55–62, 2012. 49

[Cisar 2011] Sanja Maravic Cisar, Dragica Radosav, Robert Pinter and Petar
Cisar. Effectiveness of Program Visualization in Learning Java:
a Case Study with Jeliot 3. International Journal of Computers
Communications & Control, vol. 6, no. 4, pages 669–682, 2011. 305

[Cockburn 2000] Andy Cockburn and Bruce McKenzie. An evaluation of cone
trees. In Proceedings of the 2000 British Computer Society Conference
on Human-Computer Interaction, 2000. 57

[Cockburn 2009] Andy Cockburn, Amy Karlson and Benjamin B. Bederson.
A review of overview+detail, zooming, and focus+context interfaces.
Journal ACM Computing Surveys, vol. 41, no. 1, pages 2:1–2:31,
January 2009. 53, 63

Bibliography 369

[Collard 2004] Michael L. Collard. Meta-differencing: An Infrastructure for
Source Code Difference Analysis. PhD thesis, Kent, OH, USA, 2004.
AAI3147487. 44

[Collberg 2003] Christian Collberg, Stephen Kobourov, Jasvir Nagra, Jacob
Pitts and Kevin Wampler. A system for graph-based visualization of
the evolution of software. In SoftVis ’03: Proceedings of the 2003
ACM symposium on Software visualization, pages 77–ff, New York,
NY, USA, 2003. ACM. XIV, 140, 141, 144

[Collins-Sussman 2004] B. Collins-Sussman, B. Fitzpatrick and M. Pilato.
Version control with subversion. Sebastopol, CA USA: O’Reilly Media,
Inc., 2004. ISBN: 0-596-00448-6. XII, 34

[Colomo-Palacios 2012] Ricardo Colomo-Palacios, Pedro Soto-Acosta,
Francisco J. García-Peñalvo and Ángel García-Crespo. A Study of the
Impact of Global Software Development in Packaged Software Release
Planning. Journal of Universal Computer Science, vol. 18, no. 19,
pages 2646–2668, nov 2012. 11, 24, 38, 313

[Colomo-Palacios 2013] Ricardo Colomo-Palacios, Cristina
Casado-Lumbreras, Pedro Soto-Acosta, Francisco J. García-Peñalvo
and Edmundo Tovar-Caro. Competence gaps in software personnel: A
multi-organizational study. Computers in Human Behavior, vol. 29,
no. 2, pages 456–461, 2013. 4, 150, 309

[Colomo-Palacios 2014] Ricardo Colomo-Palacios, Cristina
Casado-Lumbreras, Pedro Soto-Acosta, Francisco José García-Peñalvo
and Edmundo Tovar. Project Managers in Global Software
Development Teams: A Study of the Effects on Productivity and
Performance. Software Quality Control, vol. 22, no. 1, pages 3–19,
March 2014. 4, 24, 150, 309

[Comfort 2007] Louise K. Comfort. Crisis Management in Hindsight:
Cognition, Communication, Coordination, and Control. Public
Administration Review, vol. 67, pages 189–197, 2007. 149, 151, 153,
154

[Conchúir 2009] Eoin Ó. Conchúir, Par J. Agerfalk, Helena H. Olsson and
Brian Fitzgerald. Global Software Development: Where are the
Benefits? Communications of the ACM, vol. 52, no. 8, pages 127
– 131, 2009. 24, 147

370 Bibliography

[Cooke 2013] Nancy J. Cooke, Jamie C. Gorman, Christopher W. Myers and
Jasmine L. Duran. Interactive Team Cognition. Cognitive Science,
vol. 37, no. 2, pages 255–285, 2013. 156

[Cornelissen 2007] Bas Cornelissen, Danny Holten, Andy Zaidman, Leon
Moonen, Jarke J. van Wijk and Arie van Deursen. Understanding
Execution Traces Using Massive Sequence and Circular Bundle Views.
In Proceedings of the 15th IEEE International Conference on Program
Comprehension, ICPC ’07, pages 49–58, Washington, DC, USA, 2007.
IEEE Computer Society. 219, 329

[Cornelissen 2009] Bas Cornelissen, Andy Zaidman, Arie van Deursen and
Bart van Rompaey. Trace visualization for program comprehension:
A controlled experiment. In IEEE 17th International Conference on
Program Comprehension, 2009. ICPC ’09., pages 100–109, 2009. 305

[Cosma 2007] Dan C. Cosma and Radu Marinescu. Distributable Features
View: Visualizing the Structural Characteristics of Distributed
Software Systems. In 4th IEEE International Workshop on Visualizing
Software for Understanding and Analysis, 2007. VISSOFT 2007., pages
55–62, 2007. 305

[Cottam 2008] Joseph A. Cottam, Joshua Hursey and Andrew Lumsdaine.
Representing unit test data for large scale software development. In
Proceedings of the 4th ACM symposium on Software visualization,
SoftVis ’08, pages 57–66, New York, NY, USA, 2008. ACM. 305

[Crouser 2012] R. Jordan Crouser, Daniel E. Kee, Dong Hyun Jeong and
Remco Chang. Two Visualization Tools for Analyzing Agent-Based
Simulations in Political Science. IEEE Computer Graphics and
Applications, vol. 32, no. 1, pages 67–77, 2012. 48

[Dainton 2015] Marianne Dainton and Elaine D. Zelley. Applying
Communication Theory for Professional Life : A Practical
Introduction. Sage Publications, Inc, 2015. 150

[D’Ambros 2006a] Marco D’Ambros and Michele Lanza. Applying the
Evolution Radar to PostgreSQL. In Proceedings of the 2006
International Workshop on Mining Software Repositories, MSR ’06,
pages 177–178, New York, NY, USA, 2006. ACM. XIV, 140, 142, 144

[D’Ambros 2006b] Marco D’Ambros and Michele Lanza. Software Bugs
and Evolution: A Visual Approach to Uncover Their Relationship.
In Proceedings of the Conference on Software Maintenance and

Bibliography 371

Reengineering, CSMR ’06, pages 229–238, Washington, DC, USA,
2006. IEEE Computer Society. 181

[D’Ambros 2006c] Marco D’Ambros, Michele Lanza and Mircea Lungu. The
Evolution Radar: Visualizing Integrated Logical Coupling Information.
In Proceedings of the 2006 International Workshop on Mining Software
Repositories, MSR ’06, pages 26–32, New York, NY, USA, 2006. ACM.
140, 144

[D’Ambros 2007a] Marco D’Ambros and Michele Lanza. BugCrawler:
Visualizing Evolving Software Systems. In Software Maintenance and
Reengineering, 2007. CSMR ’07. 11th European Conference on, pages
333–334, March 2007. 181

[D’Ambros 2007b] Marco D’Ambros, Michele Lanza and Martin Pinzger. "A
Bug’s Life" Visualizing a Bug Database. In 4th IEEE International
Workshop on Visualizing Software for Understanding and Analysis,
2007. VISSOFT 2007., pages 113–120, 2007. 306

[D’Ambros 2008] Marco D’Ambros, Harald C. Gall, Michele Lanza and
Martin Pinzger. Analyzing software repositories to understand software
evolution. In Software Evolution, 2008. 8, 30, 196, 313

[D’Ambros 2009a] Marco D’Ambros and Michele Lanza. Visual software
evolution reconstruction. Journal of Software Maintenance and
Evolution: Research and Practice, vol. 21, no. 3, pages 217–232, 2009.
30, 303

[D’Ambros 2009b] Marco D’Ambros, Michele Lanza and Mircea Lungu.
Visualizing Co-Change Information with the Evolution Radar. IEEE
Transactions on Software Engineering, vol. 35, no. 5, pages 720–735,
2009. 41, 90, 140, 144, 303

[D’Ambros 2011] Marco D’Ambros, Michele Lanza, Mircea Lungu and
Romain Robbes. On porting software visualization tools to the web.
International Journal on Software Tools for Technology Transfer,
vol. 13, no. 2, pages 181–200, 2011. 303

[Danese 2010] María Danese, Urska Demsar, Nicola Masini and Martin
Charlton. Investigating material decay of historic building using
visual analytics with multi-temporal infrared thermographic data.
Archaeometry, vol. 52, no. 3, pages 482–501, 2010. 48

372 Bibliography

[Dang 2013] Tuan Nhon Dang, Anushka Anand and Leland Wilkinson.
TimeSeer: Scagnostics for High-Dimensional Time Series. IEEE
Transactions on Visualization and Computer Graphics, vol. 19, no. 3,
pages 470–483, 2013. 49

[Davenport 2006] Thomas H. Davenport. Competing on Analytics. Harvard
Business Review, vol. 84, no. 1, pages 98–107, January 2006. 6

[de Bono 2012] Bernard de Bono, Pierre Grenon and Stephen John Sammut.
ApiNATOMY: A novel toolkit for visualizing multiscale anatomy
schematics with phenotype-related information. Human Mutation,
vol. 33, no. 5, pages 837–848, 2012. 48

[de Oliveira Barros 2004] Márcio de Oliveira Barros, Cláudia Maria Lima
Werner and Guilherme Horta Travassos. Supporting risks in software
project management. Journal of Systems and Software, vol. 70,
no. 1-âĂŞ2, pages 21 – 35, 2004. 10, 312

[de Souza 2007] Cleidson R. B. de Souza, Stephen Quirk, Erik Trainer and
David F. Redmiles. Supporting collaborative software development
through the visualization of socio-technical dependencies. In
Proceedings of the 2007 International ACM Conference on Supporting
Group Work, GROUP ’07, pages 147–156, New York, NY, USA, 2007.
ACM. 306

[Deelen 2007] Pieter Deelen, Frank van Ham, Cornelis Huizing and Huub
van de Wetering. Visualization of Dynamic Program Aspects.
In 4th IEEE International Workshop on Visualizing Software for
Understanding and Analysis, 2007. VISSOFT 2007., pages 39–46,
2007. 305

[Deng 2011] Fang Deng, Nicholas DiGiuseppe and James A. Jones.
Constellation visualization: Augmenting program dependence with
dynamic information. In 6th IEEE International Workshop on
Visualizing Software for Understanding and Analysis (VISSOFT),
2011, pages 1–8, 2011. 306

[Diehl 2007] Stephan Diehl. Software visualization visualizing the structure,
behaviour, and evolution of software. Springer Berlin Heidelberg New
York, 2007. 11, 196, 310, 313

[Dinkla 2011] Kau Dinkla, Michel A. Westenberg, Hau Timmerman, Sacha A.
F. T. van Hijum and Jack van Wijk. Comparison of Multiple Weighted

Bibliography 373

Hierarchies: Visual Analytics for Microbe Community Profiling.
Computer Graphics Forum, vol. 30, no. 3, pages 1141–1150, 2011. 49

[Dix 1998] Alan Dix and Geoffrey Ellis. Starting simple: adding value to static
visualisation through simple interaction. In Proceedings of the working
conference on Advanced visual interfaces, AVI ’98, pages 124–134, New
York, NY, USA, 1998. ACM. 63

[Dix 2010] Alan Dix, Margit Pohl and Geoffrey Ellis. Mastering the
information age solving problems with visual analytics, chapitre
Perception and Cognitive Aspects, pages 109 – 130. Eurographics
Association, 2010. 50, 197, 311

[Dransch 2010] Doris Dransch, Patrick Kothur, Sven Schulte, Volker Klemann
and Henryk Dobslaw. AssessiDang the quality of geoscientific
simulation models with visual analytics methods-a design study.
International Journal of Geographical Information Science, vol. 24,
no. 10, pages 1459–1479, October 2010. 49

[Draper 2009] Geoffrey M. Draper, Yarden Livnat and Richard F. Riesenfeld.
A Survey of Radial Methods for Information Visualization. IEEE
Transactions on Visualization and Computer Graphics, vol. 15, no. 5,
pages 759–776, 2009. 59

[Drigas 2011] Athanasios Drigas, Lefteris Koukianakis and Yannis
Papagerasimou. Towards an ICT-based psychology: E-psychology.
Computers in Human Behavior, vol. 27, no. 4, pages 1416 – 1423,
July 2011. 202

[Ducasse 2005] Stéphane Ducasse and Michele Lanza. The Class Blueprint:
Visually Supporting the Understanding of Classes. IEEE Transactions
in Software Engineering, vol. 31, no. 1, pages 75–90, January 2005.
127, 144

[Ducheneaut 2005] Nicolas Ducheneaut. Socialization in an Open Source
Software Community: A Socio-Technical Analysis. Journal Computer
Supported Cooperative Work, vol. 14, no. 4, pages 323–368, August
2005. 43, 44

[Ebert 2001a] Christof Ebert and Philip De Neve. Surviving Global Software
Development. IEEE Software, vol. 18, no. 2, pages 62–69, March 2001.
24

374 Bibliography

[Ebert 2001b] Christof Ebert, Casimiro Hernandez Parro, Roland Suttels and
Harald Kolarczyk. Improving Validation Activities in a Global Software
Development. In Proceedings of the 23rd International Conference
on Software Engineering, ICSE ’01, pages 545–554, Washington, DC,
USA, 2001. IEEE Computer Society. 24

[Eichelberger 2008] Holger Eichelberger. Automatic layout of UML use case
diagrams. In Proceedings of the 4th ACM symposium on Software
visualization, SoftVis ’08, pages 105–114, New York, NY, USA, 2008.
ACM. 304

[Eick 2002] Stephen G. Eick, Todd L. Graves, Alan F. Karr, Audris Mockus
and Paul Schuster. Visualizing Software Changes. IEEE Transactions
in Software Engineering, vol. 28, no. 4, pages 396–412, 2002. 161

[El-Nasr 2013] Magy Seif El-Nasr, Heather Desurvire, Bardia Aghabeigi and
Anders Drachen. Game Analytics for Game User Research, Part 1:
A Workshop Review and Case Study. IEEE Computer Graphics and
Applications, vol. 33, no. 2, pages 6–11, 2013. 49

[El-Sappagh 2011] Shaker H. Ali El-Sappagh, Abdeltawab M. Ahmed
Hendawi and Ali Hamed El Bastawissy. A proposed model for data
warehouse {ETL} processes. Journal of King Saud University -
Computer and Information Sciences, vol. 23, no. 2, pages 91 – 104,
2011. 198

[Elmqvist 2012] Niklas Elmqvist and David S. Ebert. Leveraging
Multidisciplinarity in a Visual Analytics Graduate Course. IEEE
Computer Graphics and Applications, vol. 32, no. 3, pages 84–87, 2012.
49

[Endsley 1995] Mica R. Endsley. Toward a Theory of Situation Awareness in
Dynamic Systems. Human Factors: The Journal of the Human Factors
and Ergonomics Society, vol. 37, no. 1, pages 32–64, 1995. 157, 160

[Erdemir 2011] Ural Erdemir, Umut Tekin and Feza Buzluca. E-Quality:
A graph based object oriented software quality visualization tool.
In 6th IEEE International Workshop on Visualizing Software for
Understanding and Analysis (VISSOFT), 2011, pages 1–8, 2011. 305

[Erra 2012a] Ugo Erra and Giuseppe Scanniello. Towards the visualization
of software systems as 3D forests: the CodeTrees environment.
In Proceedings of the 27th Annual ACM Symposium on Applied

Bibliography 375

Computing, SAC ’12, pages 981–988, New York, NY, USA, 2012.
ACM. 303

[Erra 2012b] Ugo Erra, Giuseppe Scanniello and Nicola Capece. Visualizing
the Evolution of Software Systems Using the Forest Metaphor. In
16th International Conference on Information Visualisation (IV), 2012,
pages 87–92, 2012. 303

[Estublier 1999] Jacky Estublier. Distributed Objects for Concurrent
Engineering. In Proceedings of the 9th International Symposium on
System Configuration Management, SCM-9, pages 172–185, London,
UK, UK, 1999. Springer-Verlag. 5, 23, 309

[Estublier 2000] Jacky Estublier. Software configuration management: a
roadmap. In Proceedings of the Conference on The Future of Software
Engineering, ICSE ’00, pages 279–289, New York, NY, USA, 2000.
ACM. 8, 30, 33, 34

[Fabriek 2008] Matthias Fabriek, Mischa van den Brand, Sjaak Brinkkemper,
Frank Harmsen and Remko Helms. Reasons for Success and Failure in
Offshore Software Development Projects. In Proceedings of the 16th
European Conference on Information Systems, ECIS 2008, Galway,
Ireland, 2008, pages 446–457, 2008. 5, 309

[Fallick 2006] Bruce Fallick, Charles A. Fleischman and James B. Rebitzer.
Job-Hopping in Silicon Valley: Some Evidence Concerning the
Microfoundations of a High-Technology Cluster. Review of Economics
and Statistics, vol. 88, no. 3, pages 472 – 481, October 2006. 7, 27

[Feigenspan 2013] Janet Feigenspan, Christian Kästner, Sven Apel, Jörg
Liebig, Michael Schulze, Raimund Dachselt, Maria Papendieck,
Thomas Leich and Gunter Saake. Do background colors improve
program comprehension in the ifdef hell? Empirical Software
Engineering, vol. 18, no. 4, pages 699–745, 2013. 303

[Femmer 2011] Henning Femmer, Nora Broy, Marin Zec, Asa MacWilliams
and Roland Eckl. Dynamic Software Visualization with BusyBorg -
A Proof of Concept. In IEEE 35th Annual Computer Software and
Applications Conference (COMPSAC), 2011, pages 492–497, 2011. 305

[Fenton 2000] Norman E. Fenton and Martin Neil. Software Metrics:
Roadmap. In Proceedings of the Conference on The Future of Software
Engineering, ICSE ’00, pages 357–370, New York, NY, USA, 2000.
ACM. 44

376 Bibliography

[Fernandez-Ramil 2008] Juan Fernandez-Ramil, Angela Lozano, Michel
Wermelinger and Andrea Capiluppi. Software evolution, chapitre
Empirical Studies of Open Source Evolution, pages 263 – 288. Sp,
2008. 8

[Fiore 2004a] Stephen M. Fiore and Eduardo Salas. Team cognition:
Understanding the factors that drive process and performance,
chapitre Advances in measuring team cognition., pages 83–106.
American Psychological Association, Washington, DC, US, 2004. 148,
155, 156, 159

[Fiore 2004b] Stephen M. Fiore and Eduardo Salas. Team cognition:
Understanding the factors that drive process and performance,
chapitre Why we need team cognition., pages 235–248. American
Psychological Association, Washington, DC, US, 2004. 156, 157

[Fischer 1978] Kurt F. Fischer. Software Quality Assurance Tools: Recent
Experience and Future Requirements. SIGSOFT Software Engineering
Notes, vol. 3, no. 5, pages 116–121, January 1978. 154

[Fischer 2005] Michael Fischer, Johann Oberleitner, Harald Gall and Thomas
Gschwind. System evolution tracking through execution trace
analysis. In Proceedings. 13th International Workshop on Program
Comprehension, 2005. IWPC 2005., pages 237–246, May 2005. 43

[Fluri 2007] Beat Fluri, Michael Wuersch, Martin Pinzger and Harald Gall.
Change Distilling: Tree Differencing for Fine-Grained Source Code
Change Extraction. IEEE Transactions in Software Engineering,
vol. 33, no. 11, pages 725–743, November 2007. 44

[Forsberg 2005] Kevin Forsberg, Hal Mooz and Howard Cotterman.
Visualizing project management: Models and frameworks for
mastering complex systems. John Wiley & Sons, 3rd édition,
September 2005. 10, 312

[Frisch 2010] Mathias Frisch and Raimund Dachselt. Off-screen visualization
techniques for class diagrams. In Proceedings of the 5th international
symposium on Software visualization, SOFTVIS ’10, pages 163–172,
New York, NY, USA, 2010. ACM. 305

[Frisch 2013] Mathias Frisch and Raimund Dachselt. Visualizing offscreen
elements of node-link diagrams. Information Visualization, vol. 12,
no. 2, pages 133–162, 04 2013. 305

Bibliography 377

[Fry 2008] Ben Fry. Visualizing data - exploring and explaining data with the
processing environment. O’Reilly, 2008. 47, 198

[Fua 1999] Ying-Huey Fua, Matthew O. Ward and Elke A. Rundensteiner.
Hierarchical parallel coordinates for exploration of large datasets. In
Proceedings of the conference on Visualization ’99: celebrating ten
years, VIS ’99, pages 43–50, Los Alamitos, CA, USA, 1999. IEEE
Computer Society Press. 60

[Furnas 1986] George W. Furnas. Generalized Fisheye Views. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems,
CHI ’86, pages 16–23, New York, NY, USA, 1986. ACM. 52, 53

[Gaither 2012] Kelly P. Gaither, Hank Childs, Karl W. Schulz, Cyrus
Harrison, William Barth, Diego Donzis and Pui-Kuen Yeung. Visual
Analytics for Finding Critical Structures in Massive Time-Varying
Turbulent-Flow Simulations. IEEE Computer Graphics and
Applications, vol. 32, no. 4, pages 34–45, 2012. 49

[Gall 1998] Harald Gall, Karin Hajek and Mehdi Jazayeri. Detection of
logical coupling based on product release history. In Proceedings.,
International Conference on Software Maintenance, 1998., pages
190–198, Nov 1998. 44, 90

[Gall 2003] Harald Gall, Mehdi Jazayeri and Jacek Krajewski. CVS Release
History Data for Detecting Logical Couplings. In IWPSE ’03:
Proceedings of the 6th International Workshop on Principles of
Software Evolution, page 13, Washington, DC, USA, 2003. IEEE
Computer Society. 41, 44, 141

[Gallagher 2008] Keith Gallagher, Andrew Hatch and Malcolm Munro.
Software Architecture Visualization: An Evaluation Framework and
Its Application. IEEE Transactions on Software Engineering, vol. 34,
no. 2, pages 260–270, 2008. 303

[Gansner 2000] Emden R. Gansner and Stephen C. North. An Open Graph
Visualization System and Its Applications to Software Engineering.
Software Practice and Experience, vol. 30, no. 11, pages 1203–1233,
September 2000. 140

[García-Peñalvo 2000] Francisco J. García-Peñalvo. Modelo de reutilización
soportado por estructuras complejas de reutilización denominadas
mecanos, volume 53. Ediciones Universidad de Salamanca, Colección
Vitor, 2000. 4, 309

378 Bibliography

[Garcıa-Peñalvo 2002] Francisco J. Garcıa-Peñalvo, Juan-Antonio Barras,
Miguel Ángel Laguna and José Manuel Marqués. Product Line
Variability Support by FORM and Mecano Model Integration.
SIGSOFT Software Engineering Notes, vol. 27, no. 1, pages 35–38,
January 2002. 4, 309

[Garcıa-Peñalvo 2011] Francisco J. Garcıa-Peñalvo, Ricardo Colomo
Palacios, Pedro Soto-Acosta, Isabel Martínez-Conesa and Enric
Serradell-López. SemSEDoc: Utilización de tecnologías semánticas en
el aprovechamiento de los repositorios documentales de los proyectos
de desarrollo de software. Information Research, vol. 16, no. 4, 2011.
8

[García-Peñalvo 2012a] Francisco J. García-Peñalvo, Ricardo
Colomo-Palacios, Juan García and Roberto Therón. Towards
an ontology modeling tool. A validation in software engineering
scenarios. Expert Systems with Applications, vol. 39, no. 13, pages
11468 – 11478, 2012. 48

[García-Peñalvo 2012b] Francisco J. García-Peñalvo, María J. Rodríguez
Conde, Antonio Miguel Seoane Pardo, Miguel Angel Conde GonzÁlez,
Valentina Zangrando and Alicia García Holgado. GRIAL (GRupo de
investigación en InterAcción y eLearning), USAL. IE Comunicaciones:
Revista Iberoamericana de Informática Educativa, no. 15, pages 85–94,
2012. 14, 245

[García-Peñalvo 2012c] Francisco J. García-Peñalvo, Ricardo Colomo
Palacios, Juan García and Roberto Therón. Towards an ontology
modeling tool. A validation in software engineering scenarios. Expert
Systems Application, vol. 39, no. 13, pages 11468–11478, 2012. 9, 14,
311

[García-Peñalvo 2014] Francisco J. García-Peñalvo, Patricia Ordóñez
de Pablos, Juan García and Roberto Therón. Using OWL-VisMod
through a decision-making process for reusing OWL ontologies.
Behaviour & IT, vol. 33, no. 5, pages 426–442, 2014. 9, 14, 48, 311

[García 2009a] Carlos Armando García, Roberto Therón, Rafael Peláez,
José Luis López-Pérez and Gustavo Santos-García. Visual Evaluation
of Clustered Molecules in the Process of New Drugs Design. In Smart
Graphics, 9th International Symposium, SG 2009, Salamanca, Spain,
May 28-30, 2009. Proceedings, pages 3–14, 2009. 14, 49

Bibliography 379

[García 2009b] Juan García, Antonio González-Torres, Diego A.
Gómez-Aguilar, Roberto Therón and Francisco J. García-Peñalvo. A
Visual Analytics Tool for Software Project Structure and Relationships
among Classes. In Proceedings of the 10th International Symposium
on Smart Graphics, SG ’09, pages 203–212, Berlin, Heidelberg, 2009.
Springer-Verlag. XIII, 117, 118, 143

[García 2012] Juan García. Analítica Visual Aplicada a la Ingeniería de
Ontologías. PhD thesis, University of Salamanca, 2012. 9, 14, 48,
311

[Garousi 2010] Vahid Garousi and James Leitch. IssuePlayer: An extensible
framework for visual assessment of issue management in software
development projects. Journal of Visual Languages & Computing,
vol. 21, no. 3, pages 121 – 135, 2010. 305

[Gartner 2013] Inc. Gartner. Gartner Says Worldwide IT Spending on Pace
to Reach 3.7 Trillion in 2013. Website, July 2013. 4, 308

[Gartner 2014] Inc. Gartner. Gartner Says Worldwide IT Spending on Pace
to Reach 3.8 Trillion in 2014. Website, January 2014. 4, 308

[German 2006] Daniel M. German and Abram Hindle. Visualizing the
Evolution of Software Using Softchange. International Journal of
Software Engineering and Knowledge Engineering, vol. 16, no. 1, pages
5–22, 2006. 41

[Gethers 2012] Malcom Gethers, Bogdan Dit, Huzefa Kagdi and Denys
Poshyvanyk. Integrated Impact Analysis for Managing Software
Changes. In Proceedings of the 34th International Conference on
Software Engineering, ICSE ’12, pages 430–440, Piscataway, NJ, USA,
2012. IEEE Press. 43, 44

[Gibson 2013] Helen Gibson, Joe Faith and Paul Vickers. A survey of
two-dimensional graph layout techniques for information visualisation.
Information Visualization, vol. 12, no. 3-4, pages 324–357, 07 2013. 52,
60

[Gîrba 2004] Tudor Gîrba, Stéphane Ducasse and Michele Lanza. Yesterday’s
Weather: guiding early reverse engineering efforts by summarizing
the evolution of changes. In Proceedings. 20th IEEE International
Conference on Software Maintenance, 2004., pages 40–49, Sept 2004.
44

380 Bibliography

[Gîrba 2005] Tudor Gîrba, Adrian Kuhn, Mauricio Seeberger and Stéphane
Ducasse. How Developers Drive Software Evolution. In Proceedings
of the Eighth International Workshop on Principles of Software
Evolution, IWPSE ’05, pages 113–122, Washington, DC, USA, 2005.
IEEE Computer Society. XIV, 164, 165, 167

[Godart 2001] Claude Godart, Gilles Halin, Jean-Claude Bignon, Christophe
Bouthier, O Malcurat and Pascal Molli. Implicit or explicit
coordination of virtual teams in building design. In Proceedings of the
Sixth Conference on Computer Aided Architectural Design Research
in Asia, pages 429–434, 2001. 151

[Godfrey 2005] Michael W. Godfrey and Lijie Zou. Using Origin Analysis
to Detect Merging and Splitting of Source Code Entities. IEEE
Transactions in Software Engineering, vol. 31, pages 166–181, February
2005. 43, 44

[Gómez-Aguilar 2009] Diego A. Gómez-Aguilar, Roberto Therón and
Francisco J. García-Peñalvo. Semantic Spiral Timelines Used as
Support for e-Learning. Journal of Universal Computer Science, vol. 15,
no. 7, pages 1526–1545, April 2009. 9, 14, 48, 55, 311

[Gómez-Aguilar 2010] Diego A. Gómez-Aguilar, Cristóbal Súarez Guerrero,
Roberto Therón and Francisco J. García-Peñalvo. Advances in learning
processes, chapitre Visual Analytics to Support E-learning, pages
207–228. InTech, January 2010. 55

[Gómez-Aguilar 2014] Diego A. Gómez-Aguilar, Francisco J. García-Peñalvo
and Roberto Therón. Analítica visual en e-learning. El Profesional de
la Información, vol. 23, no. 3, pages 236–245, 2014. 14, 48

[Gómez-Aguilar 2015a] Diego A. Gómez-Aguilar. Analítica Visual en
eLearning. PhD thesis, Universidad de Salamanca, April 2015. 14,
48, 60

[Gómez-Aguilar 2015b] Diego A. Gómez-Aguilar, Ángel Hernández-García,
Francisco J. García-Peñalvo and Roberto Therón. Tap into visual
analysis of customization of grouping of activities in eLearning.
Computers in Human Behavior, vol. 47, no. 0, pages 60 – 67,
2015. Learning Analytics, Educational Data Mining and data-driven
Educational Decision Making. 9, 14, 48, 60, 311

[Gómez 2010] Verónica Uquillas Gómez, Stéphane Ducasse and Theo
D’Hondt. Visually Supporting Source Code Changes Integration: The

Bibliography 381

Torch Dashboard. In 17th Working Conference on Reverse Engineering
(WCRE), 2010, pages 55–64, 2010. 306

[González-Torres 2009] Antonio González-Torres, Roberto Therón,
Alexandru Telea and Francisco J. García-Peñalvo. Combined
visualization of structural and metric information for software
evolution analysis. In Proceedings of the joint international and
annual ERCIM workshops on Principles of software evolution
(IWPSE) and software evolution (Evol) workshops, IWPSE-Evol ’09,
pages 25–30, New York, NY, USA, 2009. ACM. XIV, 132, 133, 196

[González-Torres 2011] Antonio González-Torres, Roberto Ther ón,
Francisco J. García-Peñalvo, Michel Wermelinger and Yijun Yu.
Maleku: an evolutionary visual software analytics tool for providing
insights into software evolution. In IEEE Computer Society, editeur,
IEEE International Conference on Software Maintenance (ICSM),
2011. 207, 322

[González-Torres 2013a] Antonio González-Torres, Francisco J.
García-Peñalvo and Roberto Therón. How Evolutionary Visual
Software Analytics Supports Knowledge Discovery. Journal of
Information Science and Engineering, vol. 29, no. 1, pages 17–34, 1
2013. 49, 207, 289, 310, 322, 353

[González-Torres 2013b] Antonio González-Torres, Francisco J.
García-Peñalvo and Roberto Therón. Human-Computer interaction
in evolutionary visual software analytics. Computers in Human
Behavior, vol. 29, no. 2, pages 486–495, March 2013. 9, 49, 207, 289,
310, 311, 322, 353

[González-Torres 2014] Antonio González-Torres. Representación visual de
sistemas de software: Evolución y colaboración. Master’s thesis,
Universidad de Salamanca, June 2014. XVI, 215

[Goodall 2010] John R. Goodall, Hassan Radwan and Lenny Halseth. Visual
analysis of code security. In Proceedings of the 7 International
Symposium on Visualization for Cyber Security, VizSec ’10, pages
46–51, New York, NY, USA, 2010. ACM. 305

[Gotz 2008] David Gotz and Michelle X. Zhou. Characterizing users’ visual
analytic activity for insight provenance. In IEEE Symposium on Visual
Analytics Science and Technology, 2008. VAST ’08., pages 123 –130,
oct. 2008. 49

382 Bibliography

[Goulão 2012] Miguel Goulão, Nelson Fonte, Michel Wermelinger and
Fernando Brito e Abreu. Software Evolution Prediction Using Seasonal
Time Analysis: A Comparative Study. In Proceedings of the 2012 16th
European Conference on Software Maintenance and Reengineering,
CSMR ’12, pages 213–222, Washington, DC, USA, 2012. IEEE
Computer Society. 44

[Gouveia 2013] Carlos Gouveia, José Campos and Rui Abreu. Using HTML5
visualizations in software fault localization. In Software Visualization
(VISSOFT), 2013 First IEEE Working Conference on, pages 1–10,
2013. 305

[Gra 2002] Graph Drawing 2002. Rings: A technique for visualization of large
hierarchies. Springer-Verlag, April 2002. 52, 57, 58

[Green 2011] Pam Green, Peter C.R. Lane, Austen Rainer and Sven-Bodo
Scholz. Research and development in intelligent systems xxvii, chapitre
Selecting Features in Origin Analysis, pages 379–392. Springer London,
January 2011. 43

[Green 2012] Tera M. Green and Brian Fisher. Impact of personality factors
on interface interaction and the development of user profiles: Next
steps in the personal equation of interaction. Information Visualization,
vol. 11, no. 3, pages 205–221, 07 2012. 49

[Gribov 2010] Alexander Gribov, Martin Sill, Sonja Luck, Frank Rucker,
Konstanze Dohner, Lars Bullinger, Axel Benner and Antony Unwin.
SEURAT: Visual analytics for the integrated analysis of microarray
data. BMC Medical Genomics, vol. 3, no. 1, page 21, 2010. 48

[Group 2013] The Standish Group. The Chaos Manifesto, 2013. 4, 308

[Grubb 2003] Penny Grubb and Armstrong A. Takang. Software
maintenance: Concepts and practice. World Scientific, 2nd édition,
2003. 21, 27

[Guo 2011] Diansheng Guo and Hai Jin. iRedistrict: Geovisual analytics
for redistricting optimization. Journal of Visual Languages and
Computing, vol. 22, no. 4, pages 279 – 289, 2011. 49

[Hall 2013] Jamie Guevara Eric Stegman Linda Hall. Gartner IT Key Metrics
Data: 2013 IT Enterprise Summary Report. Website, March 2013. 4,
308

Bibliography 383

[Hao 2010] Ming C. Hao, Ratnesh K. Sharma, Daniel A. Keim, Umeshwar
Dayal, Chandrakant D. Patel and Ravigopal Vennelakanti. Application
of Visual Analytics for Thermal State Management in Large Data
Centres. Computer Graphics Forum, vol. 29, no. 6, pages 1895–1904,
2010. 48

[Hardisty 2010] Frank Hardisty and Alexander Klippel. Analysing
spatio-temporal autocorrelation with LISTA-Viz. International Journal
of Geographical Information Science, vol. 24, no. 10, pages 1515 – 1526,
2010. 49

[Harel 2008] David Harel and Itai Segall. Visualizing inter-dependencies
between scenarios. In Proceedings of the 4th ACM symposium on
Software visualization, SoftVis ’08, pages 145–153, New York, NY,
USA, 2008. ACM. 305

[Harrison 2011] L. Harrison, Wenwen Dou, Aidong Lu, W. Ribarsky and
Xiaoyu Wang. Guiding security analysis through visualization. In 2011
IEEE Conference on Visual Analytics Science and Technology (VAST),
pages 317 –318, oct. 2011. 9, 311

[Hasenauer 2012] Jan Hasenauer, Julian Heinrich, Malgorzata Doszczak,
Peter Scheurich, Daniel Weiskopf and Frank Allgower. A visual
analytics approach for models of heterogeneous cell populations.
EURASIP Journal on Bioinformatics and Systems Biology, vol. 2012,
no. 1, page 4, 2012. 48

[Hassan 2005] Ahmed E. Hassan. Mining software repositories to assist
developers and support managers. PhD thesis, Waterloo, Ont., Canada,
Canada, 2005. 8, 42, 196, 204, 313, 320

[Hassan 2006] Ahmed E. Hassan. Mining Software Repositories to Assist
Developers and Support Managers. In ICSM ’06: Proceedings of the
22nd IEEE International Conference on Software Maintenance, pages
339–342, Washington, DC, USA, 2006. IEEE Computer Society. 42,
204, 320

[Hassine 2005] Jameleddine Hassine, Juergen Rilling, Jacqueline Hewitt and
Rachida Dssouli. Change Impact Analysis for Requirement Evolution
Using Use Case Maps. In Proceedings of the Eighth International
Workshop on Principles of Software Evolution, IWPSE ’05, pages
81–90, Washington, DC, USA, 2005. IEEE Computer Society. 43,
44

384 Bibliography

[Hattori 2012] LilePalma Hattori, Michele Lanza and Romain Robbes.
Refining code ownership with synchronous changes. Empirical Software
Engineering, vol. 17, no. 4-5, pages 467–499, 2012. 164, 306

[He 2007] Jun He, Brian Butler and William King. Team Cognition:
Development and Evolution in Software Project Teams. Journal of
Management Information Systems, vol. 24, no. 2, pages 261–292,
October 2007. 148, 149, 155, 156, 158

[Healey 2012] Christopher G. Healey and James T. Enns. Attention and
Visual Memory in Visualization and Computer Graphics. IEEE
Transactions on Visualization and Computer Graphics, vol. 18, no. 7,
pages 1170–1188, 2012. 49

[Heimerl 2012] Florian Heimerl, Steffen Koch, Harald Bosch and Thomas
Ertl. Visual Classifier Training for Text Document Retrieval. IEEE
Transactions on Visualization and Computer Graphics, vol. 18, no. 12,
pages 2839–2848, 2012. 48

[Heitlager 2007] Ilja Heitlager, Tobias Kuipers and Joost Visser. A Practical
Model for Measuring Maintainability. In 6th International Conference
on the Quality of Information and Communications Technology, 2007.
QUATIC 2007., pages 30–39, 2007. 41

[Heller 2011] Brandon Heller, Eli Marschner, Evan Rosenfeld and Jeffrey
Heer. Visualizing collaboration and influence in the open-source
software community. In Proceedings of the 8th Working Conference
on Mining Software Repositories, MSR ’11, pages 223–226, New York,
NY, USA, 2011. ACM. 172

[Helminen 2010] Juha Helminen and Lauri Malmi. Jype-a program
visualization and programming exercise tool for Python. In Proceedings
of the 5th international symposium on Software visualization,
SOFTVIS ’10, pages 153–162, New York, NY, USA, 2010. ACM. 305

[Hemerly 2013] Jess Hemerly. Public Policy Considerations for Data-Driven
Innovation. IEEE Computer, vol. 46, no. 6, pages 25–31, 2013. 6

[Herbsleb 2001a] James D. Herbsleb, Audris Mockus, Thomas A. Finholt
and Rebecca E. Grinter. An Empirical Study of Global Software
Development: Distance and Speed. In Proceedings of the 23rd
International Conference on Software Engineering, ICSE ’01, pages
81–90, Washington, DC, USA, 2001. IEEE Computer Society. 24, 150

Bibliography 385

[Herbsleb 2001b] James D. Herbsleb and Deependra Moitra. Global software
development. IEEE Software, vol. 18, no. 2, pages 16–20, Mar 2001.
23, 147

[Herbsleb 2003] James D. Herbsleb and Audris Mockus. An Empirical
Study of Speed and Communication in Globally Distributed Software
Development. IEEE Transactions in Software Engineering, vol. 29,
no. 6, pages 481–494, June 2003. 23, 150, 151

[Herman 2000] Ivan Herman, Guy Melançon and M. Scott Marshall. Graph
Visualization and Navigation in Information Visualization: A Survey.
IEEE Transactions on Visualization and Computer Graphics, vol. 6,
no. 1, pages 24–43, January 2000. 59

[Hermans 2013] Felienne Hermans, Ben Sedee, Martin Pinzger and Arie
van Deursen. Data clone detection and visualization in spreadsheets.
In Proceedings of the 2013 International Conference on Software
Engineering, ICSE ’13, pages 292–301, Piscataway, NJ, USA, 2013.
IEEE Press. 306

[Heuer 1999] Richards J. Heuer. Psychology of intelligence analysis. United
States Government Printing, November 1999. 202

[Hindle 2007] Abram Hindle, Zhen Ming Jiang, Walid Koleilat, Michael W.
Godfrey and Richard C. Holt. YARN: Animating Software Evolution.
In 4th IEEE International Workshop on Visualizing Software for
Understanding and Analysis, 2007. VISSOFT 2007., pages 129–136,
2007. XIV, 134, 136, 144, 306

[Hitz 1995] Martin Hitz and Behzad Montazeri. Measuring Coupling and
Cohesion In Object-Oriented Systems. Symposium on Applied
Corporate Computing, 1995. 44

[Hochheiser 2004] Harry Hochheiser and Ben Shneiderman. Dynamic query
tools for time series data sets: timebox widgets for interactive
exploration. Information Visualization, vol. 3, no. 1, pages 1–18, 2004.
55

[Hollender 2010] Nina Hollender, Cristian Hofmann, Michael Deneke and
Bernhard Schmitz. Integrating cognitive load theory and concepts of
human computer interaction. Computers in Human Behavior, vol. 26,
no. 6, pages 1278–1288, November 2010. 49

386 Bibliography

[Holmes 2007] Reid Holmes and Robert J. Walker. Task-specific source code
dependency investigation. In 4th IEEE International Workshop on
Visualizing Software for Understanding and Analysis, 2007. VISSOFT
2007., pages 100–107, 2007. 306

[Holten 2007] Danny Holten, Bas Cornelissen and Jarke J. van Wijk. Trace
Visualization Using Hierarchical Edge Bundles and Massive Sequence
Views. In 4th IEEE International Workshop on Visualizing Software
for Understanding and Analysis, 2007. VISSOFT 2007., pages 47–54,
2007. XIII, 129, 144, 219, 303, 329

[Hyun 2009] Jeong Dong Hyun, Caroline Ziemkiewicz, Brian Fisher, William
Ribarsky and Remco Chang. iPCA: An Interactive System for
PCA-based Visual Analytics. Computer Graphics Forum, vol. 28, no. 3,
pages 767 – 774, 2009. 48

[Inselberg 1985] Alfred Inselberg. The plane with parallel coordinates. The
Visual Computer, vol. 1, no. 2, pages 69–91, 1985. 60

[Inselberg 2009] Alfred Inselberg. Parallel coordinates: Visual
multidimensional geometry and its applications. Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 2009. 60

[Institute 2011] McKinsey Global Institute. Big data: The next frontier
for innovation, competition, and productivity. Rapport technique,
McKinsey & Company, 2011. 64

[Isenberg 2009] Petra Isenberg and Danyel Fisher. Collaborative Brushing
and Linking for Co-located Visual Analytics of Document Collections.
Computer Graphics Forum, vol. 28, no. 3, pages 1031–1038, 2009. 49

[Isenberg 2012] Petra Isenberg, Danyel Fisher, Sharoda A. Paul,
Meredith Ringel Morris, Kori Inkpen and Mary Czerwinski.
Co-Located Collaborative Visual Analytics around a Tabletop Display.
IEEE Transactions on Visualization and Computer Graphics, vol. 18,
no. 5, pages 689 –702, may 2012. 49

[Ishio 2012] Takashi Ishio, Shogo Etsuda and Katsuro Inoue. A lightweight
visualization of interprocedural data-flow paths for source code reading.
In IEEE 20th International Conference on Program Comprehension
(ICPC), 2012, pages 37–46, 2012. 305

[Islam 2010] Syed S. Islam, Jens Krinke and David Binkley. Dependence
cluster visualization. In Proceedings of the 5th international

Bibliography 387

symposium on Software visualization, SOFTVIS ’10, pages 93–102,
New York, NY, USA, 2010. ACM. 306

[ISO 2014] Systems and software engineering-Software life cycle processes,
December 2014. 20

[Jackson 2000] Daniel Jackson and Martin Rinard. Software Analysis: A
Roadmap. In Proceedings of the Conference on The Future of Software
Engineering, ICSE ’00, pages 133–145, New York, NY, USA, 2000.
ACM. 43

[Javed 2013] Waqas Javed and Niklas Elmqvist. Stack Zooming for Multifocus
Interaction in Skewed-Aspect Visual Spaces. IEEE Transactions on
Visualization and Computer Graphics, vol. 19, no. 8, pages 1362–1374,
2013. 49

[Jedlitschka 2009] Andreas Jedlitschka. An empirical model of software
managers’ information needs for software engineering technology
selection: a framework to support experimentally-based software
engineering technology selection. PhD thesis, 2009. 37

[Jensen 2003] Matt Jensen. Visualizing Complex Semantic Timelines.
NewsBlip Technical Report NBTR2003-001, 2003. 54

[Jermakovics 2011] Andrejs Jermakovics, Alberto Sillitti and Giancarlo Succi.
Mining and visualizing developer networks from version control
systems. In Proceedings of the 4th International Workshop on
Cooperative and Human Aspects of Software Engineering, CHASE
’11, pages 24–31, New York, NY, USA, 2011. ACM. XV, 171, 172,
174, 238, 306, 341

[Jiménez 2009] Miguel Jiménez, Mario Piattini and Aurora Vizcaíno.
Challenges and Improvements in Distributed Software Development:
A Systematic Review. Advances in Software Engineering, vol. 2009,
2009. 23, 38

[Johnson 1991] Brian Johnson and Ben Shneiderman. Tree-Maps: a
space-filling approach to the visualization of hierarchical information
structures. In VIS ’91: Proceedings of the 2nd conference on
Visualization ’91, pages 284–291, Los Alamitos, CA, USA, 1991. IEEE
Computer Society Press. 9, 47, 52, 56, 116, 311

[Kagdi 2007a] Huzefa Kagdi, Michael L. Collard and Jonathan I. Maletic. A
survey and taxonomy of approaches for mining software repositories

388 Bibliography

in the context of software evolution. Journal of Software Maintenance
and Evolution: Research and Practice, vol. 19, no. 2, pages 77–131,
2007. 8, 42, 43, 196, 204, 295, 313, 320

[Kagdi 2007b] Huzefa Kagdi and Jonathan I. Maletic. Onion Graphs
for Focus+Context Views of UML Class Diagrams. In 4th IEEE
International Workshop on Visualizing Software for Understanding and
Analysis, 2007. VISSOFT 2007., pages 80–87, 2007. 42, 305

[Kamiya 2002] Toshihiro Kamiya, Shinji Kusumoto and Katsuro Inoue.
CCFinder: a multilinguistic token-based code clone detection system
for large scale source code. IEEE Transactions on Software
Engineering, vol. 28, no. 7, pages 654–670, Jul 2002. 44

[Kan 2002] Stephen H. Kan. Metrics and models in software quality
engineering. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2nd édition, 2002. 154

[Karolak 1999] Dale W. Karolak. Global software development: Managing
virtual teams and environments. IEEE Computer Society Press, Los
Alamitos, CA, USA, 1st édition, 1999. 24

[Karran 2013] Benjamin Karran, Jonas Trümper and Jürgen Döllner.
SYNCTRACE: Visual thread-interplay analysis. In First IEEE
Working Conference on Software Visualization (VISSOFT), 2013,
pages 1–10, 2013. 305

[Kasprzyka 2013] Joseph R. Kasprzyka, Shanthi Nataraj, Patrick M. Reeda
and Robert J. Lempert. Many objective robust decision making for
complex environmental systems undergoing change. Environmental
Modelling and Software, vol. 42, no. 0, pages 55 – 71, 2013. 48

[Kazman 1996] Rick Kazman, Gregory Abowd, Len Bass and Paul Clements.
Scenario-based analysis of software architecture. IEEE Software,
vol. 13, no. 6, pages 47–55, Nov 1996. 112

[Keim 2006] Daniel A. Keim, Florian Mansmann, Jörn Schneidewind and
Hartmut Ziegler. Challenges in Visual Data Analysis. In IV ’06,
Proceedings of the conference on Information Visualization, pages
9–16, Washington, DC, USA, 2006. IEEE Computer Society. 9, 47,
198, 311

[Keim 2008a] Daniel Keim, Gennady Andrienko, Jean-Daniel Fekete, Carsten
Görg, Jörn Kohlhammer and Guy Melancon. Visual Analytics:

Bibliography 389

Definition, Process, and Challenges. In Andreas Kerren, John T.
Stasko, Jean-Daniel Fekete and Chris North, editeurs, Information
Visualization, volume 4950 of Lecture Notes in Computer Science,
pages 154–175. Springer Berlin Heidelberg, 2008. 47

[Keim 2008b] Daniel A. Keim, Florian Mansmann, Jörn Schneidewind, Jim
Thomas and Hartmut Ziegler. Visual data mining, chapitre Visual
Analytics: Scope and Challenges, pages 76–90. Springer-Verlag, Berlin,
Heidelberg, 2008. 198

[Keivanloo 2011] Iman Keivanloo, Christopher Forbes, Juergen Rilling and
Philippe Charland. Towards Sharing Source Code Facts Using
Linked Data. In Proceedings of the 3rd International Workshop
on Search-Driven Development: Users, Infrastructure, Tools, and
Evaluation, SUITE ’11, pages 25–28, New York, NY, USA, 2011. ACM.
43

[Kelley 2013] Sean Kelley, Edward Aftandilian, Connor Gramazio, Nathan
Ricci, Sara L. Su and Samuel Z. Guyer. Heapviz: Interactive heap
visualization for program understanding and debugging. Information
Visualization, vol. 12, no. 2, pages 163–177, 04 2013. 305

[Kemmis 2005] Stephen Kemmis and Robin McTaggart. The sage handbook
of qualitative research (3rd ed.), chapitre Participatory Action
Research: Communicative Action and the Public Sphere., pages
559–603. Sage Publications Ltd, 2005. 13, 315

[Kendall 2012] Wesley Kendall, Jian Huang and Tom Peterka. Geometric
Quantification of Features in Large Flow Fields. IEEE Computer
Graphics and Applications, vol. 32, no. 4, pages 46–54, 2012. 48

[Khan 2010] Mumtaz Muhammad Khan, Sulaiman Aziz Lodhi and
Muhammad Abdul Majid Makk. Measuring Team Implicit
Coordination. Australian Journal of Basic and Applied Sciences, vol. 4,
no. 6, pages 1211–1136, 2010. 151

[Khan 2012] Taimur Khan, Henning Barthel, Achim Ebert and Peter
Liggesmeyer. Visualization and Evolution of Software Architectures.
In Christoph Garth, Ariane Middel and Hans Hagen, editeurs,
Visualization of Large and Unstructured Data Sets: Applications
in Geospatial Planning, Modeling and Engineering - Proceedings
of IRTG 1131 Workshop 2011, volume 27 of OpenAccess Series in
Informatics (OASIcs), pages 25–42, Dagstuhl, Germany, 2012. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik. 113

390 Bibliography

[Kiczales 1997] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris
Maeda, Cristina Lopes, Jean-Marc Loingtier and John Irwin.
Aspect-oriented programming. In Mehmet Aksit and Satoshi Matsuoka,
editeurs, ECOOP’97 - Object-Oriented Programming, volume 1241 of
Lecture Notes in Computer Science, pages 220–242. Springer Berlin
Heidelberg, 1997. 91

[Kiekel 2011] Preston A . Kiekel and Nancy J . Cooke. Handbook of human
factors in web design, second edition, chapitre Human Factor Aspects
of Team Cognition, pages 107 – 123. CRC Press, 2011. 148, 149, 156

[Kienle 2007] Holger M. Kienle and Hausi A. Müller. Requirements of
Software Visualization Tools: A Literature Survey. In 4th IEEE
International Workshop on Visualizing Software for Understanding and
Analysis, 2007. VISSOFT 2007., pages 2–9, 2007. 303

[Kilpi 1997] Tapani Kilpi. Choosing a SCM-tool: a framework and evaluation.
In Eighth Conference on Software Engineering Environments, pages
164–172, 1997. 33

[Kim 2006] Sunghun Kim, Kai Pan and Jr. Emmet James Whitehead. Micro
Pattern Evolution. In Proceedings of the 2006 International Workshop
on Mining Software Repositories, MSR ’06, pages 40–46, New York,
NY, USA, 2006. ACM. 44

[Kim 2011] Miryung Kim. An Exploratory Study of Awareness Interests
About Software Modifications. In Proceedings of the 4th International
Workshop on Cooperative and Human Aspects of Software
Engineering, CHASE ’11, pages 80–83, New York, NY, USA, 2011.
ACM. 38, 41

[Kim 2012] Jinah Kim and Jinah Park. Visualizing Marine Environmental
Changes to the Saemangeum Coast. IEEE Computer Graphics and
Applications, vol. 32, no. 6, pages 82–87, 2012. 48

[Kirsch 1996] Laurie J. Kirsch. The Management of Complex Tasks
in Organizations: Controlling the Systems Development Process.
Organization Science, vol. 7, no. 1, pages 1–21, 1996. 154

[Kitchenham 1989] Barbara A. Kitchenham and John G. Walker. A
quantitative approach to monitoring software development. Software
Engineering Journal, vol. 4, no. 1, pages 2–13, Jan 1989. 154

Bibliography 391

[Klimoski 1994] Richard Klimoski and Susan Mohammed. Team mental
model: construct or metaphor? Journal of Management, vol. 20, no. 2,
pages 403 – 437, 1994. A Special Issue of The Journal of Management.
148, 155, 156

[Ko 2007] Andrew J. Ko, Robert DeLine and Gina Venolia. Information Needs
in Collocated Software Development Teams. In Proceedings of the 29th
International Conference on Software Engineering, ICSE ’07, pages
344–353, Washington, DC, USA, 2007. IEEE Computer Society. 25,
38, 40

[Ko 2012] Sungahn Ko, Ross Maciejewski, Yun Jang and David S. Ebert.
MarketAnalyzer: An Interactive Visual Analytics System for Analyzing
Competitive Advantage Using Point of Sale Data. Computer Graphics
Forum, vol. 31, no. 3pt3, pages 1245–1254, 2012. 48

[Koch 2011] Steffen Koch, Harald Bosch, Mark Giereth and Thomas Ertl.
Iterative Integration of Visual Insights during Scalable Patent Search
and Analysis. IEEE Transactions on Visualization and Computer
Graphics, vol. 17, no. 5, pages 557 –569, may 2011. 48

[Kohlhammer 2012] Jörn Kohlhammer, Kawa Nazemi, Tobias Ruppert and
Dirk Burkhardt. Toward Visualization in Policy Modeling. IEEE
Computer Graphics and Applications, vol. 32, no. 5, pages 84–89, 2012.
48

[Koike 1993] Hideki Koike. The Role of Another Spatial Dimension in
Software Visualization. ACM Transactions in Information Systems,
vol. 11, no. 3, pages 266–286, July 1993. 246, 248, 250

[Koike 1997] Hideki Koike and Hui-Chu Chu. VRCS: Integrating Version
Control and Module Management using Interactive 3D graphics. In
Proceedings of the 1997 IEEE Symposium on Visual Languages (VL
’97), page 168, Washington, DC, USA, 1997. IEEE Computer Society.
XVII, 246, 248, 250

[Koschke 2003] Rainer Koschke. Software visualization in software
maintenance, reverse engineering, and re-engineering: a research
survey. Journal of Software Maintenance and Evolution: Research
and Practice, vol. 15, no. 2, pages 87–109, 2003. 11, 184, 313

[Kotlarsky 2008] Julia Kotlarsky, Paul C. van Fenema and Leslie P. Willcocks.
Developing a knowledge-based perspective on coordination: The case of

392 Bibliography

global software projects. Information and Management, vol. 45, no. 2,
pages 96 – 108, 2008. 151

[Kraut 1995] Robert E. Kraut and Lynn A. Streeter. Coordination in Software
Development. Communications of the ACM, vol. 38, no. 3, pages 69–81,
March 1995. 4, 151, 152, 153, 308

[Krishnan 2013] Krish Krishnan. Data warehousing in the age of big data.
The Morgan Kaufmann Series on Business Intelligence Series. Elsevier
Science & Technology Books, 2013. 6

[Kuhn 2010a] Adrian Kuhn, David Erni, Peter Loretan and Oscar Nierstrasz.
Software Cartography: thematic software visualization with consistent
layout. Journal of Software Maintenance and Evolution: Research and
Practice, vol. 22, no. 3, pages 191–210, 2010. XIV, 138, 139, 306

[Kuhn 2010b] Adrian Kuhn, David Erni and Oscar Nierstrasz. Embedding
spatial software visualization in the IDE: an exploratory study.
In Proceedings of the 5th international symposium on Software
visualization, SOFTVIS ’10, pages 113–122, New York, NY, USA,
2010. ACM. 139, 306

[Kuhn 2012] Adrian Kuhn and Mirko Stocker. CodeTimeline: Storytelling
with versioning data. In 34th International Conference on Software
Engineering (ICSE), 2012, pages 1333–1336, 2012. XV, 166, 168, 306

[Laguna 2003] Miguel A. Laguna, José M. Marqués and Francisco J.
García-Peñalvo. DocFlow: workflow based requirements elicitation.
Information and Software Technology, vol. 45, no. 6, pages 357 – 369,
2003. 4, 309

[Lai 2003] Su-Ying Lai, Richard Heeks and Brian Nicholson. Uncertainty and
Coordination in Global Software Projects: A UK/India-Centred Case
Study. In Development informatics working paper series, numéro 17 de
Development informatics working paper series. Manchester : Institute
for Development Policy and Management, University of Manchester,
2003. 152, 153

[Laird 2006] Linda M. Laird and M. Carol Brennan. Software measurement
and estimation: A practical approach (quantitative software
engineering series). Wiley-IEEE Computer Society Pr, 2006. 90

[LaMantia 2008] Matthew J. LaMantia, Yuanfang Cai, Alan D. MacCormack
and John Rusnak. Analyzing the Evolution of Large-Scale Software

Bibliography 393

Systems Using Design Structure Matrices and Design Rule Theory:
Two Exploratory Cases. In Proceedings of the Seventh Working
IEEE/IFIP Conference on Software Architecture (WICSA 2008),
WICSA ’08, pages 83–92, Washington, DC, USA, 2008. IEEE
Computer Society. 44

[Lamping 1995] John Lamping, Ramana Rao and Peter Pirolli. A
focus+context technique based on hyperbolic geometry for visualizing
large hierarchies. In CHI ’95: Proceedings of the SIGCHI conference
on Human factors in computing systems, pages 401–408, New York,
NY, USA, 1995. ACM Press/Addison-Wesley Publishing Co. 57

[Lanza 2001a] Michele Lanza. The evolution matrix: recovering software
evolution using software visualization techniques. In IWPSE ’01:
Proceedings of the 4th International Workshop on Principles of
Software Evolution, pages 37–42, New York, NY, USA, 2001. ACM
Press. XIII, 125, 126, 144

[Lanza 2001b] Michele Lanza and Stéphane Ducasse. A Categorization of
Classes Based on the Visualization of Their Internal Structure: The
Class Blueprint. SIGPLAN Notices, vol. 36, no. 11, pages 300–311,
October 2001. XIII, 127, 128, 144

[Lanza 2003] Michele Lanza and Stéphane Ducasse. Polymetric Views-A
Lightweight Visual Approach to Reverse Engineering. IEEE
Transactions in Software Engineering, vol. 29, no. 9, pages 782–795,
September 2003. XIII, 126, 127, 144

[Lanza 2005a] Michele Lanza, Stéphane Ducasse, Harald Gall and Marting
Pinzger. CodeCrawler - an information visualization tool for program
comprehension. In Proceedings 27th International Conference on
Software Engineering, 2005. ICSE 2005., pages 672–673, May 2005.
125

[Lanza 2005b] Michele Lanza, Radu Marinescu and Stéphane Ducasse.
Object-oriented metrics in practice - using software metrics to
characterize, evaluate, and improve the design of object-oriented
systems. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2005.
41, 44, 89, 182, 196, 313

[Lanza 2010] Michele Lanza, Lile Hattori and Anja Guzzi. Supporting
Collaboration Awareness with Real-Time Visualization of Development
Activity. In Proceedings of the 2010 14th European Conference on

394 Bibliography

Software Maintenance and Reengineering, CSMR ’10, pages 202–211,
Washington, DC, USA, 2010. IEEE Computer Society. XV, 173, 174,
175

[Laumer 2011] Sven Laumer, Christian Maier, Andreas Eckhardt and Tim
Weitzel. The trend is our friend: german IT personnel’s perception
of job-related factors before, during and after the economic downturn.
In Proceedings of the 49th SIGMIS annual conference on Computer
personnel research, SIGMIS-CPR ’11, pages 65–70, New York, NY,
USA, 2011. ACM. 7, 27

[Laval 2009] Jannik Laval, Simon Denier, Stéphane Ducasse and Alexandre
Bergel. Identifying Cycle Causes with Enriched Dependency Structural
Matrix. In 16th Working Conference on Reverse Engineering, 2009.
WCRE ’09., pages 113–122, 2009. 304

[LaValle 2010] Steve LaValle, Michael S. Hopkins, Eric Lesser, Rebecca
Shockley and Nina Kruschwitz. Analytics: The new path to value.
Mit Sloan Management Review, 2010. 6

[Lee 2006] Bongshin Lee, Catherine Plaisant, Cynthia Sims Parr, Jean-Daniel
Fekete and Nathalie Henry. Task taxonomy for graph visualization. In
Proceedings of the 2006 AVI workshop on BEyond time and errors:
novel evaluation methods for information visualization, BELIV ’06,
pages 1–5, New York, NY, USA, 2006. ACM. 60

[Lee 2009] Sang-Yong Tom Lee, Hee-Woong Kim and Sumeet Gupta.
Measuring open source software success. Omega: The International
Journal of Management Science, vol. 37, no. 2, pages 426 – 438, 2009.
4, 5, 308, 309

[Lee 2011] Teng-Yok Lee. Data Triage and Visual Analytics for Scientific
Visualization. PhD thesis, The Ohio State University, 2011. 62

[Lehman 1997] Meir M. Manny Lehman, Juan F. Ramil, Paul D. Wernick,
Dewayne E. Perry and Wladyslaw M Turski. Metrics and Laws of
Software Evolution - The Nineties View. In Proceedings of the 4th
International Symposium on Software Metrics, METRICS ’97, pages
20–, Washington, DC, USA, 1997. IEEE Computer Society. 5, 30, 41,
310

[Leinonen 2005] Piritta Leinonen, Sanna Järvelä and Päivi Häkkinen.
Conceptualizing the Awareness of Collaboration: A Qualitative Study

Bibliography 395

of a Global Virtual Team. Computer Supported Cooperative Work,
vol. 14, no. 4, pages 301–322, August 2005. 158

[Lemieux 2011] Victoria L. Lemieux. Visual Analytics: A New Way to
Manage Data Deluge in E-Discovery. Information Management
Journal, vol. 45, no. 2, pages 38 – 40, 2011. 48

[Leung 1994a] Ying K. Leung and Mark D. Apperley. A review and taxonomy
of distortion-oriented presentation techniques. ACM Transactions in
Computer-Human Interaction, vol. 1, no. 2, pages 126–160, June 1994.
9, 47, 119, 311

[Leung 1994b] Ying K. Leung and Mark D. Apperley. A review and taxonomy
of distortion-oriented presentation techniques. ACM Transactions in
Computer Human Interaction, vol. 1, no. 2, pages 126–160, 1994. 51,
52, 62

[Li 2012] Kaiming Li, Lei Guo, Carlos Faraco, Dajiang Zhu, Hanbo Chen,
Yixuan Yuan, Jinglei Lv, Fan Deng, Xi Jiang, Tuo Zhang, Xintao Hu,
Degang Zhang, L. Stephen Miller and Tianming Liu. Visual analytics
of brain networks. NeuroImage, vol. 61, no. 1, pages 82 – 97, 2012. 48

[Liebrock 2009] Daniel A. Quistand Lorie M. Liebrock. Visualizing compiled
executables for malware analysis. In 6th International Workshop on
Visualization for Cyber Security, 2009. VizSec 2009., pages 27–32,
2009. 305

[Likert 1932] Rensis Likert. A technique for the measurement of attitudes.
Archives of Psychology, vol. 22, no. 140, pages 1–55, 1932. 273

[Limberger 2013] Daniel Limberger, Benjamin Wasty, Jonas Trümper and
Jürgen Döllner. Interactive software maps for web-based source code
analysis. In Proceedings of the 18th International Conference on 3D
Web Technology, Web3D ’13, pages 91–98, New York, NY, USA, 2013.
ACM. 116, 306

[Lin 2010] Shen Lin, François Taïani, Thomas C. Ormerod and Linden J.
Ball. Towards anomaly comprehension: using structural compression
to navigate profiling call-trees. In Proceedings of the 5th international
symposium on Software visualization, SOFTVIS ’10, pages 103–112,
New York, NY, USA, 2010. ACM. 305

[Lincke 2008] Rüdiger Lincke, Jonas Lundberg and Welf Löwe. Comparing
Software Metrics Tools. In Proceedings of the 2008 International

396 Bibliography

Symposium on Software Testing and Analysis, ISSTA ’08, pages
131–142, New York, NY, USA, 2008. ACM. 43

[Lintern 2003] Rob Lintern, Jeff Michaud, Margaret-Anne Storey and
Wu Xiaomin. Plugging-in visualization: experiences integrating a
visualization tool with Eclipse. In Proceedings of the 2003 ACM
symposium on Software visualization, SoftVis ’03, pages 47–ff, New
York, NY, USA, 2003. ACM. 191

[Livnat 2012] Yarden Livnat, Theresa-Marie Rhyne and Matthew H. Samore.
Epinome: A Visual-Analytics Workbench for Epidemiology Data.
Computer Graphics and Applications, IEEE, vol. 32, no. 2, pages 89
–95, march-april 2012. 48

[Llorá 2006] X. Llorá, K. Sastry, F. Alías, D. E. Goldberg and M. l.
Welge. Analyzing Active Interactive Genetic Algorithms Using Visual
Analytics. In GECCO ’06, Proceedings of the 8th annual conference on
Genetic and evolutionary computation, pages 1417–1418, New York,
NY, USA, 2006. ACM. 9, 47, 311

[Long 2009] Tran Van Long and Lars Linsen. MultiClusterTree: Interactive
Visual Exploration of Hierarchical Clusters in Multidimensional
Multivariate Data. Computer Graphics Forum, vol. 28, no. 3, pages
823–830, 2009. 60

[Luhmann 1992] Niklas Luhmann. What is Communication? Communication
Theory, vol. 2, no. 3, pages 251–259, 1992. 150

[Lungu 2010] Mircea Lungu, Michele Lanza, Tudor Gîrba and Romain
Robbes. The Small Project Observatory: Visualizing software
ecosystems. Science of Computer Programming, vol. 75, no. 4, pages
264 – 275, 2010. 305

[Luo 2012] Dongning Luo, Jing Yang, Milos Krstajic, William Ribarsky and
Daniel A. Keim. EventRiver: Visually Exploring Text Collections
with Temporal References. IEEE Transactions on Visualization and
Computer Graphics, vol. 18, no. 1, pages 93 –105, jan. 2012. 48

[Luo 2013] Yi Luo and Yanying Han. Source Code Visualization in Linux
Environment Based on Hierarchica Layout Algorithm. Information
Technology Journal, vol. 12, no. 8, pages 1522–1530, August 2013.
306

Bibliography 397

[Maciejewski 2010] Ross Maciejewski, Travis Drake, Stephen Rudolph, Abish
Malik and David S. Ebert. Data Aggregation and Analysis for Cancer
Statistics - A Visual Analytics Approach. In 43rd Hawaii International
Conference on System Sciences (HICSS), pages 1 –5, jan. 2010. 48

[Maciejewski 2011] Ross Maciejewski, Ryan Hafen, Stephen Rudolph,
Stephen G. Larew, Michael A. Mitchell, William S. Cleveland and
David S. Ebert. Forecasting Hotspots-A Predictive Analytics Approach.
IEEE Transactions on Visualization and Computer Graphics, vol. 17,
no. 4, pages 440 –453, april 2011. 49

[Mackinlay 1991] Jock D. Mackinlay, George G. Robertson and Stuart K.
Card. The perspective wall: detail and context smoothly integrated. In
CHI ’91: Proceedings of the SIGCHI conference on Human factors in
computing systems, pages 173–176, New York, NY, USA, 1991. ACM
Press. 52, 54

[MacMillan 2004] Jean MacMillan, Elliot E. Entin and Daniel Serfaty.
Team cognition: Understanding the factors that drive process and
performance, chapitre Communication overhead: The hidden cost of
team cognition., pages 61–82. American Psychological Association,
Washington, DC, US, 2004. 150, 151, 156, 157

[Madhavi 2011] Karanam Madhavi and Akepogu Anand Rao. A Framework
for Visualizing Model-Driven Software Evolution-Its Evaluation.
International Journal of Software Engineering and Its Applications,
vol. 5, pages 135–148, 2011. 303

[Mahoney 2009] Mark Mahoney. Software evolution and the moving picture
metaphor. SIGPLAN Notices, vol. 44, no. 10, pages 525–528, October
2009. 196

[Mahyar 2012] Narges Mahyar, Ali Sarvghad and Melanie Tory. Note-taking
in co-located collaborative visual analytics: Analysis of an observational
study. Information Visualization, vol. 11, no. 3, pages 190–204, 07 2012.
49

[Maletic 2002] Jonathan I. Maletic, Andrian Marcus and Michael L. Collard.
A Task Oriented View of Software Visualization. IEEE Workshop
of Visualizing Software for Understanding and Analysis (VISSOFT),
vol. 26, pages 32–40, 2002. 161, 183

[Maletic 2004] Jonathan I. Maletic and Michael L. Collard. Supporting source
code difference analysis. In Proceedings of the 20th IEEE International

398 Bibliography

Conference on Software Maintenance, 2004., pages 210–219, Sept 2004.
44

[Mane 2012] Ketan K. Mane, Chris Bizon, Charles Schmitt, Phillips
Owen, Bruce Burchett, Ricardo Pietrobon and Kenneth Gersing.
VisualDecisionLinc: A visual analytics approach for comparative
effectiveness-based clinical decision support in psychiatry. Journal of
Biomedical Informatics, vol. 45, no. 1, pages 101 – 106, 2012. 10, 48,
312

[Maoz 2011] Shahar Maoz and David Harel. On tracing reactive systems.
Software & Systems Modeling, vol. 10, no. 4, pages 447 – 468, 2011.
305

[McCabe 1976] Thomas J. McCabe. A Complexity Measure. IEEE
Transactions on Software Engineering, vol. 2, no. 4, pages 308–320,
1976. 41

[Mens 2001] Tom Mens and Serge Demeyer. Future trends in software
evolution metrics. In Proceedings of the 4th International Workshop
on Principles of Software Evolution, IWPSE ’01, pages 83–86, New
York, NY, USA, 2001. ACM. 41, 44

[Mens 2008] Tom Mens and Serge Demeyer, editeurs. Software evolution.
Springer, 2008. 7, 196, 313

[Merriam-Webster Online 2009] Merriam-Webster Online. Merriam-Webster
Online Dictionary, 2009. 25

[Meyer 2012] Joerg Meyer, E. Wes Bethel, Jennifer L. Horsman, Susan S.
Hubbard, Harinarayan Krishnan, Alexandru Romosan, Elizabeth H.
Keating, Laura Monroe, Richard Strelitz, Phil Moore, Glenn Taylor,
Ben Torkian, Timothy C. Johnson and Ian Gorton. Visual Data
Analysis as an Integral Part of Environmental Management. IEEE
Transactions on Visualization and Computer Graphics, vol. 18, no. 12,
pages 2088–2094, 2012. 49

[Meyers 2007] Timothy M. Meyers and David Binkley. An Empirical Study
of Slice-based Cohesion and Coupling Metrics. ACM Transactions in
Software Engineering Methodologies, vol. 17, no. 1, pages 2:1–2:27,
December 2007. 44

[Migut 2011] Malgorzata Migut, Jan van Gemert and Marcel Worring.
Interactive decision making using dissimilarity to visually represented

Bibliography 399

prototypes. In 2011 IEEE Conference on Visual Analytics Science and
Technology (VAST), pages 141 –149, oct. 2011. 9, 311

[Migut 2012] Malgorzata Migut and Marcel Worring. Visual exploration
of classification models for various data types in risk assessment.
Information Visualization, vol. 11, no. 3, pages 237–251, 07 2012. 49

[Minelli 2013] Roberto Minelli and Michele Lanza. Software Analytics for
Mobile Applications–Insights amp;amp; Lessons Learned. In 17th
European Conference on Software Maintenance and Reengineering
(CSMR), 2013, pages 144–153, 2013. 303

[Mintzberg 1991] Henry Mintzberg. The Effective Organization: Forces and
Forms. Mit Sloan Management Review, January, 15 1991. 24

[Misra 2013] Sanjay Misra, Ricardo Colomo-Palacios, Tolga Pusatli and
Pedro Soto-Acosta. A discussion on the role of people in global software
development. Tehnicki vjesnik / Technical Gazette, vol. 20, no. 3, pages
525 – 531, 2013. 24, 38

[Mockus 2001] Audris Mockus and David M. Weiss. Globalization by
Chunking: A Quantitative Approach. IEEE Software, vol. 18, no. 2,
pages 30–37, March 2001. 24, 149, 150

[Moons 2009] Jan Moons and Carlos De Backer. Rationale Behind the Design
of the EduVisor Software Visualization Component. Electronic Notes
in Theoretical Computer Science, vol. 224, no. 0, pages 57 – 65, 2009.
303

[Moreta 2007] Sergio Moreta and Alexandru Telea. Visualizing Dynamic
Memory Allocations. In 4th IEEE International Workshop on
Visualizing Software for Understanding and Analysis, 2007. VISSOFT
2007., pages 31–38, 2007. 305

[Morisaki 2007] Shuji Morisaki, Akito Monden, Tomoko Matsumura, Haruaki
Tamada and Ken ichi Matsumoto. Defect Data Analysis Based on
Extended Association Rule Mining. In Proceedings of the Fourth
International Workshop on Mining Software Repositories, MSR ’07,
pages 3–, Washington, DC, USA, 2007. IEEE Computer Society. 43

[Morisio 2002] Maurizio Morisio, Michel Ezran and Colin Tully. Success
and failure factors in software reuse. IEEE Transactions on Software
Engineering, vol. 28, no. 4, pages 340–357, Apr 2002. 4, 308

400 Bibliography

[Morris 2003] Steven A. Morris, G. Yen, Zheng Wu and Benyam Asnake.
Time line visualization of research fronts. Journal of the American
Society for Information Science and Technology, vol. 54, no. 5, pages
413–422, 2003. 55

[Munch 2004] Jurgen Munch and Jens Heidrich. Software project control
centers: concepts and approaches. Journal of Systems and Software,
vol. 70, no. 1,2, pages 3–19, 2004. 10, 312

[Murphy-Hill 2010] Emerson Murphy-Hill and Andrew P. Black. An
interactive ambient visualization for code smells. In Proceedings of
the 5th international symposium on Software visualization, SOFTVIS
’10, pages 5–14, New York, NY, USA, 2010. ACM. 305

[Murphy-Hill 2013] Emerson Murphy-Hill, Titus Barik and Andrew P.
Black. Interactive ambient visualizations for soft advice. Information
Visualization, vol. 12, no. 2, pages 107–132, 04 2013. 305

[Murphy 1997] Gail C. Murphy and David Notkin. Reengineering with
Reflection Models: A Case Study. IEEE Computer, vol. 30, no. 8,
pages 29–36, 1997. 7, 27

[Myers 2010] Colin Myers and David Duke. A map of the heap: revealing
design abstractions in runtime structures. In Proceedings of the 5th
international symposium on Software visualization, SOFTVIS ’10,
pages 63–72, New York, NY, USA, 2010. ACM. 305

[Myller 2009] Niko Myller, Roman Bednarik, Erkki Sutinen and Mordechai
Ben-Ari. Extending the Engagement Taxonomy: Software
Visualization and Collaborative Learning. Transactions on Computing
Education, vol. 9, no. 1, pages 7:1–7:27, March 2009. 303

[Nam 2013] Julia EunJu Nam and Klaus Mueller. TripAdvisorN̂-D: A
TourismInspired HighDimensional Space Exploration Framework with
Overview and Detail. IEEE Transactions on Visualization and
Computer Graphics, vol. 19, no. 2, pages 291–305, 2013. 49

[Nasir 2011] Mohd Hairul Nizam Nasir and Shamsul Sahibuddin. Critical
success factors for software projects: A comparative study. Scientific
Research and Essays, vol. 6, no. 10, pages 2174–2186, May 2011. 5,
309

[Nestor 2008] Daren Nestor, Steffen Thiel, Goetz Botterweck, Ciarán Cawley
and Patrick Healy. Applying visualisation techniques in software

Bibliography 401

product lines. In Proceedings of the 4th ACM symposium on Software
visualization, SoftVis ’08, pages 175–184, New York, NY, USA, 2008.
ACM. 306

[Neu 2011] Sylvie Neu, Michele Lanza, Lile Hattori and Marco D’Ambros.
Telling stories about GNOME with Complicity. In 6th IEEE
International Workshop on Visualizing Software for Understanding and
Analysis (VISSOFT), 2011, pages 1–8, 2011. 305

[Niazi 2006] Mahmood Niazi, David Wilson and Didar Zowghi. Critical
success factors for software process improvement implementation: an
empirical study. Software Process: Improvement and Practice, vol. 11,
no. 2, pages 193–211, 2006. 5, 309

[Nielsen 14] Jakob Nielsen and Don Norman. The Definition of User
Experience. Website, 3 14. 271

[Noda 2009] Kunihiro Noda, Takashi Kobayashi, Kiyoshi Agusa and
Shinichiro Yamamoto. Sequence Diagram Slicing. In Software
Engineering Conference, 2009. APSEC ’09. Asia-Pacific, pages
291–298, 2009. 305

[North 2000] Chris North and Ben Shneiderman. Snap-together visualization:
can users construct and operate coordinated visualizations.
International Journal of Human-Computer Studies, vol. 53, no. 5,
pages 715 – 739, 2000. 10, 47, 198, 200, 311

[Novais 2011] Renato L. Novais, Caio A. N. Lima, Glauco de F. Carneiro,
Paulo R. M. S. Júnior and Manoel Mendonca. An interactive
differential and temporal approach to visually analyze software
evolution. In 6th IEEE International Workshop on Visualizing Software
for Understanding and Analysis (VISSOFT), 2011, pages 1–4, 2011.
306

[Novais 2012] Renato Lima Novais, Camila Nunes, Caio Lima, Elder
Cirilo, Francisco Dantas, Alessandro Garcia and Manoel Mendonca.
On the proactive and interactive visualization for feature evolution
comprehension: An industrial investigation. In 34th International
Conference on Software Engineering (ICSE), 2012, pages 1044–1053,
2012. 306

[Novais 2013] Renato Lima Novais, André Torres, Thiago Souto Mendes,
Manoel Mendonca and Nico Zazworka. Software evolution

402 Bibliography

visualization: A systematic mapping study. Information and Software
Technology, no. 0, pages –, 2013. 110, 303

[Oeltze 2011] Steffen Oeltze, Wolfgang Freiler, Reyk Hillert, Helmut Doleisch,
Bernhard Preim and Walter Schubert. Interactive, Graph-based
Visual Analysis of High-dimensional, Multi-parameter Fluorescence
Microscopy Data in Toponomics. IEEE Transactions on Visualization
and Computer Graphics, vol. 17, no. 12, pages 1882 –1891, dec. 2011.
48

[Ogawa 2009] Michael Ogawa and Kwan-Liu Ma. code_swarm: A Design
Study in Organic Software Visualization. IEEE Transactions on
Visualization and Computer Graphics, vol. 15, no. 6, pages 1097–1104,
nov 2009. 5, 23, 303, 309

[Ogawa 2010] Michael Ogawa and Kwan-Liu Ma. Software evolution
storylines. In Proceedings of the 5th international symposium on
Software visualization, SOFTVIS ’10, pages 35–42, New York, NY,
USA, 2010. ACM. 303

[Olchi 1978] William G. Olchi. The Transmission of Control Through
Organizational Hierarchy. Academy of Management Journal, vol. 2,
no. 2, pages 173–192, June 1978. 154

[Omer 2010] Itzhak Omer, Peter Bak and Tobias Schreck. Using space-time
visual analytic methods for exploring the dynamics of ethnic groups’
residential patterns. International Journal of Geographical Information
Science, vol. 24, no. 10, pages 1481–1496, October 2010. 49

[Omoronyia 2010] Inah Omoronyia, John Ferguson, Marc Roper and Murray
Wood. A review of awareness in distributed collaborative software
engineering. Software: Practice and Experience, vol. 40, no. 12, pages
1107–1133, 2010. 23, 38

[Ooms 2012] Kristien Ooms, Gennady Andrienko, Natalia Andrienko,
Philippe De Maeyer and Veerle Fack. Analysing the spatial dimension
of eye movement data using a visual analytic approach. Expert Systems
with Applications, vol. 39, no. 1, pages 1324 – 1332, 2012. 48

[Owens 2011] Dawn Owens and Deepak Khazanchi. Best Practices for
Retaining Global IT Talent. In System Sciences (HICSS), 2011 44th
Hawaii International Conference on, pages 1 –12, jan. 2011. 7, 27

Bibliography 403

[Panas 2003] Thomas Panas, Rebecca Berrigan and John Grundy. A 3D
metaphor for software production visualization. In Proceedings.
Seventh International Conference on Information Visualization, 2003.
IV 2003., pages 314–319, July 2003. 114, 143

[Panas 2005] Thomas Panas, Rüdiger Lincke and Welf Löwe.
Online-configuration of Software Visualizations with Vizz3D. In
Proceedings of the 2005 ACM Symposium on Software Visualization,
SoftVis ’05, pages 173–182, New York, NY, USA, 2005. ACM. 114,
143

[Park 2009] Yunrim Park and Carlos Jensen. Beyond pretty pictures:
Examining the benefits of code visualization for Open Source
newcomers. In 5th IEEE International Workshop on Visualizing
Software for Understanding and Analysis, 2009. VISSOFT 2009., pages
3–10, 2009. 303

[Parnin 2007] Chris Parnin and Carsten Görg. Design Guidelines for Ambient
Software Visualization in the Workplace. In 4th IEEE International
Workshop on Visualizing Software for Understanding and Analysis,
2007. VISSOFT 2007., pages 18–25, 2007. 303

[Parnin 2008] Chris Parnin, Carsten Görg and Ogechi Nnadi. A catalogue
of lightweight visualizations to support code smell inspection. In
Proceedings of the 4th ACM symposium on Software visualization,
SoftVis ’08, pages 77–86, New York, NY, USA, 2008. ACM. 303

[Parnin 2010] Chris Parnin, Carsten Görg and Spencer Rugaber. CodePad:
interactive spaces for maintaining concentration in programming
environments. In Proceedings of the 5th international symposium on
Software visualization, SOFTVIS ’10, pages 15–24, New York, NY,
USA, 2010. ACM. 303

[Paul 1999] Raymond A. Paul, Tosiyasu L. Kunii, Yoshihisa Shinagawa and
Muhammad F. Khan. Software metrics knowledge and databases for
project management. IEEE Transactions on Knowledge and Data
Engineering, vol. 11, no. 1, pages 255 –264, jan/feb 1999. 10, 312

[Pauw 2006] Wim De Pauw, Sophia Krasikov and John F. Morar. Execution
patterns for visualizing web services. In Proceedings of the 2006 ACM
symposium on Software visualization, SoftVis ’06, pages 37–45, New
York, NY, USA, 2006. ACM. 44

404 Bibliography

[Pauw 2009] Wim De Pauw and Henrique Andrade. Visualizing large-scale
streaming applications. Information Visualization, vol. 8, no. 2, pages
87–106, 2009. 305

[Pauw 2010] Wim De Pauw and Steve Heisig. Zinsight: a visual and analytic
environment for exploring large event traces. In Proceedings of the
5th international symposium on Software visualization, SOFTVIS ’10,
pages 143–152, New York, NY, USA, 2010. ACM. 305

[Pauw 2013] Wim De Pauw, Joel Wolf and Andrey Balmin. Visualizing
jobs with shared resources in distributed environments. In First IEEE
Working Conference on Software Visualization (VISSOFT), 2013,
pages 1–10, 2013. 305

[Pauwels 2010] Stefan L. Pauwels, Christian Hübscher, Javier A. Bargas-Avila
and Klaus Opwis. Building an interaction design pattern language:
A case study. Computer in Human Behaviour, vol. 26, no. 3, pages
452–463, May 2010. 63

[Pavlo 2006] Andrew Pavlo, Christopher Homan and Jonathan Schull.
A parent-centered radial layout algorithm for interactive graph
visualization and animation. ArXiv Computer Science e-prints, jun
2006. 52, 58

[Peck 2011] R. Peck, C. Olsen and J.L. Devore. Introduction to statistics and
data analysis. Available Titles Aplia Series. Cengage Learning, 2011.
9, 47, 311

[Peláez 2008] Rafael Peláez, Roberto Therón, Carlos Armando García,
José Luis López-Pérez and Manuel Medarde. Design of New
Chemoinformatic Tools for the Analysis of Virtual Screening Studies:
Application to Tubulin Inhibitors. In 2nd International Workshop on
Practical Applications of Computational Biology and Bioinformatics,
IWPACBB 2008, Salamanca, Spain, 22th-24th October 2008, pages
189–196, 2008. 14, 49

[Pelekis 2012] Nikos Pelekis, Gennady Andrienko, Natalia Andrienko, Ioannis
Kopanakis, Gerasimos Marketos and Yannis Theodoridis. Visually
exploring movement data via similarity-based analysis. Journal
of Intelligent Information Systems, vol. 38, pages 343–391, 2012.
10.1007/s10844-011-0159-2. 48, 49

[Perer 2011] A. Perer, I. Guy, E. Uziel, I. Ronen and M. Jacovi. Visual social
network analytics for relationship discovery in the enterprise. In 2011

Bibliography 405

IEEE Conference on Visual Analytics Science and Technology (VAST),
pages 71 –79, oct. 2011. 9, 311

[Perer 2013] Adam Perer, Ido Guy, Erel Uziel, Inbal Ronen and Michal Jacovi.
The Longitudinal Use of SaNDVis: Visual Social Network Analytics
in the Enterprise. IEEE Transactions on Visualization and Computer
Graphics, vol. 19, no. 7, pages 1095–1108, 2013. 49

[Pérez 2013] Carlos Armando García Pérez. Analítica visual aplicada al diseño
de nuevos fármacos. PhD thesis, University of Salamanca, 2013. 14,
49

[PerforceSoftware 2014] PerforceSoftware. Introducing Perforce, 12 2014.
XVII, 246, 249, 250

[Petersen 2008] Kai Petersen, Robert Feldt, Shahid Mujtaba and Michael
Mattsson. Systematic mapping studies in software engineering. In
Proceedings of the 12th International Conference on Evaluation and
Assessment in Software Engineering, EASE’08, pages 68–77, Swinton,
UK, UK, 2008. British Computer Society. 71

[Peterson 2012] Elena S. Peterson, Lee Ann McCue, Alexandra C.
Schrimpe-Rutledge, Jeffrey L Jensen, Hyunjoo Walker, Markus A
Kobold, Samantha R. Webb, Samuel H. Payne, Charles Ansong,
Joshua N. Adkins, William R. Cannon and Bobbie-Jo M.
Webb-Robertson. VESPA: software to facilitate genomic annotation
of prokaryotic organisms through integration of proteomic and
transcriptomic data. BMC Genomics, vol. 13, no. 1, page 131, 2012.
48

[Petre 1998] Marian Petre, Alan F. Blackwell and Thomas R. G. Green.
Software visualization: Programming as a multi-media experience,
chapitre Cognitive Questions in Software Visualisation, pages 453–480.
MIT Press, January 1998. 196

[Petre 2010] Marian Petre. Mental imagery and software visualization in
high-performance software development teams. Journal of Visual
Languages & Computing, vol. 21, no. 3, pages 171 – 183, 2010. 303

[Pileggi 2012] Hannah Pileggi, Charles D. Stolper, J. Michael Boyle, and
John T. Stasko. SnapShot: Visualization to Propel Ice Hockey
Analytics. IEEE Transactions on Visualization and Computer
Graphics, vol. 18, no. 12, pages 2819–2828, 2012. 49

406 Bibliography

[Pilgrim 2009] Jens Von Pilgrim, Kristian Duske and Paul Mcintosh. Eclipse
GEF3D: Bringing 3D to existing 2D editors. Information Visualization,
vol. 8, no. 2, pages 107–119, Summer 2009. 303

[Pinelle 2005] David Pinelle and Carl Gutwin. A Groupware Design
Framework for Loosely Coupled Workgroups. In Proceedings of the
Ninth Conference on European Conference on Computer Supported
Cooperative Work, ECSCW’05, pages 65–82, New York, NY, USA,
2005. Springer-Verlag New York, Inc. 24

[Pinzger 2005] Martin Pinzger, Harald Gall, Michael Fischer and Michele
Lanza. Visualizing Multiple Evolution Metrics. In Proceedings of the
2005 ACM Symposium on Software Visualization, SoftVis ’05, pages
67–75, New York, NY, USA, 2005. ACM. 182

[Pirolli 2001] Peter Pirolli, Stuart K. Card and Mija M. Van Der Wege. Visual
information foraging in a focus + context visualization. In Proceedings
of the SIGCHI conference on Human factors in computing systems,
CHI ’01, pages 506–513, New York, NY, USA, 2001. ACM. 62

[Plaisant 1998] Catherine Plaisant, Daniel Heller, Jia Li, Ben Shneiderman,
Rich Mushlin and John Karat. Visualizing medical records with
LifeLines. In CHI ’98: CHI 98 conference summary on Human factors
in computing systems, pages 28–29, New York, NY, USA, 1998. ACM.
52, 54

[Ploeger 2008] Bas Ploeger and Carst Tankink. Improving an interactive
visualization of transition systems. In Proceedings of the 4th ACM
symposium on Software visualization, SoftVis ’08, pages 115–124, New
York, NY, USA, 2008. ACM. 304

[PMI 2002] Project Management Institute PMI. Project manager competency
development (pmcd) framework. Project Management Institute, Inc.,
2002. 23

[Pohl 2012] Margit Pohl, Michael Smuc, and Eva Mayr. The User
Puzzle-Explaining the Interaction with Visual Analytics Systems. IEEE
Transactions on Visualization and Computer Graphics, vol. 18, no. 12,
pages 2908–2916, 2012. 49

[Predonzani 1998] Paolo Predonzani, Giancarlo Succi and Tullio Vernazza.
Skill management in software engineering. In Proceedings of the
Thirteen International Conference and Symposium on Computer and
Information Sciences, 1998. 38

Bibliography 407

[Prikladnicki1 2003] Rafael Prikladnicki1, Jorge Luis Nicolas Audy and
Roberto Evaristo. Global software development in practice lessons
learned. Software Process: Improvement and Practice, vol. 8, no. 4,
pages 267–281, 2003. 23, 24

[Procaccino 2002] J. Drew Procaccino, June M. Verner, Scott P. Overmyer
and Marvin E. Darter. Case study: factors for early prediction of
software development success. Information & Software Technology,
vol. 44, no. 1, pages 53–62, 2002. 4, 308

[Proulx 2006] Pascale Proulx, Sumeet Tandon, Adam Bodnar, David Schroh,
Robert Harper and William Wright. Avian Flu Case Study with nSpace
and GeoTime. In 2006 IEEE Symposium On Visual Analytics Science
And Technology, pages 27 –34, 31 2006-nov. 2 2006. 9, 311

[Qualtrics, Inc. 2013] Qualtrics, Inc. Qualtrics Web Survey Tool, 2013. www.
qualtrics.com. 178, 273

[Quist 2011] Daniel A. Quist and Lorie M. Liebrock. Reversing Compiled
Executables for Malware Analysis via Visualization. Information
Visualization, vol. 10, no. 2, pages 117–126, 04 2011. 306

[Ramesh 2006] Balasubramaniam Ramesh, Lan Cao, Kannan Mohan and
Peng Xu. Can Distributed Software Development Be Agile?
Communications of the ACM, vol. 49, no. 10, pages 41–46, October
2006. 150

[Rao 1994] Ramana Rao and Stuart K. Card. The table lens: merging
graphical and symbolic representations in an interactive focus + context
visualization for tabular information. Proceedings of the SIGCHI
conference on Human factors in computing systems: celebrating
interdependence, pages 318–322, 1994. 52

[Reiss 2005] Frederick Reiss and Joseph M. Hellerstein. Data Triage: an
adaptive architecture for load shedding in TelegraphCQ. In Proceedings
of the 21st International Conference on Data Engineering, 2005. ICDE
2005., pages 155–156, 2005. 62

[Reiss 2009] Steven P. Reiss. Visualizing the Java heap to detect memory
problems. In 5th IEEE International Workshop on Visualizing Software
for Understanding and Analysis, 2009. VISSOFT 2009., pages 73–80,
2009. 305

www.qualtrics.com
www.qualtrics.com

408 Bibliography

[Reiss 2010] Steven P. Reiss and Suman Karumuri. Visualizing threads,
transactions and tasks. In Proceedings of the 9th ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis for Software
Tools and Engineering, PASTE ’10, pages 9–16, New York, NY, USA,
2010. ACM. 305

[Reiss 2013] Steven P. Reiss and Alexander Tarvo. Automatic categorization
and visualization of lock behavior. In First IEEE Working Conference
on Software Visualization (VISSOFT), 2013, pages 1–10, 2013. 305

[Reniers 2012] Dennie Reniers, Lucian Voinea, Ozan Ersoy and Alexandru
Telea. The Solid* toolset for software visual analytics of program
structure and metrics comprehension: From research prototype to
product. Science of Computer Programming, 2012. 9, 49, 203, 306,
311, 317

[Rilling 2007] Juergen Rilling, Wen Jun Meng, Fuzhi Chen and Philippe
Charland. Software Visualization - A Process Perspective. In 4th IEEE
International Workshop on Visualizing Software for Understanding and
Analysis, 2007. VISSOFT 2007., pages 10–17, 2007. 303

[Rios-Berrios 2012] Miguel Rios-Berrios, Puneet Sharma, Tak Yeon Lee,
Rachel Schwartz and Ben Shneiderman. TreeCovery: Coordinated
dual treemap visualization for exploring the Recovery Act. Government
Information Quarterly, vol. 29, no. 2, pages 212 – 222, 2012. 48

[Ripley 2007] Roger M. Ripley, Anita Sarma and Andre van der Hoek.
A Visualization for Software Project Awareness and Evolution. In
Visualizing Software for Understanding and Analysis, 2007. VISSOFT
2007. 4th IEEE International Workshop on, pages 137 –144, june 2007.
XV, 167, 169, 306

[Risi 2012] Michele Risi and Giuseppe Scanniello. MetricAttitude: a
visualization tool for the reverse engineering of object oriented software.
In Proceedings of the International Working Conference on Advanced
Visual Interfaces, AVI ’12, pages 449–456, New York, NY, USA, 2012.
ACM. 305

[Roberts 2007] Jonathan C. Roberts. State of the Art: Coordinated
Multiple Views in Exploratory Visualization. In Coordinated and
Multiple Views in Exploratory Visualization, 2007. CMV ’07. Fifth
International Conference on, pages 61 –71, july 2007. 47

Bibliography 409

[Robertson 1991] George G. Robertson, Jock D. Mackinlay and Stuart K.
Card. Cone Trees: animated 3D visualizations of hierarchical
information. In CHI ’91: Proceedings of the SIGCHI conference on
Human factors in computing systems, pages 189–194, New York, NY,
USA, 1991. ACM Press. 9, 47, 52, 57, 311

[Robertson 2010] George G. Robertson, Trishul Chilimbi and Bongshin Lee.
AllocRay: memory allocation visualization for unmanaged languages.
In Proceedings of the 5th international symposium on Software
visualization, SOFTVIS ’10, pages 43–52, New York, NY, USA, 2010.
ACM. 305

[Robillard 2003] Martin P. Robillard and Gail C. Murphy. Static Analysis
to Support the Evolution of Exception Structure in Object-oriented
Systems. ACM Transactions on Software Engineering and
Methodology, vol. 12, no. 2, pages 191–221, April 2003. 43, 44

[Rodríguez 2004] Oscar M. Rodríguez, Ana I. Martínez, Aurora Vizcaíno,
Jesús Favela and Mario Piattini. Identifying Knowledge Management
Needs in Software Maintenance Groups: A Qualitative Approach.
In Proceedings of the Fifth Mexican International Conference in
Computer Science, ENC ’04, pages 72–79, Washington, DC, USA,
2004. IEEE Computer Society. 38

[Rook 1986] Paul Rook. Controlling software projects. Software Engineering
Journal, vol. 1, no. 1, pages 7–, January 1986. 152, 153, 154

[Rosen 2013] Paul Rosen. A Visual Approach to Investigating Shared and
Global Memory Behavior of CUDA Kernels. Computer Graphics
Forum, vol. 32, no. 3pt2, pages 161–170, 2013. 305

[Roth 2012] Robert E. Roth. Cartographic Interaction Primitives: Framework
and Synthesis. The Cartographic Journal, vol. 49, no. 4, pages 376–395,
2012. 49

[Roy 2009] Chanchal K. Roy, James R. Cordy and Rainer Koschke.
Comparison and evaluation of code clone detection techniques and
tools: A qualitative approach. Journal Science of Computer
Programming, vol. 74, no. 7, pages 470 – 495, 2009. Special Issue
on Program Comprehension (ICPC 2008). 44

[Royce 1970] Walker W. Royce. Managing the development of large
software systems: concepts and techniques. Proceedings of the IEEE
WESTCON, Los Angeles, pages 1–9, August 1970. 20, 21

410 Bibliography

[Royce 2009] Walker Royce. Improving Software Economics: Top 10
Principles of Achieving Agility at Scale, May 2009. 4, 309

[Ruan 2010] Haowei Ruan, Craig Anslow, Stuart Marshall and James
Noble. Exploring the inventor’s paradox: applying jigsaw to software
visualization. In Proceedings of the 5th international symposium on
Software visualization, SOFTVIS ’10, pages 83–92, New York, NY,
USA, 2010. ACM. 303

[Rubin 2008] Jeffrey Rubin and Dana Chisnell. Handbook of usability testing:
How to plan, design, and conduct effective tests. Wiley Publishing, 2
édition, 2008. 270, 271

[Rufiange 2012] Sébastien Rufiange, Michael J. McGuffin and Christopher P.
Fuhrman. TreeMatrix: A Hybrid Visualization of Compound Graphs.
Computer Graphics Forum, vol. 31, no. 1, pages 89–101, 2012. 304

[Sack 2006] Warren Sack, Francoise Détienne, Nicolas Ducheneaut,
Jean-Marie Burkhardt, Dilan Mahendran and Flore Barcellini.
A Methodological Framework for Socio-Cognitive Analyses of
Collaborative Design of Open Source Software. Journal of Computer
Supported Cooperative Work (CSCW), vol. 15, no. 2-3, pages 229–250,
2006. 43

[Salas 1995] Eduardo Salas, Carolyn Prince, David P. Baker and Lisa
Shrestha. Situation Awareness in Team Performance: Implications
for Measurement and Training. Human Factors: The Journal of the
Human Factors and Ergonomics Society, vol. 37, no. 1, pages 123–136,
1995. 159, 160

[Saldaña-Ramos 2014] Javier Saldaña-Ramos, Javier García Ana
Sanz-Esteban and Antonio Amescua. Skills and abilities for
working in a global software development team: a competence model.
Journal of Software: Evolution and Process, vol. 26, no. 3, pages
329–338, 2014. 25, 147

[Salmon 2013] Paul M. Salmon and Neville A. Stanton. Situation awareness
and safety: Contribution or confusion? Situation awareness and safety
editorial. Safety Science, vol. 56, no. 0, pages 1 – 5, 2013. Situation
Awareness and Safety. 148, 157

[Sangal 2005] Neeraj Sangal, Ev Jordan, Vineet Sinha and Daniel Jackson.
Using Dependency Models to Manage Complex Software Architecture.
In Proceedings of the 20th Annual ACM SIGPLAN Conference on

Bibliography 411

Object-oriented Programming, Systems, Languages, and Applications,
OOPSLA ’05, pages 167–176, New York, NY, USA, 2005. ACM. XIII,
121, 122, 123, 144

[Santamaría 2009] Rodrigo Santamaría and Roberto Therón. Treevolution:
visual analysis of phylogenetic trees. Bioinformatics, vol. 25, no. 15,
pages 1970–1971, August 2009. 14, 48, 55, 58

[Santamaría 2014] Rodrigo Santamaría, Roberto Therón and Luis Quintales.
BicOverlapper 2.0: visual analysis for gene expression. Bioinformatics,
vol. 30, no. 12, pages 1785–1786, 2014. 14, 48

[Sarewitz 2008] Daniel Sarewitz and Richard R. Nelson. Progress in
Know-How: Its Origins and Limits. Innovations: Technology,
Governance, Globalization, vol. 3, no. 1, pages 101–117, January 2008.
25

[Savikhin 2008] Anya Savikhin, Ross Maciejewski and David S. Ebert. Applied
visual analytics for economic decision-making. In IEEE Symposium on
Visual Analytics Science and Technology, 2008. VAST ’08., pages 107
–114, oct. 2008. 9, 10, 311, 312

[Sawant 2007] Amit P. Sawant and Naveen Balit. DiffArchViz: A Tool
to Visualize Correspondence Between Multiple Representations of a
Software Architecture. In 4th IEEE International Workshop on
Visualizing Software for Understanding and Analysis, 2007. VISSOFT
2007., pages 121–128, 2007. 306

[Scacchi 2004] Walt Scacchi. Socio-Technical Interaction Networks in
Free/Open Source Software Development Processes. In Software
Process Modeling, pages 1–27. Springer Science + Business Media Inc,
2004. 43, 44, 90

[Schaeckeler 2009] Stefan Schaeckeler, Weijia Shang and Ruth Davis.
Compiler Optimization Pass Visualization: The Procedural
Abstraction Case. Transactions in Computing Education, vol. 9,
no. 2, pages 14:1–14:13, June 2009. 305

[Schatz 2013] Michael C. Schatz, Adam M. Phillippy, Daniel D. Sommer,
Arthur L. Delcher, Daniela Puiu, Giuseppe Narzisi, Steven L. Salzberg
and Mihai Pop. Hawkeye and AMOS: visualizing and assessing the
quality of genome assemblies. Briefings in Bioinformatics, vol. 14, no. 2,
pages 213–224, 2013. 48

412 Bibliography

[Schreck 2013] Tobias Schreck and Daniel Keim. Visual Analysis of Social
Media Data. IEEE Computer, vol. 46, no. 5, pages 68–75, 2013. 49

[Schumann 2011] Heidrun Schumann and Christian Tominski. Analytical,
visual and interactive concepts for geo-visual analytics. Journal of
Visual Languages and Computing, vol. 22, no. 4, pages 257 – 267,
2011. 49

[Sensalire 2008] Mariam Sensalire, Patrick Ogao and Alexandru Telea.
Classifying desirable features of software visualization tools for
corrective maintenance. In Proceedings of the 4th ACM symposium
on Software visualization, SoftVis ’08, pages 87–90, New York, NY,
USA, 2008. ACM. 181, 183, 303

[Sensalire 2009] Mariam Sensalire, Patrick Ogao and Alexandru Telea.
Evaluation of software visualization tools: Lessons learned. In
5th IEEE International Workshop on Visualizing Software for
Understanding and Analysis, 2009. VISSOFT 2009., pages 19–26,
2009. 303

[Servant 2010] Francisco Servant, James A. Jones and André van der Hoek.
CASI: preventing indirect conflicts through a live visualization. In
Proceedings of the 2010 ICSE Workshop on Cooperative and Human
Aspects of Software Engineering, CHASE ’10, pages 39–46, New York,
NY, USA, 2010. ACM. 38, 306

[Servant 2012] Francisco Servant and James A. Jones. History slicing:
assisting code-evolution tasks. In Proceedings of the ACM SIGSOFT
20th International Symposium on the Foundations of Software
Engineering, FSE ’12, pages 43:1–43:11, New York, NY, USA, 2012.
ACM. 306

[Shah 2008] Hina Shah, Carsten Görg and Mary Jean Harrold. Visualization
of exception handling constructs to support program understanding. In
Proceedings of the 4th ACM symposium on Software visualization,
SoftVis ’08, pages 19–28, New York, NY, USA, 2008. ACM. 306

[Sharif 2009a] Bonita Sharif and Jonathan I. Maletic. The effect of layout on
the comprehension of UML class diagrams: A controlled experiment.
In 5th IEEE International Workshop on Visualizing Software for
Understanding and Analysis, 2009. VISSOFT 2009., pages 11–18,
2009. 303

Bibliography 413

[Sharif 2009b] Khaironi Yatim Sharif and Jim Buckley. Observation of Open
Source programmers’ information seeking. In IEEE 17th International
Conference on Program Comprehension, 2009. ICPC ’09., pages 307
–308, may 2009. 7

[Sharif 2013] Bonita Sharif, Grace Jetty, Jairo Aponte and Esteban Parra.
An empirical study assessing the effect of seeit 3D on comprehension.
In First IEEE Working Conference on Software Visualization
(VISSOFT), 2013, pages 1–10, 2013. 303

[Sharp 2011] Helen Sharp, Yvonne Rogers and Jenny Preece. Interaction
design: Beyond human-computer interaction. second edition. John
Wiley, UK, 2011. 9, 47, 270, 271, 311

[Shaverdian 2012] Anna A. Shaverdian, Hao Zhou, George Michailidis, and
Hosagrahar V. Jagadish. A Graph Algebra for Scalable Visual
Analytics. IEEE Computer Graphics and Applications, vol. 32, no. 4,
pages 26–33, 2012. 48, 49

[Sheldon 2002] Frederick T. Sheldon, Kshamta Jerath and Hong Chung.
Metrics for maintainability of class inheritance hierarchies. Journal
of Software Maintenance: Researh and Practice, vol. 14, no. 3, pages
147–160, May 2002. 41

[Shi 2011] Jian Shi, Ying Qiao and Hongan Wang. Visualizing inference
process of a rule engine. In Proceedings of the 2011 International
Symposium Visual Information Communication, VINCI ’11, pages
10:1–10:9, New York, NY, USA, 2011. ACM. 305

[Shneiderman 1996] Ben Shneiderman. The eyes have it: a task by data type
taxonomy for information visualizations. In Visual Languages, 1996.
Proceedings., IEEE Symposium on, pages 336 –343, sep 1996. 62, 63,
198

[Sigovan 2013] Carmen Sigovan, Chris W. Muelder and Kwan-Liu Ma.
Visualizing Large-scale Parallel Communication Traces Using a
Particle Animation Technique. Computer Graphics Forum, vol. 32,
no. 3pt2, pages 141–150, 2013. 305

[Sillito 2006a] Jonathan Sillito. Asking and Answering Questions During a
Programming Change Task. PhD thesis, The Faculty of Graduate
Studies, Computer Science. The University Of British Columbia,
December 2006. 39

414 Bibliography

[Sillito 2006b] Jonathan Sillito, Gail C. Murphy and Kris De Volder.
Questions programmers ask during software evolution tasks. In
Proceedings of the 14th ACM SIGSOFT international symposium
on Foundations of software engineering, SIGSOFT ’06/FSE-14, pages
23–34, New York, NY, USA, 2006. ACM. 10, 312

[Sillito 2006c] Jonathan Sillito, Gail C. Murphy and Kris De Volder.
Questions programmers ask during software evolution tasks. In
Proceedings of the 14th ACM SIGSOFT international symposium
on Foundations of software engineering, SIGSOFT ’06/FSE-14, pages
23–34, New York, NY, USA, 2006. ACM. 39

[Sillito 2008] Jonathan Sillito, Gail C. Murphy and Kris De Volder. Asking
and Answering Questions during a Programming Change Task. IEEE
Transactions in Software Engineering, vol. 34, no. 4, pages 434–451,
2008. 39, 40

[Sips 2012] Mike Sips, Patrick Kothur, Andrea Unger, Hans-Christian Hege
and Doris Dransch. A Visual Analytics Approach to Multiscale
Exploration of Environmental Time Series. IEEE Transactions
on Visualization and Computer Graphics, vol. 18, no. 12, pages
2899–2907, 2012. 49

[Skype Communications SARL 2013] Skype Communications SARL. Skype,
2013. www.skype.com. 273

[Skytree 2013] Skytree. Big data analytic 2013: industry report. Rapport
technique, Skytree, 2013. 64

[Sommerville 2011] Ian Sommerville. Software engineering 9. Pearson
Education, 2011. 21

[Spence 1982] Robert Spence and Mark Apperley. Data base navigation:
an office environment for the professional. Behaviour & Information
Technology, vol. 1, no. 1, pages 43–54, 1982. 53

[Spence 2000] Robert Spence. Information Visualization. ACM Press, 2000.
51

[STA 2005] IEEE Standard for Software Configuration Management Plans.
IEEE Std 828-2005 (Revision of IEEE Std 828-1998), pages 1–19, 2005.
XII, 8, 27, 28, 31, 32

www.skype.com

Bibliography 415

[STA 2006] International Standard - 14764-2006 - IEEE ISO/IEC
14764:2006, Standard for Software Engineering - Software Life
Cycle Processes - Maintenance. ISO/IEC 14764:2006 (E) IEEE Std
14764-2006 Revision of IEEE Std 1219-1998), pages 1 –46, 2006. 7

[STA 2010] Systems and software engineering – Vocabulary. ISO/IEC/IEEE
24765:2010(E), pages 1 –418, 15 2010. 7, 27

[Stanton 2001] Neville A. Stanton, P.R.G Chambers and J Piggott.
Situational awareness and safety. Safety Science, vol. 39, no. 3, pages
189 – 204, 2001. 157

[Stanton 2006] Neville A. Stanton, Rebecca Stewart, Don Harris, Robert J.
Houghton, Chris Baber, Richard McMaster, Paul Salmon, Geoff
Hoyle, Guy Walker, Mark S. Young, Mark Linsell, Roy Dymott and
Damian Green. Distributed situation awareness in dynamic systems:
theoretical development and application of an ergonomics methodology.
Ergonomics, vol. 49, no. 12-13, pages 1288–1311, 2006. 158

[Stasko 2000] John Stasko and Eugene Zhang. Focus+Context Display and
Navigation Techniques for Enhancing Radial, Space-Filling Hierarchy
Visualizations. In INFOVIS ’00: Proceedings of the IEEE Symposium
on Information Vizualization 2000, page 57, Washington, DC, USA,
2000. IEEE Computer Society. 52, 58

[Steinbrückner 2010] Frank Steinbrückner and Claus Lewerentz. Representing
development history in software cities. In Proceedings of the 5th
international symposium on Software visualization, SOFTVIS ’10,
pages 193–202, New York, NY, USA, 2010. ACM. 306

[Steinbrückner 2013] Frank Steinbrückner and Claus Lewerentz.
Understanding software evolution with software cities. Information
Visualization, vol. 12, no. 2, pages 200–216, 04 2013. XIV, 131, 132,
133, 143, 306

[Storey 1998] Margaret-Anne Darragh Storey. A Cognitive Framework for
Describing and Evaluating Software Exploration Tools. PhD thesis,
Burnaby, BC, Canada, Canada, 1998. AAINQ37756. 183, 184

[Streit 2012] Marc Streit, Hans-Jörg Schulz, Alexander Lex, Dieter
Schmalstieg and Heidrun Schumann. Model-Driven Design for the
Visual Analysis of Heterogeneous Data. IEEE Transactions on
Visualization and Computer Graphics, vol. 18, no. 6, pages 998 –1010,
june 2012. 49

416 Bibliography

[Sukhoo 2005] Aneerav Sukhoo, Andries Barnard, Mariki M. Eloff, John
A. Van der Poll and Mahendrenath Motah. Accommodating Soft Skills
in Software Project Management. In Issues in Informing Science and
Information Technology, 2005. 25

[Sullivan 2001] Kevin J. Sullivan, William G. Griswold, Yuanfang Cai and
Ben Hallen. The Structure and Value of Modularity in Software Design.
SIGSOFT Software Engineering Notes, vol. 26, no. 5, pages 99–108,
September 2001. 4, 309

[Sun 2004] Dabo Sun and Ken Wong. On understanding software tool
adoption using perceptual theories. In Proceedings ACSE 2004:
4th IEEE International Workshop on Adoption-Centric Software
Engineering, pages 51–55, 2004. 11, 313

[Sun 2013a] Alexander Sun. Enabling collaborative decision-making in
watershed management using cloud-computing services. Environmental
Modelling and Software, vol. 41, no. 0, pages 93 – 97, 2013. 48

[Sun 2013b] GuoDao Sun, RongHua Liang, FuLi Wu and HuaMin Qu. A
Web-based visual analytics system for real estate data. Science China
Information Sciences, vol. 56, no. 5, pages 1–13, 2013. 49

[Sundararaman 2008] Jaishankar Sundararaman and Godmar Back. HDPV:
interactive, faithful, in-vivo runtime state visualization for C/C++
and Java. In Proceedings of the 4th ACM symposium on Software
visualization, SoftVis ’08, pages 47–56, New York, NY, USA, 2008.
ACM. 303

[Takatalo 2008] Jari Takatalo, Gote Nyman and Leif Laaksonen. Components
of human experience in virtual environments. Computers, pages 1–15,
January 2008. 49

[Talaei-Khoei 2012] Amir Talaei-Khoei, Pradeep Ray, Nandan
Parameshwaran and Lundy Lewis. A framework for awareness
maintenance. Journal of Network and Computer Applications, vol. 35,
no. 1, pages 199 – 210, 2012. 23, 38

[Tao 2012] Yida Tao, Yingnong Dang, Tao Xie, Dongmei Zhang and Sunghun
Kim. How do software engineers understand code changes?: an
exploratory study in industry. In Proceedings of the ACM SIGSOFT
20th International Symposium on the Foundations of Software
Engineering, FSE ’12, pages 51:1–51:11, New York, NY, USA, 2012.
ACM. 39, 40

Bibliography 417

[TeamViewer GmbH 2013] TeamViewer GmbH. TeamViewer, 2013. www.
teamviewer.com. 273

[Telea 2008] Alexandru Telea and Lucian Voinea. An interactive reverse
engineering environment for large-scale C++ code. In Proceedings of
the 4th ACM symposium on Software visualization, SoftVis ’08, pages
67–76, New York, NY, USA, 2008. ACM. 306

[Telea 2009a] Alexandru Telea, Heorhiy Byelas and Lucian Voinea. A
Framework for Reverse Engineering Large C++ Code Bases.
Electronic Notes in Theoretical Computer Science, vol. 233, no. 0,
pages 143 – 159, 2009. 306

[Telea 2009b] Alexandru Telea, Hessel Hoogendorp, Ozan Ersoy and Dennie
Reniers. Extraction and visualization of call dependencies for large
C/C++ code bases: A comparative study. In 5th IEEE International
Workshop on Visualizing Software for Understanding and Analysis,
2009. VISSOFT 2009., pages 81–88, 2009. 305

[Telea 2009c] Alexandru Telea and Lucian Voinea. Case study: Visual
analytics in software product assessments. In 5th IEEE International
Workshop on Visualizing Software for Understanding and Analysis,
2009. VISSOFT 2009., pages 65–72, 2009. 182, 306

[Telea 2010] Alexandru Telea, Lucian Voinea and Ozan Ersoy. Visual
Analytics in Software Maintenance: Challenges and Opportunities.
In D. Keim and J. Kohlhammer, editeurs, Proceedings of the 1st
European Symposium on Visual Analytics (EuroVAST). Eurographics,
2010. 203, 317

[Telea 2011] Alexandru Telea and Lucian Voinea. Visual software
analytics for the build optimization of large-scale software systems.
Computational Statistics, vol. 26, no. 4, pages 635–654, March 2011.
49, 196, 203, 303, 310, 317

[Teyseyre 2009] Alfredo R. Teyseyre and Marcelo R. Campo. An Overview of
3D Software Visualization. IEEE Transactions on Visualization and
Computer Graphics, vol. 15, no. 1, pages 87–105, 2009. 303

[Thakur 2011] Sidharth Thakur and Melissa A. Pasquinelli. Adapting
Visual-Analytical Tools for the Exploration of Structural and
Dynamical Features of Polymer Conformations. Macromolecular
Theory and Simulations, vol. 20, no. 4, pages 286–298, 2011. 49

www.teamviewer.com
www.teamviewer.com

418 Bibliography

[Thayer 1988] Richard H. Thayer. Software engineering project management,
chapitre Software engineering project management: A top-down view,
pages 15–53. IEEE Computer Science Press, 1988. 25

[Therón 2006a] Roberto Therón. Hierarchical-temporal Data Visualization
using a Ring Tree Metaphor. Lecture Notes in Computer Science.
Smart Graphics, 2006. 55, 58

[Therón 2006b] Roberto Therón. Hierarchical-Temporal Data Visualization
Using a Tree-Ring Metaphor. In Andreas Butz, Brian Fisher, Antonio
Krüger and Patrick Olivier, editeurs, Smart Graphics, volume 4073 of
Lecture Notes in Computer Science, pages 70–81. Springer, 2006. 9, 52

[Therón 2006c] Roberto Therón. Visual Analytics of Paleoceanographic
Conditions. In 2006 IEEE Symposium On Visual Analytics Science
And Technology, pages 19 –26, 31 2006-nov. 2 2006. 9, 48, 311

[Therón 2007] Roberto Therón, Antonio González-Torres, Francisco J.
García-Peñalvo and Pablo Santos. The Use of Information
Visualization to Support Software Configuration Management. Lecture
Notes in Computer Science, vol. Volume 4663/2007, pages 317–331,
2007. XVII, XVIII, 247, 250, 253, 255, 343, 347

[Therón 2008] Roberto Therón, Antonio González-Torres and Francisco J.
García-Peñalvo. Supporting the understanding of the evolution of
software items. In SoftVis ’08: Proceedings of the 2008 ACM
symposium on Software visualization, New York, NY, USA, 2008.
ACM. XVII, XVIII, 253, 255, 347

[Therón 2010] Roberto Therón and Laura Casares. Visual Analysis of
Time-Motion in Basketball Games. In Smart Graphics, 10th
International Symposium on Smart Graphics, Banff, Canada, June
24-26, 2010, Proceedings, pages 196–207, 2010. 49

[Therón 2013] Roberto Therón and Laura Fontanillo. Diachronic-information
visualization in historical dictionaries. Information Visualization,
2013. 56

[Thomas 2005] James J. Thomas and Kristin A. Cook. Illuminating the path:
Research and development agenda for visual analytics. IEEE-Press,
2005. 9, 11, 47, 50, 311, 313

[Thomas 2006] J.J. Thomas and K.A. Cook. A Visual Analytics Agenda.
IEEE Computer Graphics and Applications, vol. 26, no. 1, pages 10–13,
Jan.-Feb. 2006. 11, 313

Bibliography 419

[Tidwell 2011] Jenifer Tidwell. Designing interfaces. O’Reilly Media, second
edition édition, January 2011. 63

[Tockey 1999] Steve Tockey. Recommended skills and knowledge for software
engineers. In Proceedings. 12th Conference on Software Engineering
Education and Training, 1999., pages 168–176, Mar 1999. 26

[Tomaszewski 2011] Brian Tomaszewski, Justine Blanford, Kevin Ross, Scott
Pezanowski and Alan M. MacEachren. Supporting geographically-aware
web document foraging and sensemaking. Computers, Environment
and Urban Systems, vol. 35, no. 3, pages 192 – 207, 2011. 48, 49

[Treiber 2009] Martin Treiber, Hong-Linh Truong and Schahram Dustdar.
Service-Oriented Computing — ICSOC 2008 Workshops. chapitre
On Analyzing Evolutionary Changes of Web Services, pages 284–297.
Springer-Verlag, Berlin, Heidelberg, 2009. 44

[Trümper 2010] Jonas Trümper, Johannes Bohnet and Jürgen Döllner.
Understanding complex multithreaded software systems by using trace
visualization. In Proceedings of the 5th international symposium on
Software visualization, SOFTVIS ’10, pages 133–142, New York, NY,
USA, 2010. ACM. 305

[Tu 1992] Qiang Tu. On navigation and analysis of software architecture
evolution. Master’s thesis, University of Waterloo, 1992. 44

[Tufte 1990] Edward Tufte. Envisioning information. Graphics Press,
Cheshire, CT, USA, 1990. 51

[Tufte 1997] Edward R. Tufte. Visual explanations: images and quantities,
evidence and narrative. Graphics Press, Cheshire, CT, USA, 1997. 51

[Turley 1995] Richard T. Turley and James M. Bieman. Competencies
of Exceptional and Nonexceptional Software Engineers. Journal of
Systems and Software, vol. 28, no. 1, pages 19–38, January 1995. 26

[Tyakht 2012] Alexander V. Tyakht, Anna S. Popenko, Maxim S. Belenikin,
Ilya A. Altukhov, Alexander V. Pavlenko, Elena S. Kostryukova,
Oksana V. Selezneva amd Andrei K. Larin, Irina Y. Karpova and
Dmitry G. Alexeev. MALINA: a web service for visual analytics of
human gut microbiota whole-genome metagenomic reads. Source Code
for Biology and Medicine, vol. 7, no. 1, pages 1–5, 2012. 48

420 Bibliography

[Valetto 2007] Giuseppe Valetto, Mary Helander, Kate Ehrlich, Sunita
Chulani, Mark Wegman and Clay Williams. Using Software
Repositories to Investigate Socio-technical Congruence in Development
Projects. In Proceedings of the Fourth International Workshop on
Mining Software Repositories, MSR ’07, pages 25–, Washington, DC,
USA, 2007. IEEE Computer Society. 90

[van Harmelen 2007] Frank van Harmelen, Vladimir Lifschitz and Bruce
Porter, editeurs. Handbook of knowledge representation (foundations
of artificial intelligence). Elsevier Science, 2007. 9, 47, 311

[van Wijk 2005] Jarke J. van Wijk. The Value of Visualization. Visualization
Conference, IEEE, vol. 0, page 11, 2005. 198

[Vanya 2012] Adam Vanya, Rahul Premraj and Hans van Vliet. Resolving
unwanted couplings through interactive exploration of co-evolving
software entities-An experience report. Information and Software
Technology, vol. 54, no. 4, pages 347 – 359, 2012. 306

[Vasa 2009] Rajesh Vasa, Markus Lumpe, Philip Branch and Oscar
Nierstrasz. Comparative analysis of evolving software systems using
the Gini coefficient. In IEEE International Conference on Software
Maintenance, 2009. ICSM 2009., pages 179–188, Sept 2009. 43, 44

[Vassiliadis 2002] Panos Vassiliadis, Alkis Simitsis and Spiros Skiadopoulos.
Conceptual modeling for ETL processes. In Proceedings of the
5th ACM international workshop on Data Warehousing and OLAP,
DOLAP ’02, pages 14–21, New York, NY, USA, 2002. ACM. 198

[Vassiliadis 2009] Panos Vassiliadis and Alkis Simitsis. Near Real Time ETL.
In Stanislaw Kozielski and Robert Wrembel, editeurs, New Trends
in Data Warehousing and Data Analysis, volume 3 of Annals of
Information Systems, pages 1–31. Springer US, 2009. 198

[Vicente 2010] Rodrigo Santamaría Vicente. Visual analysis of gene
expression data by means of biclustering. PhD thesis, University of
Salamanca, 2010. 14, 48

[Viégas 2004] Fernanda B. Viégas, Martin Wattenberg and Kushal Dave.
Studying Cooperation and Conflict Between Authors with History Flow
Visualizations. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’04, pages 575–582, New York,
NY, USA, 2004. ACM. 56

Bibliography 421

[Voinea 2007] Stefan-Lucian Voinea. Software Evolution Visualization. PhD
thesis, Advanced School for Computing and Imaging, Technische
Universiteit Eindhoven, 2007. 196, 310

[von Pilgrim 2008] Jens von Pilgrim and Kristian Duske. Gef3D: a framework
for two-, two-and-a-half-, and three-dimensional graphical editors. In
Proceedings of the 4th ACM symposium on Software visualization,
SoftVis ’08, pages 95–104, New York, NY, USA, 2008. ACM. 303

[Vrhoveca 2013] Simon L. R. Vrhoveca, Marina Trkmana, Ales Kumera,
Marjan Krispera and Damjan Vavpotica. Outsourcing as an Economic
Development Tool in Transition Economies: Scattered Global Software
Development. Information Technology for Development, vol. 0, no. 0,
pages 1–15, 2013. 24

[Walny 2011] Jagoda Walny, Jonathan Haber, Marian Dörk, Jonathan Sillito
and Sheelagh Carpendale. Follow that sketch: Lifecycles of diagrams
and sketches in software development. In 6th IEEE International
Workshop on Visualizing Software for Understanding and Analysis
(VISSOFT), 2011, pages 1–8, 2011. 303

[Wang 2010] Xiaoyu Wang, Wenwen Dou, Shen-En Chen, William Ribarsky
and Remco Chang. An Interactive Visual Analytics System for Bridge
Management. Computer Graphics Forum, vol. 29, no. 3, pages
1033–1042, 2010. 48

[Wang 2011] Taowei Wang, Krist Wongsuphasawat, Catherine Plaisant
and Ben Shneiderman. Extracting Insights from Electronic Health
Records: Case Studies, a Visual Analytics Process Model, and Design
Recommendations. Journal of Medical Systems, vol. 35, pages
1135–1152, 2011. 10.1007/s10916-011-9718-x. 49

[Wang 2012] Xiaoyu Wang, Dong Jeong, Remco Chang and William
Ribarsky. RiskVA: A visual analytics system for consumer credit risk
analysis. Tsinghua Science and Technology, vol. 17, no. 4, pages
440–451, 2012. 49

[Ware 2004] Colin Ware. Information Visualization, Second Edition:
Perception for Design (Interactive Technologies). Morgan Kaufmann,
2 édition, April 2004. 160

[Weaver 2006] Chris Weaver, David Fyfe, Anthony Robinson, Deryck
Holdsworth and Donna Peuquet. Visual Analysis of Historic Hotel

422 Bibliography

Visitation Patterns. In 2006 IEEE Symposium On Visual Analytics
Science And Technology, pages 35 –42, 31 2006-nov. 2 2006. 9, 311

[Weber 2001] Marc Weber, Marc Alexa and Wolfgang Muller. Visualizing
time-series on spirals. Information Visualization, 2001. INFOVIS 2001.
IEEE Symposium on, pages 7–13, 2001. 55

[Wehrend 1990] Stephen Wehrend and Clayton Lewis. A problem-oriented
classification of visualization techniques. In Visualization ’90.
Proceedings of the First IEEE Conference on Visualization, pages 139
–143, 469, oct 1990. 61

[Wei 2012] Jishang Wei, Hongfeng Yu, Ray W. Grout, Jacqueline H. Chen and
Kwan-Liu Ma. Visual Analysis of Particle Behaviors to Understand
Combustion Simulations. IEEE Computer Graphics and Applications,
vol. 32, no. 1, pages 22 –33, jan.-feb. 2012. 49

[Weiser 1981] Mark Weiser. Program slicing. In ICSE ’81: Proceedings of the
5th international conference on Software engineering, pages 439–449,
Piscataway, NJ, USA, 1981. IEEE Press. 43, 90

[Wettel 2007] Richard Wettel and Michele Lanza. Visualizing Software
Systems as Cities. In 4th IEEE International Workshop on Visualizing
Software for Understanding and Analysis, 2007. VISSOFT 2007., pages
92–99, 2007. XIII, 115, 143, 306

[Wettel 2008a] Richard Wettel and Michele Lanza. Visual Exploration of
Large-Scale System Evolution. In 15th Working Conference on Reverse
Engineering, 2008. WCRE ’08., pages 219–228, Oct 2008. XIII, 115,
130, 131, 143

[Wettel 2008b] Richard Wettel and Michele Lanza. Visually localizing design
problems with disharmony maps. In Proceedings of the 4th ACM
symposium on Software visualization, SoftVis ’08, pages 155–164, New
York, NY, USA, 2008. ACM. 305

[Wettel 2011] Richard Wettel, Michele Lanza and Romain Robbes. Software
systems as cities: a controlled experiment. In Proceedings of the 33rd
International Conference on Software Engineering, ICSE ’11, pages
551–560, New York, NY, USA, 2011. ACM. 306

[Wetzel 2004] Kai Wetzel. Pebbles: Using Circular Treemaps to visualize disk
usage. SourceForge.net, Setiembre 2004. 56

Bibliography 423

[Wieringa 2006] Roel Wieringa, Neil Maiden, Nancy Mead and Colette
Rolland. Requirements engineering paper classification and evaluation
criteria: a proposal and a discussion. Requirements Engineering,
vol. 11, no. 1, pages 102–107, 2006. 71

[Wilkinson 2005] Leland Wilkinson. The grammar of graphics (statistics and
computing). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2005.
63

[Willems 2010] Niels Willems, Willem Robert van Hageb, Gerben de Vriesc,
Jeroen H.M. Janssens and Véronique Malaisé. An integrated approach
for visual analysis of a multisource moving objects knowledge base.
International Journal of Geographical Information Science, vol. 24,
no. 10, pages 1543–1558, October 2010. 49

[Witten 2005] Ian H. Witten and Eibe Frank. Data mining: Practical machine
learning tools and techniques, second edition (morgan kaufmann series
in data management systems). Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2005. 9, 47, 311

[Wu 2010] Yongzheng Wu, Roland H.C. Yap and Felix Halim. Visualizing
windows system traces. In Proceedings of the 5th international
symposium on Software visualization, SOFTVIS ’10, pages 123–132,
New York, NY, USA, 2010. ACM. 305

[Xie 2008] Shaohua Xie, Eileen Kraemer, R. E. K. Stirewalt, Laura K.
Dillon and Scott D. Fleming. Assessing the benefits of
synchronization-adorned sequence diagrams: two controlled
experiments. In Proceedings of the 4th ACM symposium on
Software visualization, SoftVis ’08, pages 9–18, New York, NY, USA,
2008. ACM. 303

[Xie 2009] Shaohua Xie, Eileen Kraemer, R. E. K. Stirewalt, Laura K.
Dillon and Scott D. Fleming. Design and evaluation of extensions
to UML sequence diagrams for modeling multithreaded interactions.
Information Visualization, vol. 8, no. 2, pages 120–136, Summer 2009.
303

[Xu 2009] Shaochun Xu, Xuhui Chen and Dapeng Liu. Classifying software
visualization tools using the Bloom’s taxonomy of cognitive domain. In
Canadian Conference on Electrical and Computer Engineering, 2009.
CCECE ’09., pages 13–18, 2009. 39, 303

424 Bibliography

[Yang 2003] Jing Yang, Matthew O. Ward, Elke A. Rundensteiner and
Anilkumar Patro. InterRing: a visual interface for navigating and
manipulating hierarchies. Information Visualization, vol. 2, no. 1,
pages 16–30, 2003. 52, 58

[Yang 2005] Hong Yul Yang, Ewan Tempero and Rebecca Berrigan. Detecting
indirect coupling. In Proceedings of the Australian Software
Engineering Conference, ASWEC 2005., pages 212–221, 2005. 44

[Yang 2007] Hong Yul Yang and E. Tempero. Measuring the Strength
of Indirect Coupling. In Proceedings of the Australian Software
Engineering Conference, 2007. ASWEC 2007., pages 319–328, 2007.
44, 89

[Yang 2013] Jing Yang, Yujie Liu, Xin Zhang, Xiaoru Yuan, Ye Zhao, Scott
Barlowe and Shixia Liu. PIWI: Visually Exploring Graphs Based on
Their Community Structure. IEEE Transactions on Visualization and
Computer Graphics, vol. 19, no. 6, pages 1034–1047, 2013. 48

[Young 1998] Peter Young and Malcolm Munro. Visualising software in
virtual reality. In Proceedings., 6th International Workshop on
Program Comprehension, 1998. IWPC ’98., pages 19–26, Jun 1998.
161, 162

[Yu 2004] Liguo Yu, Stephen R. Schach, Kai Chen and Jeff Offutt.
Categorization of Common Coupling and Its Application to the
Maintainability of the Linux Kernel. IEEE Transactions in Software
Engineering, vol. 30, no. 10, pages 694–706, October 2004. 44

[Yuan 2010] Xiaoru Yuan, He Xiao, Hanqi Guo, Peihong Guo, W. Kendall,
Jian Huang and Yongxian Zhang. Scalable Multi-variate Analytics of
Seismic and Satellite-based Observational Data. IEEE Transactions
on Visualization and Computer Graphics, vol. 16, no. 6, pages 1413
–1420, nov.-dec. 2010. 48

[Zeckzer 2008] Dirk Zeckzer, Robert Kalcklösch, Lutz Schröder, Hans Hagen
and T. Klein. Analyzing the reliability of communication between
software entities using a 3D visualization of clustered graphs. In
Proceedings of the 4th ACM symposium on Software visualization,
SoftVis ’08, pages 37–46, New York, NY, USA, 2008. ACM. 305

[Zhang 2009] Dehua Zhang, E. Duala-Ekoko and L. Hendren. Impact analysis
and visualization toolkit for static crosscutting in AspectJ. In IEEE

Bibliography 425

17th International Conference on Program Comprehension, 2009.
ICPC ’09., pages 60–69, 2009. 306

[Zhang 2012] Leishi Zhang, Andreas Stoffel, Michael Behrisch, Sebastian
Mittelstadt, Tobias Schreck, Rene Pompl, Stefan Weber, Holger Last
and Daniel Keim. Visual analytics for the big data era: A comparative
review of state-of-the-art commercial systems. In IEEE Conference
on Visual Analytics Science and Technology (VAST), 2012, pages
173–182, 2012. 64

[Zhao 2002] Jianjun Zhao, Hongji Yang, Liming Xiang and Baowen Xu.
Change Impact Analysis to Support Architectural Evolution. Journal of
Software Maintenance and Evolution: Research and Practice, vol. 14,
no. 5, pages 317–333, September 2002. 44

[Zhao 2005] Shengdong Zhao, Michael J. McGuffin and Mark H. Chignell.
Elastic hierarchies: combining treemaps and node-link diagrams. In
IEEE Symposium on Information Visualization, 2005. INFOVIS 2005.,
pages 57–64, Oct 2005. XIII, 119, 120

[Ziegler 2010] H. Ziegler, M. Jenny, T. Gruse and D.A. Keim. Visual market
sector analysis for financial time series data. In 2010 IEEE Symposium
on Visual Analytics Science and Technology (VAST), pages 83 –90, oct.
2010. 9, 311

[Zimmer 2010] Stephan Zimmer and Stephan Diehl. Visual Amortization
Analysis of Recompilation Strategies. In 14th International Conference
Information Visualisation (IV), 2010, pages 509–514, 2010. 305

[Zou 2003] Lijie Zou and Michael W. Godfrey. Detecting merging and splitting
using origin analysis. In Proceedings Working Conference Reverse
Engineering (WCRE), pages 146–154. IEEE Computer Society Press,
2003. 43, 44

List of Acronyms

ACS Administración de la Configuración de Software . 314, 323,
326, 327, 353, 355, 356

ADA Advanced Data Analysis . 198–200, 202

AES Análisis de la Evolución de Software 310, 311, 352

AHEV Analizador de Hechos y Enlazador de Vistas 321, 322

API Application Programming Interface 230, 336

ASEA Advanced Software Evolution Analysis Engine . . . 204, 205,
207, 208, 211, 212

AV Análitica Visual 310–319, 323, 324, 352, 354, 355

AVAC Abstracciones Visuales y Apoyo a la Coordinación 321, 322

AVAES Analítica Visual Aplicada a la Evolución de Software XVI,
319, 321, 323, 354–356

AVS Analítica Visual de Software 311, 318, 319

BI Business Intelligence . 6, 64

CMV Coordinated and Multiple Views 47, 198

CVS Concurrent Versioning System . 165

DMES Desarrollo, Mantenimiento y Evolución de Software
352–355

DMS Desarrollo y Mantenimiento de Software 310, 314

DSA Distributed Situation Awareness 147, 158, 159

DSM Dependency Structure Matrix 114, 121, 123, 125, 134

EDS EBSCO Discovey Service . 67, 70

ERP Enterprise Resource Planning . 64

ES Evolución de Software. . . . 313–319, 321, 323, 328, 354, 355

ETL Extraction, Transformation and Load . . 198, 199, 202, 204,
205, 207, 208, 211, 212, 319, 321, 323, 326, 327

EVCES Explorador Visual de Conocimiento para la Evolución de
Software . 319, 321, 323, 328

List of Acronyms 427

EVSA Evolutionary Visual Software Analytics XVI, 76, 198, 203,
204, 207, 212, 286, 290–292, 296

GPS Global Positioning System . 6

GSD Global Software Development XV, 24, 25, 38, 146–151,
159, 162, 173, 174, 176, 214, 295, 356

GT Granular Timeline . XII, XIV, 216, 217, 219–224, 226, 227,
230, 243, 263, 266, 269, 328, 330–334

HCI Human-Computer Interaction 47, 49, 61, 197, 199, 245

HEB Hierarchical Edge Bundles 94, 101, 129

HPC High Performance Computing. 50

HTML HyperText Markup Language 9, 49, 199, 312

IDE Integrated Development Environment 29, 42, 45, 76,
79, 85, 139, 184–186, 191, 192, 196, 197, 289, 290, 293, 295,
296, 353, 355, 356

IMMV Interactive Multi-Matrix Visualization. . . IX, 122, 123, 144

IPO Interacción Persona-Ordenador . 312

IV Information Visualization. . . . 9, 47, 48, 51, 53, 62, 67, 178,
181, 198–200, 202, 245, 289, 290

LOC Lines of Source Code . 8, 210, 324

MAAES Motor de Análisis Avanzado de la Evolución de Software . .
319, 321, 323, 324, 326–328

MSV Massive Sequence View . 129

NOM Number of Methods . 210, 234, 324, 342

PM Project Manager 24, 25, 37–39, 43, 45, 160

PNL Parallel Node-Link . IX, 123, 124, 144

RFID Radio Frequency Identification . 6

RT Revision Tree. . 214, 216, 217, 234, 245, 246, 250, 251, 253,
255, 256, 258–260, 263, 266, 269, 270, 281, 282, 291, 328,
344, 347, 348, 350, 351, 355

SA Situation Awareness. 157–160

SAW Situation Awareness Workspace 159, 160, 215, 216

428 List of Acronyms

SCM Software Configuration Management . . VIII, XI, XV, 7, 8,
20, 30, 32–36, 42, 45, 119, 154, 162, 167, 173, 181–184, 186,
187, 190–192, 196, 208, 210, 211, 242, 245, 247, 249, 290,
291, 293, 296

SDM Software Development and Maintenance . . 4, 5, 11, 14, 21,
147, 195, 196

SDME Software Development, Maintenance and Evolution. . . XII,
113, 147, 150, 157, 159–161, 175, 214–216, 272, 285, 286,
289–291

SE Software Evolution . 7–14, 19, 20, 23, 29, 74, 191, 196–198,
203, 205, 207, 217, 286, 290, 291

SEA Software Evolution Analysis 5, 8, 9, 20, 30, 42–45, 196, 289

SEV Software Evolution Visualization . . 107, 110, 196, 204, 205,
207, 290, 296

SHV System Hotspots View . 163, 164

SOFTVIS ACM Symposium on Software Visualization. 70

SQA Software Quality Assurance . . 154, 155, 178, 179, 182, 186,
190, 290

STG Socio-Technical Graph . XIII, XIV, 216, 217, 238–241, 243,
266, 280, 328, 342–344

SV Software Visualization 11, 107, 192, 196, 203

TSA Team Situation Awareness . 147, 157

UML Unified Modeling Language . 91, 95

VA Visual Analytics 4–6, 9–14, 46–51, 62–64,
66, 67, 69, 71, 76–78, 81, 100, 101, 107–110, 178, 181, 191,
196–200, 202–204, 207, 208, 245, 273, 286, 289–291

VACS Visualization Abstractions and Coordination Support
198–200, 202, 204, 205, 207

VES Visualización de la Evolución de Software. . . 311, 319, 321,
322, 353

VI Visualización de la Información 311, 352, 353

VISSOFT IEEE International Workshop on Visualizing Software for
Understanding and Analysis. 69, 70

List of Acronyms 429

VKE Visual Knowledge Explorer. 198–200

VKESE Visual Knowledge Explorer for Software Evolution . . . 204,
207, 208, 213, 214, 216, 243, 266, 272, 277, 282, 285, 286

VLFA Views Linker and Facts Analyzer . . 198–200, 202, 204, 205,
207

VRCS Visual Revision Control System XIII, 246, 248, 250

VS Visualización de Software 311, 314, 318

VSA Visual Software Analytics . 203, 204

VT3D Version Tree 3D 246–248, 250, 253, 255, 270

Wi-Fi Wireless Fidelity . 6

XML eXtensible Markup Language 9, 49, 199, 312

430 List of Acronyms

	I Introduction
	Introduction
	Presentation
	Research Problem
	Big Data
	Software Development and Maintenance
	Visual Analytics and Software Maintenance

	Aims and Research Questions
	Methodology and Outline
	Research lines of this thesis

	II Background
	Software Systems: Maintenance and Evolution
	Introduction
	The Software Process
	Software Development Models
	Iterative Process
	Global Software Development
	The Role of Project Managers and Programmers
	Software Maintenance

	Software Evolution
	Software Configuration Management
	Information Needs of Software Project Managers and Programmers
	Software Evolution Analysis

	Conclusions

	Visual Analytics
	Introduction
	Overview
	Information Visualization
	Visualization Techniques

	Human-Computer Interaction
	Conclusions

	III Visualization and Visual Analytics for Software Systems
	Systematic Mapping Study
	Introduction
	Methodology
	Research Questions
	Inclusion and Exclusion Criteria
	Searching for Research Studies
	Classification Criteria

	Results
	Philosophical Research Studies
	Solution Proposal Studies

	Discussion
	Conclusions

	Understanding system architectures
	Introduction
	Architecture Visualization
	City Metaphors
	Treemaps
	Grid Based Designs
	Node-link Diagrams
	3D Visualization
	Polymetric Views
	Circular Visualizations

	Architecture Evolution Visualization
	City Metaphors
	Grid Based Designs
	Animation
	Software Cartography
	Graphs
	Radial Visualizations

	Discussion and Conclusions

	Team awareness and collaboration
	Introduction
	Factors Involved in Global Software Development
	Teamwork
	Cognition, Communication, Coordination and Control
	Team Situation Awareness
	Distributed Situation Awareness

	Considerations in Designing Awareness Workspaces
	Visualization for Team Awareness
	Teamwork
	Situational Awareness
	Collaboration and Socio-technical Relationships

	Discussion and Conclusions

	Survey on the Use of Visual Tools in Software Development and Maintenance
	Introduction
	Survey Description
	Questions and Results
	Data Collection
	Product Tools
	Process Tools
	Impediments to Adopting Tools

	Discussion
	Conclusions

	IV Process Design and Validation
	A Visual Analytics Process for Software Evolution
	Introduction
	Visual Analytics Process
	Visual Analytics and Software Systems
	Evolutionary Visual Software Analytics
	Architecture Specification

	Conclusions

	Visual Analytics Explorer for Software Evolution
	Introduction
	Framework: situational awareness and collaboration
	Visualization Designs and Use Case Scenarios
	Granular Timeline: Analysis of Statistics on Revisions and Contributions
	Gridmaster: Correlation of Project Structure, Software Item Relationships and Metrics
	Socio-Technical Graph: Visual Representation of the Collaboration and Relationships between Programmers

	Discussion and Conclusions

	Revision Tree: A Case Study on PlasticSCM
	Introduction
	Analysis of Existing Visualization Tools
	Design of Revision Tree
	Features of Revision Tree

	Analysis of the Evolution of Source Code Files
	Discussion and Conclusions

	User Assessment Test
	Introduction
	Methodology
	Assessment results
	Tool functionality
	Visualization design

	Discussion
	Conclusions

	V Conclusions
	Conclusions
	Introduction
	Concluding Remarks
	Publications Related to the Thesis
	Future Research

	Papers Published per Venue
	Correlation of Research Approaches and Papers
	Resumen de la Tesis
	Introducción
	Problema de investigación
	Análitica Visual y Mantenimiento de Software
	Objetivos y Preguntas de Investigación
	Methodología y Organización de la Tesis and Outline

	Un Proceso de Analítica Visual para la Evolución de Software
	Analítica Visual y Sistemas de Software
	Evolutionary Visual Software Analytics
	Architecture Specification

	Diseños de las Visualizaciones y Escenarios de Uso
	Granular Timeline: Análisis de Estadísticas de las Revisiones y Contribuciones de los Programadores
	Gridmaster: Correlación de Estructura, Relaciones y Métricas
	Socio-Technical Graph: Representación de la Collaboración y Relaciones entre Programadores
	Diseño de Revision Tree

	Conclusions
	Trabajos Futuros

	Bibliography
	List of Acronyms

