University of Salamanca

Faculty of Science

Department of Computer Science and Automation

VNiVERSiDAD
P SALAMANCA

CAMPUS DE EXCELENCIA INTERNACIONAL

Evolutionary Visual Software Analytics
Ph.D. Dissertation

Antonio Gonzalez Torres

Doctoral Advisors
Dr. Roberto Theron Sanchez
Dr. Francisco J. Garcia Penalvo

2015

VIS

Dr. D. Francisco José Garcia Peéalvo, Profesor Titular del Departamento
de Informética y Automatica de la Universidad de Salamanca

Dr. D. Roberto Therén Sanchez, Profesor Titular del Departamento de
Informética y Automatica de la Universidad de Salamanca

HACEN CONSTAR: Que D. Antonio Gonzalez Torres, ha realizado
bajo nuestra direccion el trabajo de investigacion y la memoria de la tesis
doctoral que lleva por titulo Evolutionary Visual Software Analytics, con el fin
de obtener el grado de Doctor por la Universidad de Salamanca con menciéon
de Doctorado Internacional. Asimismo manifestamos que dicho trabajo tiene
suficientes méritos tedricos contrastados, mediante las validaciones oportunas,
publicaciones y aportaciones novedosas. Por todo ello se considera que procede
su defensa publica.

Y para que surta los efectos oportunos firmamos en Salamanca, a 21 de
abril de dos mil quince.

Dr. Roberto Theron Sanchez Dr. Francisco J. Garcia Penalvo
Profesor Titular Profesor Titular
Universidad de Salamanca Universidad de Salamanca

University of Salamanca

Faculty of Science

Department of Computer Science and Automation

VNiVERSiDAD
P SATAMANCA

CAMPUS DE EXCELENCIA INTERNACIONAL

Evolutionary Visual Software Analytics
Ph.D. Dissertation

Doctoral Advisors

Dr. Roberto Theréon Sanchez Dr. Francisco J. Garcia Penalvo

Ph.D. Candidate

Antonio Gonzalez Torres

To my brother Ricardo
and the loving memory of my mother Maria Eusebia.

Acknowledgments

Every journey is formed by stretches and stations, so to make a long trip,
several stretches must be walked and many stations should be reached. Thus,
I have arrived to this station after walking many stretches, where several travel
partners have made the trip less rough, and sometimes have also provided fresh
water in the way. Therefore, it will not be possible to acknowledge in this little
space to every travel partner I have had, but I want to express my gratitude
for being there when I needed them.

Some of my partners in the stretch towards this station have been my
doctoral advisors Roberto and Francisco, the members of the Department
of Computer Science and Automation of the University of Salamanca,
the scholarship programs of MICITT-CONICIT (Costa Rica), Banco
Santander-USAL, the Ministry of Education (Spain) and my research mates
and friends José Antonio, Cristian, Diego, Juan, Saddys, Joel, Carlos and
Vadim; and my friends Javier, Luis, Yanira, Olga, José¢ (Pepe), José Maria,
Ricardo, Lourdes, José Miguel, Michel, Carolina, Victoria, Juanita, Carlos,
Estela, Carlomagno, Andrea, Gabriela, Neli, Nieves, Maria Jestus, Danny,
Edwin Aguilar, Néstor and many others. Other partners that have been on
this journey with me for a long time and several stretches are Teresa, Rodney,
Edwin Montero, Luis, Erika, Clarette, Alfonso and several people from the
UCR (ECCI and SRP), as well as many members of my family that have
been on my side all over the journey or in some critical stretches (Marielos,
Maricruz, Mauricio, Dayton, Karla, George, Gabriela, Marianela, Morayma,
Onocifero, Juana, Francisca, Maco and others).

Thank you to all of you!

Resumen

El desarrollo y mantenimiento de sistemas de software involucran a un gran
ntmero de complejos procesos que se extienden por largos periodos de tiempo
(en algunos casos 10 afios o maés), e implican a grupos de personas (e.g.,
programadores y administradores de proyectos) que pueden encontrarse en
diferentes paises. Por lo cual quienes participan en esos procesos requieren de
herramientas que les faciliten la comprension de los sistemas, sus componentes
y las relaciones que se establecen entre estos en el tiempo.

La comprension de los sistemas adquiere una relevancia especial cuando
se toma en cuenta la rotaciéon de personal en las organizaciones y la frecuente
ausencia de documentacion técnica de los sistemas. Por lo tanto, en esta
tesis se llevo a cabo un analisis detallado sobre las necesidades que tienen los
programadores y administradores de proyectos, se hizo un mapeo sistemético
de literatura y una revision detallada de literatura; y se efectué una encuesta
sobre el uso de herramientas de visualizacion en la industria de software
y departamentos de informatica en la comprension de los sistemas. Con
base en los resultados obtenidos de las actividades anteriores, se realizd la
definiciéon y descripcion del proceso de aplicacion de la Analitica Visual a
la Evolucion de Software (el cual recibié el nombre de Evolutionary Visual
Software Analytics).

La validacion del proceso mencionado se llevd a cabo en tres etapas. En la
primera etapa se disend una arquitectura con el fin de verificar que mediante
el seguimiento de la descripcion del proceso es posible disenar herramientas de
Analitica Visual para facilitar la comprension de la evolucion de los sistemas
de software. FEn la segunda etapa se validé la arquitectura mediante la
implementacion de Maleku (una herramienta basada en dicha arquitectura).
En la tercera etapa, se verifico la utilidad y usabilidad de Maleku en la
comprension de la evolucion de sistemas de software por medio de varios casos
de uso, un caso de estudio y un estudio de usabilidad.

Los resultados finales de este trabajo permitieron comprobar que la
aplicacion de la Analitica Visual a la Evoluciéon de Software, usando el
proceso descrito en esta investigacion, puede contribuir con el desarrollo y
mantenimiento de software al facilitar la comprension de los sistemas, y por
tanto, las preguntas de investigacion de esta tesis fueron respondidas y los
objetivos planteados se cumplieron.

Palabras clave: Evolutionary Visual Software Analytics, Analitica Visual
Aplicada a la Evolucion de Software, Analitica Visual, Visualizacion de
Software, Evolucion de Software, Analisis de la Evolucion de los Sistemas

Abstract

The development and maintenance of software systems involve a large number
of complex processes (that could be extended for long periods of time) and
people (e.g., programmers and project managers) who may be located in
different countries. Therefore, people involved in these processes require tools
to understand the systems, their components and the relationships established
between these in time.

Understanding systems becomes particularly relevant when taking into
account staff turnover in organizations and the frequent absence of technical
system documentation. Therefore, a detailed study on the needs of
programmers and project managers, a systematic mapping study, a detailed
literature review and a survey on the use of visualization tools in the software
industry and IT departments for system understanding were carried out in
this thesis. Based on the results of the above activities, the definition and
description on the application of Visual Analytics to Software Evolution
(which was called Evolutionary Visual Software Analytics) was performed.

The validation of this process was conducted in three stages. In the
first stage, an architecture was designed to verify that by following the
Evolutionary Visual Software Analytics process description it is possible to
design Visual Analytics tools to facilitate the understanding of the evolution
of software systems. In the second stage, the architecture was validated
by implementing Maleku (a tool based on this architecture). In the third
stage, the usefulness and usability of Maleku in understanding the evolution
of software systems was verified through various use cases, an usability study
and a case study.

The final results of this study allowed us to prove that the application
of Visual Analytics to Software Evolution, using the process described in this
research, can contribute to software development and maintenance to facilitate
the understanding of systems, and therefore the research questions of this
thesis were answered and the specified objectives were met.

Keywords: Evolutionary Visual Software Analytics, Visual Analytics,
Software Visualization, Software Evolution, Software Evolution Analysis,
Software Maintenance

Table of Contents

I Introduction 1
1 Introduction 3
1.1 Presentation 3
1.2 Research Problem 5
1.21 BigData. oo 6
1.2.2 Software Development and Maintenance 7
1.2.3 Visual Analytics and Software Maintenance 9
1.3 Aims and Research Questions 11
1.4 Methodology and Outline 13
1.5 Research lines of this thesis 14
II Background 17
2 Software Systems: Maintenance and Evolution 19
2.1 Imtroductiono 19
2.2 The Software Process, 20
2.2.1 Software Development Models 20
2.2.2 Tterative Process 23
2.2.3 Global Software Development 23
2.2.4 The Role of Project Managers and Programmers 24
2.2.5 Software Maintenance 26
2.3 Software Evolution 0L 29
2.3.1 Software Configuration Management 30

2.3.2 Information Needs of Software Project Managers and
Programmers 0oL 35
2.3.3 Software Evolution Analysis 42
2.4 Conclusions 43
3 Visual Analytics 46
3.1 Introduction 46
3.2 Overview 47
3.3 Information Visualization 51
3.3.1 Visualization Techniques 51
3.4 Human-Computer Interaction 60
3.5 Conclusions 63

VIII Table of Contents

III Visualization and Visual Analytics for Software

Systems

4 Systematic Mapping Study
4.1 Introduction
4.2 Methodologyo
4.2.1 Research Questions
4.2.2 Inclusion and Exclusion Criteria
4.2.3 Searching for Research Studies
4.2.4 Classification Criteria
4.3 Results.
4.3.1 Philosophical Research Studies
4.3.2 Solution Proposal Studies
4.4 Discussion e e e
4.5 Conclusions

5 Understanding system architectures
5.1 Imtroduction
5.2 Architecture Visualization
5.2.1 City Metaphors
5.2.2 Treemapso
5.2.3 Grid Based Designs L.
5.2.4 Node-link Diagrams
5.2.5 3D Visualization
5.2.6 Polymetric Views L.
5.2.7 Circular Visualizations
5.3 Architecture Evolution Visualization
5.3.1 City Metaphors
5.3.2 Grid Based Designs
5.3.3 Animation Lo
5.3.4 Software Cartography
535 Graphs.
5.3.6 Radial Visualizations
5.4 Discussion and Conclusions

6 Team awareness and collaboration
6.1 Introduction
6.2 Factors Involved in Global Software Development
6.2.1 Teamwork
6.2.2 Cognition, Communication, Coordination and Control .
6.2.3 Team Situation Awareness

65

149

Table of Contents IX
6.2.4 Distributed Situation Awareness 158
6.3 Considerations in Designing Awareness Workspaces 159
6.4 Visualization for Team Awareness 162
6.4.1 Teamwork 162
6.4.2 Situational Awareness 164
6.4.3 Collaboration and Socio-technical Relationships 169
6.5 Discussion and Conclusions 174
7 Survey on the Use of Visual Tools in Software Development

and Maintenance 177
7.1 Imtroduction 177
7.2 Survey Description oL 178
7.3 Questions and Results, .. 179
7.3.1 Data Collection 180
7.3.2 Product Tools 183
7.3.3 Process Tools 186
7.3.4 Impediments to Adopting Tools 188
7.4 Discussion 189
7.5 Conclusions 192
IV Process Design and Validation 194
8 A Visual Analytics Process for Software Evolution 195
8.1 Introduction 195
8.2 Visual Analytics Process 198
8.3 Visual Analytics and Software Systems 203
8.3.1 Evolutionary Visual Software Analytics 204
8.3.2 Architecture Specification 207
8.4 Conclusions 212
9 Visual Analytics Explorer for Software Evolution 213
9.1 Introduction 213
9.2 Framework: situational awareness and collaboration 214
9.3 Visualization Designs and Use Case Scenarios 216

9.3.1 Granular Timeline: Analysis of Statistics on Revisions
and Contributions., 219

9.3.2 Gridmaster: Correlation of Project Structure, Software
Item Relationships and Metrics 224

9.3.3 Socio-Technical Graph: Visual Representation of the
Collaboration and Relationships between Programmers 238
9.4 Discussion and Conclusions 242

X

Table of Contents

10 Revision Tree: A Case Study on PlasticSCM 245
10.1 Introduction 245
10.2 Analysis of Existing Visualization Tools 246
10.3 Design of Revision Tree 250

10.3.1 Features of Revision Tree. 254
10.4 Analysis of the Evolution of Source Code Files 259
10.5 Discussion and Conclusions 265

11 User Assessment Test 270
11.1 Introduction 270
11.2 Methodology Lo 271
11.3 Assessment results 274

11.3.1 Tool functionality 274
11.3.2 Visualization design 276
11.4 Discussion 283
11.5 Conclusions 284

V Conclusions 286

12 Conclusions 287
12.1 Introduction 287
12.2 Concluding Remarks 287
12.3 Publications Related to the Thesis 292
12.4 Future Research 294

A Papers Published per Venue 296

B Correlation of Research Approaches and Papers 303

C Resumen de la Tesis 307
C.1 Introduccidon 308

C.1.1 Problema de investigacion 309
C.1.2 Analitica Visual y Mantenimiento de Software 310
C.1.3 Objetivos y Preguntas de Investigacion 314

C.1.4 Methodologia y Organizacion de la Tesis and Outline . 315
C.2 Un Proceso de Analitica Visual para la Evolucion de Software 317

C.2.1 Analitica Visual y Sistemas de Software 317
C.2.2 Evolutionary Visual Software Analytics 318
C.2.3 Architecture Specification 322

C.3 Disenos de las Visualizaciones y Escenarios de Uso 327

Table of Contents XI

C.3.1 Granular Timeline: Analisis de Estadisticas de las

Revisiones y Contribuciones de los Programadores . . . 329

C.3.2 Gridmaster: Correlacion de Estructura, Relaciones y
Métricas 333

C.3.3 Socio-Technical Graph: Representacion de la
Collaboracion y Relaciones entre Programadores 341
C.3.4 Diseno de Revision Tree 343
C.4 Conclusions 351
C.5 Trabajos Futuros 355
Bibliography 356

List of Acronyms 426

1.1

2.1

2.2

2.3

24

2.5

4.1

4.2

4.3
4.4

4.5

4.6

4.7
4.8

4.9

4.10

List of Figures

Methodology research outline. 15
A detailed version of the software development and
maintenance process (figure prepared by the author). 22
Management of changes in software maintenance [STA 2005]
(figure prepared by the author). 28
IEEE Standard for Software Configuration Management
plans [STA 2005] (figure prepared by the author). 31
Source code snapshots stored in the software
repository [Collins-Sussman 2004]. 34

Flowchart of activities involved in the operation of Software
Configuration Management (SCM)systems (figure prepared by
the author). Lo 36

The z axis shows how researchers were organized in groups, in
terms of the number of participants, to carry out the research
works. In line with this, the y axis depicts the number of
research papers and its correlation with the investigation groups. 74

Correlation of researchers with the number of papers in which
they have participated as authors. 74
Researchers with highest participation in published papers. . . 75
Distribution of the total number of works carried per year and
category (Sysand Evol). L. 75
Number of papers per research approach and category (Sys and
Evol). . . . 79
Philosophical Research: publications per year and category
(Sysand Evol). oo 81
Solution Proposals: publications per year. 82
Correlation of tasks with the number of papers published per
category (Sysand Evol). L. 86
Correlation of the types of data used by the research works

studied and the the temporal focus of these works (Sys and
Evol). . . 92
Correlation of visualization types and the number of papers
published by category (Evol and Sys). 96

List of Figures XIII

5.1

5.2

5.3

5.4

5.9

5.6

5.7

5.8

5.9

5.10

5.11
5.12
5.13
5.14
5.15

5.16
5.17
5.18

Visualization — using a city metaphor [Wettel 2007,
Wettel 2008a). (a) Use of levels to represent the elements
contained by other elements. (b) Visual representation of the
methods in a class using brick figures. (c) Visualization of a

complete software project. L. 115
System structure and metrics representation using a Treemap
based on Voronoi tessellations [Balzer 2005b]. 117

Visual representation of the system structure, and
software item details (including metrics, methods and

attributes) |Garcia 2009b]. oL 118
Hybrid visualization that combines the use of a conventional
tree and treemaps [Zhao 2005].o 120

Top level view of the relationships among packages in JDK
1.4.2 using a hybrid visualization that combines a graph and
treemaps [Balzer 2005al.o L 121
Characteristics of Lattix [Sangal 2005|. (a) Correlation of
dependencies between tasks (software items). (b) Expandable
features of the visualization and the number of dependencies
between software items contained in software packages. (c)
The package project is expanded and to depict the software
items that contain and the dependencies in which the items are

involved.o 122
Design Rules: dependencies permitted, not permitted and
violations to the design of the system [Sangal 2005]. 123
Dependency relationships with Interactive Multi-Matrix
Visualization (IMMV) [Beck 2013]. 123
Visualization of dependency relations using Parallel Node-Link
(PNL) [Beck 2013]. 124
Representation of metrics in the Evolution Matrix
visualization [Lanza 2001al. 125
Overview of the Evolution Matrix visualization |Lanza 2001al. 126
Metrics representation in Polymetric Views [Lanza 2003|. . . . 126
Overview of Polymetric Views |Lanza 2003]. 127
Overview of the design of the Class Blueprint [Lanza 2001b|. . 128
Inheritance view of the Class Blueprint
visualization |Lanza 2001b]. 128
Overview of EXTRAVIS [Holten 2007]. 129

Visualization of two revisions of a software system [Wettel 2008a].130
Visual representation of the evolution of a software item and
its methods [Wettel 2008a]. 131

XIV

List of Figures

5.19

5.20

5.21

5.22

5.23

5.24

5.25
5.26

5.27

5.28

5.29

5.30

6.1

6.2

6.3

6.4

EvoStreets: Evolution of the structure of a software
system [Steinbriickner 2013].o L 132
H-V tree layout for the visualization of the structure of software
systems |Gonzalez-Torres 2009]. L. 133
EvoStreets: Use of the levels in the visualization to show when
a new package is added. [Steinbriickner 2013]. 133
EvoStreets: The properties of the software items are
represented by the width, height and color of the
buildings [Steinbriickner 2013]. oL 133
Comparison of dependencies between two revisions of a software
system [Beck 2013]. oo 135
Animated visualization of the evolution of the architecture of
a software system using Yarn [Hindle 2007]. 136
Strip of animated visualizations [Beyer 2006]. 137
Use of lines and arrows to depict new node positions because
of changes in the dependencies [Beyer 2006]. 137
The process of building a map of a software system with
emphSoftware Cartography [Kuhn 2010a|. (a) Placement of
software items in the plane in accordance with the distance of
the terms. (b) Area of influence of the software items according
to their proximity and size measured by the number of lines.
(c) Height of the mounds calculated with reference to the size
of the system.o 139
A series of four visual representations for the same number of
system revisions using Software Cartography [Kuhn 2010a]. . . 139
Succession of call-graph visualizations using
GEVOL [Collberg 2003]. 141
Visual representation of the logical coupling between packages
and files [D’Ambros 2006a]. 142

System Hotspots View: visualization of system structure
and metrics for supporting the collaboration between
programmers [Anslow 2010]. 163
SourceVis: a large interactive multi-touch table
for the interaction and collaboration between team
members [Anslow 2013|.o 164
Representation of changes and ownership of the software
clements in Ownership Map [Girba 2005]. 165
Visualization of the patterns of behavior of programmers using
Ownership Map |Girba 2005]. 167

List of Figures XV
6.5 CodeTimeline: (a) Notes of the development team concerning
the Ouwnership Map visualization. (b) Visualization of the
frequency of terms for each revision by using word clouds and
notes from the development team [Kuhn 2012].. 168
6.6 Visualization of the activities carried out by
programmers |Ripley 2007). L. 169
6.7 Representation of software items and changes that were made
by each developer |Ripley 2007]. 169
6.8 Share: Text Editor showing the pieces of source code that have
been reused and which represent by means of colors, the person
who has made the original contribution [Assogba 2010]. 171
6.9 Share: Browser of relationships using a radial layout to show
the relationships between software items according to the reuse
of source code [Assogba 2010]. 172
6.10 Share: Basic browser to show the relationships of a particular
software item [Assogba 2010]. 173
6.11 Visualization of a collaborative network between programmers
based on the software items that have been changed in
common [Jermakovics 2011].o 174
6.12 Buckets View: Visualization of changes made to software items
and the collaboration between programmers [Lanza 2010]. 175
7.1 Q1: Use of SCMtools. 181
7.2 Q2: Use of bug tracking tools. 182
7.3 Q3: Correlation of SCMand bug-tracking tools to make
relationships between bugs and changes. 183
7.4 (Q4: Tools for metrics data collection. 183
7.5 @5: Use of visualization tools for software debugging. 185
7.6 Q6: Use of visualization tools to navigate class hierarchies. . . 185
7.7 QT7: Use of visualization tools to navigate dependencies. 185
7.8 (8: Use of visualization tools to find and analyze code clones. 186
7.9 Q9: Use of visualization tools to find source code fragments
after refactoring.o 186
7.10 Q10: Use of a tool to measure and visualize individual
programmer contributions.o 187
7.11 @Q11: Use of visualization tools to show which developers change
which software items. 187
7.12 Q12: Use of visualization tool for metrics. 188
7.13 Q13: Use of visualization tools to help reduce software
development and maintenance time. 189

XVI List of Figures
7.14 Q14: Reason for not using visualization tools during software
development.o 189
7.15 Q15: Perceived adoption blockers for visualization tools. . . . 190
7.16 Q16: Do you consider that software engineering courses should
include topics on the use of visualization tools? 190
8.1 Visual Analytics Process. 201
8.2 Overview of the Evolutionary Visual Software Analytics process.206
8.3 Overview of the architecture for Malekw 209
9.1 Framework for collaborative work in Software
Development, Maintenance and Evolution (SDME)processes
|Gonzéalez-Torres 2014]. 215
9.2 Knowledge discovery workflow in the Software Evolution
Visualization module of Maleku. 218
9.3 Granular Timeline (GT)showing statistics for revisions
committed for the jEdit source open software project spanning
14 years.o 220
9.4 GTshowing statistics for revisions using treemap
representations for jEdit. 221
9.5 GTshowing statistics for JabRef. 222
9.6 JFreeChart: GTvisualization depicting statistics on revisions. . 223
9.7 Absolute representation of programmer’s contributions, project
structure and lifelines for jEdit, JabRef and JFreeChart. . . . 225
9.8 Relative representation of programmers’ contributions for the
projects jEdit, JabRef and JFreeChart. 228
9.9 Correlation of programmers with packages for the projects jEdit
and JabRef. 229
9.10 Inheritance and interface implementation relationships,
including expanded years and metric values, for the file
VESBrowser.java in jEdit. 232
9.11 Software item inheritance and interface implementation
relationships for the file AbstractOptionPane.java in jEdit. . . 233
9.12 Implementation relationships for the interface Comparator of
the project jEdit.o 234
9.13 OperatingSystem.java: file that contains 10 classes, which
makes intensive use of inheritance. 235
9.14 Relationships between software items of Help Viewer.java (jEdit).236
9.15 Inheritance and interface implementation relationships of

software items in BasePanel.java (JabRef). 237

List of Figures XVII

9.16

9.17
9.18
9.19
9.20

10.1
10.2

10.3

10.4
10.5

10.6
10.7

10.8
10.9

Socio-Technical Graph (STG)showing the contributions and
relationships between programmers based on the software items

they have modified in common. 239
Screenshot of STGfor jEdit and the year 2013. 240
Representation of STGfor the year 2014 (jEdit). 241
STGfor the overall evolution of JabRef. 241
Socio-techcnical relationships between programmers for the

year 2011 (JabRef).o 242
PlasticSCM: Version Tree 3D [Theron 2007, Theron 2007|. . . 247
Visualization of the evolution of software items with Visual

Revision Control System (VRCS) [Koike 1997]. 248
Perforce: Visualization of the evolution of a software item with

Revision Graph |PerforceSoftware 2014]. 249
Design sketch of the Revision Tree. 251
Side to side comparison of (a) Version Tree 3D and (b) Revision

Tree [Therén 2007, Theron 2008]. 253
Timeline details [Theron 2007, Therén 2008]. 255
Correlation of the evolution of a software item with the

timeline [Therén 2007, Theron 2008]. 255
Revision Tree: polyphocal display. 256
Highlighting of main development line. 257

10.10Highlighting of a curve shape in the main development line. . 258
10.11Hiding of rows and columns. 258
10.12Visual representation of a software item with cluttered elements

and unordered rows. 260
10.13Visual representation of a software item with ordered rows. . . 261
10.14Control panel and additional details of the software item and

TEVISIONS. « .« v v v v v e e e e e e 262
10.15Collaboration between programmers during the evolution of

HelpViewer.java. 263
10.16Partial view of the evolution and collaboration between

programmers for VFSFileChooserDialog.java. 264
10.17View of the evolution of VFSFileChooserDialog.java after

applying some interaction techniques. 266
10.18Representation of several branches that have been created by

the same programmer in JFreechart.java. 267
11.1 Blockers for the adoption of the tool. 283
C.1 Descripcion general del proceso Evolutionary Visual Software

Analytics. 319

XVIII List of Figures

C.2 Vista general de la arquitectura de Maleku
C.3 Flujo de descubrimiento de conocimiento en el médulo EVCES
de Maleku.
C.4 Visualizacion de datos estadisticos usando sobre las revisiones
de jEdit en un lapso de tiempo de 14 anos utilizando GT. . . .
C.5 Representacion visual de estadisticas sobre revisiones de jEdit
usando GTy treemaps.
C.6 Representacion absoluta de las contribuciones de los
programadores, la estructura del proyecto y las lineas de
vida para jEdit.
C.7 Relaciones de herencia e implementacion de interfaces,
incluyendo la expansion de los anos y valores de métricas para
el archivo VFSBrowser.java de jEdit.
C.8 Herencia de un elemento de software y relaciones
de implementacion de interfaces para el archivo
AbstractOptionPane.java en jEdit.
C.9 Relaciones de implementacion para la interfaz Comparator del
proyecto jEdit.o
C.10 OperatingSystem.java: este archivo contiene 10 clases, las
cuales hacen uso intensivo de herencia.
C.11 Relaciones entre los elementos de software de Help Viewer.java

C.12 STGmostrando las contribuciones y relaciones entre los
programadores, con base en los elementos de software que han
cambiado en comun.

C.13 Captura de pantalla de STGpara jEdit y el ano 2013.

C.14 Bosquejo del disenio de Revision Tree.

C.15 Detalles de la linea de tiempo |[Theron 2007, Theron 2008]. . .

C.16 Correlacion de la evolucion de un elemento de software con la
linea de tiempo [Therén 2007, Theron 2008].

C.17 Revision Tree: vista polifocal.

C.18 Linea de desarrollo principal puesta de relieve.

C.19 Resaltado de una rama paralela a la rama principal.

C.20 Ocultado de filas y columnas.

334

1.1

2.1
2.2
2.3
24

3.1
3.2

4.1

4.2
4.3

4.4
4.5
4.6
4.7

5.1

5.2

6.1

7.1
7.2
7.3
7.4
7.5
7.6

List of Tables

Correlation of the methodology with Chapters and research

activities. L. 16
SCMsystems and architectures. 33
Terms and concepts used in Software Configuration Management. 36
Correlation of references with analysis methods. 43
Correlation of references with analysis results. 44
Application areas of Visual Analytics. 48
Correlation of references with theoretical approaches. 49

Classification scheme of investigations according to their

research scope. 71
General classification scheme. 77
Research approach+papers per year-technology

elements+research focus. 0L 80
Task addressed+papers per year+research focus+validation type. 83
Task addressed+data used-+runtime data. 87
Task addressed-tvisualization+view design. 98
Visualization+data used. 102

Data elements of software systems used in the tasks (a)
Understand system architectures and (b) Team awareness and
collaboration. 113
Visualization techniques used for the tasks supported by
research works: (a) Understand system architectures and (b)
Team awareness and collaboration. 114

Assumed benefits of adopting a Global Software Development

(GSD)approach. 147
Number of answers per role type. 179
Number of answers per company type. 180
Question group: Data collection.. 181
Question group: Product tools. 184
Question group: Process tools. 187

Question group: Blocking factors. 188

XX List of Tables
8.1 Responsibilities and functions of the modules that make up the
Visual Analytics process. 198
8.2 Components of the Visual Knowledge Explorer module. 200
8.3 Responsibilities and functions of the modules that make up
the Evolutionary Visual Software Analytics (EVSA)process. . 204
10.1 Comparison of visualization tools for the evolution of software
items. 250
10.2 Visual elements and variables represented by Revision Tree. . 252
11.1 Background details of the participants in the usability study. . 272
11.2 Question group: Understanding software project evolution. . . 274
11.3 Question group: Collaboration among programmers. 275
11.4 Answers for closed-ended questions that assess the visual design
and easy to learn of the visualization. 276
11.5 Answers for closed-ended questions that assess the wuser
satisfaction with the visualization. 277
11.6 Question group: Granular Timeline visualization assessment. . 277
11.7 Question group: Gridmaster visualization assessment. 278
11.8 Question group: Socio-Technical Graph assessment. 279
11.9 Question group: Revision Tree assessment. 280
11.10Global assessment of VSEKE. 282
A.1 Papers published per venue. 297
B.1 Philosophical Research: Correlation of research approaches. . . 303
B.2 Solution Proposal: Correlation of research approaches. 305
C.1 Responsabilidades y funciones de los moédulos que componen el
proceso Analitica Visual Aplicada a la Evolucion de Software
(AVAES). . . . 320
C.2 Elementos visuales y variables representadas por el Revision Tree.345

Part 1

Introduction

CHAPTER 1

Introduction

Newvo prometio a Giiindy que harian un viaje especial con destino
desconocido. El dia del viaje, antes de que saliera el sol, Giindy
preparo de forma diligente los menesteres indispensables para
abrirse paso y sobrevivir en la selva. Con todo listo, emprendieron
el viaje junto a Cucho Comecuanduay, su perro. — El viaje de
Giiindy, A.Gonzéalez

Contents
1.1 Presentation 0000, 3
1.2 Research Problem 5
1.2.1 BigData 6
1.2.2 Software Development and Maintenance 7
1.2.3 Visual Analytics and Software Maintenance 9
1.3 Aims and Research Questions 11
1.4 Methodology and Outline 13
1.5 Research lines of this thesis 14

1.1 Presentation

Software systems are almost omnipresent in daily life and used in almost all
devices which are utilized by people and businesses. Individuals use these
contrivances and the associated software to do the following things (among
many others): to work; to learn (take online courses, read and research topics
of interest); entertain themselves (play, watch TV or videos, listen to music);
communicate (friends, family, co-workers, participate in forums, collaborate
and work meetings),to buy things; to do paperwork (banking, taxes, and
other payments) and telecommuting [Charette 2005]. This has been the social
reality of the recent past; is current social reality; and will continue to be
everyday social reality in the future.

4 Chapter 1. Introduction

The omnipresence of technology has led some individuals and
organizations to become socially and economically dependent on software
systems [Boehm 1999b|. As a result, the percentage of profits that
companies invest annually in this area, on average, is greater than
4% [Charette 2005, Hall 2013|, and the expenditure in software products
grows annually [Gartner 2013, Gartner 2014].

Given this environment, the software market is very attractive to investors
and competition between producers is intense. It is thus necessary to bear in
mind that a product is valuable if it enables or helps people and organizations
to achieve particular goals or objectives by means of its use [Boehm 1999b|.
The software industry in general, and more specifically, internal software
development departments (being fully aware of this situation) seek to develop
products which meet the requirements and functionality demanded by users
with high standards of quality, in the shortest time and at the lowest cost
possible. This statement is also valid when talking about open source
software |Lee 2009].

At this point, it is appropriate to consider that the development and
maintenance of software are complex and that the possibility of failure is
present at all stages and levels of the process [Kraut 1995, Procaccino 2002,
Morisio 2002, Chow 2008|. Annual reports regarding this problem are
published [Group 2013] which evaluate the general performance of the software
industry and the success rates of particular projects. It must be mentioned
that studies have been published concerning famous cases of software
development projects whose failure has cost the loss of millions [Charette 2005]
and which led to a loss of prestige for some companies involved in these
projects.

With these examples in mind, great efforts have been made
to improve elements of the development process, such as the
calculation of costs and risks, planning, the reuse of software
components |Garcia-Penalvo 2000, Garcia-Penalvo 2002, Laguna 2003] and
system design and maintenance [Boehm 1999b, Sullivan 2001, Royce 2009].
Many of these efforts aim to improve the technical skills of individuals
and processes in order to obtain better economic results [Boehm 2000,
Colomo-Palacios 2013, Buxmann 2013, Colomo-Palacios 2014]. It is worth
noting that in economic terms, software engineering techniques have value if
they facilitate the development of more valuable software [Bochm 1999b].

Given this more general context, this thesis seeks to contribute to the
software economy by supporting the process of Software Development and
Maintenance (SDM) through the definition of a Visual Analytics (VA) process
in order to facilitate the analysis of software projects and their evolution.

Some factors that affect the success or failure of software projects that are

1.2. Research Problem 5

taken into account in this research are the following:

1. Control and monitoring of the quality of software by the use of
metrics [Niazi 2006, Lee 2009, Nasir 2011].

2. The importance of change control and configuration |[Nasir 2011].

3. The distributed location (sometimes in different countries and
continents) of collaborators on the project and their level of awareness
of the activities and changes carried out by project staff [Niazi 2006,
Fabriek 2008|.

4. The need for reliable automatic tools to obtain information about
the SDM process and the changes that have been made to the project
source code [Niazi 2006].

1.2 Research Problem

The objective of Software Evolution Analysis (SEA) is to support project
managers and programmers during the process of change and evolution of
software in separate geographical environments [Estublier 1999, Ogawa 2009).
Project administrators must have a general vision of the process which allows
them to control the quality of the software; evaluate productivity; reduce
implementation and maintenance risks as well as having the capacity to report
on all these activities to higher management levels. While programmers have
to learn the new code bases to understand structural changes, as well as the
changes in inheritance relationships and interface implementation. Moreover,
programmers need to understand the dependencies of software items and
comprehend the differences of source code revisions and have access to the
development history.

SEA actively looks to aid the improvement of the software process through
the analysis and support to continuous change, complexity, growth and quality
control |[Lehman 1997]. However, SEA produces large and complex datasets,
due to the number of variables involved in the evolution process and the
intricacies of their relationships that are difficult to understand by humans.
For these aforementioned reasons, although SEA provides valuable elements
of information, it does not provide sufficient knowledge to satisfactorily carry
out the tasks of understanding the changes and evolution of the software.

Accordingly, the next sections discuss some key issues and concepts that
are related to the aforementioned problem. Firstly, Big Data is introduced and
the relationship with software evolution is established, secondly the software
development and maintenance process is explained and thirdly, the use of VA
to support software developers and managers is discussed.

6 Chapter 1. Introduction

1.2.1 Big Data

During the last decades several changes have taken place on how organizations
and individuals generate, process and share information. On the one
hand, the emergence of new devices, such as smartphones and tablets, and
the improvement in processing and storage capabilities of computers and
servers, has increased the abilities of individuals and organizations to create
new and different data content formats. While on the other hand, the
data generated can be shared in real time at high speeds, thanks to the
new technologies. Thus, data with more varied and complex formats is
created, collected and transmitted from numerous sources including sensor
networks, Global Positioning System (GPS), Radio Frequency Identification
(RFID) tags, Wireless Fidelity (Wi-Fi) networks, satellites, multimedia
streams and software used by mobile devices [Krishnan 2013]. Consequently,
individuals and organizations have access to more data than what they are
able to process and transform into knowledge and this is causing information
overload (in all areas of human endeavor).

In this context, the term Big Data is frequently used to make reference to
the volume, variety, velocity and complexity of data produced daily. The main
goal of Big Data related research and technologies is to manage and transform
available real-time and historical data into knowledge to inform decisions
according to organizational requirements and needs [Hemerly 2013|. Although
data characteristics have changed over time, many challenges associated with
Big Data are not new and have been discussed in the research arena for years,
even decades. Such challenges are related to the retrieval and integration of
heterogeneous data sources into large data volumes, its processing and storage
and the scalability of tools that perform automatic data analysis.

Although, Big Data represents a great opportunity for businesses to take
advantages of the Data Economy, in this context, analytics deserves special
attention in providing insight into large volumes of data [LaValle 2010], as it
is located at the top of the process stack that transforms data into knowledge.
According to Davenport [Davenport 2006|, analytics has been an important
player in the definition of strategic plans, and has helped to drive, for decades,
the improvement of the ability of organizations to outperform competitors by
means of analyzing the available data.

VA is a natural evolution of analytics that exploits new computational
algorithms for data analysis and the ability to present and explore their results
by means of visual representations. VA is now widely accepted as an essential
tool in a wide range of domains such as Business Intelligence (BI), security,
marketing, life sciences, and social sciences.

The next section discusses the software development and maintenance

1.2. Research Problem 7

process and the involved data elements and their relationships, whereas
chapter 2 provides a detailed explanation of such process.

1.2.2 Software Development and Maintenance

One of the most critical problems for some companies is the frequent
job-hoping of software developers and project managers [Fallick 2006,
Laumer 2011, Owens 2011]. This causes the hiring and reallocation of
personnel to projects, either within their company or a client company.
Moreover, it implies that software developers and managers often have to
face the maintenance of large legacy applications and software projects that
they have not supported before. Nevertheless, the maintenance process
is usually compromised due to the lack of proper system documentation:
it is frequently incomplete, outdated or it is not present [Murphy 1997].
Under these circumstances, programmers and project managers require to
understand and comprehend the project at hand, its recent changes and
evolution, in a very short term for being able to carry out the most urgent
changes or maintenance tasks [Sharif 2009b].

An important consideration is that software development! and
maintenance? are dynamic tasks that conform to the basis of Software
Evolution (SE). Changes are made to software projects and those changes are
added to the change history of the project and therefore to its evolution. In
this process the changes made by a developer to a software item?® could affect a
number of associated software items in which other programmers are working.
Furthermore, two or more programmers could also be changing the same
software item simultaneously. This increases the problem of understanding
a system for someone that have just be assigned to the project, affecting its
ability to make changes.

SE is a cyclic process: changes are based on the understanding of the
current state of the software project, which is the accumulation of previous
changes [Mens 2008]. The change process and the tracking of changes are
usually managed with the assistance of a SCM tool.

A SCM tool uses revisions for storing details about changes, such as the
author who made the change, the date and time of the change, the project

!Software development is the process that involves the design, programming and testing
of software systems.

2Software maintenance is aimed to correct faults while improving the performance and
extends the life cycle of a software system [STA 2010]. Moreover, in the maintenance
phase, changes are classified as preventive (detect and correct latent faults), perfective
(improve performance or maintainability), adaptive (software functionality improvements
or additional requirements) and corrective [STA 2006].

3A software item is a source code piece (e.g., a module, file, class or interface).

8 Chapter 1. Introduction

structure before and after the change, and the source code and the changes
that were carried out on it |[Estublier 2000]*.

A revision identifies the current state of the project at the moment that
the change has been committed. Revisions are stored by a software repository
under the control of a SCM tool and are associated to a revision number.
Consequently, SE is an iterative process conformed by the accumulation
of changes and revisions during software maintenance and development
[Fernandez-Ramil 2008].

SE usually expands through several years, generating thousands and even
millions of Lines of Source Code (LOC) [Kagdi 2007a], hundreds of software
components and thousands of revisions |[D’Ambros 2008]. Furthermore,
within software projects exist relationships among software items in the
form of inheritance, interface implementation, coupling and cohesion. In
addition, source code is composed of variables, constants, programming
structures, methods and relationships among those elements. Besides logs,
communication systems, defect-tracking systems and LOC tools keep records
with dates, comments, changes made to software projects and associated users
and programmers [Hassan 2005].

Accordingly, SEA requires the assistance of automatic analysis tools for
aiding the understanding of a software project. It takes into account the
evaluation of individual revisions and the comparison of the output produced
by such evaluation for a given number of revisions or all the existing revisions
associated to the project. In this context, the analysis on an individual revision
includes the comprehension of the structural characteristics of the project, the
relationships among software items, the software quality metrics, source code
facts, and the comprehension of the socio-technical relationships derived from
the development process.

SEA also requires the retrieval of data from the source code, the software
project structure, communication systems, logs and the metadata® records
from bug tracking and SCM tools |Garcia-Penalvo 2011]. Thus, it makes
use of a set of techniques that have the capability of recovering and
analyzing software projects looking to discover patterns and relationships and
calculating software quality metrics and fact extraction from the results of
comparing the analysis performed on revisions [D’Ambros 2008|. Although,

1The IEEE Standard 828-2005 [STA 2005] states that “SCM activities include the
identification and establishment of baselines; the review, approval, and control of changes;
the tracking and reporting of such changes; the audits and reviews of the evolving software
product; and the control of interface documentation and project supplier SCM. SCM is
the means through which the integrity and traceability of the software system are recorded,
communicated, and controlled during both development and maintenance.”

5Metadata contains descriptive details about the data.

1.2. Research Problem 9

SEA is powerful for uncovering SE details, it is not capable, per se, of
supporting successfully the understanding and comprehension of SE. It
still depends upon other techniques and methods, such as visualization
and interaction techniques, for supporting successfully software change and
maintenance tasks.

1.2.3 Visual Analytics and Software Maintenance

Although the result of analysis of the evolution of software elements provides
useful information, it does not provide sufficient information to carry out
the tasks of understanding changes in a satisfactory fashion and therefore
provide adequate support to software developers and project managers.
Therefore, research has taken into account the important role of Information
Visualization (IV) in recent years, providing insight from large and complex
data sets through visual representations combined with interaction techniques.
It is important to highlight that IV takes advantage of the human vision
broad bandwidth pathway to the mind, allowing experts see, explore, and
understand large amounts of information at once |[Theron 2006b].

VA is a process whose goal is to provide insight into the vast amounts
of scientific, forensic, academic or business data that are stored in
heterogeneous data formats such as databases, HyperText Markup Language
(HTML), eXtensible Markup Language (XML) files, metadata and source
code. This process iteratively collects information, preprocesses data, carries
out statistical analysis [Peck 2011], performs data mining, and uses machine
learning [Witten 2005], knowledge representation [van Harmelen 2007], user
interaction [Sharp 2011], visual representations |Leung 1994a, Johnson 1991,
Robertson 1991], human cognition, perception, exploration and the human
abilities for decision making [Keim 2006, Llora 2006].

VA has been applied comprehensively to problems as diverse as
avian flu [Proulx 2006], paleoceanographic conditions [Therén 2006¢|,
organization analysis [Card 2006], eLearning [Gomez-Aguilar 2009,
Gomez-Aguilar 2015b], decision making [Migut 2011, Savikhin 2008|,
ontology engineering [Garcia 2012, Garcia-Penalvo 2012c,
Garcia-Penalvo 2014, temporal patterns [Weaver 2006, Ziegler 2010],
social networks [Perer 2011], security analysis [Harrison 2011| and software
systems |Reniers 2012, Gonzélez-Torres 2013b|]. Therefore, one can say
that knowledge discovery is an intrinsic property of VA, as it is aimed
at supporting analysts and decision makers in gaining insight from large
multivariate datasets [Thomas 2005].

Consequently, VA may offer solutions to the problem of supporting
programmers and managers during the implementation process, taking into

10 Chapter 1. Introduction

account the fact that it is a process which offers a comprehensive approach
which includes everything from the retrieval of relevant information and
analysis to visual representation of the results of the analysis. It offers
the potential to explore different levels of detail by using multiple visual
representations, coordinated together and supported by the use of interaction
techniques [North 2000], thus facilitating the discovery of relationships and
knowledge by means of the analytic reasoning of the analyst.

Taking into account these positive factors, it can be said that one
of the properties of VA is the ability to provide support for decision
making [Savikhin 2008, Mane 2012] using the cognitive abilities of users, and
their application to the evolution of software can offer great opportunities
to support programmers and project managers. However, the application
of VA to the evolution of software is new and the tasks performed by
project managers and their information needs are complex [Forsberg 2005,
de Oliveira Barros 2004, Munch 2004, Paul 1999].

This implies that there are still a great number of challenges it must
overcome in order to successfully support project managers in decision making.
Amongst those challenges the following are key:

x To facilitate visual analysis and evaluation of the development process.

*x To provide methods to visually monitor the evolution of the quality
of software elements (classes, packages and modules), taking into
consideration the use of software quality metrics; with the aim of
maintaining complexity and project evolution under control as well as
assuring quality control.

x To provide visual mechanisms to review the measurements of task
execution, and permit progress analysis and performance prediction.

x To assist, using visual methods, risk management, and to control the
size and complexity of the software product.

* 'To keep project managers informed on patterns of collaboration between
developers and about those elements which have been modified either
synchronously or asynchronously as well as the implications (in terms of
quality and functionality) of the changes which have been carried out.

While the challenges facing VA to support programmers in understanding
SE, according to their information needs [Sillito 2006b|, are:

x Offer details about the software elements upon which their work
depends.

x Provide information about the software components that are being
simultaneously modified by other programmers.

1.3. Aims and Research Questions 11

x Allow programmers to understand the implications of the changes made
on the basis of relations (inheritance and interface implementation) and
the partnerships between software elements (composition, reference, and
coupling), as well as the effect on the collaboration between objects.

x Provide details about the creation of variables, access and modification
of data, by means of arguments in the methods, and global variables.

x Enable programmers analyze, and compare for two or more revisions,
flow control, execution and exception handling between revisions.

x Facilitate the identification of the differences between files, software
elements and types of software in several revisions.

It is worth to recall that SDM [Colomo-Palacios 2012| covers a
high percentage of the cost of modern software systems [Koschke 2003].
Program comprehension tasks [Koschke 2003] follow precisely the pattern of
sensemaking by hypothesis creation, refinement, and validation, common in
VA [Sun 2004, Thomas 2005, Thomas 2006]. Finally, program comprehension
tools rely on the same combination of software analysis [Koschke 2003] and
Software Visualization (SV) [Diehl 2007] components.

The application of VA to SE is a recent development, as it was mentioned
before. Therefore, a further challenge facing research devoted to studying the
application of VA to SE, is to define clearly the process and identification of
the factors, methods and techniques which contribute to it.

1.3 Aims and Research Questions

The intention of this research is to define a process to describe and explain
the application of VA to SE. The goal is to offer guidance in the design and
implementation of software tools to assist programmers and project managers
in software development and maintenance. Furthermore, this research
anticipates aiding in the communication and understanding of research carried
out by other scholars. Accordingly, the principal question posed by this
research is the following:

How can a process be adequately defined to describe and explain the
application of Visual Analytics to software evolution?

The definition of a process, as stated in the previous question, requires
on one hand an explanation of how VA is applied to SE; and on the other
hand, the identification of the roles, borders, interactions and relationships of
the components, methods and techniques involved in such process. Pursuing
this approach, the following are subsidiary research questions which help to
adequately explain and describe the process:

12 Chapter 1. Introduction

1. How do the components that informed the process of applying
visual analytics to software evolution interact and interrelate?

2. What is the composition of components in terms of methods
and techniques and their roles and interactions in the process of
applying visual analytics to software evolution?

The above research questions needed to identify the components, methods
and techniques involved in the process of applying VA to SE as well to
characterize the roles, relationships and interactions between these elements.
Additionally, the utility of this process in the design and implementation of
tools must be proved, as a necessary element in answering the main research
question posed. On the basis of the above, the following subsidiary research
question should be formulated thus:

3. How can it be proved that the description of the process can be
followed effectively in order to design and implement an architecture
to support the understanding of SE by programmers and project
managers?

In order to answer Question 3, an architecture needs to be implemented,
based on the process of applying VA to SE that will take into account
the problems described in previous sections regarding the needs of project
managers and programmers. Therefore, the implementation of this
architecture will address the following research questions:

3.1 How can software project managers be supported in their decision
making by deepening understanding of changes in software quality
metrics, and socio-technical and collaborative relationships during
project evolution or a particular time period?

3.2 How can programmers be assisted in their understanding of changes
in software quality metrics, software project structures, inheritance
and interface implementation for a given time period?

3.3 How can programmers and project managers be supported in their
understanding of changes during software project evolution utilizing
the comparison of time periods?

1.4. Methodology and Outline 13

Additionally, the architecture will be validated through a user assessment
test and use case scenarios. The objective of this validation is to test the
complete cycle of applying VA to SE in the design and implementation of a
tool to support programmers and project managers in the development and
maintenance of software.

1.4 Methodology and Outline

The research methodology used in this thesis is an adaptation of Action
Research model [Kemmis 2005] and followed the cycle detailed in Figure 1.1.
The phases of this methodology and its correspondence with the organization
of this study are shown in table 1.1.

The research model Action Research is a methodology that makes use of
iterations to create a series of progressions in order to obtain the solution to
a given problem. The goal of each iteration is to refine the solution and takes
into consideration collaborative aspects of the work and the participation of
the individuals interested in solving a particular problem [Kemmis 2005].

The research discussed in this thesis corresponds to the first cycle to
propose models and tools that contribute to supporting in an effective manner
the development and maintenance of software by means of the use of VA.
When considering Figure 1.1 it can be thus seen that the methodology consists
of 5 phases (Plan / Revised plan, Diagnose, Take action, Evaluate and Analyze
findings) which when completed leads to a new cycle of the process that starts
with a review of the research plan, goals, objectives, questions and research
problem. From there on, the following steps are executed taking into account
the elements of the previous iteration. Specifically, this research begins
with the phase Plan / Revised plan that corresponds to the introductory
chapter and chapters 2 and 3 (see table 1.1). In this phase, goals, objectives,
research questions and research problem are constantly defined and redefined.
Similarly, SE concepts, terms and the analysis process as well as the definition
of the VA process are revised in each methodology iteration. The goal
of chapters 2 and 3 is to define some building blocks which are aimed at
contributing the principal research question of this investigation.

The process continues with the Diagnose phase which seeks to analyze
the research papers which are published and that are related to the application
of visualizations and VA to software systems (and their evolution). During
this stage, surveys are conducted whose participants are professionals working
in the software industry in order to become more fully aware of the current
state of use of visualization tools. Subsequently, using the results obtained
and with the support of the relevant bibliographical references, a detailed
discussion on the state of research in this field and its impact on industry

14 Chapter 1. Introduction

(taking as a starting point the current use of visualization and VA to support
the process of development and maintenance) is carried out.

Figure 1.1 shows the relationship between the Diagnose phase and the
activities described. It is possible to appreciate the sequence of activities
described by means of observation of the dotted blue lines. The goal of this
phase (chapters 4,5, 6 and 7) is to identify the tasks supported by research,
and the data elements and visualizations in current use by the academy and
industry, and therefore diagnose the needs that should be addressed by the
characterization of the process of applying VA to SE.

Take action is the next phase of the process. In this phase, the process of
applying VA to the evolution of software is defined or redefined. Accordingly,
the specification of the architecture as well as the design and implementation
of the tool (which uses as a basis the specified architecture) are also defined or
redefined. The dotted blue lines in Figure 1.1 show the sequence in which each
one of these activities is carried out. Chapter 8 corresponds to this phase.

The next stage is Evaluate, which has as aim the indirect assessment
of the definition of the process of applying VA to SE. The goal of the
specification and implementation of the architecture is to carry out a test of
the applicability of the above process. As a consequence, the evaluation and
validation of the tool that makes use of this architecture is also the evaluation
and validation of the process of applying VA to SE. Chapters 9, 10 and 11
present the results of assessing the tool and is associated with this phase.

The culminating phase of a research cycle is Analyze findings. This
phase is responsible for analyzing the results of the entire cycle, and for the
preparation of the principal conclusions. On the basis of the results of this
phase, the plan for the next cycle is redefined. This phase is associated to
chapter 12.

1.5 Research lines of this thesis

This dissertation is concerned with SDM and VA and was carried as
part of a collaboration between the Interaction and eLearning Research
Group (GRIAL) |Garcia-Penalvo 2012b| and the Visualization Group of the
University of Salamanca (VisUSAL). Thus, it has a close relationship with
other research works that are framed by such collaboration relationship,
and which were focused in supporting eLearning [Gomez-Aguilar 2009,
Gomez-Aguilar 2014, Gomez-Aguilar 2015b, Gomez-Aguilar 2015a], ontology
engineering [Garcia 2012, Garcia-Penalvo 2012¢, Garcia-Penialvo 2014,
drugs development [Pelaez 2008, Garcia 2009a, Pérez 2013] and
bioinformatics [Santamaria 2009, Vicente 2010, Santamaria 2014| processes.

15

Research lines of this thesis

1.5.

(Ansnpur oremijos |

uoneoy1oads

QINJOIIYOIY

saroxduwr
/ QULOpaL -«

| __— /ouluIep

——
—

uondi1osop $se001g

UOISSNOSIP pue
P SISA[eue pasnoo,|

N —
N\

Ansnpur pue 101e9so1

oy ur s1ouonnoerd asougeiq
: o Iojiuow pue sazAJeue
0} KaaIng)
Apms sy00[q Surpying
Surddew onjewra)sAg SuLapaI / SauLp
—)

$S300.1J
mwmxﬁmﬁzuw JensiA

J [/

\

ssa00.1d sisA[eue
pue suwd) ‘s)deouoo
UOIINJOAD dIBMIJOS

uonejuawadur
pue u3Isap [00],

/

/

[[oIeasay

/" KSo[opoyiolN

uonoy Ay}

"QUI[INO [YOIRISAI ASO[OPOYJOIA :T'T 9IN31q

SOLIBUIIS 3SBI IS}

ueld pasiady / ueld

—

wiojqoid yoreasay

\

suornsan b [IIBaSaY

ajenjeay

sasn

e
T

K3ojopoyjow
QuIJopal / sauyop _

saA2[qO

N T

Apmis 100}
oaneredwo))

1S9} JUSISSISSE 1S}

S)[NSa1 JO SISA[euy

SUOISN[OUO))

s[eon

16

Chapter 1. Introduction

Table 1.1: Correlation of the methodology with Chapters and research activities.

Methodology
phases

Plan/Revise plan

Diagnose

Take action

Evaluate

Analyze findings

Chapters

Introduction

Software Systems:
Maintenance and Evolution

Visual Analytics

Systematic Mapping Study

Survey on the Use of Visual
Tools in Software Development
and Maintenance

Focused analysis and discussion

A Visual Analytics Process
for Software Evolution

Architecture Validation

Conclusions

Research elements
and activities
Goals
Objectives
Research questions
Research problem
of the
development

Description
software
and maintenance process

Discussion of software
evolution concepts and
details

Description of the visual
analytics process and its
components

Classification of research
works

Identification of tasks, data
elements and visualizations
in use

Analysis and discussion

Discussion and analysis of
results

Detailed review of selected
research works

Process description
Architecture specification
Tool
implementation

design and
Use case scenarios

Case study

User assessment test
Analysis of results
Conclusions

Part 11

Background

CHAPTER 2
Software Systems: Maintenance
and Evolution

La selva era inhdspita, compleja; lenguajes y protocolos peculiares,
territorios, vasallos y reyes. Casi todo era alimento de algo o
alguien. Todo elemento era una rueda dentada que encajaba con
otra. Fvolucion natural sin reglas aparentes pero implicitas,
acatadas por voluntad o impuestas por la fuerza. — El viaje de
Giiindy, A.Gonzéalez

Contents

2.1 Introduction 0000, 19
2.2 The Software Process 20
2.2.1 Software Development Models 20
2.2.2 Tterative Process 23
2.2.3 Global Software Development 23
2.2.4 The Role of Project Managers and Programmers . . . 24
2.2.5 Software Maintenance 26
2.3 Software Evolution. 29
2.3.1 Software Configuration Management 30

2.3.2 Information Needs of Software Project Managers and
Programmers L. 35
2.3.3 Software Evolution Analysis 42
24 Conclusions 00 0o 43

2.1 Introduction

The objective of this chapter is to explain the process of analyzing SE and
how this may support the development and maintenance of software systems.
To accomplish this, some terms, concepts, techniques and methods relevant to

20 Chapter 2. Software Systems: Maintenance and Evolution

the processes of software development, maintenance and evolution (as well as
key aspects in the understanding of changes and their effects) are studied.
Moreover, user needs with respect to the comprehension of SE, and the
requirements for carrying out the analysis of SE are also identified. This
chapter thus seeks to answer the following research question:

How may the analysis of software evolution effectively support software
development, maintenance and change tasks?

This chapter therefore explains the software process (section 2.2), and
then presents the software maintenance process (section 2.2.5); next it
explains the SE process including the information needs of programmers,
the comprehension strategies for discerning details on changes, the basics
of SEA and SCM (section 2.3) and finally the main conclusions of the chapter
(section 3.5) are outlined.

2.2 The Software Process

This section explains and discusses some of the most relevant concepts
and elements that concern to this research regarding the software process.
Accordingly, it makes an introduction to software development models and
presents a variant of the waterfall model [Royce 1970] (section 2.2.1); next it
explains the iterative nature of the software process (section 2.2.2), then it
discusses the current scenario in which software development is carried out in
different geographical locations, cultures and timezones (section 2.2.3); after
that it carries out a discussion on the role, tasks and skills of project managers
and programmers (section 2.2.4) and finally it explains the importance of
software maintenance and software system changes 2.2.5.

2.2.1 Software Development Models

The development of software is a complex process that involves a large number
of activities [ISO 2014| such as:

1. Analysis of requirements.

2. System specification.

High and detailed level design.
Programming.

Unit testing.

System integration.

Testing system integration.
Training users.

XN O W

2.2. The Software Process 21

9. Preparing technical documentation.
10. Maintenance and evolution.

However, not all software development models include all of the
aforementioned activities. According to Sommerville, although there are
many definitions of software development models, activities common to
all (with possible variations in names and the combination of several
steps into one) are: system specification, design and implementation
(activities 3 and 4), validation (activities 5, 6 and 7) and evolution (activity
10) [Sommerville 2011]|. Therefore, the waterfall model |[Royce 1970], which
is the best known software development model, also includes the activities
common to all software development models (with some variations).

In the context of this research, the spiral model [Boehm 1988,
Boehm 1999a] is of particular interest as it clearly exhibits the iterative and
evolutionary nature of software development and maintenance. However, to
explain the process and the components involved during the development and
maintenance of software according to the aims of this research a more detailed
depiction of the SDM process is required. Accordingly, Figure 2.1 shows a
description of the stages and components involved in such process (following
the focus of this research), which are explained as follows:

Requirement definition and analysis: This embodies activities such as
the gathering, specification and analysis of requirements. Moreover, at
this stage the development plan, standards, configuration management
plans and software quality assurance are defined.

Preliminary design: It focuses on the tasks of high level design as well as
the testing plan.

Detailed design: It is focused on designing the interface, structure and
components of the system, the database and the system testing cases.

Implementation and unit testing: During this stage the programming
and testing of units is carried out.

Integration and testing: Its goals are to integrate system units and test
the functionality of the complete system.

Operation and maintenance: This is the stage where users may require to
carry out changes to the system due to additional functionality needs or
changes in the requirements [Grubb 2003|. Moreover, other causes could
be derived from error detection or preventive maintenance to adapt to
changing conditions such as the velocity in the production of data or
the opening of new offices.

Software Systems: Maintenance and Evolution

Chapter 2.

22

S)nsax
159} uoneISIU]

sayy EQEQEQED

sainpadsoxd
1891 uoneISou[

14

synsa1 Suns9) yu) ——m8 —

3unsay yiun

synsa1 Sunsa) jun

~ N\

‘(rToyme w:@ £q @8@@9& 2m3y) mmwooa wogﬁ:@aﬁma pue Ewsgoﬁgww oIeMIJOS @ﬂu JO UOISIOA @wjﬁ@@ < :1°g 9IngI o

))) [Anpeuonoury \ uoneoyroads |
UONIII0D QoueuLIUTEW sjuowanmbal
yoddns SuroSuQ ’ : [euonippe g syuawanbas
: v:m uon0d}ap JoIrg QATIUQADIJ oy ur oSuey) :

))) 10 sysanboy AIeMJOS J
voneoywads |
juswaIrnbax

\ QoRJINU])
soonpoxd ued wesSoxd ,

Aypenb aremyog
JO 2180 Saye} ~ J
swnoop doouos |

_’ soonposd ——— 8 —— u :Mco_mhao d u
— soumuexd® 7 ddueudUIEW 7 | [euo! 0 |
! | pue uonedQ ’
: i ueld juawdojorap ,

() Sunso) pue uopluyep | EMINIGIN

opoo 20mmog uoneIgajuy SspuawRIINbay e
g [enuew)

- J LASOUEUSIUIRIR sonpaooxd pue

pue SpIEpUER)S 91BM}JO
) Juowdo[ara g PIepue) Y m
sojen[eAd) sremyos / : (sueyd jusweSeuew |

(J 3unsay yiun v:a ugisap) uoneINgyu0d
:ozﬁ:oEoEEH Kreurarerg | dEAgos)

samposoxd \ . _
soonpoxd ugisop | werd 150
pareea@ | \ [dIsoL
\ , : sdojoaap N
S0)B0I0 / JUSWNOOP
uSisap (oA do.
S35BD 159 sy Juawdojans uondriosap 159 ug1sap aseqeje ug1sap 296U JUSLNOOP enue
1oL Y3 [°A2d RALIOSIp 1S9 Isop oseqeleq Isop eorjIoU] uSisop pord \ N

2.2. The Software Process 23

2.2.2 Iterative Process

The stages listed in the previous section are carried out in the order in which
they appear. It is necessary to add that the stages of Implementation and unit
testing, and Integration and testing produce a series of reports detailing the
results of unit testing and integration. The results of each stage could be used
to correct errors found in the system components and the overall system, so
sometimes it becomes necessary to cycle back to one or more of the foregoing
stages to update or make corrections in the documentation and source code.

The error correction process and carrying out changes to the system gives
place to the evolutionary aspect of software development and maintenance.
Therefore one can say that software development and maintenance conforms
to the basics of SE.

Depending on the reasons why a change is made to the system, it may
be necessary to return to some of the earlier stages. When changes in the
requirements for additional functionality occur, such requirements for changes
need to be analyzed and then perform the modifications to the whole or a part
of the complete system, implement new source code and perform unit testing
and system integration. In the case of single error correction may only be
necessary to make changes to the code and unit testing and integration. With
regard to preventive maintenance, the changes which have to be made may
involve several different stages, depending on their size, and could involve the
whole process, including the definition of new requirements or merely carry
out small changes in implementation. The principal goal is that the system
remains capable of being maintained, and thus can evolve.

2.2.3 Global Software Development

In this context it is relevant to remark the current tendency to carry out
the development and maintenance of software projects' in a distributed
form (with members of the development and maintenance teams located in
different geographical areas) [Estublier 1999, Herbsleb 2001b, Jiménez 2009,
Ogawa 2009], which impedes the fluidity of communication and understanding
of the state of the project and the activities which are carried out during
its implementation and maintenance [Prikladnickil 2003, Herbsleb 2003,
Omoronyia 2010, Talaei-Khoei 2012].

In this regard, it is worth mentioning that the distances involved
are geographical, temporal, and socio-cultural and therefore that

LA software project complies with the general definition of any type of project because
of its temporary nature with a determinate beginning and end (when the objectives are
reached or there is no longer any need for the project [PMI 2002].

24 Chapter 2. Software Systems: Maintenance and Evolution

the challenges that mneed to be overcome involve problems of
communication, coordination and control [Carmel 1999, Herbsleb 2001a,
Conchuir 2009, Misra 2013, Colomo-Palacios 2012|. This requires the use
of effective mechanisms [Carmel 1999, Mockus 2001, Prikladnickil 2003,
Colomo-Palacios 2014]:

« Documentation systems (requirements, specification, design and
manuals).

Appropriate development methodologies.

Email.

Telephone.

Instant messengers.

Video conference facilities.

Collaborative technology and tools for sharing details of the activities
carried out by team members.

x Team building strategies.

* K X X X X

In this context, another factor that is present is the type of
organization used by GSD teams (independent of the organizational
structure [Mintzberg 1991] used by the company), the following being the
most common:

*

Virtual teams [Karolak 1999, Carmel 1999].

Coherent and collocated teams of fully allocated engineers [Ebert 2001a,
Ebert 2001b].

Loosely coupled teams [Herbsleb 2001a, Pinelle 2005].

Scattered software development |[Vrhoveca 2013|.

*

* %

2.2.4 The Role of Project Managers and Programmers

Software development teams include personnel working the following roles:
project managers, analysts, designers, programmers, testers and manual and
documentation writers. However, this research takes into account all these
roles it usually makes reference to Project Managers (PMs) and programmers
as the former are the responsible of the success of software projects in
administrative terms and the latter are central to the software process as they
are in charge of performing the development, maintenance and evolution of
software systems and thus the recipients to which the designs, test results and
change requests are delivered in order for them to carry out the appropriate
actions. The following two sections thus discuss the tasks that these people
perform and the capacities which are required from them |[Cegielski 2006] to
successfully carry out their duties.

2.2. The Software Process 25

Tasks and skills of PMs: According to Thayer project management is “a
system of procedures, practices, technologies, and know-how? that
provides the planning, organizing, staffing, directing, and controlling
necessary to successfully manage an engineering project” [Thayer 1988].
Accordingly (and taking into account that the term know-how is referred
to the use of best practices in carrying out human activities) the
aforementioned tasks must be performed by adequately skilled and
trained individuals [Sarewitz 2008|. Thus, PMs are the individuals who
have the proper training and skills to carry out the project management
tasks. Consequently, the abilities of PMs, specially when working
in GSDs [Saldana-Ramos 2014|, should include:

* Team coordination.

x Management skills.

* Project monitoring and tracking.
* Result evaluation abilities.

Moreover, some desirable soft skills of PMs [Sukhoo 2005] are:

Communication skills.
Team building.

Flexibility and creativity.
Leadership.

Organizational effectiveness.
Stress management.

Time management.

Change management.
Trustworthiness.

S S SR S O S S DI R O

Conflict management.

Tasks and skills of programmers: Software programmers are present in
nearly al the stages of the software process: programming, testing,
system integration, training users, preparing user and technical
documentation, and maintenance and evolution. Therefore, their
role is central to the software process. Some of the most common
tasks [Ko 2007] for which they are responsible are the following:

* Writing new source code.

x Testing and debugging source code.

x Carrying out system changes.

*x Reproducing failures and fixing system bugs.

2The Merriam-Webster dictionary defines know-how as the “knowledge of how to do
something smoothly and efficiently” [Merriam-Webster Online 2009].

26 Chapter 2. Software Systems: Maintenance and Evolution

Understand execution behavior.

Maintaining and updating source code.
Preparing user and technical documentation.
Training users.

* % X X

Consequently, the set of skills and knowledge that software
programmers require to carry out the tasks within their area of
responsibility |[Tockey 1999] may include the following:

Programming language concepts.
Database system concepts.

Software architectures.

Requirements analysis.

Software design.

Code optimization.

Debugging techniques.

Software project audits.

Software testing techniques.

Customer support techniques.

Abilities for writing user and technical documentation.
Configuration management.

Software quality assurance and metrics.
Effective communication skills.

O R T I SR SRR SR S S R G S

Moreover, a study conducted by Turley [Turley 1995] found that the
following competencies are attributes of exceptional software engineers:

Mastery of skills and techniques.
Maintains a big picture view.
Desire to do/bias for action.
Driven by a sense of mission.
Help others.

* K% X Xk ¥

In the next section we discuss in more detail the process of software
maintenance and its implications for the evolution of software systems.

2.2.5 Software Maintenance

The operation of many organizations depends on the proper functioning
of their systems and therefore the maintenance of these is a critical
element [Bennett 2000]. It is thus important the fact that software
maintenance usually takes place over several years, according to project size

2.2. The Software Process 27

and the role played in the organization, and demands more resources than
the implementation phase [Grubb 2003]. This makes it likely that during
maintenance multiple challenges will have to be confronted in order for it to
be carried out successfully. Some of these challenges are caused by factors
which are external to the organization while others are caused by internal
factors. The following are some of the most common challenges:

Frequent job-hoping: The software industry is very competitive and many
companies are engaged in attracting and hiring the most talented
employees in the market, thus job-hoping of software developers and
managers between companies is frequent and mostly motivated by better
job offers from the competing companies [Fallick 2006, Laumer 2011,
Owens 2011].

Frequent reallocation of personnel: It is common that programmers are
assigned to other projects, either within their own company or a client
company, according to organizational needs and priorities.

Maintenance of large legacy systems: Programmers and managers
frequently face the maintenance of large legacy applications and
software projects that they have not supported before.

Lack of proper system documentation: The maintenance process is
usually compromised because system documentation is frequently
incomplete, outdated or it is not present [Murphy 1997].

It is noteworthy in this context that software maintenance®

is a dynamic
process which begins from the moment in which a software system is conceived
and initiated.

The tasks performed by project managers, designers, architects and
programmers look to satisfy the organizational needs and requirements
by making preventive (for improving source code quality), adaptive (due
to software functionality improvements or additional requirements) and
corrective changes® to the software system. Change management [STA 2005
is, therefore particularly important and is opportune to take into account
Figure 2.2. Change management includes the following list of tasks:
Change requests: These must specify the type of change (corrective,

adaptive or perfective), its description, as well as justify the necessity
and urgency in carrying a change.

3 According to the ISO/IEC/IEEE 24765 standard software maintenance is “the process
of modifying a software system or component after delivery to correct faults, improve
performance or other attributes, or adapt to a changed environment” [STA 2010].

4The ISO/IEC/IEEE 24765 standard defines a change as “the modification of an existing
application comprising additions, changes and deletions” [STA 2010]

Software Systems: Maintenance and Evolution

Chapter 2.

28

‘(1o o) Aq parederd on3y) [GOOZ V.IS| @oURULIUIRUI DIRMIJOS UT SOSURYD JO JUSUWLSRURIN :g'g 9INSI]

jsanbax SWY QIBMIFOS | pajoaye
ofueyd poreIdossy JO SUOISIOA SWOY AIBMIFOS

) ‘)) ‘ ‘ 93ueyo
a3 Jo a[qisuodsay
ojul SpadU —
 coSuep (\ \ 3pep osea|oy
sa8ueyo (

Jo Jeaoaddesip sauop

0 [RGRy J \ Jo uonmRRIL J / -
~ UOISIdA MU

ot Jo Py nuAp]
syuowaImbax N
o[qeuoudrduruny
J /' jonuoy uonemsyuo) ')
— sue|d JuowoSeueN | 1P UONEILIOA
$20IN0SaI [uonem3yuoy) f
J[qe[IeAY | amemyjog 10J prepuel§ |
- :600¢-8C8 PIS HIHI
Ayxordwod

pue 571§ / p

sogued
SIleN[eAd |A JO uonEn[BAd sisanbar a3uey)

M \ pue sisk[euy
1500

sannbax
Jlom

juanbesqns pue
juaLIng uo joeduy |

PaAJOAUL BAIR uoneoynsn(uondrosap ,

Jie 3 I
T 19159nbal Jo oweN ouadin 7 7 sBueyy “Bue o8ueyo jo adK], aeq jsanbai jo raquinN
st
7 EINSREIRER | 7 7 aandepy 7 JAI1031I0)) 7

2.3. Software Evolution 29

Analysis and evaluation of changes: It consists in evaluating change
requests taking into account if the change is implementable, the
criticality of the area involved, the impact on current and subsequent
work, the size and complexity of the change, the available resources and
the projected cost of the change.

Approval or disapproval of changes: The request for changes is approved
or disapproved according to the analysis and evaluation carried out and
the organization priorities.

Implementation of changes: This is responsible for determining which
software items and the various versions that will be affected by the
changes. During this task one or more persons must be assigned to
make the change, the date by which it is expected that the change will
be completed must be specified, as must the identifier of the new version
which will originate the change as well as its date of verification.

In short, once a request for change has been made is analyzed and
evaluated, then based on the result of that evaluation the process will
proceed to its approval or disapproval. If the change is approved the
process continues to the implementation phase, otherwise the request is filed.
Taking into account the challenges mentioned above and the management
of changes, programmers and project managers require to understand and
comprehend the current project and its evolution in a very short time in
order to carry out the most urgent maintenance tasks. This involves an
understanding of the accumulation of changes, from the last point at which
accurate documentation was available and may involve hundreds of software
components as well a necessity to clarify the relationships between them in
the form of inheritance, interface implementation, coupling and cohesion.
Consequently, the understanding of changes and thus the evolution of software
projects is a crucial task for software maintenance.

Accordingly, the following section reviews related concepts in SE and
analysis that are necessary to take into consideration in order to effectively
support the process of understanding software systems during the performance
of task change.

2.3 Software Evolution

SE describes the process of software change and improvement over years
and releases |Bennett 2000]. This produces vast amounts of details which
is frequently collected using automated mechanisms that report the changes
made and the tasks carried out by means of Integrated Development

30 Chapter 2. Software Systems: Maintenance and Evolution

Environment (IDE), SCM, defect-tracking and system testing tools. The
collected data is stored in source control repositories, bug repositories,
archived communications, testing logs and deployment logs [D’Ambros 2009a].
However, it is often true that most of the tools and storage mechanisms
mentioned above are not fully integrated and the recording and access to
data has to be performed on an individual basis.

SEA is concerned with aiding the understanding of software changes: their
causes and effects [D’Ambros 2008|. Its principal objectives are to provide
information which contributes to the maintainability of the project thus
supporting its improvement through the analysis of continuous, increasing
complexity, continuous growth but causing quality to decline [Lehman 1997].
The goal, which is to allow the implementation of the appropriate actions to
make additional changes and whether monitor the quality or functionality
of the software project is compromised in the short or long term. In
summary, it seeks to support new changes because modifications are based
on the understanding of the current state of the software project, which is
the accumulation of previous changes made by the software development or
maintenance activity.

The main techniques that are commonly used to understand a software
project for a particular revision are outlined. Following this, the process of
automatic analysis, the main elements involved in it, and their relationship
to SEA are explored.

Consequently, section 2.3.1 describes the main concepts of SCM and how
it is used to collect data from the software development and maintenance
processes, next section 2.3.2 discusses the information needs of software
project managers and programmers, and finally Section 2.3.3 is concerned
with the process of software evolution analysis.

2.3.1 Software Configuration Management

SCM plays an important role because it controls the evolution of complex
systems |Estublier 2000] or in a more detailed fashion: it is the process that
manages the evolution of a software project, taking into account all the levels
of communication in the organization and including all modifications that
programmers have made to the code. Figure 2.3 shows the activities of SCM
plans according to the standard [EEE 828-2005 and its activities are the
following;:

1. Configuration identification involves the identification and naming
of the configuration items to be controlled, as well as the repository
where they will be stored.

31

Software Evolution

2.3.

‘(royme oy Aq paredaid omS3y) G007 VIS| sueld juemwoSeur]y UORINSYUO,) oIeM)JOS 10] pIepurl§ HH] :€'g o3I

300foad oy oprsino |
padofoaap sway|

sajerodioour
[OTUOD JIOPUIA
/10}0B1U0IqNS

ued o) Jo adoos so3ueyd 4

9} APISINO SWA)] 2)eUIPI00)) 7

SMIIAI pUe
SuOnjeN[eAd
uoneIN3yuo))

sypne

Sw)1 uoneINSIU0))

sue[q JUdWIZeUBA

uoneI3yuo))

aIeM1JOS JOJ PIEpue)S
600C-8C8 PIS dH4I

Sununoooe
snyels uoneInSyuo))

=

sourjop

syodax Sununoooe
pue snyeig

- - sway no:ﬁ:wﬁzoo
SurwreN
/ Swoy nonﬁ:wﬂnoo
) Surmuapy

syonpoid
A1eM1JOS JO AIDAI[D
pue asesfar ‘pying |

S[013U0D

. —
KIoAT[Op pue

JUSWIOTBUBW 9SBI[OY

\

uonesJnuapt SWwd)l uoneIngyuod
Heoynuep! SOAJOAUL — it " J

\ uonem3yuo) Jo oFe10g

[o1nu0d
uonemsyuo))
& sysonbar 93uey)
saxmbai B
sagueyd X
Jo uonen[eAd
pue SIsA[euy |
sagueyd
(\ Jo reaoxddesip
sedueyo | 10 [eaoiddy

Jo uonejuawaduy -—_ - 2 @@ @ @/

32 Chapter 2. Software Systems: Maintenance and Evolution

2. Configuration control requires to take into account change requests,
the analysis and evaluation of requests, the approval or disapproval of
the requests and the implementation of changes if these are approved.

3. Configuration status accounting defines how information is
managed, from its collection to storage and protection, as well as the
reporting of the status of configuration items.

4. Configuration evaluations and reviews determines how
configuration items are managed and identify deficiencies and report
corrective actions.

5. Interface control coordinate changes between items under
management and items outside the management scope.

6. Subcontrator/contractor vendor control incorporates into the
management scope those items or software that have been developed
by contractors. It involves their monitoring, evaluation and acceptance.

7. Release management and delivery controls the build, release and
delivery of software products.

Consequently, SCM systems must provide services for managing the
software repository and assistance to the configuration control process.
According to the definition of the IEEE Standard 828-2005 [STA 2005] SCM
systems “provide methods and tools to identify and control the software
throughout its development and use”. Moreover, the same standard states
that SCM activities include “the identification and establishment of baselines;
the review, approval, and control of changes; the tracking and reporting of
such changes; the audits and reviews of the evolving software product; and
the control of interface documentation and project supplier”.

SCM systems use distributed or client-server architectures, and the latter
are the most common of the two nowadays.

Tools with client-server architectures provide each programmer with his
own workspace and repository into which software items are copied when she
checks elements out® from the software repository to be modified. After the
changes have been made, the software item is copied back to the software
repository and the check-in® operation is finalized. Where more than one
member of the team has worked on the same component, the combination
is performed on the copies of the component using the mechanism files
copy-modify-merge.

5A check-out indicates that a modification to a file is going to be performed, so that it
can make a copy and deliver it to the user.
S A check-in is executed to copy files into the repository to produce a new version.

2.3. Software Evolution 33

Alternatively, distributed software configuration architectures provide the
developer with a work environment with a complete repository of components.
So, when changes are made to components, these are copied from one
repository to the others [Estublier 2000]. Table 2.1 shows a summary of the
most popular open source and commercial SCM systems using client-server
or distributed architectures. Additionally, it is valuable to mention that the
selection of the right tool for individual needs could be assisted by frameworks
and methodologies that have been proposed previously, such as the one
proposed by Kilpi [Kilpi 1997].

Table 2.1: SCM systems and architectures.
Tool Architecture Open source/

Concurrent Versions Systems (CVS)

Client-server

commercial
Open source

CVSNT Client-server Open source
OpenCVS Client-server Open source
Subversion Client-server Open source
Vesta Client-server Open source
AccuRev Client-server Commercial
Aldon Client-server Commercial
AVS Client-server Commercial
Accrue Client-server Commercial
Alien brain Client-server Commercial
ClearCase Client-server Commercial
CollabNet Subversion Client-server Commercial
Perforce Client-server Commercial
Plastic SCM Client-server Commercial
Polarion Client-server Commercial
StarTeam Client-server Commercial
Telelogic Synergy Client-server Commercial
Team Foundation Server (TFS) Client-server Commercial
Aegis Distributed Open source
ARCS Distributed Open source
Bazzar Distributed Open source
Codeville Distributed Open source
Darcs Distributed Open source
Git Distributed Open source
Mercurial Distributed Open source
Monotone Distributed Open source
SVK Distributed Open source
BitKeeper Distributed Commercial
Code Co-op Distributed Commercial
TeamWare Distributed Commercial
Wandisco Distributed Commercial

34 Chapter 2. Software Systems: Maintenance and Evolution

Moreover, SCM tools have traditionally been used to record changes
in software repositories; including time, date, affected modules, how
long the modification took and information about who performed the
change [Estublier 2000].

The structure of software repositories vary from system to system: some
use relational databases whereas others use a file system. Two examples of
the latter are SVK and Subversion both of whom use a file system with a tree
structure. In these software repositories all the changes carried out to each file
and folder within the structure are recorded. Furthermore, each time SCM
tools read information from the software repository, they read the latest stored
revision, but they also allow access to all the previous revisions of the source
code base. In this structure the repository stores information from multiple
projects and each project is a subdirectory in the file system which means
that when the developer checks-out code, a copy is made of the subdirectory
of the project on which she was working in her workspace. Each time the user
updates the structure and sends the changes back to the repository a new
revision of the repository is created, in effect, that’s to say, a new snapshot of
the state of the repository is produced. Figure 2.4 shows an example of the
visualization of the repository used by Subversion [Collins-Sussman 2004|. In
the case of the tools mentioned earlier, as in many others, the management of
revisions is an atomic process in which the revision number is changed even
if only one file has been modified.

0 1 3

: E;DE
g

Figure 2.4: Source code snapshots stored in the software

ﬁuuu

repository [Collins-Sussman 2004].

2.3. Software Evolution 35

SCM systems provide a means of collaboration among software developers,
support the developer’s workspace and manage the collaboration among
multiple users who are trying to make changes to the same software item. The
most common methods for managing changes and the collaboration among
team members are:

1. Block simultaneous changes to the same software item. The
software item is blocked by a programmer who wishes to make changes.
Then, the software item is unblocked once it has been modified.

2. Allow simultaneous changes to the same software item. The
software item is changed simultaneously by several developers and the
changes are subsequently combined. If there is no conflict among the
changes, the tool combines them automatically, but if a conflict appears,
the tool will ask programmers to resolve the conflict.

The above methods are referred to the terminology coined by
Collins-Sussman et al. as lock-modify-unlock and copy-modify-merge. The
former method consists in blocking the software item, modifying it, and
then unblocking it, whereas the latter consists in copying the software item,
modifying it, and then combining the changes made by another programmer.

Figure 2.5 shows the activities of SCM systems. The activities that are
highlighted with dotted blue lines are activities that are performed according
to the decisions taken by the programmer for a particular situation or
according to the functionality of the specific system used. Finally, table 2.2
lists the key terms (and a brief explanation of these) which are used by the
process and SCM systems.

2.3.2 Information Needs of Software Project Managers
and Programmers

In this section it is assumed that in a large number of cases only source code
(which lacks supportive documentation) is made available to programmers
and managers. Therefore, there is a high likelihood that these individuals
could be confronted with three problems that the scope of this research takes
into account:

1. Old applications that require maintenance.

2. Being hired to do maintenance on another company’s applications.

3. Being hired by a company and thus having the need to understand the
existing applications for carrying out maintenance.

36

Chapter 2. Software Systems: Maintenance and Evolution

Do you use
a single repository for
all projects?

v Yes

Create a software project on |
the corresponding repository |

Create an individual
repository for each project

v

Add the structure of the
project to the repository

v

Add files to the project

v

Create your workspace

4

Copy the repository to your
workspace

Select the software items
that will be modified

Are you going to
create a revision on the
main branch?

Yes

v

Check-out the last revision
of the software items

Create a new branch

Are you going
to modify more
software items?

Are you going to
create more revisions
for this item?

Check-in the item

?

Modify the software items

et

Copy the working elements
to the workspace

Create a new revision for
the software items

Apply the update !
operation to the !
workspace area |

Figure 2.5: Flowchart of activities involved in the operation of SCM systems (figure
prepared by the author).

Table 2.2: Terms and concepts used in Software Configuration Management.

Term
Version

Revision

Concept

A system version number is an identifier for a group of elements that

have been changed successively during several revisions.
It is a minor change which is made to the system or software items

that are identified by a number in the form X.Y where Y is the
revision number and X is the version number.

Continued on next page..

2.3. Software Evolution 37

Table 2.2 Terms and concepts — continued from previous page.
Term Concept

Baseline A Dbaseline is used in a manner analogous to a version, with the
difference that it is applied to changes in the project structure.

Repository It is a data structure that stores the details of the evolution of projects
and software items.

Project A project is comprised by the source code of a program and related
documents to the requirements, design, development and testing.

Workspace This is the local working area that stores programmer software
items and project documents during the process of development and
maintenance.

Configuration It refers to a basic component of software or software item, as a class,

item interface or document managed by the SCM system.

Check-out This is an operation that allows software items to be copied from

the repository to the programmer’s workspace, at the same time the
attributes are changed from read-only to modify, in order to create a
new revision.

Check-in This operation sends updates from a group of software items to the
software repository and converts the revision which is generated when
a checkout is made into a regular revision.

Branch A branch is used to create editions of a program and to make changes
concurrently: each developer works in his own branch and then
integrates it into the main branch.

Main branch This is the main branch of the evolution of the project. It integrates
all branches or revisions of the evolution of the project and serves as
the main reference of the development.

Update Is the update of the working areas with the changes carried out by
other programmers and takes place at the programmer’s request in
order to allow the latest modifications to be taken into account.

Merge This is the fusion of multiple revisions of a software item that has
been modified in parallel by several programmers.
Integration It is the merger of two branches in which there have been several

revisions of a group of software items.

Rebase This is a very similar operation to merge, only that the revision
history is not associated with several branches but rather one branch
as a linear succession of revisions.

Accordingly, the next sections describe some common information needs of
programmers, project managers and both groups when these are confronted
with the problems mentioned above or with maintenance tasks that needs to be
carried under normal circumstances. Moreover, the strategies to understand
software systems using a manual approach are also discussed.

2.3.2.1 Information Needs of Project Managers

The information needs of PMs are diverse [Jedlitschka 2009] and evolve as
the overall software process is scrutinized and controlled by them. PMs need

38 Chapter 2. Software Systems: Maintenance and Evolution

information to understand high level details of the project in order to take
better quality decisions.

In the light of the above, programmers must cooperate and coordinate
their activities with one another in order to better understand the activities
which are carried out in order to be aware of the general state of progress
of the software project. Cooperation and coordination are essential to
the process of development and maintenance of software [Omoronyia 2010,
Talaei-Khoei 2012|. With regard to this subject, there are several studies that
indicate that adequate information is an essential requirement for those who
participate in software projects. The primary information that participants
require comes from the need to be fully aware of what the other people involved
in the project are doing [Ko 2007, Kim 2011]. This is true in the case of both
collocated and GSD settings, but is more relevant in the latter case because
of geographical, cultural and time differences.

Additionally, the execution of these projects which use
either of the aforementioned approaches (whether collocated
or GSDs [Colomo-Palacios 2012]) requires that the changes which are
made are both informed as well as adequately and continuously measured.
With regard to the continuous measurement of the development process, it is
worth mentioning that the results of the study conducted by Buse suggest
that PMs consider metrics to be the most important factor in decision
making and monitoring of the evolution of a project; above all with regard to
quality control. Furthermore, the same research suggests that PMs may have
become aware of the potential benefits of using analytical tools and they
would therefore be more willing to use them if these tools can satisfy their
requirements [Buse 2012].

Taking into account the current trends concerning GSD [Jiménez 2009]
(outlined in Section 2.2.3) as well as the results of the study conducted by
Buse [Buse 2012]; this research is of particular interest with regard to the
information needs of PMs whose concerns are the following: the efficient
management of human resources |[Misra 2013|; collaboration between team
members [Rodriguez 2004, Servant 2010]; evolution of quality control; task
assignment [Predonzani 1998|; and the necessity to remain informed of all the
activities carried out by team members (awareness of activities carried out).
The following topics are thus of particular interest to project managers:

1. Information about the programmers that were championing the software
project in its early stages or at some point in the project evolution.

2. The programmers that have left the software project or company.

3. The names of the programmers who have worked on the software project,
a module or a software item derived from source code changes.

2.3. Software Evolution 39

4. The correlation of programmers and software items to determine who is
responsible of making changes in which software items.

5. The collaboration network that is formed by programmers which can be
inferred from the software items that have changed in common, and in
particular, which programmers have changed the most software items in
common.

6. The programmers that have committed most revisions or created most
files and software items during the evolution of the software project or
over a particular period of time.

Additionally, other topics concerning the information needs of PMs
are discussed in Section 2.3.2.3, as well as those that are of interest to
programmers.

2.3.2.2 Information Needs of Programmers

It is of great importance to understand the effects of the changes and meet the
specific needs of developers in order to enhance their effectiveness [Xu 2009,
Tao 2012]. In this respect, Sillito carried out two research studies to
thoroughly obtain details of programmer’s information needs when they carry
out tasks of change [Sillito 2006a, Sillito 2006¢, Sillito 2008|. Thus, these
studies were aimed at investigating on the questions that programmers usually
ask while they work in change tasks. One of the studies was conducted with
programmers who were new to a given software project whereas the other
study was carried out with programmers that were familiar with the software
project they were given. The first group of programmers worked for the
study in a laboratory and the latter group in software industry settings. The
questions posed by participants were group into 5 set of questions, which are
summarized below:

Finding focus points: This group is composed of 5 kinds of questions that
were posed by participants with little or no previous knowledge about
the project. The questions were general and sought to find where errors
were located or a software item was located.

Expanding focus points: The questions in this group (15 kinds of
questions) were posed by participants that had some previous knowledge
of the project and were interested in finding more information relevant
to carrying out a change task. These questions focused on more specific
details such as class hierarchy, siblings location, composition, interface
implementation, class instantiation, access to variables, and method
calling and arguments.

40 Chapter 2. Software Systems: Maintenance and Evolution

Understanding a subgraph: The questions in this group (13 kinds
of questions) were concerned with building an understanding of the
software items involved in the change task and their relationships.
The goal of these questions was to determine how objects are created,
assembled and related, as well as their behavior, how control is passed
from one point to other and how data structures are passed and accessed
at different points in the code.

Questions over groups of subgraphs: These questions (11 kinds) were
asked by participants interested in understanding the interaction of the
subgraph, described in the previous question, and the rest of the system.
The aim of the questions in this group is to get insight on the direct and
indirect impact of a change and whether after carrying it out the problem
is completely solved or additional changes are needed.

Specifically, when programmers make a change or study the evolution of a
software project (correlating two or more revisions) are interested in obtaining
information about the following aspects [Ko 2007, Sillito 2008, Tao 2012,
Buse 2012

Inheritance relationships.

Siblings in the hierarchy.

Interface implementation.

Composition.

Architecture and project structure changes.

Reference relationships.

Associations.

Objects collaboration.

Instances creation and access.

Data access (methods arguments, variables and data structures).
Data flow.

Control flow, execution and exception handling.

Source code differencing and comparison.

Change ripple effects.

Code cloning”.

Direct, indirect and logical coupling.

Program execution.

Design patters in use.

Details about the complexity of the software items and the overall

K K KKK K K XXX XXX XX X XX

project.

TA clone is a segment of code that has been created through duplication of another
piece of code.

2.3. Software Evolution 41

x The cohesion and coupling between software items, measured with the
use of metrics.

It is also necessary to be aware of the dynamic behavior of the software
items and the program during its execution. Thus, programmers need to get
information about the effects produced by the changes in other software items
and other elements of the overall program.

2.3.2.3 Information Needs Common to Project Managers and
Programmers

It is important to highlight that while the needs of project managers and
developers may differ, both groups require methods and tools that enable them
to compare and correlate the evolution of the software project and derived
metrics. Taking this into account, the following list presents some of the
metrics that have received special attention from both groups, programmers
and managers:

Code smells® [Lanza 2005b].

Complexity measures [McCabe 1976].

Maintainability measures [Aggarwal 2005, Heitlager 2007].

Evolution metrics [Lehman 1997, Mens 2001].

Size measures |Lanza 2005b].

Coupling: Direct Coupling Between Objects (CBO) [Chidamber 1994],
indirect and logical [Gall 2003, German 2006, D’Ambros 2009b].

« Lack of Cohesion Metric (LCOM) [Chidamber 1994].

« Depth of Inheritance Tree (DIT) [Sheldon 2002].

* X X X X X

Additionally, both developers and project managers are interested
in details about the activities carried out on the project or software
items [Kim 2011| and therefore these details are of interest to both groups:

x The number of revisions associated to a software project.

* The time periods during the project evolution or other time period under
study which exhibit an abnormal level of activity due to a dramatic
increase or decrease in the number of commits.

x The time periods where the activity level demonstrates that the project
has become stable.

x The revision that does not adjust to the general pattern in terms of the
average of files created or updated.

8Code smells are characteristics of software that indicate that code may have a design
problem. These have been proposed as a way for programmers to recognize the need for
restructuring their software.

42 Chapter 2. Software Systems: Maintenance and Evolution

* The baseline that has most revisions associated with it.
% The branch that have most commits been carried out.

2.3.3 Software Evolution Analysis

The process of understanding the evolution of a software project can be carried
out using a comprehensive or partial approach, according to user’s profile
(software project manager or programmer) and the task she is performing.
Software project managers are interested in the comprehensive approach
for obtaining information to support decision making and assuring software
quality. Basically, they try to understand the overall evolution of the project
through the tracking of project advances and quality measurement, the
socio-technical relationships and the collaboration among software developers.
Software developers, on the other hand, are usually most interested in using
the partial approach. Their main concern is understanding only a small
number of the revisions to track recent changes and make modifications.

SEA requires data collected by adequate logging tools, such as IDEs using
plugins, SCMs systems, defect-tracking and system testing tools, during the
process of development and maintenance, and the mechanisms that these tools
provide to extract details of software repositories, databases and the logs they
use.

The analysis of the evolution of software, which can be static or dynamic,
consists in analyzing two or more versions of a software project individually
and then carry out a comparative analysis of the results. Such analysis can
be performed on one or more levels of granularity: source code line, class, file,
package or module and system level. Overall, one or more of the methods
listed in table 2.3 can be considered to carry out such analysis which may
produce results as those listed in table 2.4.

In this context, the process of extracting and analyzing data from
software repositories (known as software repository mining) has been an
active research area for several years [Kagdi 2007a]. Software repository
mining focuses on extracting details from metadata and source code for
analyzing software changes. It analyzes the dissimilarities between revisions
and changes to artifacts on different granularity levels, such as classes
and methods [Kagdi 2007b|. The results of software repository mining
are fed into SEA. At this point it is relevant to highlight the work of
Kagdi [Kagdi 2007a], which is a detailed survey of the literature on the
purpose of mining software repositories, the methodology employed in the
mining process and the evaluation of the mining approaches currently in use.
Hassan [Hassan 2005, Hassan 2006] also discusses in depth the extraction
of information from software repositories to assist developers and support

2.4. Conclusions 43

managers.
Table 2.3: Correlation of references with analysis methods.
Method References
Static source code analysis [Jackson 2000, Robillard 2003|
Metadata analysis [Kagdi 2007a, Gethers 2012]
Execution and system traces analysis [Fischer 2005, Gethers 2012]
Software metrics extraction [Lincke 2008, Vasa 2009]
Information retrieval methods [Baysal 2007, Gethers 2012]
Social network analysis [Scacchi 2004, Ducheneaut 2005, Sack 2006]
Association rules [Chawla 2003, Morisaki 2007]
Analysis of linked data sources [Keivanloo 2011]
Program and architectural slicing [Weiser 1981, Agrawal 1990, Hassine 2005]
Origin analysis and refactoring [Zou 2003, Godfrey 2005, Green 2011]

Therefore SEA has a closed relationship with software repository mining as
it is aimed at identifying relevant facts that could be used to provide support
to software developers and managers in the discovery and comprehension
of evolution details. It looks to support software developers and manager
tasks such as process improvement, fault prediction, productivity estimation,
comparing the actual and desired architectures of a product, and planning
future development activities. This type of analysis supports project managers
in decision-making, which is affected by factors such as the dynamics of
software quality measured by quality metrics; the need to control the
contribution frequency and contribution patterns of programmers to software
projects for team and productivity assessments; and reporting activities to
upper management.

2.4 Conclusions

Programmers and PMs are frequently confronted with projects for which little
or no adequate documentation is available and about which they have no
little or no prior knowledge. Moreover, as well as problems related to fully
understanding the projects when they are initially confronted with them, they
also need to understand the effects of changes which are made later during the
processes of change and maintenance [Benestad 2009]. The aim is to make the
changes which are necessary and that the project continues to evolve while
it is still subject to maintenance or capable of being maintained. It is thus
of great value to be aware of the information needs of project managers and

44 Chapter 2. Software Systems: Maintenance and Evolution

programmers during the process of evolution, which involves understanding
the project and the effects of the changes which are made to one or more of

the revisions.

Table 2.4: Correlation of references with analysis results.

Analysis results
Defect classification

Contributions and socio-technical
relationships

Software prediction models

Metrics and evolution metrics

Change classification and analysis
Software item lifelines
Dependencies
Architecture/structure changes

Exception structures
Direct, indirect and logical coupling

Cohesion
Frequent patterns

Source code differencing

Program and web services and
execution

Clone detection

Code smells

Reverse engineering

References
[Chillarege 1992]

[Scacchi 2004, Ducheneaut 2005, Baysal 2007]

[Fenton 2000, Goulao 2012]

[Fenton 2000, Mens 2001, Meyers 2007]
[Vasa 2009]

[Bohner 2002, Hassine 2005, Gethers 2012]
[Zou 2003, Godfrey 2005]

[Bohner 2002]

[Tu 1992, Zhao 2002, LaMantia 2008]
[Robillard 2003]

[Hitz 1995, Gall 1998, Gall 2003, Yu 2004]
[Yang 2005, Yang 2007, Meyers 2007|

[Hitz 1995, Gall 1998, Meyers 2007]
[Yu 2004, Kim 2006]
[Collard 2004, Maletic 2004, Fluri 2007]

[Pauw 2006, Treiber 2009]

[Baxter 1998, Kamiya 2002, Roy 2009]
[Lanza 2005b]
[Buss 1994, Girba 2004]

It has been discussed earlier in this chapter, when a large number of
changes have to be understood and multiple revisions of a software project
have to be correlated, it is not practical to use manual strategies and, as a
result, the use of automatic analysis methods, such as SEA, is required.

The analysis of software evolution is carried out using the information
which is recorded by tools that support the process of software development
and maintenance, and that allows the automatic extraction of relevant
knowledge facts?. The following are examples of these tools: software

9Knowledge Facts is a term used in this context for making reference to the results of
advanced data analysis.

2.4. Conclusions 45

repositories of SCM tools; bug tracking tools, existing revisions of the source
code of the system and information gathered by IDEs.

Therefore, taking into consideration the above and what has already
been said (with respect to the software process, the current trend towards
developing systems with teams distributed in different geographic areas as well
as the process of software maintenance and evolution), this type of analysis
may effectively support software development, maintenance and change tasks
when information needs of PMs and programmers are adequately addressed in
order for them to carry out their duties. In other words, the purpose of SEA is
to meet the information needs of project managers and programmers so that
they can develop and maintain software systems adequately.

Finally, it is worth mentioning that software evolution is usually difficult
to analyze due to the large volume of relevant facts extracted and the
large number of relationships between the elements involved. Thus,
carrying out SEA is often not sufficient to provide adequate support to the
development, maintenance and evolution of software systems. Consequently,
the following chapters discuss the next steps in the process of supporting
project managers and programmers in the tasks which enable the evolution
of software systems.

CHAPTER 3

Visual Analytics

Pero a pesar del entorno salvage, la belleza era desbordante, los
rios decoraban la selva y animaban el ambiente con sus cantos, al
que se unian el canto de las aves y los congos con sus gritos. Pero
lo que mds llamd la atencion de Giiindy fue un rio cuyas aguas
tenidas de celeste por un volcdan cercano creaban pequenos y
misterios remolinos en los cuales se perdia su mirada. Era un
mundo de fantasia, en donde la naturaleza lo llenaba todo; todo lo

extasiaba con su creatividad. — El viaje de Giiindy, A.Gonzalez
Contents

3.1 Introduction, 46
3.2 Overviewl e e e e e 47
3.3 Information Visualization. 51

3.3.1 Visualization Techniques 51
3.4 Human-Computer Interaction 60
3.5 Conclusions 000l 63

3.1 Introduction

The goals of this chapter are to introduce VA, and explain the underlying
processes that permit the transformation of data into a useful knowledge. The
aim is to contribute to answer the principal research question (see Section 1.3),
and in accordance with it the following contributory question is sought to be

answered:

How can the Visual Analytics process be defined from the interactions,
roles and composition (in terms of methods and techniques) of its
components?

3.2. Overview 47

Accordingly, this chapter describes and explains some of the techniques
and methods used by the VA components, with an special emphasis on those
of IV and Human-Computer Interaction (HCI). It therefore first presents an
overview of VA (section 3.2), next it describes some of the most well-known IV
techniques (section 3.3); then it discusses some elements of HCI (section 3.4)
and finally it outlines the main conclusions of the chapter (section 3.5).

3.2 Overview

The goal of VA is to transform data into knowledge. Accordingly, it iteratively
collects and preprocesses data, carries out statistical analysis [Peck 2011],
performs data mining, and uses machine learning [Witten 2005|, knowledge
representation [van Harmelen 2007], user interaction [Sharp 2011, visual
representations |Leung 1994a, Johnson 1991, Robertson 1991|, human
cognition, perception, exploration and the human abilities for decision
making [Keim 2006, Llora 2006]. Therefore, one can say that knowledge
discovery is an intrinsic property of VA, as it is aimed at supporting analysts
in gaining insight from large multivariate datasets [Thomas 2005].

VA is partly based on the use of IV principles and techniques. Accordingly,
the definition of the VA process overlaps, partially, with that of IV:
both deal with data acquisition methods, data transformation, visual
representations, human computer interaction and human capacities for
decision making [Card 1999b, Chi 2000, Fry 2008]. However, VA makes
intensive use of automated data analysis, visualization and interaction
techniques to offer more comprehensive analysis possibilities and data
perspectives for aiding intelligent decision making by means of the analytical
human abilities [Keim 2008al.

In this context, Coordinated and Multiple Views (CMV) [Boukhelifa 2003]
is concerned with the use of several visualizations that are linked by a
model or architecture that coordinates the interactions among them and the
data that visualizations must represent, in accordance to the interactions
performed [Roberts 2007].

The use of CMV requires a combination of different visualization types
(hyperbolic trees, graphs, treemaps, radials, parallel coordinates and grids
to name but a few) in order to exploit the advantages that each one has
to offer [North 2000], and to provide analysts with different levels of detail.
Using CMV, analysts can understand relationships among elements located
in separate, but linked, visualizations. Additionally, they can explore data
from many different viewpoints and have available more interaction paths
that may lead to knowledge discovery. Moreover, CMV make VA tools more

48 Chapter 3. Visual Analytics

scalable, compared to IV itself, in terms of data, dimensionality, information
complexity and the dynamic feeding of new data [Andrienko 2007].

VA has been applied thoroughly to solve problems in several areas, as
shown in table 3.1, and many research projects have also been conducted
with the aim of contributing to the improvement of VA itself by the definition
of frameworks, architectures and methods (see table 3.2 for some references).

Table 3.1: Application areas of Visual Analytics.

Application areas

Bioinformatics

Biology

City traffic

Construction

Customer analysis

Data center management
Document classification and

exploration

Education and e-learning

e-Government, transparency
and political sciences

Emergency response
Graphs and graph analysis

History reconstruction

Medicine

Movement analysis

Multimedia and video analysis

Natural disasters and climate
changes

Network and security analysis

Neuroimaging

Ontology engineering

References

[Santamaria 2009, Gribov 2010, Battke 2010]
[Agrafiotis 2010, Vicente 2010, Oeltze 2011]
[Cain 2012, Hasenauer 2012, Tyakht 2012]
[Peterson 2012, Schatz 2013, Santamaria 2014]
[Castellanos-Garzon 2013]

[Shaverdian 2012]

[Pelekis 2012]

[Wang 2010, Danese 2010, Batty 2013]
[Ko 2012

[Hao 2010]

[Koch 2011, Lemieux 2011, Tomaszewski 2011]
[Koch 2011, Heimerl 2012]

[Hyun 2009, Gomez-Aguilar 2009,
Gomez-Aguilar 2014]
[Gomez-Aguilar 2015b, Gomez-Aguilar 2015a

[Rios-Berrios 2012, Kohlhammer 2012, Crouser 2012]

[Livnat 2012]
[Chen 2010, Yang 2013]
[Andrienko 2012b)]

[Agrafiotis 2010, Maciejewski 2010, Chui 2011]
[Mane 2012, de Bono 2012]

[Ooms 2012, Andrienko 2013¢, Andrienko 2013a]
[Chinchor 2010, Luo 2012]

[Theron 2006¢, Chung-Wong 2009, Yuan 2010]
[Kendall 2012, Kim 2012, Kasprzyka 2013,
Sun 2013al

[Pelekis 2012, Biersack 2012]
[Li 2012]

[Garcia-Penalvo 2012a,
Garcia 2012][Garcia-Penialvo 2014]

Continued on next page.

3.2. Overview

49

Table 3.1 Application areas of VA — continued from previous page.

Application areas
Pharmaceutical

Physical sciences

Real state

Risk assessment and analysis

Simulations

Social networks

Software understanding

Spatio-temporal and geospatial

Sports analysis

Time series analysis

References

[Pelaez 2008, Garcia 2009a, Agrafiotis 2010]
[Barlowe 2011, Pérez 2013]

[Gaither 2012]

[Sun 2013b]

[Wang 2012, Migut 2012]

[Dransch 2010, Thakur 2011, Wei 2012, Meyer 2012]

[Chen 2010, ah Kang 2011, Elmqvist 2012]
[Perer 2013, Schreck 2013

[Telea 2011, Reniers 2012, Gonzalez-Torres 2013a]
[Gonzalez-Torres 2013b]

[Amicis 2009, Hardisty 2010, Andrienko 2010]
[Chiara 2011, Guo 2011, Maciejewski 2011]
[Tomaszewski 2011, Schumann 2011]

[Theron 2010, Pileggi 2012]
[Wang 2011, Maciejewski 2011, Sips 2012, Dang 2013|

Table 3.2: Correlation of references with theoretical approaches.

Application area
Architecture

Collaborative Visual Analytics

Framework

Human-Computer Interaction
and cognition studies

Methodology

Techniques

References

[Maciejewski 2011, Willems 2010, Omer 2010]
[Tomaszewski 2011]

[Isenberg 2009, Isenberg 2012, Mahyar 2012]
[Pelekis 2012, Andrienko 2010] [Andrienko 2013b]

[Gotz 2008, Chung-Wong 2012b, Pohl 2012]
[ah Kang 2012, Arias-Hernandez 2012, Healey 2012]
[Green 2012, Basole 2012, Roth 2012, El-Nasr 2013]

[Omer 2010, Bertini 2011, Andrienko 2012a]
[Streit 2012]

[Dinkla 2011, Shaverdian 2012, Gaither 2012]
[Chung-Wong 2012b, Alsallakh 2012, Javed 2013,
Chen 2013] [Nam 2013, Dang 2013]

Consequently, any VA design should be centered on the user and should
intent to facilitate usability and reduce memory load on users [Hollender 2010].
Its ultimate goal should be to hide complexity details from users and provide
an environment for knowledge discovery through an outstanding human
experience [Takatalo 2008]. Hence, regardless of the complexity of the problem
at hand, the success of any VA solution lies on the appropriate design of the
visual representations and use of interaction techniques.

50 Chapter 3. Visual Analytics

VA combines the advantages of machines with the strength of humans
such as analysis, intuition, problem solving and visual perception. Therefore,
the human is at the heart of VA [Dix 2010] and HCI is a key component
for supporting knowledge discovery. It is a process whose goal is to provide
insight into Big Data conformed by scientific, forensic, academic or business
data that are stored by heterogeneous data sources such as databases, HI'ML
and XML files, text files, metadata and source code.

The future of VA involves several challenges related to the amount of
available data, algorithms, processing, user interaction and visualization
design and scalability. Some of these challenges were summarized by
Chung [Chung-Wong 2012a| and are listed below:

In-memory analysis: This implies the in memory processing of data when
it becomes available.

Interaction and user interfaces: Technology capabilities are increasing
constantly, whereas the human abilities change slowly and changes are
perceived in the long term [Thomas 2005].

Large-Data visualization: The scalability of the visualizations employed is
a serious limitation for representing Big Data [Basole 2012].

Databases and storage services: These have been moved into the cloud
increasing the access latency.

Algorithms scalability: Algorithms must be scalable for dealing with Big
Data and provide efficiency to users in terms of visualization.

Data transport and network infrastructure: Data availability is
increasing in geographical dispersed locations, which requires to moved
raw data or passing messages between locations if a High Performance
Computing (HPC) infrastructure is being used.

Data incompleteness and uncertainty: Uncertainty quantification and
the need to deal with incomplete datasets for providing real time analysis
needs the use of novel data analysis techniques.

Parallelism: It requires the redesign of current VA algorithms and the need
for new algorithms.

Libraries, frameworks and tools: VA requires new libraries and
frameworks for dealing with the challenges previously stated and the
increasing need for parallelism.

3.3. Information Visualization 51

Social, community and government engagements: This refers to the
need that governments and online-commerce vendors disseminate their
technologies to the society.

3.3 Information Visualization

Information Visualization (IV) deals with the representation and display
of a large number of data about events, and provides the visual elements
to help the interpretation of a data event through its relation with other
data events. It takes under consideration several techniques to support
navigation, interpretation of visual elements and understanding relationships
among items in their full context [Leung 1994b|. Tufte states that the visual
distinctions between visual elements should be as subtle as possible, yet clear
and effective [Tufte 1990 adding that information consists of differences that
make the difference [Tufte 1997].

There are many IV techniques, each one with its advantages and
disadvantages, so it is frequently required to use a sort of combination
to provide a real solution to end users. Spence [Spence 2000] and
Card [Card 1999a] provide excellent surveys on IV methods and techniques.
Therefore, the following section discusses on some of the classical visualization
techniques employed when designing VA tools.

3.3.1 Visualization Techniques

The principal problem of IV is how to depict a large quantity of information in
a very limited space. It is thus necessary to implement interaction mechanisms
that permit navigation of the data without losing sight of the context,
but which also provide tools that facilitate the interpretation of particular
elements [Leung 1994b].

When the design of a visualization is being carried out it is convenient
to take into account the large number of interesting and useful pre-existing
visualizations. This allows, when what is sought is the solution to a practical
problem rather than proposing an original visualization, to use an existing
visualization as the best solution for the representation of data. A combination
of visualizations with minor variations can also be used. However, from a
research perspective, the ideal is to design an original, interactive and intuitive
visualization that must requires little effort to learn. In this sense, it needs
to take into account that the design of new visualizations for managing large
volumes of information requires using spatial and temporal design techniques.

The techniques of spatial design utilize the distribution of space
and graphic design to present the information at one view, while the
temporal strategies use transitions to distribute the information between

52 Chapter 3. Visual Analytics

multiple views, where each view represents different moments in time.
It is therefore frequently necessary to use a combination of both design
strategies [Mackinlay 1991].

Following Leung, the techniques which are utilized to design visualizations
can be grouped into two general categories: distortion-oriented and those
which are not [Leung 1994b].

The distortion-oriented techniques are used in conjunction with
transformation functions that define how information will be presented to
the user and the interaction which will take place. They also allow users to
examine in a dynamic and interactive form the data in detail at the same time
that an overview of the space, in which that section is located, is provided
as a location map. This type of view is known as overview -+ detail because
it represents details in the main visualization space whereas the overview is
usually depicted in a small visualization on one of the corners of the view.
Thus, it contrast with the focus + context view that permits users to focus
in specific details using interaction techniques, such as selection or zoom,
while a complete representation is offered (the context visualization). Whilst
non-distortion-oriented techniques are adequate for text based small-scale
applications but do not provide an appropriate context to support browsing
large-scale information. Some distortion-oriented techniques that are further
discussed in detail' are:

Bifocal and polyfocal: Fisheye [Furnas 1986], Table Lens [Rao 1994] and
Perspective Wall [Mackinlay 1991].

Timelines: Lifelines [Plaisant 1998 and Planning lines [Aigner 2005].

Hierarchies: Treemap [Johnson 1991], Cone trees |[Robertson 1991| and
Hyperbolic spaces [Gra 2002, Pavlo 2006].

Radials: Information slices [Andrews 1998|, Radial improved with focus +
context [Stasko 2000], Intering |Yang 2003|, Ring Tree [Theron 2006b],
Hyperbolic spaces [Pavlo 2006].

Networks and graphs: These visual representations are very common in IV
and there exist many research papers that presents results regarding
their use. In this context the book of Battista |[Battista 1998| is a great
reference to study the most common algorithms for the visualization
of graphs and the survey conducted by Gibson |Gibson 2013] provides
useful information on the use of networks and graphs in research works.

LA distorted view is created by applying a mathematical transform function to
an image without distortion. Magnification functions are functions derived from the
transform function and provides a profile of the factors associated to the magnification
or demagnification of the area of interest in the image without distortion.

3.3. Information Visualization 53

With respect to visualization techniques listed above, there are a number
of implementations that use them. The following sections provide an
introduction to some of them.

3.3.1.1 Bifocal and Polyfocal Techniques

Bifocal and polyfocal displays allow to review specific items of information
expanding an individual spot, vertically or horizontally, or by expanding an
area simultaneously in both directions (horizontally and vertically). This
technique originally was proposed by Robert Spence and Mark Apperley in
1982 [Spence 1982]. Some of the most representative visualizations that make
use of these techniques are the following:

Fisheye: An application of this technique was proposed by Furnas in 1986
using the name Fisheye [Furnas 1986]. This technique allows context
to be maintained while viewing a specific area and can be applied in
conjunction with any other visualization technique, whether textual,
tabular, hierarchical, circular or hyperbolic.

It is important to draw a distinction between the Fisheye technique
and ordinary geometric zoom. Ordinary geometric zoom allows the
user to specify the scale of the increase each time the size of the area of
interest is expanded or reduced and is usually set at a particular point
and does not seek to preserve the context, while the Fisheye technique
retains context.

The Fisheye technique contrasts with semantic zooming
[Cockburn 2009], which changes the form or context in which
information is presented. A very useful example for understanding the
semantic zoom is a digital diary represented as a calendar year. When
the user selects a month, this month opens and the corresponding days
appear. Then when the user selects a day of that month the times for
that day are shown, and if a time is selected, information is provided
about scheduled appointments or tasks for that time.

The application of visualization techniques to a particular area, such
as the Fisheye technique, can be very useful when navigating in a
dataset with a large number of elements. However, when it becomes
necessary to compare two or more elements the bifocal display is used
together with interaction techniques to amplify two or more areas at
the same time. This type of display is called polyfocal.

Table Lens: The visualization technique that is referred as Table Lens is a
type of the polyfocal display and support focus + context functions.
Therefore, it can be used very effectively with large quantities of

54

Chapter 3. Visual Analytics

information arranged in tabular form. This representation can expand
one or more rows and columns at the same time: column width can be
extended using the mouse, subgroups of columns can be created and
filtering can be performed on the data set.

Perspective Wall: Another visualization technique in this family is the

Perspective Wall [Mackinlay 1991]. This technique is based on a detail
+ context view to provide details using interactive 3D animation and
linearly structured information. It uses a front panel to display a detail
area and two side panels to present the context. This view was originally
proposed for managing documents and files, but its use can be extended
to any problem that contains a high temporal content.

3.3.1.2 Timelines and Temporal Events Representation

The discovery of the relationships between data items frequently is taken
into account when designing and creating timelines. Accordingly, this section

discusses some visual representations aimed in this regard.

Linear timelines: Semtime is a linear timeline which uses a set of stacked

timelines, visualizing the same or different time ranges. Moreover,
this visualization uses lines with arrows to represent the relationships
between data elements in the timelines [Jensen 2003]. This visualization
is of great value for comparing time periods and correlating data
elements in time.

Continuum is also a linear timeline which uses a scalable histogram
overview that allows the navigation through a complete hierarchical
dataset [André 2007] and moreover facilitates the comparison of events
in different time periods.

Some additional and interesting visualization examples are the
visual representations designed by Catherine Plaisant [Plaisant 1998]
and Wolfgang Aigner [Aigner 2005|. Plaisant addresses the problem
of visualization of a patient’s medical history with a display known
as LifeLines. This visualization relates a group of variables such as
notes, hospitalizations, tests, medications, treatments and vaccines
with temporal space. It also uses labels to identify each of the instances
of the variables mentioned.

An improvement of Lifelines is presented in [Bade 2004]. It uses
three timelines; one of them is a general timeline; the other timeline is
the result of the dates filtering carried out using the first timeline; and
the last timeline displays the information details. This visualization
uses an overview -+ details approach and the interaction with the

3.3.

Information Visualization 55

details area provides a focus + context view of the results after applying
filters [Bade 2004].

Aigner proposed Planning Lines, a visual representation that is
aimed to visualize task planning in a form similar to Gantt diagrams.
To do so, semantics was added using colors to indicate the minimum
and maximum duration of tasks, and the use of lines to indicate
the premature beginning or later ending of tasks in accordance with
planning.

Radial timelines: Some timeline visualizations use radials and tree ring

metaphors. Therén et al. proposed a tree-ring metaphor, which
is named after Ring Tree, to represent hierarchical time based
structures and applied it to browse and discover relationships in
the history of computer languages |[Therén 2006a] or phylogenetic
tree [Santamaria 2009].

Spiral Graph is another radial visual representation which uses a
spiral metaphor for representing a timeline with the end of supporting
the analysis and comparison of values and data sets, and the detection
of periodic behaviors and trends [Weber 2001|. Similarly, the Semantic
Spiral Timeline (SPT) [Gomez-Aguilar 2009, Gomez-Aguilar 2010]
allows time periods to be compared at a glance just by looking at
the appropriate region of the spiral and observing the details in
the successive circumferences. The comparison of time periods in
the SPT visualization is a similar approach to the one proposed
by [Hochheiser 2004], but the time periods are stacked instead of being
spread along the x axis.

Correlation of time with hierarchies: Several visualization that address

the correlations of time and hierarchies. Morris [Morris 2003] worked
on the visualization of temporal hierarchies plotting research documents
along a horizontal track in the timeline and placing related documents
according to the hierarchical structure produced by the clustering phase.

TimeTree is a relevant visual representation which was developed
by Card [Card 2006] and allows exploring hierarchies that change
with time. This visualization allows searches, navigation through
a hierarchical representation and the filtering of results with the
assistance of a time slider control.

Use of color coding: Other useful examples that show temporal events

without making explicit use of a timeline are those that, by using color or

56 Chapter 3. Visual Analytics

other elements, permits the addition of meaning, size and temporality to
the events [Theron 2013|. In this sense, Chen [Chen 2006] shows that the
use of color is very useful to depict the collaboration that has taken place
over time on a single file or directory. Finally, Viégas and Wattenberg
suggested a visualization to show the changes made to a document of
the online encyclopedia Wikipedia [Viégas 2004]. This representation is
interesting because you can see the lines of text that have been added
or deleted in time from a document.

3.3.1.3 Hierarchies

The presence of hierarchical data in business and academic environments
is abundant and has led to a great deal of research orientated towards its
adequate treatment and representation. Accordingly, the next visualizations
are some examples of the most common visual representations used for
depicting hierarchical data:

Treemap: A visualization technique considered classic in this area is
Treemap, which was suggested by Brian Johnson y Ben Shneiderman
in 1991 [Johnson 1991|. This visualization permitted the representation
of hierarchical information in a rectangular space in 2D, using 100%
of the available surface. It also provides interactive controls, facilitates
rapid information retrieval with low perceptual and cognitive load, while
providing an aesthetically pleasing presentation.

According to the authors, this visualization is suitable for
hierarchies in which structure is of great importance and the
information associated with the nodes is derived from their
descendants. The method involves matching hierarchical information
with the rectangular structure.

Voronoi Treemap: Another visualization which can represent
hierarchical data and which is a variant of Treemap is Voronoi
Treemap [Balzer 2005b|. This visualization uses polygons instead of
rectangles used in the original version. The reason the authors use to
advocate this variant is that by using polygons it is possible to cover
the area corresponding to each value required to be represented because
they can adapt better to the environment by having a variable number
of edges.

Bubble Treemap: Another variation of this visualization is that proposed
by Karl Wetzel [Wetzel 2004] for the visualization of files in a hard disk.
Instead of rectangles, squares and polygons, he proposes the use of color

3.3.

Information Visualization 57

coded circular components. However, although this visualization turned
out to be appealing, it doesn’t use space to maximum advantage nor is it
possible to determine at first glance the hierarchical relation between the
components. An article which is useful in understanding this technique
is that of Teoh and Ma [Gra 2002].

Cone Trees: The visualization of hierarchical structures with

three-dimensional conical representations is visually appealing.
The Cone Trees technique is an example of this [Robertson 1991|. This
representation is a 3D animated visualization of hierarchical data.

The root of the structure is at the top of the presentation and the
descendants are drawn in the lower layers, always allowing interaction
to expand or collapse the elements when navigating through it, as well
as to select different items. In this visualization the size of elements
in the lower levels of the structure is reduced to ensure that the
representation conforms to the width of the display area. Also, when
a node is selected, the structure rotates to show the node selected and
the route towards the root of the hierarchy. An additional attribute of
the 3D visualization is that it provides a way to focus on one part of
the structure without losing the context.

The authors claim the 8D visualization is necessary because it
maximizes the effective use of the display area and displays the entire
structure. However, some results have shown that tracing elements
and relationships in three-dimensional conical structures is slower than
doing so with 2D tree visualizations [Cockburn 2000]. These results
showed that visualization diminish in utility and the performance
of computer equipment is significantly reduced when tree density
increases.

It is worth mentioning that this type of 3D visualization initially
aroused great enthusiasm among those who also tested the 2D solution.

Hyperbolic: Another very striking design representation is hyperbolic

visualization, which is a visual representation technique that supports
focus + context, capable of handling large information hierarchies.

This visualization initially displays a tree with its root as the central
element connected to a few nodes, using interaction techniques which
enable additional elements to be introduced, and may also represent
other elements were not initially displayed.

According to Lamping [Lamping 1995] hyperbolic visualizations
may allow the presentation up to 1000 nodes simultaneously, of which

58 Chapter 3. Visual Analytics

50 are located near the focus. Moreover, this visualization can also
display text labels with a meaningful context in a representation of
this density.

Hyperbolic visualization is a hierarchical representation technique
of great utility if properly combined with appropriate interaction
techniques. However, despite its visual appeal the temptation to carry
out developments in 3D must be avoided, because navigation in these
structures is complex and it is difficult to obtain useful information
quickly and easily.

3.3.1.4 Radials

Circular and semicircular techniques are used primarily to display hierarchical
information [Andrews 1998, Stasko 2000, Gra 2002, Yang 2003, Pavlo 2006].

These techniques use algorithms that divide the area according to the
weight of the elements and place these elements in concentric rings according
to their position in the hierarchy which results in the location of the root node
in the center of the structure. Next, the circular area is divided among its
descendants on the first level of the hierarchy which places them in the first
ring. The area assigned to each descendant is calculated based on its weight in
a manner analogous to pie charts. Then an element is taken from first level of
the hierarchy and the corresponding area is divided among its children, which
are located in the next ring of the structure. This process continues with the
rest of the hierarchical elements until all elements have been represented so
that the number of rings in the visualization is a function of the depth of the
tree. Some visualization examples that follows this kind of algorithm are the
following;:

Treevolution: This uses a tree-ring metaphor to represent structures based
on temporal hierarchies [Theron 2006a, Santamaria 2009]. The purpose
of this visualization is to facilitate viewing, navigating and describing
relationships in the history of programming languages and in phylogenic
tree structures.

Sunburst: Sunburst was originally proposed with the goal of determining its
effectiveness in a usability study of radial visualizations which was aimed
to evaluate these type of representations. The study found that the main
disadvantage of such visualization was the difficulty of distinguishing
circular lines when used in the representation of large hierarchies. As a
result of this study, later three different types of Sunburst visualizations
were proposed: angular detail, external detail and internal detail.

3.3. Information Visualization 59

Further information information on radial visualizations is available in the
excellent survey that has been carried out by Draper in [Draper 2009].

3.3.1.5 Networks and Graphs

Network and graph visualizations are useful in decision making as they
successfully support the understanding and comprehension of complex
problems where inherent relations exist among data elements [Herman 2000).
They permit cause-and-effect analysis of phenomena that are often present
in data whose source is industry or academia. The graph representations are
used for a variety of purposes including: dependency hierarchies, relationships
between documents and genetic maps.

Graph visualization is usually carried out by means of radial or conical
structures, network or hierarchical drawings. Thus, many of the visualizations
that have been discussed in the previous sections represent hierarchical graphs,
where the structure is displayed implicitly or explicitly with the use of nodes
and lines. Some of the principal graph topologies are Squared, Radial,
Triangle, Cube, Squared mesh and Rectangular mesh |Battista 1998|.

Graphs can also be classified as rooted or non-rooted tree types. For
example, radial and conical representations are rooted trees, while others
including electronic circuits and networks are non-rooted. The latter may
also be called series parallel digraphs. Important to mention also is the
fact that hierarchical visualizations make use of layering to position nodes
at appropriate hierarchical levels. The form in which graphs are drawn
is important and there are conventions for rendering such as Polyline,
Straight-line, Orthogonal, Grid and Planar.

A major challenge in drawing graphs is occlusion which occurs when
large numbers of elements are obscured by lines crossing when large datasets
are represented. Therefore, it is necessary to utilize sundry techniques and
strategies, one of which is planar graphs, which employs algorithms to obviate
lines crossing to make the drawings clearer.

In addition to the ways graph and topologies are drawn and utilized, it
is often necessary to use additional strategies to ferret out knowledge. For
example, to compare two graphs, both graphs are drawn with one on top
of the other; then one is drawn using and intense color whereas the other
is drawn using a less intensive color and an opacity effect. Likewise, it
can be advantageous to use force directed graphs to show closeness between
elements or groups of elements in the graphs [Battista 1998|. The commonest
algorithms in force-directed graphs are the following:

x Springs and electrical forces.

60 Chapter 3. Visual Analytics

The barycenter method.

Forces simulating graph theoretic distances.
Magnetic fields.

General energy functions.

EE S

Finally, it is important to mention that the tasks that can be performed
using graphs are usually based on topology, attributes, or simply displaying
an overview of the elements or by browsing the complete graph [Lee 2006]
and that many research papers have been published on the improvement of
algorithms and the layout of elements [Gibson 2013].

3.3.1.6 Multivariate Visualization

All visualization techniques discussed previously are capable of representing
multivariate data. To accomplish this, the principal elements used are colored
visual items and shapes. But the main problem facing all designs directed
at effective visualization is scalability, in terms of the sheer volume of data
along with the sheer number of variables which must be represented. A good
example of scalable visualization of numerical data, in the terms described
previously, is Parallel Coordinates [Inselberg 1985, Inselberg 2009].

Parallel Coordinates: This visualization is capable of representing a great
number of variables associated with a single element. It also permits
the representation of multiple elements at the same time, ranging from
hundreds to even thousands of elements.

The flexibility of the visualization permits the analyst to search,
highlight and group elements automatically or manually. In addition to
comparing and filtering elements easily. The result is the achievement
of maximum scalability and the avoidance of user information overload
while encouraging user interaction with the data elements.

Finally, it is important to mention that since the inception of
Parallel Coordinates |Gomez-Aguilar 2015b, Gomez-Aguilar 2015a],
similar approaches have gained attention and a wide variety of
refined approaches have arisen, including hierarchical [Fua 1999] and
circular [Long 2009].

3.4 Human-Computer Interaction

Hardware and software systems are usually conceived as processing units
that receive inputs from users, process such inputs (and retrieves additional
information from databases or other data sources when it is applicable)

3.4. Human-Computer Interaction 61

and produce outputs that are interpreted (or used) by users. However, the
interaction between users and systems is not as simple as it was described
when a complex problem is under consideration. Solving complex problems
requires several steps to be performed, and thus the active participation of
users is frequently needed to decide the course of actions to be followed.

Accordingly, the factors concerned with an effective and easy
communication between humans and systems include the effective design of
hardware and software systems, the appropriate design of usability elements
and the psychological and cognitive aspects that intervene when humans use
such systems. Therefore, HCI principles should be taken into account to create
successful systems that involve users in enjoyable, engaging and productive
interaction experiences.

The interactions of users with systems should be as engaging as it is
for them the discussion about some topics, such as football, soccer, politics
or religion. A conversation on these topics usually keeps the attention of
individuals during several hours: replies and opinions are expressed in an
animated interpersonal interaction. Likewise, the conversation between users
and systems needs opinions to be expressed in the form of userts inputs, which
should be processed in a proper manner to produce replies (outputs) according
to the discussion topic and focus (user needs and expectations).

The interaction between users and systems underlies, mainly, in the easy
to use of interfaces (hardware and software), the inputs provided by users and
the usefulness of the outputs produced by systems. In general, the inputs
from users are needed at the initial processing stage as well as in intermediate
processing stages, until results are obtained in a refined or final form on the
basis of user requirements.

The input provided by users to software systems is usually carried out with
the use of keyboards, mice, touch screens, microphones, sensors, wired gloves,
retinal lectors, face readers, thermal and infrared scanners, and fingerprint
readers. Therefore, the design of visual representations may consider one or
several of these input devices to offer useful interaction experiences.

In the context of how users browse and navigate through visual
representations looking to solve complex problems by means of visual analysis,
several pieces of research have been conducted. Typically, users form a
hypothesis to solve a problem, collect and analyze data, and then accept
or reject their initial hypothesis. This was explained by Wehrend et al., who
defined a taxonomy of eleven actions that are carried out by users in visual
environments, as following: identify, locate, distinguish, categorize, cluster,
distribution, rank, compare within relations, compare between relations,
associate and correlate [Wehrend 1990]. Thereafter, one of the most notable
research in this field is summarized by the Shneiderman’s Visual Information

62 Chapter 3. Visual Analytics

Seeking Mantra (overview first, zoom and filter, then details-on- demand)
that outlines the tasks usually performed by users when navigating IV
visualizations [Shneiderman 1996].

Furthermore, Pirolli studied visual information foraging [Pirolli 2001| from
a visual attention and information foraging theory perspectives, where the
latter is concerned with search, exploration, location and evaluation of
information [Chen 2002].

Taking into account what has been stated so far, it is important to recall
that the design of visual representations of huge datasets is often difficult
because of the limited size of screens [Leung 1994b|, which frequently makes
browsing and navigating capabilities challenging. So, some of the main
challenges on this regard were discussed by Chung [Chung-Wong 2012a|, and
are listed below:

In situ interactive analysis: Users require smooth interactions and
rapid system responses, which wusually requires in memory
analysis [Basole 2012].

User-driven data reduction: Users should be capable of controlling their
data and analytical needs.

Scalability and multilevel hierarchy: Keeping control of scalability and
hierarchy depth is a challenge that requires fast software response times
to satisfy user demand for fast answers [Basole 2012].

Representing evidence and uncertainty: The visual representation of
data analysis results requires of visual representations of the level of
uncertainty for informed decision making.

Heterogeneous-data fusion: This point refers to the analysis
of heterogenecous data sources and their interrelationships
aimed at extracting the required semantics needed in VA
applications [Basole 2012].

Data summarization and triage for interactive query: This implies
that I/O components must provide adequate response times for
providing timely query results [Reiss 2005, Lee 2011].

Analytics of temporally evolved features: The representation of
temporal data and events usually is challenging due to the time span in
which the events have taken place and the large number of associated
events. So, the representation of temporal data needs to consider the
human abilities for exploration, creating relationships and decision
making.

3.5. Conclusions 63

The human bottleneck: This challenge is related to the increase in
bandwidth, memory, storage and processing capabilities, confronted
with humans and their capabilities to scale their abilities in short periods
of time. Therefore, awareness of these human limitations must be
foremost in the minds of those whose task is to design useful and usable
solutions.

Consequently, the adequate use of interaction techniques is an important
element to design VA systems that are easy to use and permit fluid and
engaging communications with users. Therefore, interaction mechanisms to
support users in the exploration of details and the building and tracking
of relationships, should be considered. Thus, the use of these mechanisms
facilitate the interpretation of specific elements that could lead users to
discover knowledge or facts that enable them to arrive at useful conclusions.
Thereupon some of the interaction mechanisms commonly used by visual
representations are the following:

* Navigation |Wilkinson 2005].

Brushing and selection [Buja 1996, Dix 1998, Wilkinson 2005].

Drill down [Dix 1998].

Filtering [Shneiderman 1996, Wilkinson 2005].

Linking multiple views [Wilkinson 2005].

Geometric and semantic zoom [Shneiderman 1996, Dix 1998,
Cockburn 2009].

* X X X X

Finally, it is worth to mention that interaction design patterns have been
designed for building general and repeatable visual designs |[Pauwels 2010,
Tidwell 2011].

3.5 Conclusions

Nowadays, companies compete in a global market where successful strategies
are crucial in overcoming the widespread economic crisis. And since several
consulting firms have compiled large databases of business data from different
market segments, more and more companies now have access to market
intelligence databases and to their own historical transaction databases, which
together represent a rich data source for performing analytics, using modern
analytics tools and taking advantage of accumulated expertise. Additionally,
automated, analytic methods and techniques have become more complex and
powerful, which encourages firms to take advantage of automatic data analysis
with great precision advantaged by the constant increase in performance,

64 Chapter 3. Visual Analytics

processing capabilities, and reductions of costs of servers and computer
equipment.

The main developers of Enterprise Resource Planning (ERP) and BI
tools have taken a step forward in the current global crisis by adding VA
components to their data analysis tools with the aim of improving the
capabilities of managers to carry out analytics at different stages of their
business processes [Institute 2011, Zhang 2012, Skytree 2013|.

The main reasons for incorporating VA components into BI and
management tools is to combine the capabilities of computers for performing
fast and precise calculations with the human strengths of intuition, critical
thinking, problem solving and visual perception. Moreover, the rise in the
use of VA is reinforced by increased research and published papers on the
application of VA to such diverse areas.

Consequently, this chapter has explained and described the main
components of VA, as elaborated from previous definitions of this area. The
purpose is to offer some guidelines that could aid software designers and
architects in designing and programming of VA tools and solutions. This
is particularly important in the current scenario described above, where
companies require - more than ever before - the transformation of available
data into knowledge to compete successfully in the global market, sometimes
with very particular requirements.

Part 111

Visualization and Visual Analytics
for Software Systems

CHAPTER 4

Systematic Mapping Study

Cuando llegaron al valle multicolor de Orsi se detuvieron frente a
una encrucijada. Nevo cortd una gardenia y camind en direccion

contraria, de vuelta a casa. Entonces murmurd, sin mirar a
Giindy, "ahora debes sequir solo”. ";Qué camino debo sequir?”,
preguntd Giindy. "El que quieras, es tu camino”, contesto Nevo,

al tiempo que besaba la gardenia.. — FEl viaje de Giiindy,
A.Gonzélez
Contents

4.1 Introduction 00000 66
4.2 Methodology 00000 68
4.2.1 Research Questions 68
4.2.2 Inclusion and Exclusion Criteria 69
4.2.3 Searching for Research Studies 70
4.2.4 Classification Criteria 70
43 Results.o ool n s 74
4.3.1 Philosophical Research Studies 78
4.3.2 Solution Proposal Studies 81
4.4 Discussion L0000 e e e s 106
4.5 Conclusions 0o 0o s 109

4.1 Introduction

The aim of this chapter is to review in depth the current state of the
application of visualization and VA to software systems and their evolution
in facilitating the development and maintenance of software. The decision to
conduct a systematic mapping study was rooted in the possibility of carrying
out an analysis of greater depth and breadth; a study that would provide
further details on the work carried out and the trends that mark them. This

4.1. Introduction 67

chapter thus examines the use of IV and VA in the comprehension processes
of software projects and their evolution by means of a systematic mapping
study of research carried out in the last 7 years, from 2007 to 2013.

In order to do this, the tasks that this research sought to support were
identified as well as the different types of visualization, data types and
technologies that were used. Moreover, the types of validation used to test
the applicability of the proposed methods or solutions relative to the tasks
were also identified.

In order to carry out the systematic mapping study, all the papers of the
principal workshops, symposiums and conferences related to our field of study
for the period of analysis already mentioned were revised. Subsequently, two
specialized search engines (WorlCat and EBSCO Discovey Service (EDS)) as
well as Google searches were employed.

The items found were included or discarded according to their titles, a
quick review of the key words and the abstract. Once the articles had been
selected, the abstract and the introduction were more carefully examined in
order to extract information that would permit the paper to be classified
as a paper which searched for a solution to a specific problem, or one that
addressed theoretical or methodological issues.

Subsequently, an overview of the development of publications and
conclusions was made seeking accurate information about the task that the
paper sought to resolve or the research approach employed, as well as the
details of the answers given to the research questions (explicit or implicit).

The papers in both groups then went through another process of
classification: the former group being sorted into 22 categories according to the
tasks that the papers seek to support during the development and maintenance
of software and the latter group were classified in 11 categories according to
the research objetives that they address. Subsequently, several relationships
were created between the categories and research focuses identified and other
items which had relevance, depending on the particular group of papers under
analysis. Finally, the introduction and development of the chapter was revised
in detail in order to determine the visualizations used, the manner in which
data was represented, the number of views and the validation techniques
employed.

Accordingly, section 4.2 explains the methodology employed for conducting
the systematic mapping study; section 4.3 presents the results of the study;
Section 4.4 discusses some of the most relevant results of the investigation,
and finally Section 4.5 makes the conclusions of this chapter.

68 Chapter 4. Systematic Mapping Study

4.2 Methodology

This section presents and explains the research questions, the criteria utilized
to include or exclude research, strategies used to search for the research studies
and the classification criteria applied to such research work in order to carry
out the systematic mapping study described in this chapter.

4.2.1 Research Questions

The main objective of the systematic mapping study is to answer the following
research question:

How have visualization and visual analytics been used in software
development and maintenance tasks?

The following subsidiary research questions have emerged as a logical
consequence of research into this primary question:

1. Which tasks in the process of development and maintenance of software
systems are supported through the use of visualization and visual
analytics?

2. Which types of visual representation are used to support each of the
particular tasks identified?

3. What data derived from the analysis of software projects and their
evolution are visually represented?

4. What are the technologies used in the solutions proposed by the research
studied?

5. What types of validations are carried out in order to test the validity of
the proposed solution or technique?

6. What types of data and visual representations are used both to support
comprehension of the analysis of a revision as to support understanding
of the complete evolution of the software project (or over a period of
time)?

The analysis of the evolution of a software project involves the individual
analysis of each of the revisions under consideration, whose results are then
correlated in order to find relationships or facts which are relevant to the
particular task that is being undertaken.The discovery of useful knowledge
from the visual representation of the results of this analysis may require
the use of navigation and interaction techniques that provide different views

4.2. Methodology 69

and perspectives. In accordance with the above, this chapter seeks also to
investigate on the following subsidiary research question:

7. How are the multiple views and multiple linked views used by research
that is aimed at analyzing software evolution (several revisions or a
period of time of the evolution)?

4.2.2 Inclusion and Exclusion Criteria

The inclusion and exclusion criteria that were applied to the research reviewed
for this study are the following:

Time period of the study: The study included all the publications in the
last 7 years (2007-2013). However, in the case of 2007 only papers from
the proceedings of IEEE International Workshop on Visualizing Software
for Understanding and Analysis (VISSOFT) 2007 were included (as well
as a highly cited paper that could be considered an obligatory reference,
and which was published in the proceedings of the 2007 International
ACM Conference on Supporting Group Work).

Papers studied: A total of 219 papers were downloaded, but once they had
been filtered and revised, a final total of 149 papers were evaluated.

Relevance of papers: In this regard, the study took into account the
following criteria:

1. Only full papers were considered (with the exception of two short
papers included in the study because they were of special interest)

2. It was determined by the use of visualization and VA in order
to understand software systems and their evolution in general
terms and, more specifically, with the objective of supporting the
development and maintenance of software. The following factors
were taken into account in this regard:

Type of proposal or evaluation: Visualization designs, tools,
strategies, techniques, taxonomies, frameworks, validations,
theoretical or philosophical discussions (see Table 4.1 for a
definition), experience and survey papers have been proposed
or evaluated by the papers.

Types of data analysis supported: The research works may
have used static, dynamic or a combination of both types of
analysis.

70 Chapter 4. Systematic Mapping Study

Time period of data under analysis: The analysis performed
may have taken into account one, several or all of the system
revisions.

It is worth mentioning that this research took into account some patterns
that were detected in which research groups employ the same visual approach
with slight variations or change the focus of the publications using different
perspectives (e.g., comprehension of systems, structures and presentation of
frameworks) or making variations on how a previously proposed visual solution
is validated (e.g., using a case study or a usability study). Therefore, in
these cases, the study excluded those papers that are neither an extension
of, nor demonstrate significant progress in relation to a previous publication.
In the case of several publications related to the same research, where there
is a publication in a journal concerning the same research area, the research
published in the journal takes precedence over that which formed part of
conference proceedings.

4.2.3 Searching for Research Studies

A complete review was performed of all full papers, and two short papers
of special interest, which were presented from 2007 onwards in the ACM
Symposium on Software Visualization (SOFTVIS) and VISSOFT. Later
searches were carried out using the specialized search engines WorldCat
and EDS using the following search arguments:

Software visualization OR Software evolution visualization
OR

Visual software analytics OR Visual analytics

AND

(Software OR System)

OR

Software evolution

The result of searches carried out, plus the articles accepted in VISSOFT
and SOFTVIS, came to 219 papers in total, of which only 149 were included.
Annex A shows the complete classification of these works by publication venue
and date of publication.

4.2.4 Classification Criteria

The primary classification criterion is the research scope used by the
study research paper consideration. Thus a variant of the Wieringa

4.2. Methodology 71

and Peterson [Wieringa 2006, Petersen 2008| classification model, shown in
Table 4.1 was used. The application of these criteria of classification shows
that most of the research work belongs to either Philosophical Research (47)
or Solution Proposal (102) categories, which are opposite fields with regards
to theory/practice. This is why it was decided to group the results into 2
major groups, using those categories as a starting point for classification and
the others as additional criteria subject to both criteria. In this manner the
work done under the Philosophical Research category is associated with all the
categories present in Table 4.1, including the category denominated Solution
Proposal, whereby all work from the Solution Proposal category is associated
with the Fvaluation Research and Validation Research categories.

Table 4.1: Classification scheme of investigations according to their research scope.
Category Description

A novel technique or solution proposal implemented and
evaluated in a real life scenario. Moreover, it may also take
into account an evaluation of third party tools or techniques in
a controlled or real life scenario. Evaluation also includes the
studies carried out to test something rather than validating
an approach.

Evaluation Research

The personal experiences of authors and how something has

Experience Papers . . .
P P been carried out in practice are exposed.

A solution for a problem, either novel or a significant
improvement over an existing technique, is proposed. The
potential benefits and the applicability of the solution are
validated or discussed.

Solution Proposal

This category includes taxonomies, software frameworks,
conceptual frameworks, classification schemes, surveys, and

Philosophical Research contributions to the theory, case studies on theoretical
foundations, and techniques or methods either novel or
improved.

A probe of concept of a solution proposal has been
implemented, but a real life implementation has not been

Validation Research carried out. Therefore, the authors look to validate their
proposal via a case study, user evaluation, use case, examples
of use or a reasoned discussion.

Overall, this study seeks to present a comprehensive survey of the current
state of research into visualization and VA when used to solve problems or
support tasks in the software development and maintenance process. The
study also aims to show the theoretical advances in the area.

The research has thus been classified as Solution Proposal is that
whose visual representation may be a variation of existing techniques or
a combination of several existing techniques, while papers classified as

72 Chapter 4. Systematic Mapping Study

Philosophical Research are those which suggest new techniques, methods or
improvements to the aforementioned techniques, but without being restricted
to trying to resolve a specific problem but rather offer basic input from a
methodological or theoretical perspective.

The following classification criterion that was applied to the research
work was applied to the scope of the represented data and the supported
analysis. Therefore, a research work was classified as Sys! or Evol? according
to the number of system revisions that it has the capability to deal with.
Then, after classifying the papers using the above classification criterion, an
additional review of the documents was carried out to determine a secondary
classification criterion based on the content of the papers under study.
Accordingly, in the case of the research works in the Philosophical Research
category, this review has sought to determine which research approaches the
works are using, whereas in the case of the works in the Solution Proposal
category it looked to identify the tasks that the research work is intended
to support. In the case of work classified as Philosophical Research, the 11
research approaches on the following list were extracted from the papers under
consideration:

1. Case study

2. Classification scheme or taxonomy
Evaluation

Framework

Lessons learned

Novel technique
Reflections or discussion
Study

Survey

10. Systematic mapping study
11. Technique improvement

© 00N o Tt W

The number of tasks which the research in the Solution Proposal category
seek to support total 22 was determined by the aforementioned review, which
also lead to the conclusion that research work sometimes supports more than
one task. Therefore, research work supporting primary tasks (one task)
totaled 79, whereas the ones supporting secondary tasks totaled 23 (20 of them
support two tasks whereas the other 3 works support three tasks). However,

L A research work is classified as Sys if its application scope is the current system revision
or a single revision.

2Research works classified as Fvol are those which take into account one, several or all
of the system revisions, in short are those works which study system evolution.

4.2. Methodology 73

the classification schemes under the Solution Proposal category only present
classification details for the primary tasks that are supported by research work.

Consequently, these schemes did not consider those tasks that only
received support from the research as secondary tasks, and thus were
excluded from the classification schemes. The decision to include only the
primary tasks in the classification schemes was based on the need to provide
information that could lead to accurate comparisons between tasks, and
which could be altered if works appeared to be associated with more than
one task. The secondary tasks that were not supported as primary tasks from
any of the research works studied were Source code porting, Source code reuse
and Support debugging. A complete list of tasks supported by the research
works under study is shown:

1. Detect design flaws

2. Distributed systems comprehension
Improve software quality

Improve source code security
Memory allocation analysis
Multithreading execution analysis
Parallel execution analysis
Performance analysis

Program execution analysis

10. Software design and modeling

11. Software ecosystem comprehension
12. Source code porting

13. Source code reuse

14. Support debugging

15. Support reverse engineering

16. System analysis and understanding
17. System refactoring

18. Software testing

19. Team awareness and collaboration
20. Understand dependencies

21. Understand software changes

22. Understand system architectures

© 00N Tt W

Consequently, the previously mentioned criteria allowed for a basis
framework to be defined in order to permit a more detailed classification of
the works under analysis. The aforementioned classification was carried out
using five classification schemes, one of which is related to the investigations
under the Philosophical Research category and four of which are related to
the investigations from the Solution Proposal category.

74 Chapter 4. Systematic Mapping Study

The classification schemes include details on the number of works that
support systems classified as Sys and Fvol. An important consideration to
be highlighted at this point is that supporting SE requires a greater effort
than that required for supporting only the current system revision or a single
revision.

4.3 Results

317 researchers were involved in the preparation of the 149 works, who mostly
worked in groups composed of two and three researchers, as Figure 4.1 shows.
Most of these researchers only contributed to one work (243) and the number
of those who participated in two (48), three (15) or more (11) studies was
very small relative to the total number of researchers (see Figure 4.2).

60

50

40 4

30

a0 - B FPapets
10 | I

o - —_'_4_‘

Research patticipants

Figure 4.1: The x azis shows how researchers were organized in groups, in terms of
the number of participants, to carry out the research works. In line with this, the y
axis depicts the number of research papers and its correlation with the investigation

groups.
132
10
8
f
4 B Papers
PR R R
, m
243 ‘ 48 1
Reseatchers

Figure 4.2: Correlation of researchers with the number of papers in which they have
participated as authors.

4.3. Results 75

The distribution of the authors who participated in a larger number of
works is shown in Figure 4.3. It is worth highlighting that among the authors
included, several authors participated in the same number of published works.
The four researchers with the most publications (Michele Lanza, Alexandru
Telea, Jiirgen Déllner, and Stephan Diehl) appear as secondary authors in the
works.

Fomain Robbes
Lucian V oitea
Johatines Bolmet
Craig Anslow

Carsten Gorg

Researchers arco D Ambros m Papers

Fabian Beck

Stephan Diehl

Jirgen D dllner

Alexandiu Telea

Michele Lanza

1] 2 4 f g 10 12
Figure 4.3: Researchers with highest participation in published papers.

Figure 4.4 presents the distribution of the research works studied by
year. Accordingly with this figure the year that most research papers were
published, both in the category Evol and Sys, was 2010, followed by the year
2009. It is striking that in most of the years the number of research works
under the rubric Sys is highest that those classified in the category Fwvol, with
the exception of the years 2009 and 2012 in which the highest number of
research papers is under the rubric Evol.

20

15

10 " 3ys

BEval
5 -

D -
2007 2008 2009 2010 2011 2012 2013

Figure 4.4: Distribution of the total number of works carried per year and category
(Sys and Evol).

Based on the discussion in the previous section, table 4.2 presents some

76

Chapter 4. Systematic Mapping Study

general information about the studies analyzed. In this classification scheme,
the rows denominated Solution Proposal and Philosophical Research are the
primary criteria used for classification while the analysis type that has been
supported (Sys or Ewol) serves as a secondary criterion. Starting from the
basis of these primary and secondary criteria, the research work is then
classified according to the following additional criteria:

1.

Education: The papers classified in this category are those that seek to
support the educative processes of teaching and learning in programming
courses.

Static analysis: This category makes reference to papers that use static
analysis to obtain data to be used in visual representations.

Dynamic analysis: This category includes studies that use data obtained
by means of dynamic analysis techniques. These techniques render
the analysis of programs during their execution for a period that may
include, for example, be the time it takes to perform a particular task,
or a period determined by the analyst. However, when nothing more
than the analysis of one revision has been carried out, the works have
been classified under the rubric of Sys.

Use Visual Analytics: This category is used to classify research work
that makes use of Visual Analytics (VA) in the analysis of one or more
system revisions. Specifically, the application of VA approach to the
analysis of a software system revision is denominated as Visual Analytics
Software [Anslow 2009] and this research defines the application of VA
to the analysis of two or more software revisions as EVSA (which will
be discussed in more detail below).

Architecture: A paper classified in this category introduces the design
of an architecture, or the process that has been defined or employed
during the research. Frequently the architecture which is discussed in
the work is not original and what is sought to be presented here is the
interaction between the different components employed in the search for
the solution to a determinate problem.

. Web: This category is used to classify the studies that have used web

technology to implement the visualizations featured.

3D: Works that employ 3D visual representations are classified in this
category.

Plugin: The visualization tools proposed by the works classified in this
category can be integrated as extensions of the most well-known IDEs
which are commonly used both in educational and industrial settings.

4.3. Results iré

9. Animation: This category is used to classify works that use animation
to facilitate teaching processes in academic settings as well as the
development and maintenance of software in software development
departments and the software industry.

10. Views: The works studied may be classified as Single, Multiple or
Multiple Linked depending on the views that are used and the level of
integration between them. In visualization, the multi-view displays can
operate independently or be linked by interaction between them. The
works that employ multiple views and explicitly explain the interaction
between views were classified in the subcategory Multiple Linked.

According to the scheme in table 4.2 the number of papers that seek to
support teaching/learning in academic settings or business is reduced, because
only 10 out of 149 have that objective, and it can thus be concluded that the
purpose of most studies is to support the development and maintenance of
software in industrial settings.

Table 4.2: General classification scheme.

Technology Views
3}
3 g 2 2 ~
Category e 2 B 3 é o 5
= ° = g 4 3 E
7 =] = = = =] R
9 g g = B § S @ o
z ® g 2 = s g s &
£l S g § 5 5B El® w5 £ E
g < 8 > n 5 . N g2 g = =
< B & A Db < B » < & @& = =2
Philosophical Sys 3 15 5 2 1 11 1 2
Research Evol 4 27 2 3 1 7 4
Solution Sys 3 28 36 9 1 7 2 12 42 14 7
Proposal Evol 335 1 6 3 5 1 6 21 14 4
Totals 10 108 41 5 19 6 20 4 22 63 28 11

The type of analysis used to obtain data from software systems, 103
works use static analysis and 46 dynamic analysis. The use of static analysis
prevails both in the category Philosophical Research and also the category
Solution Proposal, which contain 42 and 61 works respectively. Static analysis
predominates in the Fwvol category, while dynamic analysis predominates in
the Sys category.

It is striking the very small number of works that make use of VA despite

78 Chapter 4. Systematic Mapping Study

their widespread dissemination in recent years. This result is reflected in
the column Use Visual Analytics which shows only 5 works classified in this
category. One element that probably reinforces this result is that there are
only a small number of papers that use multiple linked views (only 11 works
in total). In this study the use of multiple linked views is considered as an
essential prerequisite for a work to be classified in the VA category.

An important trend that can be observed in the results is the integration
of the proposed solutions in development environments by means of plugins
(22) and the use of web technology (6). The use of 3D is also striking due to
the significant number of work employing this approach (20) although its use
is not recent as the case of plugins and web technology

Works which make use of multiple views form an important group (28).
Some jobs that were classified in the category Views—> Multiple were placed
in that category and not in the category Views—> Multiple Linked category
because although they could have been classified in the former category, it
could not be established with clarity whether the visualizations were linked.
It should also be mentioned that the use of views was evaluated in the works
classified in the category Solution Proposal but it was not evaluated in the
works classified in the category Philosophical Research because of the nature of
these research (e.g., taxonomies, software frameworks, conceptual frameworks
and classification schemes).

Section 4.3.1 presents the classification details of the category
Philosophical Research, while Section 4.3.2 does the same for the category
Proposal Solution.

4.3.1 Philosophical Research Studies

The number of papers classified under this rubric was 47, which were further
subclassified into 11 different types of research. The resulting classification
scheme, shown in table 4.3, presents details on the distribution per annum
of the papers taken into account in this study (those published in a time
frame from 2007 to 2013), as well as the technological elements, the type of
validation and the research approach employed. Moreover, it also shows the
number of papers with an educational orientation. Complementary to this
scheme, Figure 4.5 shows the distribution of papers per research approach
and category (Sys and Fvol).

The publication of papers concentrates on the years 2008, 2009 and
2011 with no special focus on any particular research approach during those
years. However, the Nowvel technique and Reflections or discussion approaches
received special attention in general as they totaled 20 out of 47, where the
former approach totaled 11 studies and the latter 9.

4.3. Results 79

Case study

Classification schema or taxonomy

Evaluation

Framework

Lessons learned

Research

Novel technique
approach

Reflections or discussion
Study

Survey

Systematic mapping study

Technique improvement

2 3 4 5 4] 7 8

o

B Evol M3ys

Figure 4.5: Number of papers per research approach and category (Sys and Evol).

Furthermore, the number of papers that seck to validate results is high,
22 out of 47, including the use of case studies, user studies and use cases as
preferred validation methods. In this scheme the number of papers with an
educational orientation is also striking (6 out of 47) in relation to the schemas
presented and discussed and which are discussed in more depth later in the
research. Additionally, the integration of the resulting tools into IDEs as
plugins (6 out of 47) is highly relevant as is the relative importance of the
use of 3D visualizations (7 out of 47). This scheme also shows that the use of
web and animation technologies is not popular with the authors of the papers
classified under this category.

It is also relevant to highlight the fact that 29 out of the 47 research
works were classified under the rubric Fvol and only 18 under the rubric
Sys. Figure 4.6 allows to observe that in all the years the number of papers
published under the Ewvol category was greater than the number of works
classified under the rubric Sys, except in the case of 2008. Figure 4.6 also
allows to observe that the highest level of activity took place in the years
2008, 2009 and 2011.

Systematic Mapping Study

Chapter 4.

80

N

N f -~ M0 MO ANM

o <

N o=~

UOTYedN PG|

stsA[eur JIWRUA(] = —~

QINYOANYDIY

uoryepIreA

resodoad uornjog

uoryenyeAry

UOTSSNOSI(]

osn [0Q],

syuomrIodx iy

SOS®D 9Ss)

Apnjs 1080

Apnis ose) |
uoI)RWIUY

s[ejol, —~

€102

¢10T

1102

0102

6002

800 —

L00T

ad Ay sisATeuy

quswesoxdwir sanbruyoa],

Apnys
Surddewr o19etIaIsAg

AoaIng

Apmig

UOTSSNOSIP 10 SUOI0aey
anbruyos) (9A0N

pouIes] SuUosso|
JIometrel

UuoIyenyeAs]

Awiouoxwey} 10
QUISYDS UOTYeIYISSe[D)

Apnjs ase))

‘SNDOJ OIRISOIF-SJUdWII[e AFo[outpe)+-Iead 1od stoded+-yorordde yoressey ¢ o[qR],

4.3. Results 81

12

10

2

& H3ys
4 B Ewal
7

|:| -

2007 2008 2009 2010 2011 2012 2013

Figure 4.6: Philosophical Research: publications per year and category (Sys and
Evol).

In the case of publications classified under the rubric Evol it is interesting
to observe that publications demonstrate a wave pattern. This begins with a
low level of publications in 2007, which is further diminishes in 2008 to the
point where only one work was published. However, there is then considerable
growth in 2009 which again falls in 2010 and then rises yet again in 2011.
This pattern has continued with a fall in the number of publications in 2012
followed by a slight increase in 2013. The maximum growth in the number of
publications classified under the rubric Sys, occurs in the year 2008. However,
in other years the number of works does not even reach an average of two
publications per year.

The works that are classified under the rubric Nowel technique include
papers which have proposed visualization techniques that have been
considered innovative due to the use of new or existing elements to create
a representation which possesses a high percentage of originality. Some of
the visual representations presented and discussed under the rubric Nowel
technique are also referenced in the classification schemas of the next section,
when other works classified under the rubric Solution Proposal use any of
them. Finally, table B.1 in Annex B shows a correlation between research
approaches and the research works studied in this section.

4.3.2 Solution Proposal Studies

The classification schemas in this section are task centric and their function is
to correlate the tasks supported with the other classification criteria. The goal
of these schemes is to aid the identification of data, methods and techniques
used in research studies to support software development, maintenance and
evolution by means of visualization and VA.

It is important to highlight that some research work considered in these
classifications are aimed to support more than one task. However, the results
presented in this section are focused on only the primary task that these
studies aim to support (for more information see section 4.2.4). The total

82 Chapter 4. Systematic Mapping Study

number of works under consideration is 102: from which 76 support one task;
23 support two tasks; and 3 support three tasks. The correlation of the tasks
supported by the research studies, their temporal focus, and the papers in
which the results were published is shown in table B.2, annex B.

4.3.2.1 Distribution of papers by task addressed, year, research
approach and validation type

Taking into account the tasks outlined in section 4.2.4, the scheme from
table 4.4 classifies the investigations using, as a starting point, the temporal
focus (Sys or Evol). It then establishes relationships between such tasks and
the year of publication; the research approach (Solution Proposal, Evaluation
Research and Validation Research); the elements of technology and the type
of validation used by the research study (Case study, User study, Use cases,
Ezperiments, Pilot study, User feedback and Discussion).

20

15

10 m3ys
mEvaol

j -

0 -

2007 2008 2009 2010 2011 2012 2013

Figure 4.7: Solution Proposals: publications per year.

Furthermore, the scheme in table 4.4 indicates whether an architecture
was used to implement the proposed solution and if these studies have an
educational orientation.

Of the 102 publications studied, 66 were classified as Sys and 36 as Fvol.
As the results in Figure 4.7 demonstrate, the year in which the largest number
of entries is grouped is 2010, with 2013 in second place and in third place 2011.
Works classified under the rubric Sys follow a pattern similar to that of a Bell
Curve which begins to ascend in 2009, extending through 2010 and 2011, and
then begins to descend in 2012. In 2013, the curve begins to ascend again.
While the publications classified under the rubric Fvol exhibits a wave pattern
which begins at an intermediate level in the 2007 and continues to oscillate
in the following years. Thus, the publications in this group do not follow a
stable pattern and although in the last 4 years the number of publications is
greater than in the first 3 years, there is no progressive increase in this group
from 2010 onwards.

83

Results

4.3.

*o8ed jxau uo peanuljuo)

[oad Surepout
T 4 VoI T T 1 sAg pue uSisop a1em)jog
T 1 T [CH sisA[eue
4 T ¢ 1T ¢ € € 45 I ¢ v 7 1 shg UOIINISXS UIRIS0I]
T T 1 [oAd
SISATeuR 9OURULIONSJ
T ¢ 1 14 1 € [s4g
T 1 [0ATT
SISATeure UOIINIIXD [d[RIR]
sAQ
[o2H stsA[eue
1 T ¢ ¢ z skg UOIINDOXS SUIPEOIYIIINIA]
[oad sisATeue
I I T 8 ¢ T € 1 1 skg uoryed0[[e AIOWLN
|CCl Ajmoas
T Z 1 T z T T sfg opod 90anos saoxdwy
oA
! E L ord Aypenb aremijos sroxduay
T € T € T I 1 s4g
[oAd uorsuay@Iduod
(@ 1 € 1 (@ S 1 T I T T s4g Sw)sAs pANLIISI(
1 T T T 10A5
sme]j uUSIsap 19939(]
T 1 1 T € 1 T T s4g
= 0 oo = NN N NN NN
EFEls 2 F T E 2 s 28888 8¢&g ¢
m =3 = & & o L} g = o w N = o © oo = 3
o =y =y =R @ o «
Y IR EE | 3 G
= g g & £ = 5 g E
@ o 7] = =
yl 3 g
E
o
=y

‘0d£) uoryeprrea+snooy yoreosol+Ieoh 1od sioded+-possorppe Yse], 7§ o[qe],

Systematic Mapping Study

Chapter 4.

84

[\ BN

S9IN10991YdIR
W)SAS pue)sIopu)

soSuerd
QIeM}JOS PURISIOPU()

soouspuadop pue)sIOpu()

UOI)BIOQR[[0D
pue ssousIeMe UIes],

T
OAl

! ! tord Juryse) waysAg
4 T 1 s£g
4 T T 10AT

Suriojoejor weysAg
T T SAQ
14 ¢ I T |CC Surpue)siepun
9 T 1 T 1 4 sAg pue sisA[eur wWoISAg
T T [c] Surreoursuo
4 T 1 sAg as1aaa1 j10ddng
4 T T [oAd uorsuayarduod

w9)SAS009 9IMIJOS

uoryednpiy

QINYONNIYDIY

JorqpPas) I9s()

Apmgs j011g
syuowirIodxy

S9seD 98()

Apnis 1es()

uorRwIuY

s[e1Q,

[OIe9Sal UOIIeN[eAr]
Joded jo odAT,

‘o8ed snorasad wody panuijuod — adA) uorrepifea+snooj yosaressaa+aeak sod siodedpasseappe 3ysel, ¥ 9[qel

4.3. Results 85

Figure 4.8 shows a correlation between the tasks and the number of
research works classified under the categories Sys and Fvol. The aim is to
provide an outlook of the interest shown by researchers in these tasks and
the temporal analysis types. According to the results that can be observed in
table 4.4 researchers showed continuing interest in five tasks. These are the
following;:

« Understand system architectures (15).

* Program execution analysis (13).

* Team awareness and collaboration (11).
% System analysis and understanding (10).
« Memory allocation analysis (8).

Moreover, Understand system architectures and Team awareness and
collaboration are the tasks with the highest percentage of studies devoted
to system evolution.

Similarly, a small number of works perform an evaluation research of a
proposed solution that has been published in other research paper, whereas
most of them contemplate some sort of evaluation, of which the most common
are case studies, use cases and user studies. It can be observed, that another
method that was extensively used in order to argue for the validity of the
proposals was the use of reasoned discussion. It is worth noting that such
discussions at times are exhaustive and in most cases they present weak and
subjective arguments that are not supported by empirical evidence.

The use of web technology in implementing proof of concept
implementations or implementations of finished tools is very limited, with
only 4 out of 102 works making use of these techniques. However, the number
of research papers which took into account the use of animation and 3D is
more significant. In the first case, 12 papers use animation; and in the second,
18 use 3D technology. In the case of 3D technology, its use is generally
more common in displaying information and has become more widespread as
software packages began offering more graphic applications. However, its use
is not sufficiently widespread because of a number of limitations which include
occlusion and handling. Similarly, the incorporation of the implemented visual
tools as an IDE plugin is relatively high: in 18 works was the development of
a plugin seen as a viable solution.

It should be highlighted that this scheme shows that 15 of the 102 works
classified under the rubric of Solution Proposal, offer details and explanation
concerning the architecture used. There are, however, a small number of works
which seek to support learning and teaching of programming and debugging
with the use of visualization as only 3 research studies offer some support for
educational purposes.

86 Chapter 4. Systematic Mapping Study

Detect design flaws

Distributed systems comprehension

Improve software quality

Improve source code security

Memory allocation analysis

Multithreading execution analysis

Parallel execution analysis

Performance analysis

Program execution analysis

Tasks Software design and modeling

Software ecosystem comprehension

Software testing

Suppott reverse engineering

System analysis and understanding

System refactoring

Team awareness and collaborati on

Understand dependencies

Understand software changes

Understand system architectures

T T T T T

4
0 2 4 6 8 10 12
mEvol mSys

Figure 4.8: Correlation of tasks with the number of papers published per category
(Sys and Evol).

4.3.2.2 Classification by task and data type

The classification scheme in table 4.5 shows in detail the relationship between
the data used and the tasks identified, as well as an indicator regarding the
methods employed to obtain this data (static or dynamic). The information
contained in this scheme may facilitate further research as well as the design
of new tools.

87

Results

4.3.

-o8ed jxeu uo psnurijuo)

®)ep SWIIUNY

SO

soueuriojrad
pue peo[Iop\

surei8eIp TN

Arenqesop

elep Su1sa],

—

2IN)ONI)g

SuIdI[S 9pod 90IN0g

So8uRTD 9p0d 92INOY

T
ot T T
T
€
g
8 T €
I T
T
14 T
14 14
T T
T 14
2 w o F H O O O Q Q Q
20 Q oﬂ aﬂ (e} S X & & I g e} e}
o Q &+ L) m @ Lo} -+ &+ c Q. a.
20 = =, m a 2 @ & ® g @ @
Sg g & 2 E 2 & B 2 2 5 gz 2o
@, a @ < o & o (9] = !) = o
EE 5 g ¢ g = B § z 3
TE 2 g £ 8 =z & £ % 73
I =3 18] = & © 2 = =
= 5 £ &8 = 8 & &
< 2 i @
5
suoIjezIifensi A

“RIJRD SWIIUNI|POSN R)RD-+PISSOIPPR YSB], G o[qR],

Ayoreraly sse[))

i

sonsst Suryoelr) Sng

SYIOM JO IOQUINN o —~ 1o

od£y sisAreuy

Surepowt
pue uSIsep 2Iemijos

stsA[eue

UOIINDOXS WRIS0I]
SISATeue 90UBULIO}IS
stsA[eue

UOIINIOXd [d[[eIe]

SISATeUR UOIINIOXD
SuIpeaI NN

stsA[eue
uoryed0[[e AIOUWSIN

A1IMo9s
9p0o 201no0s aaoxduuy

Aqrrenb
aremjjos aaorduwy

uorsuayarduod
SwesAs paNqLIISI(]

smep usisep 30939(]

possaJappe syseJ,

88

Chapter 4. Systematic Mapping Study

SIY10
soueuriojred
pue peos[IoA\

swreisep TN
Arenqedsop
eyep Suisa,
2InjonIg
SumI[s 9pod 92IN0g

soSueyd 9p0d 90IN0Y

sdrysuorjeax
[BOIUYD9}-01008

BIBPRIRIN INOS
SOLIJOIN
uo1yed0[[e ATOWSIN
Burdnoo [esr8or]
sdrgsuorjeal wel]
$90RI) UOIINOIXY
serouspuada(]
soInjonIys eye(
s[re19p mop eie(
Surdno)
s[[ewis apoy)
SUO[d 9pO))
Ayorerary sse[))

sonsst Sunpel) Sng

Table 4.5 Task addressed+data used+runtime data — continued from previous page.

od Ay stsAeuy

Sys

Evol
Sys
Evol
Sys
Evol
Sys
Evol

Sys

Evol
Sys

Sys

Evol

°
g E
‘ig) k2
23 % -
o 2 ng‘e‘-s
s =8 59
5% £8 g+=
S 5 0O Q Ee
};g&.s 58
S5 =¥ L3
0 o »n o n->=

System refactoring

System testing

Team awareness and
collaboration

Understand

dependencies

Understand software

changes

Understand

system architectures

4.3. Results 89

The similarities in the types of data used by the works classified under
the rubrics Sys and Ewvol can enable the development of works that focus
on supporting research with a greater capacity for analysis in both temporal
and general terms. However, these similarities are not sufficiently well-defined
to allow the design of research projects of the scope described, and so the
schemes in tables 4.6 and 4.7 are thus both complementary and useful in this
context. The data types that this research determined that were used by the
works analyzed are:

Bug tracking issues: These include the description of the problem,
registration date, the level of urgency assigned; the user who reported
the incident, the person responsible for handling the incident and the
change history of the incident.

Class hierarchy: Includes details about the ascendants and descendants of
a particular class of or item of software.

Code clones: These are segments of source code that have been replicated
(copied) in different software items. This renders the maintenance of
the systems more difficult because all the copies of the segment must
be changed and it is necessary to find their location within the project
structure. The information about the code clones must thus include the
code segment and its location in the project structure. Code clones are
a particular type of code smell.

Code smells: They are symptoms of inadequate design or system design
problems which are detected by means of metrics. These symptoms
may cause maintenance problems. The following are typical symptoms:
excessive length of classes or methods, excessive complexity and
cohesion, and dependence on access to data by means of external
classes [Lanza 2005b].

Coupling: They are measures of the dependencies between classes, according
to the methods that are called [Yang 2007, Briand 1999].

Data flow details: This type of data offers details about the manner in
which data flows through the system.

Data structures: These contain details about the dynamic behavior of data
structures at runtime and how these organize and manipulate data
elements.

Dependencies: They are details of the dependencies which exist between
system elements. These dependencies are similar to those measured by

90 Chapter 4. Systematic Mapping Study

coupling metrics. Thus information regarding the relationships which
are established is included but not information regarding the metrics.

Execution traces: This is information about what happens in the system
when it executes a task. It includes details about the parts of the
program which are run; the invocation of classes and methods; as well
as data access and the passing of data between the different elements
that are involved.

Item relationships: Dependencies and inheritance are both types of
relationships between software items. However, this type of data
also includes the implementation of interfaces and other types of
relationships that have not been clearly defined by researchers in their
papers.

Logical coupling: This type of data contains details of the dependencies of
software items according to the co-change patterns that are revealed
when the history of revisions is analyzed [Gall 1998, D’Ambros 2009b].

Memory allocation This consists of information about memory allocation
to processes and the duration of the above assignment.

Metrics: They are the result of measuring the characteristics of a software
system, such as the complexity and size of the elements of which it is
composed [Laird 2006].

SCM Metadata: This stores details about revisions and changes to the
system. Such details include the revision number, the name of the
programmer who initiated the revision, the date and time of the revision,
and the software elements that were affected by the revision.

Socio-technical relationships: In this context, this term refers to the
details of the network of relationships which is formed between software
items, programmers and the collaboration between programmers which
takes place whilst carrying out changes in the process of software
development and maintenance. [Scacchi 2004, Valetto 2007].

Source code changes: This provides specific details of the changes made in
each particular software item during each revision.

Source code slicing: This is the part of the program whose behavior is
worthy of study [Weiser 1981]. The works in this study used this
technique to extract details of the portions of source code that had
been changed during the evolution in order to study the behavior of the
changes.

4.3. Results 91

Structure: This contains information on how the project is structured
(packages, sub-packages, classes and interfaces) and also information
about how the structure undergoes changes.

Testing data: These are the results (which are stored in logs or databases)
obtained when testing the system automatically with the use of
specialized tools.

Vocabulary: This is the vocabulary used to denominate the elements of
the software system such as; software items, methods, parameters, and
identifiers, as well as the vocabulary used in the comments.

UML diagrams: These are the diagrams Unified Modeling Language (UML)
extracted automatically from the software project by means of reverse
engineering and the use of specialized tools. The metadata of these
diagrams are used as data in order to analyze the system and provide
visual elements that use additional elements and seek to provide better
support for the process of development, maintenance and evolution.

Workload and performance: These data provide information about the
workload generated by the execution of systems and performance
measures at runtime.

Others: The data types whose use was limited by the studies analyzed
are grouped. Among these types of data are included the evolution of
project documentation, software features, and details of aspects-oriented
systems |Kiczales 1997].

Of the 102 works studied, 61 used static analysis to obtain data whereas
the other 41 used dynamic analysis. Figure 4.9 shows the correlation between
the number of research works in the categories Fvol and Sys and the types of
data used. This figure allows to observe at a glance the temporal and general
usage of each type of data. As one would expect, data obtained by means of
dynamic analysis was used in works that supported tasks like:

x Multithreading execution analysis.
Parallel execution analysis.
Program execution analysis.
Memory allocation analysis.
Debugging support.

S N

Performance analysis.

92 Chapter 4. Systematic Mapping Study

With regard to the other tasks, most of them used data obtained using
static analysis, although some tasks use data obtained with both types of
analysis (static and dynamic).

Bug tracking issues
Class hierarchy
Code clones

Code smells
Coupling

Data flow details

Data structures

Dependencies

Execution traces

Item relationships

Logical coupling
Datatype Mem ory allocation
Metrics

Others

SCM Metadata
Socio-technical relationships
Source code changes

Source code slicing
Structure

Testing data

UML diagrams

Vocabulary

Workload and performance

o

5 10 15 20 25
mEvol ®Sys

Figure 4.9: Correlation of the types of data used by the research works studied and
the the temporal focus of these works (Sys and Evol).

4.3. Results 93

The five types of data that, in general, received more attention in the
studies analyzed were:

« Execution traces (28).

Structure (26).

Metrics (24).

Dependencies (15).
Socio-technical relationships (12).

E

It ought to be recalled that 64 works were classified under the rubric
Sys while 38 were classified under the rubric Evol. More specifically, the
three categories classified under the rubric Sys which aroused most interest in
researchers were:

* Execution traces (24).
* Metrics (10).
* Structure (10).

With regard to the Evol category, the three types of data most frequently
used were:

* Structure (16).
x Metrics (14).
% Socio-technical relationships (11).

4.3.2.3 Classification by task, technique and visualization

The purpose of this classification scheme (see table 4.6) is to relate the tasks
with the visualizations and the type of views that were used in the research.
This was done in order to provide indicators about possible visual design
patterns which may be useful in developing new research and design solutions
for the aforementioned tasks.

The name of visualizations in the schemes (in some cases) is a label to
identify a group of the same type of visualization such as, for example, basic
charts and graphs. In the category of basic charts, histograms, bar charts, pie
charts and box plots were included whereas in the case of graphs, directed
indirected and weighted graphs as well as trees were taken into account.
Accordingly, the following visualization types were used by the research works:

Basic charts: This group of visualization types include histograms, bar
charts, pie charts, box plots.

Code browser: A window that displays source code with some basic
navigation elements and color.

94 Chapter 4. Systematic Mapping Study

Code city: A visual representation of project structure and metrics using
the metaphor of a city.

Color lines and map: A group of visual representations that use colored
lines and dots to represent and highlight patterns.

DSM3: A visualization that uses a matrix layout with the names of software
items in rows and columns that show their dependencies with marks in
the intersecting cells.

Hierarchical Edge Bundles (HEB): A radial visualization that
organizes concentric rings according to the project structure and
shows relevant associations with lines which interconnect ring segments.

Events lifeline: A simple visualization that shows where and event began
and when it finished.

Graphs: A family of different types of common graphs used in computer
science.

Heatmap: A green-red scaled color dot matrix representation that show
incidence patterns.

Matrix layout: A visualization that uses a squarified layout with rows,
columns and cells that show details of cells.

Parallel coordinates: A scalable multivariate visualization that shows data
values in the y dimension and relationships to several other variables in
the z dimension.

Parallel node-link: A visualization similar to the parallel coordinates that
shows the name of software elements in the y dimension and name of
data types in the z dimension.

Polymetric views: These show a large number of software items organized
in a tree structure, where the software items are represented by boxes
whose attributes correspond to metrics.

Radial graph: A graph that is depicted using a radial layout.

Software cartography: The vocabulary used during the project evolution
is mapped into layered mountains according to its usage in time.

Stacked chart: Represents data values using a color fill strap with varying
thickness as it is depicted in the z dimension. Straps are piled one on
top of each other.

4.3. Results 95

Sunburst: A visualization technique that depicts hierarchies and shows
details on the lower levels of the hierarchy as elements are selected in
the higher levels.

Tag cloud: This visualization is formed by the vocabulary used during the
software project evolution, where words are sized according to the
frequency of their use.

Timeline: This visualization technique is used to plot events or activities in
a linear fashion according to their temporal properties.

Treemap: A squarified or circular visualization technique used to display the
weights of the elements of a hierarchy or the proportions associated with
variables.

UML variant: This visualizations uses visualization elements that are

present in UML diagrams and additional visual features to create richer
representations.

Others: Some examples are classification bins, dendrogram, DotPlot, organic
visualization, ownership map, icicle plot and tree forest.

The correlation of the types of visualizations listed above with the number
of research works published under the rubrics Fvol and Sys is shown in
Figure 4.10. Accordingly, the five most common type of visualizations are:

« Graphs (45).

Basic charts (17).
Events lifelines (14).
Timelines (12).
Code browser (11).

E

While the three most commonly used visualization types classified under
the rubric Sys were:

x Graphs (32).
« Event lifelines (13).
* Basic charts (8).

The visualizations most commonly used for works classified under the
rubric Evol were the following :

« Graphs (13).
* Basic charts (9).
* Timelines (7).

96

Chapter 4. Systematic Mapping Study

In computer science and software engineering, the use of graphs is common,

and thus programmers are accustomed to their use and interpretation. In
fact, their widespread use (indicated by the results shown in this study) was
predictable.

Basic charts

Code browser

Code city

Color lines and map

DSM

Edge bundles

Events lifeline

Graphs

Heatmap

Matrix layout

Others

Visualizations

Parallel coordinates

Parallel node-link

Polymetric views

Radial graph

Soft. cartography

Stackedchart

Sunburst

Tagcloud

Timelines

Treemap

UML variant

(=3

5 10 15 20 25 30 35
mEvol mSys

Figure 4.10: Correlation of visualization types and the number of papers published
by category (Evol and Sys).

The structure of software systems is like a tree, where the elements are

organized in modules or packages, but also by hierarchical relationships

4.3. Results 97

in terms of inheritance. Formally, a tree structure is a kind of graph.
Additionally, software elements are interrelated: they make use of the
functionality and attributes of other software items. There is thus a naturally
occurring graph of relationships between different software items. In addition,
the same source code forms an implicit graph whose elements transition from
one state to other to originate a finite state machine that is represented by a
graph.

The importance of graphs in general is not restricted to the field of
computational systems. In all the elements that exist in the world created by
humans and nature there exist relationships that usually are depicted using
the visual form of a graph. It is possible, for example, that the person making
a visual representation of a graph by chance on a piece of paper does not
know the technical name for such a representation, but knows how to both
draw and interpret it. Thus, in the field of visualization graphs are useful,
not only for their ability to represent knowledge by means of association and
relationships between elements of diverse types. Moreover, graphs are easy to
understand for which, as has been mentioned, makes them useful to general
users. The use of graphs in the present field of study are diverse. They were
used in the majority of tasks: equally in the case of studies classified under
the rubric Sys as those classified under the rubric Evol.

Basic charts were used to display statistics and metrics. As these graphics
are both simple and well-known, their interpretation is quick and easy thus
satisfying what is expected from a good visual design. In the majority of
cases, this type of chart was used and its use turned out to be appropriate.
The use of more complex visual designs for the type of data which these
charts typically represent may render the process of interpreting information
confusing and complex. The use of this type of visualization was also very
widespread, as the case of graphs, and they were used in work falling into
both of the categories Sys and FEwvol.

The use of Fvent lifelines is dominated by works classified as Sys because
14 works used this representation and 13 fell into the Sys category. The
works which used it made use of dynamic data obtained at runtime and use
was mainly related to the duration of the execution of a task or memory
allocation. The single work that used this visualization and was classified as
FEvol represented an isolated case related to the time associated with changing
the source code of software items.

It should be noted that the works that used data obtained by dynamic
analysis at runtime were classified as Sys because they referred to the
execution of a project revision, which in many cases is the current revision.
However, studies that also used data collected with the application of dynamic
analysis to several project revisions were classified as Fvol.

Systematic Mapping Study

Chapter 4.

‘a8ed)xeu U0 peanuIjuo))

98

"USISOP MOTA-+UOIJRZI[ENSIA-+ POSSAIPPR SR, :9°F J[qR],

[0aH Surepowr
T ¢ sAg pue uSisop arem)jog
T T T T |EC! sisA[eur
9 T 1 1 L € T 4 [¢ s&g UOIMO0Xd WRISOIJ
T T T T [0AH
SISATeue 90URULIONS]
T z € 1 s&S
T T T T [EC stsAeue
sAg UOIINISXS [o[[eIe]
[0AH SISATeUR UOIINIOXD
€ T € T I T ¢ 1 sAg SurpeaayymiN
oAy stsAeur
T T ¢ € T sAg uoryRO0[[R AIOWSIA
[0AH Aanoss
T T T sAg 9poo 921nos aroxduy
T T T T [0Ad Ayirenb
1 Ir T z sAg aremjjos asoxduy
[CC uotsuatpIdurod
T T T [§ T sAg STIR)SAS PAINQLIISI(]
T T T [oAd
smepy uSIsop 10919(]
Tz 84S
< c = wo» oW g v
4 H EEREN AR RS R EE B
S = 5 = ¢ 3 5 & & & <« 4 4 g & g £ © =2 g o o & =2
S, = o 5 & o g 3 5 B = = 2 5 2 = = i © B <
k=B v < 5 5 9 E 8 g = 7z @ T # 2w o — o T o 2
e @ e o]) = 21 & 05} &+ = i — B - 2 =3 =% = = 5
B g & " g 25 2 8 g & ° g £ g < ¢ & =
£ g E o 2 I 8 § ¢ = F : i & 3
a8 ™ = & a = 2 @ 5 5 @
@ i : g B a
= @ R o2 5
& S

99

Results

4.3.

erdnmiy

jueLrea TIN()
sourpowLJ,
pnop 3ef,
Ismqung
YO paxpels
ydeis [erpey

so1jA[RUR [BNSTA
SMITA OLI}PWA[O]

Ayderdojres ')jog

‘o8ed snoraaad woaj panuijuod —

S[ui[-opou [o[rereq

‘uSISop MOIIA|UOIJRZI[ENSIA|PassaIppe ISel, 9°F 9[qel,

S9)RUIPIOOD [o[[eIe]

noAe[XLIJeJ\

ouIeJI] SYULAY

so[punq oa8pH

dew pue ssul] 10[0)

A310 9po)

I9SMOIq dPO))
sqrRYD OISR

od Ay sisAeuy

S9INY09)IYDIR UI)SAS
puejsIopu)

so3ueyd
9IeM)JOS PURISIOPU[)

serouspuadep
puejsiopun)
UOT)RIOQR][0D

pue ssousIeME WE]T,

Surysey weysAg

3uriojoejor wesAg
Surpue)siopun
pue sisA[eue wWo)sAg

Suriesurdus
as1aA81 jr0ddng

uorsuoyaxduod
UI9ISAS0D0 9IeMIJO]

100 Chapter 4. Systematic Mapping Study

Visualizations of the type Code Browser were predominantly used for work
falling into the category Sys (9 out of 11). The use of this visualization (like
those mentioned above) is as diverse as the number of tasks for which it
was used. However, it was generally used to directly inspect the source code
with the support of colors, arrows or symbols which indicate characteristics,
conflicts or problems.

Contrary to what might be expected by simple deduction, Timelines was
used almost equally for works classified in Sys and FEwvol. It was used in
5 cases which fell into the former category and in 7 cases which fell into
the latter. Timelines was used in works classified as Sys to represent data
concerning program execution and events like memory allocation, for a single
revision of a system. This visualization was intended to facilitate navigation
of data obtained from multiple revisions of the system and the time interval
represented often last for months or years, when it was used for works in the
Evol category.

The usefulness of details in table 4.6 could be illustrated with an example of
a simple design for the task Distributed Systems Comprehension. The design
may include Basic charts to present statistics related to memory allocation
or disk writing during the execution of routines. FEwvent lifelines can be used
to represent the duration of each one of these tasks and Graphs to show the
relationships that exist between software elements, and Timelines in order to
show the execution times and allow selective browsing examining execution
intervals which are of interest. The earlier exercise can be performed with
each of the tasks according to the type of knowledge which is sought to be
obtained and the data available (or which was planned to be obtained).

In the context of this thesis, a view is defined as a separate visualization
or a combination of several visualizations which can provide joint results as
they are inter-linked between themselves*.

Taking into consideration the results of the schema in table 4.2, the number
of papers which argue for the use of VA is small, totaling only 5 out of the
149 studies analyzed. Of these 5 works, 4 were classified under the rubric
Philosophical research, and one isolated work was classified under the rubric
Solution proposal (see Table 4.6). This work is associated with the task System
analysis and understanding and was classified under the Fwvol rubric. In this
context, it should be recalled that a desirable element in VA tools is the use
of multiple linked views.

With regard to the types of visualizations employed, 102 works were

4A linked view is a combination of two or more visualizations where the results of
the visualizations are affected by the interaction which the user carried out with the
associated visualizations. The bond or copula between visualizations can be unidirectional
or bidirectional.

4.3. Results 101

classified as Solution proposal and from these, 57 works used Single views,
33 Multiple views and 12 Multiple linked views. The tasks with the highest
number of works that used Multiple views, Multiple linked views were:

« Program execution analysis (13).
* System analysis and understanding (10).
« Multithreading analysis (5).

It draws attention that all the works which seek to support the task
Multithreading execution analysis make use of multiple views (2 research works
of 5 also used the views in a linked fashion). It is also interesting to note that
of the 6 works with two or more views classified as oriented to support the task
System analysis and understanding, 3 works were classified under the rubric
Sys and the other 3 as Ewvol, with one of the latter classified in the category
VA.

4.3.2.4 Classification by visualization and data type

The schema in table 4.7 presents the relationship between visualizations and
data types used by the research works. These relationships allow us to see
the data patterns which the visualizations represent and thus serve as an
orientation in the design of future research or new research tools which support
the process of developing and maintaining software.

Some patterns that can be extracted by analyzing the rows in the
aforementioned table are, for example, those related to Code city, Edge bundles
and Fvent lifelines.

In the case of Code city, it can be observed that it is a useful visualization
which allows the representation of data metrics and project structure for one
or more of the revisions and are thus classified in both the categories Sys and
FEvol. The use of this visualization to represent these data types is natural
because it was designed for this purpose, but the pattern may serve as guidance
for a researcher in the future who is confronted with the problem of the design
of a tool without detailed knowledge of the field.

HEB is useful to represent the structure and dependencies between
software items, as well as execution traces, software item relationships, and
the presence of code clones in software items. The use of Edge bundles to
represent dependencies between elements may be obvious to a specialist in
the area, but its use in the detection of code clones is not so obvious at first
glance. In the case of code clones, the visualization is useful in indicating
elements where the same fragment of code is copied. Furthermore, it displays
the relationships between the software items that contain code clones, if such
relations do in fact exist.

102

Chapter 4. Systematic Mapping Study

Table 4.7: Visualization-+data used.

Data elements represented

S19Y10

ooueuriojrod
pue peos[IoA\

sureaderp TN
Are[nqesop

elep Su)sa],
2IN3ONIIS

SuoI[s 9poo 90In0g

se8ueyd 9p0od 22IN0Y

sdiysuorje[ax
[BOIU093-0100G

erepeoN JNDS
SOLII_IN

uoryedo[[e AIOWSTA
Surpdnoo 1esr8ory
sdrysuorje[or we)y
S9OBI} UOTINIOXY
serouspuada(]
SOINIONIYS BYe(]
S[rejop MO} eye(]
Surdno)

s[ews apoy)

SOUO[D 9pO))
Ayorerary sser)
sonsst Sunpoer) Sng

SYI0M JO I9qUINN

odAy sisAeuy

Visualizations

8
9 3

Sys
Evol

Basic charts

9
2

Sys
Evol
Sys

Code browser

3
4
6
1

Evol

Code city

1

Sys
Evol
Sys

Color lines and map

3
4
4

Evol
Sys
Evol

Edge bundles

DSM

13
1

Evol

Sys
Sys

Event lifelines

11

32
13

Evol
Sys

Graphs

1
1

Evol

Heatmap

Sys
Evol
Sys

Matrix layout

1
1

Evol

Parallel coordinates

2

Sys
Evol

Parallel node-link

Continued on next page.

4.3.

Results

103

Table 4.7 Visualization+data used — continued from previous page.

Data elements represented

S19Y10

ooueurIoyrod
pue pPeO[[IOAA

surei8erp TN
Arenqesopn

eyep 3ur)sa],
2IN3ONI)G

SuroI[s 9pod 290Ino0g

So8ueTD 9p0d 92IN0G

sdiysuorje[ax
[OTUY093-0100g

erepedN INDS
SOLIY_IN

uoryeO0[[e AIOUWISIA
Surpdnoo [esr8ory
sdrysuorje[or wo)y
S9ORI) UOTINOIXY
serouspuada(]
SOINONIYS BYe(]
S[rejop MO} eye(]
Burdnop

s[eus apoy)

SOUO[D 9pO))
Ayorerary sse)
sonsst Sumnpoer) Sng

SYIOM JO IoquunN

odAy sisAeuy

Visualizations

2
3

Sys
Evol

Polymetric views

1
2

Sys
Evol

Radial graph

2

Sys
Evol

Software cartography

2
3
2
1

Sys
Evol

Stacked chart

Sys
Evol

Sunburst

4

Sys
Evol

Tag cloud

1

5
7

Sys
Evol

Timelines

2
4

Sys
Evol

Treemap

Sys
Evol

UML diagrams
Other

Sys

Cartesian and radial

icicle plot

1

Evol

1

Sys
Evol

Class blueprint

s
Evol

Data flow chart

Continued on next page.

104 Chapter 4. Systematic Mapping Study

S0 —_

ooueurIoyrod
pue pPeO[s[IoAA

surei8erp TN

Arenqesopn

elep 3ur)sa],
2IN3ONI)G —

SuroI[s 9pod 90Ino0g

SoSueTD 9p0d 92IN0G

sdiysuorje[ax
[E21UY293-01505 — —

BIBPRIPIN INOS —
SOLIJOIN —
uoIyedo[[e AIOWSIA —
Suridnoo eoi8or] —

sdrysuorje[or we)y

Data elements represented

S90RI) UOTINIIXH —
serouspuada(]
SOINONIYS BYe(]
S[rejep MO} eye(]
Surdnop
s[[eus apoy) —
SOUO[D 9pO))

Ayorerory sse)

Table 4.7 Visualization+data used — continued from previous page.

sonsst Sunpoer) Sng

SYIOM JO IoquunN - = — = — = = ~
m O m O w O w9 w9 w9 mw O m O
od Ay sisATeu R - T
PSEARLY R PR AR TR AR R AR &
=)
.2
g g 5 g %
o =) < g
pet g g B 5 g
5] & = a 5 g %
N = =1 > = = - 5]
& . o o < > g8 =
— o o= 9 n = N 3
[= 9 g g = w 2= &
e < 2 = 3 g = E® o
7] =1 < o Q0 ¢ £ 3 bl
& @ Q > 2 B § 5.2 =
> A A m O O wwnd H

4.3. Results 105

Fuvent lifelines is mainly used in the context of analysis of the execution of
a program and the allocation of memory to tasks. This type of visualization
is thus associated with execution traces and memory allocation, and most
research papers were classified in the category Sys. However, this kind of
visualization can also be used to indicate the duration of any event or task,
in a form similar to that of Gantt charts.

In this scheme it can be noted that the use of Graphs has special relevance.
As had been mentioned in Section 4.3.2.3 a large number of works make
use of Graphs because of their ability to represent knowledge in terms of
relationships and partnerships. This makes it inevitable that they are used
to represent various data types about whose elements it is sought to extract
details about their relationships and interactions. In the corresponding row
for Graphs in the scheme (see table 4.7), it can observed that they were used
in the representation of most of the data types which were used in the works
that were studied.

Therefore, when analyzing the row corresponding to Graphs, it is not
possible to observe a clear pattern about their use with certain types of data.
However, their flexibility with regard to the representation of different data
types must be emphasized. A similar case is that of Basic charts, which are
used to represent various classes of statistical and quantitative data, which
makes it difficult to discern a clear usage pattern in the representation of
specific data types.

The approach used in the preceding discussion permits the extraction
of patterns with regard to the visualizations and the data types that they
represent, using as a reference the rows of she schema. However, if the
columns and data types are used as a reference it is possible to identify the
visualizations that are useful to represent a particular data type. An example
is the representation of the data related to the project structure, which
can be represented by Code city, DSM, Edge bundles, Graphs, Heatmaps,
Matriz layout, Radial graph, Sunburst and Treemap. The use of any of these
representations will depend on the variables related to the structure that the
tool designer seeks to represent. To represent the structure and metrics Clity
code can be used. To represent the structure and dependency between the
elements DSM and Edge bundles, for example, are useful.

It is thus possible to extract a large number of patterns from this scheme
(in table 4.7) about the types of data that can be represented by a single
visualization and the visualizations that can represent a particular data type.

106 Chapter 4. Systematic Mapping Study

4.4 Discussion

It is important to note that the identification of tasks on the basis of the
contents of the work was not a straightforward process because a large number
of the research works did not clearly state the problem they sought to resolve,
nor the goals and objectives they sought to pursue. Similarly, many woks
did not describe the data used nor how the data were represented by the
visualizations they used.

This occurs not only with tasks, but also with visualizations. A
large number of papers do not describe the characteristics of displays
adequately or provide clear information about the possibilities of interaction
or the opportunities they offer to facilitate the discovery of knowledge.
These problems extend to the description of the interaction between the
visualizations (when multiple visualizations are used) and only in a few cases
do the papers explain whether the visualizations are linked. Given these
limitations, it was not possible to determine with clarity in the case of
a significant number of research works whether the visualizations operated
separately or together.

This lack of information led, in many cases, to the deduction of some
important elements of the work as objectives, goals and the tasks that it
sought to support, because these were not enunciated in an explicit manner.
This could have led, eventually, (in the more ambiguous cases) to a situation
in which the clear identification of what a research work seeks to support or
resolve could have been carried out with little precision.

According to the analysis conducted, 23 studies support two or more
tasks and some of the tasks identified were designated as only secondary
tasks. As a result, these tasks were not included in any of the schemas that
have been discussed with the aim of making more precise comparisons and
quantifications although the complete list of tasks is shown in section 4.2.4.

The majority of the primary tasks were undertaken by works classified in
both the category Sys and Ewvol. However, some tasks only support works
in one of these categories. Thus tasks have been divided into two groups
in order to analyze them in more detail. These groups were made up with
those tasks that support research works under the rubric Sys and those which
support research under the Fwvol category. Consequently, the first group
is comprised by 6 tasks and the second group by only one task (Software
ecosystem comprehension). The tasks in the former group are the following:

1. Distributed systems comprehension.
2. Improve source code security.
3. Memory allocation analysis.

4.4. Discussion 107

4. Multithreading execution analysis.
5. Software design and modeling.
6. Understand dependencies.

It is important to remark that tasks 1, 3, and 4 from the above list used
data obtained at runtime. The aim of these tasks is to find defects and
facilitate the realization of improvements based on the data produced when a
given revision is used as the base for running the software project. Moreover,
the classification of these tasks in this group seems natural because of the
characteristics involved in the real-time execution of a system (the execution
of the current version), but the classification of other tasks in the category
Sys is not so obvious. Finally, this may be an indication that these tasks need
to be studied using an evolutionary approach to determine if different results
may be obtained to improve their contribution to the process of developing
and maintaining software.

Most of the works that are sought to support Performance analysis and
Program execution analysis felt into the category Sys, although each one of
these tasks is supported by a work which falls into the category Fwol; this
implied the analysis of data obtained during the execution of the system for
a given number of revisions in a limited period of time. These exceptions are
striking because are inline with the above regarding the use of dynamic data
for studying the evolution of the system.

With regard to the second group, Software ecosystem comprehension
is supported by works in the category FEwvol and is aimed to facilitate
understanding of the relationships between projects that are located in a
software repository, as well as the interactions of programmers with projects.
Other tasks which mostly are supported by research works under the FEwvol
category are Team awareness and collaboration, and Understand system
architectures, although a few number of works in the rubric Sys also supported
them. The task Team awareness and collaboration has as its aim the study of
awareness levels of team members and the intensity of collaboration between
them, ideally over a significant time period. Meanwhile, the task Understand
system architectures aims to understand the changes that have taken place
in an architecture during the several revisions which have taken place over a
period of time.

The results obtained demonstrate that the use of VA to support the process
of software development and maintenance is very limited. Of the 149 studies
analyzed, only 5 made use of VA while 144 works make use of SV and Software
Evolution Visualization (SEV). Of these 5 papers, 4 papers were sub-classified
in the category Philosophical research and were in turn then classified in the
categories Sys and Fwvol, with 2 works classified in each of those categories.

108 Chapter 4. Systematic Mapping Study

These results suggest that the application of VA is still undergoing a process
of evolution at both the theoretical and methodological levels.

With regard to the visualizations, work classified in the Sys and FEwvol
categories did not demonstrate any particular preference for a visualization,
except in very specific cases where the visualization was originally designed
to support one of these categories and then began to be used to support the
other. Among the specific cases which may be mentioned are, in the case of
the category Sys: DSM, Matrixz Layout and some variants of UML. There were
special cases whose visualization design was intended for works classified in
the Fvol category including: Code city, Software cartography and Timelines.

The pattern that has been analyzed up to now is similar to that which
the data used for the works follows. Some data types are used both for works
in the category Sys and works in the category Ewvol, but there are also types
of data which are exclusively used for one category or the other. However, it
is interesting to note that when the number of data types for each category
is accounted the difference in the use between one category and the other is
minimal, even though the number of research works in the category Sys is
greater than the number of those classified in the category Evol. This pattern
can be explained by the fact that visual representations which facilitate the
understanding of the evolution of software projects, seek to provide a greater
number of details in order to permit comparisons between revisions of the
system or show relationships. Therefore, research works in the Evol category
represent a higher number of data types.

According to the results obtained there are tasks that are supported by
works classified in both in the categories Sys and Fvol, but there are also tasks
that are supported by works from just one of these categories. Similarly, some
visualizations and data are used by research in both categories, but in some
cases they are only used by works falling into one or the other category (Sys
and Evol).

This opens many possibilities which could lead to the exploration of better
results thus supporting the process of software development and maintenance
by extrapolating the use of elements that support one of both approaches (Sys
and Ewvol). As a concrete example, the first group of tasks (listed above) could
be employed more broadly to analyze the behavior of the project at runtime
for a given number of revisions or a reasonable period of time. This could be
used to calculate metrics which permit more precise knowledge to be applied
in order to make specific improvements as the project evolves. It is worth
recalling that one of the principal objectives of software project evolution is
to ensure maintainability.

4.5. Conclusions 109

4.5 Conclusions

This research conducted the analysis of 149 research papers. 47 of which
were classified in the category Philosophical Research (18 under Sys and 29
under Ewol) and 102 were classified in the category Solution Proposal (64
under Sys and Fwvol). The results obtained were exhaustively discussed and
widely disseminated. The questions posed at the beginning of the research
were answered satisfactorily.

In general, the study allowed to become more fully aware of how
visualization and VA are used to support the development and maintenance
of software systems by taking into account the following:

Details of the tasks that were supported by the research.

The visualizations that were used to support these tasks.

The data types that were represented visually.

The mapping between the types of data and the visualizations.

The technologies employed by these works in the solutions proposed.
The different criteria of validation employed

The use of Single, Multiple and Multiple linked views.

N Ot W e

It is worth to mention that the results allowed to answer progressively to
the first 6 research questions formulated in section 4.2.1. Regarding research
question 7, the results showed that the use of Single views, Multiple views and
Multiple linked views is proportionally distributed for works falling into the Sys
and FEwvol categories. Although from the results it was possible to ascertain
that the visualizations used by the works in the FEwvol category represent a
greater number of elements, in accordance with the number of data types used
by the scheme in Table 4.5. This could allow to further argue that research
in the Fwvol category requires the representation of data and relationships of
greater complexity and therefore the use of more sophisticated techniques,
as Multiple linked views. However, the results are clear and lead to the
conclusion that the research works studied do not showed notable differences
in the pattern of use of the views to indicate whether either category (Sys
or Fvol) makes a predominant usage of a particular type of view. Thus, this
results could be showing that there is margin to improve the results of the
research works in the Fvol category with the use of Multiple linked views and
further, with the use of VA principles.

This research has yielded a large number of interesting results, as can be
observed in the schemes that have been presented. Some of these results may
be details which were expected to be found, but in many others cases they
are not, and they reveal patterns which can be used for the design of new
research and tools. A critical analysis of the schemes, allows questions to be

110 Chapter 4. Systematic Mapping Study

raised about the areas that still have not been the subject of research and
also into modifying the focus of research in order to obtain additional results
that may eventually lead to better solutions. Furthermore, by studying the
classification schemes, it can be observed areas that could be extrapolated
from one category to another, speaking in terms of the classification of works
as Sys or Fvol, in order to find new ways of using established techniques and
methods that have been tested on a closely related field.

It is worth noting that not all the information presented in these schemes
has been analyzed in this work; for reasons of time, space and the author’s
own biases, leaving, therefore, many details that have to be analyzed by the
readers themselves.

In this context, reference must be made to the work of Lima et
al. [Novais 2013]. This work consists of a systematic mapping study of SEV
and suggests that the number of published papers decreased in recent years.
Those results contrast with the ones obtained in this research with regard to
the application of SEV to software systems. This is because in this research
the number of publications published per year does not show a pattern which
allows to arrive to the same conclusions of that earlier study. In this regard,
it is appropriate to emphasize that the methodology used in the study was
carried out by Lima et al. differs from the methodology employed in this
study. Furthermore, the work done by Lima et al. examined studies were
published up to 2011 and the sources of the research works studied are different
from those used in this research.

Based on the results of this study and those presented by the work done by
Lima et al., concern arises as to the manner in which the results of research
of visualization and VA to support software development and maintenance
are being used in practice by internal software development departments
and the software industry. In this context, it deserves special attention the
dissemination and transfer of research results to industry in order to improve
their processes and thereafter provide feedback to help improve the quality
of the research being carried out. Accordingly, the following question, which
will be addressed in the next chapter, is posed:

How are software companies and software development departments using
visual tools to facilitate software development and maintenance?

CHAPTER 5
Understanding system
architectures

Giindy se quedo desconcertado. Al cabo de un rato se dio cuenta
que Cucho no estaba, se habia marchado por uno de los caminos y

lo siguio. Mads adelante se encontro con un hombre llamado
Rastin, al cual prequnto

";a donde conduce este camino?”. "He

acompanado a varios hasta al final de este camino y cada uno ha
llegado a un lugar distinto”, respondio.. — El viaje de Giiindy,

A .Gonzélez

Contents
5.1 Introduction 00000 .. 112
5.2 Architecture Visualization 114
5.2.1 City Metaphors, 114
5.2.2 Treemaps o 116
5.2.3 Grid Based Designs. 120
5.2.4 Node-link Diagrams 123
5.2.5 3D Visualization 124
5.2.6 Polymetric Views 125
5.2.7 Circular Visualizations 129
5.3 Architecture Evolution Visualization 130
5.3.1 City Metaphors 130
5.3.2 Grid Based Designs 134
5.3.3 Animation L 134
5.3.4 Software Cartography 138
535 Graphs 140
5.3.6 Radial Visualizations 140

5.4 Discussion and Conclusions 142

112 Chapter 5. Understanding system architectures

5.1 Introduction

The architecture of a software system is designed to display an abstract view of
the system and its design can be perceived as a number of layers with different
levels of detail. The level of detail of each layer depends on the purpose of
the system architecture, its requirements and the environment in which the
system will function.

A high-level architecture is useful in communicating an overview to
managers, project managers and users, while a low-level architecture is used to
guide the detailed design of the system and programmers when they have not
yet been familiarized with the system [Kazman 1996|, to show, for example,
information about the relationships between the software items [Balzer 2005al
and data structures used.

Given this, it is possible to make different architecture designs for the
system according to its purpose. This research adopts the definition provided
by Bass et al. [Bass 2003| with regard to the architecture of a software system:

The software architecture of a program or computing system is the
structure or structures of the system, which is comprised of software
elements, the externally visible properties of those elements, and the
relationships among them.

It is noteworthy that on the basis of the architecture it is possible to
understand how a system is organized in terms of: software modularity;
components; relationships between components; data structures; access to
data; physical distribution of the system components on servers and user

computers.
Modern software systems are developed using object-oriented languages
and consist of thousands of entities [Balzer 2005al. Therefore, the

architectures of such systems are organized using hierarchical structures
(packages, classes, methods and attributes), which sometimes exceeds 20
levels, to adequately reflect their organization. Thus, this research is based
on the analysis of software systems developed within the object-oriented
programming paradigm and takes into account that for their comprehension
information at different abstraction levels is required.

Another consideration regarding the system architecture is that the
software quality assurance process uses metrics to measure the architecture
elements (e.g., size, complexity, dependencies and relationships), and that
the particular objective of evolution metrics is to allow the comparison and
evolution of the quality taking into account several revisions or time periods.

Ball and Eick assert that the three properties of software systems that can
be visualized are the structure, runtime behavior and source code [Ball 1996].

5.1. Introduction 113

However, in order to understand the processes of SDME surrounding a system
it is necessary to be aware of other relevant aspects such as the socio-technical
relationships that arise from the interaction of programmers with system
elements (e.g., to be aware which elements have been modified by each
particular programmer), the volume of contributions made by programmers,
the relationships that have been established between them, reported errors
and their relationship to system elements.

In accordance with the above, it should be remembered that the tasks
which received more attention in the results of the systematic mapping
study presented in chapter 4 were Understand system architectures and Team
awareness and collaboration. The research works which sought to support
these tasks gave attention to the types of data and visualizations presented in
tables 5.1 and 5.2. Research works that support both tasks have made use
of most data types which are shown in those tables.

Table 5.1: Data elements of software systems used in the tasks (a) Understand
system architectures and (b) Team awareness and collaboration.

Software architecture elements a|b
Coupling and logical coupling X
Code clones X
Dependencies X | x
Execution traces X
Metrics X | X
SCM metadata (contributions and collaboration) X
Software item relationships (inheritance and interface

implementation) |
Structure X | x
Socio-technical relationships X
Source code changes X | x
Vocabulary X | X

The results shown in table 5.1 and the obtained by Khan et al. [Khan 2012]
outline that the architectural elements that are most commonly visualized,
taking into account one or more revisions of the system, are the following;:

x Coupling and logical coupling.

« Dependencies and relations among software items (e.g., inheritance and
interface implementation).

Metrics and evolution metrics.

Structure and changes in the structure.

Vocabulary.

* X X

114 Chapter 5. Understanding system architectures

Table 5.2: Visualization techniques used for the tasks supported by research works:
(a) Understand system architectures and (b) Team awareness and collaboration.

Visualizations alb
Basic charts X | X
Code browsers X
Code city metaphors X
Edge bundles X | X
Graphs (including radial graphs, hyperbolic tree and cone tree

layouts) |
Heatmaps X
Iciplots b
Matrix layouts (including Dependency Structure Matrix (DSM) X
Parallel node-link

Polymetric views X
Software cartography X | x
Sunburst X
Tag clouds X
Timelines X
Treemaps (including Voronoi and circular treemaps) X

Consequently, this chapter and the next discuss the most relevant research
works which seek to support the tasks Understand system architectures and
Team awareness and collaboration. However, additionally other important
publications which are related to the above tasks are also studied in order
to provide a better picture of the state of the art of the research focused
on supporting these tasks. Therefore, the following sections are devoted
to review in detail the visual representation of the architecture of software
systems. Accordingly, section 5.2 is focused in analyzing research works
devoted to the visualization of the architecture of software systems for a single
revision, whereas section 5.3 is committed to study research conducted on the
representation of the evolution of the architecture of software systems.

5.2 Architecture Visualization

5.2.1 City Metaphors

The use of city metaphors has become popular in the visualization of software
in recent years, after Panas et al. proposed their use to represent the
architecture of software systems [Panas 2003, Panas 2005]. It should be noted
that this research refers to this type of visualizations using the term software
cities.

5.2. Architecture Visualization 115

Figure 5.1: Visualization using a city metaphor [Wettel 2007, Wettel 2008a). (a)
Use of levels to represent the elements contained by other elements. (b) Visual
representation of the methods in a class using brick figures. (c) Visualization of a
complete software project.

The way how the software city representation is implemented differ
between researchers and research groups. For example, Panas et al. represent
a package making use of the full visualization and they use the districts to
represent the classes, and the buildings to depict methods. While the research
conducted by Wettel and Lanza use the districts and sub-districts to represent
packages and sub-packages, the buildings to depict software items (classes and
interfaces) and bricks to represent the methods [Wettel 2007, Wettel 2008a].

In general, these approaches use the height, width, and color of the
buildings to represent different types of metrics associated to software items.
Regarding the structure, the approach used by Panas et al. differs from the
one used by Wettel and Lanza only in that the former represents a package
while the latter represents the entire system. So that the visual structure of
the approach used by Panas et al. begins with the representation of the
sub-packages, while the approach used by Wettel and Lanza begins with
the visualization of the packages in the first level of the system. Thus in
the first approach, districts (sub-packages) and blocks (software items) are
branches of the tree, while the buildings (methods) are the leaves; while in the
latter approach the districts (packages), sub-districts (sub-packages), blocks
(sub-packages of the last level) and buildings (software items) are branches of
the tree, and the bricks (methods) are the leaves.

The implementation carried out by Wettel and Lanza of the software city

116 Chapter 5. Understanding system architectures

metaphor highlights the hierarchical order of the districts, sub-districts and
blocks using elevations, where the highest elevation represents the elements
that are found closest to the leaves on the tree structure. Figure 5.1 (a)
shows the use of levels to represent the hierarchical order of the software items
in a system (sub-packages that are part of other packages or sub-packages);
Figure 5.1 (b) illustrates the depiction of class methods and Figure 5.1 (c)
shows the complete representation of a software system.

The main advantages of the software city are the scalability and ability to
visualize the structure and metrics of large-scale software systems. This type
of visualization also provides valuable information at a glance and permits
the exploration and acquisition of additional details by using interaction
techniques.

It is relevant to note that a large number of research papers have introduced
additional variants of the software city metaphor which have been standalone
implementations mostly developed in Java. The research work done by
Limberger et al. |[Limberger 2013| used web technologies to develop a tool
that implements this visual metaphor. The use of web technology has the
advantage that the resulting tool is hardware independent and only requires
a supported Internet browser.

It is also worth noting that software city visualizations can represent any
kind of hierarchical structure. So, it is a representation that can be used to
visualize any software system developed with a language that has this kind of
structure.

A research work carried out by Bentrand and Melasti [Bentrad 2013| shows
the potential of this type of visualization to represent the elements of a
software system developed with AspectJ, an aspect oriented language which
also is based on hierarchical structure. Such research proposes a tool that
is integrated into Eclipse as a plugin and uses the software city metaphor to
visualize the structure of a system as follows: the packages are represented
as districts, and the aspects and software items are represented as buildings.
Like other implementations of software city metaphors, the width, height and
color of the buildings are used for the representation of metrics.

5.2.2 Treemaps

Modern programming languages impose a hierarchical structure to the
architecture of software systems, which could successfully be represented
using treemaps, taking into account the hierarchical nature of such
visualizations [Johnson 1991|. Accordingly, Baker and Eick |[Baker 1995]
implemented SeeSys, a tool that is based on a treemap representation to
depict metrics associated to software items.

5.2. Architecture Visualization 117

In this visualization the size of nodes is proportional to the value of the
metric associated to the software elements in the system structure. A similar
visualization was designed by Balzar and Deussen |Balzer 2005b] to represent,
making a better use of the visualization, the structure and metrics of software
systems using Voronoi tessellations (see Figure 5.2).

Voronoi tessellations [Balzer 2005b].

An interesting design that makes use of a treemap
representation |Garcia 2009b] was carried out as part of this research
(see Figure 5.3). The aim of such design is to disclose system details such as
structure, class relationships, class coupling, class level metrics and source
code.

Understanding system architectures

Chapter 5.

118

'[4600z epIeD] (soinqinye
puR SpOYjoUW ‘SOLIjOW JUIPN[OUI) S[IRIOP WD) OIeMIJOS PUR ‘OINJONI)S WOISAS o) Jo uoljejuosordol [emsip :g'G oInSiq
7

[n]

=l

@ ®‘ “vanyiond ‘o ‘ZBlecedgensasar se s = Wnses soRdgENy

II:I\EEI

}Heoede soadgency

=
2

i

nu = 1

oo |
o fafs B
ooog
“aipe ‘earyiod ‘owd ‘zblacedgensasar sie snal = Wnsa soedgsy ooog (anajed anajediojog)analeqiojomas ploa ayqnd
CQO_&_w_umv_O.;wwwmw._O 1{eveds soedgsnoy — (Jsvnab speyaniea aiand

(Juopdasax3apapoddngioNaucia sMoiL ()auos 12algo angnd
(Jepoayseyu aand

(anjex ajgnoplanjepwnwiulplas ploa algnd
{1sBuexisnipyoine pioa agnd

AL

iDoooo
(I [/}
| N EV T E

© .xll.lll 11
(e

Q

o

Q

o
1IN

308D a4anop ‘76 ZSORKBIDIMEID SKaNop Saand

“ebipe ‘earviond ‘woud ‘ZBleoedgenasaer sue sail = Unsed eoedgsioy| O O F {101d 10|dinoluos)ainbyuca poa angnd D D
} {aveds soedg | 21gnd 1alqo||==1 (SIXE SIXYan|eA)siyas ploa aignd D _H_
2 | | {[go1o8lgo)sienba uesjooq aygnd
E mm ﬁ _D=D= (anjea ajgnop)anieAWNWIXE)as poa ognd D _H_
1 i olgnd ON EE Ey1ab eaiyIegIo|00 = Z4 9|qno)
*36p2 ‘parviod ‘owd ‘ZB)a0pdgaNIa5aI"BIE SRl = WNS3) B0RgEIY ‘NQ _‘ ‘mm c ; | 9 | smysquny _m _m 0s :ﬁﬁuﬁwo omm<cjm‘sm.,c ° mfw_ Dm_wsﬂ.
i =1 5 E -
1 (aveds aomdgsnoy| u M 1 M 3 ET00T (eneazupisl | heseleqiabold = Zuiw signop
()apooino 9Bp e = E] H H OE=O 0=SSINAOIHL HYEHOTOD LINY430 W U 3es Jignd
()sjenba “sarviond QzeibuRlooy — = —= 3 =ara (20pa "BeyIEgI0[0D XX|BNEAC L JZEAE] SIXE'SIY} = #N[EA S|gNop
(Jsuieyuoo “Jord 1014 ‘7B 7 SoMEID)20Rdga AEER oEdgsod 9and| I\ w 7 u m M E SSIN’OHL HYEH0T10D LINVAIA = S50 LIEGI00D Jun epeaud
(nooupos [H 3 E 3 = {abpa ‘BayEIED)SSAUNAIYLIEESIEIND|ED = SSAUNDIYL Slanop D _H_
‘abipa abpgerbuioay ‘EelvEIED OZEEEIDoY = —= —= = OO OE] o0r0= 1NGoy34 SSINMOIHL HYBSO0TI00 1 NV30 S0000 fEuy JEIs wand
(Jiojeseyyedieh O k| =l N oooE (Jauop1adns (1eg1000) = BUO[JEGIOGD - _U
(Juowneyeass o6 1o 18 oo 01 QZBBUEL IS 3 3 : =Y (Je%on51a6 2B = PaAESaN0US BH0IS | |—
s s T — 3 1 3 i | e vmones oo LI
(Jaurjsioessapl I a4 3 = O0O0) ysoegsseuyon segiops s . (Hubepielesnod =ynses wnjes
: : ISYITYLINY AZN SiHBUuepusy i Bu0uag126 76 = semvive 192k0) = ﬂ ¢ E EOO0O 00 = ybua| ajgnop
CCEmEEE } (6= abpgebueisay || =5 = H\ _ 1Inu = sya|edio|oa aya|edio|on aeaud E _H_
oWEl{1as < 3 3 p: 1
4 2 gz Buelpey ‘76 QzZsIIydelnuegiojoDMEID PIOA D] p— 3 3 E 7 (1ogeilspyIaquInN Mau = € SXY.aqUINN
(Jagspunogjeb I = - E = = —an [INU = 3EJS JBISSIY
()sj0siaul oneoon s sboe Uk i — e 7= dYOUILNO LTNVA30 1l [2uy aness oijand E _H_
(Juonoasiajujajeala Ho < sssuxomLegIcos sl § = =— —= oEEE (go (Jegiojog) = jeyy Jegiojen
(}apopysey 5603 “BEAEIEP)SSAUOALEGSIENORES = SSSUNONL SNOP == IEE 00 (Janiepzxepat (1asejeqabiold = Zxew sjgnop
mTaana () 186 BRIYIEGI0I00 = XX B]QNOD
e Inu = easgIEgL0100 gz Bueloay
— O 1 (spa &Euhﬁ_ﬁm ‘Banypanasa) QrebuEIssy mmc .Vmc m N .V P u__n_za m _\ N E ﬁ eanod jo ey ayew ynejap f 0 = yiuauegIo0 W ajensd
1HON LNG onEls euy aygnd . L o d WOFSOP (ONISVITYINY AT ShaHBuuspusluHOuepuay e 26 = senvive 1980
g ‘Basvelep Qzeiuelosy ‘wanviod grebueisay I Bl
n_o.r|.50 anels [euy oyqnd {36pa 'B3I/EIED|EEAUNONLISPIIEOMES = SESUNINL NP ! . .v m Om m O —\ D D E (haebeanyiegiojos = LA sjgnop
WOLLOE 10 aness feuy ojand i eemmgenaeenes | B0 b 8670 alignd = [1eqalolo
1437 Lno onels euy oygnd [— E — 0 E=E=Q m _ O
m } labpa ‘BRI PAAIDSI O =3 = =1l J@ J@
D Nm _ u mﬂ.omm ‘eanyelep grsibueissy ‘eaniod gzsibuelosy —3 Em—T -E

1 = EsnymgoRD Q7eUElDsy

} (s6ps abpgerbue)dsy ‘marypasss) QzebuEldsy

‘eaIyEIEp ‘vauynio|d - : m - O mm
,aﬂﬂu agnop ‘76 ann_ﬁméx,m.nv ‘Sygnop Jggnd O O O O nz_n_:&

%
EIEIDl

b, [il !
Ll
il
=
il

[
L]

BEIS SINY

a
a

" h 10lq0

legiojod — eno01 | aNooT |Lnonwd | NiNw4 sagp | ssesoe [seadod | spoyjaw | ssep

g [3A3] 01 E T prsjwoiy [oeap [|woress sioj0) suondg sansadolg

|

£/

o 3

5.2. Architecture Visualization 119

The visualization proposed by Garcia et al. makes wuse of
interaction techniques to support navigation, interpretation of visual
elements and understanding relationships among data elements in their full
context [Leung 1994a]. The user, by means of interaction techniques, can
filter, transform, browse and discover relationships, as well as inspect relevant
source code fragments and obtain insight of their relationships and coupling.
The data used was extracted from SCM tool repositories.

This visualization represents the hierarchy of classes, so the classes
and their parents are shown for inspection and analysis on the integrated
representation view (the treemap) as well as class level metrics and source
code. The visualization is conformed by four visual representations that are
layout from left to right in Figure 5.3 and are used to carry out analysis tasks
according to the following:

1. The system is loaded using information from a particular package or the
complete system, according to user selection, and displays a treemap
with the inheritance structure of the system or package.

2. The user selects a package from the treemap and the classes it contains
are displayed on a table lens that shows the values of the metrics for
each class.

3. Then, the user selects a class from the table lens and its content
(methods and attributes) is displayed by a browser of objects.

4. Finally, the user selects methods or attributes from the browser of
objects to review their content in an auxiliary view.

Moreover, this visualization tool offers the possibility to locate a specific
class using the search engine included or browsing the visual elements on the
treemap and the table lens representations. The selections made by the user
can be done using as reference the inheritance relationships or the values of
the metrics that are displayed in the table lens.

A common problem that is faced when designing a visualization tool is
the small space to represent a large amount of data and details, which is
accentuated when it is required to represent the structure and relationships
between component of large systems. Zhao et al. designed a hybrid
visualization that combines the use of trees and treemaps (see Figure 5.4) with
interaction techniques for browsing and knowledge discovery in hierarchical
structures [Zhao 2005]. The concept presented in this paper coincided with
the research made by Balzer and Deussen concerned with the use of a hybrid
structure that consists of a graph and treemaps [Balzer 2005a] (see Figure 5.5).

120 Chapter 5. Understanding system architectures

E
|
——";’ G
' J
F
K
A4 H L
“ M

Figure 5.4: Hybrid visualization that combines the use of a conventional tree and
treemaps [Zhao 2005].

The visualization proposed by Zhao et al. uses graphs to represent the
relationships (e.g., inheritance) between the software items that make up the
system. In this visualization nodes represent packages whereas edges depict
the relationships between packages. The size of nodes indicates the degree
of connectivity of the element with other elements, while the width of edges
indicate the number of relationships between the software items of the involved
packages.

The paper published by Balzer and Deussen [Balzer 2005a| does not discuss
details of the interaction possibilities that are offered by the visualization, but
this representation could be further improve to obtain greater detail of the
relationship between software elements in the lower levels of the hierarchy if
the concepts discussed in the research presented by Zhao et al. are applied.

5.2.3 Grid Based Designs

The visualizations based on grid layouts have been used broadly to represent
the structure of systems because of their scalability capabilities and ease of

5.2. Architecture Visualization 121

sunw

Figure 5.5: Top level view of the relationships among packages in JDK 1.4.2 using
a hybrid visualization that combines a graph and treemaps [Balzer 2005a].

understanding. Sangal et al. [Sangal 2005] propose Lattix, a tool that extracts
the dependencies between software items from the source code using static
analysis and a DSM representation as a visualization method.

The method used by Lattix consists of placing the same software items
(e.g., packages and classes) in the rows as well as in the columns of the grid.
It creates a numbered list using as a reference the placement of the software
items in the rows and then takes the resulting list of numbers to enumerate
the column headings of the corresponding software items. This correlation
creates the cells of the grid, as elements in the rows and columns intersect.
Therefore, the dependency between two software items is shown in the cell
corresponding to the intersection between those items. Figure 5.6 (a) shows
the dependency between software marking a X in the appropriate cell.

122 Chapter 5. Understanding system architectures

The hierarchy of system structure (packages and software items) is
represented using a variable number of columns which depends on the number
of levels of the depth of the tree structure: each column is used to locate
elements corresponding to the hierarchy level as shown in Figure 5.6 (b). The
tree structure can expand and contract according to user needs and according
to screen space. When the visualization is representing the structure at
package-level, this indicates the number of dependencies between packages,
as can be seen in Figure 5.6 (b). However, when the structure has been
expanded up to the last level of the hierarchy, the values of the dependencies
between software items will be equal to 1, as can be observed in Figure 5.6 (c),
because the dependency relation has been formed between atomic elements of
the system.

i

Projeiiizs T

(a) Projareipatar B
1 [Project 8

[+] semvicas 1

1]2]3]a] W TIEEEEEEEE - [(-EEREREL-
Task A 1 X[x| [El - Ol W E EETTT i
3 H AE 7 1 2 a v B
Task B 2 S X & F| - pstumvnressacamanagsr 3 : 1 1 = =1
Task C 3| x L% 2 | DetwiboriaaceContes 4 1 g i =
7 & | Partonar 5 1 =
Task D 4 - Project_nader 1
1
1

|+ senvicas a7 7la|7].
N OEBEBEER [5] frameawaric
1 . - il

[P [P PR PN [PPSR P Y

75|83 w3l

(13| 3 [14[a[1]8 3]

(b) ©
Figure 5.6: Characteristics of Lattix [Sangal 2005]. (a) Correlation of dependencies
between tasks (software items). (b) Expandable features of the visualization and
the number of dependencies between software items contained in software packages.
(c) The package project is expanded and to depict the software items that contain
and the dependencies in which the items are involved.

Lattix provides the possibility of specifying rules to describe the
dependencies considered acceptable in accordance with the system design.
The visualization makes use of these rules to show possible breaches of the
design, indicating this using colored marks that are placed in the cells of
the grid: the green marks indicate that a relationship of dependency can be
established, black marks show that it is prohibited to establish a dependency
between the involved software items and red marks indicate the violation of
the rules that govern valid dependencies (see Figure 5.7).

The visualization of multiple types of relationships and dependencies
between software items is a difficult challenge to address. Graphs are limited in
their capacity to signal several relationships at the same time and furthermore
they suffer from problems to scale properly when trying to represent several
hundreds of relationships.

An approach based on an adjacency matrix that permits the
representation of various types of dependency is proposed by Abuthawabeh et
al. [Abuthawabeh 2013|, and was denominated IMMYV. This visualization uses

5.2. Architecture Visualization 123

$root - W e
-+ Subsystem? -] L
%’ +]- Subsystem2 2 [+ »
$ | Subsystem3 3l[3t

+/ Subsystemd 4 '1 1' .

Figure 5.7: Design Rules: dependencies permitted, not permitted and violations to
the design of the system [Sangal 2005].

an icicle-plot representation for the structure of the system and divides the
cells of the matrix into sub-cells that are filled with different colors in order to
represent different types of dependency. Therefore, when a type of dependency
relationship exists, a sub-cell is filled with the color which corresponds to the
type of dependency, as shown in Figure 5.8.

B Packagel
class43 class47 class48 class54 class57
" BN
g
" _inm =
=}
A ars
v B
o0 S
v ®
S
© L]
o- o
3
: W "
©
3
s W @
]

Figure 5.8: Dependency relationships with IMMV [Beck 2013|.

5.2.4 Node-link Diagrams

Another alternative for the representation of dependencies is the visualization
proposed by Abuthawabeh et al. [Abuthawabeh 2013|, that was named PNL,
which permits the representation of n dependency types. The number of
dependencies that PNL is capable to represent is constrained by the display
space of the screen.

The structure of a software system is depicted by PNL using an icicle-plot
representation, which is positioned on the left side of the visualization, similar
to the manner in which this is done by DSM. This representation allows to

124 Chapter 5. Understanding system architectures

expand software items to show their inner sub-structures. The expansion
of software items could be performed up to the deepest level of the system
structure.

PNL shows the dependency relationships between software items at
the level at which the structure has been expanded, and uses parallel
representations, one for each type of dependency. The dependencies are
shown by lines connecting the software items in the structure represented
by the icicle-plot and the software items in the parallel structures, as shown
in Figure 5.9.

Inheritance Usage

package 1

Class 57|Class 54 |Class 48 |Class47 | Class 43

Figure 5.9: Visualization of dependency relations using PNL [Beck 2013].

5.2.5 3D Visualization

Some software libraries are large, which makes difficult their comprehension
and the manner in which their development has been organized in terms of
work and team organization. Ali [Ali 2009] pointed out that currently a large
number of open source libraries are developed by programmers who contribute
voluntarily with the programming of modules and software items. This type
of development is performed using uncoupled coordination mechanisms, which
in some cases affects the organization of libraries and contrasts with the better
structure organization of libraries that are programmed using more rigorous
coordination mechanisms [Ali 2009].

Mudrik is a 3D system developed in Java and OpenGL in order to support
programmers in understanding external open source libraries (written in Java)
that are used by software projects, and with which software developers have
not been familiarized [Ali 2009].

5.2. Architecture Visualization 125

The structure of libraries is represented by Mudrik using 3 visualizations
to provide browsing and searching mechanisms with the aim of offering
information about the structure and functionality of the classes within the
library. The visualizations used by this tool are a complete tree representation
of the structure of the library (Class Browser), a Cone Tree visualization and
a DSM representation (both in 3D).

Class Browser is a simple visual representation of a tree (similar to
the Java JTree) showing the structure of the library (packages, classes and
interfaces). This visualization allows the user to select the items she wants
to explore in the Cone Tree representation. When a single software item
is selected in Class Browser (depending on the visualization option that
has been chosen) the system displays a view with its details, subclasses or
relationships it has with other elements. If the selected item is the root of the
library (the system permits the classes to be filtered out by means of a filter
control), the system displays the inheritance hierarchy of all classes (using
the Cone Tree visualization) or the relationships among all classes (using
a DSM representation with histograms in the cells to represent the number of
references in the dependencies).

5.2.6 Polymetric Views

CodeCrawler is a software visualization tool developed by Lanza et al. which is
language independent visualization that relies on the FAMIX metamodel and
was implemented on the top of Moose [Lanza 2005a]. One of the visualizations
that was designed as a component of this tool is Evolution Matrix. This
visualization uses simple rectangular shapes [Lanza 2001a| to depict software
items and 3 associated metrics (similarly to polymetric views), which can be
selected by users according to their analysis needs (see Figure 5.10). In general
terms, this visualization represents the evolution over time of the metrics of
software items, as it is shown in Figure 5.11.

<—Width Metric*™

T

CLASS Height
Metric

Y

Figure 5.10: Representation of metrics in the Evolution Matrix
visualization [Lanza 2001a].

Polymetric Views is part of CodeCrawler and uses a similar approach to

126 Chapter 5. Understanding system architectures

the one used by Evolution Matrix. However, it is able to represent the 5
metrics using the height, width, color and X and Y positions of rectangular
shapes [Lanza 2003|, as it is shown in Figure 5.12. This visualization, unlike
the Evolution Matrix visualization, does not represent the evolution of metrics,
but does allow to visualize the relationship between software items (e.g.,
inheritance relationships or coupling between software items). Figure 5.13
illustrates a display of Polymetric Views in which metrics are depicted using
the size, color and position of the shapes and the relationships between
software items are also represented.

Versionl Version 2 Version 3 Version 4 o
Class A I:l I:l —
Class B L]] O [
Class C] \: _____
Class D] |:| _____

TIME
Figure 5.11: Overview of the Evolution Matrix visualization [Lanza 2001a].

Position Metrics (X,Y)

Color Metric Height
Metric

——Width Metric
Figure 5.12: Metrics representation in Polymetric Views [Lanza 2003].

In line with the visualizations previously discussed, Class Blueprint is a
visualization which shows the map of the internal structure of a class that
also depicts its inheritance relationships with other classes [Lanza 2001b,

5.2. Architecture Visualization 127

Ducasse 2005]. This visualization represents attributes, methods, and method
access and invocation from left to right using 5 layers (Initialization, Interface,
Implementation, Accessor and Attributes). Moreover, it uses a call graph to
represent access to attributes and the method calls, where the elements of the
left of the visualization are those that invoke or access the ones located on
the right, as shown in Figure 5.14. This visualization uses a similar approach
to the one used by the Evolution Matrix: the width, height and color of
rectangular shapes are used to represent metrics.

D |:| I il |:|DU|]III

(oo

DDEIDEIEII]

| DUDDD

0o

JO~R0

Figure 5.13: Overview of Polymetric Views [Lanza 2003].

The Initialization layer of the Class Blueprint visualization contains the
methods that are responsible for creating and initializing the values of new
objects, while the interface layer represents the public methods that the class
renders accessible to other classes or which are invoked by the methods in
the Initialization layer. Meanwhile, the Implementation layer depicts the
private methods that implement the functionality of the class and which are
invoked only by methods in the same class. With regard to the Accessor layer,
this layer is composed of those methods that are in charge of establishing or
obtaining the values of attributes, and the Attribute layer represents all the
attributes that are accessed by the other layers of the visualization.

Inheritance is represented in this visualization by means of node-link

128 Chapter 5. Understanding system architectures

CLASS NAME

,/DD\ I ;:?E— A
=

ip

Initialization Interface Implementation Accessor Attributes

= INVOCATION SEQUENCE
Figure 5.14: Overview of the design of the Class Blueprint [Lanza 2001b].

diagrams, where each class (represented by a map like the one that was
described above) finds itself related to the other classes using a tree structure.
Figure 5.15 shows the representation of inheritance and allows to observe,
using the UML notation [Booch 2005], the inheritance relationship between
classes (black colored lines) and the access to attributes between classes and
subclasses (represented by cyan lines).

O a
-

B
mmm

o DDQQ\ |

=

Figure 5.15: Inheritance view of the Class Blueprint visualization |Lanza 2001b].

5.2. Architecture Visualization 129

5.2.7 Circular Visualizations

Holten et al. designed EXTRAVIS [Holten 2007], a visualization tool that
consists of two linked visual representations, HEB and Massive Sequence View
(MSV), and a time control (see Figure 5.16).

HEB uses a series of rings to represent the hierarchy of software items,
so that the outer ring depicts the first level of the hierarchy and the following
rings render the next levels. To show the relationship between software items
it uses green and red coded lines (the green color indicates the caller and the
red color characterizes the callee) with an arrow to describe the direction of
the relationships. Whereas MSV uses an icicle plot to show the hierarchy
structure and green and red coded bars to display the relationships between
software items, similarly to HEB. With regard to the time control, this allows
to setup a time window for which the user wants to review the relationships
between software items.

HEB and MSV are linked together, so that when an item is selected in
one of the representations, the selection is reflected in the other representation
and viceversa.

"Gmal Seltngs

1|i| Hierarchical Edge Bundles View
; ool

\\ Massive Sequence View.
o \'fl P
2\ 2

[Show Contest
I~ Relations above Hierarchy
% Show Interaction Only
I~ | Show Runfime T zolics

\

Time Controls

L [E o por e
Figure 5.16: Overview of EXTRAVIS [Holten 2007].

Memory usage: 75,50M8

130 Chapter 5. Understanding system architectures

5.3 Architecture Evolution Visualization

5.3.1 City Metaphors

Understand a software system requires the comprehension of both the
evolution of the architecture and metrics associated to the elements of its
structure. In line with this, Wettel and Lanza [Wettel 2008a| support the
understanding of software evolution using software cities depictions with two
levels of representation: the system in general and software items in particular.
In order to represent the evolution of the system and the software items, a
succession of visualizations is used to highlight the changes that have occurred
between one revision and another. Figure 5.17 shows that between each
revision of the system the elements indicated by the arrows and the black
color circle have changed. In the case of specific software items, for each
revision the size and age of methods are shown by the height of buildings and
the use of colors (the darker color represents the oldest method) as illustrated
in Figure 5.18. Overall, these methods have scalability limitations to represent
a large number of revisions, even for small and medium scale systems.

Figure 5.17: Visualization of two revisions of a software system [Wettel 2008a].

The implementation of the software city metaphor that was carried out
by Wettel and Lanza [Wettel 2008a| calculates the system structure for all
revisions of the system from its creation up to a determinate point in time,
and then depicts the map according to the calculation performed. So, the
visualization is used as an exploration space to evaluate the changes that
have occurred between revisions or time periods, but does not contemplate
the possibility to incorporate changes to the structure after the map has
been calculated. Thus, the elements of the visualization and their positions
may require a rearrangement for the incorporation of changes to the system
structure. This implies that the mental model of programmers about the
system structure would be altered and could involve difficulties to carry out
comparisons between revisions and time periods.

5.3. Architecture Evolution Visualization 131

Figure 5.18: Visual representation of the evolution of a software item and its
methods [Wettel 2008a).

The difficulties mentioned earlier were described by Steinbriickner and
Lewerentz [Steinbriickner 2013], suggesting that the visualization of software
cities as metaphors intended to represent the evolution of systems suffer from
problems in dealing with the representation of changes in the structure of
systems. For this reason, they proposed a visualization called EvoStreets,
which is based also on the metaphor of a city that is built as the system
evolves.

The concept employed by EvoStreets revolves around the concept of the
streets of a city. In this visualization, the main street represents the entire
system, the secondary streets represent packages or sub-packages whereas
the buildings depict software elements. The width of the streets is inversely
proportional to the depth that the package or sub-package has in the hierarchy
of the structure of the system: streets located in deeper levels of the structure
have a narrower width that those located in the top levels. The size
of buildings is used, as in the other implementations of the software city
metaphor to represent properties or metrics of the software items. The main
elements that are represented by EvoStreets are packages, classes, inheritance,
dependencies, type and size of software items.

The visual representation employed by FEwvoStreets is built upon the
structure that is obtained from the accumulated analyzes of revisions that

132 Chapter 5. Understanding system architectures

have been made over the time period under analysis. The construction of
the visualization takes as baseline the structure of the system that existed
when the first revision was created. Accordingly, the coordinates of the visual
elements in the initial representation of EvoStreets are calculated and fixed.
Thus, the new elements which are added in the subsequent revisions are fitted
into the existing structure as part of an existing street or added to a new
street.

The layout of this visualization grows from the center outward. The main
street is located at the top of the system structure and in the next level it
is split into secondary streets. This process is repeated successively in all
subsequent levels of the structure. The streets get longer and extends to the
periphery of the visualization when new elements are added on both sides of
them (see Figure 5.19). Moreover, the addition of secondary streets is carried
out when new sub-packages are created.

The layout of this visualization is immutable, once software items are
added they can not be moved to another position; when an item is removed,
it is highlighted as such but it is not eliminated from the visual representation;
and when an item is changed to a new position it is highlighted as a removed
element and then it is added to its new position as a novel item. It is
relevant to mention that a similar approach to the one used by FEwvoStreets
was previously proposed by Gonzélez et al. |Gonzalez-Torres 2009] using a 2D
layout. Figure 5.20 shows a sequence of the evolution of a system structure
using this visualization design.

<« P1

P4/
/
P3
Revision: 0 Revision: 100 Revision: 200
Figure 5.19: EvoStreets: Evolution of the structure of a software

system [Steinbriickner 2013].

The evolution of software systems is represented by FvoStreets using levels
and contours: the oldest items are located in the upper levels and the newest
at the lower levels. Figure 5.21 illustrates this feature: when package P is
added to the structure (Figure 5.21 (a)) a new level is created to place the

5.3. Architecture Evolution Visualization 133

2k 84 - =& " .
(a) @) chart @). chart =) chart =) chart & b chart
b swt -] Y- | B m B
demo

"]
L @ Y-
e =p -p
@ e I

Figure 5.20: H-V tree layout for the visualization of the structure of software
systems [Gonzalez-Torres 2009].

element (Figure 5.21 (b)).

Figure 5.21: EvoStreets: Use of the levels in the visualization to show when a new
package is added. [Steinbriickner 2013].

The height, width and color of the buildings are used in FvoStreets to
indicate properties (see Figure 5.22) such as the names of programmers as
well as the number of changes that have been carried out, the coverage of
testing cases and metrics, for example.

Author A
Author B

Author C

Number of Modifications

Author D

(2)

(b)
Figure 5.22: EvoStreets: The properties of the software items are represented by
the width, height and color of the buildings [Steinbriickner 2013].

134 Chapter 5. Understanding system architectures

5.3.2 Grid Based Designs

Beck and Diehl [Beck 2013] proposed a visualization based on DSM to
identify the differences in structure, as well as dependencies between software
items, when comparing two revisions. This visualization displays the system
structure of the revisions under analysis in the left and top sections of the
grid: the structure of one revision is depicted in the left section whereas
the structure of the other revision is represented in the top section. The
possible differences between the structures are managed using an algorithm
which sorts the elements taking into account the parents and relatives that
are not common between one structure and another [Beck 2013].

Once the structures have been represented, a comparison between revisions
is performed using a color code: whenever there is a dependency relationship
between two elements, the cell representing this relationship is highlighted
by a particular color. The color code used by this visualization is composed
by the blue, purple and red colors. The blue color is used to indicate the
dependencies that exist in the first revision, while the purple color points
out existing dependencies in the second revision, and red is used to show the
dependencies that are common to both revisions (see Figure 5.23).

5.3.3 Animation

Yarn is a visualization that represents the evolution of the architecture of
software systems on the basis of changes in the source code and the use of
animation [Hindle 2007]. This visualization consists of a circular graph whose
nodes represent software items and whose edges use weights to indicate the
number of dependencies between the items. The evolution of the system is
presented as an animated graph that retains the position of its elements and
gradually shows the changes occurring in the dependencies.

The animation used by Yarn can emphasize the accumulation of changes
or only those changes that have occurred recently. To do this, it makes use
of colors and the thickness of the edges. Yarn allows the dependencies of
the complete system evolution to be known by means of a representation
that shows the accumulation of dependencies, which takes into account the
interval of time between the instant at which the dependencies were created
until the moment in which the last revision of the system has been committed.
It also allows information to be obtained about the dependencies that have
recently changed using colors to highlight them while darkening the oldest
dependencies. Additionally, the animation displays information about the
revision number and the date on which it was created (see Figure 5.24) when
it is played.

5.3. Architecture Evolution Visualization 135

I s
I netsfjts
; 1
| = 4 - ‘-Il N | 8 B
e (N NN TR IF BT .
Legend
- 8CDG
.-ECDG(:upuon>0 confidence > 0.0)

THITR
=, Jr-ur i ey -

S |spF 1Sl e S

-

||

S I = BN EE N .. IIII..III | | | |

" | | hl.le.J Y =y - Y] | — -

I K B4 -] LLE LRl

1 1 ‘ 1°1" " 1 2l r-
T A WA W T

F| £ oo ap S Tk

o o i1 Bl B N | mnmigi 11

B T R R T

r Tl Il "9 s " adl = -

Figure 5.23: Comparison of dependencies between two revisions of a software system
[Beck 2013].

Among the limitations of Yarn are its lack of capability to represent the
structure and relationships of large systems, due to the occlusion that is
caused by a large number of connections between software items. Additionally,
it should be taken into account the limited interaction capabilities of this
visualization as a result of providing information in its final form and thus
not allowing the possibility of interactive navigation and knowledge discovery.

Evolution Storyboard is a tool that shows the dependencies between
software items through a series of animated visualizations which is obtained
by combining the visual representations (e.g., frames in a movie) produced
when analyzing the changes which have been made to the system in a
determinate number of revisions over a period of time [Beyer 2006]. The tool
displays a strip formed by the animated visualizations, where each animated

136 Chapter 5. Understanding system architectures

Revision Date Subsystems
Revision
Number / //
\%J?Snug 27 21:48:00 2000 .ntwimr?en’ SRR
e = (AN

\

~ SYSTEMCONTROLMANAGER

47" «C Ry " TRAFFICCOP
| X S
SR e BACKEND
VINCLUDE Y
- enccuToR - DEVELOPERUTIL
Edges « ERECUTOR Pause & Play
Buttons
Progressbar Paws Play

T s

Figure 5.24: Animated visualization of the evolution of the architecture of a software
system using Yarn [Hindle 2007].

visualization represents an interval in time (the time period of study is divided
into time slots), and allows the programmers to focus on the observation and
comparison of consecutive periods of time of the evolution of part or the whole
of the system.

The dependencies between software items are represented by a
force-directed graph whose nodes are colored depending on the package they
belong to and whose the distance is determined by the dependencies between
the software items. The relationship between the software items is not shown
explicitly by means of the edges, but rather by their location: the proximity
between software items represents the dependency ratio, the more closely two
nodes relate to each other, the greater the degree of dependence. The size of
the nodes indicates the number of changes that a software item has undergone
and a red colored ring shows that this element was changed during the time

5.3. Architecture Evolution Visualization 137

interval being studied. The thickness of the red colored ring represents the
number of changes made to the software item in the time interval.

Each one of the animations allows to observe the changes in the
dependencies of software items by using a line and a gray colored arrow which
indicates the previous position of a software item (gray colored node) and
its new position. Figure 5.25 illustrates a strip of animated visualizations
whereas Figure 5.26 shows the use of arrows to indicate the position change
of the nodes in a scenario that depicts a set of logical coupling dependencies
(co-change).

2002-10-01 to 2003-01-01 2003-10-01 to 2004-01-01 2005-04-01 to 2005-07-01

Figure 5.25: Strip of animated visualizations [Beyer 2006].

Figure 5.26: Use of lines and arrows to depict new node positions because of changes
in the dependencies [Beyer 2006].

138 Chapter 5. Understanding system architectures

5.3.4 Software Cartography

Khun et al. [Kuhn 2010a| like other researchers point to the need of preserving
the location of visual elements in time to render possible the comparison
of information. Bearing this in mind, Software Cartography was proposed.
Accordingly, the position in the space of visual elements in this visualization is
calculated using as a base the similarities of the vocabulary used when naming
software items. According to Khun et al., the lexicon used by software systems
tends to grow over time, but does not change as dynamically as its structure.
This permits a robust and consistent visualization layout to be created for
the representation of different aspects of software systems, including their
evolution. The aforementioned approach facilitates users the understanding
of the system to the users as they retain the same mental model over time.

The construction of the map of Software Cartography can be carried out
by processing all the revisions available or using an incremental approach that
adds individual revisions as required. The former method calculates the map
for the whole evolution while the latter calculates the map cumulatively as
each revision is processed. In either case, the result is a consistent map which
conserves the position of the elements throughout the evolution of the system.

The processing of the data to create the visualization takes into account
the terms that appear in system source archives, which are placed in a matrix
of occurrence of terms to be indexed and ranked in accordance with their
frequency of use. The terms of the lexicon include the names of classes,
methods, parameters, variables, invoked methods, words in comments and
literal values. Then, a distance is calculated among software items using as a
base the similarity of the terms.

Figure 5.27 allows to observe that during the process of building a Software
Cartography map:

1. Software items are placed in the plane in accordance with the distance
between the terms.

2. The area of influence of a software item is determined according to its
size and proximity with other software items.

3. The height of the mound is calculated based on the file size or class.
Mound height changes as the element size is reduced or increased, but
in any case the configuration of elements in the plane is not changed.

Figure 5.28 shows the succession of the representation of four system
revisions in which the consistency of the visualization as well as the variations
in the areas of influence and the height of the software items can be observed.

5.3. Architecture Evolution Visualization 139

>
I pTwTi o U et
e 52 3 D Fen
I F*'.hw'vi . . -~ \M'_'M\'T L
Fgf cle Ty, RateCreTen § “‘Q&-" 4 | Heopten Tow
. Board . | 3 T\ Baarht e
i % (1 Do) ™ot
BoardTest,, . .. ° ° BoardTest | "4
' e (T \J(»""“ |
: \ .
.4 Nl s ez
‘Square P | BGuary -
P,
g [e we i
- BowdFactory [..M,_&WJ: e
L N \ i (A~ N _j‘ l -

@ (b) ©
Figure 5.27: The process of building a map of a software system with emphSoftware
Cartography [Kuhn 2010a]. (a) Placement of software items in the plane in
accordance with the distance of the terms. (b) Area of influence of the software
items according to their proximity and size measured by the number of lines. (c)
Height of the mounds calculated with reference to the size of the system.

Figure 5.28: A series of four visual representations for the same number of system
revisions using Software Cartography [Kuhn 2010a].

Software Cartography is a visualization that is integrated into Eclipse as
a plugin to provide the programmer with a tool easy to access within his
programming environment [Kuhn 2010b]|, and has the following objectives:

x Allow a quick exploration and understanding of the system.

x Facilitate the comparison of metrics.

x Support the construction of a framework that facilitates a common
understanding of the system and the collaboration between the team
members.

x Allow the connection between two or more programming environments
(IDEs) to provide each other with information on the activities carried
out in the software items.

It is important to highlight that a common characteristic of these
visualizations is their scalability in representing structures, dependencies and
metrics.

140 Chapter 5. Understanding system architectures

5.3.5 Graphs

As it was mentioned in section 3.3.1.5, graphs are useful for showing
relationships between elements, and in accordance with Gansner et al. these
are an ubiquitous structure in software engineering structure that is used for
the representation of the structure of systems and the relationships between
their components. In line with this, Gansner et al. proposed a library toolkit,
based on the specification of a common language, that have been used in
several areas of software engineering to create, filter, represent, animate and
interact with graphs [Gansner 2000].

One notable visualization for the representation of graphs over time is
GEVOL |Collberg 2003| from data extracted from CVS repositories. The
objectives of this visualization are to show details of the changes made to
systems, the inheritance of software items, method calls, the flow control of
programs, who made the changes, when these were carried out and how the
complexity of the system has changed over time(e.g., days).

GEVOL creates several graphs to represent changes for the points over an
evolution period of time. This representation layouts graphs into strips and
placed them next to each other. So, it creates a succession of graphs that are
based on the layout of their predecessors to maintain the mental map of users
(elements maintain their positionover time), in spite of changes such as the
addition or deletion of elements.

This visualization uses color coding to indicate the age of changes and
so, initially, all nodes of the graph are of the same color (e.g., red, yellow,
green.). However, the color of nodes that have not changed over time undergo
a color transition to become completely blue. But a node recovers its original
color when a change is made to the software item it represents. To depict
this feature, Figure 5.29 shows six snapshots of a call graph, which allows to
observe the color transition of nodes from red to blue. In quadrant A2 of this
figure, a purple box that shows a group of elements that have not changed
recently can be observed, as well as an area that portrays red elements that
have been recently modified. Thereupon, Figure 5.29 (B1) shows some graph
areas that have transitioned to blue, whereas other areas of the graph have
reappeared as red color to depict that elements in this area have recently been
changed (see the center of the graph).

5.3.6 Radial Visualizations

Evolution Radar [D’Ambros 2006a, D’Ambros 2006¢, D’Ambros 2009b] is a
visualization that represents the logical coupling between packages and system
elements. Information on the logical coupling is obtained by identifying

5.3. Architecture Evolution Visualization 141

software items that have changed together, according to the revision history
and changes made to the system [Gall 2003]. This permits to obtain
information of the architecture of systems and may eventually support the
implementation of structural changes to improve the susceptibility of systems
to maintenance, and to facilitate the prediction of the evolution of the system.

Figure 5.29: Succession of call-graph visualizations using GEVOL [Collberg 2003].

This visualization consists of a radial representation that is divided into a
number of sectors that contain colored circles. Sectors in the representation
depict system packages, whereas circles represent to files. So, the number of
sectors in the visualization is proportional to the number of packages in the
system and the size of each sector is related to the number of files it contains.

The coupling relationships are represented by the relative distance between
a selected package and the files in other packages.

142 Chapter 5. Understanding system architectures

—B>caMonkey Core

YIS re'l'lmierhole
SeaMonkey Browser

Figure 5.30: Visual representation of the logical coupling between packages and
files [D’Ambros 2006a].

MozillaSourceUnix

Figure 5.30 allows to observe a package selected by the user (highlighted
by a light green circular shape in the center of the visualization) and that the
files of the other packages (whose colors range from blue to red) are located
at different distances of it, according to their coupling relationships (the files
close to the center have a stronger coupling relationship with the package).
Additionally, the use of colors reinforces the representation of coupling: the
deep red color indicates a stronger coupling with the selected package, while
the blue color indicates less coupling. Finally, the size and color of files (circles)
can also be used to represent different type of metrics

5.4 Discussion and Conclusions

The dynamic nature of software systems makes it difficult to precisely
anticipate the size and growth of the underlying architecture and structures.
This implies that the design of their visual representation must be scalable
and capable of accommodating both growth as well as changes over time

5.4. Discussion and Conclusions 143

(e.g., aggregation, deletion and relocation of elements). This means that the
visual representation must be consistent over time in order to maintain the
mental map of users: the elements must appear in the same position on the
visualization in all revisions of the system which are represented. This entails
that the removal or relocation of an element must be represented by visual
notations indicating the action taken and allow users to maintain the mental
map of the system.

Another aspect that must be taken into account is the representation of the
metrics and the relationships between software items. It is common that the
number of relationships between elements increases in accordance with the size
of the system, which adds an additional aspect to the problem of the design
of scalable visualizations and greatly increases the difficulty of achieving an
adequate design. This may have major implications when the full or partial
visualization of the evolution of a system is carried out. The temporal aspect
is linked to the identification of patterns related to differences or similarities
between revisions or periods of time and requires the representation of a larger
number of visual elements.

Additionally, it should be considered that the visual representation of
a system (or part thereof) should include elements that allow the rapid
identification of patterns of interest according to the problem to be solved.
As a result, it is necessary to make the representation on a single screen thus
permitting that, once a pattern has been identified, its review is conducted
on an additional visualization.

The analysis in this chapter shows that visualizations based on city
metaphors can allow the representation of architecture and metrics of
large software systems [Panas 2003, Panas 2005, Wettel 2007, Wettel 2008a,
Bentrad 2013]. However, the majority of studies that make use of this
metaphor are oriented towards representing only a revision and not the
evolution of a system. Some exceptions to this trend are the works carried out
by Wettel et al. [Wettel 2008a| and Steinbriickner et al. [Steinbriickner 2013].
Wettel et al. visualize several revisions using side by side representations,
while Steinbriickner et al. utilize only a representation in order to visualize
the evolution of system architecture, aggregation, deletion, the relocation of
elements and metrics.

Meanwhile, treemaps are scalable representations that can represent the
system structure [Baker 1995, Balzer 2005b|, inheritance relationships and
metrics of large software systems |Garcia 2009b]|, although these visualizations
suffer from limitations in the representation of other types of relationships such
as the coupling between software elements as well as the evolution of systems.
The visualization of relationships between software items can be overcome
by the combined use of treemaps with graph structures [Balzer 2005a], and

144 Chapter 5. Understanding system architectures

the representation of the evolution of systems can be achieved with the use
of side by side visualizations. However, the latter is impractical when the
representation of the evolution of a system for an extended period of time or
a large number of revisions is required.

The strength of Polymetric views is that they allow the efficient
representation of the metrics of software items for one [Lanza 2001b,
Lanza 2003, Ducasse 2005] or several revisions [Lanza 2001al. The
representation of the relationships between the software items is carried
out in an acceptable fashion for these visualizations for a single revision,
although by using graphs and trees they may suffer from scalability
problems. In comparison, the representation of the structure of
systems and the relationships between software elements is accomplished
quite efficiently by PNL [Abuthawabeh 2013|, Lattiz [Sangal 2005],
IMMV [Abuthawabeh 2013] and EXTRAVIS [Holten 2007]. These
visualizations manage to represent a large number of elements and
relationships, but are unable to represent the addition, deletion AND
relocation of elements and metrics.

The animated visualizations that were studied in this chapter [Hindle 2007,
Beyer 2006] showed weaknesses in aspects of scalability and representation of
the evolution of software systems. Both Evolution Storyboard and Yarn are
visualizations that may be impractical to compare a large number of time
periods for systems that have evolved over long periods, but may be useful
when it is necessary to obtain knowledge about the changes that have been
recently made to the system. Omne of the main weaknesses that Storyboad
FEvolution presents is the use of side by side representations in order to compare
time periods. Similarly, GEVOL [Collberg 2003] uses a succession of graphs
in order to visualize the relationships between software items and its main
limitation is its incapacity to represent large software systems.

Radial visualizations that were analyzed are capable of representing a large
amount of data in a very attractive and intuitive way, such as EXTRAVIS and
Evolution Radar [D’Ambros 2006a, D’ Ambros 2006¢, D’Ambros 2009b|. The
scalability of these visualizations is one of their principal advantages, provided
that adequate and appropriate representation and interaction techniques are
used to select and filter elements. It may also be worthwhile considering that
the use of these representations in the comparison of revisions or time periods
may be complex because of their circular configuration, to which it must be
added that the representation of a large number of aggregation, deletion and
relocation operations of elements may also present scalability issues and may
require the additional use of novel techniques and methods of visualization.

The above allow to conclude that the challenges that are implied in
representing the relationships between the software items in a scalable,

5.4. Discussion and Conclusions 145

compact (visual representations represent the system or part of it and its
evolution on a single screen), easy to understand (and use), and consistent
form over time (maintaining the mental map of the user about the position
of the elements over time) is a difficult challenge that none of the works
studied fully overcame. It is thus advisable to take into account the main
characteristics of each work studied, as well as others related to it, to carry
out the design of tools that manage to solve the challenges mentioned.

CHAPTER 6

Team awareness and collaboration

Rastin camino junto a ellos y conto anécdota tras anécdota. Por
su parte Gilindy reia mientras sequia a Cucho, quien al parecer
tenia mdas claro el camino. Al cabo de un rato, el hambre los
asalto, llamaron al perro y se desviaron del camino en busca de
aves silvestres. Después de varios intentos sin atrapar ave alguna,
decidieron acorralar juntos a un cerdo salvaje que comia al lado
de un drbol gigante, el cual agitaba sus ramas y silbaba al ritmo
del viento. — El viaje de Giiindy, A.Gonzalez

Contents
6.1 Introduction 146
6.2 Factors Involved in Global Software Development . . 147
6.21 Teamwork o 148
6.2.2 Cognition, Communication, Coordination and Control 149
6.2.3 Team Situation Awareness 155
6.2.4 Distributed Situation Awareness 158

6.3 Considerations in Designing Awareness Workspaces . 159

6.4 Visualization for Team Awareness. 162
6.4.1 Teamwork 162
6.4.2 Situational Awareness 164
6.4.3 Collaboration and Socio-technical Relationships 169

6.5 Discussion and Conclusions 174

6.1 Introduction

The development of software using GSD models has become a common
practice among companies which makes necessary the use of tools to support
collaboration and teamwork. The results of the study that was carried out in
chapter 4 showed that Team awareness and collaboration is a research subject

6.2. Factors Involved in Global Software Development 147

in which researchers have focused their attention with the goal of supporting
to the SDM processes.

This chapter deepens in the study of factors such as teamwork, cognition,
communication, coordination, control, Team Situation Awareness (TSA)
and Distributed Situation Awareness (DSA) (see section 6.2). Furthermore,
it also exposes the factors involved in the design of tools to support team
awareness and collaboration tasks (see section 6.3) and presents the analysis
of several visualization proposals that have been designed for supporting those
tasks during the SDM processes (see section 6.4).

6.2 Factors Involved in Global Software
Development

A large number of companies has been motivated to carry out the development
of software systems using GSD models motivated by the assumed benefits that
could be obtained [Carmel 1999, Herbsleb 2001b, Saldana-Ramos 2014]. So,
it is advisable to consider the analysis made by Conchiir on the achievement,
in practice, of some of the benefits that are often considered as the most
important when these models are used [Conchuir 2009]. Conchir found in his
research that some of the assumed benefits were partially met, whereas others
were myths that could not be verified as benefits in reality (see table 6.1).

Table 6.1: Assumed benefits of adopting a GSD approach.

Assumed benefit Reality
Reduced development costs Partial benefit
Leveraging time-zone effectiveness Mythical benefit
Cross-site modularization of development work Partial benefit
Access to large skilled labor pool Partial benefit
Innovation and shared best practice Mythical benefit
Closer proximity to market and customer Partial benefit

To better understand the potential impact that GSD models can have
in SDME processes, the study of Agerfalk about the opportunities and threats
of these models must be considered [Agerfalk 2006]. His work makes a
correlation of the temporal, geographical and sociocultural factors with the
communication, coordination and control factors with the aim of showing
the opportunities and threats that are associated to these. In summary, the
main challenge that is faced by the software industry when using GSD models
consists in finding how to overcome the involved distances in the development

148 Chapter 6. Team awareness and collaboration

of global projects, according to the variables and correlations described in the
research mentioned.

6.2.1 Teamwork

As it was mentioned above, the development of a software system is a
complex process that usually is divided into several stages and tasks, that
are interconnected and can be performed using different approaches. The
development process may require several years and the involvement of a large
number of people, which are usually organized into teams of two or more
people (in some cases highly specialized), that frequently are distributed
globally [Kiekel 2011]. Therefore, it is necessary to keep in mind the difference
between a group of people and a team: a group of people is a collection of
people with functions that can vary considerably and whose work does not
necessarily depend of the other members of the group, while a team is formed
by a group of differentiated and interdependent individuals [Klimoski 1994].

In this context, it is also important to note that teamwork requires the
communication, interaction and coordination between individuals, and even
the mutual control of the work that is performed by others (with independence
of the role that is fulfilled by each team member). This differs from the work
focused on tasks, in which individuals carry out tasks with independence of
what is performed by other team members. However, the skills for teamwork
and work focused on tasks are complementary to achieve the objectives
assigned to the team [Salmon 2013].

Organizations have adopted teamwork for software development because
they believe that the effective functioning of teams can provide good
results [Fiore 2004a| due to the diversity of its members in terms of experience
and expertise. However, it must be pointed out that the differences of
nationality, culture and geographical location of individuals, when working
under GSD models, could become advantages or disadvantages according to
the management practices that are put in place [He 2007, Kiekel 2011].

Several arguments in favor of teams is that the work that is assigned
to them can be performed in a more effective, efficient and quick
manner |[Fiore 2004a, Kiekel 2011] that a single individual, because:

x Can detect, recognize and solve problems faster.

*x Can plan, acquire knowledge and design solutions or products in less
time.

x These can adapt quicker to changes.

x Are able to assess a situation, make better decisions, and consider the

combination of knowledge and experience of its members.

6.2. Factors Involved in Global Software Development 149

x Have the ability to better manage stress and tasks during periods of
heavy work loads.

x The coordinated action of teams, as one of their intrinsic properties,
makes them to act as a block when they face situations, and have a
greater reaction capacity to solve complex problems.

It is noteworthy to mention that for a team to work properly, its members
should be able to work together effectively [He 2007]. This is extensible to the
general context of software development, considering that the joint working
between teams is also needed, particularly when a GSD model is used. Thus,
teams and team members, need access to the information required to perform
their tasks [Kiekel 2011]. The bottom line is that at the end of the day the
modules and system elements must be integrated and work together, according
to the architecture of the system [Mockus 2001].

6.2.2 Cognition, Communication, Coordination and
Control

The factors of communication, coordination and control are -closely
interrelated. It is important to add the variable cognition, taking as
a reference point the work done by Comfort |Comfort 2007]. Crisis
management |[Comfort 2007] has several similarities with the (sometimes
unpredictable) changing and dynamic nature of the development of software
systems: software development necessitates that the actors be rapidly
adaptable reacting appropriately when new events occur and when new
scenarios arise, particularly when development is distributed. It should be
borne in mind that these activities can be carried out using a vertical or
horizontal approach. This implies that in the first case the project manager
carries out the appropriate action following a hierarchical approach; while
in the second case the action can be carried out by any member of the
team, an approach which takes into account the fact workers are professionals
who possess the skills and the capacity to react and take action whenever
they consider this to be appropriate [Carmel 2001]. These four factors are
discussed below as well as in the next section, their relationship with the
concepts of team cognition and team awareness is discussed and used to define
a framework for team awareness and collaboration.

Cognition: Using the definitions provided by Comfort [Comfort 2007| with
some slight modifications, cognition can be defined as a process that
depends upon a clear mental model of how the system under observation
should work and therefore it activates the processes of communication,

150 Chapter 6. Team awareness and collaboration

coordination, and control when discrepancies are detected between what
individuals view as normal performance and the change in status of key
indicators that alerts about potential process deviations.

Communication: The aim of communication is to communicate or to
make others participate in something by means of a common
language [Luhmann 1992, Dainton 2015].

The types of communication that can occur in the context of GSD
between individuals are diverse and include the following:

« Face-to-face and distance enabled (e.g., email, telephone,
video-conference).

*x Synchronous and asynchronous.

x Formal and informal.

x Centralized and decentralized controlled communications.

The main problem during the development of software projects is the
lack of communication [Agerfalk 2006] among members of development
teams, regardless of the model used (collocated or GSD). David Parnas
(see sidebar in [Agerfalk 2006]) notes that poor communication is a
problem at several different levels between:

x Users and developers.
x Architects and programmers.
* Programmers and other programmers.

With regard to the lack of communication among members of
the development team, Ramesh [Ramesh 2006, Colomo-Palacios 2013,
Colomo-Palacios 2014| summarizes the following points:

x Difficulties in initiating communication.

* Lack of understanding

*x Dramatic reductions in the frequency of communication between
members of the team.

x Increases in the cost of communication in terms of time, staff and
money.

*x Time zone differences.

It is important to highlight that in a GSD environment the aspects
that have already been mentioned [MacMillan 2004, Mockus 2001] add
delay times to the tasks of the SDME process. So, additional measures to
mitigate the negative impact of such aspects are required [Mockus 2001,
Herbsleb 2001a, Herbsleb 2003], among which are the following;:

1. Divide the tasks up optimally between different sites.

6.2. Factors Involved in Global Software Development 151
2. Increase communication between team members using appropriate
tools for that purpose.
3. Contract or identify staff internally with the skills and experience
necessary to carry out tasks efficiently.
4. Tools that maintain awareness of activities carried out between
team members.
Coordination: Coordination can be implicit or explicit. Implicit

coordination depends on the knowledge of the team and their
ability to make decisions in critical situations with a reduced level
of communication, so team members must adjust their behavior
dynamically to anticipate actions and address proactively the tasks
that require it [Khan 2010, MacMillan 2004|. This type of coordination
is associated with high performance teams which members clearly
understand the needs and responsibilities of its tasks, and provides
advantages when workload is high, because less communication is
required |[MacMillan 2004]. ~ Whereas explicit coordination is the
process of organizing things, people or groups to work together
properly [Godart 2001].

In order to carry out tasks related to coordination, it is
necessary to use mechanisms that permit the processes of effective
exchange of information and understanding in order to align priorities
and the actions of different actors in order to achieve a shared
goal [Comfort 2007, Kotlarsky 2008, MacMillan 2004].

The advantages and disadvantages of wusing either type of
coordination depend on the circumstances and the tasks that are
performed [MacMillan 2004]. It should be added that coordination
mechanisms acquire particular importance when a GSD approach is
used with regard to the distances (be they geographical, cultural and
distances of time) among the different sites involved in the development
of the project [Herbsleb 2003].

During software development, the process of coordination necessarily
implies that the people who are working on a project have agreed on
a number of elements, starting with the detailed design specifications
that will permit the construction and organization of the components
of a system. So, participants can work together based on the
user needs and the requirements of the organization. According to
Kraut [Kraut 1995] the following are factors that affect the coordination
of systems development:

Scale: Large-scale projects require the involvement of a large number of

152

Chapter 6. Team awareness and collaboration

people and it is not possible for one person or a small group to be aware
of all the details [Cataldo 2007]. The coordination of a project becomes
more difficult when its size and complexity increase [Kraut 1995,
leading to a necessary division and specialization of labor.

Time: The development of large software projects usually spans several
years and their maintenance may last for many more years, and
consequently the involvement of a large number of people will continue
to be necessary even when the development stage has been completed.

Uncertainty: The development of many software systems becomes an
unpredictable process for one or more of the following reasons:

*

The system specifications are incomplete due to the loss of
information that occurs when translating the requirements of
users and business into specifications. This loss of information
occurs because, in many cases, analysts, architects and designers
are not specialists in the field to which the problem is related
and thus cannot understand all the details (or because even if
they have understood them they have not included them in the
specifications).

A prototype has not been developed that allows the basic
functionality of the system to be captured so that subsequent
modifications can be carried out based on the specifications and
user feedback.

The environment of organizations in general is changeable, so
system functionality requires change over time. This produces
changes in specifications during the process of development,
or subsequently when the system has already begun to
operate [Lai 2003, Cataldo 2007].

Lack of a clear definition of the methodology, lack of quality
control, detection of problems, errors and failures (sometimes
belatedly) during the development of the project [Rook 1986].
Problems with team members due to inadequate performance
or the number of participants (either too many or too
few) [Rook 1986].

Differing points of views between different actors who intervene in
the development of the system.

The complexity of a large-scale system which has to be developed
over a long period of time [Lai 2003, Cataldo 2007].

Interdependence: Systems are built on the basis of components (in
some cases thousands of components), which then have to be integrated

6.2. Factors Involved in Global Software Development 153

precisely and accurately.

Formal and informal communication: Efficient communication is
the key for achieving a good level of coordination between team
members and among the sub-groups that are scattered throughout
several different geographic locations. Given this, it is necessary to
use both formal and informal communication [Lai 2003] according to
the type of problem that is being addressed.

Kraut [Kraut 1995] enumerates a list of coordination techniques,
among which the following can be found:

* Formal impersonal procedures (project documents and memos,
modifications requests, error tracking procedures and data
dictionaries).

* Formal interpersonal procedures (status and design review
meetings, and code inspections).

* Informal interpersonal procedures (group meetings, collocation of
requirements and development staff).

* Electronic communication (email and electronic bulletin boards).

Control: Taking into account the diverse factors which cause uncertainty
during the software development process, control can be defined as
the ability to maintain actors and their actions focused on achieving
the goals and objectives which have been set |[Comfort 2007| in order
to produce an appropriate software product; on time and within
budget [Rook 1986]. All this is in accordance with the requirements,
specifications, terms, costs, standards, policies, standards of quality and
other factors inherent in the process of software that if they are addressed
in a timely fashion, will make a successful resolution of the project much
more likely. Control is usually classified into two categories: formal and
informal.

Formal control consists of the monitoring and evaluation of behaviors
and outputs; whereas behavioral control consists of controlling how
people behave, and output control consists in measuring the effect
of people behavior on output of the process. In order to utilize
behavioral control appropriately, it is necessary to know precisely what
actions have to be performed during the process of project development;
transforming a set of inputs (e.g., requirements and designs) into outputs
(e.g., a system that functions adequately). It is thus necessary to
determine the actions which need to performed as well as evaluate
the actions carried out by individuals in order to determine whether
their actuation has been appropriate. While output control can be

154

Chapter 6. Team awareness and collaboration

used when it is feasible to measure the performance of individuals
according to the results produced and the results that were expected

to be produced, in a form independent of the behavior of these
individuals [Olchi 1978, Kirsch 1996].

Concerning informal control, the two best-known types are clan
control and self-control. A clan is a group of people with mutual
dependencies and shared goals, objectives, values, philosophy and
common beliefs; as well as a strong sense of identity and group belonging,
whose behaviors that are not known a priori, and whose results may
change over time. In this type of control, a group is a self-monitored
unit: supervision is carried out by each member of the group, and peer
pressure enforces the accomplishment of tasks according to the goals
of the group. Consequently, the individuals who participate in these
groups should be carefully selected and it is essential that they have
appropriate training. With regard to self-control, in this type of control
individuals set out their own goals, monitor their own performance,
evaluate their own progress and are motivated to carry out their work;
so this type of control is useful in tasks that require autonomy, creativity
and intellectual work [Kirsch 1996].

Drawing a parallel between the uncertainty that is present during the
development of software projects with crisis management, it is useful to
consider the approach employed by Comfort in relation to the individuals
and group actuation of the members of teams involved in control tasks.
Comfort [Comfort 2007] considers that control can be maintained in
highly complex, changeable situations if the following factors are present:

* Shared knowledge.

x Commonly acquired skills.

x Reciprocal adjustment of actions to fit the requirements of the
evolving situation.

The goal of control activity is to enable and facilitate decision-making
by comparing the information obtained (in the form of status and
progress reports) of the activities of project development, verification,
validation and testing, Software Quality Assurance (SQA) [Fischer 1978,
Kitchenham 1989, Kan 2002], SCM [Rook 1986], bug tracking, incident
and change control systems [Barbara 1987| with the results that are
expected to be obtained from the project in accordance with:

* System planning.
* Project procedures and standards.

6.2. Factors Involved in Global Software Development 155

Models and risk analysis.

Configuration management plans and procedures.
System requirements.

Top level and detail design.

SQA requirements and plan.

General and detailed test plans.

EOE S S S

Control, in its ideal form, is a process of continuous feedback that
seeks to identify and eliminate potential hazards from:

Detection and control of unanticipated changes: This is devoted
to the detection of changes that must be made because of variations
in system requirements, in such a way that they have to be
controlled in order to maintain the integrity of the design and thus
should be incorporated in an orderly way.

Detection and error correction: One of the main objectives of the
control process is to detect and correct deviations or errors in order
to align the development in accordance with the requirements,
specifications, goals and objectives of the project.

Monitoring: It aims to measure the progress of the project by means
of meetings, specialized tools and the use of SQA such as metrics,
technical reviews, and walkthroughs.

Evaluation: It consists of analyzing the control information which
is available, carrying out an assessment of the consequences of
possible alternatives actions, choosing one of these alternatives
(decision- making) and plotting the course which should be
followed.

6.2.3 Team Situation Awareness

Teamwork allows members to familiarize themselves with the other members
of the team and learn about the knowledge, skills, experience, background,
personalities and habits of each other. That mutual knowledge varies
with time and increases as it passes, which enables better planning of
work [Fiore 2004al.

From a cognitive standpoint, teams build a mental model'. from the
shared understanding of tasks and involves knowing the procedures, actions
and strategies to implement them. Hence team members should have common
expectations and understanding of tasks [He 2007].

!The mental model of an individual is how knowledge and information are represented
by her mind and reflects the tendency to categorize what she knows [Klimoski 1994].

156 Chapter 6. Team awareness and collaboration

A shared mental model is the representation of knowledge in an organized
manner with respect to tasks, situations, response patterns, goals, strategies
and working relationships. So, one can say that the mental model of the
team is the way it thinks collectively and characterizes situations according
to beliefs, assumptions and common perceptions [Klimoski 1994].

However, a team mental model is not the sum of the mental models
of individuals. However, it takes the relevant knowledge of team members
and transform it into the team’s knowledge with the aim of guiding
decision-making and actions to achieve the goals and objectives of the
tasks entrusted to the team [Fiore 2004al. In this context, Cooke noted
that the elements which may be included by the cognitive processes of
teams |Cooke 2013| are the following:

Learning.

Planning.
Reasoning.

Decision making.
Problem solving.
Remembering.
Designing.
Assessing situations.

EEE R T R R R

Accordingly, team cognition is build up from the interactions between team
members [MacMillan 2004, He 2007] when they:

Work together.

Clarify their individual roles for each task.

Distribute the sub-task to be carry out.

Communicate by different means to build and maintain a shared mental
model of the team situation [MacMillan 2004].

Meet in person or virtually to share view points and concerns.
Coordinate project activities.

Observe the work of others and learn from it.

Monitor the progress of activities.

EE R S

* K X ¥

Team cognition is the ability of the team to acquire, process, store and
use knowledge when they perform tasks, especially when the collaboration
of a large number of people is required in realtime to resolve some urgent
situation [Kiekel 2011]. Some important features to consider regarding team
cognition |Fiore 2004a, Fiore 2004b, He 2007| are listed below:

x It is not the sum of the individual cognition of the team members, but
it does use of the individual cognition of members.

6.2. Factors Involved in Global Software Development 157

x It is the sum of the behaviors of the team during the communication,
coordination and control activities.

x The team makes use of metal models concerned with project and task
related aspects.

*x Teams are aware of the goals and objectives of the work they perform
as well as the status of activities and tasks (Situation Awareness
(SA)) [MacMillan 2004].

* Team members exhibit behaviors and attitudes that offer evidence of
the coordinated action that takes place among them [Fiore 2004b].

Endsley defines SA as the perception of elements in the environment during
a given period of time, as well as the understanding and forecasting of these
elements in the near future [Endsley 1995, Stanton 2001, Salmon 2013]. In
this research SA is defined as the degree of knowledge about the status of tasks,
activities, changes and the resolution of problems related to SDME processes.
Furthermore, it also considers that situational awareness is important during
software processes at both the individual and team levels. Then, the following
points deserve special consideration:

Individual perspective: From an individual perspective, situational
awareness is the consciousness of the state of things of a particular
team member. The consciousness and knowledge of individuals with
regard to tasks, and the factors that affect their development, permit
the successful completion of these.

Team perspective: From a team perspective, SA is the consciousness and
knowledge shared by team members about the status of the project.
Each team member has specific awareness of the factors related to their
tasks but also has an overall perspective of the project, in terms of team
awareness, that allows its collaboration with other team members to
contribute to the project in general.

This kind of awareness is known as TSA. It is important to highlight
that T'SA is closely related to mental models and team cognition, as it is
explained later. The construction of TSA, like the construction of shared
mental models and team cognition, is not the sum of the individual SA
of team members, but it is the composition that originates from each
individual perspective and the points of coincidence of team members
about the state of things of the overall project.

The way individuals process information and create mental models of
situational awareness depends on their goals, skills, experience, training and
the role they play in the project. So, project managers are interested in aspects

158 Chapter 6. Team awareness and collaboration

of higher level [Leinonen 2005] and programmers in specific details, as it was
discussed in chapter 2.

The experience of teams and individuals in similar projects is invaluable
in the construction of SA, including knowledge regarding to which are the
abilities of the other team members and team operation [He 2007|. However,
each project is unique because of the problem that seeks to solve, the
difference between the approaches that are used to solve specific issues and
the interdependence of internal system elements. So, while a software system
has common factors in relation to another, the problems that teams and
individuals must face and the variables to be considered, are different. Thus,
the construction of situational awareness requires time and the accumulation
of experience of the team and individuals during the development of a project.

6.2.4 Distributed Situation Awareness

A recent approach, that is complementary to the above, is known as DSA.
This approach is based on systems in which individuals and technological
elements are considered as agents that interact, have different purposes (for
the tasks and activities they carried out) and are in possession of their own SA
of the tasks they perform and the project in general. The idea behind is that
team members do not need to know every detail about the project on which
they work, but only those details that allow them to perform their tasks.
However, this implies that team members must be aware of the state of the
project, the tasks of which they are responsible, and the information that
others need to know to make it available [Stanton 2006].

It should be mentioned that access to the same information does not
produce an identical situational awareness in team members, because of their
particular goals, tasks, roles and experience, that leads them to use and
interpret information in different forms. Knowledge is distributed in the
environment and SA of an agent may be different but compatible with SA of
other agent. Therefore, the performance of certain tasks that are interrelated
requires the collaboration among agents, so the compatibility of the SA of
agentes is useful.

According to the DSA principles enunciated by Stanton et
al. [Stanton 2006, the following points are important:

% Both human and non-human agents have their own SA.

x Each agent has its own point of view about a given situation, but it
could be different to the point of view of other agents.

* Agents have leading roles in the development and maintenance of the SA
of other agents through the interaction that takes place among them.

6.3. Considerations in Designing Awareness Workspaces 159

x Agents compensate the lack of SA of one or more agents in certain
situations.

x The points of view of agents about the system could change over time,
according to the tasks they perform.

* The knowledge that makes up DSA is activated at different times in
accordance to the goals, objectives and requirements of situations, tasks
and activities that arise and are carried out in time.

x SA coincidences between agents depends on the goals these have.

*x Communication between agents can be non-verbal and use electronic or
other custom mechanisms.

x DSA helps to the cohesion of loosely coupled systems.

x The perspective of agents may be redundant, but it is always
complementary in the context of collaborative environments.

* SA is an emergent property of the system and its parts, and not
something that exists in the minds of individuals (from a DSA
perspective).

x DSA can be seen in collaborative environments as the result that is
obtained from the interaction between agents and their behavior in the
environment.

6.3 Considerations in Designing Awareness
Workspaces

The design of a Situation Awareness Workspace (SAW) requires the
identification of the elements that an individual or team should be aware
of, in accordance with the goals and objectives of the project, and the tasks
or activities that have been assigned to them. Thus, to support software
maintenance, for example, it is useful that the SAW provides information to
help understanding the changes that are made to the system architecture and
which can help improve the performance of team members and the team in
general [Salas 1995, Fiore 2004a].

It is important to consider the points listed below when designing a SAW:

* It is common that the development of software systems is carried out
using a GSD model.

« The goal of a SAW is to facilitate the collaboration among team members
when carrying out tasks and activities which are their responsibility.

x SDME is a dynamic process that makes it difficult to keep up to date
information on the activities, tasks and patterns of interest that could
be considered during the design of SAW.

160 Chapter 6. Team awareness and collaboration

x Decisions must be taken immediately or in short periods of time
when dealing with complex and changing environments, such as those
of SDME, so having at hand updated information is always required.

* To have up to date information available on the current state of things
is important even when the members of the team perform trivial tasks.

x A SAW should provide information on the current state of things, but it
is necessary to consider those elements which can reveal future changes
about the state of the SDME processes with the aim of deciding the best
course of action to be carried out.

x Erroneous information about the state of the process can lead to
mistaken decisions.

x Team members need to be aware of what happens in relation to their
tasks and the project in general, and they also must be able to interpret
different situations according to the goals of the project so that they can
take decisions based on those goals and carry out the pertinent actions in
a timely manner (understand the situation -> take decisions -> perform
actions).

x The lack of training and skills of team members can lead to a
misinterpretation of SA [Salas 1995, Endsley 1995] and can lead to take
erroneous decisions.

x The formation of teams with cohesive structures in terms of knowledge,
skills and control of activities is a difficult objective to achieve.

The visualization of software systems and their evolution arises, then,
as a viable alternative to develop a SAW because of its ability to convey
information and provide mechanisms for interaction with users. The
information provided by visualizations about what is happening on the system
could lead to the activation of the cognitive processes of team members and
thus, initiate the communication, coordination and control tasks that are
required according to the particular situation and circumstances.

According to the focus of this research, the appropriate design of
visualizations should consider the perception, cognition and sensorial abilities
of users [Card 1999b|. Therefore, the use of visual elements to allow the
immediate comprehension of information (preemptive processing), without
previous training and independently of the culture or origin of PMs and
programmers should be taken into account. In order to do this, the use of
visual representations, patterns and colors based on international conventions
and the principles of Gestalt laws could also be considered [Ware 2004].

It is relevant to highlight that a large number of scientific papers make
reference to the elements that must be considered when designing visualization
tools to support the tasks involved in the SDME processes. Following

6.3. Considerations in Designing Awareness Workspaces 161

that line of research, Young and Munro [Young 1998| identified 6 factors to
be considered when designing tools using 3D technologies (representation,
abstraction, navigation, interaction, correlation and automation), which due
to its relevance could also be applicable to visualizations that have been
developed using 2D technologies. Maletic et al. [Maletic 2002] enumerated
5 additional aspects that is convenient to keep in mind (tasks, audience,
objective data, representation and method). Thus, taking as a reference the
factors identified by both research works, the design of a tool for visualizing
software systems requires to consider the items listed below:

Audience: During the design of a visualization tool it is convenient to take
into account the user characteristics, their needs and objectives with
the aim of determining the most appropriate visual representations and
interaction techniques to be used.

Tasks: The precise identification of the tasks that will be supported by the
visualization tool is a critical factor during its design. This identification
allows to define the use cases of the tool and determine the most
adequate visual representations for such tasks.

Target data: The identification of data is also a critical factor because
based on their characteristics, the audience and tasks, the design of
visualizations is carried out.

Correlation: This consists in the correlation of information from different
data sources, as well as the possibility of on linking visual elements with
documents and source code.

Representation: A fundamental problem in visualizing changes of software
systems is the appropriate selection of the graphic elements, metaphors
and colors as well as make an effective combination of these elements
to show different perspectives of data [Eick 2002|. This is of great
importance for designing an intuitive visualization which allows to
transfer information effectively while demanding a little efforts from
users in terms of cognitive complexity.

Abstraction: In order to convey and allow the effective interpretation
of information it is necessary to determine the level of information
detail that will be presented (the user could choose the level of
detail by means of interaction) as well as the representations and
visualizations that will be used.

Navigation and interaction: SDME processes generate large
amounts of information. The use of several visualizations linked
together and also that these visual representations are implemented
using navigation and interaction techniques (e.g., focus + context,
overview + detail, landmarks, zoom, search history and filtering).

162 Chapter 6. Team awareness and collaboration

The goal is that the user has the possibility to explore details
while these are properly placed in the context of the visualization
and the analysis that is carried out. As part of the interaction,
elements can be incorporated that allow users some flexibility in
customizing the visualization such as the possibility of choosing
colors.

Automation: Ideally, the visualization of large software systems
should be done automatically including the extraction of
information from the selected data sources, and is desirable
to incorporate new information as it is created. Young and
Munro [Young 1998] remark that the possibility of allowing users
to create the visualizations by means of interaction must be taken
into account. Using this approach the users could make decisions
regarding the system elements that will be represented, thus by
means of this practical exercise a better understanding of the
system under study could be achieved.

6.4 Visualization for Team Awareness

SCM tools are widely used by software development departments and,
consequently, by development teams and programmers to record source code
modifications. Thus, the interactions of programmers with software items are
reflected in the data that is collected with the use of these tools, which then
are accessed and analyzed using automatic mechanisms.

The aspects that visualization tools seek to support with the creation
of shared knowledge spaces (to facilitate communication, collaboration and
control) during the development and maintenance of software systems
are diverse. While some of these tools try to provide information to
other programmers, others are designed to assist project managers in
decision-making. It is thus necessary to take into account factors such as the
status of projects in terms of quality (measured using metrics) system changes
(including the source code, dependencies, relationships and structure),
understanding aspects of system design, socio-technical relationships and
collaboration between team members.

6.4.1 Teamwork

In a GSD environment the existence of small teams located in different
geographical locations is common. This makes necessary to design tools to
enable team members to work together effectively. In this scenario Anslow et

6.4. Visualization for Teamm Awareness 163

al. proposed two visualization tools, which were called System Hotspots View
(SHV) and SourceVis to support collaborative work [Anslow 2010].

Ir
Figure 6.1: System Hotspots View: visualization of system structure and metrics
for supporting the collaboration between programmers [Anslow 2010].

Some visualization tools such as System Hotspots View (SHV) have a
dual purpose: first to provide information on technical aspects of the systems
in order to facilitate their evolution (development and maintenance) and
secondly support the collaboration among team members. This visualization
tool is based on Polymetric Views and it is aimed to support the understanding
of the structure of a software system, as well as for the detection of structure
and quality problems through the use of metrics applied to packages, classes
and dependencies between software items. Its main contribution is to deploy a
large wall screen that allows sharing knowledge about the system with the aim
of facilitating the discussion, coordination and collaboration among members
of the development team (see Figure 6.1). This tool, therefore, can be used
by both programmers and project managers.

The effectiveness of SHV was tested by means of a user study. The results
of the study showed that participants enjoyed the visualization with the use of
large visual panel and the ability to observe a large number of details at once,

164 Chapter 6. Team awareness and collaboration

though they felt that the lack of tactile interaction with the representations
was a drawback. Some participants made comments about the height of the
screens; in some cases because the height of the users was very low and thus
they were not able to properly observe the top of the visualizations; and in
other cases because the participants were tall and they found it difficult to see
the information at the bottom of the screens. Another observation made by
the participants was related to the interruption of the continuity of the visual
representation by the edges of the screens.

SourceVis, meanwhile, is a visualization tool that allows the interaction
and discussion among collaborators by means of a large multi-touch
table [Anslow 2013|. This tool allows the simultaneous interaction of several
users and supports multiple visualization types such as SHV, Class Blueprint
and vocabulary views using word cloud representations. Figure 6.2 shows
to several users that are exploring dependencies among software items with
Source Vis.

Figure 6.2: SourceVis: a large interactive multi-touch table for the interaction and
collaboration between team members [Anslow 2013].

6.4.2 Situational Awareness

Ownership Map |Girba 2005, Hattori 2012] is a visualization that provides
information to project managers about the collaboration that has taken place
during system development. The purpose of this representation is to support
decision-making and provide details on:

*x The number of programmers that have participated in the development
of the system.

6.4. Visualization for Teamm Awareness 165

x Modifications or parts of the system that have been developed by each
programmer.

* The behavior of programmers during development and maintenance of
the system.

file present from commit by the green author file removed by
the first import followed by the ownership the blue author

File A

File B o‘\‘\ o
file created by the small commit by the blue author.
green author the file is still ownedby the green author

Time —P»

Figure 6.3: Representation of changes and ownership of the software elements
in Ownership Map |Girba 2005].

Data used by Ownership Map were extracted from the logs of Concurrent
Versioning System (CVS) and took into account details of the relationship
between changes, at the level of source code lines, and programmers. Using
this data as a base, it can be determined which programmer is the owner
of a software item for a period of time or during the complete evolution of
that item. The visual representation of programmers and software items is
carried out using lines, circles and colors. So, lines depict software items
whereas circles represent the magnitude of the change that was made and
colors are associated with the programmers. Moreover, it alternates the
color of lines to show the time intervals and programmers who have been
responsible for a particular software item. Additionally, gray lines represent
an unknown programmers or the initial import of software items into the
software repository; a circle, that is painted using the color of a programmer,
at the end of a line indicates that the item has been deleted (see Figure 6.3).

The use of this visualization allows to identify different patterns that
are derived from the activities and collaboration between programmers, in
accordance with Girba et al.. The following list explains these patterns and
relates them, when it is applicable, with Figure 6.4:

Monologue: This pattern consists of the activity undertaken by a single
programmer in most of the files over a period of time. It can be seen
on the left side of the Figure 6.4, where the changes made by the
programmer associated to the green color (indicated by R5).

166 Chapter 6. Team awareness and collaboration

Familiarization: It shows how a programmer carries out changes
progressively in software items, until possession is taken of virtually
all software items, as it can be observed in inset R5 of Figure 6.4 (note
the pattern of the programmer depicted by the blue color).

Expansion: This pattern is associated with the addition of new files to the
system by a programmer, as it is the case of the programmer identified
by the blue color in accordance with the boxes R8 and R12 of Figure 6.4.

Edit: It is associated to changes related the rename of identifiers, the cleaning
of comments or other necessary changes that add functionality to the
system. This type of pattern can be observed as a vertical column of
changes carried out by the same programmer, as is indicated in the
Figure 6.4 by insets R7, R11 y R15.

Taking possession: The name of this pattern is derived from the fact that
the programmer takes possession of most software items in a very short
period of time, as is indicated by insets R13 y R14.

Teamwork: This pattern is identified where a group of programmers who
take ownership successively of multiple software items in a short period
of time. Figure 6.4 shows the involvement of multiple programmers in
multiple periods of time by means of the highlighting of insets R1, R3—4
and R12.

Correction of errors: It consists of a specific intervention of a programmer
to correct a mistake, and because of the few changes that this implies,
the programmer takes possession of the software item for a very short
period of time, (sometimes difficult to perceive) as depicted by the three
points shown in the representation where a yellow point is indicated by
a circle (see inset R10).

Cleaning: This pattern is the opposite to the Expansion pattern, and
involves the removal of a significant number of software items from the
system, as shown in inset R2.

Silence: It represents a period of time in which little or no change is shown.
It is identified as a rectangle where the software items do not change of
color.

CodeTimeline [Kuhn 2012] is a visualization tool that uses two visual
representations. One of these visualizations evolves the concept employed
by Ouwnership Map allowing developers to add notes and photographs with
comments about the visual representation, in those points of the evolution

6.4. Visualization for Teamm Awareness 167

R1: Teamwork R2: Cleaning

o '
R9: Expansion R10: Bug-fix R14: Takeover, Epilog

sa|ld BARP 1S

———r
R11: Edit R13: Takeover | g

"e3 §Id

RS: Monalogue R6: Familiarization

s3ld dSr:2S

R8: Expansion
- 4
il 1 - - Hi-o- - b

.--i =1

RT: Edit R12: Expansion, Teamwork

P1 P2 P3 P4 P5-6 P7 P8

-
-

Figure 6.4: Visualization of the patterns of behavior of programmers using
Ownership Map |Girba 2005].

where it is considered relevant to maintain the memory of events that have
occurred during the development process (see Figure 6.5). Whereas the other
visualization is a timeline that represents the terms and their frequency of use
in the source code. This is achieved by using word clouds for each revision of
the system, where the size of the words and the color represents the frequency
in which the term is used. The blue color, in this representation, represents
an increase in the frequency of use of the term and the red color a reduction
in its use. The size of the term reflects the extent of their use in relation to
the other terms in the cloud. Additionally, this visualization also allows to
use annotations (see Figure 6.5).

Another visualization which permits the display of activities carried out by
programmers is the activity viewer that Ripley et al. [Ripley 2007]| built on the
basis of Palantir. This viewer was programmed using 3D technology, the logs
stored by SCM tools and the information obtained from the local workspaces
of each programmer as data sources. The activities about which information
is obtained and represented includes check-in and check-out operations; the
synchronization of the local workspaces with the software repository, as well
as the editing and deleting of software items of the local workspace of each
programmer.

This visualization displays information about the workspaces and the
active software items by means of two visual representations which use cylinder
graphs as their main graphical element. These representations focus on
visualizing the activities of programmers and show details about the changes
carried out in software items.

168 Chapter 6. Team awareness and collaboration

Timeline of Outsight —3

Use drag & drop or double dick to add lifetme events.

J[Timeline of JUnit —

Use drag & drop or double dick to add liletime ewvents...

7 ohedyetchy I

TemporarFolderdnenFie creales

(?\ rardomy named new file! z
. VRS BUMMY I O
‘ w tc)\' ﬂegl[v
n
Managment provided a ey 3 '"r‘a’{ 3[%1 g
bug fix, horray! #epic

P.

OW'

Kent presents JUniMax
at Agie Farum 2009. 4.7

dar U ST
e
v Facme md
¢ G
(&3 4
» 4,6 Introduction of Rules, see
Blog post by David [more]

| heoy éﬁﬁéﬁmental

114

We moved
2 4 < to Github!
10ad ing e |G IYOT
Prir muﬂ D efa 1
1.13 s— Adapter , g rl‘glf“g
Fokl g Nothing makes Kent as happy ,_Pal
u,rvau-.mh :-l: as removing dead oode =) aur at
:ﬂm"ﬁ?x“; U[-'gp ﬁﬁ”«MJHSEE fat — 42 Cb

ob,cct— ?Ssnwf"als Ag
Usegy rnl PG ﬂj’,w il R Ui<Hash

Child| &
inits ,h;anonf mplcts
T
4.1 .._Netﬁu 13SSESATE adses
mmmnmm, ines

% b"uu ki "X [
P

Qf
: V3l S 1
? GREEN leaves the team, .

BLUE takes over ... more...

tl'ﬂe
(a) (b)

!

ce

Figure 6.5: CodeTimeline: (a) Notes of the development team concerning the
Ownership Map visualization. (b) Visualization of the frequency of terms for each
revision by using word clouds and notes from the development team [Kuhn 2012].

The local workspace of each programmer is visualized using cylinder stacks,
where each cylinder represents a software item. The height of cylinder
stacks reflects the number of activities carried out by programmers (see
Figure 6.6).Cylinder stacks move forward or backwards in the visualization
depending on the time elapsed since the last changes that were made in the
workspaces that they represent. Then, cylinder stacks with the most recent
changes are placed at the front of the visualization, while those with the
earliest changes are located at the back of the visual representation.

Moreover, cylinder stacks are used to depict software items and the changes
made by each programmer. In this context, each cylinder corresponds to a
particular programmer and its size reflects the magnitude of the changes that
have been made, as shown in Figure 6.7. It is noteworthy that (generally

6.4. Visualization for Teamm Awareness 169

Developer
Mode

Ellen

Figure 6.6: Visualization of the activities carried out by programmers [Ripley 2007].

speaking) when an element of Palantir is selected, it is possible to obtain
information about the magnitude of the changes carried out, as well as the
names of the corresponding programmers and the value of metrics.

Artifact . .,

Mode wiord/
edit/ ' _
Copy,ja¥a /demo/
) word/
‘ : edit/
fdemo: ™ Delole.java

word}
edit/
Rename,|avd

Figure 6.7: Representation of software items and changes that were made by each
developer [Ripley 2007].

6.4.3 Collaboration and Socio-technical Relationships

In most of the cases, the objective of the tools that support the construction
of common knowledge spaces is to improve cooperation among team members.
This cooperation is usually necessary because collaborators work together on
a common project and the work of each one is related to the work of other
contributors. However, it is advisable to consider that cooperation among
individuals can also be present when several people contribute to the solution
of determinate problems, working of independent form and without having as

170 Chapter 6. Team awareness and collaboration

alm the achievement of common objectives or goals. A remarkable example
are the web sites used by programmers to ask for cooperation from other
programmers in solving particular problems [Assogba 2010|. Programmers
who participate in these type of sites share membership in a community of
individuals working on subjects over which they have knowledge, but which
are not necessarily part of their daily work.

Assogba and Donah [Assogba 2010] denominated this type of cooperation
as loosely bound cooperation and they defined it as “a form of cooperation,
sometimes indirect, between members of a community that gives them the
freedom to pursue their individual goals while allowing them to help each
other”. As a summary of the foregoing and the features that the researchers
stand out, the following are the main points of this type of cooperation:

x Individuals are not under any obligation to help others.

*x Each participant has their own goals and most of them do not share
goals.

x The cooperation can range from casual to continuous and committed,
and involves the solution or development of a particular software item.

x The participants in this model of cooperation are part of a community
of individuals who actively practice their profession.

Assogba and Donah carried out the development of a visualization tool
which they denominated Share [Assogba 2010]. The aim of this tool was
to support the sharing of source code among members of a community of
programmers. In order to implement this tool, they used a client/server
architecture, which provides server-side authentication and data storage, while
the client side is a desktop application where the user carries out programming
tasks. Each programmer who uses this tool is assigned the same color in all
the projects in which is involved.

The client side of Share provides a file browser, a program editor, a
reference manager, a search engine, the visualization of the network of
relationships (relationships browser) and mechanisms for synchronization with
the server. The program editor and the visualization of the network of
relationships are of interest to this research and are thus further explained
below.

The program editor provided by Share uses the color assigned to each
developer to indicate who is the author of each piece of reused code that is
part of a program, but does not use any color for the new code that has been
developed within the program (see Figure 6.8).

The browser of relations of Share is aimed to facilitate the tracing of
reused source code, for which it uses a graph that depicts the correlation

6.4. Visualization for Teamm Awareness 171

(XN S) Share - bars by yannick
Sketch Edit
oM | € {A]

SOlooisc (AN) *vidthjililooise (IEEEN) *height il

num_elements RN

(n frousex) * height)f}

num_elements
num_elements num_elements|ISoERESEE

Figure 6.8: Share: Text Editor showing the pieces of source code that have been
reused and which represent by means of colors, the person who has made the original
contribution [Assogba 2010].

user — user, user - software item and software item — software item. This
visual representation has two variants which allow to easily determine who
has contributed source code to a project and those who have reused that
code.

The first variant of the browser of relations utilizes a radial layout whose
central item is the one that have been selected by the user. This visualization
provides an overview of all contributions that has been made. Figure 6.9
depicts the contributions made by each developer and the reuse of source
code between software items by means of arrows, in which an arrow indicates
the item from which the source code has been reused. The second variant of
this browser is sought to provide information about which software items are
lending or borrowing a given software item, as illustrated by Figure 6.10.

The visualization of collaboration between programmers allows a
programmer to learn about those from whom they can expect collaboration
based on the items that have changed and the relationships that exist
between those software items. This type of visualization provides
information to project managers and assists them in making decisions about
which programmer can replace another programmer in case of sickness,
accident, resignation or dismissal. Moreover, it can also help in forming
teams according to past and current collaborative relationships between
programmers [Jermakovics 2011].

172 Chapter 6. Team awareness and collaboration

5 MADPARKER (1)
-olllme

plest water
O E m o
rebound . fies
: trene "'Jnunome
:)

PRISONERJONN (2)
1) soundery Minim_test .

O scgfnguars O
line3

prim
O ‘ : -
e bars lineé

Blur YRNNICK (16)
. KJHOLLEN (6)

‘oalnnn! .I-rm'i
weees

libtest_col - ’ - lines
siit_scan
KineticType)

hello_world
Nghts oy l test line2

physics

linel

Figure 6.9: Share: Browser of relationships using a radial layout to show
the relationships between software items according to the reuse of source
code [Assogba 2010].

Jermakovics et al. [Jermakovics 2011] construct a network of the
collaboration that takes place among developers on the basis of the changes
that have been made to software items. This collaborative network emerges
as a product of the analysis of the similarities among developers based on
the software elements that they have changed in common. The network
that results from the analysis of changes is represented using a force directed
graph, where the nodes represent the programmers and the edges reflect the
relationships between them, on the basis of similarity. The size of the nodes
is used to represent the number of commits made by programmers, while the
forces of the graph are calculated in accordance with the similarity among
programmers and the number of connections between them.

The similarity measure is also used as a filtering criterion, which allows the
user to choose a threshold to filter edges that do not meet the criteria selected.
Another interesting aspect of this visualization is that in addition to providing
information about the relationship between programmers, it also provides
details about the membership of a working group of programmers and also
the relationship between these working groups, as illustrated in Figure 6.11.

A complementary approach to the above is that of Heller et al. [Heller 2011|

6.4. Visualization for Teamm Awareness 173

andanother

© =

PRISONERJOHN (24¢crol Bars

bars fransitive

YASNICK (18)

Figure 6.10: Share: Basic browser to show the relationships of a particular software
item [Assogba 2010].

concerning the representation of the collaboration among programmers, but
taking into account their geographical location. This visualization represents
data that is obtained from GitHub by means of a graph which is drawn over a
map to show the relationships among programmers, and this also allows the
density of programmers by country or region to be shown.

The development of strategies to increase the level of knowledge about
the activities that programmers can contribute to coordination in GSD
environments. Taking this into consideration, it should be recalled that SCM
tools have been widely disseminated and used to assist in the coordination
of parallel software development and that in distributed environments they
have been of great utility. In addition, due to the richness and the large
quantity of information that they manage, a large number of visualization
tools make use of this information. However, the disadvantage of SCM tools
is that developers do not realize of the changes made by other programmers
until they have been sent to the software repository by a check-in operation,
and not at the time at which the changes are made [Lanza 2010].

Considering this problem, Lanza et al. propose an architecture that uses
an Eclipse plugin to record and to transmit the source code changes made
by a programmer to the other programmers. The aim of such architecture
is to support the understanding of changes and to provide information for
programmers to react in time to changes that are made to the system.

Additionally they developed a tool, as well as an Eclipse plugin, which

174 Chapter 6. Team awareness and collaboration

®
®
4 Team 2 a
) -
Team 1 . { ® _.
c \| A ®
—YITTe
® ® *
L]
o L

Figure 6.11: Visualization of a collaborative network between programmers based
on the software items that have been changed in common [Jermakovics 2011].

consists of three simple visualizations that are updated in real time on each
IDE as changes are made |Lanza 2010].

Bucket View is a visualization that is part of this tool and uses a
metaphor of buckets: each software item is represented by a bucket that
contains small colored squared shapes. Every change that is made to the
system is represented by a colored square shape, where the color denotes the
programmer that carried out the change. Changes are sorted chronologically,
so the oldest updates are located at the bottom of the bucket and the most
recent ones are located on top.

This visualization uses color to identify the programmer that is considered
as the owner of a piece of software. Figure 6.12 shows that the software item
associated to bucket D has been changed by a single developer (associated
to the red color) which, therefore, is the owner of that item. While the item
associated to bucket A has been changed concurrently by two programmers,
where the programmer that is associated to the blue color is the owner of such
software item.

6.5 Discussion and Conclusions

Software development under GSD models requires the use of tools to support
teamwork and collaboration. Therefore, the role of software visualization was
discussed in this chapter as a central element of such tools, and in helping

6.5. Discussion and Conclusions 175

Level Ghost Travers... BoardWi...

A|lB|C|D

Figure 6.12: Buckets View: Visualization of changes made to software items and
the collaboration between programmers [Lanza 2010].

transform the huge amounts of information that are derived from the SDME
processes into knowledge. The importance of the previous discussion is rooted
in that the correct design of the architecture of these kind of tools should
pay special consideration to the geographical, temporal and cultural distances
involved. Thus, in order to facilitate collaboration among team members, the
design of these tools requires the use of mechanisms that allow reviewing in
real time the changes made to the system as well as details of who has carried
them out.

In this context, the vocabulary and terms that are used in the SDME
processes are commonly used globally (in different geographical areas
and countries), which facilitates the communication and collaboration.
However, the design of visualizations requires a careful selection of symbols,
representations and conventions.

The research discussed in section 6.4 looks for facilitating the obtention of
knowledge on the state of things during SDME processes, and in general their
goal is to support the collaboration among team members. In summary, the
research works that were studied focus on:

176 Chapter 6. Team awareness and collaboration

1. Sharing information about the architecture of systems and the metrics
associated with the software items which make it up.

2. Supporting the interaction and collaboration among team members.

3. Providing details on the patterns and collaboration networks that are
formed among programmers and which are derived from the software
items that have changed in common.

4. Supporting the identification of the relationships that are formed
between teams based on their interaction and collaboration.

5. Providing details on the collaboration of programmers in virtual
communities of voluntary cooperation.

6. Providing information on the ownership of software items on the basis
of the changes that have been made and the programmers who made
them.

At this point it is important to analyze the relationship between chapter 5
and this chapter. Chapter 5 focuses on the visualization of the architecture of
software systems with the aim of facilitating the understanding of the system
structure, the metrics associated to its software items and the changes that
are carried out. But it is desirable to take into consideration that this type of
visualizations also serves to support collaboration among team members and
to provide details on the state of things. So, the design of tools to facilitate
collaboration should not only consider the elements where the interaction
among team members is reflected, as most of the research works described in
this chapter do, but all those factors that provide insight of the activities that
occur around the system: through that knowledge is that different actors can
take action and initiate communication, coordination and control processes.

Finally, it should be highlighted that all the factors that could facilitate the
performance of teams though the appropriate support to individuals should
be considered. This is in line with the discussion presented in Section 6.2 and
it is aimed to improve the performance of teams in working environments that
operate under GSD models.

CHAPTER 7

Survey on the Use of Visual Tools
in Software Development and
Maintenance

Después de haber saciado el hambre, Rastin emprendio la vuelta a
casa, mientras Giindy y Cucho continuaron su camino. Esta vez
caminaron juntos, Guindy no sequia a Cucho, y después de varias
horas vislumbraron a lo lejos una luz intensa. Apresuraron el paso,
y al acercarse se dieron cuenta que habian llegado a una pequena
ciudad con fabricas y chimeneas. Entraron a la ciudad de forma
timida y silenciosa, y comprobaron que aunque la ciudad tenia
wsos de modernidad, en realidad sequia siendo ristica para los

tiempos modernos que corrian. — El viaje de Giiindy, A.Gonzélez
Contents
7.1 Introduction 00000, 177
7.2 Survey Description 178
7.3 Questionsand Results. 179
7.3.1 Data Collection 180
7.3.2 Product Tools. 183
7.3.3 Process Tools 186
7.3.4 Impediments to Adopting Tools 188
7.4 Discussion i i 189
7.5 Conclusions oo 192

7.1 Introduction

In the last chapter, the results of a study were presented. The aim of the study
was to conduct an in-depth review of the current state of the application of

Chapter 7. Survey on the Use of Visual Tools in Software
178 Development and Maintenance

visualization and VA to software systems and their evolution in facilitating the
development and maintenance of software. It thus examined the use of IV and
VA in the comprehension processes of software projects and their evolution
by means of a systematic mapping study of research carried out in the last
7 years, from 2007 to 2013. Consequently, it identified the tasks that this
research sought to support as well as the different types of visualization, data
types and technologies that were used.

The research which has been carried out is limited to assessing the works
that have been published in the aforementioned time period and the results
do not provide insights regarding technology transfer between the research
community and industry. There has been concern about the spread, impact
and transfer of scientific results to industry. Consequently, this chapter
introduces and discusses the results of a survey that was answered by 113
participants working for 65 companies and who were living in 6 different
countries.

It would seem natural that visualization tools should have been adopted
by the software industry to support the development and maintenance process
taking into account the benefits and the increased use of visual tools in other
industries for knowledge discovery (see more details in chapter 3). However,
the research conducted in this chapter supports the opposing hypothesis:

How are software companies and software development departments using
visual tools to facilitate software development and maintenance?

Consequently, this chapter seeks to answer the above question by means of
a survey of the use of tools which support the software development process.
The outcome of this study provided important details on the availability of
data and blockage points that may be helpful for the design, implementation
and adoption of tools.

7.2 Survey Description

The survey was prepared using a powerful commercial web application
specialized in online surveys [Qualtrics, Inc. 2013] and distributed by email.
It was sent to the email list of the Computer Science graduates of a
large university (35,000 students) who are currently working in the software
industry. In addition, the survey was also sent to the email lists of professional
groups in the field of software development and maintenance.

This survey was aimed at programmers, team leaders, project managers,
architects, analysts, and SQA professionals. The survey questions were
branched according to the job position occupied by the person who was

7.3. Questions and Results 179

answering. Additionally, the questions were divided into four groups, as the
following list shows:

Data collection: These questions were aimed at surveying the use of tools
for collecting and storing data generated during software development
and maintenance. The goal of these questions was to determine the
availability of data that could be used by visualization and visual
analytic tools aimed at analyzing software systems.

Product tools: These questions were targeted at obtaining perspectives
on the wuse of visualization and visual analytic tools aimed at
analyzing software systems in product-related tasks, (e.g., debugging,
understanding the code structure (dependencies, inheritance, coupling,
cohesion)), and understanding code changes (refactoring).

Process tools: These questions were directed towards the wuse of
visualization and visual analytic tools aimed at analyzing software
systems in process-related tasks, e.g. project management and software
quality assurance (analysis and monitoring of team activity and quality
metrics).

Blocking points for adopting tools: These questions were aimed at
identifying obstacles for adopting visualization and visual analytic
tools aimed at analyzing software systems for supporting software
development and maintenance tasks.

Table 7.1: Number of answers per role type.

Position Answers
Programmer 41
Team leader 18
Project manager 8
SQA Specialist 3
Architect 2
Analyst 1
Totals 69

7.3 Questions and Results

The survey was completed by 113 participants. The answers from participants
which did not match the roles in Table 7.1, contradictory answers, and answers
which came from respondents whose job includes systems support (servers and

Chapter 7. Survey on the Use of Visual Tools in Software
180 Development and Maintenance

network) and carry out help desk and development tasks simultaneously! (as
they do not work full time in software development and the survey seeks for
answers of full time software practitioners), were discarded.

After the filtering process, 69 answers remained. Table 7.1 shows the
professional roles of the survey participants considered. The participants
came from over 65 companies in 5 Spanish-speaking countries and one
Portuguese-speaking country, and were distributed into 11 market segments,
with the majority of companies coming from the software industry? as shown
in Table 7.2. The respondents worked for companies whose headquarters
were based in 8 different countries. Of the 65 companies, 24 companies were
multinational and, among these, 19 were based in the United States, 2 in
Mexico, one in Germany, one in Nicaragua and one in Puerto Rico.

Table 7.2: Number of answers per company type.

Market segment Companies Answers
Software industry 43 46
Finance and banking 7 8
Government 3 3
Services 3 3
Telecommunications 2 2
Education and research 2 2
Energy 1 1
Agriculture 1 1
Manufacturing 1 1
Healthcare 1 1
Transportation 1 1
Total 65 69

The survey results are presented in the following sections, classified by
means of the groups mentioned in earlier sections of this work.

7.3.1 Data Collection

The first group of questions (as shown in table 7.3) was aimed at assessing the
availability of software-related Big data, and data-collection tools, within the
participants’ companies. Since data collection is the first step in the analytic
process, it may represent the first bottleneck on the road to implementing

IThe answers revealed that most of these respondents work for small companies with 1
to 3 professionals in the IT department.

2Companies which main business is the development and commercialization of software
products.

7.3. Questions and Results 181

Table 7.3: Question group: Data collection.

Question Answer
Q1 Does your company use a SCM tool? Yes/No

If Yes, specify which SCM tools. Plain text
Q2 Does your company use a bug tracking tool? = Yes/No

If Yes, specify which bug tracking tools. Plain text

Q3 Are the SCM and bug-tracking tools linked Yes/No
to connect bugs with changes?

Q4 Do you collect data for metrics calculation? Yes/No
If so, how do you collect metrics data? Plain text

IV and VA for the process of comprehension of software projects and their
evolution.

Question Q1: SCM tools are key componentes for data collection as they
record and manage source code versions and the metadata associated with
changes in software repositories. Figure 7.1 shows the answers to Q1. The 65
companies surveyed (100%) use at least one SCM tool; 24 companies (37%)
use at least two SCM tools; and 8 companies (12%) use up to 3 SCM tools.
Hence, the raw data required by the visual representations should be readily
available in all the cases surveyed.

Questions Q2 and Q3: Most bug tracking tools permit the creation of
relationships between bugs and changes recorded by SCM tools, integrated as
part of the tool or as a plugin. Such relationships are essential for corrective
maintenance [D’Ambros 2006b, D’Ambros 2007a, Sensalire 2008|.

QVCa

Mercurial
Sourcelea Vot
Rational Cleat” ase
Botfland StarTeam
Perforce

cCva

Visual 5 ourced afe

Team Foundation Server

Git

Subversion

0 3 15 200 23 30 35 40 45
Figure 7.1: Q1: Use of SCM tools.

Chapter 7. Survey on the Use of Visual Tools in Software
182 Development and Maintenance

The answers to ()2, presented in Figure 7.2, show that 16 companies
(24.6%) do not use any bug tracking tool; 51 companies (78%) use one bug
tracking tool; and 13 companies (20%) use more than one tool. However, the
answers to (3, shown in Figure 7.3 are not as encouraging as the ones in ()2
as only 16 companies (24%) have linked the bug tracking to the SCM tools.
This may limit the amount of insight that visualization tools can provide
because collected data does not reflect all the activity carried out during the
development and maintenance process.

ALM

HP Application Lifecycle Managem ent
HP Quality Center (QC)
ALDON

Dirak

Trac

Quality Center
RallyDev

PVCS Tracker

Recuest Tracker

OTR3

OnTime

Bug Tracking

Bug tracker

Redmine

Team Foundation Server
Marntis

Assembla Tickets
Rational Clear Quest
FogBUGZ

Bugzilla
InH ouse
JIRA4

T T T T T T T T T T T

o 2 4 6 8 10 12 14 16 18 20 22
Figure 7.2: Q2: Use of bug tracking tools.

Question Q4: This question was aimed at project managers, team leaders
and SQA specialists, as these are the typical stakeholders interested in quality
metric analysis during software development [Pinzger 2005, Lanza 2005b,
Telea 2009¢|. These professional roles accounted for 29 respondents from
29 companies. The answers were divided up as follows (see Figure 7.4):
17 respondents (59%) collected data for calculating metrics; but the other
12 respondents (41%) did not. Of the 17 positive responses, 10 users
(59%) collected the metric data manually; 4 users (23%) used custom metric
tools (developed internally); and 3 users (18%) collected metric data using
commercial metric tools.

7.3. Questions and Results 183

Perforce

C overity

QVCE Q-Win

Bugzilla mods atd trac
Concurtert V ersions System plugin
Dtrak -TF3

Teatm Foundation Server
Aldon

HF Quality Center (QC)
Git hodks

ALM

Intetnal development
Rational Clear Quest
Todls are not linked

T T T T T T T T T T 1

1] 5 15 20 25 30 35 40 45 30
Figure 7.3: @3: Correlation of SCM and bug-tracking tools to make relationships
between bugs and changes.

Dirak

Jira
CleaJuest
Custom

Matmial collection with Excel

0 2 4] 2 10 12
Figure 7.4: Q4: Tools for metrics data collection.

7.3.2 Product Tools

The questions posed in this group focus on the use of visualization tools
for product-related tasks such as debugging, understanding the structure
and dependencies of a software project, and assessing cohesion and change
during development, and perfective and adaptive maintenance. The selected
questions are not exhaustive with regard to all tasks related to program
comprehension, but carry out and adequate sampling of most frequently
encountered activities of this type [Storey 1998, Maletic 2002, Sensalire 2008|.
As such, their answers are a good indicator of the penetration of visualization
tools aimed at general-purpose program comprehension tasks. The questions
in this group are listed in table 7.4.

Chapter 7. Survey on the Use of Visual Tools in Software
184 Development and Maintenance

Question 5: Debugging is estimated to cover about 25% of software
maintenance costs [Storey 1998, Koschke 2003]. As such, it is worthwhile
evaluating whether visualization can effectively support debugging activities.
The answers to Q5 displayed in Figure 7.5 show that the debugging tools
included in IDEs are the favored option (59 answers, 91%). Visualization
tools, either third-party (4 answers, 6%) or in-house developed (2 answers,
3%) are a minority option.

Table 7.4: Question group: Product tools.

Question Answer
Q5 Which of the following tools IDE debugging functions /
do you use for debugging? Visualization tool or plugin (3¢ party) /
In-house development) /
Other
Q6 How do you navigate class Built-in IDE visualizations /

hierarchies? (e.g., find ancestors =~ Visualization tool or plugin (3"¢ party)/
or descendants of a given class) = In-house development /

Manual text search /

Manual review of the class diagram /

Other
Q7 How do you navigate Built-in IDE visualizations /
dependencies?(e.g., find callers Visualization tool or plugin (3"¢ party)/
or callees of a given function) In-house development /
No specific tool is used /
Other
Q8 How do you find and examine Built-in IDE visualizations /
code clones? Visualization tool or plugin (3¢ party) /

IDE search functions /
In-house development /
Manual search

Q9 Upon code refactoring, how Built-in IDE visualizations /
do you how do you find where Visualization tool or plugin (3¢ party) /
old code has been moved? IDE search functions /

SCM logs review /
Manual search /
Other

Questions 6 and 7: These questions relate to the most frequent types
of relationships in program understanding — examining class hierarchies (Q6)
and review dependencies (Q7). For Q6 (see Figure 7.6), 43 respondents (66%)
answered that they use the basic visualizations included into IDE tools, 25
companies (38.5%) rely on manual searches and a single respondent (1.5%)
used a specialized visualization tool. For Q7 (see Figure 7.7), the answers are
similar: 49 companies (75.5%) used manual search; 14 companies (21.5%) use
built-in IDE visual functions; and only two companies (3%) used a specialized
visualization tool.

7.3. Questions and Results 185

Visualization todl or plugin

In-house devel oprm ent

IDE debuagging functions

0 5 10 15 20 25 30 35 40 45 30 35 40

Figure 7.5: @5: Use of visualization tools for software debugging.

Vigsualization tool or plugin
Marnial review of the class diagram .

Matmal text seatch

Built-in IDE wisualizations

0 > 10 15 20 25 30 35 40 45

Figure 7.6: Q6: Use of visualization tools to navigate class hierarchies.

Question 8: Another important topic that respondents were asked about
was the detection of source code clones (see Figure 7.8). The results showed
that 27 companies (41.5%) carry out a manual search (some indicated that
they manually maintain records of the location of clones), 23 companies
(35.5%) use the IDE capabilities for searching clones, 14 companies (21.5%)
use the basic visualizations provided by recent versions of IDEs and only one
answered (1.5%) that they used a specialized visualization tool.

In-house developim enit
Visualization tool or plugin

Built-in IDE wisualizations

No specific toal is used

o 5 10 15 20 325 30 35 40 45 50

Figure 7.7: Q7: Use of visualization tools to navigate dependencies.

Chapter 7. Survey on the Use of Visual Tools in Software
186 Development and Maintenance

Visualization tool or plugin
Built-in IDE wisualizations
IDE search functions

MMammial search

T I T T T T

0 5 10 15 20 25 30

Figure 7.8: @8: Use of visualization tools to find and analyze code clones.

Question 9: This question captures a typical task in software
understanding during perfective or adaptive maintenance: the relocation
of software items. When a software project undergoes refactoring, various
software items change location. An essential task is to find the new location of
such software items. The answers to Q9 (Figure 7.9) show that 38 companies
(58.5%) use the IDE capabilities to search for the new location of software
items; 14 companies (21.5%) find such locations manually; 8 companies
(12.5%) use the log of SCM tools for this; 3 companies (4.5%) use other
tools; and only 2 companies (3%) use a visual tool for this task.

Visualization tool o plugin
Other

ACM logs review

Matmal seatch

IDE seatch functons

0] 10 15 20 a3 30 35 40

Figure 7.9: @Q9: Use of visualization tools to find source code fragments after
refactoring.

7.3.3 Process Tools

This question group covers the use of visualization tools for understanding
metrics related to project and process quality (Q10 and Q12) and
collaboration 11. As such, Q10 and Q)12 are aimed at project managers,
team leaders, and the SQA team (29 respondents from the same number of
companies), and Q11 is aimed at all respondents. The questions in this group
are shown in table 7.6.

7.3. Questions and Results 187

Table 7.5: Question group: Process tools.
Question Answer
Q10 Do you use a tool to measure = Yes/No
and visualize individual
programmer contributions?

Q11 Do you use a visualization SCM visualization tools /
tool to track which Visualization tool or plugin (37 party) /
users changed which In-house development /
software items? No specific tool /
Other
Q12 Do you use a tool to visualize = Yes/No
metrics?
If Yes, specify which tool. Plain text

Question 10: Only 4 out of 29 respondents (14%) responded to this
question. Those who answered use a tool for monitoring programmer
contributions, and none of them used a visualization tool (see Figure 7.10).
This may indicate that in practice the use of metrics is limited. However an
analysis of this falls out the scope of the present work.

1] 5 1a 15 20 25

Figure 7.10: @10: Use of a tool to measure and visualize individual programmer
contributions.

Question 11: This question was aimed at all participants. Therefore, 29
of the 65 companies (44.5%) used the basic version-tree visualization of SCM
tools (see Figure 7.11); a single user (1.5%) used a visualization tool developed
internally whereas the other 35 companies (54%) do not use any specific tool
for this task.

In-house devel opn ent
SCM visualization tools

No specific tool

0 3 10 15 20 23 30 33

Figure 7.11: Q11: Use of visualization tools to show which developers change which
software items.

Chapter 7. Survey on the Use of Visual Tools in Software
188 Development and Maintenance

Question 12: Although 59% of the respondents (see section 7.3.1) collect
software metrics data, only 2 out of 29 companies (7%) use a visual tool
for software metrics (specifically, Excel); and also only 2 companies use the
same visual tool for tracking the evolution of such metrics through different
revisions or product releases (see Figure 7.12).

Dirak

Jira
CleaJuest
Custom

Matmal collection with Excel

1] 2 4 & 8 10 12

Figure 7.12: Q12: Use of visualization tool for metrics.

7.3.4 Impediments to Adopting Tools

The questions in this group are focused on determining the impediments to
the adoption of visualization tools that support software development and
maintenance tasks. The questions in this group are listed in table 7.6.

Table 7.6: Question group: Blocking factors.
Question Answer
Q13 Do you think that visualization tools Yes/No
help to reduce software development
and maintenance time?
Q14 What do you think is the main reason = Don’t know such tools /
for not using visualization tools during No suitable tools found /

software development? Tools found not suitable
Q15 Which are your perceived adoption (see option list in
blockers for visualization tools? Figure 7.15)
Q16 Do you consider that software Yes/No

engineering courses should include
topics on the use of existing
visualization tools?

Question 13: This question was aimed at assessing the perception about
the experienced effectiveness of visualization tools in general, and not only
for software development and maintenance. As such, only those users who
already had used a visualization tool (44 out of 69) in any task were asked
this question. The majority (37 respondents, 84%) answered that they

7.4. Discussion 189

consider that tools like the ones they have used could help to reduce software
development time (see Figure 7.13). Negative answers were given by only 7
respondents (16.3%).

No

Yes

T T T T T T T T T T T T 1

0 5 10 15 20 25 30 35 40 45 50 55 60

Figure 7.13: Q13: Use of visualization tools to help reduce software development
and maintenance time.

No suitable toals found

Todls found not swtable

Don't know such toals
T T T T T T T T T T

0 5 10 15 20 25 30 35 40 45 50 55

Figure 7.14: @Q14: Reason for not using visualization tools during software
development.

Question 14: In contrast to @13, this question was asked to all users (69
respondents), as shown by Figure 7.14. Interestingly, 73.9% of the responses
indicated that the subjects did not have information regarding the existence
of visualization tools. 14.5% of respondents indicated that they had tried
out visualization tools but decided not to use them as they did not fit in the
required tasks (table 7.6, Tools found not suitable). The remainder of 11.6%
respondents indicated that they had searched for suitable visualization tools
for their tasks, but these tools did not meet their expectations (table 7.6,
Tools found not suitable).

Question 15: This question was posed to those who answered ()14
and enquired about the perceived blockage points for the adoption of
visualization tools. The options offered to respondents are taken in line
with [Bresciani 2009]. Figure 7.15 shows the answers given to Q15.

Question 16: Finally, Q16 was posed to all respondents with regard to
teaching and learning about the existence and use of visualization tools in
software engineering courses and 71% answered this question positively, as
illustrated by Figure 7.16.

7.4 Discussion

The analysis of this survey has produced a wealth of information that cannot
be easily summarized in a few pages. The survey results provided details

Chapter 7. Survey on the Use of Visual Tools in Software
190 Development and Maintenance

about the availability of data from SCM and bug tracking tools in most of the
companies surveyed. The availability of data may thus facilitate the design,
development and implementation of visualization and visual analytic tools to
support software development and maintenance.

C ognite overload

Complicated to use

Escalahility issues

Ower-simplification

The tool recuired to open several window s
The tool was not integrated into the IDE

Unclear

Ambiguity

C onfusion

Difficult to understand

High requirements on training and resources
Orver-complexity

Prior knowledge and experience

Ugdly
Wisual stress

0] 10 15 20 25

Figure 7.15: Q15: Perceived adoption blockers for visualization tools.

Yes

No

T T T T T T T T T 1

0 5 10 15 20 25 30 35 40 45 50
Figure 7.16: Q16: Do you consider that software engineering courses should include

topics on the use of visualization tools?

However, the survey results reveal that few companies have linked the
tools mentioned (16 out of 65) in order to obtain details of the correlation
between bugs and changes, limiting the utility of the data generated by the
same process of development and maintenance. Additionally, the collection of
metrics by means of specialized tools is only carried out by 7 companies while
10 companies collect metrics manually using Excel. The consequence of this
is that quality control of software products in most companies is not carried
out in a systematic manner during the software development process, as much
as during development and maintenance.

Moreover, the survey revealed that tasks such as debugging, navigation of
dependencies, detection of source code clones, refactoring, tracking changes
and contributions, and SQA metrics monitoring are carried out without the

7.4. Discussion 191

support of visualization tools. 66% of the respondents answered that they
use the basic visualizations included in IDE tools to examine class hierarchies
and navigating dependencies and 44.5% make use of the basic version-tree
visualization included in SCM tools.

This demonstrates that the majority of users use the tools that are
integrated in their working environment and are directly accessible by means
of SCM tools and IDEs. This is congruent with the arguments made by
Lintern et al. [Lintern 2003] regarding the design of visualization tools to
support the process of software development and maintenance. It is argued
that this is carried out without regard to the user environment in which tools
are used and without seeking their integration with existing tools.

This in turn leads us to consider that the integration of visualization tools
and VA to support the process of SE is a key aspect and that visual tools
must be integrated in the tools that developers use in their development
environments, such as IDEs and SCM, in the form of plugins. Therefore, there
exists a potential market for developing visualization tools that are integrated
into well known existing tools such as IDEs and SCM tools without burdening
users with unnecessary additional tools.

It is important to recall that the perception of respondents who had used
a visualization tool, in general context (and not only in a software systems
context) is positively high. However, when they were asked about the factors
which may block the adoption of these type of tools indicated the following:

x Visual stress factors caused by the visualizations.

Inadequate design.

The complexity of the visual representations.

The time required to learn the tools.

Requirement of previous knowledge.

Aspects related to the lack of clarity and ambiguity of designs.

O S S

It is thus important to consider the requirements of users with regard to
the tasks which they seek to support and thus make them active elements of
the design process by means of brainstorming meetings and usability studies
to evaluate and improve the design of visualizations and of the tools in general.

Other points which are relevant in considering the factors which impede the
adoption of visualization tools are related to the awareness of tools available
to support the process of software development and maintenance. 75% of
the respondents (69 in total) indicated that they did not have information
available concerning the existence of visualization tools to support tasks of this
process. When respondents were asked if they considered it appropriate to
include the teaching of these type of tools in software engineering courses,71%
answered positively.

Chapter 7. Survey on the Use of Visual Tools in Software
192 Development and Maintenance

Furthermore, some comments made by respondents highlighted factors
such as, the absence of a culture of using visualization tools in software
development and maintenance, the cost of tools, difficulties in calculating the
return of the investment, information cluttering and the scalability of tools.

As a result, software companies and software development departments
make limited use of visualization tools to facilitate processes as they only
use the basic visualizations included in the IDEs and SCM tools. It is
thus clear that more complex visualization tools are rarely used by software
companies and software development departments. Finally, clues offered by
the survey results indicate the integration of more complex visualization tools
into well known and accepted tools currently used in software development
and maintenance.

7.5 Conclusions

The survey results provide important details concerning the availability of
data, the use of visualization tools in product and process related tasks,
and the identification of impediments which could be used positively for the
design, implementation, and adoption of tools. These results show the need
to integrate bug tracking and SCM tools and other tools to capture and store
information from the process of software development and maintenance. This
should be done in order to obtain better data which permit better tracking of
the progress of the project in order to allow it to be supported more effectively.

The results obtained also show that the visualizations which are being
used by programmers are those which are integrated in the tools they use in
their daily tasks, such as SCM tools and IDEs. It is thus desirable that new
versions of these tools allow for the use of visualizations of greater complexity
and utility that the ones that currently these tools include; but also that the
more specialized visualization tools which are developed are integrated in the
tools mentioned in the form of plugins. With regard to this last proposition,
it is noteworthy that a large number of recent studies are considering the use
of plugins in their proposals, according to the results of chapter 4.

Two points that deserve special consideration are related to the
improvement of awareness of the existence of these tools and the promotion
of their development. It would thus be appropriate to include their use in
software engineering courses in order to raise awareness of their benefits. It
may also be advisable to incorporate courses or seminars in graduate programs
that address the design and development of tools applied to SV systems, taking
into account not only the technical aspects but also aesthetic aspects, ease to
learn, interaction and integration in programmers working environments.

7.5. Conclusions 193

Accordingly, an important step in facilitating the processes of learning
and teaching, the design and development of these tools is the clear definition
of a process which describes in detail the major components, methods and
techniques involved in the process of transforming system data into useful
knowledge that will facilitate a better understanding of the dynamics of
systems development, their maintenance and evolution.

Part 1V

Process Design and Validation

CHAPTER 8
A Visual Analytics Process for
Software Evolution

Cuando algunos habitantes notaron la presencia de Giiindy y
Cucho, se mostraron amables, algunos incluso ofrecieron
alojamiento y comida. Al sentirse tan bien acogidos decidieron
quedarse algunos dias. Pero no transcurrieron muchas horas para
que un lugareno ofreciera trabajo a Giindy, el cual acepto sin
hacer muchas preguntas. El primer dia de labores Giindy fue
sorprendido, su principal tarea seria disenar relojes de arena.

— El viaje de Giiindy, A.Gonzalez

Contents
8.1 Imtroduction 195
8.2 Visual Analytics Process 198
8.3 Visual Analytics and Software Systems 203
8.3.1 Evolutionary Visual Software Analytics 204
8.3.2 Architecture Specification L. 207
84 Conclusions 0o oo s 212

8.1 Introduction

This research has so far discussed the fact that Software engineering is
concerned with a set of processes that cover the entire life-cycle of software
systems: ranging from requirement analysis and design up to development,
testing, release, and maintenance. The results of the previous chapters showed
that a large number of research works have been conducted with the aim
of supporting software development and maintenance related tasks. It is
evident from these results that pertinent data is collected by most companies
during SDM processes and that the visualizations which are most frequently

196 Chapter 8. A Visual Analytics Process for Software Evolution

used in these processes are those that are built into the tools that developers
use in their daily activities, such as IDEs and SCM tools.

Furthermore, according to the results in chapter 7 and what was previously
discussed, the data collected during software development and maintenance
share many commonalities with typical Big Data:

x Large amounts of data with missing values (e.g., millions of lines of
source code [Baker 1995, Kagdi 2007a, Petre 1998] and thousands of
software components [D’Ambros 2008]).

x Compler and hybrid datasets (e.g., large databases of program
metrics, design documents, test results, execution logs, and bug
reports [Hassan 2005, Lanza 2005b], attributes of numerical, categorical,
and textual types, interconnected by a wide variety of types of
relationship such as inheritance, hierarchy, and call, control, and
dataflow dependencies).

x Fwvolving datasets with thousands of versions of the software system
stored in the software repository [Mens 2008, Mahoney 2009].

Therefore, to provide methods that facilitate the comprehension of
software projects it is necessary to carry out a detailed analysis of the data
generated during software development and maintenance over a specific period
of time and (in exceptional cases) for the entire evolution of the project. This
form of analysis is known as SEA, and its principal objectives are to provide
information that contributes to the understanding of the SE process, and
thus supports the improvement of the development process (including project
management). However, as has already been discussed in chapter 2, SEA is
sought to reduce the size of the Big Data produced SDM processes but it also
produces large and complex datasets, due to the number of variables involved
in the process of source code change and the complexity of their relationships
which makes it difficult for users to carry out an adequate analysis. Hence,
although the result provides useful information, it does not provide the
information necessary to carry out the tasks of understanding changes and
project evolution in a satisfactory fashion and thus provide adequate support
for decision-making that will lead to future changes and system improvement.

Given this situation, research efforts have focused on the use of visual
representations combined with interaction techniques in order to gain insight
into using such large and complex datasets (see chapter 3 for a reference
on information visualization). These research efforts have concentrated
on SV [Diehl 2007] and SEV |Gonzalez-Torres 2009, Voinea 2007]; although
more recently some research has been carried out into the application of VA
to software systems [Telea 2011] with the aim of providing better results.

8.1. Introduction 197

The goal of this research is to support the process of understanding SE and
improve the design and implementation strategies of tools designed to satisfy
the analysis needs of both programmers and managers (see chapters 5 and 6
for a focused discussion on visualization in SE).

At this point, it is worth mentioning that VA combines the advantages
of machines with human strengths such as analysis, intuition, problem
solving and visual perception. Therefore, human beings are at the heart
of VA |Dix 2010] and HCI is a key component for supporting knowledge
discovery.

The results shown by chapter 4 portrayed that the number of research
projects that use VA to support the process of software development and
maintenance is quite low. Additionally, the analysis carried out in chapter 4
showed the absence of a detailed definition of the process involved in the
application of VA to software systems and their evolution. It is thus
appropriate to define this process with the aim of providing guidance to both
new researchers and software tool engineers. The definition of this process
may also be used in accordance with the recommendations of chapter 7, with
regard to the inclusion of instructional content about these tools in software
engineering courses.

Consequently, the principal objective of this chapter is to define the process
of applying VA to SE and attempts to answer the following research question:

How should the process of applying visual analytics to the evolution of
software systems be defined?

Accordingly, the definition of such a process requires, on the one hand
a description of the process of applying VA to SE; and on the other hand,
the identification of the roles, borders, interactions and relationships between
modules, components, methods and techniques involved in this process.
Therefore, the arguments presented in chapter 2, the discussion carried out in
chapter 3 as well as the results in chapter 4 and 7 will be taken into account.

Furthermore, in order to obtain the results that will meet and answer
the research question formulated in line with this objective, it is necessary
to design and implement an architecture that demonstrates the usefulness
of the application of VA to SE. The definition of the architecture will be
carried out taking into consideration the results of chapter 7 that show that
visualization tools that are used by those involved in the process of developing
and maintaining software are those that are integrated into tools VA and IDEs.
The implementation of this architecture will thus be carried out using an
Eclipse plugin.

The rest of this chapter proposes the definition of the VA process (see
Section 8.2), explains the relationship between VA and SE and defines

198 Chapter 8. A Visual Analytics Process for Software Evolution

the EVSA concept, specifies an architecture for applying VA to SE and finally
defines a framework for situational awareness and collaboration on the base
of using EVSA for that purpose.

8.2 Visual Analytics Process

The functions and responsibilities of the modules that comprise the VA process
are explained in Table 8.1. It takes into account the analytical process
proposed by van Wijk [van Wijk 2005|, the adaptation for VA of the Visual
Information - Seeking Mantra |Shneiderman 1996] that was introduced by
Keim [Keim 2006, Keim 2008b] (analyze first, show the important, zoom,
filter and analyze further, details on demand), the IV model proposed by
Card [Card 1999b], the visualization process proposed by Chi [Chi 2000] and
the seven visualization stages identified by Fry for visualizing data [Fry 2008|.

Table 8.1: Responsibilities and functions of the modules that make up the Visual
Analytics process.
Module Description

. This module has the function of performing the connection
Extraction,

. to data sources and data retrieval using predefined criteria.
Transformation Then it cl q q 1 loads it | q
and Load (ETL) en 1t cleans and merges data and loads 1t into a data

warehouse.

Advanced Data The fu'nction 9f thibj module is to make use of one or more
Analysis (ADA) analysis techmques in order to extract Knowledge Facts and
store them into a database.
This module is made up of three components: the IV,
the Views Linker and Facts Analyzer (VLFA), and
the Visualization Abstractions and Coordination Support
Visual Knowledge (VACS) components. This module has the responsibility of
Explorer (VKE) the visual representation of Knowledge Facts and conforms
to the fundamentals of CMV [North 2000, Card 1999b|, and
must provide the visualization, interaction and coordination
mechanisms for knowledge discovery.

The VA process has been defined using a modular-based approach, where
each module is a collection of components. The use of such approach
allows for greater process comprehension, flexibility, ease of change and
specialization through the development of specific components that can
be tested individually. Consequently, the process is constituted by three
modules: Extraction, Transformation and Load (ETL) [Vassiliadis 2002,
Vassiliadis 2009, El-Sappagh 2011|, the Advanced Data Analysis (ADA)

8.2. Visual Analytics Process 199

and the Visual Knowledge Explorer (VKE) modules. Accordingly, this
modular-based approach facilitates to extend architectures based on the VA
process through the addition of new components such as data analyzers and
visualization components.

The VA is a data transformation process that could be thought like a
funnel, where raw data are analyzed and filtered in several steps, until these
are converted into knowledge. Therefore the output of the process is a
reduction, in terms of volume, of the original input, that contains all the
required elements to inform decision making.

ETL is the first module that intervenes in this process and is comprised
by several components aimed at retrieving, cleansing and integrating data
from data sources such as spreadsheets, legacy systems, databases, text, XML
and HTML files, logs, email communications, data streams, sensors and any
other data source.

The aim of the ADA module is to produce Knowledge Facts using, for
example, data mining, genetic algorithms, neural networks, statistical analysis
and support vector machines. The ADA module carries out intermediate steps
in the process of transforming data into knowledge. Its results provide very
important information that could lead to decision making, but the results are
still unmanageable, because of the large volume, when dealing with Big Data.
So, the presentation of thousands or even millions of Knowledge Facts, in the
large, is not feasible and still requires additional steps for providing usable
knowledge that could be successfully employed in informed decisions. This is
achieved with the use of IV and HCI.

The other component of the VA process is VKE, which is integrated
by three components: the IV, the VLFA, and the VACS components (see
table 8.2).

The IV component plays a central role for this module and consists of
a set of visualizations. This component makes use of the VLFA component
to define the associations between Knowledge Fuacts and the visualizations,
and to define how the visualizations are linked together. In addition, the
VLFA component carries out an automatic selection of the Knowledge Facts
that will be visually represented in accordance with the requirements of the
visualizations. VKE also makes use of the VACS component for the creation
and management of data models, data structures and visual mappings, besides
to keeping track of the interaction and coordination between visualizations for
deciding on the data to be visualized according to the interactions and the
linking between visualizations.

IV makes use of several theories, methods and techniques such as
usability principles, multidimensional and multivariate visualization, HCI and
information design theories among others.

200 Chapter 8. A Visual Analytics Process for Software Evolution

The VA process (see Figure 8.1) starts with the retrieval of data, relevant to
the problem under study, from heterogeneous data sources such as logs, email
communications, text files or databases(Extract, Arrow 1). Following this,
the data is cleaned and integrated, and then stored in the Data Warehouse
(Load, Arrow 2). Thereafter, the ADA module reads data from the Data
Warehouse (Read data, Arrow 3) and uses knowledge extraction techniques
for discovering, representing and managing knowledge. In turn the derived
results are Knowledge Facts that are stored in the Knowledge Facts Database
(Produces Facts, Arrow 4).

Table 8.2: Components of the Visual Knowledge Explorer module.
Components Description

This component is the most important element
of the VKE module and the VA process: it
provides the visual representations and interaction

Information Visualization = mechanisms for supporting users in the knowledge

(IV) discovery process. Basically, one can say that the
aim of any other module or component of the
process is to support the aims and tasks of the IV
component.

This should provide an interface for allowing users
to create associations between visualizations and

Knowledge Facts. Moreover, it must s ort
Views Linker and Facts nowteage - racts reover, 1 u uppor

Analyzer (VLFA)

the definition of the linking and coordination of
visualizations based on common attributes of facts

(e.g., an approach based on a relational data
model [North 2000].)

The responsibility assigned to this component is to
create the required data models, data structures

Visualization Abstractions)) .)
and visual mappings for supporting the creation

and Coordination Support

(VACS)

and operation of the visualizations. It also has the
function of coordinating the data to be displayed
by the visualizations.

The VKE module makes use of the graphical user interface component
of VLFA for creating the relationships between facts and visualizations and
for defining the linking relationships between visualizations. This is carried
out by the tool designer before handing out the tool to the analysts that will
be the final users.

201

Visual Analytics Process

8.2.

"SS900I SOTJATRUY [eNSIA 'R 2INJIq

ATAOTIXT HOAATAAONM TVASIA

A
LI0ddNS NOLLVNIGIOOD ANV 1
SNOLLOVYILSAV NOLLVZITVASIA 9

Joyn, azAjeuy

-
o=
-

esecccaa,
LT
-~

o

I T DN o — EE—

SISATVNY VLVA AADNVAAV

SOUTORIA
o130 Azzng SYIOMION [BINON 10100 pioddng
soyoroiddy Surur 1 USWASRURIN 1R

paseq onueBwAg N ERd ¥ e

JuowaSeuRA uonejuasaIday

Bujuea] QU a3pomouyy a3pajmouyy

SutiL]

SISA[euy [eonsnels

pue uorssaidwo)

SWLIOS|Y d1AUD)

| ¢ [erep proy

(1LY avO'1 ANV WHOASNVIL ‘LOVILXH

1oPO e sommonng wEq HAZATVNYV SLOVA
ANV dIINIT SMAIA
UONBUIPIOO)) /
puE s sSuiddey [ensip L V
S)NSOYSISATRUY JoyMN] Y
h SYNSaY SISA[RUY ISI1
\\/ [SUNSIY SISAJRUY ISIL] B
L)
puewa(Uo . puewWd(Uo s[ieg .-
0l s[eaq Jo sisanbay uepoduy Ay smoys B
.
§ | stsAeuy 1smg \
\ H
.
.
1]
NOILILVZITVASIA NOLLVIARIOANI H
.
J
UOTJBZITENSTA SUONeZI[ensIA H
QJeLIBANNIA UORBZIBASIA PXOL our [, pue ooedg H
.
L]
uoneZI[ensIA UONEZI[ENSIA EJe(H
ANEIOGE0D F——— uonezijensiA ydein woddng [DH ..
.
Surropuay SOLI0AY], H
y § Anpiqes, USISO(] UOTIRULIOJU]
pue sorydein pue sjopojN HaEsn $soq uot il H
3
’
,
J
’
’

6 | 10vIUI IA)1 ‘WO0Z /
s\
A4

HAaSN

. Sunyjury) [ednL)

Suruosear
[eonkeuy

Sunjey uorsoag .

Suryewasuag

uoneoyIsse|)
Juonerofdxg

uonoeIduy 198

uondoorad rensip

uondaordg

uonugo)) uewny

.V\ww»\\\w” —
. < asnoHmIVM VIVA > "

Q - St

’ % . N
])
. 2 |pro1 v
surkiang BASLIOY U300 SurgoIeIN WONE
poseq promAdy [BASLIOY UBaj00g TYOJRIA UINE]
modhw—‘—o ﬂ.N‘—EOEHw ~M>Dmhmm Om.ﬂﬂ.mﬁma 7 7 ~N>®_\:UMM X, 7
[eAdLIOY 51030007
3p0)) 20105 7 [PASHRRH TINX 7 7 201n0SEIR(7
A 7 1 | 1oenxg .
’ ’

202 Chapter 8. A Visual Analytics Process for Software Evolution

When the analyst starts using the VA tool, the IV component asks to
perform the initial analysis of facts to the VLFA component (First Analysis,
Arrow 5), according to the linking relationships, visualization features and
requirements. Next, the VLFA component reads facts from the Knowledge
Facts Database (Reads Facts, Arrow 6) and process them appropriately,
and optionally performs clustering or summarization, depending on the
visualization requirements.

After this, the VACS component takes the analysis results from the VLFA
component (First Analysis Results, Arrow 7) and creates the appropriate data
model, data structures and visual mappings required by the IV component
to display the most important results (Shows the Important, Arrow 8).
Then, the IV component permits users to explore relationships and discover
knowledge using a combination of visualization and interaction techniques
(Zoom, Filter, Interact, Arrow 9).

It is important to take into account the fact that the processes performed
by the ETL and ADA modules usually deal with large and complex datasets,
and require the use of complex algorithms, thus demanding considerable
processing capacity and many hours or even days for task completion.
Therefore, the results produced by these modules are usually visualized once
their execution has been successfully completed. The processes performed by
the ETL and ADA modules should run automatically, when new data is added
to the data sources, to generate new Knowledge Fuacts that are stored into the
facts database in order to automatically update the visualizations.

The aforementioned process is iterative and requires additional details as
the user interacts, explores and discovers knowledge through the creation of
associations and relationships among visual elements in the IV component
(Request of Details on Demand, see Arrow 10). Thus, the IV component
automatically requests additional information for providing more details to
users, and if the requested data is unavailable from the VACS component it
requests a further analysis from the VLFA component (Analyze Further,
Arrow 9). Consequently, the results of the further analysis process are
passed to the VACS component (Further Analysis Results, Arrow 7) and
added to the data model, data structures and visual mappings and cache
elements. Finally, the corresponding details are visually represented in the IV
component (Details on Demand, Arrow 8) and the user continues working on
the knowledge discovery process until the decision to stop is taken once the
proposed goals have been reached.

In this context, the fact that analysts are strongly influenced by
factors such as their experience, education, cultural values [Heuer 1999
and cognition [Drigas 2011] has to be taken into consideration as a central
element of the VA process because these allow them to gradually acquire

8.3. Visual Analytics and Software Systems 203

strategies for remembering, understanding, decision making, and solving
problems [Academies 2000|. Thus, it can be reasonable supposed that users
form a hypothesis to solve a problem, then collect data, analyze such data
and then accept or reject the initial hypothesis.

8.3 Visual Analytics and Software Systems

The application of VA principles to software systems [Telea 2010,
Reniers 2012| is known as Visual Software Analytics (VSA) [Anslow 2009,
Telea 2011]. The use of VA in this context is an improvement relative to
SV, considering VA as a comprehensive process which includes advanced data
analysis and the use of multiple linked views.

Furthermore, the application of VA principles to SE shares common
elements with VSA, but the principal difference between the two is that the
former takes into account two or more revisions, while the latter only takes
into account the analysis of only one revision of the software project. The
application of VA to SE entails carrying out an individual analysis of each
revision and then requires an additional analysis in order to compare and
correlate the results in an endeavor to discover relationships, similarities and
dissimilarities between these relationships, as well as taking account additional
factors such as:

* Visualize different types of data in different time scales (years, months,
hours days) and also correlate these different scales.

x Although much work has been done regarding graph animation and
graph evolution, the visual representation of software structural changes
is still a difficult endeavor.

x Developers and managers must be much more skillful and cautious in
noting relationships and differences when more than one software project
revision is required to reach a solution.

Therefore, the application of VA to SE is a specialization of VSA. A
practical analogy is that VSA is like a movie frame while the application
of VA to SE is a movie that is composed of multiple movie frames temporally
ordered and interrelated. Consequently, this research defines the process of
applying VA to SE as EVSA. The conceptual definition of this process is the
following;:

Evolutionary Visual Software Analytics is the process of applying Visual
Analytics to software evolution to enhance understanding of software
system changes with the active participation of users by means of
Human-Computer Interaction.

204 Chapter 8. A Visual Analytics Process for Software Evolution

8.3.1 Evolutionary Visual Software Analytics

The EVSA process is described in Figure 8.2 and, in general terms, it is
shared by the VSA and the VA processes (see Figure 8.1). Therefore, the
process uses a modular-based approach, where each module is a collection of
components that are in turn formed by methods and techniques. Accordingly,
the main modules of the EVSA process are: ETL, Advanced Software
Evolution Analysis Engine (ASEA) and Visual Knowledge Explorer for
Software Evolution (VKESE) (see Table 8.3), whose functionality is similar
to their counterparts in the VA process.

The overall functionality of the module VKESE is similar to that of its
analogue in the VA process, which was described in section 8.2. The main
difference between the two is rooted in the components of visualization and
data types that they represent. It is thus recommended that Figure 8.1 and
Table 8.2 be revised if greater details are sought. It is worth mentioning that
the visualization components of the SEV sub-module (see Figure 8.2) are the
visualizations which were identified in chapter 4.

Table 8.3: Responsibilities and functions of the modules that make up the EVSA
process.
Module Description
This module has the function of performing
the connection and data retrieval from software

Extraction. Transformation repositories, defect-tracking systems, emails,

and Load (ETL) source code revisions, testing systems, logs and

any other available data source. When the data
is retrieved, it is cleaned, merged and loaded into
a data warehouse.

This module is comprised of analysis

techniques [Hassan 2005, Hassan 2006,
Advanced Software Evolution =~ Kagdi 2007a| that could be used in a individual
Analysis Engine (ASEA) basis or combined in order to extract knowledge

facts. For further details on these techniques
see chapter 4 and Figure 8.2.
Visual Knowledge Explorer
for Software Evolution
(VKESE)

This module is made up of three components:
SEV, VLFA and VACS.

The steps followed by the EVSA process were organized into phases and
listed as follow:

Phase I: Data Retrieval and Loading It retrieves and carries out an
initial data processing, after which it stores them into a data warehouse.

8.3. Visual Analytics and Software Systems 205

Data retrieval: According to the type of task that the researcher or
designer seeks to support the retrieval process can be performed in
software repositories, defect-tracking system logs, emails, source
code and testing system logs. Techniques used in recovering
data may include source code retrieval, structural queries, pattern
matching and text retrieval (Extract, Arrow 1).

Data warehouse: Once the data has been recovered, it is then cleaned,
integrated and correlated and then stored in a data warehouse
(Load, Arrow 2).

Phase II: Data Analysis This phase analyzes and extracts SE facts and
then proceeds to store the results in a database.

Analysis and facts extraction: When new data is available in the
data warehouse, ETL reads the data (Read data, Arrow 3)
and then ASEA proceeds with the analysis, using one or more
analytical techniques, depending on the task being undertaking.
The analysis techniques include origin and contribution analysis,
frequent patterns mining, defect classification and refactoring
analysis.

Storage of evolution facts: Once the analysis has been carried out,
the evolution facts are then stored in the Software Evolution Facts
database (Produce facts, Arrow 4).

Phase III: Structure Loading and Visualization Mapping The tasks
of this phase include loading SE facts, creating the data structures and
visual mappings, and loading the visualizations.

Visualization loading: The user launches the SEV component that
uses linked visualizations. Some of the visualizations that can be
used are shown in Figure 8.1.

Data fact structures request: When the SEV component is loaded,
the data fact structures required by the visualizations are requested
by the VLFA component (First analysis, Arrow 5 and Read Facts,
Arrow 6).

Facts loading: The VLFA component read facts from the Software
evolution Facts Database and pass them to the VACS component
(First analysis results, Arrow 7).

Structures and visual mappings: The VACS component creates
and passes the appropriate data model, data structures and visual
mappings to SEV (Show what is important, Arrow 8).

206 Chapter 8. A Visual Analytics Process for Software Evolution

SCM repositories |
R Defect-tracking system 0
J/ Email communications \
’ o .
" Software source code)
N)
:' Testing systems [}
[}
H - Logs \
' —_—)

N)
H Extract | 1 v
Datasource XML retricval Sourc.e code
connectors retrieval

Text retrieval ‘ Database retrieval Structural queries
Pattern matching ‘ Boolean retrieval Keywurd. based

querying
A Load 2

.

.

s

.

TA WAREHOUS

EXTRACT, TRANSFORM AND LOAD (ETL)

Read data | 3
. . Contribution Software prediction
Origin analysis .
analysis models
Evolutionary Frequent patterns

Frequent coupling
mining

metadata analysis

mining
Refactoring Source code Defect
analysis differencing classification
and Item relati Metrics and code
structure analysis analysis smells detection

ADVANCED SOFTWARE EVOLUTION ANALYSIS

Produce facts 4

‘ Human cognition Perception ‘ Visual perception
User interaction Exploration/ Sensemaking
) classification
‘ >
! Analytical 5
/| Decision making . Critical thinking | %,
; reasoning '
B [\
K USER \
h)
’)
h .
‘ .
' [}
])
I [
I .
. [}
'
Zoom, filter, interact 9 Y
\
\
Basic charts ‘ Code browser ‘ Code city ‘ ‘ DSM
Edge bundles ‘ Events lifeline ‘ Graphs and trees Heatmaps

Matriz layout Parallel coordinates | | Parallel node-link

Polymetric views

Radial graph ‘ Software ‘ Stacked charts ‘ ‘ Evolution radar ‘
cartography
UML variant
Tag cloud ‘ Timeline ‘ Treemap ‘ dic v‘zman
iagrams
C“”es"‘r‘,‘lzfd fciele || Clags blueprint || Data flow chart ‘ Dotplot ‘
Organic ‘ Ownership map Story lines ‘ ‘ Tree forest ‘

visualizations

'
[
'
'
'
'
'
'
'
'
.
0
'
]
'
'
'
'
"
'
1]
I
¢
[
[
.
.
.
]
]
.
.
'
]
.
.
’
.
.
'
'
]
'
]
[
.
.
"
b

SOFTWARE EVOLUTION VISUALIZATI

ON

L Requests of details
Shows what is important/ ¢ on demand 10
First analysis 5 Details on demand
Bug tracking . Execution Item
> Coupling em
issues traces relationships
Class Data flow Data Logical First analysis results/
hicrarchy details structures coupling Further analysis results
Memory | Workloadand | =" TF 7 Visual mappings Cache and
Code clones | | Dependencies emory Workload and 2y Pping coordination
allocation performance
Read facts | VIEWS LINKER AND
. Source code . - Data structures Data model
Code smells | | Testing data L‘L::r‘u:‘es < Metrics 6 FACTS ANALYZER
L =" | Analyze further
1 VISUALIZATION ABSTRACTIONS
AND COORDINATION SUPPORT

- VISUAL KNOWLEDGE EXPLORER FOR SOFTWARE EVOLUTION

Socio-technical | | Source code L i
relationships slieing | Tmeees

Figure 8.2: Overview of the Evolutionary Visual Software Analytics process.

Phase IV: User Interaction and Details on Demand This phase is the
final stage of the process of transforming data into knowledge. After
the retrieval, analysis and visual mapping of information, this phase
makes possible a feedback loop between the user and the system: the
user requests additional data to the system by means of the available
interaction possibilities, and the system provides the requested data.
According to user interactions the knowledge discovery process is refined
and progresses towards the finding of useful knowledge and answers.

User interaction: During the process of knowledge discovery, the user

8.3. Visual Analytics and Software Systems 207

browses, filters and explores different perspectives on the data,
selecting elements from one or more of the visualizations (Zoom,
filter, interact, Arrow 9).

Requesting details: According to the needs and the interactions of
the user, the visualization requests new data fact structures and
visual mappings to provide additional information to the user
in accordance with the selected options (Request of details on
demand, Arrow 10).

Additional details: 1f the additional details that have been requested
are available in the form of data fact structures and visual mappings
are passed to the SEV component (Details on demand, Arrow 8).
However, if these details are not available, a request is passed to
the VLFA component (Further analysis, Arrow 11) which reads the
additional facts, (Read facts, Arrow 6), transforms the details and
then (Further analysis results, Arrow 7) passes them to the VACS
component so it can proceed to create data fact structures and
visual mappings.

Discovery of knowledge: The user continues to interact with the
system until the necessary knowledge is obtained or it is considered
that it is impossible to reach a determinate conclusion using the
available data and representations.

8.3.2 Architecture Specification

Defining the architecture of software tools is a very complex task that
requires careful analysis. It is a challenge to determine which techniques
to use and how these will be interrelated. This section seeks to contribute
to the specified objectives, answer the research question formulated in
section 8.1 as well as support tool design in situations where VA is applied to
SE. Accordingly, using as a reference the EVSA process, an architecture
for a tool denominated Maleku was defined [Gonzélez-Torres 2011,
Gonzalez-Torres 2013b, Gonzalez-Torres 2013a].

Maleku seeks to support both programmers and software project
managers when correlating metrics, project structure, inheritance, interface
implementation and socio-technical relationships. Such architecture has been
implemented in Java and tested on open source software projects, and the test
results are presented in chapters 9 and 10.

The modules of the architecture (see Figure 8.3) are similar to those
of the process described in the previous section and have been given the
same name. The operation of the modules ETL and ASEA is synchronous
while the operation of VKESE is asynchronous, in relation to the other two

208 Chapter 8. A Visual Analytics Process for Software Evolution

modules. The architecture is based in the client/server model, in which the
modules ETL and ASEA are executed by the server and VKESE is an Eclipse
plugin executed by the client. The different modules and components of the
architecture are described in the following order: data retrieval, data analysis
and visual representation.

The ETL module comprises a sub-module (SM) and two components (C),
as shown in the following list:

Data Source (C):! The data sources used by the implemented architecture
consist of the SCM software repositories of software projects. The
information that is extracted from these repositories include the
metadata associated with changes to source code, programmers
activities, project structure and source code.

Sensor of New Revisions (C): The Sensor of New Revisions is a process
that continuously monitors the addition of new revisions to software
projects and notifies to the Data Extractor.

Data Extractor (SM):? The function of this sub-module is to extract the
data required in order to carry out an analysis, whose results are used to
feed the visualizations of the VA tool. It is made up of the Architecture
and structure retrieval, Source code retrieval, and the Metadata retrieval
components, described as follows:

Architecture and structure retrieval (C): This component is
responsible for extracting details of the project structure for each
revision, with particular interest on the packages of the system
and their organization.

Source code retrieval (C): It is responsible for recovering the source
code for each of the system revisions and for storing classes with
basic information about their location in the system architecture.

Metadata retrieval (C): The data that this component is responsible
for retrieving, includes the logs of each revision and its associated
details: the date on which the revision was carried out, which
programmer carried it out and which elements were affected.

The sub-modules that conforms ASEA are Source Code Analyzer and
Metadata, Software Evolution Analysis and Correlation FEngine, whose
components and descriptions are explained next.

LC makes reference to component.
2SM refers to a sub-module.

209

Visual Analytics and Software Systems

8.3.

" MYODPY I0J SINIDNYDIR Y} JO MOIAIOA() (€'Q 2INST

NOLLNTOAT TAVALAOS Od YTAOTIXA ADAATAMONM TVASIA PUTT S bl PYR N
P\\ /. sdiysuonejar SN ToBNoAT
LAO0ddNS NOLLVNIQIOO0D aNV Sl
SNOLLOVALSEY NOLLYZIIVASIA | iy ozkjeuy wamsaone:
AAZATVNY SLOVA o [Emons o
[9POI BIR(] samjonng eleq ANV YDINIT SMATA /IRINOANYIITY a1emyos
S18.] Speay
=w_—.ccq_,ﬂmwu s3urddeyy ensip
2 QYT S
g N ASVEVLVA SLOVA
/SISy SIsA[euy 18I1.] NOLLNTOAT TAVMLIOS
K V 8 108 $20npoI
'
S puBwaq U oy puBWd(Uo S[IvId SISATVNV NOLLNTOAT TAVALAOS AIADONVAAY
J vl sie1aq Jo sisanba uenodwy ay) smoysg Y A
8 . .
! 6 stshpuy s \ sop Sutsieg S | 1as1ed 9pod 201nog \
' .
! 5 so[ni .
! H Suiszed pray .
' ' [
' ' \
: . v :
' H]
H g ' QuISud uone[aLI0d H
' NOLLVZI'TVASIA NOLLNTOAY AAVAMLAOS H PUE SISK[RUT UOTIN[OAD DIEAJOS “BIEPEIDN H
' 19zA[RUR P00 200G _ '
SMIIA H)
xq.:;uo_..o_qom swisn|d 41 aurjowr], SINOART XLIRIA H sisAjeue a1mjonns 9 [
o = ! PUE UMYy sisAjeur UONP SILIDN '
' auiua sisKjeue sdiysuonear woayy : : H
] siskjeue siskjeue [9A3] PUOIaS [[2) H
H uonnqUIuo) [2OIUY31-01008 y dlqepeae
H 1 wep MmN
! S[IEI9P UONIN[OAD PUE AIMINNS € 9p0o daimos peay '
: L joofoxd ‘wieperow peay H
€1 SIOBIOMI ‘SIANI) ‘SWO0Z ! H
'
'
(1L3) AVOT ANV WHOASN VUL ‘LOVILXY H
'
~ o _ ;
\ S , ASNOHAUVM VILVA :
. ’ . —~
\ ']
\ qASN | Z[peoT > !
\ § , '
'
/ Sunjuig [eonu) M”“”M”ﬂom Sunyepy uoIsAQ L H01ENXD BIR(] !
*. i L
;A , 0t [eASLAI [eAdLR1 NS | by J;
. [BASLIDI BIBPRIOI § § '
50 2p0d 200§ puE 2IMOAIYOIY . suoIsiA K
) , . . MaU SaION ?
[enxy *
uondaoiad [ensip uondading uonugo) uewngy ~
SUOISIADL
MU JO JOSUAS
sauoysodar WOS Pid
S _.e=”T suoisiaan
R == MON

42¥N0S Vivd

210 Chapter 8. A Visual Analytics Process for Software Evolution

Source Code Analyzer (SM): This sub-module is responsible for carrying
out analysis of the revisions of the source code of the project using the
following components:

Metrics detection (C): This component is responsible for detecting
and calculating metrics using details from the parsed source code.
Some of the metrics that can be calculated by this component
include LOC, Number of Methods (NOM) and Cyclomatic
Complexity.

Item relationships analysis (C): The functions of this component
include the detection of inheritance (parent-child and child-parent)
and interface implementation (implementing and implemented by)
relationships.

Source Code Parser (C): It reads each source code file, line by line, in
order to identify classes, interfaces, methods and declarations, and
applies parsing rules. It allows to calculate metrics and to identify the
relationships between software items.

Parsing rules database (C): Source Code Parser applies parsing rules,
which are stored in text archives. Some of these rules are generated
automatically while others are created manually.

Metadata, software evolution analysis and correlation engine (SM):
This is invoked by the sub-module Source Code Analyzer when it
terminates the segment of analysis apportioned to it. Its function is to
identify socio-technical relationships and determine the contributions
made by individual programmers, as well as analyzing the architecture
and structure of the project for each revision under analysis. The
components of this sub-module are:

Contribution analysis (C): Based on the metadata of SCM
repositories, a cumulative calculation of the elements changed for
each revision and programmer is carried out.

Socio-technical analysis (C): Using the metadata of SCM
repositories the relationships between programmers and software
items are examined as well as the relationships which are created
between programmers using as a basis the elements which have
been changed in common.

Architecture and structure (C): The results produced by Source
Code Analyzer and the information obtained from the metadata of
SCM repositories are used to correlate software project structure,
metrics and relationships between software items. It further

8.3.

Visual Analytics and Software Systems 211

gathers information about the creation of software items and their
life-line during the project.

Software evolution facts database (C): This database stores the

analysis results produced by other sub-modules and components of
ASEA. In order to do this, it uses a database design that emulates the
structure of software projects: project —> revision —> package —> file
—> software item.

The sequence of steps that follows the process of data retrieval and analysis
(made up of ETL and ASEA modules) are:

1.

The user enters the connection parameters of the SCM repository and
database where data of the particular project that needs to be analyzed
will be stored.

. When the process has been initiated, the retrieval components included

in the sub-module Data extractor (Architecture and structure retrieval,
Source code retrieval and Metadata retrieval) carry out the task of data
retrieval (Extract, Arrow 1)

Once data has been retrieved, it is loaded into the Data Warehouse
(Load, Arrow 2). Data loaded into the Data Warehouse are used as
benchmarks for later retrieval processes.

When project data have been retrieved, the Sensor of new revisions
will be responsible for monitoring the availability of new revisions in
the SCM repository and to notify retrieval modules in a timely manner.

. As data is retrieved, ETL informs ASEA that new data is available to

perform the respective analysis concordant with the analysis components
available.

The sub-module Source Code Analyzer reads the Data Warehouse in
the ETL module (Read source code, Arrow 3) in order to detect and
calculate metrics for classes and methods, and analyze the relationships
between software items such as the hierarchy of classes and interface
implementation.

6.1. To carry out its tasks, Source Code Analyzer requires to parse
the source code and then the Source Code Parser component is
notified. (Call parser, Arrow 4).

6.2. The component Source Code Parser reads the parsing rules from
its own database (Read parsing rules, Arrow 5) and perform the
parsing of the source code.

212 Chapter 8. A Visual Analytics Process for Software Evolution

7. When the sub-module Source Code Analyzer has finished carrying
out the analysis, it stores the results in the Software Evolution Facts
Database and notifies the Metadata, Software Evolution Analysis and
Correlation Engine (Call second level analysis engine, Arrow 6).

8. The sub-module Metadata, Software Evolution Analysis and Correlation
Engine reads evolution facts from the Software FEvolution Facts
Database, metadata, project structure and evolution details from the
database of the ETL module (Read metadata, project structure and
evolution details, Arrow 7). Using this information the module
then carries out a more profound analysis regarding socio-technical
relationships, analysis of the contribution of programmers and the
architecture and structure of the software project under consideration.

9. The process which carries out the ETL and ASEA modules runs
indefinitely for each of the projects configured until the analysis for one
or more projects is stopped by the user.

The design of the architecture permits the addition of new components
to modules and sub-modules to allow connections to be made to new data
sources, perform other types of data analysis and visualize the results of the
analysis with new visual representations. The steps followed by ASEA are the
same as those that were described in section 8.3.1 with regard to this module,
so that the explanation of these steps is omitted.

8.4 Conclusions

The process explained builds on the visual analytics process which is described
in section 8.2 and deepened by means of the design and implementation
of an architecture which follows this process, referred to as Evolutionary
Visual Software Analytics (EVSA). The detailed design of the architecture
identifies and explains the roles, border and interactions between the modules,
components, methods and techniques used.

Therefore, the feasibility of the implementation of the architecture
presented in this chapter, and thus the applicability of the EVSA process
is discussed in the next chapters.

CHAPTER 9
Visual Analytics Explorer for
Software Evolution

Sorprendido por la tarea que le habia sido encomendada, Giindy
prequnto a Azul, el dueno de la fabrica, ";por qué quieres que
disene nuevos relojes, si los que fabricas son famosos por su
precision?”. "Son famosos porque son los mejores que se conocen,
pero tu trabajo serd hacer otros mejores”, respondio Azul. Giiindy
se quedo desorientado y ansioso, aunque antes de adentrarse en
esta aventura vivia en una gran ciudad, no conocia de relojes y

nunca habia trabajado en una fabrica. — El viaje de Giiindy,
A.Gonzéalez
Contents
9.1 Introduction 0000, 213

9.2 Framework: situational awareness and collaboration 214
9.3 Visualization Designs and Use Case Scenarios 216

9.3.1 Granular Timeline: Analysis of Statistics on Revisions
and Contributions 219

9.3.2 Gridmaster: Correlation of Project Structure, Software
Item Relationships and Metrics 224

9.3.3 Socio-Technical Graph: Visual Representation of the
Collaboration and Relationships between Programmers 238

9.4 Discussion and Conclusions 242

9.1 Introduction

The aim of this chapter and chapter 10 is to explain the features of the
visualizations that conforms the VKESE module (see section 8.3.2 and
Figure 8.3 for further details), their use in supporting situational awareness
and collaboration and in the analysis of patterns in software projects.

214 Chapter 9. Visual Analytics Explorer for Software Evolution

Accordingly, the following section presents a framework for explaining
how situational awareness supports GSD and collaborative work, as well
as the relationships of this framework with the VKESE module of Maleku.
Thereafter, the next sections explain the decisions that were taken for
designing the visual representations that comprises VKESE and how
those visualizations contribute to knowledge discovery and decision making
processes in the context of software project management. Furthermore, the
sections in chapter 10 are committed to explain the design decisions that
were taken concerning the design and implementation of Revision Tree (RT)
(a visualization that is integrated into VKESE), a case study linked to the
software industry on the use of this visualization and its use in analyzing
source code files of open source software projects.

9.2 Framework: situational awareness and
collaboration

SDME processes are complex, dynamic, unpredictable and it is common
that they are carried out in different geographical locations and for several
years, as it was mentioned in chapter 6. This makes it essential that team
members establish collaborative relationships, be they long term or one-off,
to accomplish tasks and solve specific problems. Thus, when a task has been
completed or a problem has been solved the individuals will go on to work on
the next task on the agenda which is based on project planning or on the list
of pending problems. This implies the collaboration is not always conducted
among the same members of the team, but rather in terms of expertise and
the tasks being undertaken at any particular moment.

Collaboration among members of a team can begin in a number of different
situations, which implies that there is no relation between aspects of teamwork
(see Section 6.2.1). Accordingly, the framework illustrated in Figure 9.1 aims
to provide guidance on a possible configuration of the relationship between
these aspects as well as define the role they can play in the process of
collaboration. In Figure 9.1, the composite labels (e.g., activates / supports)
on lines with bidirectional arrows are read following a descending / ascending
order. The descending order is initiated with the concept at the top end of
the line and ends with the concept at the lower end (e.g., Distributed Team
Cognition —> Activate —> Collaboration), while in the case of ascending order,
the reverse order is followed (e.g., Collaboration —> supports — Distributed
Team Cognition).

The framework of Figure 9.1 has been defined taking into account a
distributed cognition approach in which the members of the teams use their

9.2. Framework: situational awareness and collaboration 215

individual cognition, according to their specialization and experience, and
which is complemented with the cognition of the other individuals to act in
the performance of tasks and problem solving. On this basis, the collaborative
process can be triggered by one or several members of the team using their
cognitive abilities when required to perform a task or when a situation is
detected about which it is necessary to act.

To make collaboration possible among team members, communication,
coordination and control among team members may be required. It is
important to note that collaboration among individuals requires information
to facilitate the distribution of tasks and to determine the actions that should
be followed according to the status of the project. So, the capacities and
information provided by SAWSs on the evolution and status of the processes,
tasks, activities and changes that have been made to the software items can
be very useful. The relationship between the process of collaboration and the
communication, coordination and control activities is reciprocal, as shown in
Figure 9.1.

» Team
™ _cognition
helps to build
supports l— activates —l
facilitates \ Commumcatlon u >/ Coordmatlon H > Control)
renders p0551ble acts upon
" Process tasks /
Collaboratlon) annotations
activities /
. artifacts
assists are the source
to cleate
L’ Situational |
awareness
. workspace |
Figure 9.1: Framework for collaborative work in SDME processes

[Gonzalez-Torres 2014].

In an analogous manner one or more members of the team may activate
the communication, coordination and control activities, so in turn the process

216 Chapter 9. Visual Analytics Explorer for Software Evolution

of collaboration between the appropriate individuals could be initiated, and
if necessary the capabilities of SAWs can be used.

With regard to this point it is worth mentioning that the goal of a SAW
is to provide information about the processes, tasks, activities and artifacts
of software systems, but also provide the possibility of interaction for users
who can annotate visualizations during the communication, coordination and
control activities (see Figure 9.1). The purpose of the SAWs is to support the
collaboration and decision making processes, so its design can consider some
of the following objectives:

x Provide information on the state of the system to facilitate the
completion of a task or to solve a maintenance problem.

x Facilitate the construction of individual and group cognition based
around the processes of SDME of a software project to provide tracking
information on the status of the system.

x Show patterns of unexpected behaviors derived from system changes to
trigger collaboration mechanisms among team members.

% Support project managers in decision-making processes that may be
related to the allocation of tasks to team members as well as to activities
and tasks in progress or very specific technical details of software system
elements.

*x Provide details about the progress of work being done by other team
members and the general state of the project to assist programmers in
the fulfillment of their tasks, goals and objectives.

It should be noted that coordination and control activities have direct
effects on the processes, activities and software items, which are the data
source used to feed the visualizations of SAWs tools.

Finally, it is worth to mention that the visualizations that comprise
the VKESE module of Maleku are targeted to serve as a SAW for facilitating
the comprehension of the evolution of software systems and hence to support
the SDME processes.

9.3 Visualization Designs and Use Case
Scenarios

The main view of VKESE and the visualizations that it includes are shown
in Figure 9.2: GT (displayed at the left bottom corner), Gridmaster (located
at the right top panel), STG and RT! (the last two are located at the right
bottom panel).

'The design and features of the RT are explained in detail in chapter 10.

9.3. Visualization Designs and Use Case Scenarios 217

The visualization outcomes that are presented in the remaining sections of
this chapter are the result of applying GT, Gridmaster and STG to data from
the evolution of jEdit, JabRef and JFreeChart, three open source projects
written in Java which are described below:

1. jEdit is an open source text editor for programmers that is available at
http:/ /sourceforge.net /projects/jedit and whose development started on
December 1999. This study takes into account n<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>