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Abstract

Background: Despite the large increase of transcriptomic studies that look for gene signatures on diseases,
there is still a need for integrative approaches that obtain separation of multiple pathological states providing
robust selection of gene markers for each disease subtype and information about the possible links or relations
between those genes.

Results: We present a network-oriented and data-driven bioinformatic approach that searches for association
of genes and diseases based on the analysis of genome-wide expression data derived from microarrays or
RNA-Seq studies. The approach aims to (i) identify gene sets associated to different pathological states
analysed together; (ii) identify a minimum subset within these genes that unequivocally differentiates and
classifies the compared disease subtypes; (iii) provide a measurement of the discriminant power of these genes
and (iv) identify links between the genes that characterise each of the disease subtypes. This bioinformatic
approach is implemented in an R package, named geNetClassifier, available as an open access tool in
Bioconductor. To illustrate the performance of the tool, we applied it to two independent datasets: 250
samples from patients with four major leukemia subtypes analysed using expression arrays; another leukemia
dataset analysed with RNA-Seq that includes a subtype also present in the previous set. The results show the
selection of key deregulated genes recently reported in the literature and assigned to the leukemia subtypes
studied. We also show, using these independent datasets, the selection of similar genes in a network built for
the same disease subtype.

Conclusions: The construction of gene networks related to specific disease subtypes that include parameters
such as gene-to-gene association, gene disease specificity and gene discriminant power can be very useful to
draw gene-disease maps and to unravel the molecular features that characterize specific pathological states.
The application of the bioinformatic tool here presented shows a neat way to achieve such molecular
characterization of the diseases using genome-wide expression data.

Keywords: gene; expression; expression profile; gene networks; microarray; RNA-Seq; disease; disease
classification; cancer; leukemia; acute leukemia

Background
Last decade of experimental work using genomic tech-
nologies has provided many data on gene expression
profiling of different biological and pathological states
[1]. This great effort in biomedical research has lead
to a large need for tools and strategies that allow clin-
icians to translate the genome-wide expression data
into useful information, such as transparent and ro-
bust signatures to characterize and distinguish multi-
ple pathological subtypes [2]. There are many machine
learning and computational procedures that can be ap-
plied to build classification systems that allow identify-
ing the type or category of query samples whose class
is not-known a priori [3, 4, 5]. However, a common
problem of these methods is that they often do not re-
veal any information about the genes that are selected
as variables for the classification process [4]. Although
obtaining an efficient classifier might seem enough in
some cases, there is a clear loss of biological informa-
tion if the value or power of the chosen genes is not
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translated into parameters that allow to characterize
and rank the genes.

Many clinical and biomedical studies look for the
separation between multiple disease subtypes as dis-
tinct pathological states, but they are also very in-
terested in finding the specific genes that are altered
in each disease subtype. To identify and quantify the
power of such ’marking genes’ is the only way by which
machine learning techniques can bring back biological
meaning to this kind of biomedical studies. Moreover,
gene products do not work in isolation as ’independent
features’, but rather interact with others in biomolec-
ular networks to perform specific biological functions
[6]. Therefore, together with the identification of the
genes that mark a disease, genome-wide studies of re-
lated biological states should also provide information
about the associations between the affected genes [7].

Following these questions we have developed a bioin-
formatic approach to provide gene-based analysis and
characterization of different diseases and construction
of associated gene networks using expression profiles
derived from experimental transcriptomic data. The
approach integrates established statistical and ma-
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chine learning methods into a single tool that al-
lows to (i) identify the set of genes that are specif-
ically altered in a disease when a collection of sev-
eral diseases -or disease subtypes- are studied and
compared together using genome-wide expression pro-
filing; (ii) obtain a minimum subset of these genes
that enable to differentiate each disease subtype from
the other; (iii) provide information about how rel-
evant each of these genes is for discriminating each
studied class; and (iv) find associations between the
genes based on the analysis of the experimental ex-
pression profiles. This tool has been implemented in
an R/Bioconductor package named geNetClassifier
(available at http://www.bioconductor.org/). In order
to validate the tool as a whole and prove whether the
results it provides have biological and functional mean-
ing, here we present its application to two indepen-
dent genome-wide expression datasets of human sam-
ples isolated from individuals with different subtypes
of leukemia: one using high-density oligonucleotide mi-
croarrays and another using deep RNA-sequencing.

Results and discussion
Finding genes associated to specific disease subtypes
The human gene landscape can be structured in func-
tionally associated groups of genes which are specific
to biological processes or states. Since a disease will
normally affect and alter one or several biological pro-
cesses, we could depict a theoretical multidimensional
”gene space” divided in regions that include genes as-
sociated to specific pathological states (Figure 1A).
The identification of these groups of genes is a great
scientific endeavour for biomedical research, and some
biological databases (e.g. OMIM [8]) have been built
following the idea of a ”gene-to-disease mapping”, as
it is known to happen in Mendelian inherited diseases.
In this theoretical scenario, the genes that are affected
by a given disease can be overlapping with the ones
affected by a similar pathological state. This will de-
fine genes that can be altered in multiple pathologies,
but it will also expect to define genes that are only
affected by a specific malignancy when compared with
other diseases.

Considering the recognition of such theoretical gene-
disease space (Figure 1A), we apply expression pro-
filing to find the genes that are altered in one specific
disease subtype using differential expression analysis.
To do so, we compare each disease category versus
all the others using package EBarrays [9], that imple-
ments an empirical Bayes method [10]. This provides
a posterior probability for each gene to be differentially
expressed in one of the classes (see Methods). Sorting
the genes by their probability allows to build a rank-
ing of the genes ordered by their statistical significance
(Figure 1B). Since each gene has a probability of dif-
ferential expession per class, it is assigned to the class
in which it has the best ranking. This allows to build
non-overlapping gene lists that optimize the specificity
and separation between classes. The posterior proba-
bility also allows to quantify the association of a gene
with a class and identify how many genes are related
to each class at a certain significance level.

Constructing gene-based classifiers for multiple diseases
Once the gene rankings have been established, the tool
selects from the top of the list the minimum subset of

genes required to identify each class. To achieve this,
it uses a multiclass implementation [11] of Support
Vector Machine (SVM), as a method that has been
proven very efficient for classification of gene expres-
sion microarray datasets [12, 13, 14]. The SVM is inte-
grated into a wrapper forward selection scheme to test
whether a selected subset of genes is actually enough
to discriminate the classes [15]. Several SVM classi-
fiers are iterativelly trained with an increasing num-
ber of genes taken from the ranked lists and evaluated
through double nested cross-validation. The smallest
subset of genes that provides the best performance is
selected as feature set (Figure 1C) and used to train
and build a final classifier that will include all the avail-
able samples of the training set.

The classifier built for a given set of compared dis-
eases can be used to query and identify new unlabeled
samples. In addition, the classifier is analysed in or-
der to obtain the discriminant power of the selected
genes (Figure 1D). Each gene’s discriminant power
is a quantitative parameter that resembles the value
of such gene in class differentiation. Therefore, a high
discriminant power (either positive or negative, in ab-
solute value) indicates that the gene is useful to mark
and identify samples from its assigned class. Full de-
scription of this parameter is provided in Methods sec-
tion.

Building networks of genes associated to diseases
To infer possible associations between the genes as-
signed to each disease, geNetClassifier calculates gene-
to-gene correlation and mutual information [16] in the
expression dataset. This allows to identify possible re-
lations of co-expression between the genes and possi-
ble relations of mutual redundancy. The detected as-
sociations are integrated in a network that also in-
cludes parameters derived from the differential expres-
sion analysis and from the classification analysis. Since
networks are built for each class, they provide an in-
tegrative view of the gene sets associated to each dis-
ease in a relational characterized context. Examples of
these networks are presented in the case studies in the
following sections.

Using geNetClassifier : analysis of a leukemia dataset
We have applied geNetClassifier to a dataset of
genome-wide expression microarrays of samples from
leukemia, as a well known disease that allows to test
the tool in a real case study and confirm the biolog-
ical relevance of the results. This dataset includes 50
microarray samples from bone marrow of patients of
four major leukemia subtypes (ALL, AML, CLL and
CML; described in Methods) plus non-leukemia con-
trols (NoL), making a total of 5 distinct classes.

The first result that geNetClassiffier provides is the
set of rank-ordered lists of genes selected for each class,
being the top genes the ones most significantly asso-
ciated with each disease (as indicated in Figure 1C).
The resulting lists of genes-per-disease do not over-
lap, in this way the method is optimized to find spe-
cific markers of each compared disease. The number of
genes associated to each disease for a common thresh-
old of significance is quite different from one class to
another (e.g. 1027 genes for ALL but only 273 genes for
AML). This observation seems to indicate that some
diseases can affect more genes than others according
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Figure 1 Description of geNetClassifier main features and results. (A) Scheme representing a gene-disease space for three
hypothetical diseases. The color-line ovals would enclose the genes (dots) affected by a given disease. The coloured-background
circles would mark the altered genes that are specific for a disease, which are the ones we aim to identify: i.e. genes affected by only
one of the compared diseases. (B) Graph presenting the posterior probability of the top 2000 genes included in the gene ranking for
each of the 4 leukemia subtypes and the non-leukemia samples. The genes are selected and ranked based on their posterior probability
for each class. Genes with posterior probability over the threshold (> 0.95) can be considered significant candidates to mark each
disease subtype. (C) Lists presenting the top-15 genes in the ranking of each class. The bottom row shows the total number of
significant genes in the whole ranking. The shaded area contains the genes selected as the minimum subset to separate the classes.
The number of genes selected per class is shown on top. (D) Discriminant power plot of the first ranked gene for each leukemia
subtype: VPREB1 (pre-B lymphocyte 1) for ALL; HOXA9 (homeobox 9) for AML; TYMS (thymidylate synthetase) for CLL; and
GJB6 (gap junction beta-6 30kDa protein) for CML. The red numbers indicate the discriminat power values assigned to each gene.

to their comparative changes in the global expression
profiles. These sizes do not represent the absolute num-
ber of genes each disease affects, but rather the genes
that are only affected by each disease in the specific
contrast. In any case, this phenomenological consid-
eration supports the proposed hypothesis of a gene-
disease space, where different diseases affect different
number of genes.

After the classification process the minimun subset
of genes that allow the best class separation were se-
lected: 9 genes for ALL, 5 for AML, 1 for CLL, and 5
for CML (blue-shaded boxes in Figure 1C; detailed
information about these genes is included in Addi-
tional File 1).

External validation and performance of geNetClassifier

Once the classifier for leukemias was built, an exter-
nal validation was conducted to evaluate the accuracy
and performance of the algorithm and to confirm the
robustness of the genes selected as markers of the cor-
responding classes [17].

An external validation consists on querying the clas-
sification system with an independent set of samples
whose class is a priori known. We used a different set
of 200 samples of the same five classes (Figure 2). Sen-
sitivity, specificity, MCC, global accuracy and global
call rate were calculated to evaluate the performance.
These statistical parameters were estimated in 10 runs
of external validation randomly splitting the available
samples.

The external validation could be performed following
two different approaches: (i) assigning all the samples
to their most likely class or (ii) leaving doubtful sam-
ples as not-assigned. (See Methods).

When the not-assigned option was selected, the ex-
ternal validation done with 200 leukemia samples pro-
vided an average of 4 misclassifications per run (shaded
region in Figure 2A). All other samples were either
correctly assigned or left unclassified (not-assigned),
resulting in an average global accuracy of 98% and
average call rate of 92% (assignment percentage). By
contrast, since most samples that would have been in-
correctly assigned had a probability under the thresh-
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CML 7.75 0 0.50 0 91.75 0 CML 0 0 2.25 0.25 96.75 0.75

7.75 0 0 0 1.25 91 0 0 0 0 2.75 97.25

Sensitivity 100 90.9 100 99.5 98.6 Sensitivity 99.5 80.8 100 96.8 97.3

Specificity 100 99.9 100 99.3 98.4 Specificity 99.9 99.4 99.8 97.8 96.8

MCC 1.00 0.94 1.00 0.98 0.95 MCC 0.99 0.86 0.99 0.93 0.91
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Figure 2 External validation of geNetClassifier using a large dataset of leukemia samples. (A) Assignment of 200 leukemia
samples in one run of external validation. Green dots correspond to samples in which the most likely class is correct and red dots to
samples in which it is incorrect. Samples in the blue background area are assigned to the most likely class; samples under any of the
two thresholds (dashed blue lines) are considered doubtful samples and can be left as ”Not-Assigned”. (B) Summary of the results
of 10 independent external validations. Average confusion matrices (in percentage values) and statistical parameters: sensitivity,
specificity, MCC, call rate (calculated per class), global accuracy and global call rate (calculated globally for all the classes). On the
right (labelled All Assigned) the statistics are calculated assigning all the samples to their most likely class. On the left (With
Not-Assigned) the statistics are calculated leaving doubtful samples unassigned.

olds (red dots in Figure 2A), the accuracy when all
samples were forced to be assigned to their most likely
class was 94.85%.

In overall, the external validation for the leukemias
showed that the best performance –allowing not as-
signment– was obtained for ALL and CLL (100% sen-
sitivity and specificity, MCC=1.0), while nk-AML pre-
sented the lowest values (90.9% sensitivity, 0.94 MCC
and 77% call rate). Difficulties in the identification and
classification of nk-AMLs were already described in a
large-scale international leukemia study where the rate
of misclassification for this specific subtype was 11.4%
[18]. In conclusion, the classification accuracy rates
provided by geNetClassifier confirms that the genes
sets selected for each class can be good markers of the
analysed disease subtypes.

Genes and networks associated to each leukemia
subtype

The gene networks produced for each leukemia sub-
type are presented in Figure 3. The plots include the
top-30 genes selected for each class as characteristic
markers of each leukemia subtype.

Several of these genes have been already reported as
functionally associated to these diseases. For example,
in the case of ALL, the gene VPREB1 -that is the first
gene in ALL ranking- encodes a protein that belongs
to the immunoglobulin superfamily and is expressed
selectively at the early stages of B lymphocytes devel-
opment (i.e. on the surface of pro-B and early pre-B
cells). This gene has already been proposed as a use-
ful marker for the detection of normal and malignant
human pre-B lymphocytes [19]. Since all ALL samples
included in this study correspond to pre-B-ALL with-
out t(9;22), the selection of VPREB1 seems quite ad-
equate. Another gene selected to mark ALL is DNTT.
The protein encoded by DNTT is expressed in a re-
stricted population of normal and malignant pre-B and
pre-T lymphocytes during early differentiation.

In the case of the genes selected for nk-AML,

the network shows a cluster of homeobox genes

(HOXA4, HOXA5, HOXA7, HOXA9, HOXA10 ). The

co-expression of these genes detected in the dataset

reveals that they are coregulated. MEIS1 is a tran-

scriptional regulator also included in the homeobox

co-expression cluster and selected as one of the genes

with best discriminant power for the nk-AML class.

Two recent publications have reported that downregu-

lation of MEIS1 and HOXA genes impair proliferation

and expansion of acute myeloid leukemia cells [20, 21].

Moreover, HOXA has a specific translocation event

that has been associated with myeloid leukemogene-

sis, and overexpression of HOXA9 has been shown as

representitative of nk-AML patients during first diag-

nosis and if they suffer relapse [22]. These and other

reports support the selection of MEIS1 and HOXA9

in the gene network that characterizes AML with nor-

mal karyotype [23]. Another gene related to AML is

ANGPT1, that encodes protein angiopoietin 1. An-

giopoietins are proteins with important roles in vas-

cular development and angiogenesis which have also

been identified as over expressed in bone marrow of

AML patients [24].

Finally, the gene network produced for CML includes

characteristic genes such as PRG3, that encodes for

eosinophil major basic protein 2 (MBP2) which is spe-

cific of eosinophil granulocytes, a myeloid cell type.

Moreover, it has been shown that many molecules es-

sential for tumor cell growth (like polyamines) enter

cells via a proteoglycan-dependent pathway that in-

volves PRG3 [25]. All these published reports do not

prove that the genes included in the networks for each

leukemia subtype are essential for the development of

such diseases. However, they give important support

to the results and underline the value of the method

for creating significant gene sets and gene networks

associated to specific disease subtypes.
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Figure 3 Gene networks produced for each studied leukemia subtype. The networks contain the top-30 ranked genes selected for
each class. Genes are coloured in red if they are overexpressed and in green if they are repressed in the given subtype. The intensity
of these colours indicate the magnitude of the observed expression difference. Squares correspond to genes that were selected as
minimum subset to differentiate the classes. The size of these squares is proportional to the discriminant power of the gene. The
color of the edges indicates the type of relations between the genes: blue meaning co-expression (correlation) and orange mutual
information.

Application of geNetClassifier to an RNA-Seq dataset

geNetClassifier can be applied to different types of
genomic data produced with different platforms. We
have also applied it to an RNA-Seq dataset of acute
leukemia samples [26] from which we selected 45 sam-
ples from patients with two AML subtypes: (i) 11
samples of patients with t(15;17) chromosomal translo-
cation characteristic of acute promyelocytic leukemia
(APL), and (ii) 34 samples of AML patients with nor-
mal karyotype and no detected FISH abnormalities
(nk-AML). APL is an AML subtype that has good
clinical prognosis. Its sensitivity to all-trans retinoic
acid (ATRA) allows an efficient treatment unique
among leukemias. By contrast, nk-AML is one of the
most frequent subtypes of AML (approx. 50%) and
usually has a poor clinical prognosis due to the lack
of an efficient treatment [26]. Out of these two AML
subtypes, nk-AML was also present in the previous mi-
croarray dataset analysed. This allows us to investigate
the performance of the algorithm studying a common
disease subtype in a different context and using a dif-
ferent type of expression data.

geNetClassifier was applied to the RNA-Seq dataset
of APLs and nk-AMLs using 8 samples from each class
as training samples and then validated with the rest
of the samples. We repeated this process 10 times ran-
domly selecting the training samples. The global accu-
racy obtained in this analysis was 100% with a call rate
of 91.38%. The list of genes most frequently selected

for classification (Figure 4A) included several home-
obox genes (HOXA and HOXB) and MEIS1, showing
agreement with the results obtained for nk-AML in
the microarray analysis. In this way, the expression
profiles from these genes in the RNA-Seq dataset are
consistent with the results obtained from microarrays,
e.g.: genes HOXA9 and MEIS1 were down regulated in
APL in comparison to nk-AML (Figure 4D and 4F).
In addition, the network generated for nk-AML se-
lected a set of homeobox genes that form a highly con-
nected co-expression cluster (Figure 5). Other genes
detected in this analysis, for example MEG3 (Figure
4C), showed over-expression in APL versus nk-AML.
In fact, it has been reported that MEG3 expression is
lost in multiple cancer cell lines of various tissue ori-
gins, and it inhibits tumor cell proliferation in vitro.
The identification of MEG3 as marker over-expressed
in the AML subtype with better prognosis (Figure
4C) provides support to the selection of this gene as
a discriminant feature between APL and nk-AML.

Finally, to have a better estimation of the global
agreement provided by the algorithm in the analysis of
the genes assigned to a given disease subtype, we anal-
ysed the total overlapping of the genes selected for nk-
AML in the arrays dataset and the RNA-Seq dataset.
Both platforms included a common set of 16,611 hu-
man protein-coding genes. Within this set, the num-
ber of significant genes selected for nk-AML were 202
(using posterior probability > 0.95). The RNA-Seq re-
sults included 95 of these genes (considering the 10
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Figure 4 Genes selected for the RNA-seq dataset of acute leukemia. (A) The table shows the genes most frequently selected to
distinguish between normal karyoptype AML (nk-AML) and AML with t(15;17) (APL). geNetClassifier was run ten times with
different combinations of samples. The table includes the mean discriminant power within these runs and the number of times that
each gene is included in the minimum subset. (B-F) Expression profiles corresponding to some of the top selected genes: GABRE,
MEG3, HOXA9, PROM1 and MEIS1. Each red bar corresponds to the expression signal (log2(RPKM + 1)) in one sample.

runs indicated above), and 76 of them were selected
in more than three runs. An overlap of 95 genes cor-
responds to an odds ratio of 2.17 and to an enrich-
ment p-value < 0.000001 (using hypergeometric test).
Therefore, it can be said that the consistency of the
method to select genes that mark a specific disease
subtype is high.

Comparison of geNetClassifier with other methods
Finally, we have evaluated the performance of geNet-
Classifier relative to other gene selection and clas-
sification methodologies. We compared geNetClassi-
fier with four machine learning methods for feature
selection using CMA package [27], which provides a
comprehensive collection of various microarray-based
classification algorithms (see Additional File 2).
We have also evaluated the classification procedure
of geNetClassifier using svb-IMPROVER contest plat-
form [28], which includes a Diagnostic Signature Chal-
lenge with several datasets to assess and verify compu-
tational approaches that classify clinical samples based
on transcriptomics data (see Additional File 3). In
both cases, the performance of geNetClassifier algo-
rithm is within the best methods. However, it should
be noted that we could only compare the classification
and gene selection procedures. The other features in-
cluded in our package could not be found integrated
in other methods.

Conclusions
Biological annotation of the genes selected and the net-
works built to mark and separate different pathologi-
cal states confirm the value of using geNetClassifier to

analyse multiple disease subtypes based on genome-
wide expression profiles. The tool is provided open ac-
cess in Bioconductor to facilitate the type of studies
illustrated in this report.

As a general conclusion, the results using geNetClas-
sifier showed a robust selection of gene markers for
characterizing disease subtypes and allowed the con-
struction of specific and weighted gene networks as-
sociated to each disease subtype. The method can be
applied to data derived from different types of tech-
nologies (such as microarrays or RNA-Seq) and it is
designed to analyse datasets with multiple categories
of samples.

Methods
Implementation and availability

geNetClassifier has been developed as an R package
following Bioconductor (BioC) standards and techni-
cal requisites (www.bioconductor.org). It has attained
BioC package submission process and package guide-
lines to be included in BioC software release. It is freely
available, open source and open access. The package
includes help pages with usage examples for each spe-
cific function. Together with the package, we have writ-
ten a vignette including a detailed tutorial to use the
algorithm (Additional File 4).

Microarray dataset

The microarray leukemia dataset is a subset of 250
samples collected from the Microarray Innovations in
Leukemia (MILE) study [18] available at Gene Expres-
sion Omnibus database (www.ncbi.nlm.nih.gov/geo/)
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Figure 5 Gene network obtained for AML with the RNA-seq
dataset. The network contains the top-30 ranked genes
selected after running geNetClasifier to analyse the RNA-Seq
expression data of normal karyoptype AML (nk-AML) versus
AML with t(15;17) (APL) samples. The network shows two
clear clusters: one including genes that are up-regulated in
nk-AML and another with down-regulated genes. The red
cluster includes many homeobox (HOX) genes highly
correlated. These genes are characteristic of nk-AMLs and
show good agreement with the results obtained with
microarrays in spite of being two totally independent datasets.

under series accession number GSE13159. The genome-
wide expression signal corresponding to these sam-
ples was measured using Affymetrix Human Genome
U133 Plus 2.0 microarrays. The samples correspond to
mononuclear cells isolated by Ficoll density centrifuga-
tion from bone marrow of untreated patients with: (1)
Acute Lymphoblastic Leukemia (ALL) subtype child-
hood or precursor B-cell (c-ALL/pre-B-ALL) with-
out translocation t(9;22); (2) Acute Myeloid Leukemia
(AML) subtype normal karyotype (nk); (3) Chronic
Lymphocytic Leukemia (CLL) subtype B-cell ; (4)
Chronic Myeloid Leukemia (CML); (5) Non-leukemia
and healthy bone marrow (NoL).

The microarrays were normalized using the algo-
rithm Robust Multi-Array Average (RMA) [29] and
applying a gene-centric redefinition of the probes from
the Affymetrix arrays to Ensembl genes (Ensembl
IDs ENSG). This alternative Chip Definition File
(CDF) with complete unambiguous mapping of mi-
croarray probes to genes is available at GATExplorer
(http://bioinfow.dep.usal.es/xgate/) [30].

RNA-Seq dataset
The leukemia dataset analysed with RNA-sequencing
corresponds to a subset of samples collected by the
Cancer Genome Atlas (TCGA) [26] available at the
TCGA data portal (https://tcga-data.nci.nih.gov/).
These RNA-Seq data correspond to samples obtained
from bone marrow aspirate of patients with AMLs of
de novo diagnosis. Out of the available samples in
TCGA, we selected 45 samples of the following sub-
types: (1) AML patients with translocation t(15;17)
(also called Acute Promyelocytic Leukemia, APL) (11
samples); and (2) AML patients with normal kary-
otype and no detected FISH abnormalities (nk-AML)
(34 samples). The preprocessed RNA-Seq expression
data matrices containing the reads per kilobase per
million mapped reads (RPKM) were downloaded from
the TCGA data portal and were log2 transformed

(log2(RPKM + 1)) prior to be analysed with geNet-
Classifier.

Statistical methods and algorithm procedures
Gene ranking: To create the gene ranking, geNet-
Classifier uses the function emfit, a Parametric Empir-
ical Bayes method, included in package EBarrays [9].
This method implements an expectation-maximization
(EM) algorithm for gene expression mixture models,
which compares the patterns of differential expression
across multiple conditions and provides a posterior
probability. The posterior probability is calculated for
each gene-class pair with a One-versus-Rest contrast:
comparing the samples of one class versus all the other
samples. In this way, the posterior probability repre-
sents how much each gene differentiates a class from
the other classes (being 1 the best value, and 0 the
worst). The ranking is built, in a first step, by order-
ing the genes decreasingly by their posterior probabil-
ity for each class. To resolve ties, the algorithm uses
the value of the difference between the signal expres-
sion mean for each gene in the given class and the
mean in the closest class. In a second step, the rank-
ing procedure assigns each gene to the class in which it
has the best ranking. As a result of this process, even
if a gene is found associated to several classes during
the expression analysis, it will only be on the ranking
its best class. In addition, genes that do not show any
significant difference between classes are filtered out
before building the ranking. Finally, the set of genes
considered significant in the ranking of each class is
determined by a threshold of the posterior probabil-
ity, which by default is set up to be greater than 0.95
.

Classifier: The classifier included in the algorithm
is a multi-class Support Vector Machine (SVM) avail-
able in R package e1071 [11]. This package provides
a linear kernel implementation that allows the classi-
fication of multiple classes by using a One-versus-One
(OvO) approach, in which all the binary classifications
are fitted and the correct class is found based on a vot-
ing system.

Gene selection: The gene selection is done through
a wrapper forward selection scheme based on 8-fold
cross-validation. Each cross-validation iteration starts
with the first ranked gene of each class: it trains a tem-
porary internal classifier with these genes, and evalu-
ates its performance. One more gene is added in each
step to those classes for which a ’perfect prediction’
is not achieved (i.e. in case not all samples are cor-
rectly identified). The genes are taken in order from
the gene ranking of each class until reaching zero er-
ror or the maximum number of genes allowed (deter-
mined by the arguments maxGenesTrain and contin-
ueZeroError). The error for each of the classifiers and
the number of genes used to construct them are saved.
Once the cross-validation loop is finished, it selects the
minimum number of genes per class which produced
the classifier with minimum error. To achieve the best
stability in the number of selected genes, the cross-
validation is repeated with new samplings as many
times as indicated by the user (6 times by default).
In each of these iterations, the minor number of genes
that provided the smallest error is selected. The final
selection is done based on the genes selected in each
of the iterations. For each class, the top ranked genes
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are selected by taking the ’highest number’ of genes
selected in the cross-validaton iterations, but exclud-
ing possible ’outlier numbers’ (i.e. selecting trimmed
values).

Discriminant power: The discriminant power is
a parameter calculated based on the Lagrange coeffi-
cients (alpha) of the support vectors for all the genes
selected for the classification. Since the multi-class
SVM algorithm is a One-versus-One implementation,
it produces a set of support vectors for each binary
comparison between classes. For each gene, the La-
grange coefficients of all the support vectors for each
class are added up to give a value per class (repre-
sented as piled up bars in Figure 1D). The discrimi-
nant power is then calculated as the difference between
the largest value and the closest one (i.e. the distance
marked by two red lines in the plots in Figure 1D).

Assignment conditions: The whole tool geNet-
Classifier is built considering an expert decision system
approach, because once the classifier is build it keeps
open the possibility of ’do not assign’ when it is not
sure about the class of a query sample. To make the
assignment decision the probability to assign a sam-
ple to a given class should be at least double than the
random probability, and the difference with the second
most likely class should be higher than 0.8 times the
random probability. If these conditions are not met, the
sample is left as Not-Assigned (NA). These probabil-
ity thresholds for assignment conditions are set up by
default, but they can be changed by the user.

List of abbreviations used
MCC: Matthews Correlation Coefficient

t(9;22): translocation between chromosomes 9 and 22
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Additional Files
.

Additional file 1: Table S1. Table with data and information about the

genes selected by geNetClassifier in the analyses of the leukemia

microarrays dataset (classes: four leukemia subtypes and control class NoL):

Class: The category a gene has been assigned to. Rank: Position of the

gene within the list of genes ranked by significance assigned to a disease.

Posterior probability: Probability value given by the

expectation-maximization algorithm to each gene. This value is used to

establish the ranking. In this result all values were very close to 1 (with

more than 10 significant digits). Ties are further ranked based on the

differential expression. Expression: Difference between the mean expression

of the gene within its class and the mean expression in the other classes.

UP or DOWN indicates whether the gene is overexpressed or repressed in

its class compared to the other classes. Discriminant Power: Parameter

calculated based on the Lagrange coefficients of the support vectors of the

classifier. Represents the weight that the classifier gives to each gene to

differentiate a given class. Redundancy: If TRUE, the gene has a high

correlation or mutual information with other genes in the list. The

threshold to consider a gene redundant can be set through the arguments

(by default: correlationsThreshold=0.8 and interactionsThreshold=0.5).

Chosen for classification: Number of times the gene was chosen for

classification (as part of the minimum required subset) in the 5 internal

cross-validation loops. Rank mean and rank standard deviation (SD) of the

gene in these classifiers. Cross-validation: Mean and standard deviation of

the rank that the gene has obtained in geNetClassifier ’s internal

cross-validation, including the times it was not selected for classification.

.

Additional file 2: Table S2. Comparison of geNetClassifier gene selection

procedure with four other machine learning methods for gene selection (i.e.

feature selection): Limma, F-test, Boosting and Random Forest.

The comparison has been done on the dataset of 250 leukemia samples,

using R/Bioc package CMA that provides a comprehensive collection of

various microarray-based classification algorithms [27].

.

Additional file 3: File S3. Evaluation of the performance of geNetClassifier

classification procedure in the sbv-IMPROVER contest platform

(https://sbvimprover.com/), which includes a Diagnostic Signature

Challenge to assess and verify computational approaches that classify

clinical samples based on transcriptomics data [28].

The performance has been evaluated using the dataset from IMPROVER

that includes four classes corresponding to lung cancer subtypes.

.

Additional file 4: File S4. geNetClassifier vignette

Vignette including a tutorial with executable examples and description of

all the methods. This vignette is available in Bioconductor:

http://www.bioconductor.org/packages/release/bioc/vignettes/

geNetClassifier/inst/doc/geNetClassifier-vignette.pdf
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Additional file 1: File S1.

Class Gene Rank
Expression Discriminant Power

Redundant
Chosen for classification Cross-Validation

Mean difference UP/DW Value Class Times Rank mean Rank SD Rank mean Rank SD

ALL

VPREB1 1 1 6.33 UP 9.41 ALL 0 5 1 0 1 0

ZNF423 2 1 5.09 UP 13.24 ALL 1 4 2.75 1.5 3 1.41
DNTT 3 1 6.89 UP 8.97 ALL 1 5 2.8 0.45 2.8 0.45

EBF1 4 1 5.41 UP 10.51 ALL 1 2 3 1.41 3.8 1.48

PXDN 5 1 5.03 UP 8.65 ALL 1 2 5 1.41 5.2 0.84
S100A16 6 1 4.34 UP 12.38 ALL 1 2 5.5 0.71 5.4 1.14

CSRP2 7 1 4.04 UP 8.78 ALL 1 1 7 0 7.8 1.3
SOCS2 8 1 4.53 UP 8.69 ALL 0 1 8 0 10.8 3.27

CTGF 9 1 3.61 UP 5.55 ALL 0 0 NA 0 14.8 10.03

AML

HOXA9 1 1 4.43 UP 8.01 AML 0 5 1.2 0.45 1.2 0.45
MEIS1 2 1 3.27 UP 10.31 AML 1 4 2.5 1 3 1.41

CD24L4 3 1 -4.49 DOWN -5.73 AML 0 2 3.5 3.54 3.8 2.17
ANGPT1 4 1 2.74 UP 9.21 AML 0 2 4.5 0.71 4.8 1.3

CCNA1 5 1 2.55 UP 8.24 AML 0 4 4 1.83 5.4 3.51

CLL TYMS 1 1 -5.51 DOWN -10.07 CLL 0 4 1.25 0.5 1.8 1.3

CML

GJB6 1 1 5.25 UP 4.94 CML 0 5 2.2 1.79 2.2 1.79

PRG3 2 1 4.97 UP 4.09 CML 1 3 3 1 92.4 166.45
LY86 3 1 -2.2 DOWN -5.56 CML 0 1 2 0 39.6 21.9

ABP1 4 1 2.51 UP 8.47 CML 0 4 3 2.16 5 4.85

TRIM22 5 1 -2.67 DOWN -9.05 CML 0 1 5 0 35.8 18.27

NOL

FGF13 1 1 2.69 UP 3.78 NoL 0 5 1.2 0.45 1.2 0.45

NMU 2 1 1.96 UP 4.1 NoL 0 2 2.5 0.71 9 6.44
SMPDL3A 3 1 1.95 UP 5.07 NoL 0 3 7 3.46 13.8 10.83

KLRB1 4 1 2.23 UP 3.39 NoL 0 2 6.5 4.95 22.2 16.51

RNF182 5 1 1.84 UP 1.06 NoL 0 3 2.33 1.53 5.6 4.72
RFESD 6 1 2.36 UP 2.94 NoL 0 4 4.25 1.5 5.8 3.7
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Additional file 2: File S2.

The classification is done always using SVM. To be comparable with the other methods, geNetClassifier is forced to assign all samples to a class.

10 runs
Accuracy CallRate

A
lw

a
ys

 A
ss

ig
n  ALL AML CLL CML NoL Sensitivity Specificity MCC CallRate

94.0 100   ALL 394 12 0 2 0 ALL 96.651 99.627 96.94 100 Global
92.0 100   AML 4 332 0 4 4 AML 96.744 95.948 87.179 100 Accuracy CallRate
92.5 100   CLL 0 4 400 0 0 CLL 99.024 100 99.384 100 ⇨ 92.55 100
89.5 100   CML 1 13 0 358 29 CML 89.343 97.384 86.752 100
97.5 100   NoL 1 39 0 36 367 NoL 83.285 97.895 84.003 100
91.5 100
89.5 100
95.5 100
94.0 100
89.5 100

10 runs
Accuracy CallRate

A
lw

a
ys

 A
ss

ig
n  ALL AML CLL CML NoL Sensitivity Specificity MCC CallRate

92.0 100   ALL 395 0 0 0 0 ALL 100 99.692 99.215 100 Global
95.5 100   AML 0 376 0 2 0 AML 99.443 98.538 95.883 100 Accuracy CallRate
99.5 100   CLL 0 0 400 0 0 CLL 100 100 100 100 ⇨ 94.8 100
96.0 100   CML 1 4 0 358 33 CML 91.087 97.420 87.726 100
95.5 100   NoL 4 20 0 40 367 NoL 85.708 97.940 85.585 100
92.5 100
95.0 100
93.5 100
91.5 100
97.0 100

10 runs
Accuracy CallRate

A
lw

a
ys

 A
ss

ig
n  ALL AML CLL CML NoL Sensitivity Specificity MCC CallRate

98.5 100   ALL 398 0 0 0 0 ALL 100 99.876 99.686 100 Global
95.5 100   AML 0 376 0 2 1 AML 99.232 98.528 95.752 100 Accuracy CallRate
98.0 100   CLL 0 2 400 0 0 CLL 99.512 100 99.692 100 ⇨ 96.65 100
96.0 100   CML 0 3 0 380 20 CML 94.531 98.769 93.389 100
92.5 100   NoL 2 19 0 18 379 NoL 91.132 98.688 91.012 100
97.5 100
97.0 100
98.0 100
97.5 100
96.0 100

10 runs
Accuracy CallRate

A
lw

a
ys

 A
ss

ig
n  ALL AML CLL CML NoL Sensitivity Specificity MCC CallRate

96.0 100   ALL 395 1 0 0 0 ALL 99.756 99.691 99.061 100 Global
96.5 100   AML 0 381 1 0 7 AML 98.122 98.836 95.816 100 Accuracy CallRate
96.0 100   CLL 0 0 399 0 0 CLL 100 99.938 99.843 100 ⇨ 94.9 100
96.0 100   CML 0 4 0 351 21 CML 93.528 97.006 88.291 100
94.5 100   NoL 5 14 0 49 372 NoL 84.880 98.215 85.842 100
92.5 100
94.5 100
92.5 100
93.5 100
97.0 100

10 runs
Accuracy CallRate

A
lw

a
ys

 A
ss

ig
n  ALL AML CLL CML NoL Sensitivity Specificity MCC CallRate

95.5 100 ALL 398 0 0 0 2 ALL 99.500 99.880 99.380 100 Global
93.0 100 AML 2 323 3 25 47 AML 80.750 99.440 86.200 100 Accuracy CallRate
96.0 100 CLL 0 0 400 0 0 CLL 100 99.750 99.380 100 ⇨ 94.85 100
96.0 100 CML 0 9 1 387 3 CML 96.750 97.750 92.560 100
94.5 100 NoL 0 0 0 11 389 NoL 97.250 96.750 90.690 100
96.0 100
97.0 100
94.5 100
90.5 100
95.5 100

 Comparison of five multi-class feature selection (i.e. "gene selection") methods.  (Done using svmCMA function from CMA R package)

 Data: expression microarrays from 250 leukemia samples. 50 samples are used for training (10 per class); 200 for testing as external validation (40 per class).

SUM of the 10 confusion matrices for 10 runs: METHOD Boosting

SUM of the 10 confusion matrices for 10 runs: METHOD Limma

SUM of the 10 confusion matrices for 10 runs: METHOD Random Forest

SUM of the 10 confusion matrices for 10 runs: METHOD F-test

SUM of the 10 confusion matrices for 10 runs: METHOD geNetClassifier (for this comparison forced to "always assign")
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Additional file 3: File S3. 
 
Evaluation of the performance of geNetClassifier classification procedure in the sbv-
IMPROVER contest platform (https://sbvimprover.com/challenge-1), which includes a Diagnostic 
Signature Challenge to assess and verify computational approaches that classify clinical 
samples based on transcriptomics data. 
 
The performance of the algorithm geNetClassifier has been evaluated using a data-set that 
has multiple classes (a data-set of lung cancer included in IMPROVER). We show below 
the results corresponding to the performance measured with three parameters: (i) AUPR, 
that computes the precision-recall curve for each class, from which the Area Under the 
Precision-Recall curve is extracted (Precision is a measure of specificity whereas Recall is a 
measure of completeness); (ii) BCM, Belief Confusion Matrix, that is a matrix whose 
element {i,j} is the average confidence that a sample belonging to class i is in class j (Each 
prediction has its own belief confusion matrix. The perfect belief confusion matrix is the 
identity matrix); (iii) CCEM, Correct Class Enrichment Metric, that is computed adding the 
confidence of the samples whose classes were correctly predicted and subtract the 
confidence of the subjects whose classes were incorrectly predicted (In other words, this is a 
measure of enrichment of the correctly classified samples. The final value is normalized to 
be between 0 and 1). 
 
These parameters indicate, as shown in the tables below, that geNetClassifier is within the 
best methods, performing as the 6th best out of 47 different methods submitted to the 
Diagnostic Signature Challenge when it is applied using the option of "not-assignment"; 
and as the 7th best in the rank of 47 methods when it is used forced to assign always a 
query sample to a class ("all assigned"). 
	
  

Plots that present the results of AUPR, BCM 
and CCEM corresponding to the performance 
of geNetClassifier using the option of "not-
assignment".	
  

The RESULTS TABLE placed after these plots 
presents the values of these parameters and 
the rank for the top-15 methods.	
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Plots that present the results of AUPR, BCM 
and CCEM corresponding to the performance 
of geNetClassifier using the option of "all 
assigned".	
  

The RESULTS TABLE placed after these plots 
presents the values of these parameters and 
the rank for the top-15 methods.	
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1 Introduction to geNetClassifier

geNetClassifier is an algorithm designed to build transparent classifiers and the associ-
ated gene networks based on genome-wide expression data.

geNetClassifier() is also the name of the main function in the package. This function takes
as input the expressionSet or expression matrix of the studied samples and the classes
the samples belong to (i.e. the diseases or disease subtypes). Once the data are analyzed,
geNetClassifier() provides: (i) ranked gene sets (or gene signatures) that identify each
class; (ii) a multiple-class classifier; and (iii) gene networks associated to each class.

� Gene ranking: The genes, probesets, or any other variables that are input in the
expressionSet are considered features for the classification. These features are an-
alyzed by geNetClassifier, and ranked according to the class they best identify, in
order to select the optimum set for training the classifier. This ranking is returned
by geNetClassifier() as well as the parameters calculated for gene selection.

� Classifier: geNetClassifier() also returns a multi-class SVM-based classifier, which
can be queried later on; the genes (features) chosen for classification; their discrimi-
nant power (a parameter that measures the importance that the classifier internally
gives to each gene); and, optionally, the classifier’s generalization error and statistics
about the selected genes.

� Network: The mutual-information (interactions) and the co-expression (correla-
tions) between the genes are also calculated and analyzed by the algorithm. These
allow to estimate the degree of association between the variables and they are used
to generate a gene network for each class. These networks can be plotted, providing
a integrated overview of the genes that characterized each disease (i.e. each class).

Figure 1. Taking an expressionSet as input, geNetClassifier() returns a gene
signature for each class, a classifier to discriminate the classes, and gene networks
associated to each class. The package also includes several analytic and visualizing
tools to explore these results.
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Examples of use

The algorithm shows a robust performance applied to patient-based gene expression
datasets that study disease subtypes or disease classes. In this vignette, we show its per-
formance for a leukemia dataset that includes 60 microarray samples from bone marrow
of patients with four major leukemia subtypes (ALL, AML, CLL, CML) and no-leukemia
controls (NoL). The results outperform a previously published classification analysis of
these data [1].

The method is designed to be applied to the analysis and classification of different disease
subtypes. Therefore, in the R package and this vignette, all the explanations and exam-
ples are disease-oriented. However, geNetClassifier can be applied to the classification of
any other type of biological states, pathological or not.

Methods

The algorithm geNetClassifier() integrates several existing machine learning and statis-
tical methods. The feature ranking is achieved based on a Parametric Empirical Bayes
method (PEB). Double-nested internal cross-validation (CV) [2] is used for the feature
selection process and to estimate the generalization error of the classifier. The machine
learning method implemented in the classifier is a multi-class Support Vector Machine
(SVM) [3]. The gene networks are built calculating the relations derived from gene to
gene co-expression analysis (by default, Pearson correlation) and the interactions derived
from gene mutual information analysis (using minet package) [4]. More details about
these methods are available in the appropriate sections.

Queries

geNetClassifier includes a query function that allows either validation of the classifiers
using external independent samples of known class (section 4) or classification of new
samples whose class is unknown (section 5). This function facilitates the application of
the classification algorithm as a predictor for new samples, and it is designed to resemble
expert behavior by allowing NotAssigned (NA) instances when it is not sure about the
class labelling. In order to assign a sample to a class, the algorithm requires a minimum
certainty (i.e. probability), leaving it unassigned in case it does not achieve a clear call to
a single class. These probability thresholds can be tuned to achieve a more or less strin-
gent assignment. By following this procedure, the algorithm emulates human experts in
the decision-making.
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2 Install the package and example data

To install geNetClassifier from Bioconductor :

> source("http://bioconductor.org/biocLite.R")

> biocLite("geNetClassifier")

To follow the examples presented in this Vignette, we also need to install a sample dataset
called leukemiasEset :

> biocLite("leukemiasEset")

This dataset contains an expresssionSet built with 60 gene expression microarrays (HG-
U133 plus 2.0 from Affymetrix ) hybridized with mRNA extracted from bone marrow
biopsies of patients of the 4 major types of leukemia (ALL, AML, CLL and CML) and
from non-leukemia controls (NoL). These data was produced by the Microarray Innova-
tions in LEukemia (MILE) research project [1] and are available at GEO, under accession
number GSE13159. The selected samples are labeled keeping their source GEO IDs.

To have an overview of this ExpressionSet and its available info:

> library(leukemiasEset)

> data(leukemiasEset)

> leukemiasEset

ExpressionSet (storageMode: lockedEnvironment)

assayData: 20172 features, 60 samples

element names: exprs, se.exprs

protocolData

sampleNames: GSM330151.CEL GSM330153.CEL ... GSM331677.CEL (60 total)

varLabels: ScanDate

varMetadata: labelDescription

phenoData

sampleNames: GSM330151.CEL GSM330153.CEL ... GSM331677.CEL (60 total)

varLabels: Project Tissue ... Subtype (5 total)

varMetadata: labelDescription

featureData: none

experimentData: use 'experimentData(object)'

Annotation: genemapperhgu133plus2

> summary(leukemiasEset$LeukemiaType)

ALL AML CLL CML NoL

12 12 12 12 12

> pData(leukemiasEset)

For further information/help about this ExpressionSet :

> ?leukemiasEset
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CEL files were preprocessed using an alternative Chip Description File (CDF), which al-
lows mapping the expression directly to genes (Ensembl IDs ENSG) instead of Affymetrix
probesets. This alternative CDF, with redefines gene-based annotation files for the
Affymetrix expression microarrays, can be found in GATExplorer (a bioinformatic web
platform that integrates a gene loci browser with nucleotide level re-mapping of the oligo
probes from Affymetrix expression microarrays to genes: mRNAs and ncRNAs)[5].

To translate these Ensembl gene IDs into Gene Symbols for easier reading, the optional
argument geneLabels from geNetClassifier can be used. This option allows to extend the
annotation and labelling of the genes by providing a table that contains the gene symbol
and other characteristics of the genes in the expresssionSet. This option can be used with
any annotation (i.e. Bioconductor’s org.Hs.eg.db package) as long as it is provided in the
correct format. However, for increased consistency between versions, when using GAT-
Explorer CDF, we recomend to also use GATExplorer annotation files. Annotation files
with the Gene Symbol corresponding to each Ensembl gene ID can be found at: http://

bioinfow.dep.usal.es/xgate/mapping/mapping.php?content=annotationfiles. The one
used in this example is the Human Genes R annotation file. A subset of this file was
saved into the object geneSymbols for easier use in the examples:

> data(geneSymbols)

> head(geneSymbols)

This annotation file provides further information which can be used to filter the genes.
i.e. To consider only protein-coding genes for the construction of geNetClassifier, use the
following filter:

> load("genes-human-annotation.R")

> leukEset_protCoding <- leukemiasEset[featureNames(leukemiasEset)

+ %in% rownames(genes.human.Annotation[genes.human.Annotation$biotype

+ %in% "protein_coding",]),]

> dim(leukemiasEset)

> dim(leukEset_protCoding)

Please note that geNetClassifier is designed to work with genes. In case the expression
data is not summarized into genes (i.e. it uses the default probesets) geNetClassifier can
still be used but those probesets/features will still be called genes.

3 Main function of the package: geNetClassifier()

geNetClassifier() is the main function of the package. It builds the classifier and the
gene network associated to each class, and also returns the genes ranking and further
information about the selected genes.

The workflow internally followed by geNetClassifier() includes the following steps:

1.- Filtering data and calculating the genes ranking.
2.- Calculating correlations between genes.
3.- Calculating interactions between genes.
Optional - Filter of redundant genes from the ranking (see arguments removeCorrela-
tions and removeInteractions).

Chapter 1: geNetClassifier

77



geNetClassifier 6

4.- Construction of the classifier: Selects of a subset of genes to train the classifier through
8-fold cross-validation. The selected genes are used to train the classifier with the com-
plete set of samples.
5.- Estimation of performance: calculates the generalization error of the classifier and
the statistics about the genes adding an 5-fold cross-validation around the construction
of the classifier (nested cross-validation).
6.- Construction of the gene networks: a gene network is built for each one of the classes
using the pairwise gene-to-gene correlations and interactions.
7.- Writing and saving the results including a series of plots for visualization.

The following sections show: how to load the package and the data (sec. 3.1); how to
run the algorithm (sec. 3.2); an overview of the results and returned data (sec. 3.3): the
genes ranking (sec. 3.4), the classifier (sec. 3.5) and the gene networks (sec. 3.6).

3.1 Loading the package and data

In order to have geNetClassifier functions available, the first step is to load the package:

> library(geNetClassifier)

To list all available tutorials for this package, or to open this Vignette you can use:

> # List available vignettes for package geNetClassifier:

> vignette(package="geNetClassifier")

> # Open vignette named "geNetClassifier-vignette":

> vignette("geNetClassifier-vignette")

To list all the available functions and objects included in geNetClassifier use the function
objects(). Typing its name with a question mark (?) before any function, will show its
help file. Through this tutorial, we will see how to use the main ones:

> objects("package:geNetClassifier")

[1] "calculateGenesRanking" "externalValidation.probMatrix"

[3] "externalValidation.stats" "gClasses"

[5] "genesDetails" "geNetClassifier"

[7] "getEdges" "getNodes"

[9] "getNumEdges" "getNumNodes"

[11] "getRanking" "getSubNetwork"

[13] "getTopRanking" "initialize"

[15] "network2txt" "numGenes"

[17] "numSignificantGenes" "overview"

[19] "plotAssignments" "plotDiscriminantPower"

[21] "plotExpressionProfiles" "plot.GenesNetwork"

[23] "plot.GenesRanking" "plot.GeNetClassifierReturn"

[25] "plotNetwork" "queryGeNetClassifier"

[27] "querySummary" "setProperties"

[29] "show"

> ?geNetClassifier
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After the package is loaded, you can proceed to analyze your data. In this vignette we
use leukemiasEset : 60 microarrays from bone marrow from patients of the 4 major types
of leukemia (ALL, AML, CLL, CML) and from healthy non-leukemia controls (NoL).(For
installation and further information regarding leukemiasEset data package see Section 2).

> library(leukemiasEset)

> data(leukemiasEset)

In leukemiasEset there are 60 samples: 12 of each class (ALL, AML, CLL, CML and
NoL). We will select 10 samples from each class to execute geNetClassifier(), and leave
2 for external validation of the resulting classifier. In this way, it makes a total of 50
samples for the training and 10 samples for the validation.

> trainSamples <- c(1:10, 13:22, 25:34, 37:46, 49:58)

> summary(leukemiasEset$LeukemiaType[trainSamples])

ALL AML CLL CML NoL

10 10 10 10 10

3.2 Run geNetClassifier()

The essential input elements that geNetClassifier needs are:

1.- An expressionSet : R object defined in Bioconductor that contains a genome-
wide expression matrix with data for multiple samples; see ?ExpressionSet.
Note that since the ranking is built though package EBarrays, the data in
the expression set should be normalized intensity values (positive and on raw
scale, not on a logarithmic scale).

2.- The sampleLabels: a vector with the class name of each sample or the
ExpressionSet phenoData object containing this information. Note that to
run geNetClassifier it is highly recommended to have the same number of
samples in each class. A balanced number of samples allows an even ex-
ploration of each class and provides better classification.

The algorithm input also includes many other arguments that allow to personalize the
execution or modify some of the parameters internally used. All of them have a default
value and there is no need to modify them. In the following step we will see examples on
how to use the main ones. Information about them can be found using the help options
(i.e. ?geNetClassifier). This is the full list of arguments with their default values:

geNetClassifier(eset, sampleLabels, plotsName=NULL, buildClassifier=TRUE,

estimateGError=FALSE, calculateNetwork=TRUE, labelsOrder=NULL,

geneLabels=NULL, numGenesNetworkPlot=100, minGenesTrain=1,

maxGenesTrain=100, continueZeroError=FALSE, numIters=6, lpThreshold=0.95,

numDecimals=3, removeCorrelations=FALSE, correlationsThreshold=0.8,

correlationMethod="pearson", removeInteractions=FALSE, interactionsThreshold=0.5,

skipInteractions=FALSE, minProbAssignCoeff=1, minDiffAssignCoeff=0.8,

IQRfilterPercentage=0, precalcGenesNetwork=NULL, precalcGenesRanking=NULL,

returnAllGenesRanking=TRUE, verbose=TRUE)
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The execution time will depend on the computer and the size of the dataset. To avoid
waiting now for the construction of a new classifier to continue this tutorial, a pre-executed
example is included in the package:

> data(leukemiasClassifier)

This classifier was built running the following code:

> leukemiasClassifier <- geNetClassifier(leukEset_protCoding[,trainSamples],

+ sampleLabels="LeukemiaType", plotsName="leukemiasClassifier",

+ estimateGError=TRUE, geneLabels=geneSymbols)

These are some examples of standard use:

� The fastest execution would be training the classifier exploring a reduced number of
genes (by default maxGenesTrain=100 ). In order ot skip calculating the network
within the genes, set calculateNetwork=FALSE. However, since the correlations are
relatively fast to calculate, we recommend keeping calculateNetwork=TRUE, and
set skipInteractions=TRUE instead.

> leukemiasClassifier <- geNetClassifier(eset=leukemiasEset[,trainSamples],

+ sampleLabels="LeukemiaType", plotsName="leukemiasClassifier",

+ skipInteractions=TRUE, maxGenesTrain=20, geneLabels=geneSymbols)

� The default execution (buildClassifier=TRUE, calculateNetwork=TRUE ) only re-
quires the expressionSet and the sampleLabels. Providing plotsName is also recom-
mended in order to produce the plots:

> leukemiasClassifier <- geNetClassifier(eset=leukemiasEset[,trainSamples],

+ sampleLabels="LeukemiaType", plotsName="leukemiasClassifier")

� In order to also estimate the classifier’s performance, set estimateGError=TRUE.
This option will take longer to execute

> leukemiasClassifier <- geNetClassifier(eset=leukemiasEset[,trainSamples],

+ sampleLabels="LeukemiaType", plotsName="leukemiasClassifier",

+ estimateGError=TRUE)

Some of the parameters allow to provide extra information for an easier reading of the
results:
- labelsOrder allows to show and plot the classes in a specific order (i.e. labelsOr-
der=c(’ALL’, ’CLL’, ’AML’, ’CML’, ’NoL’))
- geneLabels can be used to add a label to the genes to show in the outputs instead of
the featureNames from the ExpressionSet.
In the example, the genes were labeled with the gene symbols provided by GATExplorer
gene-based probe mapping (geneLabels=geneSymbols), as it was indicated in section 3.1.

After running geNetClassifier(), we recommend to save the output:

> getwd()

> save(leukemiasClassifier, file="leukemiasClassifier.RData")
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3.3 Overview of the data returned by geNetClassifier()

The main results that leukemiasClassifier() provides are: the genes ranking (sec. 3.4),
the classifier (sec.3.5) and the gene networks (sec. 3.6). All this information is returned
by geNetClassifier() in an object of class GeNetClassifierReturn. This objec tontains
several slots which can be seen with the function names():

> names(leukemiasClassifier)

[1] "call" "classifier"

[3] "classificationGenes" "generalizationError"

[5] "genesRanking" "genesRankingType"

[7] "genesNetwork" "genesNetworkType"

The slot @call contains the R sentence that was used to execute geNetClassifier(). It is
the only slot that will always be returned by geNetClassifier(), the presence and contents
of the other components returned by the algorithm will depend on the arguments used
to run it.

> leukemiasClassifier@call

geNetClassifier(eset = leukEset_protCoding[, trainSamples], sampleLabels = "LeukemiaType",

plotsName = "leukemiasClassifier", buildClassifier = TRUE,

estimateGError = TRUE, calculateNetwork = TRUE, geneLabels = geneSymbols)

All the outputs and returned components are explained in detail in the following sections:

� @genesRanking in section 3.4

� @classifier and @classificationGenes in section 3.5

� @generalizationError in section 3.5.2

� @genesNetwork in section 3.6

� The plots are explained in section 6

A general view of the output can be seen by just typing the assigned name:

> leukemiasClassifier

R object summary:

Classifier trained with 50 samples.

Total number of genes included in the classifier: 26.

Number of genes per class:

ALL AML CLL CML NoL

9 5 1 5 6

For classificationGenes details: genesDetails(EXAMPLE@classificationGenes)

Generalization error and gene stats calculated through 5-fold cross-validation:

[1] "accuracy" "sensitivitySpecificity"

[3] "confMatrix" "probMatrix"

[5] "querySummary" "classificationGenes.stats"
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[7] "classificationGenes.num"

The ranking of all genes contains (genes per class):

ALL AML CLL CML NoL

2342 3023 2824 2539 3049

The networks calculated for the topGenes genes of each class contain:

ALL AML CLL CML NoL

Number of genes 1027 400 1916 949 400

Number of relations 1942 296 18506 6540 1993

Available slots in this R object:

[1] "call" "classifier" "classificationGenes"

[4] "generalizationError" "genesRanking" "genesRankingType"

[7] "genesNetwork" "genesNetworkType"

To see an overview of all available slots type "overview(EXAMPLE)"

3.4 Return I: Genes ranking

The first step of geNetClassifier algorithm is to determine a ranking of genes for each
class based in the analysis of the expression signal. To create this ranking, it uses the
function emfit, a Parametric Empirical Bayes method [6], included in package EBarrays
[7]. This method implements an expectation-maximization (EM) algorithm for gene ex-
pression mixture models, which compares the patterns of differential expression across
multiple conditions and provides a posterior probability.

The posterior probability is calculated for each gene-class pair, and represents how much
each gene differentiates a class from the other classes; being 1 the best value, and 0 the
worst. In this way, the posterior probability allows to find the genes that show signifi-
cant differential expression when comparing the samples of one class versus all the other
samples (One-versus-Rest comparison).

A first version of the ranking is built by ordering the genes decreasingly by their pos-
terior probability for each class. To resolve the ties, geNetClassifier uses the expression
difference between the mean for each gene in the given class and the mean in the closest
class. In addition, the genes with a posterior probability greater or equal to 0.95 for the
’no difference’ -the genes that do not show any difference between classes- are filtered out
before proceeding into further steps.

The final version of the ranking is built assigning each gene to the class in which it has the
best ranking. In this way the separation between classes is optimized, and the method
will choose first the genes that best differentiate any of the classes. As a result of this
process, even if a gene is found associated to several classes during the expression analy-
sis, each gene can only be on the ranking of one class.
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Figure 2. Scheme representing the overlap between the sets of genes that each
disease may affect. geNetClassifier explores all the genes that affect each disease
(ovals) and selects as significant, the genes that are unique (differentially expressed)
to each disease (coloured circles).

The genes ranking obtained for each class is used for the gene selection in the classifi-
cation procedure and it is also provided as an output of geNetClassifier() in the slot:
...@genesRanking.

> leukemiasClassifier@genesRanking

Top ranked genes for the classes: ALL AML CLL CML NoL

ALL AML CLL CML NoL

[1,] "VPREB1" "HOXA9" "TYMS" "GJB6" "FGF13"

[2,] "ZNF423" "MEIS1" "FCER2" "PRG3" "NMU"

[3,] "DNTT" "CD24L4" "NUCB2" "LY86" "SMPDL3A"

[4,] "EBF1" "ANGPT1" "RRAS2" "ABP1" "KLRB1"

[5,] "PXDN" "CCNA1" "PNOC" "TRIM22" "RNF182"

[6,] "S100A16" "ZNF521" "C6orf105" "NLRC3" "RFESD"

[7,] "CSRP2" "HOXA5" "RRM2" "LPXN" "SLC25A21"

[8,] "SOCS2" "DEPDC6" "KIAA0101" "GBP3" "CD160"

[9,] "CTGF" "NKX2-3" "UHRF1" "TNS3" "CLIC2"

[10,] "COL5A1" "NPTX2" "ABCA6" "ZC3H12D" "TMEM56"

...

Number of ranked significant genes (posterior probability over threshold):

ALL AML CLL CML NoL

1027 273 1916 949 191

To see the whole ranking (3049 rows) use: getRanking(...)

Details of the top X ranked genes of each class: genesDetails(..., nGenes=X)

This ranking an object of class GenesRanking. This class provides some utility functions
which will help working with the information contained in the object. The total number
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of genes in the ranking for each class can be queried using the function numGenes().
These numbers include all the genes that have some ability to distinguish between classes,
although only the top ones are really significant.

> numGenes(leukemiasClassifier@genesRanking)

ALL AML CLL CML NoL

2342 3023 2824 2539 3049

With getTopRanking() a subset of the ranking containing only the given number of top
genes can be obtained. Since the returned object is also a GenesRanking object, no
information is lost and other functions (i.e. genesDetails()) can be used afterwards.

> subRanking <- getTopRanking(leukemiasClassifier@genesRanking, 10)

In order to retrieve the whole ranking in the form of a matrix (i.e. to print the full version
or get a subset of it), the function getRanking() can be used. This function provides the
option to show the ranking with the gene IDs or the gene Labels.

> getRanking(subRanking)

$geneLabels

ALL AML CLL CML NoL

[1,] "VPREB1" "HOXA9" "TYMS" "GJB6" "FGF13"

[2,] "ZNF423" "MEIS1" "FCER2" "PRG3" "NMU"

[3,] "DNTT" "CD24L4" "NUCB2" "LY86" "SMPDL3A"

[4,] "EBF1" "ANGPT1" "RRAS2" "ABP1" "KLRB1"

[5,] "PXDN" "CCNA1" "PNOC" "TRIM22" "RNF182"

[6,] "S100A16" "ZNF521" "C6orf105" "NLRC3" "RFESD"

[7,] "CSRP2" "HOXA5" "RRM2" "LPXN" "SLC25A21"

[8,] "SOCS2" "DEPDC6" "KIAA0101" "GBP3" "CD160"

[9,] "CTGF" "NKX2-3" "UHRF1" "TNS3" "CLIC2"

[10,] "COL5A1" "NPTX2" "ABCA6" "ZC3H12D" "TMEM56"

> getRanking(subRanking, showGeneID=TRUE)$geneID[,1:4]

ALL AML CLL CML

[1,] "ENSG00000169575" "ENSG00000078399" "ENSG00000176890" "ENSG00000121742"

[2,] "ENSG00000102935" "ENSG00000143995" "ENSG00000104921" "ENSG00000156575"

[3,] "ENSG00000107447" "ENSG00000185275" "ENSG00000070081" "ENSG00000112799"

[4,] "ENSG00000164330" "ENSG00000154188" "ENSG00000133818" "ENSG00000002726"

[5,] "ENSG00000130508" "ENSG00000133101" "ENSG00000168081" "ENSG00000132274"

[6,] "ENSG00000188643" "ENSG00000198795" "ENSG00000111863" "ENSG00000167984"

[7,] "ENSG00000175183" "ENSG00000106004" "ENSG00000171848" "ENSG00000110031"

[8,] "ENSG00000120833" "ENSG00000155792" "ENSG00000166803" "ENSG00000117226"

[9,] "ENSG00000118523" "ENSG00000119919" "ENSG00000034063" "ENSG00000136205"

[10,] "ENSG00000130635" "ENSG00000106236" "ENSG00000154262" "ENSG00000178199"
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The function genesDetails() allows to show all the available info of the genes in the
ranking.

> genesDetails(subRanking)$AML

GeneName ranking class postProb exprsMeanDiff exprsUpDw

ENSG00000078399 HOXA9 1 AML 1 4.4362 UP

ENSG00000143995 MEIS1 2 AML 1 3.2785 UP

ENSG00000185275 CD24L4 3 AML 1 -4.4926 DOWN

ENSG00000154188 ANGPT1 4 AML 1 2.7427 UP

ENSG00000133101 CCNA1 5 AML 1 2.5558 UP

ENSG00000198795 ZNF521 6 AML 1 2.5697 UP

ENSG00000106004 HOXA5 7 AML 1 3.1729 UP

ENSG00000155792 DEPDC6 8 AML 1 2.4803 UP

ENSG00000119919 NKX2-3 9 AML 1 2.1962 UP

ENSG00000106236 NPTX2 10 AML 1 2.0582 UP

isRedundant

ENSG00000078399 FALSE

ENSG00000143995 TRUE

ENSG00000185275 FALSE

ENSG00000154188 FALSE

ENSG00000133101 FALSE

ENSG00000198795 TRUE

ENSG00000106004 TRUE

ENSG00000155792 TRUE

ENSG00000119919 FALSE

ENSG00000106236 FALSE

NOTE: If the console splits the table into several lines, try:

> options(width=200)

By default, the rownames are the ID included in the expressionSet : in our case the EN-
SEMBL IDs. The GeneName column has been added by setting the argument geneLa-
bels=geneSymbols (see sec. 3.2).

To see the description of the content of this table write: ?genesDetails.

More details about GenesRanking class is available at: ?GenesRanking.
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3.4.1 Significant genes

The set of genes considered significant for each of the classes is determined by a com-
mon threshold for the posterior probability (by default lpThreshold=0.95 ). This common
threshold provides a way to quantify the size of the gene signature assigned to each dis-
ease (as always: compared to the other diseases in the study). In this way, the algorithm
provides a framework to compare biological states, i.e. the biological or pathological con-
ditions represented in the samples.

plotSignificantGenes() provides a plot of the distribution of the posterior probabilities of
the genes within the rankings for each class:

0 500 1000 1500 20 00

0
0.

2
0.

4
0.

6
0.

8
1.

0

Gene Rank

P
os

te
rio

r P
ro

ba
bi

lit
y

Significant genes in Leukemia

Threshold=0.75

ALL (1027 genes)
AML (273 genes)
CLL (1916 genes)
CML (949 genes)

Figure 3. Plot of the posterior probabilities of the genes of 4 leukemia classes,
ordering the genes according to their rank.

This example shows the big differences in size of the gene sets assigned to a disease: at
lpThreshold 0.95 CLL has been assigned 2028 genes, while AML only 308 genes. The
biological interpretation of this observation will depend on the specific study. Larger gene
signatures may be an indication of more systemic diseases (i.e. a disease affect more genes
than another), but it may also be an indication of the relative differences between the
diseases in the study (i.e. one of the diseases affects different genes than the others). In
any case, the results provided by geNetClassifier may help to unravel disease sub-types
differences based on the gene signatures.

numSignificantGenes() provides the number of significant genes, the number of genes
with posterior probability over the threshold:

> numSignificantGenes(leukemiasClassifier@genesRanking)

ALL AML CLL CML NoL

1027 273 1916 949 191
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The plot of the posterior probability (plotSignificantGenes()) is the default plot for objects
of class GenesRanking. (More details in section 6.1).

> plot(leukemiasClassifier@genesRanking)

In both functions, the threshold can be modified through lpThreshold :

> plot(leukemiasClassifier@genesRanking,

+ numGenesPlot=3000, lpThreshold=0.80)

3.5 Return II: Classifier

The information regarding the classifier is saved into the slots: @classifier, @classifcation-
Genes and @generalizationError.

The @classifier slot contains the SVM classifier that can later be used to make queries.
The SVM method included in the algorithm is a linear kernel implementation from R
package e1071. This implementation allows multi-class classification by using a One-
versus-One (OvO) approach, in which all the binary classifications are fitted and the
correct class is found based on a voting system.

> leukemiasClassifier@classifier

$SVMclassifier

Call:

svm.default(x = t(esetFilteredDataFrame[buildGenesVector, trainSamples]),

y = sampleLabels[trainSamples], kernel = "linear", probability = T,

C = 1)

Parameters:

SVM-Type: C-classification

SVM-Kernel: linear

cost: 1

gamma: 0.03846154

Number of Support Vectors: 29

@classificationGenes contains the final genes selected to build the classifier. Since
@classificationGenes is an object of class GenesRanking, functions such as numGenes()
or genesDetails() can be used to explore it.

> leukemiasClassifier@classificationGenes

Top ranked genes for the classes: ALL AML CLL CML NoL

ALL AML CLL CML NoL

[1,] "VPREB1" "HOXA9" "TYMS" "GJB6" "FGF13"

[2,] "ZNF423" "MEIS1" NA "PRG3" "NMU"

[3,] "DNTT" "CD24L4" NA "LY86" "SMPDL3A"

[4,] "EBF1" "ANGPT1" NA "ABP1" "KLRB1"
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[5,] "PXDN" "CCNA1" NA "TRIM22" "RNF182"

[6,] "S100A16" NA NA NA "RFESD"

[7,] "CSRP2" NA NA NA NA

[8,] "SOCS2" NA NA NA NA

[9,] "CTGF" NA NA NA NA

Details of the top X ranked genes of each class: genesDetails(..., nGenes=X)

> numGenes(leukemiasClassifier@classificationGenes)

ALL AML CLL CML NoL

9 5 1 5 6

> genesDetails(leukemiasClassifier@classificationGenes)$ALL

GeneName ranking gERankMean class postProb exprsMeanDiff

ENSG00000169575 VPREB1 1 1.0 ALL 1 6.3307

ENSG00000102935 ZNF423 2 3.0 ALL 1 5.0980

ENSG00000107447 DNTT 3 2.8 ALL 1 6.8948

ENSG00000164330 EBF1 4 3.8 ALL 1 5.4171

ENSG00000130508 PXDN 5 5.2 ALL 1 5.0387

ENSG00000188643 S100A16 6 5.4 ALL 1 4.3434

ENSG00000175183 CSRP2 7 7.8 ALL 1 4.0479

ENSG00000120833 SOCS2 8 10.8 ALL 1 4.5383

ENSG00000118523 CTGF 9 14.8 ALL 1 3.6167

exprsUpDw discriminantPower discrPwClass isRedundant

ENSG00000169575 UP 9.416945 ALL FALSE

ENSG00000102935 UP 13.240579 ALL TRUE

ENSG00000107447 UP 8.978735 ALL TRUE

ENSG00000164330 UP 10.515557 ALL TRUE

ENSG00000130508 UP 8.657167 ALL TRUE

ENSG00000188643 UP 12.385161 ALL TRUE

ENSG00000175183 UP 8.782649 ALL TRUE

ENSG00000120833 UP 8.697958 ALL FALSE

ENSG00000118523 UP 5.551344 ALL FALSE

Note that besides the common information about the genes provided by the genes ranking
(sec. 3.4), the classification genes also have information about the discriminant power
of the genes (sec. 6.3).

For details on the gene selection procedure (sec. 3.5.1) and the estimation of performance
and generalization error procedure (slot @generalization) (sec. 3.5.2), see the next two
sections.

3.5.1 Gene selection procedure

The optimum number of genes to train the classifier is selected by evaluating the clas-
sifiers trained with increasing number of genes. This is done using several iterations of
8-fold cross-validation. Each cross-validation iteration starts with the first ranked gene of
each class: it trains an internal classifier with these genes, and evaluates its performance.
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One more gene is added in each step to those classes for which a ’perfect prediction’ is not
achieved (i.e. not all samples correctly identified). The genes are taken in order from the
genes ranking of each class until any of the classes reaches gets to the maximum number of
genes (maxGenesTrain=100 ) or until zero error is reached (continueZeroError=FALSE ).
The error for each of the classifiers and the number of genes used to construct them are
saved. Once the cross-validation loop is finished, it saves the minimum number of genes
per class which produced the classifier with minimum error.

To achieve the best stability in the number of selected genes, the cross-validation is
not run just once, but it is repeated several times with new samplings. This process is
repeated as many times as indicated by the optional parameter numIters (6 by default).
In each of these iterations, the minor number of genes that provided the smallest error is
selected.
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Total number of genes

E
rr

or
 r

at
e

0 10 20 30 40

0.
00

0.
05

0.
10

0.
15

0.
20

Error 0: 23 genes
Error 0: 18 genes
Error 0: 25 genes
Error 0: 26 genes
Error 0: 25 genes
Error 0: 25 genes

Figure 4. Plot of the gene-selection iterations. Each line represents an iteration
and the error rates observed for each number of genes (starting at 5, one per
class). The algorithm runs until exploring a maximum number of genes in any class
(maxGeneTrain=100 ) or until zero error is reached (continueZeroError=FALSE ).
In each iteration the minimum number of genes with minimum error is selected.
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The final selection is done based on the genes selected in each of the iterations. For each
class, the top ranked genes are selected by taking the highest number of genes –excluding
outliers– selected in the cross-validaton iterations. This allows to identify a stable number
of genes, while accounting for the diffences in sampling.

ALL AML CLL CML NoL

Number of genes selected in each iteration

Total number of selected genes:  26
Classes

N
um

be
r 

of
 g

en
es

0
2

4
6

8

ALL AML CLL CML NoL

0
2

4
6

8

Figure 5. Plot of the number of genes selected in each iteration. The bars
represent the number of genes with minimum error rates in each iteration. Each
color represents an iteration. The filled bar is the final number of genes of each
class selected to train the classifier.

Figures 4 and 5 show the gene selection for the leukemia’s example.

3.5.2 Estimation of performance and generalization error procedure

The estimation of the generalization error (GE) of the classification algorithm is an option
that can be included using the parameter estimateGError=TRUE. When this option is
chosen, an independent validation is simulated by adding a second loop of cross-validation
(CV) around the construction of the classifier. In each iteration of this loop, a few sam-
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ples are left out of the training and used as test samples. This step allows to estimate
and provide statistics and metrics regarding the quality of the classifier and the genes
selected for classification. The parameters measured for the classifier are the following:

- Sensitivity: Proportion of samples from a given class which were correctly identified.
In statistical terms it is the rate of true positives (TP). Sensitivity relates to the ability
of the test to identify positive results.

Sensitivity =
TP

TP + FN
= TruePositiveRate

- Specificity: Proportion of samples assigned to a given class which really belonged to
the class. In statistical terms it is the rate of true negatives (TN). Specificity relates to
the ability of the test to identify negative results.

Specificity =
TN

TN + FP
= TrueNegativeRate

Note: In order to truly evaluate the classification, both sensitivity and specificity need
to be taken into account. For example, 100% sensitivity for AML will be achieved by
assigning all AML samples to AML. In the same way, 100% specificity will be achieved by
not assigning any sample from other class to AML. Therefore, the classification will only
be reliable if both -sensitivity and specificity- are optimized, by identifying all samples
from one class while not having samples from another classes miss-classified.

- Matthews Correlation Coefficient (MCC): It is a measure which takes into account
both true and false positives and negatives. It is generally regarded as a balanced mea-
sure of performance. In machine learning it is used as a measure of the quality of binary
classifications.

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)

- Global Accuracy: Proportion of true results within the assigned samples.

- Call Rate per class and Global Call Rate: Proportion of assigned samples within
a class or in the whole prediction.

CallRate =
Assigned

Assigned + NotAssigned

The results about the estimation of performance and the generalization error are saved
in the slot: @generalizationError

> leukemiasClassifier@generalizationError

Estimated accuracy, sensitivity and specificity for the classifier:

Accuracy CallRate

Global 100 90

Sensitivity Specificity MCC CallRate

ALL 100 100 100 90
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AML 100 100 100 70

CLL 100 100 100 100

CML 100 100 100 100

NoL 100 100 100 90

To see all available statistics type "overview(EXAMPLE@generalizationError)"

To see all the available info gathered during estimation of performance use the overview()
function:

> overview(leukemiasClassifier@generalizationError)

This object contains all the information regarding estimation of performance in different
slots: @accuracy, @sensitivitySpecificity, @confMatrix, @probMatrix, @querySummary.

The slot ...@confMatrix contains the confusion matrix. A confusion matrix is a table used
to quickly visualize and evaluate the performance of a classification algorithm. The rows
represent the real class of the samples, while the columns represent the class to which the
samples were assigned. Therefore, the correctly assigned samples are in the diagonal.

> leukemiasClassifier@generalizationError@confMatrix

prediction

testLabels ALL AML CLL CML NoL NotAssigned

ALL 9 0 0 0 0 1

AML 0 7 0 0 0 3

CLL 0 0 10 0 0 0

CML 0 0 0 10 0 0

NoL 0 0 0 0 9 1

The slot ...@probMatrix presents the probabilities of assignment to each class that are
calculated during the 5-fold cross-validation. This probability matrix provides a good
estimation of how easy or difficult is to assign each sample to its class. It also provides
an indication about the likelihood to confuse one class with others:

> leukemiasClassifier@generalizationError@probMatrix

ALL AML CLL CML NoL

ALL 0.697 0.060 0.073 0.067 0.102

AML 0.058 0.770 0.083 0.044 0.045

CLL 0.088 0.094 0.673 0.064 0.080

CML 0.055 0.107 0.064 0.633 0.141

NoL 0.073 0.072 0.055 0.145 0.654

The slot ...@classificationGenes.stats includes calculations about the number of times
that each gene was selected for classification in the 5-fold cross-validation executions:
- timesChosen, number of times that each gene is chosen for classification in the 5 CV.
- chosenRankMean, average rank of the gene only within the CV loops in which the gene
was chosen for classification.
- chosenRankSD, standard deviation of the gene rank only within the CV loops in which
the gene was chosen for classification.
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- geRankMean, average rank of the gene in the 5 CV loops performed during the gener-
alization error estimation.
- geRankSD, standard deviation of the rank of the gene in the 5 CV loops performed
during the generalization error estimation.

> leukemiasClassifier@generalizationError@classificationGenes.stats$CLL

timesChosen chosenRankMean chosenRankSD gERankMean gERankSD

ENSG00000176890 4 1.25 0.50 1.8 1.30

ENSG00000070081 2 1.50 0.71 2.4 0.89

ENSG00000104921 1 1.00 0.00 2.8 1.48

The slot ...@classificationGenes.num includes calculations about the number of genes
selected for each class in the 5 runs of the 5-fold cross-validation applied for the estimation
of performance. These numbers allow to explore the number of genes that are used per
class. However, the proper calculation of the final number of genes selected for each
class in the classifier is done with the other 8-fold cross-validation which includes all the
available samples (as indicated in section 3.5.1).

> leukemiasClassifier@generalizationError@classificationGenes.num

ALL AML CLL CML NoL

CV 1: 6 7 1 3 10

CV 2: 3 2 1 8 6

CV 3: 9 2 2 6 5

CV 4: 2 16 2 9 16

CV 5: 3 5 1 8 10

3.6 Return III: Gene networks

Together to the classifier and the genes ranking, the third major result that the algorithm
geNetClassifier produces are the gene networks associated to each class.

The gene networks for each class are built based on association parameters between genes.
These association parameters are gene to gene co-expression calculated using a correla-
tion coefficient (Pearson by default) and gene to gene interactions derived from mutual
information (MI) analysis (mi.empirical entropy estimator from the R package minet
[4]); both calculated along all the samples of each class of the studied dataset.

The correlations and interactions also allow to find possible redundancy between the
genes as features in the classification procedure. Such redundancy can be tested by pro-
ducing comparative classifiers that include or not the associated genes. Usually, classifiers
without redundant genes need less features for classification.

The ...@genesNetwork slot contains the list of networks.

> leukemiasClassifier@genesNetwork

$ALL

Attribute summary of the GenesNetwork:
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Number of nodes (genes): [1] 1027

Number of edges (relationships): [1] 1942

$AML

Attribute summary of the GenesNetwork:

Number of nodes (genes): [1] 400

Number of edges (relationships): [1] 296

$CLL

Attribute summary of the GenesNetwork:

Number of nodes (genes): [1] 1916

Number of edges (relationships): [1] 18506

$CML

Attribute summary of the GenesNetwork:

Number of nodes (genes): [1] 949

Number of edges (relationships): [1] 6540

$NoL

Attribute summary of the GenesNetwork:

Number of nodes (genes): [1] 400

Number of edges (relationships): [1] 1993

> overview(leukemiasClassifier@genesNetwork$AML)

getNodes(...)[1:10]:

[1] "ENSG00000078399" "ENSG00000143995" "ENSG00000185275" "ENSG00000154188"

[5] "ENSG00000133101" "ENSG00000198795" "ENSG00000106004" "ENSG00000155792"

[9] "ENSG00000119919" "ENSG00000106236"

... (400 nodes)

getEdges(...)[1:5,]:

gene1 class1 gene2 class2 relation

[1,] "ENSG00000078399" "AML" "ENSG00000143995" "AML" "Correlation - pearson"

[2,] "ENSG00000154188" "AML" "ENSG00000198795" "AML" "Correlation - pearson"

[3,] "ENSG00000078399" "AML" "ENSG00000106004" "AML" "Correlation - pearson"

[4,] "ENSG00000154188" "AML" "ENSG00000155792" "AML" "Correlation - pearson"

[5,] "ENSG00000119919" "AML" "ENSG00000108511" "AML" "Correlation - pearson"

value

[1,] "0.922460476283629"

[2,] "0.804443836092871"

[3,] "0.836149615702043"

[4,] "0.815177435058601"

[5,] "0.940367679337551"

... (296 edges)

Each of the networks in this list is an object of the class GenesNetwork. This class offers
some functions to retrieve and count the edges and nodes, and also to subset the network
(getSubNetwork()). Note that getNodes() includes all possible nodes even if they are no
linked by edges.
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> getNumEdges(leukemiasClassifier@genesNetwork$AML)

[1] 296

> getNumNodes(leukemiasClassifier@genesNetwork$AML)

[1] 400

> getEdges(leukemiasClassifier@genesNetwork$AML)[1:5,]

gene1 class1 gene2 class2 relation

[1,] "ENSG00000078399" "AML" "ENSG00000143995" "AML" "Correlation - pearson"

[2,] "ENSG00000154188" "AML" "ENSG00000198795" "AML" "Correlation - pearson"

[3,] "ENSG00000078399" "AML" "ENSG00000106004" "AML" "Correlation - pearson"

[4,] "ENSG00000154188" "AML" "ENSG00000155792" "AML" "Correlation - pearson"

[5,] "ENSG00000119919" "AML" "ENSG00000108511" "AML" "Correlation - pearson"

value

[1,] "0.922460476283629"

[2,] "0.804443836092871"

[3,] "0.836149615702043"

[4,] "0.815177435058601"

[5,] "0.940367679337551"

> getNodes(leukemiasClassifier@genesNetwork$AML)[1:12]

[1] "ENSG00000078399" "ENSG00000143995" "ENSG00000185275" "ENSG00000154188"

[5] "ENSG00000133101" "ENSG00000198795" "ENSG00000106004" "ENSG00000155792"

[9] "ENSG00000119919" "ENSG00000106236" "ENSG00000148154" "ENSG00000108511"

The function network2txt() allows to save or export the networks as text files. This
function produces two text files: one with the information about the nodes and another
with the information about the edges. They are flat text files (.txt). In the case of the
edges file, it includes the nodes that interact (gene1 – gene2), the type of link (correlation
or interaction) and the value of such relation.

> network2txt(leukemiasClassifier@genesNetwork, filePrefix="leukemiasNetwork")

To produce just the files with the information about the edges :

> geneNtwsInfo <- lapply(leukemiasClassifier@genesNetwork,

+ function(x) write.table(getEdges(x),

+ file=paste("leukemiaNtw_",getEdges(x)[1,"class1"],".txt",sep="")))

These flat text files allow to export the networks to external software (e.g. Cytoscape,
http://www.cytoscape.org).

The networks can also be exported using direct R connectors (e.g. RCytoscape) with the
igraph objects returned by the function plotNetwork (sec. 6.4).

For more information see the class help ?GenesNetwork.
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4 External validation: query with new samples of

known class

Once a classifier is built for a group of diseases or disease subtypes, it can be queried
with new samples to know their class. However, before proceeding with samples whose
class is unknown, an external validation is normally performed. An external validation
consists on querying the classifier with several samples whose class is a priori known, in
order to see if the classification is done correctly. As indicated in section 3.5.2, if the
number of known samples is limited (as it is usually the case) to avoid leaving a sub-set
of known samples out of the training, geNetClassifier() provides the generalization error
option, which will simulate an external validation by using cross-validation. Despite this
possibility, it is clear that using external samples (totally independent to the classifier
built) is the best option to validate its performance.

In this section, we will proceed with an example of external validation with the leukemia’s
classifier. In leukemiasEset, the class of all the available samples is known a priori. Since
we had 60 samples in the initial leukemia dataset and only 50 were used to train the
classifier, the 10 remaining can be used for external validation.

The first step is to select the 10 samples that were not used for training:

> testSamples <- c(1:60)[-trainSamples]

> testSamples

[1] 11 12 23 24 35 36 47 48 59 60

The classifier is then be asked about the class of these 10 samples using queryGeNetClas-
sifier():

> queryResult <- queryGeNetClassifier(leukemiasClassifier,

+ leukemiasEset[,testSamples])

This query will return the class that each sample has been assigned to, which will be
saved into $class. It also returns the probabilities of assignment of each sample to each
class in $probabilities.

> queryResult$class

GSM330195.CEL GSM330201.CEL GSM330611.CEL GSM330612.CEL GSM331037.CEL

ALL ALL AML AML CLL

GSM331048.CEL GSM331392.CEL GSM331393.CEL GSM331675.CEL GSM331677.CEL

CLL CML CML NoL NoL

Levels: ALL AML CLL CML NoL

> queryResult$probabilities

GSM330195.CEL GSM330201.CEL GSM330611.CEL GSM330612.CEL GSM331037.CEL

ALL 0.82480476 0.72132949 0.04584317 0.03853380 0.04233982

AML 0.04145204 0.05669690 0.68053161 0.84706650 0.09093176

CLL 0.02591494 0.03200663 0.09622283 0.02028114 0.75041107

CML 0.04409894 0.08325862 0.08198307 0.07359096 0.04732196
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NoL 0.06372931 0.10670835 0.09541932 0.02052760 0.06899539

GSM331048.CEL GSM331392.CEL GSM331393.CEL GSM331675.CEL GSM331677.CEL

ALL 0.04115917 0.04569346 0.02645151 0.05492039 0.02213885

AML 0.09742257 0.17443163 0.02549073 0.05510842 0.04907441

CLL 0.71914364 0.13181179 0.03923288 0.09748276 0.01016039

CML 0.07715866 0.56354463 0.87901701 0.04714128 0.03225649

NoL 0.06511596 0.08451848 0.02980787 0.74534715 0.88636986

Since the real class of the samples is known, we can create a confusion matrix. Note: For
using this matrix as input in upcoming functions the real classes should be placed as row
names (rownames) and the predicted classes (assigned by the classifier) as column names
(colnames).

> confusionMatrix <- table(leukemiasEset[,testSamples]$LeukemiaType,

+ queryResult$class)

Once we have executed the query, externalValidation.stats() can be used to calculate the
parameters to evaluate the classifier (Section 3.5.2).

> externalValidation.stats(confusionMatrix)

$byClass

Sensitivity Specificity MCC CallRate

ALL 100 100 100 100

AML 100 100 100 100

CLL 100 100 100 100

CML 100 100 100 100

NoL 100 100 100 100

$global

Accuracy CallRate

Global 100 100

$confMatrix

ALL AML CLL CML NoL NotAssigned

ALL 2 0 0 0 0 0

AML 0 2 0 0 0 0

CLL 0 0 2 0 0 0

CML 0 0 0 2 0 0

NoL 0 0 0 0 2 0

The class to class assignment probability matrix, that gives support to the confusion
matrix, can be also created for the external validation analysis:

> externalValidation.probMatrix(queryResult,

+ leukemiasEset[,testSamples]$LeukemiaType, numDecimals=3)

ALL AML CLL CML NoL

ALL 0.773 0.049 0.029 0.064 0.085

AML 0.042 0.764 0.058 0.078 0.058

CLL 0.042 0.094 0.735 0.062 0.067

CML 0.036 0.100 0.086 0.721 0.057

NoL 0.039 0.052 0.054 0.040 0.816
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4.1 Assignment conditions

queryGeNetClassifier() includes an expert-like approach to decide if a sample is assigned
to a class: instead of directly assigning a sample to the class with the highest probability,
it takes into account the probability of belonging to the class and the probability of the
closest class before taking the final decision.

By default, the probability to assign a sample to a given class should be at least double
than the random probability, and the difference with the next likely class should also be
higher than 0.8 times the random probability. For example, to assign a sample in a 5
class classifier, the highest probability should be at least 40% (2 x 0.20 = 0.40) and the
probability of belonging to the closest class should be at least 16% lower than the highest
(0.8 x 0.20 = 0.16). This implies that if a sample’s probability to belong to one class is
55% and to belong to another class is 40%, since the the difference is lower than 16%,
it is not clear enough, and it will be left as a NotAssigned (NA). This feature allows
modulation of the assignment to resembles expert decision-making.

To allow adapting these conditions, queryGeNetClassifier() includes two coefficients that
determine the minimum probability for assignment (minProbAssignCoeff), and the min-
imum difference between the of the first and the second classes (minDiffAssignCoeff). If
these two coefficients are set up to 0 all samples will be assigned to the most likely class
and therefore no samples will be left as NotAssigned.

> queryResult_AssignAll <- queryGeNetClassifier(leukemiasClassifier,

+ leukemiasEset[,testSamples], minProbAssignCoeff=0, minDiffAssignCoeff=0)

> which(queryResult_AssignAll$class=="NotAssigned")

integer(0)

On the contrary, the thresholds can be raised to increase the the certainty of the as-
signments: i.e. by setting the coefficients to 1.5 and 1, the minimum probability to be
assigned is 0.6 (1.5 x 2 x 0.20) and the minimum difference between first and second class
probabilities is 0.2 (1 x 0.20).

> queryResult_AssignLess <- queryGeNetClassifier(leukemiasClassifier,

+ leukemiasEset[,testSamples], minProbAssignCoeff=1.5, minDiffAssignCoeff=1)

> queryResult_AssignLess$class

GSM330195.CEL GSM330201.CEL GSM330611.CEL GSM330612.CEL GSM331037.CEL

ALL ALL AML AML CLL

GSM331048.CEL GSM331392.CEL GSM331393.CEL GSM331675.CEL GSM331677.CEL

CLL NotAssigned CML NoL NoL

Levels: ALL AML CLL CML NoL NotAssigned

In this case, these samples were left as NotAssigned :

> t(queryResult_AssignLess$probabilities[,

+ queryResult_AssignLess$class=="NotAssigned", drop=FALSE])

ALL AML CLL CML NoL

GSM331392.CEL 0.04569346 0.1744316 0.1318118 0.5635446 0.08451848
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To help understanding how these thresholds behave for a specific dataset, if geNetClassi-
fier() is executed with estimateGError=TRUE, it generates a plot presenting the assign-
ment probabilities for each sample. This plot shows the probability of the most likely
class versus the probability difference with next likely class for each sample. Therefore, it
allows to view the effects of the 2 coefficients (minProbAssignCoeff and minDiffAssign-
Coeff ) in the assignment.

0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Thresholds to assign query samples

Probability of the most likely class

D
if
fe

re
n

c
e

 w
it
h

 n
e

xt
 c

la
s
s

AssignedNot Assigned

m
in

P
ro

b

minDiff
Most likely class

Correct
Incorrect

Figure 6. Assignment probabilities plot: It shows for each sample the probability
of its most likely class versus the difference in probability with the next likely class.
Green dots indicate that the probability of the most likely class is the correct class.
Red dots indicate that the probability of the most likely class is not the correct
class and, if assigned, such sample would have been missclassified. Dotted lines
represent the chosen thresholds. The green area between them shows the samples
that are actually assigned, those out of the green area are left as NotAssigned.

The plot in Figure 6 was obtained through the execution of geNetClassifier() with the
leukemia’s dataset. It shows that there are several samples under the assignment thresh-
olds: these samples are left as NotAssigned. Out of these not assigned samples, the
highest probability of some of them was to the real class (green), but some others was to
an incorrect class (red). If the classifier had assigned the samples in red, it would have
been an incorrect assignment.
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5 Sample classification: query with new samples of

unknown class

Once a classifier is built for a group of diseases or biological states, we can take external
samples from new patients or new studies to query the classifier and know their class type.

Since we had 60 samples in the initial leukemia dataset and only 50 were used in the
classifier, the 10 not used for training can be used as new samples to query the classifier
and find out their class. In this case we will consider that the class of these samples is
unknown.

> testSamples <- c(1:60)[-trainSamples]

queryGeNetClassifier() can then be used to ask the classifier about the class of the new
samples.

> queryResult_AsUnkown <- queryGeNetClassifier(leukemiasClassifier,

+ leukemiasEset[,testSamples])

In the field $class of the return, we can see the class that each sample has been assigned
to.

> names(queryResult_AsUnkown)

[1] "call" "class" "probabilities"

> queryResult_AsUnkown$class

GSM330195.CEL GSM330201.CEL GSM330611.CEL GSM330612.CEL GSM331037.CEL

ALL ALL AML AML CLL

GSM331048.CEL GSM331392.CEL GSM331393.CEL GSM331675.CEL GSM331677.CEL

CLL CML CML NoL NoL

Levels: ALL AML CLL CML NoL

If there were samples that had not been assigned to any class, they would be marked
asNotAssigned. In the field $probabilities, we could see the probability of each sample to
belong to each class. All these steps are very similar to the ones describes in section 4.1.

> t(queryResult_AsUnkown$probabilities[ ,

+ queryResult$class=="NotAssigned"])

ALL AML CLL CML NoL

The function querySummary() provides a summary of the results by counting the number
of samples that were assigned to each class and with which probabilities. It is a good way
to have an overview of the classification results. In this case, the 100% call rate indicates
that all samples have been assigned.

> querySummary(queryResult_AsUnkown, numDecimals=3)
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$callRate

[1] 100

$assigned

Count MinProb MaxProb Mean SD

ALL 2 0.721 0.825 0.773 0.073

AML 2 0.681 0.847 0.764 0.118

CLL 2 0.719 0.750 0.735 0.022

CML 2 0.564 0.879 0.721 0.223

NoL 2 0.745 0.886 0.816 0.100

$notAssigned

[1] "All samples have been assigned."
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6 Functions to plot the results

6.1 Plot Ranked Significant Genes: plot(...@genesRaking)

As indicated in section 3.4.1, the default plot of a genesRanking can be obtained through
the plot() function. This plot represents the gene rank obtained for each class versus the
posterior probability of the genes.

> plot(leukemiasClassifier@genesRanking)

Some of the parameters to personalize this plot are:

� lpThreshold to set the value of the posterior probability threshold (marked as an
horizontal line in the plot)

� numGenesPlot to determine the maximum number of genes that will be plot

> plot(leukemiasClassifier@genesRanking, numGenesPlot=3000,

+ plotTitle="5 classes: ALL, AML, CLL, CML, NoL", lpThreshold=0.80)
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Figure 7. Plot of the posterior probabilities of the genes of 4 leukemia classes and
the non-leukemia controls, ordering the genes according to their rank and setting
the lpThreshold at 0.80.

calculateGenesRanking() allows to calculate (and plot) the ranking for a given data set
without building the classifier:

> ranking <- calculateGenesRanking(leukemiasEset[,trainSamples],

+ "LeukemiaType")
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6.2 Plot Gene Expression Profiles: plotExpressionProfiles()

The function plotExpressionProfiles() generates an overview of the expression profile of
each gene along all the samples contained in the studied dataset. The plot will be saved
as a PDF if fileName is indicated. The parameter geneLabels can be used to show a
different name to the one included in the expression matrix (i.e. gene symbol instead of
ENSEMBL ID or Affymetrix ID).

To plot the expression of 4 specific genes across the samples included in the leukemia’s
set:

> data(geneSymbols)

> topGenes <- getRanking(

+ getTopRanking(leukemiasClassifier@classificationGenes,numGenesClass=1),

+ showGeneID=TRUE)$geneID

> plotExpressionProfiles(leukemiasEset, topGenes[,c("ALL","AML"), drop=FALSE],

+ sampleLabels="LeukemiaType", geneLabels=geneSymbols)
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Figure 8. Plot of the expression profiles across 60 samples of 2 genes.

If a geNetClassifierReturn object is provided instead of a list of genes, it will plot the
expression of all the genes used for training the classifier:

> plotExpressionProfiles(leukemiasEset[,trainSamples], leukemiasClassifier,

+ sampleLabels="LeukemiaType", fileName="leukExprs_trainSamples.pdf")

To plot the expression of all the genes chosen for classification for a specific class, for
example AML:

> classGenes <- getRanking(leukemiasClassifier@classificationGenes,

+ showGeneID=TRUE)$geneID[,"AML"]

> plotExpressionProfiles(leukemiasEset, genes=classGenes,

+ sampleLabels="LeukemiaType", geneLabels=geneSymbols, fileName="AML_genes.pdf")
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These plots can be modified in several ways, for example coloring specific samples or
classes, or plotting the expression as boxplot

� Coloring specific samples or classes:

> plotExpressionProfiles(leukemiasEset, genes=topGenes[,3, drop=FALSE],

+ sampleLabels="LeukemiaType",

+ showMean=TRUE, identify=FALSE,

+ sampleColors=c("grey","red")

+ [(sampleNames(leukemiasEset)%in% c("GSM331386.CEL","GSM331392.CEL"))+1])

> plotExpressionProfiles(leukemiasEset, genes=topGenes[,3, drop=FALSE],

+ sampleLabels="LeukemiaType",

+ showMean=TRUE, identify=FALSE,

+ classColors=c("red","red", "blue","red","red"))

� Plotting the expression as boxplot (grouped by classes):

> plotExpressionProfiles(leukemiasEset, genes=topGenes[,3, drop=FALSE],

+ sampleLabels="LeukemiaType",

+ type="boxplot", geneLabels=geneSymbols, sameScale=FALSE)
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Figure 9. Two different versions of expression plot.

See ?plotExpressionProfiles for more details.
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6.3 Plot Genes Discriminant Power: plotDiscriminantPower()

The discriminant power is a parameter derived from the classifier’s support vectors which
resembles the power of each gene to mark the difference between classes.

The multi-class SVM algorithm (One-versus-One, OvO) produces a set of support vectors
for each binary comparison between classes. Such support vectors include the Lagrange
coefficients (alpha) for all the genes selected for the classification. Therefore, we can
assign to each gene the sum of the Lagrange coefficients of all the support vectors of
each class (represented as piled up bars in the plot). The discriminant power is then
calculated as the difference between the value of the largest class and the closest (the
distance marked by two red lines in the plot). In conclusion, the discriminant power
is a parameter that allows the characterization of the genes based in their capacity to
separate different classes (i.e. different diseases or diseases subtypes compared).

The discriminant power is calculated for each gene included in the classifier (the @classi-
ficationGenes) when it is built geNetClassifier()). The plotDiscriminantPower() function
is included in the package to generate a graphic representation of the discriminant power.

> plotDiscriminantPower(leukemiasClassifier,

+ classificationGenes="ENSG00000169575")

ENSG00000169575 (VPREB1)
Discriminant power: 9.42 (ALL)
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Figure 10. Plot of the discriminant power of gene VPREB1 (ENSG00000169575).
The plot shows that this gene identifies class ALL and the closest class is NoL.

The next example shows the discriminant power of the top genes of a class. In order to
plot more than 20 genes, or to save the plots as PDF, provide a fileName.
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> discPowerTable <- plotDiscriminantPower(leukemiasClassifier,

+ classificationGenes=getRanking(leukemiasClassifier@classificationGenes,

+ showGeneID=TRUE)$geneID[1:4,"AML",drop=FALSE], returnTable=TRUE)

ENSG00000078399 (HOXA9)
Discriminant power: 8.01 (AML)

−
10

0
5

10
−

10
0

5
10

−
10

0
5

10

A
LL

A
M

L

C
LL

C
M

L

N
oL

ENSG00000143995 (MEIS1)
Discriminant power: 10.32 (AML)

−
10

0
5

10
−

10
0

5
10

−
10

0
5

10

A
LL

A
M

L

C
LL

C
M

L

N
oL

ENSG00000185275 (CD24L4)
Discriminant power: 5.73 (AML)

−
10

0
5

10
−

10
0

5
10

−
10

0
5

10

A
LL

A
M

L

C
LL

C
M

L

N
oL

ENSG00000154188 (ANGPT1)
Discriminant power: 9.22 (AML)

−
10

0
5

10
−

10
0

5
10

−
10

0
5

10

A
LL

A
M

L

C
LL

C
M

L

N
oL

Figure 11. Plot of the discriminant power of the 4 genes that best dis-
criminate AML class from the other classes. The figures indicate that MEIS1
(ENSG00000143995) presents the highest discriminant power. This gene encodes a
homeobox protein that has been involved in myeloid leukemia. A high discriminant
power can help to identify gene markers.

Some of the options to personalize the plot are classNames to provide a different name for
the classes and textitgeneLabels to provide a alias for the genes. As usual, more details
about the function are available at ?plotDiscriminantPower.
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6.4 Plot Gene Networks: plotNetwork()

The package also includes some functions to manipulate the networks produced by geNet-
Classifier() (i.e. select part of a network and personalize the plots).

Step 1: Select a network or sub-network.
getSubNetwork() allows to select sub-networks. i.e. the sub-network containing only the
classification genes:

> clGenesSubNet <- getSubNetwork(leukemiasClassifier@genesNetwork,

+ leukemiasClassifier@classificationGenes)

Step 2: Get the info of the genes to plot.
genesDetails() provides the available information about the genes. This information can
be shown in the network: The gene name will be the node label. The expression of the
gene will be shown with the node color, and the discriminant power will determine its size.
In case the network includes genes selected for classification and genes which were not
selected, the genes selected for classification will be plot as squares and the not selected
as circles (only available for PDF plot, not on the dynamic view). For more details see
the network legend in figure 14.

> clGenesInfo <- genesDetails(leukemiasClassifier@classificationGenes)

Step 3: Plot the network.
The network plots can be produced either using R interactive view (tkplot from igraph)
or plotted as saved PDF files. Use plotType=”pdf” to save the network as a static PDF
file. This option is recommended to produce an overview of several networks. To produce
interactive networks skip this argument. Iteractive plotscan be exported as a postscript
files (.eps).

Some plot examples:
Network of ALL classification genes:

> plotNetwork(genesNetwork=clGenesSubNet$ALL, genesInfo=clGenesInfo)

Figure 12. Gene network obtained for class ALL including the 9 classification
genes selected for this disease.
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Only connected nodes from ALL classification genes network:

> plotNetwork(genesNetwork=clGenesSubNet$ALL, genesInfo=clGenesInfo,

+ plotAllNodesNetwork=FALSE, plotOnlyConnectedNodesNetwork=TRUE)

AML network of the top 30 genes from the ranking (calculated as co-expression and
mutual information):

> top30g <- getRanking(leukemiasClassifier@genesRanking,

+ showGeneID=TRUE)$geneID[1:30,]

> top30gSubNet <- getSubNetwork(leukemiasClassifier@genesNetwork, top30g)

> top30gInfo <- lapply(genesDetails(leukemiasClassifier@genesRanking),

+ function(x) x[1:30,])

> plotNetwork(genesNetwork=top30gSubNet$AML, genesInfo=top30gInfo$AML)

Figure 13. Gene network obtained for class AML including the top 30 genes
selected from the gene ranking of this disease.

Network of the top 100 genes from AML ranking.
A preview of this network is automatically plotted for every class by geNetClassifier() if
plotsName is provided.

> top100gRanking <- getTopRanking(leukemiasClassifier@genesRanking,

+ numGenes=100)

> top100gSubNet <- getSubNetwork(leukemiasClassifier@genesNetwork,

+ getRanking(top100gRanking, showGeneID=TRUE)$geneID)

> plotNetwork(genesNetwork=top100gSubNet,

+ classificationGenes=leukemiasClassifier@classificationGenes,

+ genesRanking=top100gRanking, plotAllNodesNetwork=TRUE,

+ plotOnlyConnectedNodesNetwork=TRUE, labelSize=0.4,

+ plotType="pdf", fileName="leukemiasNetwork")
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Figure 14. Gene network obtained for class AML selecting the 100 top genes
from the gene ranking of this disease, but presenting only the connected nodes.
The figure also includes the network legend indicating the meaning of the shapes
and colors given to the nodes and edges.
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